

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp - Python AMQP low-level client library

	Version

	5.0.7

	Web

	https://amqp.readthedocs.io/

	Download

	https://pypi.org/project/amqp/

	Source

	http://github.com/celery/py-amqp/

	Keywords

	amqp, rabbitmq

About

This is a fork of amqplib [https://pypi.org/project/amqplib/] which was originally written by Barry Pederson.
It is maintained by the Celery [http://celeryproject.org/] project, and used by kombu [https://kombu.readthedocs.io/] as a pure python
alternative when librabbitmq [https://pypi.org/project/librabbitmq/] is not available.

This library should be API compatible with librabbitmq [https://pypi.org/project/librabbitmq/].

Differences from amqplib [https://pypi.org/project/amqplib/]

	Supports draining events from multiple channels (Connection.drain_events)

	Support for timeouts

	Channels are restored after channel error, instead of having to close the
connection.

	Support for heartbeats

	Connection.heartbeat_tick(rate=2) must called at regular intervals
(half of the heartbeat value if rate is 2).

	Or some other scheme by using Connection.send_heartbeat.

	
	Supports RabbitMQ extensions:
	
	
	Consumer Cancel Notifications
	
	by default a cancel results in ChannelError being raised

	but not if a on_cancel callback is passed to basic_consume.

	
	Publisher confirms
	
	Channel.confirm_select() enables publisher confirms.

	Channel.events['basic_ack'].append(my_callback) adds a callback
to be called when a message is confirmed. This callback is then
called with the signature (delivery_tag, multiple).

	
	Exchange-to-exchange bindings: exchange_bind / exchange_unbind.
	
	Channel.confirm_select() enables publisher confirms.

	Channel.events['basic_ack'].append(my_callback) adds a callback
to be called when a message is confirmed. This callback is then
called with the signature (delivery_tag, multiple).

	Support for basic_return

	
	Uses AMQP 0-9-1 instead of 0-8.
	
	Channel.access_request and ticket arguments to methods
removed.

	Supports the arguments argument to basic_consume.

	internal argument to exchange_declare removed.

	auto_delete argument to exchange_declare deprecated

	insist argument to Connection removed.

	Channel.alerts has been removed.

	Support for Channel.basic_recover_async.

	Channel.basic_recover deprecated.

	
	Exceptions renamed to have idiomatic names:
	
	AMQPException -> AMQPError

	AMQPConnectionException -> ConnectionError``

	AMQPChannelException -> ChannelError``

	Connection.known_hosts removed.

	Connection no longer supports redirects.

	exchange argument to queue_bind can now be empty
to use the “default exchange”.

	Adds Connection.is_alive that tries to detect
whether the connection can still be used.

	Adds Connection.connection_errors and .channel_errors,
a list of recoverable errors.

	Exposes the underlying socket as Connection.sock.

	Adds Channel.no_ack_consumers to keep track of consumer tags
that set the no_ack flag.

	Slightly better at error recovery

Further

	Differences between AMQP 0.8 and 0.9.1

http://www.rabbitmq.com/amqp-0-8-to-0-9-1.html

	AMQP 0.9.1 Quick Reference

http://www.rabbitmq.com/amqp-0-9-1-quickref.html

	RabbitMQ Extensions

http://www.rabbitmq.com/extensions.html

	For more information about AMQP, visit

http://www.amqp.org

	For other Python client libraries see:

http://www.rabbitmq.com/devtools.html#python-dev

Contents

	API Reference
	amqp.connection

	amqp.channel

	amqp.basic_message

	amqp.exceptions

	amqp.abstract_channel

	amqp.transport

	amqp.method_framing

	amqp.platform

	amqp.protocol

	amqp.spec

	amqp.serialization

	amqp.spec

	amqp.utils

	Changes

	5.0.7

	5.0.6

	5.0.5

	5.0.4

	5.0.3

	5.0.2

	5.0.1

	5.0.0

	5.0.0b1

	5.0.0a1

	2.6.1

	2.6.0

	2.5.2

	2.5.1

	2.5.0

	2.4.2

	2.4.1

	2.4.0

	2.3.2

	2.3.1

	2.3.0

	2.2.2

	2.2.1

	2.2.0

	2.1.4

	2.1.3

	2.1.2

	2.1.1

	2.1.0

	2.0.3

	2.0.2

	2.0.1

	2.0.0

	1.4.9

	1.4.8

	1.4.7

	1.4.6

	1.4.5

	1.4.4

	1.4.3

	1.4.2

	1.4.1

	1.4.0

	1.3.3

	1.3.2

	1.3.1

	1.3.0

	1.2.1

	1.2.0

	1.1.0

	1.0.13

	1.0.12

	1.0.11

	1.0.10

	1.0.9

	1.0.8

	1.0.7

	1.0.6

	1.0.5

	1.0.4

	1.0.3

	1.0.2

	1.0.1

	1.0.0

	Version 0.9.4

	Version 0.9.3

	Version 0.9.2

	Version 0.9.1

Indices and tables

	Index

	Module Index

	Search Page

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

API Reference

	Release

	5.0

	Date

	Dec 13, 2021

	amqp.connection

	amqp.channel

	amqp.basic_message

	amqp.exceptions

	amqp.abstract_channel

	amqp.transport

	amqp.method_framing

	amqp.platform

	amqp.protocol

	amqp.spec

	amqp.serialization

	amqp.spec

	amqp.utils

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.connection

AMQP Connections.

	
class amqp.connection.Connection(host='localhost:5672', userid='guest', password='guest', login_method=None, login_response=None, authentication=(), virtual_host='/', locale='en_US', client_properties=None, ssl=False, connect_timeout=None, channel_max=None, frame_max=None, heartbeat=0, on_open=None, on_blocked=None, on_unblocked=None, confirm_publish=False, on_tune_ok=None, read_timeout=None, write_timeout=None, socket_settings=None, frame_handler=<function frame_handler>, frame_writer=<function frame_writer>, **kwargs)

	AMQP Connection.

The connection class provides methods for a client to establish a
network connection to a server, and for both peers to operate the
connection thereafter.

GRAMMAR:

connection = open-connection *use-connection close-connection
open-connection = C:protocol-header
 S:START C:START-OK
 *challenge
 S:TUNE C:TUNE-OK
 C:OPEN S:OPEN-OK
challenge = S:SECURE C:SECURE-OK
use-connection = *channel
close-connection = C:CLOSE S:CLOSE-OK
 / S:CLOSE C:CLOSE-OK

Create a connection to the specified host, which should be
a ‘host[:port]’, such as ‘localhost’, or ‘1.2.3.4:5672’
(defaults to ‘localhost’, if a port is not specified then
5672 is used)

Authentication can be controlled by passing one or more
amqp.sasl.SASL instances as the authentication parameter, or
setting the login_method string to one of the supported methods:
‘GSSAPI’, ‘EXTERNAL’, ‘AMQPLAIN’, or ‘PLAIN’.
Otherwise authentication will be performed using any supported method
preferred by the server. Userid and passwords apply to AMQPLAIN and
PLAIN authentication, whereas on GSSAPI only userid will be used as the
client name. For EXTERNAL authentication both userid and password are
ignored.

The ‘ssl’ parameter may be simply True/False, or
a dictionary of options to pass to ssl.SSLContext [https://docs.python.org/dev/library/ssl.html#ssl.SSLContext] such as
requiring certain certificates. For details, refer ssl parameter of
SSLTransport.

The “socket_settings” parameter is a dictionary defining tcp
settings which will be applied as socket options.

When “confirm_publish” is set to True, the channel is put to
confirm mode. In this mode, each published message is
confirmed using Publisher confirms RabbitMQ extension.

	
class Channel(connection, channel_id=None, auto_decode=True, on_open=None)

	AMQP Channel.

The channel class provides methods for a client to establish a
virtual connection - a channel - to a server and for both peers to
operate the virtual connection thereafter.

GRAMMAR:

channel = open-channel *use-channel close-channel
open-channel = C:OPEN S:OPEN-OK
use-channel = C:FLOW S:FLOW-OK
 / S:FLOW C:FLOW-OK
 / functional-class
close-channel = C:CLOSE S:CLOSE-OK
 / S:CLOSE C:CLOSE-OK

Create a channel bound to a connection and using the specified
numeric channel_id, and open on the server.

The ‘auto_decode’ parameter (defaults to True), indicates
whether the library should attempt to decode the body
of Messages to a Unicode string if there’s a ‘content_encoding’
property for the message. If there’s no ‘content_encoding’
property, or the decode raises an Exception, the message body
is left as plain bytes.

	
basic_ack(delivery_tag, multiple=False, argsig='Lb')

	Acknowledge one or more messages.

This method acknowledges one or more messages delivered via
the Deliver or Get-Ok methods. The client can ask to confirm
a single message or a set of messages up to and including a
specific message.

	PARAMETERS:
	delivery_tag: longlong

server-assigned delivery tag

The server-assigned and channel-specific delivery tag

RULE:

The delivery tag is valid only within the channel
from which the message was received. I.e. a client
MUST NOT receive a message on one channel and then
acknowledge it on another.

RULE:

The server MUST NOT use a zero value for delivery
tags. Zero is reserved for client use, meaning “all
messages so far received”.

multiple: boolean

acknowledge multiple messages

If set to True, the delivery tag is treated as “up to
and including”, so that the client can acknowledge
multiple messages with a single method. If set to
False, the delivery tag refers to a single message.
If the multiple field is True, and the delivery tag
is zero, tells the server to acknowledge all
outstanding messages.

RULE:

The server MUST validate that a non-zero delivery-
tag refers to an delivered message, and raise a
channel exception if this is not the case.

	
basic_cancel(consumer_tag, nowait=False, argsig='sb')

	End a queue consumer.

This method cancels a consumer. This does not affect already
delivered messages, but it does mean the server will not send
any more messages for that consumer. The client may receive
an arbitrary number of messages in between sending the cancel
method and receiving the cancel-ok reply.

RULE:

If the queue no longer exists when the client sends a
cancel command, or the consumer has been cancelled for
other reasons, this command has no effect.

	PARAMETERS:
	consumer_tag: shortstr

consumer tag

Identifier for the consumer, valid within the current
connection.

RULE:

The consumer tag is valid only within the channel
from which the consumer was created. I.e. a client
MUST NOT create a consumer in one channel and then
use it in another.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

	
basic_consume(queue='', consumer_tag='', no_local=False, no_ack=False, exclusive=False, nowait=False, callback=None, arguments=None, on_cancel=None, argsig='BssbbbbF')

	Start a queue consumer.

This method asks the server to start a “consumer”, which is a
transient request for messages from a specific queue.
Consumers last as long as the channel they were created on, or
until the client cancels them.

RULE:

The server SHOULD support at least 16 consumers per queue,
unless the queue was declared as private, and ideally,
impose no limit except as defined by available resources.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to consume from. If
the queue name is null, refers to the current queue
for the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

consumer_tag: shortstr

Specifies the identifier for the consumer. The
consumer tag is local to a connection, so two clients
can use the same consumer tags. If this field is empty
the server will generate a unique tag.

RULE:

The tag MUST NOT refer to an existing consumer. If
the client attempts to create two consumers with
the same non-empty tag the server MUST raise a
connection exception with reply code 530 (not
allowed).

no_local: boolean

do not deliver own messages

If the no-local field is set the server will not send
messages to the client that published them.

no_ack: boolean

no acknowledgment needed

If this field is set the server does not expect
acknowledgments for messages. That is, when a message
is delivered to the client the server automatically and
silently acknowledges it on behalf of the client. This
functionality increases performance but at the cost of
reliability. Messages can get lost if a client dies
before it can deliver them to the application.

exclusive: boolean

request exclusive access

Request exclusive consumer access, meaning only this
consumer can access the queue.

RULE:

If the server cannot grant exclusive access to the
queue when asked, - because there are other
consumers active - it MUST raise a channel
exception with return code 403 (access refused).

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

callback: Python callable

function/method called with each delivered message

For each message delivered by the broker, the
callable will be called with a Message object
as the single argument. If no callable is specified,
messages are quietly discarded, no_ack should probably
be set to True in that case.

	
basic_get(queue='', no_ack=False, argsig='Bsb')

	Direct access to a queue.

This method provides a direct access to the messages in a
queue using a synchronous dialogue that is designed for
specific types of application where synchronous functionality
is more important than performance.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to consume from. If
the queue name is null, refers to the current queue
for the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

no_ack: boolean

no acknowledgment needed

If this field is set the server does not expect
acknowledgments for messages. That is, when a message
is delivered to the client the server automatically and
silently acknowledges it on behalf of the client. This
functionality increases performance but at the cost of
reliability. Messages can get lost if a client dies
before it can deliver them to the application.

Non-blocking, returns a amqp.basic_message.Message object,
or None if queue is empty.

	
basic_publish(msg, exchange='', routing_key='', mandatory=False, immediate=False, timeout=None, confirm_timeout=None, argsig='Bssbb')

	Publish a message.

This method publishes a message to a specific exchange. The
message will be routed to queues as defined by the exchange
configuration and distributed to any active consumers when the
transaction, if any, is committed.

When channel is in confirm mode (when Connection parameter
confirm_publish is set to True), each message is confirmed.
When broker rejects published message (e.g. due internal broker
constrains), MessageNacked exception is raised and
set confirm_timeout to wait maximum confirm_timeout second
for message to confirm.

	PARAMETERS:
	exchange: shortstr

Specifies the name of the exchange to publish to. The
exchange name can be empty, meaning the default
exchange. If the exchange name is specified, and that
exchange does not exist, the server will raise a
channel exception.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

RULE:

The exchange MAY refuse basic content in which
case it MUST raise a channel exception with reply
code 540 (not implemented).

routing_key: shortstr

Message routing key

Specifies the routing key for the message. The
routing key is used for routing messages depending on
the exchange configuration.

mandatory: boolean

indicate mandatory routing

This flag tells the server how to react if the message
cannot be routed to a queue. If this flag is True, the
server will return an unroutable message with a Return
method. If this flag is False, the server silently
drops the message.

RULE:

The server SHOULD implement the mandatory flag.

immediate: boolean

request immediate delivery

This flag tells the server how to react if the message
cannot be routed to a queue consumer immediately. If
this flag is set, the server will return an
undeliverable message with a Return method. If this
flag is zero, the server will queue the message, but
with no guarantee that it will ever be consumed.

RULE:

The server SHOULD implement the immediate flag.

timeout: short

timeout for publish

Set timeout to wait maximum timeout second
for message to publish.

confirm_timeout: short

confirm_timeout for publish in confirm mode

When the channel is in confirm mode set
confirm_timeout to wait maximum confirm_timeout
second for message to confirm.

	
basic_publish_confirm(*args, **kwargs)

	

	
basic_qos(prefetch_size, prefetch_count, a_global, argsig='lBb')

	Specify quality of service.

This method requests a specific quality of service. The QoS
can be specified for the current channel or for all channels
on the connection. The particular properties and semantics of
a qos method always depend on the content class semantics.
Though the qos method could in principle apply to both peers,
it is currently meaningful only for the server.

	PARAMETERS:
	prefetch_size: long

prefetch window in octets

The client can request that messages be sent in
advance so that when the client finishes processing a
message, the following message is already held
locally, rather than needing to be sent down the
channel. Prefetching gives a performance improvement.
This field specifies the prefetch window size in
octets. The server will send a message in advance if
it is equal to or smaller in size than the available
prefetch size (and also falls into other prefetch
limits). May be set to zero, meaning “no specific
limit”, although other prefetch limits may still
apply. The prefetch-size is ignored if the no-ack
option is set.

RULE:

The server MUST ignore this setting when the
client is not processing any messages - i.e. the
prefetch size does not limit the transfer of
single messages to a client, only the sending in
advance of more messages while the client still
has one or more unacknowledged messages.

prefetch_count: short

prefetch window in messages

Specifies a prefetch window in terms of whole
messages. This field may be used in combination with
the prefetch-size field; a message will only be sent
in advance if both prefetch windows (and those at the
channel and connection level) allow it. The prefetch-
count is ignored if the no-ack option is set.

RULE:

The server MAY send less data in advance than
allowed by the client’s specified prefetch windows
but it MUST NOT send more.

a_global: boolean

Defines a scope of QoS. Semantics of this parameter differs
between AMQP 0-9-1 standard and RabbitMQ broker:

	MEANING IN AMQP 0-9-1:
	False: shared across all consumers on the channel
True: shared across all consumers on the connection

	MEANING IN RABBITMQ:
	
	False: applied separately to each new consumer
	on the channel

True: shared across all consumers on the channel

	
basic_recover(requeue=False)

	Redeliver unacknowledged messages.

This method asks the broker to redeliver all unacknowledged
messages on a specified channel. Zero or more messages may be
redelivered. This method is only allowed on non-transacted
channels.

RULE:

The server MUST set the redelivered flag on all messages
that are resent.

RULE:

The server MUST raise a channel exception if this is
called on a transacted channel.

	PARAMETERS:
	requeue: boolean

requeue the message

If this field is False, the message will be redelivered
to the original recipient. If this field is True, the
server will attempt to requeue the message,
potentially then delivering it to an alternative
subscriber.

	
basic_recover_async(requeue=False)

	

	
basic_reject(delivery_tag, requeue, argsig='Lb')

	Reject an incoming message.

This method allows a client to reject a message. It can be
used to interrupt and cancel large incoming messages, or
return untreatable messages to their original queue.

RULE:

The server SHOULD be capable of accepting and process the
Reject method while sending message content with a Deliver
or Get-Ok method. I.e. the server should read and process
incoming methods while sending output frames. To cancel a
partially-send content, the server sends a content body
frame of size 1 (i.e. with no data except the frame-end
octet).

RULE:

The server SHOULD interpret this method as meaning that
the client is unable to process the message at this time.

RULE:

A client MUST NOT use this method as a means of selecting
messages to process. A rejected message MAY be discarded
or dead-lettered, not necessarily passed to another
client.

	PARAMETERS:
	delivery_tag: longlong

server-assigned delivery tag

The server-assigned and channel-specific delivery tag

RULE:

The delivery tag is valid only within the channel
from which the message was received. I.e. a client
MUST NOT receive a message on one channel and then
acknowledge it on another.

RULE:

The server MUST NOT use a zero value for delivery
tags. Zero is reserved for client use, meaning “all
messages so far received”.

requeue: boolean

requeue the message

If this field is False, the message will be discarded.
If this field is True, the server will attempt to
requeue the message.

RULE:

The server MUST NOT deliver the message to the
same client within the context of the current
channel. The recommended strategy is to attempt
to deliver the message to an alternative consumer,
and if that is not possible, to move the message
to a dead-letter queue. The server MAY use more
sophisticated tracking to hold the message on the
queue and redeliver it to the same client at a
later stage.

	
close(reply_code=0, reply_text='', method_sig=(0, 0), argsig='BsBB')

	Request a channel close.

This method indicates that the sender wants to close the
channel. This may be due to internal conditions (e.g. a forced
shut-down) or due to an error handling a specific method, i.e.
an exception. When a close is due to an exception, the sender
provides the class and method id of the method which caused
the exception.

RULE:

After sending this method any received method except
Channel.Close-OK MUST be discarded.

RULE:

The peer sending this method MAY use a counter or timeout
to detect failure of the other peer to respond correctly
with Channel.Close-OK..

	PARAMETERS:
	reply_code: short

The reply code. The AMQ reply codes are defined in AMQ
RFC 011.

reply_text: shortstr

The localised reply text. This text can be logged as an
aid to resolving issues.

class_id: short

failing method class

When the close is provoked by a method exception, this
is the class of the method.

method_id: short

failing method ID

When the close is provoked by a method exception, this
is the ID of the method.

	
collect()

	Tear down this object.

Best called after we’ve agreed to close with the server.

	
confirm_select(nowait=False)

	Enable publisher confirms for this channel.

Note: This is an RabbitMQ extension.

Can now be used if the channel is in transactional mode.

	Parameters

	nowait – If set, the server will not respond to the method.
The client should not wait for a reply method. If the
server could not complete the method it will raise a channel
or connection exception.

	
exchange_bind(destination, source='', routing_key='', nowait=False, arguments=None, argsig='BsssbF')

	Bind an exchange to an exchange.

RULE:

A server MUST allow and ignore duplicate bindings - that
is, two or more bind methods for a specific exchanges,
with identical arguments - without treating these as an
error.

RULE:

A server MUST allow cycles of exchange bindings to be
created including allowing an exchange to be bound to
itself.

RULE:

A server MUST not deliver the same message more than once
to a destination exchange, even if the topology of
exchanges and bindings results in multiple (even infinite)
routes to that exchange.

	PARAMETERS:
	reserved-1: short

destination: shortstr

Specifies the name of the destination exchange to
bind.

RULE:

A client MUST NOT be allowed to bind a non-
existent destination exchange.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

source: shortstr

Specifies the name of the source exchange to bind.

RULE:

A client MUST NOT be allowed to bind a non-
existent source exchange.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

routing-key: shortstr

Specifies the routing key for the binding. The routing
key is used for routing messages depending on the
exchange configuration. Not all exchanges use a
routing key - refer to the specific exchange
documentation.

no-wait: bit

arguments: table

A set of arguments for the binding. The syntax and
semantics of these arguments depends on the exchange
class.

	
exchange_declare(exchange, type, passive=False, durable=False, auto_delete=True, nowait=False, arguments=None, argsig='BssbbbbbF')

	Declare exchange, create if needed.

This method creates an exchange if it does not already exist,
and if the exchange exists, verifies that it is of the correct
and expected class.

RULE:

The server SHOULD support a minimum of 16 exchanges per
virtual host and ideally, impose no limit except as
defined by available resources.

	PARAMETERS:
	exchange: shortstr

RULE:

Exchange names starting with “amq.” are reserved
for predeclared and standardised exchanges. If
the client attempts to create an exchange starting
with “amq.”, the server MUST raise a channel
exception with reply code 403 (access refused).

type: shortstr

exchange type

Each exchange belongs to one of a set of exchange
types implemented by the server. The exchange types
define the functionality of the exchange - i.e. how
messages are routed through it. It is not valid or
meaningful to attempt to change the type of an
existing exchange.

RULE:

If the exchange already exists with a different
type, the server MUST raise a connection exception
with a reply code 507 (not allowed).

RULE:

If the server does not support the requested
exchange type it MUST raise a connection exception
with a reply code 503 (command invalid).

passive: boolean

do not create exchange

If set, the server will not create the exchange. The
client can use this to check whether an exchange
exists without modifying the server state.

RULE:

If set, and the exchange does not already exist,
the server MUST raise a channel exception with
reply code 404 (not found).

durable: boolean

request a durable exchange

If set when creating a new exchange, the exchange will
be marked as durable. Durable exchanges remain active
when a server restarts. Non-durable exchanges
(transient exchanges) are purged if/when a server
restarts.

RULE:

The server MUST support both durable and transient
exchanges.

RULE:

The server MUST ignore the durable field if the
exchange already exists.

auto_delete: boolean

auto-delete when unused

If set, the exchange is deleted when all queues have
finished using it.

RULE:

The server SHOULD allow for a reasonable delay
between the point when it determines that an
exchange is not being used (or no longer used),
and the point when it deletes the exchange. At
the least it must allow a client to create an
exchange and then bind a queue to it, with a small
but non-zero delay between these two actions.

RULE:

The server MUST ignore the auto-delete field if
the exchange already exists.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

arguments: table

arguments for declaration

A set of arguments for the declaration. The syntax and
semantics of these arguments depends on the server
implementation. This field is ignored if passive is
True.

	
exchange_delete(exchange, if_unused=False, nowait=False, argsig='Bsbb')

	Delete an exchange.

This method deletes an exchange. When an exchange is deleted
all queue bindings on the exchange are cancelled.

	PARAMETERS:
	exchange: shortstr

RULE:

The exchange MUST exist. Attempting to delete a
non-existing exchange causes a channel exception.

if_unused: boolean

delete only if unused

If set, the server will only delete the exchange if it
has no queue bindings. If the exchange has queue
bindings the server does not delete it but raises a
channel exception instead.

RULE:

If set, the server SHOULD delete the exchange but
only if it has no queue bindings.

RULE:

If set, the server SHOULD raise a channel
exception if the exchange is in use.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

	
exchange_unbind(destination, source='', routing_key='', nowait=False, arguments=None, argsig='BsssbF')

	Unbind an exchange from an exchange.

RULE:

If a unbind fails, the server MUST raise a connection
exception.

	PARAMETERS:
	reserved-1: short

destination: shortstr

Specifies the name of the destination exchange to
unbind.

RULE:

The client MUST NOT attempt to unbind an exchange
that does not exist from an exchange.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

source: shortstr

Specifies the name of the source exchange to unbind.

RULE:

The client MUST NOT attempt to unbind an exchange
from an exchange that does not exist.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

routing-key: shortstr

Specifies the routing key of the binding to unbind.

no-wait: bit

arguments: table

Specifies the arguments of the binding to unbind.

	
flow(active)

	Enable/disable flow from peer.

This method asks the peer to pause or restart the flow of
content data. This is a simple flow-control mechanism that a
peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process.
Note that this method is not intended for window control. The
peer that receives a request to stop sending content should
finish sending the current content, if any, and then wait
until it receives a Flow restart method.

RULE:

When a new channel is opened, it is active. Some
applications assume that channels are inactive until
started. To emulate this behaviour a client MAY open the
channel, then pause it.

RULE:

When sending content data in multiple frames, a peer
SHOULD monitor the channel for incoming methods and
respond to a Channel.Flow as rapidly as possible.

RULE:

A peer MAY use the Channel.Flow method to throttle
incoming content data for internal reasons, for example,
when exchanging data over a slower connection.

RULE:

The peer that requests a Channel.Flow method MAY
disconnect and/or ban a peer that does not respect the
request.

	PARAMETERS:
	active: boolean

start/stop content frames

If True, the peer starts sending content frames. If
False, the peer stops sending content frames.

	
open()

	Open a channel for use.

This method opens a virtual connection (a channel).

RULE:

This method MUST NOT be called when the channel is already
open.

	PARAMETERS:
	out_of_band: shortstr (DEPRECATED)

out-of-band settings

Configures out-of-band transfers on this channel. The
syntax and meaning of this field will be formally
defined at a later date.

	
queue_bind(queue, exchange='', routing_key='', nowait=False, arguments=None, argsig='BsssbF')

	Bind queue to an exchange.

This method binds a queue to an exchange. Until a queue is
bound it will not receive any messages. In a classic
messaging model, store-and-forward queues are bound to a dest
exchange and subscription queues are bound to a dest_wild
exchange.

RULE:

A server MUST allow ignore duplicate bindings - that is,
two or more bind methods for a specific queue, with
identical arguments - without treating these as an error.

RULE:

If a bind fails, the server MUST raise a connection
exception.

RULE:

The server MUST NOT allow a durable queue to bind to a
transient exchange. If the client attempts this the server
MUST raise a channel exception.

RULE:

Bindings for durable queues are automatically durable and
the server SHOULD restore such bindings after a server
restart.

RULE:

The server SHOULD support at least 4 bindings per queue,
and ideally, impose no limit except as defined by
available resources.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to bind. If the queue
name is empty, refers to the current queue for the
channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

RULE:

If the queue does not exist the server MUST raise
a channel exception with reply code 404 (not
found).

exchange: shortstr

The name of the exchange to bind to.

RULE:

If the exchange does not exist the server MUST
raise a channel exception with reply code 404 (not
found).

routing_key: shortstr

message routing key

Specifies the routing key for the binding. The
routing key is used for routing messages depending on
the exchange configuration. Not all exchanges use a
routing key - refer to the specific exchange
documentation. If the routing key is empty and the
queue name is empty, the routing key will be the
current queue for the channel, which is the last
declared queue.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

arguments: table

arguments for binding

A set of arguments for the binding. The syntax and
semantics of these arguments depends on the exchange
class.

	
queue_declare(queue='', passive=False, durable=False, exclusive=False, auto_delete=True, nowait=False, arguments=None, argsig='BsbbbbbF')

	Declare queue, create if needed.

This method creates or checks a queue. When creating a new
queue the client can specify various properties that control
the durability of the queue and its contents, and the level of
sharing for the queue.

RULE:

The server MUST create a default binding for a newly-
created queue to the default exchange, which is an
exchange of type ‘direct’.

RULE:

The server SHOULD support a minimum of 256 queues per
virtual host and ideally, impose no limit except as
defined by available resources.

	PARAMETERS:
	queue: shortstr

RULE:

The queue name MAY be empty, in which case the
server MUST create a new queue with a unique
generated name and return this to the client in
the Declare-Ok method.

RULE:

Queue names starting with “amq.” are reserved for
predeclared and standardised server queues. If
the queue name starts with “amq.” and the passive
option is False, the server MUST raise a connection
exception with reply code 403 (access refused).

passive: boolean

do not create queue

If set, the server will not create the queue. The
client can use this to check whether a queue exists
without modifying the server state.

RULE:

If set, and the queue does not already exist, the
server MUST respond with a reply code 404 (not
found) and raise a channel exception.

durable: boolean

request a durable queue

If set when creating a new queue, the queue will be
marked as durable. Durable queues remain active when
a server restarts. Non-durable queues (transient
queues) are purged if/when a server restarts. Note
that durable queues do not necessarily hold persistent
messages, although it does not make sense to send
persistent messages to a transient queue.

RULE:

The server MUST recreate the durable queue after a
restart.

RULE:

The server MUST support both durable and transient
queues.

RULE:

The server MUST ignore the durable field if the
queue already exists.

exclusive: boolean

request an exclusive queue

Exclusive queues may only be consumed from by the
current connection. Setting the ‘exclusive’ flag
always implies ‘auto-delete’.

RULE:

The server MUST support both exclusive (private)
and non-exclusive (shared) queues.

RULE:

The server MUST raise a channel exception if
‘exclusive’ is specified and the queue already
exists and is owned by a different connection.

auto_delete: boolean

auto-delete queue when unused

If set, the queue is deleted when all consumers have
finished using it. Last consumer can be cancelled
either explicitly or because its channel is closed. If
there was no consumer ever on the queue, it won’t be
deleted.

RULE:

The server SHOULD allow for a reasonable delay
between the point when it determines that a queue
is not being used (or no longer used), and the
point when it deletes the queue. At the least it
must allow a client to create a queue and then
create a consumer to read from it, with a small
but non-zero delay between these two actions. The
server should equally allow for clients that may
be disconnected prematurely, and wish to re-
consume from the same queue without losing
messages. We would recommend a configurable
timeout, with a suitable default value being one
minute.

RULE:

The server MUST ignore the auto-delete field if
the queue already exists.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

arguments: table

arguments for declaration

A set of arguments for the declaration. The syntax and
semantics of these arguments depends on the server
implementation. This field is ignored if passive is
True.

	Returns a tuple containing 3 items:
	the name of the queue (essential for automatically-named queues),
message count and
consumer count

	
queue_delete(queue='', if_unused=False, if_empty=False, nowait=False, argsig='Bsbbb')

	Delete a queue.

This method deletes a queue. When a queue is deleted any
pending messages are sent to a dead-letter queue if this is
defined in the server configuration, and all consumers on the
queue are cancelled.

RULE:

The server SHOULD use a dead-letter queue to hold messages
that were pending on a deleted queue, and MAY provide
facilities for a system administrator to move these
messages back to an active queue.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to delete. If the
queue name is empty, refers to the current queue for
the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

RULE:

The queue must exist. Attempting to delete a non-
existing queue causes a channel exception.

if_unused: boolean

delete only if unused

If set, the server will only delete the queue if it
has no consumers. If the queue has consumers the
server does does not delete it but raises a channel
exception instead.

RULE:

The server MUST respect the if-unused flag when
deleting a queue.

if_empty: boolean

delete only if empty

If set, the server will only delete the queue if it
has no messages. If the queue is not empty the server
raises a channel exception.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

If nowait is False, returns the number of deleted messages.

	
queue_purge(queue='', nowait=False, argsig='Bsb')

	Purge a queue.

This method removes all messages from a queue. It does not
cancel consumers. Purged messages are deleted without any
formal “undo” mechanism.

RULE:

A call to purge MUST result in an empty queue.

RULE:

On transacted channels the server MUST not purge messages
that have already been sent to a client but not yet
acknowledged.

RULE:

The server MAY implement a purge queue or log that allows
system administrators to recover accidentally-purged
messages. The server SHOULD NOT keep purged messages in
the same storage spaces as the live messages since the
volumes of purged messages may get very large.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to purge. If the
queue name is empty, refers to the current queue for
the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

RULE:

The queue must exist. Attempting to purge a non-
existing queue causes a channel exception.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

If nowait is False, returns a number of purged messages.

	
queue_unbind(queue, exchange, routing_key='', nowait=False, arguments=None, argsig='BsssF')

	Unbind a queue from an exchange.

This method unbinds a queue from an exchange.

RULE:

If a unbind fails, the server MUST raise a connection exception.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to unbind.

RULE:

The client MUST either specify a queue name or have
previously declared a queue on the same channel

RULE:

The client MUST NOT attempt to unbind a queue that
does not exist.

exchange: shortstr

The name of the exchange to unbind from.

RULE:

The client MUST NOT attempt to unbind a queue from an
exchange that does not exist.

RULE:

The server MUST accept a blank exchange name to mean
the default exchange.

routing_key: shortstr

routing key of binding

Specifies the routing key of the binding to unbind.

arguments: table

arguments of binding

Specifies the arguments of the binding to unbind.

	
then(on_success, on_error=None)

	

	
tx_commit()

	Commit the current transaction.

This method commits all messages published and acknowledged in
the current transaction. A new transaction starts immediately
after a commit.

	
tx_rollback()

	Abandon the current transaction.

This method abandons all messages published and acknowledged
in the current transaction. A new transaction starts
immediately after a rollback.

	
tx_select()

	Select standard transaction mode.

This method sets the channel to use standard transactions.
The client must use this method at least once on a channel
before using the Commit or Rollback methods.

	
Transport(host, connect_timeout, ssl=False, read_timeout=None, write_timeout=None, socket_settings=None, **kwargs)

	

	
blocking_read(timeout=None)

	

	
bytes_recv = 0

	Number of successful reads from socket.

	
bytes_sent = 0

	Number of successful writes to socket.

	
channel(channel_id=None, callback=None)

	Create new channel.

Fetch a Channel object identified by the numeric channel_id, or
create that object if it doesn’t already exist.

	
channel_errors = (<class 'amqp.exceptions.ChannelError'>,)

	

	
client_heartbeat = None

	Original heartbeat interval value proposed by client.

	
close(reply_code=0, reply_text='', method_sig=(0, 0), argsig='BsBB')

	Request a connection close.

This method indicates that the sender wants to close the
connection. This may be due to internal conditions (e.g. a
forced shut-down) or due to an error handling a specific
method, i.e. an exception. When a close is due to an
exception, the sender provides the class and method id of the
method which caused the exception.

RULE:

After sending this method any received method except the
Close-OK method MUST be discarded.

RULE:

The peer sending this method MAY use a counter or timeout
to detect failure of the other peer to respond correctly
with the Close-OK method.

RULE:

When a server receives the Close method from a client it
MUST delete all server-side resources associated with the
client’s context. A client CANNOT reconnect to a context
after sending or receiving a Close method.

	PARAMETERS:
	reply_code: short

The reply code. The AMQ reply codes are defined in AMQ
RFC 011.

reply_text: shortstr

The localised reply text. This text can be logged as an
aid to resolving issues.

class_id: short

failing method class

When the close is provoked by a method exception, this
is the class of the method.

method_id: short

failing method ID

When the close is provoked by a method exception, this
is the ID of the method.

	
collect()

	

	
connect(callback=None)

	

	
property connected

	

	
connection_errors = (<class 'amqp.exceptions.ConnectionError'>, <class 'OSError'>, <class 'OSError'>, <class 'OSError'>)

	

	
drain_events(timeout=None)

	

	
property frame_writer

	

	
heartbeat = None

	Final heartbeat interval value (in float seconds) after negotiation

	
heartbeat_tick(rate=2)

	Send heartbeat packets if necessary.

	Raises:
	
	~amqp.exceptions.ConnectionForvced: if none have been
	received recently.

	Note:
	This should be called frequently, on the order of
once per second.

	Keyword Arguments:
	rate (int): Previously used, but ignored now.

	
is_alive()

	

	
last_heartbeat_received = 0

	Time of last heartbeat received (in monotonic time, if available).

	
last_heartbeat_sent = 0

	Time of last heartbeat sent (in monotonic time, if available).

	
library_properties = {'product': 'py-amqp', 'product_version': '5.0.7'}

	These are sent to the server to announce what features
we support, type of client etc.

	
negotiate_capabilities = {'authentication_failure_close': True, 'connection.blocked': True, 'consumer_cancel_notify': True}

	Mapping of protocol extensions to enable.
The server will report these in server_properties[capabilities],
and if a key in this map is present the client will tell the
server to either enable or disable the capability depending
on the value set in this map.
For example with:

	negotiate_capabilities = {
	‘consumer_cancel_notify’: True,

}

The client will enable this capability if the server reports
support for it, but if the value is False the client will
disable the capability.

	
property on_inbound_frame

	

	
on_inbound_method(channel_id, method_sig, payload, content)

	

	
prev_recv = None

	Number of bytes received from socket at the last heartbeat check.

	
prev_sent = None

	Number of bytes sent to socket at the last heartbeat check.

	
recoverable_channel_errors = (<class 'amqp.exceptions.RecoverableChannelError'>,)

	

	
recoverable_connection_errors = (<class 'amqp.exceptions.RecoverableConnectionError'>, <class 'OSError'>, <class 'OSError'>, <class 'OSError'>)

	

	
send_heartbeat()

	

	
property server_capabilities

	

	
server_heartbeat = None

	Original heartbeat interval proposed by server.

	
property sock

	

	
then(on_success, on_error=None)

	

	
property transport

	

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.channel

AMQP Channels.

	
class amqp.channel.Channel(connection, channel_id=None, auto_decode=True, on_open=None)

	AMQP Channel.

The channel class provides methods for a client to establish a
virtual connection - a channel - to a server and for both peers to
operate the virtual connection thereafter.

GRAMMAR:

channel = open-channel *use-channel close-channel
open-channel = C:OPEN S:OPEN-OK
use-channel = C:FLOW S:FLOW-OK
 / S:FLOW C:FLOW-OK
 / functional-class
close-channel = C:CLOSE S:CLOSE-OK
 / S:CLOSE C:CLOSE-OK

Create a channel bound to a connection and using the specified
numeric channel_id, and open on the server.

The ‘auto_decode’ parameter (defaults to True), indicates
whether the library should attempt to decode the body
of Messages to a Unicode string if there’s a ‘content_encoding’
property for the message. If there’s no ‘content_encoding’
property, or the decode raises an Exception, the message body
is left as plain bytes.

	
basic_ack(delivery_tag, multiple=False, argsig='Lb')

	Acknowledge one or more messages.

This method acknowledges one or more messages delivered via
the Deliver or Get-Ok methods. The client can ask to confirm
a single message or a set of messages up to and including a
specific message.

	PARAMETERS:
	delivery_tag: longlong

server-assigned delivery tag

The server-assigned and channel-specific delivery tag

RULE:

The delivery tag is valid only within the channel
from which the message was received. I.e. a client
MUST NOT receive a message on one channel and then
acknowledge it on another.

RULE:

The server MUST NOT use a zero value for delivery
tags. Zero is reserved for client use, meaning “all
messages so far received”.

multiple: boolean

acknowledge multiple messages

If set to True, the delivery tag is treated as “up to
and including”, so that the client can acknowledge
multiple messages with a single method. If set to
False, the delivery tag refers to a single message.
If the multiple field is True, and the delivery tag
is zero, tells the server to acknowledge all
outstanding messages.

RULE:

The server MUST validate that a non-zero delivery-
tag refers to an delivered message, and raise a
channel exception if this is not the case.

	
basic_cancel(consumer_tag, nowait=False, argsig='sb')

	End a queue consumer.

This method cancels a consumer. This does not affect already
delivered messages, but it does mean the server will not send
any more messages for that consumer. The client may receive
an arbitrary number of messages in between sending the cancel
method and receiving the cancel-ok reply.

RULE:

If the queue no longer exists when the client sends a
cancel command, or the consumer has been cancelled for
other reasons, this command has no effect.

	PARAMETERS:
	consumer_tag: shortstr

consumer tag

Identifier for the consumer, valid within the current
connection.

RULE:

The consumer tag is valid only within the channel
from which the consumer was created. I.e. a client
MUST NOT create a consumer in one channel and then
use it in another.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

	
basic_consume(queue='', consumer_tag='', no_local=False, no_ack=False, exclusive=False, nowait=False, callback=None, arguments=None, on_cancel=None, argsig='BssbbbbF')

	Start a queue consumer.

This method asks the server to start a “consumer”, which is a
transient request for messages from a specific queue.
Consumers last as long as the channel they were created on, or
until the client cancels them.

RULE:

The server SHOULD support at least 16 consumers per queue,
unless the queue was declared as private, and ideally,
impose no limit except as defined by available resources.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to consume from. If
the queue name is null, refers to the current queue
for the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

consumer_tag: shortstr

Specifies the identifier for the consumer. The
consumer tag is local to a connection, so two clients
can use the same consumer tags. If this field is empty
the server will generate a unique tag.

RULE:

The tag MUST NOT refer to an existing consumer. If
the client attempts to create two consumers with
the same non-empty tag the server MUST raise a
connection exception with reply code 530 (not
allowed).

no_local: boolean

do not deliver own messages

If the no-local field is set the server will not send
messages to the client that published them.

no_ack: boolean

no acknowledgment needed

If this field is set the server does not expect
acknowledgments for messages. That is, when a message
is delivered to the client the server automatically and
silently acknowledges it on behalf of the client. This
functionality increases performance but at the cost of
reliability. Messages can get lost if a client dies
before it can deliver them to the application.

exclusive: boolean

request exclusive access

Request exclusive consumer access, meaning only this
consumer can access the queue.

RULE:

If the server cannot grant exclusive access to the
queue when asked, - because there are other
consumers active - it MUST raise a channel
exception with return code 403 (access refused).

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

callback: Python callable

function/method called with each delivered message

For each message delivered by the broker, the
callable will be called with a Message object
as the single argument. If no callable is specified,
messages are quietly discarded, no_ack should probably
be set to True in that case.

	
basic_get(queue='', no_ack=False, argsig='Bsb')

	Direct access to a queue.

This method provides a direct access to the messages in a
queue using a synchronous dialogue that is designed for
specific types of application where synchronous functionality
is more important than performance.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to consume from. If
the queue name is null, refers to the current queue
for the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

no_ack: boolean

no acknowledgment needed

If this field is set the server does not expect
acknowledgments for messages. That is, when a message
is delivered to the client the server automatically and
silently acknowledges it on behalf of the client. This
functionality increases performance but at the cost of
reliability. Messages can get lost if a client dies
before it can deliver them to the application.

Non-blocking, returns a amqp.basic_message.Message object,
or None if queue is empty.

	
basic_publish(msg, exchange='', routing_key='', mandatory=False, immediate=False, timeout=None, confirm_timeout=None, argsig='Bssbb')

	Publish a message.

This method publishes a message to a specific exchange. The
message will be routed to queues as defined by the exchange
configuration and distributed to any active consumers when the
transaction, if any, is committed.

When channel is in confirm mode (when Connection parameter
confirm_publish is set to True), each message is confirmed.
When broker rejects published message (e.g. due internal broker
constrains), MessageNacked exception is raised and
set confirm_timeout to wait maximum confirm_timeout second
for message to confirm.

	PARAMETERS:
	exchange: shortstr

Specifies the name of the exchange to publish to. The
exchange name can be empty, meaning the default
exchange. If the exchange name is specified, and that
exchange does not exist, the server will raise a
channel exception.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

RULE:

The exchange MAY refuse basic content in which
case it MUST raise a channel exception with reply
code 540 (not implemented).

routing_key: shortstr

Message routing key

Specifies the routing key for the message. The
routing key is used for routing messages depending on
the exchange configuration.

mandatory: boolean

indicate mandatory routing

This flag tells the server how to react if the message
cannot be routed to a queue. If this flag is True, the
server will return an unroutable message with a Return
method. If this flag is False, the server silently
drops the message.

RULE:

The server SHOULD implement the mandatory flag.

immediate: boolean

request immediate delivery

This flag tells the server how to react if the message
cannot be routed to a queue consumer immediately. If
this flag is set, the server will return an
undeliverable message with a Return method. If this
flag is zero, the server will queue the message, but
with no guarantee that it will ever be consumed.

RULE:

The server SHOULD implement the immediate flag.

timeout: short

timeout for publish

Set timeout to wait maximum timeout second
for message to publish.

confirm_timeout: short

confirm_timeout for publish in confirm mode

When the channel is in confirm mode set
confirm_timeout to wait maximum confirm_timeout
second for message to confirm.

	
basic_publish_confirm(*args, **kwargs)

	

	
basic_qos(prefetch_size, prefetch_count, a_global, argsig='lBb')

	Specify quality of service.

This method requests a specific quality of service. The QoS
can be specified for the current channel or for all channels
on the connection. The particular properties and semantics of
a qos method always depend on the content class semantics.
Though the qos method could in principle apply to both peers,
it is currently meaningful only for the server.

	PARAMETERS:
	prefetch_size: long

prefetch window in octets

The client can request that messages be sent in
advance so that when the client finishes processing a
message, the following message is already held
locally, rather than needing to be sent down the
channel. Prefetching gives a performance improvement.
This field specifies the prefetch window size in
octets. The server will send a message in advance if
it is equal to or smaller in size than the available
prefetch size (and also falls into other prefetch
limits). May be set to zero, meaning “no specific
limit”, although other prefetch limits may still
apply. The prefetch-size is ignored if the no-ack
option is set.

RULE:

The server MUST ignore this setting when the
client is not processing any messages - i.e. the
prefetch size does not limit the transfer of
single messages to a client, only the sending in
advance of more messages while the client still
has one or more unacknowledged messages.

prefetch_count: short

prefetch window in messages

Specifies a prefetch window in terms of whole
messages. This field may be used in combination with
the prefetch-size field; a message will only be sent
in advance if both prefetch windows (and those at the
channel and connection level) allow it. The prefetch-
count is ignored if the no-ack option is set.

RULE:

The server MAY send less data in advance than
allowed by the client’s specified prefetch windows
but it MUST NOT send more.

a_global: boolean

Defines a scope of QoS. Semantics of this parameter differs
between AMQP 0-9-1 standard and RabbitMQ broker:

	MEANING IN AMQP 0-9-1:
	False: shared across all consumers on the channel
True: shared across all consumers on the connection

	MEANING IN RABBITMQ:
	
	False: applied separately to each new consumer
	on the channel

True: shared across all consumers on the channel

	
basic_recover(requeue=False)

	Redeliver unacknowledged messages.

This method asks the broker to redeliver all unacknowledged
messages on a specified channel. Zero or more messages may be
redelivered. This method is only allowed on non-transacted
channels.

RULE:

The server MUST set the redelivered flag on all messages
that are resent.

RULE:

The server MUST raise a channel exception if this is
called on a transacted channel.

	PARAMETERS:
	requeue: boolean

requeue the message

If this field is False, the message will be redelivered
to the original recipient. If this field is True, the
server will attempt to requeue the message,
potentially then delivering it to an alternative
subscriber.

	
basic_recover_async(requeue=False)

	

	
basic_reject(delivery_tag, requeue, argsig='Lb')

	Reject an incoming message.

This method allows a client to reject a message. It can be
used to interrupt and cancel large incoming messages, or
return untreatable messages to their original queue.

RULE:

The server SHOULD be capable of accepting and process the
Reject method while sending message content with a Deliver
or Get-Ok method. I.e. the server should read and process
incoming methods while sending output frames. To cancel a
partially-send content, the server sends a content body
frame of size 1 (i.e. with no data except the frame-end
octet).

RULE:

The server SHOULD interpret this method as meaning that
the client is unable to process the message at this time.

RULE:

A client MUST NOT use this method as a means of selecting
messages to process. A rejected message MAY be discarded
or dead-lettered, not necessarily passed to another
client.

	PARAMETERS:
	delivery_tag: longlong

server-assigned delivery tag

The server-assigned and channel-specific delivery tag

RULE:

The delivery tag is valid only within the channel
from which the message was received. I.e. a client
MUST NOT receive a message on one channel and then
acknowledge it on another.

RULE:

The server MUST NOT use a zero value for delivery
tags. Zero is reserved for client use, meaning “all
messages so far received”.

requeue: boolean

requeue the message

If this field is False, the message will be discarded.
If this field is True, the server will attempt to
requeue the message.

RULE:

The server MUST NOT deliver the message to the
same client within the context of the current
channel. The recommended strategy is to attempt
to deliver the message to an alternative consumer,
and if that is not possible, to move the message
to a dead-letter queue. The server MAY use more
sophisticated tracking to hold the message on the
queue and redeliver it to the same client at a
later stage.

	
close(reply_code=0, reply_text='', method_sig=(0, 0), argsig='BsBB')

	Request a channel close.

This method indicates that the sender wants to close the
channel. This may be due to internal conditions (e.g. a forced
shut-down) or due to an error handling a specific method, i.e.
an exception. When a close is due to an exception, the sender
provides the class and method id of the method which caused
the exception.

RULE:

After sending this method any received method except
Channel.Close-OK MUST be discarded.

RULE:

The peer sending this method MAY use a counter or timeout
to detect failure of the other peer to respond correctly
with Channel.Close-OK..

	PARAMETERS:
	reply_code: short

The reply code. The AMQ reply codes are defined in AMQ
RFC 011.

reply_text: shortstr

The localised reply text. This text can be logged as an
aid to resolving issues.

class_id: short

failing method class

When the close is provoked by a method exception, this
is the class of the method.

method_id: short

failing method ID

When the close is provoked by a method exception, this
is the ID of the method.

	
collect()

	Tear down this object.

Best called after we’ve agreed to close with the server.

	
confirm_select(nowait=False)

	Enable publisher confirms for this channel.

Note: This is an RabbitMQ extension.

Can now be used if the channel is in transactional mode.

	Parameters

	nowait – If set, the server will not respond to the method.
The client should not wait for a reply method. If the
server could not complete the method it will raise a channel
or connection exception.

	
exchange_bind(destination, source='', routing_key='', nowait=False, arguments=None, argsig='BsssbF')

	Bind an exchange to an exchange.

RULE:

A server MUST allow and ignore duplicate bindings - that
is, two or more bind methods for a specific exchanges,
with identical arguments - without treating these as an
error.

RULE:

A server MUST allow cycles of exchange bindings to be
created including allowing an exchange to be bound to
itself.

RULE:

A server MUST not deliver the same message more than once
to a destination exchange, even if the topology of
exchanges and bindings results in multiple (even infinite)
routes to that exchange.

	PARAMETERS:
	reserved-1: short

destination: shortstr

Specifies the name of the destination exchange to
bind.

RULE:

A client MUST NOT be allowed to bind a non-
existent destination exchange.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

source: shortstr

Specifies the name of the source exchange to bind.

RULE:

A client MUST NOT be allowed to bind a non-
existent source exchange.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

routing-key: shortstr

Specifies the routing key for the binding. The routing
key is used for routing messages depending on the
exchange configuration. Not all exchanges use a
routing key - refer to the specific exchange
documentation.

no-wait: bit

arguments: table

A set of arguments for the binding. The syntax and
semantics of these arguments depends on the exchange
class.

	
exchange_declare(exchange, type, passive=False, durable=False, auto_delete=True, nowait=False, arguments=None, argsig='BssbbbbbF')

	Declare exchange, create if needed.

This method creates an exchange if it does not already exist,
and if the exchange exists, verifies that it is of the correct
and expected class.

RULE:

The server SHOULD support a minimum of 16 exchanges per
virtual host and ideally, impose no limit except as
defined by available resources.

	PARAMETERS:
	exchange: shortstr

RULE:

Exchange names starting with “amq.” are reserved
for predeclared and standardised exchanges. If
the client attempts to create an exchange starting
with “amq.”, the server MUST raise a channel
exception with reply code 403 (access refused).

type: shortstr

exchange type

Each exchange belongs to one of a set of exchange
types implemented by the server. The exchange types
define the functionality of the exchange - i.e. how
messages are routed through it. It is not valid or
meaningful to attempt to change the type of an
existing exchange.

RULE:

If the exchange already exists with a different
type, the server MUST raise a connection exception
with a reply code 507 (not allowed).

RULE:

If the server does not support the requested
exchange type it MUST raise a connection exception
with a reply code 503 (command invalid).

passive: boolean

do not create exchange

If set, the server will not create the exchange. The
client can use this to check whether an exchange
exists without modifying the server state.

RULE:

If set, and the exchange does not already exist,
the server MUST raise a channel exception with
reply code 404 (not found).

durable: boolean

request a durable exchange

If set when creating a new exchange, the exchange will
be marked as durable. Durable exchanges remain active
when a server restarts. Non-durable exchanges
(transient exchanges) are purged if/when a server
restarts.

RULE:

The server MUST support both durable and transient
exchanges.

RULE:

The server MUST ignore the durable field if the
exchange already exists.

auto_delete: boolean

auto-delete when unused

If set, the exchange is deleted when all queues have
finished using it.

RULE:

The server SHOULD allow for a reasonable delay
between the point when it determines that an
exchange is not being used (or no longer used),
and the point when it deletes the exchange. At
the least it must allow a client to create an
exchange and then bind a queue to it, with a small
but non-zero delay between these two actions.

RULE:

The server MUST ignore the auto-delete field if
the exchange already exists.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

arguments: table

arguments for declaration

A set of arguments for the declaration. The syntax and
semantics of these arguments depends on the server
implementation. This field is ignored if passive is
True.

	
exchange_delete(exchange, if_unused=False, nowait=False, argsig='Bsbb')

	Delete an exchange.

This method deletes an exchange. When an exchange is deleted
all queue bindings on the exchange are cancelled.

	PARAMETERS:
	exchange: shortstr

RULE:

The exchange MUST exist. Attempting to delete a
non-existing exchange causes a channel exception.

if_unused: boolean

delete only if unused

If set, the server will only delete the exchange if it
has no queue bindings. If the exchange has queue
bindings the server does not delete it but raises a
channel exception instead.

RULE:

If set, the server SHOULD delete the exchange but
only if it has no queue bindings.

RULE:

If set, the server SHOULD raise a channel
exception if the exchange is in use.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

	
exchange_unbind(destination, source='', routing_key='', nowait=False, arguments=None, argsig='BsssbF')

	Unbind an exchange from an exchange.

RULE:

If a unbind fails, the server MUST raise a connection
exception.

	PARAMETERS:
	reserved-1: short

destination: shortstr

Specifies the name of the destination exchange to
unbind.

RULE:

The client MUST NOT attempt to unbind an exchange
that does not exist from an exchange.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

source: shortstr

Specifies the name of the source exchange to unbind.

RULE:

The client MUST NOT attempt to unbind an exchange
from an exchange that does not exist.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

routing-key: shortstr

Specifies the routing key of the binding to unbind.

no-wait: bit

arguments: table

Specifies the arguments of the binding to unbind.

	
flow(active)

	Enable/disable flow from peer.

This method asks the peer to pause or restart the flow of
content data. This is a simple flow-control mechanism that a
peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process.
Note that this method is not intended for window control. The
peer that receives a request to stop sending content should
finish sending the current content, if any, and then wait
until it receives a Flow restart method.

RULE:

When a new channel is opened, it is active. Some
applications assume that channels are inactive until
started. To emulate this behaviour a client MAY open the
channel, then pause it.

RULE:

When sending content data in multiple frames, a peer
SHOULD monitor the channel for incoming methods and
respond to a Channel.Flow as rapidly as possible.

RULE:

A peer MAY use the Channel.Flow method to throttle
incoming content data for internal reasons, for example,
when exchanging data over a slower connection.

RULE:

The peer that requests a Channel.Flow method MAY
disconnect and/or ban a peer that does not respect the
request.

	PARAMETERS:
	active: boolean

start/stop content frames

If True, the peer starts sending content frames. If
False, the peer stops sending content frames.

	
open()

	Open a channel for use.

This method opens a virtual connection (a channel).

RULE:

This method MUST NOT be called when the channel is already
open.

	PARAMETERS:
	out_of_band: shortstr (DEPRECATED)

out-of-band settings

Configures out-of-band transfers on this channel. The
syntax and meaning of this field will be formally
defined at a later date.

	
queue_bind(queue, exchange='', routing_key='', nowait=False, arguments=None, argsig='BsssbF')

	Bind queue to an exchange.

This method binds a queue to an exchange. Until a queue is
bound it will not receive any messages. In a classic
messaging model, store-and-forward queues are bound to a dest
exchange and subscription queues are bound to a dest_wild
exchange.

RULE:

A server MUST allow ignore duplicate bindings - that is,
two or more bind methods for a specific queue, with
identical arguments - without treating these as an error.

RULE:

If a bind fails, the server MUST raise a connection
exception.

RULE:

The server MUST NOT allow a durable queue to bind to a
transient exchange. If the client attempts this the server
MUST raise a channel exception.

RULE:

Bindings for durable queues are automatically durable and
the server SHOULD restore such bindings after a server
restart.

RULE:

The server SHOULD support at least 4 bindings per queue,
and ideally, impose no limit except as defined by
available resources.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to bind. If the queue
name is empty, refers to the current queue for the
channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

RULE:

If the queue does not exist the server MUST raise
a channel exception with reply code 404 (not
found).

exchange: shortstr

The name of the exchange to bind to.

RULE:

If the exchange does not exist the server MUST
raise a channel exception with reply code 404 (not
found).

routing_key: shortstr

message routing key

Specifies the routing key for the binding. The
routing key is used for routing messages depending on
the exchange configuration. Not all exchanges use a
routing key - refer to the specific exchange
documentation. If the routing key is empty and the
queue name is empty, the routing key will be the
current queue for the channel, which is the last
declared queue.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

arguments: table

arguments for binding

A set of arguments for the binding. The syntax and
semantics of these arguments depends on the exchange
class.

	
queue_declare(queue='', passive=False, durable=False, exclusive=False, auto_delete=True, nowait=False, arguments=None, argsig='BsbbbbbF')

	Declare queue, create if needed.

This method creates or checks a queue. When creating a new
queue the client can specify various properties that control
the durability of the queue and its contents, and the level of
sharing for the queue.

RULE:

The server MUST create a default binding for a newly-
created queue to the default exchange, which is an
exchange of type ‘direct’.

RULE:

The server SHOULD support a minimum of 256 queues per
virtual host and ideally, impose no limit except as
defined by available resources.

	PARAMETERS:
	queue: shortstr

RULE:

The queue name MAY be empty, in which case the
server MUST create a new queue with a unique
generated name and return this to the client in
the Declare-Ok method.

RULE:

Queue names starting with “amq.” are reserved for
predeclared and standardised server queues. If
the queue name starts with “amq.” and the passive
option is False, the server MUST raise a connection
exception with reply code 403 (access refused).

passive: boolean

do not create queue

If set, the server will not create the queue. The
client can use this to check whether a queue exists
without modifying the server state.

RULE:

If set, and the queue does not already exist, the
server MUST respond with a reply code 404 (not
found) and raise a channel exception.

durable: boolean

request a durable queue

If set when creating a new queue, the queue will be
marked as durable. Durable queues remain active when
a server restarts. Non-durable queues (transient
queues) are purged if/when a server restarts. Note
that durable queues do not necessarily hold persistent
messages, although it does not make sense to send
persistent messages to a transient queue.

RULE:

The server MUST recreate the durable queue after a
restart.

RULE:

The server MUST support both durable and transient
queues.

RULE:

The server MUST ignore the durable field if the
queue already exists.

exclusive: boolean

request an exclusive queue

Exclusive queues may only be consumed from by the
current connection. Setting the ‘exclusive’ flag
always implies ‘auto-delete’.

RULE:

The server MUST support both exclusive (private)
and non-exclusive (shared) queues.

RULE:

The server MUST raise a channel exception if
‘exclusive’ is specified and the queue already
exists and is owned by a different connection.

auto_delete: boolean

auto-delete queue when unused

If set, the queue is deleted when all consumers have
finished using it. Last consumer can be cancelled
either explicitly or because its channel is closed. If
there was no consumer ever on the queue, it won’t be
deleted.

RULE:

The server SHOULD allow for a reasonable delay
between the point when it determines that a queue
is not being used (or no longer used), and the
point when it deletes the queue. At the least it
must allow a client to create a queue and then
create a consumer to read from it, with a small
but non-zero delay between these two actions. The
server should equally allow for clients that may
be disconnected prematurely, and wish to re-
consume from the same queue without losing
messages. We would recommend a configurable
timeout, with a suitable default value being one
minute.

RULE:

The server MUST ignore the auto-delete field if
the queue already exists.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

arguments: table

arguments for declaration

A set of arguments for the declaration. The syntax and
semantics of these arguments depends on the server
implementation. This field is ignored if passive is
True.

	Returns a tuple containing 3 items:
	the name of the queue (essential for automatically-named queues),
message count and
consumer count

	
queue_delete(queue='', if_unused=False, if_empty=False, nowait=False, argsig='Bsbbb')

	Delete a queue.

This method deletes a queue. When a queue is deleted any
pending messages are sent to a dead-letter queue if this is
defined in the server configuration, and all consumers on the
queue are cancelled.

RULE:

The server SHOULD use a dead-letter queue to hold messages
that were pending on a deleted queue, and MAY provide
facilities for a system administrator to move these
messages back to an active queue.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to delete. If the
queue name is empty, refers to the current queue for
the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

RULE:

The queue must exist. Attempting to delete a non-
existing queue causes a channel exception.

if_unused: boolean

delete only if unused

If set, the server will only delete the queue if it
has no consumers. If the queue has consumers the
server does does not delete it but raises a channel
exception instead.

RULE:

The server MUST respect the if-unused flag when
deleting a queue.

if_empty: boolean

delete only if empty

If set, the server will only delete the queue if it
has no messages. If the queue is not empty the server
raises a channel exception.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

If nowait is False, returns the number of deleted messages.

	
queue_purge(queue='', nowait=False, argsig='Bsb')

	Purge a queue.

This method removes all messages from a queue. It does not
cancel consumers. Purged messages are deleted without any
formal “undo” mechanism.

RULE:

A call to purge MUST result in an empty queue.

RULE:

On transacted channels the server MUST not purge messages
that have already been sent to a client but not yet
acknowledged.

RULE:

The server MAY implement a purge queue or log that allows
system administrators to recover accidentally-purged
messages. The server SHOULD NOT keep purged messages in
the same storage spaces as the live messages since the
volumes of purged messages may get very large.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to purge. If the
queue name is empty, refers to the current queue for
the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

RULE:

The queue must exist. Attempting to purge a non-
existing queue causes a channel exception.

nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

If nowait is False, returns a number of purged messages.

	
queue_unbind(queue, exchange, routing_key='', nowait=False, arguments=None, argsig='BsssF')

	Unbind a queue from an exchange.

This method unbinds a queue from an exchange.

RULE:

If a unbind fails, the server MUST raise a connection exception.

	PARAMETERS:
	queue: shortstr

Specifies the name of the queue to unbind.

RULE:

The client MUST either specify a queue name or have
previously declared a queue on the same channel

RULE:

The client MUST NOT attempt to unbind a queue that
does not exist.

exchange: shortstr

The name of the exchange to unbind from.

RULE:

The client MUST NOT attempt to unbind a queue from an
exchange that does not exist.

RULE:

The server MUST accept a blank exchange name to mean
the default exchange.

routing_key: shortstr

routing key of binding

Specifies the routing key of the binding to unbind.

arguments: table

arguments of binding

Specifies the arguments of the binding to unbind.

	
then(on_success, on_error=None)

	

	
tx_commit()

	Commit the current transaction.

This method commits all messages published and acknowledged in
the current transaction. A new transaction starts immediately
after a commit.

	
tx_rollback()

	Abandon the current transaction.

This method abandons all messages published and acknowledged
in the current transaction. A new transaction starts
immediately after a rollback.

	
tx_select()

	Select standard transaction mode.

This method sets the channel to use standard transactions.
The client must use this method at least once on a channel
before using the Commit or Rollback methods.

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.basic_message

AMQP Messages.

	
class amqp.basic_message.Message(body='', children=None, channel=None, **properties)

	A Message for use with the Channel.basic_* methods.

Expected arg types

body: string
children: (not supported)

Keyword properties may include:

	content_type: shortstr
	MIME content type

	content_encoding: shortstr
	MIME content encoding

	application_headers: table
	Message header field table, a dict with string keys,
and string | int | Decimal | datetime | dict values.

	delivery_mode: octet
	Non-persistent (1) or persistent (2)

	priority: octet
	The message priority, 0 to 9

	correlation_id: shortstr
	The application correlation identifier

	reply_to: shortstr
	The destination to reply to

	expiration: shortstr
	Message expiration specification

	message_id: shortstr
	The application message identifier

	timestamp: unsigned long
	The message timestamp

	type: shortstr
	The message type name

	user_id: shortstr
	The creating user id

	app_id: shortstr
	The creating application id

	cluster_id: shortstr
	Intra-cluster routing identifier

Unicode bodies are encoded according to the ‘content_encoding’
argument. If that’s None, it’s set to ‘UTF-8’ automatically.

Example:

msg = Message('hello world',
 content_type='text/plain',
 application_headers={'foo': 7})

	
CLASS_ID = 60

	

	
PROPERTIES = [('content_type', 's'), ('content_encoding', 's'), ('application_headers', 'F'), ('delivery_mode', 'o'), ('priority', 'o'), ('correlation_id', 's'), ('reply_to', 's'), ('expiration', 's'), ('message_id', 's'), ('timestamp', 'L'), ('type', 's'), ('user_id', 's'), ('app_id', 's'), ('cluster_id', 's')]

	Instances of this class have these attributes, which
are passed back and forth as message properties between
client and server

	
delivery_info

	set by basic_consume/basic_get

	
property delivery_tag

	

	
property headers

	

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.exceptions

Exceptions used by amqp.

	
exception amqp.exceptions.AMQPDeprecationWarning

	Warning for deprecated things.

	
exception amqp.exceptions.AMQPError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	Base class for all AMQP exceptions.

	
code = 0

	

	
property method

	

	
exception amqp.exceptions.AMQPNotImplementedError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Not Implemented Error.

	
code = 540

	

	
exception amqp.exceptions.AccessRefused(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Access Refused Error.

	
code = 403

	

	
exception amqp.exceptions.ChannelError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Channel Error.

	
exception amqp.exceptions.ChannelNotOpen(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Channel Not Open Error.

	
code = 504

	

	
exception amqp.exceptions.ConnectionError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Connection Error.

	
exception amqp.exceptions.ConnectionForced(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Connection Forced Error.

	
code = 320

	

	
exception amqp.exceptions.ConsumerCancelled(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Consumer Cancelled Predicate.

	
exception amqp.exceptions.ContentTooLarge(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Content Too Large Error.

	
code = 311

	

	
exception amqp.exceptions.FrameError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Frame Error.

	
code = 501

	

	
exception amqp.exceptions.FrameSyntaxError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Frame Syntax Error.

	
code = 502

	

	
exception amqp.exceptions.InternalError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Internal Error.

	
code = 541

	

	
exception amqp.exceptions.InvalidCommand(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Invalid Command Error.

	
code = 503

	

	
exception amqp.exceptions.InvalidPath(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Invalid Path Error.

	
code = 402

	

	
exception amqp.exceptions.IrrecoverableChannelError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	Exception class for irrecoverable channel errors.

	
exception amqp.exceptions.IrrecoverableConnectionError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	Exception class for irrecoverable connection errors.

	
exception amqp.exceptions.MessageNacked

	Message was nacked by broker.

	
exception amqp.exceptions.NoConsumers(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP No Consumers Error.

	
code = 313

	

	
exception amqp.exceptions.NotAllowed(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Not Allowed Error.

	
code = 530

	

	
exception amqp.exceptions.NotFound(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Not Found Error.

	
code = 404

	

	
exception amqp.exceptions.PreconditionFailed(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Precondition Failed Error.

	
code = 406

	

	
exception amqp.exceptions.RecoverableChannelError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	Exception class for recoverable channel errors.

	
exception amqp.exceptions.RecoverableConnectionError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	Exception class for recoverable connection errors.

	
exception amqp.exceptions.ResourceError(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Resource Error.

	
code = 506

	

	
exception amqp.exceptions.ResourceLocked(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Resource Locked Error.

	
code = 405

	

	
exception amqp.exceptions.UnexpectedFrame(reply_text=None, method_sig=None, method_name=None, reply_code=None)

	AMQP Unexpected Frame.

	
code = 505

	

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.abstract_channel

Code common to Connection and Channel objects.

	
class amqp.abstract_channel.AbstractChannel(connection, channel_id)

	Superclass for Connection and Channel.

The connection is treated as channel 0, then comes
user-created channel objects.

The subclasses must have a _METHOD_MAP class property, mapping
between AMQP method signatures and Python methods.

	
close()

	Close this Channel or Connection.

	
dispatch_method(method_sig, payload, content)

	

	
send_method(sig, format=None, args=None, content=None, wait=None, callback=None, returns_tuple=False)

	

	
wait(method, callback=None, timeout=None, returns_tuple=False)

	

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.transport

Transport implementation.

	
class amqp.transport._AbstractTransport(host, connect_timeout=None, read_timeout=None, write_timeout=None, socket_settings=None, raise_on_initial_eintr=True, **kwargs)

	Common superclass for TCP and SSL transports.

	PARAMETERS:
	host: str

Broker address in format HOSTNAME:PORT.

connect_timeout: int

Timeout of creating new connection.

read_timeout: int

sets SO_RCVTIMEO parameter of socket.

write_timeout: int

sets SO_SNDTIMEO parameter of socket.

socket_settings: dict

dictionary containing optname and optval passed to
setsockopt(2).

raise_on_initial_eintr: bool

when True, socket.timeout is raised
when exception is received during first read. See _read() for
details.

	
close()

	

	
connect()

	

	
having_timeout(timeout)

	

	
read_frame(unpack=<built-in function unpack>)

	Parse AMQP frame.

Frame has following format:

0 1 3 7 size+7 size+8
+------+---------+---------+ +-------------+ +-----------+
| type | channel | size | | payload | | frame-end |
+------+---------+---------+ +-------------+ +-----------+
 octet short long 'size' octets octet

	
write(s)

	

	
class amqp.transport.SSLTransport(host, connect_timeout=None, ssl=None, **kwargs)

	Transport that works over SSL.

	PARAMETERS:
	host: str

Broker address in format HOSTNAME:PORT.

connect_timeout: int

Timeout of creating new connection.

ssl: bool|dict

	parameters of TLS subsystem.
	
	when ssl is not dictionary, defaults of TLS are used

	
	otherwise:
	
	if ssl dictionary contains context key,
_wrap_context is used for wrapping
socket. context is a dictionary passed to
_wrap_context as context parameter.
All others items from ssl argument are passed as
sslopts.

	if ssl dictionary does not contain context key,
_wrap_socket_sni is used for
wrapping socket. All items in ssl argument are
passed to _wrap_socket_sni as
parameters.

kwargs:

additional arguments of
_AbstractTransport class

	
_wrap_context(sock, sslopts, check_hostname=None, **ctx_options)

	Wrap socket without SNI headers.

	PARAMETERS:
	sock: socket.socket

Socket to be wrapped.

sslopts: dict

Parameters of ssl.SSLContext.wrap_socket [https://docs.python.org/dev/library/ssl.html#ssl.SSLContext.wrap_socket].

check_hostname

Whether to match the peer cert’s hostname. See
ssl.SSLContext.check_hostname [https://docs.python.org/dev/library/ssl.html#ssl.SSLContext.check_hostname] for details.

ctx_options

Parameters of ssl.create_default_context.

	
_wrap_socket_sni(sock, keyfile=None, certfile=None, server_side=False, cert_reqs=None, ca_certs=None, do_handshake_on_connect=False, suppress_ragged_eofs=True, server_hostname=None, ciphers=None, ssl_version=None)

	Socket wrap with SNI headers.

stdlib ssl.SSLContext.wrap_socket [https://docs.python.org/dev/library/ssl.html#ssl.SSLContext.wrap_socket] method augmented with support
for setting the server_hostname field required for SNI hostname header.

	PARAMETERS:
	sock: socket.socket

Socket to be wrapped.

keyfile: str

Path to the private key

certfile: str

Path to the certificate

server_side: bool

Identifies whether server-side or client-side
behavior is desired from this socket. See
wrap_socket [https://docs.python.org/dev/library/ssl.html#ssl.SSLContext.wrap_socket] for details.

cert_reqs: ssl.VerifyMode

When set to other than ssl.CERT_NONE, peers certificate
is checked. Possible values are ssl.CERT_NONE,
ssl.CERT_OPTIONAL and ssl.CERT_REQUIRED.

ca_certs: str

Path to “certification authority” (CA) certificates
used to validate other peers’ certificates when cert_reqs
is other than ssl.CERT_NONE.

do_handshake_on_connect: bool

Specifies whether to do the SSL
handshake automatically. See
wrap_socket [https://docs.python.org/dev/library/ssl.html#ssl.SSLContext.wrap_socket] for details.

suppress_ragged_eofs (bool):

See wrap_socket [https://docs.python.org/dev/library/ssl.html#ssl.SSLContext.wrap_socket] for details.

server_hostname: str

Specifies the hostname of the service which
we are connecting to. See wrap_socket [https://docs.python.org/dev/library/ssl.html#ssl.SSLContext.wrap_socket]
for details.

ciphers: str

Available ciphers for sockets created with this
context. See ssl.SSLContext.set_ciphers [https://docs.python.org/dev/library/ssl.html#ssl.SSLContext.set_ciphers]

ssl_version:

Protocol of the SSL Context. The value is one of
ssl.PROTOCOL_* constants.

	
class amqp.transport.TCPTransport(host, connect_timeout=None, read_timeout=None, write_timeout=None, socket_settings=None, raise_on_initial_eintr=True, **kwargs)

	Transport that deals directly with TCP socket.

All parameters are _AbstractTransport class.

	
class amqp.transport.Transport(host, connect_timeout=None, ssl=False, **kwargs)

	Create transport.

Given a few parameters from the Connection constructor,
select and create a subclass of
_AbstractTransport.

PARAMETERS:

host: str

Broker address in format HOSTNAME:PORT.

connect_timeout: int

Timeout of creating new connection.

ssl: bool|dict

If set, SSLTransport is used
and ssl parameter is passed to it. Otherwise
TCPTransport is used.

kwargs:

additional arguments of _AbstractTransport
class

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.method_framing

Convert between frames and higher-level AMQP methods.

	
amqp.method_framing.frame_handler(connection, callback, unpack_from=<built-in function unpack_from>, content_methods=frozenset({(60, 50), (60, 60), (60, 71)}))

	Create closure that reads frames.

	
amqp.method_framing.frame_writer(connection, transport, pack=<built-in function pack>, pack_into=<built-in function pack_into>, range=<class 'range'>, len=<built-in function len>, bytes=<class 'bytes'>, str_to_bytes=<function str_to_bytes>, text_t=<class 'str'>)

	Create closure that writes frames.

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.platform

Platform compatibility.

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.protocol

Protocol data.

	
class amqp.protocol.basic_return_t(reply_code, reply_text, exchange, routing_key, message)

	
	
property exchange

	Alias for field number 2

	
property message

	Alias for field number 4

	
property reply_code

	Alias for field number 0

	
property reply_text

	Alias for field number 1

	
property routing_key

	Alias for field number 3

	
class amqp.protocol.queue_declare_ok_t(queue, message_count, consumer_count)

	
	
property consumer_count

	Alias for field number 2

	
property message_count

	Alias for field number 1

	
property queue

	Alias for field number 0

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.spec

SASL mechanisms for AMQP authentication.

	
class amqp.sasl.AMQPLAIN(username, password)

	AMQPLAIN SASL authentication mechanism.

This is a non-standard mechanism used by AMQP servers.

	
mechanism = b'AMQPLAIN'

	

	
start(connection)

	Return the first response to a SASL challenge as a bytes object.

	
class amqp.sasl.EXTERNAL

	EXTERNAL SASL mechanism.

Enables external authentication, i.e. not handled through this protocol.
Only passes ‘EXTERNAL’ as authentication mechanism, but no further
authentication data.

	
mechanism = b'EXTERNAL'

	

	
start(connection)

	Return the first response to a SASL challenge as a bytes object.

	
amqp.sasl.GSSAPI

	alias of amqp.sasl._get_gssapi_mechanism.<locals>.FakeGSSAPI

	
class amqp.sasl.PLAIN(username, password)

	PLAIN SASL authentication mechanism.

See https://tools.ietf.org/html/rfc4616 for details

	
mechanism = b'PLAIN'

	

	
start(connection)

	Return the first response to a SASL challenge as a bytes object.

	
class amqp.sasl.RAW(mechanism, response)

	A generic custom SASL mechanism.

This mechanism takes a mechanism name and response to send to the server,
so can be used for simple custom authentication schemes.

	
mechanism = None

	

	
start(connection)

	Return the first response to a SASL challenge as a bytes object.

	
class amqp.sasl.SASL

	The base class for all amqp SASL authentication mechanisms.

You should sub-class this if you’re implementing your own authentication.

	
property mechanism

	Return a bytes containing the SASL mechanism name.

	
start(connection)

	Return the first response to a SASL challenge as a bytes object.

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.serialization

Convert between bytestreams and higher-level AMQP types.

2007-11-05 Barry Pederson <bp@barryp.org>

	
class amqp.serialization.GenericContent(frame_method=None, frame_args=None, **props)

	Abstract base class for AMQP content.

Subclasses should override the PROPERTIES attribute.

	
CLASS_ID = None

	

	
PROPERTIES = [('dummy', 's')]

	

	
inbound_body(buf)

	

	
inbound_header(buf, offset=0)

	

	
amqp.serialization.decode_properties_basic(buf, offset)

	Decode basic properties.

	
amqp.serialization.dumps(format, values)

	Serialize AMQP arguments.

	Notes:
	bit = b
octet = o
short = B
long = l
long long = L
shortstr = s
longstr = S
byte array = x
table = F
array = A

	
amqp.serialization.loads(format, buf, offset)

	Deserialize amqp format.

bit = b
octet = o
short = B
long = l
long long = L
float = f
shortstr = s
longstr = S
table = F
array = A
timestamp = T

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.spec

AMQP Spec.

	
class amqp.spec.Basic

	AMQ Basic class.

	
Ack = (60, 80)

	

	
CLASS_ID = 60

	

	
Cancel = (60, 30)

	

	
CancelOk = (60, 31)

	

	
Consume = (60, 20)

	

	
ConsumeOk = (60, 21)

	

	
Deliver = (60, 60)

	

	
Get = (60, 70)

	

	
GetEmpty = (60, 72)

	

	
GetOk = (60, 71)

	

	
Nack = (60, 120)

	

	
Publish = (60, 40)

	

	
Qos = (60, 10)

	

	
QosOk = (60, 11)

	

	
Recover = (60, 110)

	

	
RecoverAsync = (60, 100)

	

	
RecoverOk = (60, 111)

	

	
Reject = (60, 90)

	

	
Return = (60, 50)

	

	
class amqp.spec.Channel

	AMQ Channel class.

	
CLASS_ID = 20

	

	
Close = (20, 40)

	

	
CloseOk = (20, 41)

	

	
Flow = (20, 20)

	

	
FlowOk = (20, 21)

	

	
Open = (20, 10)

	

	
OpenOk = (20, 11)

	

	
class amqp.spec.Confirm

	AMQ Confirm class.

	
CLASS_ID = 85

	

	
Select = (85, 10)

	

	
SelectOk = (85, 11)

	

	
class amqp.spec.Connection

	AMQ Connection class.

	
Blocked = (10, 60)

	

	
CLASS_ID = 10

	

	
Close = (10, 50)

	

	
CloseOk = (10, 51)

	

	
Open = (10, 40)

	

	
OpenOk = (10, 41)

	

	
Secure = (10, 20)

	

	
SecureOk = (10, 21)

	

	
Start = (10, 10)

	

	
StartOk = (10, 11)

	

	
Tune = (10, 30)

	

	
TuneOk = (10, 31)

	

	
Unblocked = (10, 61)

	

	
class amqp.spec.Exchange

	AMQ Exchange class.

	
Bind = (40, 30)

	

	
BindOk = (40, 31)

	

	
CLASS_ID = 40

	

	
Declare = (40, 10)

	

	
DeclareOk = (40, 11)

	

	
Delete = (40, 20)

	

	
DeleteOk = (40, 21)

	

	
Unbind = (40, 40)

	

	
UnbindOk = (40, 51)

	

	
class amqp.spec.Queue

	AMQ Queue class.

	
Bind = (50, 20)

	

	
BindOk = (50, 21)

	

	
CLASS_ID = 50

	

	
Declare = (50, 10)

	

	
DeclareOk = (50, 11)

	

	
Delete = (50, 40)

	

	
DeleteOk = (50, 41)

	

	
Purge = (50, 30)

	

	
PurgeOk = (50, 31)

	

	
Unbind = (50, 50)

	

	
UnbindOk = (50, 51)

	

	
class amqp.spec.Tx

	AMQ Tx class.

	
CLASS_ID = 90

	

	
Commit = (90, 20)

	

	
CommitOk = (90, 21)

	

	
Rollback = (90, 30)

	

	
RollbackOk = (90, 31)

	

	
Select = (90, 10)

	

	
SelectOk = (90, 11)

	

	
amqp.spec.method(method_sig, args=None, content=False)

	Create amqp method specification tuple.

	
class amqp.spec.method_t(method_sig, args, content)

	
	
property args

	Alias for field number 1

	
property content

	Alias for field number 2

	
property method_sig

	Alias for field number 0

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

amqp.utils

Compatibility utilities.

	
amqp.utils.bytes_to_str(s)

	Convert bytes to str.

	
amqp.utils.coro(gen)

	Decorator to mark generator as a co-routine.

	
amqp.utils.get_logger(logger)

	Get logger by name.

	
amqp.utils.set_cloexec(fd, cloexec)

	Set flag to close fd after exec.

	
amqp.utils.str_to_bytes(s)

	Convert str to bytes.

 This document describes the current stable version of py-amqp (5.0).
 For development docs,
 go here.

Changes

py-amqp is fork of amqplib used by Kombu containing additional features and improvements.
The previous amqplib changelog is here:
http://code.google.com/p/py-amqplib/source/browse/CHANGES

5.0.7

	release-date

	2021-12-13 15:45 P.M. UTC+6:00

	release-by

	Asif Saif Uddin

	Remove dependency to case

	Bugfix: not closing socket after server disconnect

5.0.6

	release-date

	2021-04-01 10:45 A.M. UTC+6:00

	release-by

	Asif Saif Uddin

	Change the order in which context.check_hostname and context.verify_mode get set
in SSLTransport._wrap_socket_sni. Fixes bug introduced in 5.0.3 where setting
context.verify_mode = ssl.CERT_NONE would raise
“ValueError: Cannot set verify_mode to CERT_NONE when check_hostname is enabled.”
Setting context.check_hostname prior to setting context.verify_mode resolves the
issue.

	Remove TCP_USER_TIMEOUT option for Solaris (#355)

	Pass long_description to setup() (#353)

	Fix for tox-docker 2.0

	Moved to GitHub actions CI (#359)

5.0.5

	release-date

	2021-01-28 4:30 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Removed mistakenly introduced code which was causing import errors

5.0.4

	release-date

	2021-01-28 2:30 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Add missing load_default_certs() call to fix a regression in v5.0.3 release. (#350)

5.0.3

	release-date

	2021-01-19 9:00 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Change the default value of ssl_version to None. When not set, the
proper value between ssl.PROTOCOL_TLS_CLIENT and ssl.PROTOCOL_TLS_SERVER
will be selected based on the param server_side in order to create
a TLS Context object with better defaults that fit the desired
connection side.

	Change the default value of cert_reqs to None. The default value
of ctx.verify_mode is ssl.CERT_NONE, but when ssl.PROTOCOL_TLS_CLIENT
is used, ctx.verify_mode defaults to ssl.CERT_REQUIRED.

	Fix context.check_hostname logic. Checking the hostname depends on
having support of the SNI TLS extension and being provided with a
server_hostname value. Another important thing to mention is that
enabling hostname checking automatically sets verify_mode from
ssl.CERT_NONE to ssl.CERT_REQUIRED in the stdlib ssl and it cannot
be set back to ssl.CERT_NONE as long as hostname checking is enabled.

	Refactor the SNI tests to test one thing at a time and removing some
tests that were being repeated over and over.

5.0.2

	release-date

	2020-11-08 6:50 P.M UTC+3:00

	release-by

	Omer Katz

	Whhels are no longer universal.

Contributed by Omer Katz

	Added debug representation to Connection and *Transport classes

Contributed by Matus Valo

	Reintroduce ca_certs and ciphers parameters of SSLTransport._wrap_socket_sni()

This fixes issue introduced in commit: 53d6777

Contributed by Matus Valo

	Fix infinite wait when using confirm_publish

Contributed by Omer Katz & RezaSi

5.0.1

	release-date

	2020-09-06 6:10 P.M UTC+3:00

	release-by

	Omer Katz

	Require vine 5.0.0.

Contributed by Omer Katz

5.0.0

	release-date

	2020-09-03 3:20 P.M UTC+3:00

	release-by

	Omer Katz

	Stop to use deprecated method ssl.wrap_socket.

Contributed by Hervé Beraud

5.0.0b1

	release-date

	2020-09-01 6:20 P.M UTC+3:00

	release-by

	Omer Katz

	Dropped Python 3.5 support.

Contributed by Omer Katz

	Removed additional compatibility code.

Contributed by Omer Katz

5.0.0a1

	release-date

	2019-04-01 4:30 P.M UTC+3:00

	release-by

	Omer Katz

	Dropped Python 2.x support.

Contributed by Omer Katz

	Dropped Python 3.4 support.

Contributed by Omer Katz

	Depend on vine [https://pypi.python.org/pypi/vine/] 5.0.0a1.

Contributed by Omer Katz

Code Cleanups & Improvements:

	Omer Katz

2.6.1

	release-date

	2020-07-31 10.30 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Fix buffer overflow in frame_writer after frame_max is increased. frame_writer

allocates a bytearray on initialization with a length based on the connection.frame_max
value. If connection.frame_max is changed to a larger value, this causes an
error like pack_into requires a buffer of at least 408736 bytes.

2.6.0

	release-date

	20-06-01 12.00 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Implement speedups in cython (#311)

	Updated some tests & code improvements

	Separate logger for Connection.heartbeat_tick method

	Cython generic content (#315)

	Improve documentation a_global parameter of basic_qos() method.

	Fix saving partial read buffer on windows during socket timeout. (#321)

	Fix deserialization of long string field values that are not utf-8.

	Added simple cythonization of abstract_channel.py

	Speedups of serialization.py are more restrictive

2.5.2

	release-date

	2019-09-30 19.00 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Fixed a channel issue against a connection already closed

	Updated some tests & code improvements

2.5.1

	release-date

	2019-08-14 22.00 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Ignore all methods except Close and Close-OK when channel/connection is closing

	Fix faulty ssl sni intiation parameters (#283)

	Undeprecate auto_delete flag for exchanges. (#287)

	Improved tests and testing environments

2.5.0

	release-date

	2019-05-30 17.30 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	Drop Python 3.4

	Add new platform

	Numerious bug fixes

2.4.2

	release-date

	2019-03-03 10:45 P.M UTC+2:00

	release-by

	Omer Katz

	Added support for the Cygwin platform

Contributed by Matus Valo

	Correct offset incrementation when parsing bitmaps.

Contributed by Allan Simon & Omer Katz

	Consequent bitmaps are now parsed correctly.

Previously the bit counter was reset with every bit.
We now reset it once per 8 bits, when we consume the next byte.

Contributed by Omer Katz

Code Cleanups & Improvements:

	Patrick Cloke

	Matus Valo

	Jeremiah Cooper

	Omer Katz

Test Coverage & CI Improvements:

	Matus Valo

	Omer Katz

	Jeremiah Cooper

	Omer Katz

2.4.1

	release-date

	2018-04-02 9:00 A.M UTC+2

	release-by

	Omer Katz

	To avoid breaking the API basic_consume() now returns the consumer tag
instead of a tuple when nowait is True.

Fix contributed by Matus Valo

	Fix crash in basic_publish when broker does not support connection.blocked
capability.

Fix contributed by Matus Valo

	read_frame() is now Python 3 compatible for large payloads.

Fix contributed by Antonio Ojea

	Support float read_timeout/write_timeout.

Fix contributed by :github_user:`cadl`

	Always treat SSLError timeouts as socket timeouts.

Fix contributed by Dirk Mueller and Antonio Ojea

	Treat EWOULDBLOCK as timeout.

This fixes a regression on Windows from 2.4.0.

Fix contributed by Lucian Petrut

Test Coverage & CI Improvements:

	Matus Valo

	Antonio Ojea

2.4.0

	release-date

	2018-13-01 1:00 P.M UTC+2

	release-by

	Omer Katz

	Fix inconsistent frame_handler return value.

The function returned by frame_handler is meant to return True
once the complete message is received and the callback is called,
False otherwise.

This fixes the return value for messages with a body split across
multiple frames, and heartbeat frames.

Fix contributed by :github_user:`evanunderscore`

	Don’t default content_encoding to utf-8 for bytes.

This is not an acceptable default as the content may not be
valid utf-8, and even if it is, the producer likely does not
expect the message to be decoded by the consumer.

Fix contributed by :github_user:`evanunderscore`

	Fix encoding of messages with multibyte characters.

Body length was previously calculated using string length,
which may be less than the length of the encoded body when
it contains multibyte sequences. This caused the body of
the frame to be truncated.

Fix contributed by :github_user:`evanunderscore`

	Respect content_encoding when encoding messages.

Previously the content_encoding was ignored and messages
were always encoded as utf-8. This caused messages to be
incorrectly decoded if content_encoding is properly respected
when decoding.

Fix contributed by :github_user:`evanunderscore`

	Fix AMQP protocol header for AMQP 0-9-1.

Previously it was set to a different value for unknown reasons.

Fix contributed by Carl Hörberg

	Add support for Python 3.7.

Change direct SSLSocket instantiation with wrap_socket.
Added Python 3.7 to CI.

Fix contributed by Omer Katz and :github_user:`avborhanian`

	Add support for field type “x” (byte array).

Fix contributed by Davis Kirkendall

	If there is an exception raised on Connection.connect or Connection.close,
ensure that the underlying transport socket is closed.

Adjust exception message on connection errors as well.

Fix contributed by :github_user:`tomc797`

	TCP_USER_TIMEOUT has to be excluded from KNOWN_TCP_OPTS in BSD platforms.

Fix contributed by George Tantiras

	Handle negative acknowledgments.

Fix contributed by Matus Valo

	Added integration tests.

Fix contributed by Matus Valo

	Fix basic_consume() with no consumer_tag provided.

Fix contributed by Matus Valo

	Improved empty AMQPError string representation.

Fix contributed by Matus Valo

	Drain events before publish.

This is needed to capture out of memory messages for clients that only
publish. Otherwise on_blocked is never called.

Fix contributed by Jelte Fennema and Matus Valo

	Don’t revive channel when connection is closing.

When connection is closing don’t raise error when Channel.Close method is received.

Fix contributed by Matus Valo

2.3.2

	release-date

	2018-05-29 15:30 P.M UTC+3

	release-by

	Omer Katz

	Fix a regression that occurs when running amqp on OSX.

TCP_USER_TIMEOUT is not available when running on OSX.
We now remove it from the set of known TCP options.

Fix contributed by Ofer Horowitz

2.3.1

	release-date

	2018-05-28 16:30 P.M UTC+3

	release-by

	Omer Katz

	Fix a regression that occurs when running amqp under Python 2.7.

#182 mistakenly replaced a type check with unicode to string_t which is str
in Python 2.7. text_t should have been used instead.
This is now fixed and the tests have been adjusted to ensure this never regresses
again.

Fix contributed by Omer Katz

2.3.0

	release-date

	2018-05-27 16:30 P.M UTC+3

	release-by

	Omer Katz

	Cleanup TCP configurations across platforms and unified defaults.

Fix contributed by Dan Chowdhury

	Fix for TypeError when setting socket options.

Fix contributed by Matthias Erll

	Ensure that all call sites for decoding bytes to str allow surrogates,
as the encoding mechanism now supports.

Fix contributed by Stephen Hatch

	Don’t send AAAA DNS request when domain resolved to IPv4 address.

Fix contributed by Ihar Hrachyshka & Omer Katz

	Support for EXTERNAL authentication and specific login_method.

Fix contributed by Matthias Erll

	If the old python-gssapi library is installed the gssapi module will be available.
We now ensure that we only use the new gssapi library.

Fix contributed by Jacopo Notarstefano

Code Cleanups & Test Coverage:

	@eric-eric-eric [https://github.com/eric-eric-eric/]

	Omer Katz

	Jon Dufresne

	Matthias Urlichs

2.2.2

	release-date

	2017-09-14 09:00 A.M UTC+2

	release-by

	Omer Katz

	Sending empty messages no longer hangs. Instead an empty message is sent correctly.(addresses #151)

Fix contributed by Christian Blades

	Fixed compatibility issues in UTF-8 encoding behavior between Py2/Py3 (#164)

Fix contributed by Tyler James Harden

2.2.1

	release-date

	2017-07-14 09:00 A.M UTC+2

	release-by

	Omer Katz

	Fix implicit conversion from bytes to string on the connection object. (Issue #155)

This issue has caused Celery to crash on connection to RabbitMQ.

Fix contributed by Omer Katz

2.2.0

	release-date

	2017-07-12 10:00 A.M UTC+2

	release-by

	Ask Solem

	Fix random delays in task execution.

This is a bug that caused performance issues due to polling timeouts that occur when receiving incomplete AMQP frames. (Issues #3978 #3737 #3814)

Fix contributed by Robert Kopaczewski

	Calling conn.collect() multiple times will no longer raise an AttributeError when no channels exist.

Fix contributed by Gord Chung

	Fix compatibility code for Python 2.7.6.

Fix contributed by Jonathan Schuff

	When running in Windows, py-amqp will no longer use the unsupported TCP option TCP_MAXSEG.

Fix contributed by Tony Breeds

	Added support for setting the SNI hostname header.

The SSL protocol version is now set to SSLv23

Contributed by Dhananjay Sathe

	Authentication mechanisms were refactored to be more modular. GSSAPI authentication is now supported.

Contributed by Alexander Dutton

	Do not reconnect on collect.

Fix contributed by Gord Chung

2.1.4

	release-date

	2016-12-14 03:40 P.M PST

	release-by

	Ask Solem

	Removes byte string comparison warnings when running under python -b.

Fix contributed by Jon Dufresne.

	Linux version parsing broke when the version included a ‘+’ character
(Issue #119).

	Now sets default TCP settings for platforms that support them (e.g. Linux).

	Constant

	Value

	TCP_KEEPIDLE

	60

	TCP_KEEPINTVL

	10

	TCP_KEEPCNT

	9

	TCP_USER_TIMEOUT

	1000 (1s)

This will help detecting the socket being closed earlier, which is very
important in failover and load balancing scenarios.

2.1.3

	release-date

	2016-12-07 06:00 P.M PST

	release-by

	Ask Solem

	Fixes compatibility with Python 2.7.5 and below (Issue #107).

2.1.2

	release-date

	2016-12-07 02:00 P.M PST

	Linux: Now sets the TCP_USER_TIMEOUT flag if available
for better failed connection detection.

Contributed by Jelte Fennema.

The timeout is set to the connect_timeout value by default,
but can also be specified by using the socket_settings argument
to Connection:

from amqp import Connection
from amqp.platform import TCP_USER_TIMEOUT

conn = Connection(socket_settings={
 TCP_USER_TIMEOUT: int(60 * 1000), # six minutes in ms.
})

When using Kombu [https://pypi.python.org/pypi/Kombu/] this can be specified as part of the
transport_options:

from amqp.platform import TCP_USER_TIMEOUT
from kombu import Connection

conn = Connection(transport_options={
 'socket_settings': {
 TCP_USER_TIMEOUT: int(60 * 1000), # six minutes in ms.
 },
})

Or when using Celery [https://pypi.python.org/pypi/Celery/] it can be specified using the
broker_transport_options setting:

from amqp.platform import TCP_USER_TIMEOUT
from celery import Celery

app = Celery()
app.conf.update(
 broker_transport_options={
 TCP_USER_TIMEOUT: int(60 * 1000), # six minutes in ms.
 }
)

	Python compatibility: Fixed compatibility when using the python -b flag.

Fix contributed by Jon Dufresne.

2.1.1

	release-date

	2016-10-13 06:36 P.M PDT

	release-by

	Ask Solem

	Requirements

	Now depends on Vine 1.1.3.

	Frame writer: Account for overhead when calculating frame size.

The client would crash if the message was within a certain size.

	Fixed struct unicode problems (#108)

	Standardize pack invocations on bytestrings.

	Leave some literals as strings to enable interpolation.

	Fix flake8 fail.

Fix contributed by Brendan Smithyman.

2.1.0

	release-date

	2016-09-07 04:23 P.M PDT

	release-by

	Ask Solem

	Requirements

	Now depends on Vine 1.1.2.

	Now licensed under the BSD license!

Thanks to Barry Pederson for approving the license change,
which unifies the license used across all projects in the Celery
organization.

	Datetimes in method frame arguments are now handled properly.

	Fixed compatibility with Python <= 2.7.6

	Frame_writer is no longer a generator, which should solve
a rare “generator already executing” error (Issue #103).

2.0.3

	release-date

	2016-07-11 08:00 P.M PDT

	release-by

	Ask Solem

	SSLTransport: Fixed crash “no attribute sslopts” when ssl=True
(Issue #100).

	Fixed incompatible argument spec for Connection.Close (Issue #45).

This caused the RabbitMQ server to raise an exception (INTERNAL ERROR).

	Transport: No longer implements __del__ to make sure gc can collect
connections.

It’s the responsibility of the caller to close connections, this was
simply a relic from the amqplib library.

2.0.2

	release-date

	2016-06-10 5:40 P.M PDT

	release-by

	Ask Solem

	Python 3: Installation requirements ended up being a generator
and crashed setup.py.

Fix contributed by ChangBo Guo(gcb).

	Python <= 2.7.7: struct.pack arguments cannot be unicode

Fix contributed by Alan Justino and Xin Li.

	Python 3.4: Fixed use of bytes % int.

Fix contributed by Alan Justino.

	Connection/Transport: Fixed handling of default port.

Fix contributed by Quentin Pradet.

2.0.1

	release-date

	2016-05-31 6:20 P.M PDT

	release-by

	Ask Solem

	Adds backward compatibility layer for the 1.4 API.

Using the connection without calling .connect() first will now work,
but a warning is emitted and the behavior is deprecated and will be
removed in version 2.2.

	Fixes kombu 3.0/celery 3.1 compatibility (Issue #88).

Fix contributed by Bas ten Berge.

	Fixed compatibility with Python 2.7.3 (Issue #85)

Fix contributed by Bas ten Berge.

	Fixed bug where calling drain_events() with a timeout of 0 would actually
block until a frame is received.

	Documentation moved to http://amqp.readthedocs.io (Issue #89).

See https://blog.readthedocs.com/securing-subdomains/ for the reasoning
behind this change.

Fix contributed by Adam Chainz.

2.0.0

	release-date

	2016-05-26 1:44 P.M PDT

	release-by

	Ask Solem

	No longer supports Python 2.6

	You must now call Connection.connect() to establish the connection.

The Connection constructor no longer has side effects, so you have
to explicitly call connect first.

	Library rewritten to anticipate async changes.

	Connection now exposes underlying socket options.

This change allows to set arbitrary TCP socket options during the creation of
the transport.

Those values can be set passing a dictionray where the key is the name of
the parameter we want to set.
The names of the keys are the ones reported above.

Contributed by Andrea Rosa, Dallas Marlow and Rongze Zhu.

	Additional logging for heartbeats.

Contributed by Davanum Srinivas, and Dmitry Mescheryakov.

	SSL: Fixes issue with remote connection hanging

Fix contributed by Adrien Guinet.

	
	SSL: ssl dict argument now supports the check_hostname key
	(Issue #63).

Contributed by Vic Kumar.

	Contributions by:

Adrien Guinet
Andrea Rosa
Artyom Koval
Corey Farwell
Craig Jellick
Dallas Marlow
Davanum Srinivas
Federico Ficarelli
Jared Lewis
Rémy Greinhofer
Rongze Zhu
Yury Selivanov
Vic Kumar
Vladimir Bolshakov
@lezeroq [https://github.com/lezeroq/]

1.4.9

	release-date

	2016-01-08 5:50 P.M PST

	release-by

	Ask Solem

	Fixes compatibility with Linux/macOS instances where the ctypes module
does not exist.

Fix contributed by Jared Lewis.

1.4.8

	release-date

	2015-12-07 12:25 A.M

	release-by

	Ask Solem

	
	abstract_channel.wait now accepts a float timeout parameter expressed
	in seconds

Contributed by Goir.

1.4.7

	release-date

	2015-10-02 05:30 P.M PDT

	release-by

	Ask Solem

	Fixed libSystem error on macOS 10.11 (El Capitan)

Fix contributed by Eric Wang.

	
	channel.basic_publish now raises amqp.exceptions.NotConfirmed on
	basic.nack.

	
	AMQP timestamps received are now converted from GMT instead of local time
	(Issue #67).

	Wheel package installation now supported by both Python 2 and Python3.

Fix contributed by Rémy Greinhofer.

1.4.6

	release-date

	2014-08-11 06:00 P.M UTC

	release-by

	Ask Solem

	Now keeps buffer when socket times out.

Fix contributed by Artyom Koval.

	Adds Connection.Transport attribute that can be used to specify
a different transport implementation.

Contributed by Yury Selivanov.

1.4.5

	release-date

	2014-04-15 09:00 P.M UTC

	release-by

	Ask Solem

	Can now deserialize more AMQP types.

Now handles types short string, short short int,
short short unsigned int, short int, short unsigned int,
long unsigned int, long long int, long long unsigned int
and float which for some reason was missing, even in the original
amqplib module.

	SSL: Workaround for Python SSL bug.

A bug in the python socket library causes ssl.read/write()
on a closed socket to raise AttributeError [https://docs.python.org/dev/library/exceptions.html#AttributeError] instead of
IOError [https://docs.python.org/dev/library/exceptions.html#IOError].

Fix contributed by Craig Jellick.

	Transport.__del_ now handles errors occurring at late interpreter
shutdown (Issue #36).

1.4.4

	release-date

	2014-03-03 04:00 P.M UTC

	release-by

	Ask Solem

	SSL transport accidentally disconnected after read timeout.

Fix contributed by Craig Jellick.

1.4.3

	release-date

	2014-02-09 03:00 P.M UTC

	release-by

	Ask Solem

	Fixed bug where more data was requested from the socket
than was actually needed.

Contributed by Ionel Cristian Mărieș.

1.4.2

	release-date

	2014-01-23 05:00 P.M UTC

	Heartbeat negotiation would use heartbeat value from server even
if heartbeat disabled (Issue #31).

1.4.1

	release-date

	2014-01-14 09:30 P.M UTC

	release-by

	Ask Solem

	Fixed error occurring when heartbeats disabled.

1.4.0

	release-date

	2014-01-13 03:00 P.M UTC

	release-by

	Ask Solem

	Heartbeat implementation improved (Issue #6).

The new heartbeat behavior is the same approach as taken by the
RabbitMQ java library.

This also means that clients should preferably call the heartbeat_tick
method more frequently (like every second) instead of using the old
rate argument (which is now ignored).

	Heartbeat interval is negotiated with the server.

	Some delay is allowed if the heartbeat is late.

	Monotonic time is used to keep track of the heartbeat
instead of relying on the caller to call the checking function
at the right time.

Contributed by Dustin J. Mitchell.

	NoneType is now supported in tables and arrays.

Contributed by Dominik Fässler.

	SSLTransport: Now handles ENOENT.

Fix contributed by Adrien Guinet.

1.3.3

	release-date

	2013-11-11 03:30 P.M UTC

	release-by

	Ask Solem

	SSLTransport: Now keeps read buffer if an exception is raised
(Issue #26).

Fix contributed by Tommie Gannert.

1.3.2

	release-date

	2013-10-29 02:00 P.M UTC

	release-by

	Ask Solem

	Message.channel is now a channel object (not the channel id).

	Bug in previous version caused the socket to be flagged as disconnected
at EAGAIN/EINTR.

1.3.1

	release-date

	2013-10-24 04:00 P.M UTC

	release-by

	Ask Solem

	Now implements Connection.connected (Issue #22).

	Fixed bug where str(AMQPError) did not return string.

1.3.0

	release-date

	2013-09-04 02:39 P.M UTC

	release-by

	Ask Solem

	Now sets Message.channel on delivery (Issue #12)

amqplib used to make the channel object available
as Message.delivery_info['channel'], but this was removed
in py-amqp. librabbitmq sets Message.channel,
which is a more reasonable solution in our opinion as that
keeps the delivery info intact.

	New option to wait for publish confirmations (Issue #3)

There is now a new Connection confirm_publish that will
force any basic_publish call to wait for confirmation.

Enabling publisher confirms like this degrades performance
considerably, but can be suitable for some applications
and now it’s possible by configuration.

	queue_declare now returns named tuple of type
basic_declare_ok_t.

Supporting fields: queue, message_count, and
consumer_count.

	Contents of Channel.returned_messages is now named tuples.

Supporting fields: reply_code, reply_text, exchange,
routing_key, and message.

	Sockets now set to close on exec using the FD_CLOEXEC flag.

Currently only supported on platforms supporting this flag,
which does not include Windows.

Contributed by Tommie Gannert.

1.2.1

	release-date

	2013-08-16 05:30 P.M UTC

	release-by

	Ask Solem

	Adds promise type: amqp.utils.promise()

	Merges fixes from 1.0.x

1.2.0

	release-date

	2012-11-12 04:00 P.M UTC

	release-by

	Ask Solem

	New exception hierarchy:

	
	AMQPError
	
	
	ConnectionError
	
	
	RecoverableConnectionError
	
	ConsumerCancelled

	ConnectionForced

	ResourceError

	
	IrrecoverableConnectionError
	
	ChannelNotOpen

	FrameError

	FrameSyntaxError

	InvalidCommand

	InvalidPath

	NotAllowed

	UnexpectedFrame

	AMQPNotImplementedError

	InternalError

	
	ChannelError
	
	
	RecoverableChannelError
	
	ContentTooLarge

	NoConsumers

	ResourceLocked

	
	IrrecoverableChannelError
	
	AccessRefused

	NotFound

	PreconditionFailed

1.1.0

	release-date

	2013-11-08 10:36 P.M UTC

	release-by

	Ask Solem

	No longer supports Python 2.5

	Fixed receiving of float table values.

	Now Supports Python 3 and Python 2.6+ in the same source code.

	Python 3 related fixes.

1.0.13

	release-date

	2013-07-31 04:00 P.M BST

	release-by

	Ask Solem

	Fixed problems with the SSL transport (Issue #15).

Fix contributed by Adrien Guinet.

	Small optimizations

1.0.12

	release-date

	2013-06-25 02:00 P.M BST

	release-by

	Ask Solem

	Fixed another Python 3 compatibility problem.

1.0.11

	release-date

	2013-04-11 06:00 P.M BST

	release-by

	Ask Solem

	Fixed Python 3 incompatibility in amqp/transport.py.

1.0.10

	release-date

	2013-03-21 03:30 P.M UTC

	release-by

	Ask Solem

	Fixed Python 3 incompatibility in amqp/serialization.py.
(Issue #11).

1.0.9

	release-date

	2013-03-08 10:40 A.M UTC

	release-by

	Ask Solem

	Publisher ack callbacks should now work after typo fix (Issue #9).

	channel(explicit_id) will now claim that id from the array
of unused channel ids.

	Fixes Jython compatibility.

1.0.8

	release-date

	2013-02-08 01:00 P.M UTC

	release-by

	Ask Solem

	Fixed SyntaxError on Python 2.5

1.0.7

	release-date

	2013-02-08 01:00 P.M UTC

	release-by

	Ask Solem

	Workaround for bug on some Python 2.5 installations where (2**32) is 0.

	Can now serialize the ARRAY type.

Contributed by Adam Wentz.

	Fixed tuple format bug in exception (Issue #4).

1.0.6

	release-date

	2012-11-29 01:14 P.M UTC

	release-by

	Ask Solem

	Channel.close is now ignored if the connection attribute is None.

1.0.5

	release-date

	2012-11-21 04:00 P.M UTC

	release-by

	Ask Solem

	Channel.basic_cancel is now ignored if the channel was already closed.

	Channel.events is now a dict of sets:

>>> channel.events['basic_return'].add(on_basic_return)
>>> channel.events['basic_return'].discard(on_basic_return)

1.0.4

	release-date

	2012-11-13 04:00 P.M UTC

	release-by

	Ask Solem

	Fixes Python 2.5 support

1.0.3

	release-date

	2012-11-12 04:00 P.M UTC

	release-by

	Ask Solem

	Now can also handle float in headers/tables when receiving messages.

	Now uses array.array [https://docs.python.org/dev/library/array.html#array.array] to keep track of unused channel ids.

	The METHOD_NAME_MAP has been updated for
amqp/0.9.1 and Rabbit extensions.

	Removed a bunch of accidentally included images.

1.0.2

	release-date

	2012-11-06 05:00 P.M UTC

	release-by

	Ask Solem

	Now supports float values in headers/tables.

1.0.1

	release-date

	2012-11-05 01:00 P.M UTC

	release-by

	Ask Solem

	Connection errors no longer includes AttributeError [https://docs.python.org/dev/library/exceptions.html#AttributeError].

	Fixed problem with using the SSL transport in a non-blocking context.

Fix contributed by Mher Movsisyan.

1.0.0

	release-date

	2012-11-05 01:00 P.M UTC

	release-by

	Ask Solem

	Channels are now restored on channel error, so that the connection does not
have to closed.

Version 0.9.4

	Adds support for exchange_bind and exchange_unbind.

Contributed by Rumyana Neykova

	Fixed bugs in funtests and demo scripts.

Contributed by Rumyana Neykova

Version 0.9.3

	Fixed bug that could cause the consumer to crash when reading
large message payloads asynchronously.

	Serialization error messages now include the invalid value.

Version 0.9.2

	Consumer cancel notification support was broken (Issue #1)

Fix contributed by Andrew Grangaard

Version 0.9.1

	Supports draining events from multiple channels (Connection.drain_events)

	Support for timeouts

	
	Support for heartbeats
	
	Connection.heartbeat_tick(rate=2) must called at regular intervals
(half of the heartbeat value if rate is 2).

	Or some other scheme by using Connection.send_heartbeat.

	
	Supports RabbitMQ extensions:
	
	
	Consumer Cancel Notifications
	
	by default a cancel results in ChannelError being raised

	but not if a on_cancel callback is passed to basic_consume.

	
	Publisher confirms
	
	Channel.confirm_select() enables publisher confirms.

	Channel.events['basic_ack'].append(my_callback) adds a callback
to be called when a message is confirmed. This callback is then
called with the signature (delivery_tag, multiple).

	Support for basic_return

	
	Uses AMQP 0-9-1 instead of 0-8.
	
	Channel.access_request and ticket arguments to methods
removed.

	Supports the arguments argument to basic_consume.

	internal argument to exchange_declare removed.

	auto_delete argument to exchange_declare deprecated

	insist argument to Connection removed.

	Channel.alerts has been removed.

	Support for Channel.basic_recover_async.

	Channel.basic_recover deprecated.

	
	Exceptions renamed to have idiomatic names:
	
	AMQPException -> AMQPError

	AMQPConnectionException -> ConnectionError``

	AMQPChannelException -> ChannelError``

	Connection.known_hosts removed.

	Connection no longer supports redirects.

	exchange argument to queue_bind can now be empty
to use the “default exchange”.

	Adds Connection.is_alive that tries to detect
whether the connection can still be used.

	Adds Connection.connection_errors and .channel_errors,
a list of recoverable errors.

	Exposes the underlying socket as Connection.sock.

	Adds Channel.no_ack_consumers to keep track of consumer tags
that set the no_ack flag.

	Slightly better at error recovery

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 amqp	

 	
 	
 amqp.abstract_channel	

 	
 	
 amqp.basic_message	

 	
 	
 amqp.channel	

 	
 	
 amqp.connection	

 	
 	
 amqp.exceptions	

 	
 	
 amqp.method_framing	

 	
 	
 amqp.platform	

 	
 	
 amqp.protocol	

 	
 	
 amqp.sasl	

 	
 	
 amqp.serialization	

 	
 	
 amqp.spec	

 	
 	
 amqp.transport	

 	
 	
 amqp.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	_AbstractTransport (class in amqp.transport)

 	
 	_wrap_context() (amqp.transport.SSLTransport method)

 	_wrap_socket_sni() (amqp.transport.SSLTransport method)

A

 	
 	AbstractChannel (class in amqp.abstract_channel)

 	AccessRefused

 	Ack (amqp.spec.Basic attribute)

 	
 amqp.abstract_channel

 	module

 	
 amqp.basic_message

 	module

 	
 amqp.channel

 	module

 	
 amqp.connection

 	module

 	
 amqp.exceptions

 	module

 	
 amqp.method_framing

 	module

 	
 amqp.platform

 	module

 	
 	
 amqp.protocol

 	module

 	
 amqp.sasl

 	module

 	
 amqp.serialization

 	module

 	
 amqp.spec

 	module

 	
 amqp.transport

 	module

 	
 amqp.utils

 	module

 	AMQPDeprecationWarning

 	AMQPError

 	AMQPLAIN (class in amqp.sasl)

 	AMQPNotImplementedError

 	args (amqp.spec.method_t property)

B

 	
 	Basic (class in amqp.spec)

 	basic_ack() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	basic_cancel() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	basic_consume() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	basic_get() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	basic_publish() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	basic_publish_confirm() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	basic_qos() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	
 	basic_recover() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	basic_recover_async() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	basic_reject() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	basic_return_t (class in amqp.protocol)

 	Bind (amqp.spec.Exchange attribute)

 	(amqp.spec.Queue attribute)

 	BindOk (amqp.spec.Exchange attribute)

 	(amqp.spec.Queue attribute)

 	Blocked (amqp.spec.Connection attribute)

 	blocking_read() (amqp.connection.Connection method)

 	bytes_recv (amqp.connection.Connection attribute)

 	bytes_sent (amqp.connection.Connection attribute)

 	bytes_to_str() (in module amqp.utils)

C

 	
 	Cancel (amqp.spec.Basic attribute)

 	CancelOk (amqp.spec.Basic attribute)

 	Channel (class in amqp.channel)

 	(class in amqp.spec)

 	channel() (amqp.connection.Connection method)

 	channel_errors (amqp.connection.Connection attribute)

 	ChannelError

 	ChannelNotOpen

 	CLASS_ID (amqp.basic_message.Message attribute)

 	(amqp.serialization.GenericContent attribute)

 	(amqp.spec.Basic attribute)

 	(amqp.spec.Channel attribute)

 	(amqp.spec.Confirm attribute)

 	(amqp.spec.Connection attribute)

 	(amqp.spec.Exchange attribute)

 	(amqp.spec.Queue attribute)

 	(amqp.spec.Tx attribute)

 	client_heartbeat (amqp.connection.Connection attribute)

 	Close (amqp.spec.Channel attribute)

 	(amqp.spec.Connection attribute)

 	close() (amqp.abstract_channel.AbstractChannel method)

 	(amqp.channel.Channel method)

 	(amqp.connection.Connection method)

 	(amqp.connection.Connection.Channel method)

 	(amqp.transport._AbstractTransport method)

 	CloseOk (amqp.spec.Channel attribute)

 	(amqp.spec.Connection attribute)

 	code (amqp.exceptions.AccessRefused attribute)

 	(amqp.exceptions.AMQPError attribute)

 	(amqp.exceptions.AMQPNotImplementedError attribute)

 	(amqp.exceptions.ChannelNotOpen attribute)

 	(amqp.exceptions.ConnectionForced attribute)

 	(amqp.exceptions.ContentTooLarge attribute)

 	(amqp.exceptions.FrameError attribute)

 	(amqp.exceptions.FrameSyntaxError attribute)

 	(amqp.exceptions.InternalError attribute)

 	(amqp.exceptions.InvalidCommand attribute)

 	(amqp.exceptions.InvalidPath attribute)

 	(amqp.exceptions.NoConsumers attribute)

 	(amqp.exceptions.NotAllowed attribute)

 	(amqp.exceptions.NotFound attribute)

 	(amqp.exceptions.PreconditionFailed attribute)

 	(amqp.exceptions.ResourceError attribute)

 	(amqp.exceptions.ResourceLocked attribute)

 	(amqp.exceptions.UnexpectedFrame attribute)

 	
 	collect() (amqp.channel.Channel method)

 	(amqp.connection.Connection method)

 	(amqp.connection.Connection.Channel method)

 	Commit (amqp.spec.Tx attribute)

 	CommitOk (amqp.spec.Tx attribute)

 	Confirm (class in amqp.spec)

 	confirm_select() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	connect() (amqp.connection.Connection method)

 	(amqp.transport._AbstractTransport method)

 	connected (amqp.connection.Connection property)

 	Connection (class in amqp.connection)

 	(class in amqp.spec)

 	Connection.Channel (class in amqp.connection)

 	connection_errors (amqp.connection.Connection attribute)

 	ConnectionError

 	ConnectionForced

 	Consume (amqp.spec.Basic attribute)

 	ConsumeOk (amqp.spec.Basic attribute)

 	consumer_count (amqp.protocol.queue_declare_ok_t property)

 	ConsumerCancelled

 	content (amqp.spec.method_t property)

 	ContentTooLarge

 	coro() (in module amqp.utils)

D

 	
 	Declare (amqp.spec.Exchange attribute)

 	(amqp.spec.Queue attribute)

 	DeclareOk (amqp.spec.Exchange attribute)

 	(amqp.spec.Queue attribute)

 	decode_properties_basic() (in module amqp.serialization)

 	Delete (amqp.spec.Exchange attribute)

 	(amqp.spec.Queue attribute)

 	
 	DeleteOk (amqp.spec.Exchange attribute)

 	(amqp.spec.Queue attribute)

 	Deliver (amqp.spec.Basic attribute)

 	delivery_info (amqp.basic_message.Message attribute)

 	delivery_tag (amqp.basic_message.Message property)

 	dispatch_method() (amqp.abstract_channel.AbstractChannel method)

 	drain_events() (amqp.connection.Connection method)

 	dumps() (in module amqp.serialization)

E

 	
 	exchange (amqp.protocol.basic_return_t property)

 	Exchange (class in amqp.spec)

 	exchange_bind() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	exchange_declare() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	
 	exchange_delete() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	exchange_unbind() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	EXTERNAL (class in amqp.sasl)

F

 	
 	Flow (amqp.spec.Channel attribute)

 	flow() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	FlowOk (amqp.spec.Channel attribute)

 	
 	frame_handler() (in module amqp.method_framing)

 	frame_writer (amqp.connection.Connection property)

 	frame_writer() (in module amqp.method_framing)

 	FrameError

 	FrameSyntaxError

G

 	
 	GenericContent (class in amqp.serialization)

 	Get (amqp.spec.Basic attribute)

 	get_logger() (in module amqp.utils)

 	
 	GetEmpty (amqp.spec.Basic attribute)

 	GetOk (amqp.spec.Basic attribute)

 	GSSAPI (in module amqp.sasl)

H

 	
 	having_timeout() (amqp.transport._AbstractTransport method)

 	headers (amqp.basic_message.Message property)

 	
 	heartbeat (amqp.connection.Connection attribute)

 	heartbeat_tick() (amqp.connection.Connection method)

I

 	
 	inbound_body() (amqp.serialization.GenericContent method)

 	inbound_header() (amqp.serialization.GenericContent method)

 	InternalError

 	InvalidCommand

 	
 	InvalidPath

 	IrrecoverableChannelError

 	IrrecoverableConnectionError

 	is_alive() (amqp.connection.Connection method)

L

 	
 	last_heartbeat_received (amqp.connection.Connection attribute)

 	last_heartbeat_sent (amqp.connection.Connection attribute)

 	
 	library_properties (amqp.connection.Connection attribute)

 	loads() (in module amqp.serialization)

M

 	
 	mechanism (amqp.sasl.AMQPLAIN attribute)

 	(amqp.sasl.EXTERNAL attribute)

 	(amqp.sasl.PLAIN attribute)

 	(amqp.sasl.RAW attribute)

 	(amqp.sasl.SASL property)

 	message (amqp.protocol.basic_return_t property)

 	Message (class in amqp.basic_message)

 	message_count (amqp.protocol.queue_declare_ok_t property)

 	MessageNacked

 	method (amqp.exceptions.AMQPError property)

 	method() (in module amqp.spec)

 	method_sig (amqp.spec.method_t property)

 	method_t (class in amqp.spec)

 	
 	
 module

 	amqp.abstract_channel

 	amqp.basic_message

 	amqp.channel

 	amqp.connection

 	amqp.exceptions

 	amqp.method_framing

 	amqp.platform

 	amqp.protocol

 	amqp.sasl

 	amqp.serialization

 	amqp.spec

 	amqp.transport

 	amqp.utils

N

 	
 	Nack (amqp.spec.Basic attribute)

 	negotiate_capabilities (amqp.connection.Connection attribute)

 	
 	NoConsumers

 	NotAllowed

 	NotFound

O

 	
 	on_inbound_frame (amqp.connection.Connection property)

 	on_inbound_method() (amqp.connection.Connection method)

 	Open (amqp.spec.Channel attribute)

 	(amqp.spec.Connection attribute)

 	
 	open() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	OpenOk (amqp.spec.Channel attribute)

 	(amqp.spec.Connection attribute)

P

 	
 	PLAIN (class in amqp.sasl)

 	PreconditionFailed

 	prev_recv (amqp.connection.Connection attribute)

 	prev_sent (amqp.connection.Connection attribute)

 	
 	PROPERTIES (amqp.basic_message.Message attribute)

 	(amqp.serialization.GenericContent attribute)

 	Publish (amqp.spec.Basic attribute)

 	Purge (amqp.spec.Queue attribute)

 	PurgeOk (amqp.spec.Queue attribute)

Q

 	
 	Qos (amqp.spec.Basic attribute)

 	QosOk (amqp.spec.Basic attribute)

 	queue (amqp.protocol.queue_declare_ok_t property)

 	Queue (class in amqp.spec)

 	queue_bind() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	queue_declare() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	
 	queue_declare_ok_t (class in amqp.protocol)

 	queue_delete() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	queue_purge() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	queue_unbind() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

R

 	
 	RAW (class in amqp.sasl)

 	read_frame() (amqp.transport._AbstractTransport method)

 	Recover (amqp.spec.Basic attribute)

 	recoverable_channel_errors (amqp.connection.Connection attribute)

 	recoverable_connection_errors (amqp.connection.Connection attribute)

 	RecoverableChannelError

 	RecoverableConnectionError

 	RecoverAsync (amqp.spec.Basic attribute)

 	RecoverOk (amqp.spec.Basic attribute)

 	
 	Reject (amqp.spec.Basic attribute)

 	reply_code (amqp.protocol.basic_return_t property)

 	reply_text (amqp.protocol.basic_return_t property)

 	ResourceError

 	ResourceLocked

 	Return (amqp.spec.Basic attribute)

 	Rollback (amqp.spec.Tx attribute)

 	RollbackOk (amqp.spec.Tx attribute)

 	routing_key (amqp.protocol.basic_return_t property)

S

 	
 	SASL (class in amqp.sasl)

 	Secure (amqp.spec.Connection attribute)

 	SecureOk (amqp.spec.Connection attribute)

 	Select (amqp.spec.Confirm attribute)

 	(amqp.spec.Tx attribute)

 	SelectOk (amqp.spec.Confirm attribute)

 	(amqp.spec.Tx attribute)

 	send_heartbeat() (amqp.connection.Connection method)

 	send_method() (amqp.abstract_channel.AbstractChannel method)

 	server_capabilities (amqp.connection.Connection property)

 	server_heartbeat (amqp.connection.Connection attribute)

 	
 	set_cloexec() (in module amqp.utils)

 	sock (amqp.connection.Connection property)

 	SSLTransport (class in amqp.transport)

 	Start (amqp.spec.Connection attribute)

 	start() (amqp.sasl.AMQPLAIN method)

 	(amqp.sasl.EXTERNAL method)

 	(amqp.sasl.PLAIN method)

 	(amqp.sasl.RAW method)

 	(amqp.sasl.SASL method)

 	StartOk (amqp.spec.Connection attribute)

 	str_to_bytes() (in module amqp.utils)

T

 	
 	TCPTransport (class in amqp.transport)

 	then() (amqp.channel.Channel method)

 	(amqp.connection.Connection method)

 	(amqp.connection.Connection.Channel method)

 	transport (amqp.connection.Connection property)

 	Transport (class in amqp.transport)

 	Transport() (amqp.connection.Connection method)

 	Tune (amqp.spec.Connection attribute)

 	
 	TuneOk (amqp.spec.Connection attribute)

 	Tx (class in amqp.spec)

 	tx_commit() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	tx_rollback() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

 	tx_select() (amqp.channel.Channel method)

 	(amqp.connection.Connection.Channel method)

U

 	
 	Unbind (amqp.spec.Exchange attribute)

 	(amqp.spec.Queue attribute)

 	UnbindOk (amqp.spec.Exchange attribute)

 	(amqp.spec.Queue attribute)

 	
 	Unblocked (amqp.spec.Connection attribute)

 	UnexpectedFrame

W

 	
 	wait() (amqp.abstract_channel.AbstractChannel method)

 	
 	write() (amqp.transport._AbstractTransport method)

 _static/file.png

_static/minus.png

_static/celery_128.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 amqp - Python AMQP low-level client library

 		
 API Reference

 		
 amqp.connection

 		
 amqp.channel

 		
 amqp.basic_message

 		
 amqp.exceptions

 		
 amqp.abstract_channel

 		
 amqp.transport

 		
 amqp.method_framing

 		
 amqp.platform

 		
 amqp.protocol

 		
 amqp.spec

 		
 amqp.serialization

 		
 amqp.spec

 		
 amqp.utils

 		
 Changes

 		
 5.0.7

 		
 5.0.6

 		
 5.0.5

 		
 5.0.4

 		
 5.0.3

 		
 5.0.2

 		
 5.0.1

 		
 5.0.0

 		
 5.0.0b1

 		
 5.0.0a1

 		
 2.6.1

 		
 2.6.0

 		
 2.5.2

 		
 2.5.1

 		
 2.5.0

 		
 2.4.2

 		
 2.4.1

 		
 2.4.0

 		
 2.3.2

 		
 2.3.1

 		
 2.3.0

 		
 2.2.2

 		
 2.2.1

 		
 2.2.0

 		
 2.1.4

 		
 2.1.3

 		
 2.1.2

 		
 2.1.1

 		
 2.1.0

 		
 2.0.3

 		
 2.0.2

 		
 2.0.1

 		
 2.0.0

 		
 1.4.9

 		
 1.4.8

 		
 1.4.7

 		
 1.4.6

 		
 1.4.5

 		
 1.4.4

 		
 1.4.3

 		
 1.4.2

 		
 1.4.1

 		
 1.4.0

 		
 1.3.3

 		
 1.3.2

 		
 1.3.1

 		
 1.3.0

 		
 1.2.1

 		
 1.2.0

 		
 1.1.0

 		
 1.0.13

 		
 1.0.12

 		
 1.0.11

 		
 1.0.10

 		
 1.0.9

 		
 1.0.8

 		
 1.0.7

 		
 1.0.6

 		
 1.0.5

 		
 1.0.4

 		
 1.0.3

 		
 1.0.2

 		
 1.0.1

 		
 1.0.0

 		
 Version 0.9.4

 		
 Version 0.9.3

 		
 Version 0.9.2

 		
 Version 0.9.1

