
Celery Documentation
Release 2.1.4

Ask Solem
Contributors

February 04, 2014

Contents

1 Getting Started 3
1.1 Introduction . 3
1.2 Broker Installation . 6
1.3 First steps with Celery . 8
1.4 Resources . 10

2 User Guide 13
2.1 Overview . 13
2.2 Tasks . 15
2.3 Executing Tasks . 29
2.4 Workers Guide . 33
2.5 Periodic Tasks . 39
2.6 Sets of tasks, Subtasks and Callbacks . 42
2.7 HTTP Callback Tasks (Webhooks) . 44
2.8 Routing Tasks . 46
2.9 Monitoring Guide . 53
2.10 Optimizing . 62

3 Configuration and defaults 63
3.1 Example configuration file . 63
3.2 Configuration Directives . 64

4 Cookbook 79
4.1 Creating Tasks . 79
4.2 Running celeryd as a daemon . 80

5 Community Resources 85
5.1 Resources . 86
5.2 News . 87

6 Contributing 91
6.1 Community Code of Conduct . 91
6.2 Reporting a Bug . 92
6.3 Coding Style . 93

7 Tutorials 95
7.1 Using Celery with Redis/Database as the messaging queue. 95
7.2 Tutorial: Creating a click counter using carrot and celery . 96

i

8 Frequently Asked Questions 101
8.1 General . 103
8.2 Misconceptions . 103
8.3 Troubleshooting . 104
8.4 Results . 106
8.5 Security . 106
8.6 Brokers . 107
8.7 Tasks . 108
8.8 Windows . 112

9 API Reference 113
9.1 Task Decorators - celery.decorators . 113
9.2 Defining Tasks - celery.task.base . 114
9.3 Task Sets, Subtasks and Callbacks - celery.task.sets . 120
9.4 Executing Tasks - celery.execute . 122
9.5 Task Result - celery.result . 123
9.6 Task Information and Utilities - celery.task . 127
9.7 Configuration - celery.conf . 136
9.8 Remote Management of Workers - celery.task.control . 140
9.9 HTTP Callback Tasks - celery.task.http . 142
9.10 Periodic Task Schedule Behaviors - celery.schedules . 144
9.11 Signals - celery.signals . 145
9.12 Exceptions - celery.exceptions . 147
9.13 Built-in Task Classes - celery.task.builtins . 147
9.14 Loaders - celery.loaders . 148
9.15 Loader Base Classes - celery.loaders.base . 148
9.16 Default Loader - celery.loaders.default . 149
9.17 Task Registry - celery.registry . 150
9.18 Task States - celery.states . 150
9.19 Messaging - celery.messaging . 151
9.20 Contrib: Abortable tasks - celery.contrib.abortable . 154
9.21 Events - celery.events . 155
9.22 In-memory Representation of Cluster State - celery.events.state . 156
9.23 App: Worker Node - celery.apps.worker . 158
9.24 App: Periodic Task Scheduler - celery.apps.beat . 160
9.25 Base Command - celery.bin.base . 160
9.26 celeryd - celery.bin.celeryd . 161
9.27 Celery Periodic Task Server - celery.bin.celerybeat . 162
9.28 celeryev: Curses Event Viewer - celery.bin.celeryev . 162
9.29 celeryctl - celery.bin.celeryctl . 163
9.30 caqmadm: AMQP API Command-line Shell - celery.bin.camqadm 164
9.31 Celeryd Multi Tool - celery.bin.celeryd_multi . 166

10 Internals 169
10.1 Celery Deprecation Timeline . 169
10.2 Internals: The worker . 169
10.3 Task Message Protocol . 171
10.4 List of Worker Events . 172
10.5 Module Index . 173
10.6 Internal Module Reference . 177

11 Change history 223
11.1 2.1.5 . 225
11.2 2.1.4 . 225

ii

11.3 2.1.3 . 226
11.4 2.1.2 . 226
11.5 2.1.1 . 227
11.6 2.1.0 . 229
11.7 2.0.3 . 235
11.8 2.0.2 . 237
11.9 2.0.1 . 239
11.10 2.0.0 . 240
11.11 1.0.6 . 249
11.12 1.0.5 . 250
11.13 1.0.4 . 250
11.14 1.0.3 . 251
11.15 1.0.2 . 254
11.16 1.0.1 . 255
11.17 1.0.0 . 257
11.18 0.8.4 . 262
11.19 0.8.3 . 262
11.20 0.8.2 . 262
11.21 0.8.1 . 262
11.22 0.8.0 . 264
11.23 0.6.0 . 265
11.24 0.4.1 . 267
11.25 0.4.0 . 267
11.26 0.3.20 . 267
11.27 0.3.7 . 268
11.28 0.3.3 . 269
11.29 0.3.2 . 269
11.30 0.3.1 . 269
11.31 0.3.0 . 269
11.32 0.2.0 . 270
11.33 0.2.0-pre3 . 270
11.34 0.2.0-pre2 . 271
11.35 0.2.0-pre1 . 271
11.36 0.1.15 . 271
11.37 0.1.14 . 271
11.38 0.1.13 . 271
11.39 0.1.12 . 272
11.40 0.1.11 . 272
11.41 0.1.10 . 272
11.42 0.1.8 . 273
11.43 0.1.7 . 273
11.44 0.1.6 . 273
11.45 0.1.0 . 274

12 Interesting Links 275
12.1 celery . 275
12.2 AMQP . 275
12.3 RabbitMQ . 275

13 Indices and tables 277

Python Module Index 279

iii

iv

Celery Documentation, Release 2.1.4

Contents:

Contents 1

Celery Documentation, Release 2.1.4

2 Contents

CHAPTER 1

Getting Started

Release 2.1

Date February 04, 2014

1.1 Introduction

Version 2.1.4

Web http://celeryproject.org/

Download http://pypi.python.org/pypi/celery/

Source http://github.com/ask/celery/

Keywords task queue, job queue, asynchronous, rabbitmq, amqp, redis, python, webhooks, queue, dis-
tributed

– Celery is an open source asynchronous task queue/job queue based on distributed message passing. It is focused on
real-time operation, but supports scheduling as well.

The execution units, called tasks, are executed concurrently on one or more worker nodes. Tasks can execute asyn-
chronously (in the background) or synchronously (wait until ready).

Celery is already used in production to process millions of tasks a day.

Celery is written in Python, but the protocol can be implemented in any language. It can also operate with other
languages using webhooks.

The recommended message broker is RabbitMQ, but support for Redis and databases (SQLAlchemy) is also available.

Celery is easy to integrate with Django, Pylons and Flask, using the django-celery, celery-pylons and Flask-Celery
add-on packages.

• Overview
• Example
• Features
• Documentation
• Installation

– Downloading and installing from source
– Using the development version

3

http://celeryproject.org/
http://pypi.python.org/pypi/celery/
http://github.com/ask/celery/
http://ask.github.com/celery/userguide/remote-tasks.html
http://ask.github.com/celery/userguide/remote-tasks.html
http://www.rabbitmq.com/
http://code.google.com/p/redis/
http://www.sqlalchemy.org/
http://djangoproject.org/
http://pylonshq.com/
http://flask.pocoo.org/
http://pypi.python.org/pypi/django-celery
http://pypi.python.org/pypi/celery-pylons
http://github.com/ask/flask-celery/

Celery Documentation, Release 2.1.4

1.1.1 Overview

This is a high level overview of the architecture.

The broker delivers tasks to the worker servers. A worker server is a networked machine running celeryd. This can
be one or more machines depending on the workload.

The result of the task can be stored for later retrieval (called its “tombstone”).

1.1.2 Example

You probably want to see some code by now, so here’s an example task adding two numbers:

from celery.decorators import task

@task
def add(x, y):

return x + y

You can execute the task in the background, or wait for it to finish:

>>> result = add.delay(4, 4)
>>> result.wait() # wait for and return the result
8

Simple!

4 Chapter 1. Getting Started

Celery Documentation, Release 2.1.4

1.1.3 Features

Mes-
saging

Supported brokers include RabbitMQ, Stomp, Redis, and most common SQL databases.

Robust Using RabbitMQ, celery survives most error scenarios, and your tasks will never be lost.
Dis-
tributed

Runs on one or more machines. Supports clustering when used in combination with
RabbitMQ. You can set up new workers without central configuration (e.g. use your dads
laptop while the queue is temporarily overloaded).

Concur-
rency

Tasks are executed in parallel using the multiprocessing module.

Schedul-
ing

Supports recurring tasks like cron, or specifying an exact date or countdown for when
after the task should be executed.

Perfor-
mance

Able to execute tasks while the user waits.

Return
Values

Task return values can be saved to the selected result store backend. You can wait for the
result, retrieve it later, or ignore it.

Result
Stores

Database, MongoDB, Redis, Tokyo Tyrant, AMQP (high performance).

Web-
hooks

Your tasks can also be HTTP callbacks, enabling cross-language communication.

Rate
limiting

Supports rate limiting by using the token bucket algorithm, which accounts for bursts of
traffic. Rate limits can be set for each task type, or globally for all.

Routing Using AMQP you can route tasks arbitrarily to different workers.
Remote-
control

You can rate limit and delete (revoke) tasks remotely.

Moni-
toring

You can capture everything happening with the workers in real-time by subscribing to
events. A real-time web monitor is in development.

Serial-
ization

Supports Pickle, JSON, YAML, or easily defined custom schemes. One task invocation
can have a different scheme than another.

Trace-
backs

Errors and tracebacks are stored and can be investigated after the fact.

UUID Every task has an UUID (Universally Unique Identifier), which is the task id used to
query task status and return value.

Retries Tasks can be retried if they fail, with configurable maximum number of retries, and delays
between each retry.

Task
Sets

A Task set is a task consisting of several sub-tasks. You can find out how many, or if all of
the sub-tasks has been executed, and even retrieve the results in order. Progress bars,
anyone?

Made
for Web

You can query status and results via URLs, enabling the ability to poll task status using
Ajax.

Error
e-mails

Can be configured to send e-mails to the administrators when tasks fails.

Super-
vised

Pool workers are supervised and automatically replaced if they crash.

1.1.4 Documentation

The latest documentation with user guides, tutorials and API reference is hosted at Github.

1.1.5 Installation

You can install celery either via the Python Package Index (PyPI) or from source.

1.1. Introduction 5

http://www.rabbitmq.com/
http://stomp.codehaus.org/
http://code.google.com/p/redis/
http://www.rabbitmq.com/clustering.html
http://www.rabbitmq.com/
http://www.mongodb.org/
http://code.google.com/p/redis/
http://www.amqp.org/
http://ask.github.com/celery/

Celery Documentation, Release 2.1.4

To install using pip,:

$ pip install celery

To install using easy_install,:

$ easy_install celery

Downloading and installing from source

Download the latest version of celery from http://pypi.python.org/pypi/celery/

You can install it by doing the following,:

$ tar xvfz celery-0.0.0.tar.gz
$ cd celery-0.0.0
$ python setup.py build
python setup.py install # as root

Using the development version

You can clone the repository by doing the following:

$ git clone git://github.com/ask/celery.git

1.2 Broker Installation

• Installing RabbitMQ
• Setting up RabbitMQ
• Installing RabbitMQ on OS X

– Configuring the system host name
– Starting/Stopping the RabbitMQ server

1.2.1 Installing RabbitMQ

See Installing RabbitMQ over at RabbitMQ’s website. For Mac OS X see Installing RabbitMQ on OS X.

Note: If you’re getting nodedown errors after installing and using rabbitmqctl then this blog post can help you
identify the source of the problem:

http://somic.org/2009/02/19/on-rabbitmqctl-and-badrpcnodedown/

1.2.2 Setting up RabbitMQ

To use celery we need to create a RabbitMQ user, a virtual host and allow that user access to that virtual host:

6 Chapter 1. Getting Started

http://pypi.python.org/pypi/celery/
http://www.rabbitmq.com/install.html
http://somic.org/2009/02/19/on-rabbitmqctl-and-badrpcnodedown/

Celery Documentation, Release 2.1.4

$ rabbitmqctl add_user myuser mypassword

$ rabbitmqctl add_vhost myvhost

$ rabbitmqctl set_permissions -p myvhost myuser ".*" ".*" ".*"

See the RabbitMQ Admin Guide for more information about access control.

1.2.3 Installing RabbitMQ on OS X

The easiest way to install RabbitMQ on Snow Leopard is using Homebrew; the new and shiny package management
system for OS X.

In this example we’ll install Homebrew into /lol, but you can choose whichever destination, even in your home
directory if you want, as one of the strengths of Homebrew is that it’s relocatable.

Homebrew is actually a git repository, so to install Homebrew, you first need to install git. Download and install from
the disk image at http://code.google.com/p/git-osx-installer/downloads/list?can=3

When git is installed you can finally clone the repository, storing it at the /lol location:

$ git clone git://github.com/mxcl/homebrew /lol

Brew comes with a simple utility called brew, used to install, remove and query packages. To use it you first have to
add it to PATH, by adding the following line to the end of your ~/.profile:

export PATH="/lol/bin:/lol/sbin:$PATH"

Save your profile and reload it:

$ source ~/.profile

Finally, we can install rabbitmq using brew:

$ brew install rabbitmq

Configuring the system host name

If you’re using a DHCP server that is giving you a random host name, you need to permanently configure the host
name. This is because RabbitMQ uses the host name to communicate with nodes.

Use the scutil command to permanently set your host name:

sudo scutil --set HostName myhost.local

Then add that host name to /etc/hosts so it’s possible to resolve it back into an IP address:

127.0.0.1 localhost myhost myhost.local

If you start the rabbitmq server, your rabbit node should now be rabbit@myhost, as verified by rabbitmqctl:

$ sudo rabbitmqctl status
Status of node rabbit@myhost ...
[{running_applications,[{rabbit,"RabbitMQ","1.7.1"},

{mnesia,"MNESIA CXC 138 12","4.4.12"},
{os_mon,"CPO CXC 138 46","2.2.4"},
{sasl,"SASL CXC 138 11","2.1.8"},
{stdlib,"ERTS CXC 138 10","1.16.4"},

1.2. Broker Installation 7

http://www.rabbitmq.com/admin-guide.html
http://www.rabbitmq.com/admin-guide.html#access-control
http://github.com/mxcl/homebrew/
http://git-scm.org
http://code.google.com/p/git-osx-installer/downloads/list?can=3

Celery Documentation, Release 2.1.4

{kernel,"ERTS CXC 138 10","2.13.4"}]},
{nodes,[rabbit@myhost]},
{running_nodes,[rabbit@myhost]}]
...done.

This is especially important if your DHCP server gives you a host name starting with an IP address, (e.g.
23.10.112.31.comcast.net), because then RabbitMQ will try to use rabbit@23, which is an illegal host name.

Starting/Stopping the RabbitMQ server

To start the server:

$ sudo rabbitmq-server

you can also run it in the background by adding the -detached option (note: only one dash):

$ sudo rabbitmq-server -detached

Never use kill to stop the RabbitMQ server, but rather use the rabbitmqctl command:

$ sudo rabbitmqctl stop

When the server is running, you can continue reading Setting up RabbitMQ.

1.3 First steps with Celery

• Creating a simple task
• Configuration
• Running the celery worker server
• Executing the task
• Where to go from here

1.3.1 Creating a simple task

In this tutorial we are creating a simple task that adds two numbers. Tasks are defined in normal Python modules.

By convention we will call our module tasks.py, and it looks like this:

file tasks.py

from celery.decorators import task

@task
def add(x, y):

return x + y

All Celery tasks are classes that inherits from the Task class. In this example we’re using a decorator that wraps the
add function in an appropriate class for us automatically.

See also:

The full documentation on how to create tasks and task classes is in the Tasks part of the user guide.

8 Chapter 1. Getting Started

Celery Documentation, Release 2.1.4

1.3.2 Configuration

Celery is configured by using a configuration module. By default this module is called celeryconfig.py.

The configuration module must either be in the current directory or on the Python path, so that it can be imported.

You can also set a custom name for the configuration module by using the CELERY_CONFIG_MODULE environment
variable.

Let’s create our celeryconfig.py.

1. Configure how we communicate with the broker (RabbitMQ in this example):

BROKER_HOST = "localhost"
BROKER_PORT = 5672
BROKER_USER = "myuser"
BROKER_PASSWORD = "mypassword"
BROKER_VHOST = "myvhost"

2. Define the backend used to store task metadata and return values:

CELERY_RESULT_BACKEND = "amqp"

The AMQP backend is non-persistent by default, and you can only fetch the result of a task once (as it’s sent as
a message).

For list of backends available and related options see Task result backend settings.

3. Finally we list the modules the worker should import. This includes the modules containing your tasks.

We only have a single task module, tasks.py, which we added earlier:

CELERY_IMPORTS = ("tasks",)

That’s it.

There are more options available, like how many processes you want to use to process work in parallel (the
CELERY_CONCURRENCY setting), and we could use a persistent result store backend, but for now, this should do.
For all of the options available, see Configuration and defaults.

Note: You can also specify modules to import using the -I option to celeryd:

$ celeryd -l info -I tasks,handlers

This can be a single, or a comma separated list of task modules to import when celeryd starts.

1.3.3 Running the celery worker server

To test we will run the worker server in the foreground, so we can see what’s going on in the terminal:

$ celeryd --loglevel=INFO

In production you will probably want to run the worker in the background as a daemon. To do this you need to
use the tools provided by your platform, or something like supervisord (see Running celeryd as a daemon for more
information).

For a complete listing of the command line options available, do:

$ celeryd --help

1.3. First steps with Celery 9

http://supervisord.org

Celery Documentation, Release 2.1.4

1.3.4 Executing the task

Whenever we want to execute our task, we use the delay() method of the task class.

This is a handy shortcut to the apply_async() method which gives greater control of the task execution (see
Executing Tasks).

>>> from tasks import add
>>> add.delay(4, 4)
<AsyncResult: 889143a6-39a2-4e52-837b-d80d33efb22d>

At this point, the task has been sent to the message broker. The message broker will hold on to the task until a worker
server has consumed and executed it.

Right now we have to check the worker log files to know what happened with the task. This is because we didn’t keep
the AsyncResult object returned.

The AsyncResult lets us check the state of the task, wait for the task to finish, get its return value or excep-
tion/traceback if the task failed, and more.

Let’s execute the task again – but this time we’ll keep track of the task by holding on to the AsyncResult:

>>> result = add.delay(4, 4)

>>> result.ready() # returns True if the task has finished processing.
False

>>> result.result # task is not ready, so no return value yet.
None

>>> result.get() # Waits until the task is done and returns the retval.
8

>>> result.result # direct access to result, doesn’t re-raise errors.
8

>>> result.successful() # returns True if the task didn’t end in failure.
True

If the task raises an exception, the return value of result.successful()will be False, and result.result
will contain the exception instance raised by the task.

1.3.5 Where to go from here

After this you should read the User Guide. Specifically Tasks and Executing Tasks.

1.4 Resources

10 Chapter 1. Getting Started

Celery Documentation, Release 2.1.4

• Getting Help
– Mailing list
– IRC

• Bug tracker
• Wiki
• Contributing
• License

1.4.1 Getting Help

Mailing list

For discussions about the usage, development, and future of celery, please join the celery-users mailing list.

IRC

Come chat with us on IRC. The #celery channel is located at the Freenode network.

1.4.2 Bug tracker

If you have any suggestions, bug reports or annoyances please report them to our issue tracker at
http://github.com/ask/celery/issues/

1.4.3 Wiki

http://wiki.github.com/ask/celery/

1.4.4 Contributing

Development of celery happens at Github: http://github.com/ask/celery

You are highly encouraged to participate in the development of celery. If you don’t like Github (for some reason)
you’re welcome to send regular patches.

See also the Contributing section in the Documentation.

1.4.5 License

This software is licensed under the New BSD License. See the LICENSE file in the top distribution directory for
the full license text.

1.4. Resources 11

http://groups.google.com/group/celery-users/
http://freenode.net
http://github.com/ask/celery/issues/
http://wiki.github.com/ask/celery/
http://github.com/ask/celery

Celery Documentation, Release 2.1.4

12 Chapter 1. Getting Started

CHAPTER 2

User Guide

Release 2.1

Date February 04, 2014

2.1 Overview

• Tasks
• Workers
• Monitoring
• Routing

Figure 2.1: Figure 1: Worker and broker nodes.

To use Celery you need at least two main components; a message broker and a worker.

The message broker enables clients and workers to communicate through messaging. There are several broker imple-
mentations available, the most popular being RabbitMQ.

The worker processes messages, and consists of one or more physical (or virtual) nodes.

13

Celery Documentation, Release 2.1.4

2.1.1 Tasks

The action to take whenever a message of a certain type is received is called a “task”.

• Go to Tasks.

• Go to Executing Tasks.

• Go to Sets of tasks, Subtasks and Callbacks

• Go to Periodic Tasks.

• Go to HTTP Callback Tasks (Webhooks).

2.1.2 Workers

Go to Workers Guide.

2.1.3 Monitoring

Go to Monitoring Guide.

2.1.4 Routing

Figure 2.2: Figure 2: Worker bindings.

Go to Routing Tasks.

Celery takes advantage of AMQPs flexible routing model. Tasks can be routed to specific servers, or a cluster of
servers by binding workers to different queues. A single worker node can be bound to one or more queues. Multiple
messaging scenarios are supported: round robin, point-to-point, broadcast (one-to-many), and more.

Celery aims to hide the complexity of AMQP through features like Automatic routing, while still preserving the ability
to go low level if that should be necessary.

14 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

2.2 Tasks

• Basics
• Default keyword arguments
• Logging
• Retrying a task if something fails

– Using a custom retry delay
• Task options

– General
– Message and routing options

• Task names
– Automatic naming and relative imports

• Decorating tasks
• Task States

– Built-in States
* PENDING
* STARTED
* SUCCESS
* FAILURE
* RETRY
* REVOKED

– Custom states
• How it works
• Tips and Best Practices

– Ignore results you don’t want
– Disable rate limits if they’re not used
– Avoid launching synchronous subtasks

• Performance and Strategies
– Granularity
– Data locality
– State
– Database transactions

• Example
– blog/models.py
– blog/views.py
– blog/tasks.py

This guide gives an overview of how tasks are defined. For a complete listing of task attributes and methods, please
see the API reference.

2.2.1 Basics

A task is a class that encapsulates a function and its execution options. Given a function create_user, that takes
two arguments: username and password, you can create a task like this:

from celery.task import Task
from django.contrib.auth import User

class CreateUserTask(Task):
def run(self, username, password):

User.objects.create(username=username, password=password)

2.2. Tasks 15

Celery Documentation, Release 2.1.4

For convenience there is a shortcut decorator that turns any function into a task:

from celery.decorators import task
from django.contrib.auth import User

@task
def create_user(username, password):

User.objects.create(username=username, password=password)

The task decorator takes the same execution options as the Task class does:

@task(serializer="json")
def create_user(username, password):

User.objects.create(username=username, password=password)

2.2.2 Default keyword arguments

Celery supports a set of default arguments that can be forwarded to any task. Tasks can choose not to take these, or
list the ones they want. The worker will do the right thing.

The current default keyword arguments are:

task_id The unique id of the executing task.

task_name Name of the currently executing task.

task_retries How many times the current task has been retried. An integer starting at 0.

is_eager Set to True if the task is executed locally in the client, and not by a worker.

logfile The log file, can be passed on to get_logger() to gain access to the workers log file. See
Logging.

loglevel The current log level used.

delivery_info

Additional message delivery information. This is a mapping containing the exchange and rout-
ing key used to deliver this task. It’s used by e.g. retry() to resend the task to the same
destination queue.

NOTE As some messaging backends doesn’t have advanced routing capabilities, you can’t trust the
availability of keys in this mapping.

2.2.3 Logging

You can use the workers logger to add diagnostic output to the worker log:

class AddTask(Task):

def run(self, x, y, **kwargs):
logger = self.get_logger(**kwargs)
logger.info("Adding %s + %s" % (x, y))
return x + y

or using the decorator syntax:

16 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

@task()
def add(x, y, **kwargs):

logger = add.get_logger(**kwargs)
logger.info("Adding %s + %s" % (x, y))
return x + y

There are several logging levels available, and the workers loglevel setting decides whether or not they will be
written to the log file.

Of course, you can also simply use print as anything written to standard out/-err will be written to the log file as well.

2.2.4 Retrying a task if something fails

Simply use retry() to re-send the task. It will do the right thing, and respect the max_retries attribute:

@task()
def send_twitter_status(oauth, tweet, **kwargs):

try:
twitter = Twitter(oauth)
twitter.update_status(tweet)

except (Twitter.FailWhaleError, Twitter.LoginError), exc:
send_twitter_status.retry(args=[oauth, tweet], kwargs=kwargs, exc=exc)

Here we used the exc argument to pass the current exception to retry(). At each step of the retry this exception is
available as the tombstone (result) of the task. When max_retries has been exceeded this is the exception raised.
However, if an exc argument is not provided the RetryTaskError exception is raised instead.

Important note: The task has to take the magic keyword arguments in order for max retries to work properly, this
is because it keeps track of the current number of retries using the task_retries keyword argument passed on to
the task. In addition, it also uses the task_id keyword argument to use the same task id, and delivery_info to
route the retried task to the same destination.

Using a custom retry delay

When a task is to be retried, it will wait for a given amount of time before doing so. The default delay is in the
default_retry_delay attribute on the task. By default this is set to 3 minutes. Note that the unit for setting the
delay is in seconds (int or float).

You can also provide the countdown argument to retry() to override this default.

class MyTask(Task):
default_retry_delay = 30 * 60 # retry in 30 minutes

def run(self, x, y, **kwargs):
try:

...
except Exception, exc:

self.retry([x, y], kwargs, exc=exc,
countdown=60) # override the default and

- retry in 1 minute

2.2. Tasks 17

Celery Documentation, Release 2.1.4

2.2.5 Task options

General

Task.name
The name the task is registered as.

You can set this name manually, or just use the default which is automatically generated using the module and
class name. See Task names.

Task.abstract
Abstract classes are not registered, but are used as the base class for new task types.

Task.max_retries
The maximum number of attempted retries before giving up. If this exceeds the MaxRetriesExceeded an
exception will be raised. NOTE: You have to retry()manually, it’s not something that happens automatically.

Task.default_retry_delay
Default time in seconds before a retry of the task should be executed. Can be either int or float. Default is
a 3 minute delay.

Task.rate_limit
Set the rate limit for this task type, i.e. how many times in a given period of time is the task allowed to run.

If this is None no rate limit is in effect. If it is an integer, it is interpreted as “tasks per second”.

The rate limits can be specified in seconds, minutes or hours by appending "/s", "/m" or "/h" to the value.
Example: "100/m" (hundred tasks a minute). Default is the CELERY_DEFAULT_RATE_LIMIT setting,
which if not specified means rate limiting for tasks is disabled by default.

Task.ignore_result
Don’t store task state. Note that this means you can’t use AsyncResult to check if the task is ready, or get its
return value.

Task.store_errors_even_if_ignored
If True, errors will be stored even if the task is configured to ignore results.

Task.send_error_emails
Send an e-mail whenever a task of this type fails. Defaults to the CELERY_SEND_TASK_ERROR_EMAILS
setting. See Error E-Mails for more information.

Task.error_whitelist
If the sending of error e-mails is enabled for this task, then this is a white list of exceptions to actually send
e-mails about.

Task.serializer
A string identifying the default serialization method to use. Defaults to the CELERY_TASK_SERIALIZER
setting. Can be pickle json, yaml, or any custom serialization methods that have been registered with
carrot.serialization.registry.

Please see Serializers for more information.

Task.backend
The result store backend to use for this task. Defaults to the CELERY_RESULT_BACKEND setting.

Task.acks_late
If set to True messages for this task will be acknowledged after the task has been executed, not just before,
which is the default behavior.

Note that this means the task may be executed twice if the worker crashes in the middle of execution, which
may be acceptable for some applications.

18 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

The global default can be overridden by the CELERY_ACKS_LATE setting.

Task.track_started
If True the task will report its status as “started” when the task is executed by a worker. The default value is
False as the normal behaviour is to not report that level of granularity. Tasks are either pending, finished, or
waiting to be retried. Having a “started” status can be useful for when there are long running tasks and there is
a need to report which task is currently running.

The host name and process id of the worker executing the task will be available in the state metadata (e.g.
result.info[”pid”])

The global default can be overridden by the CELERY_TRACK_STARTED setting.

See also:

The API reference for Task.

Message and routing options

Task.queue
Use the routing settings from a queue defined in CELERY_QUEUES. If defined the exchange and
routing_key options will be ignored.

Task.exchange
Override the global default exchange for this task.

Task.routing_key
Override the global default routing_key for this task.

Task.mandatory
If set, the task message has mandatory routing. By default the task is silently dropped by the broker if it can’t
be routed to a queue. However – If the task is mandatory, an exception will be raised instead.

Not supported by amqplib.

Task.immediate
Request immediate delivery. If the task cannot be routed to a task worker immediately, an exception will be
raised. This is instead of the default behavior, where the broker will accept and queue the task, but with no
guarantee that the task will ever be executed.

Not supported by amqplib.

Task.priority
The message priority. A number from 0 to 9, where 0 is the highest priority.

Not supported by RabbitMQ.

See also:

Routing options for more information about message options, and Routing Tasks.

2.2.6 Task names

The task type is identified by the task name.

If not provided a name will be automatically generated using the module and class name.

For example:

2.2. Tasks 19

Celery Documentation, Release 2.1.4

>>> @task(name="sum-of-two-numbers")
>>> def add(x, y):
... return x + y

>>> add.name
’sum-of-two-numbers’

The best practice is to use the module name as a prefix to classify the tasks using namespaces. This way the name
won’t collide with the name from another module:

>>> @task(name="tasks.add")
>>> def add(x, y):
... return x + y

>>> add.name
’tasks.add’

Which is exactly the name that is automatically generated for this task if the module name is “tasks.py”:

>>> @task()
>>> def add(x, y):
... return x + y

>>> add.name
’tasks.add’

Automatic naming and relative imports

Relative imports and automatic name generation does not go well together, so if you’re using relative imports you
should set the name explicitly.

For example if the client imports the module “myapp.tasks” as ”.tasks”, and the worker imports the module as
“myapp.tasks”, the generated names won’t match and an NotRegistered error will be raised by the worker.

This is also the case if using Django and using project.myapp:

INSTALLED_APPS = ("project.myapp",)

The worker will have the tasks registered as “project.myapp.tasks.*”, while this is what happens in the client if the
module is imported as “myapp.tasks”:

>>> from myapp.tasks import add
>>> add.name
’myapp.tasks.add’

For this reason you should never use “project.app”, but rather add the project directory to the Python path:

import os
import sys
sys.path.append(os.getcwd())

INSTALLED_APPS = ("myapp",)

This makes more sense from the reusable app perspective anyway.

2.2.7 Decorating tasks

Using decorators with tasks requires extra steps because of the magic keyword arguments.

20 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

If you have the following task and decorator:

from celery.utils.functional import wraps

def decorator(task):

@wraps(task)
def _decorated(*args, **kwargs):

print("inside decorator")
return task(*args, **kwargs)

@decorator
@task
def add(x, y):

return x + y

Then the worker will see that the task is accepting keyword arguments, while it really doesn’t, resulting in an error.

The workaround is to either have your task accept arbitrary keyword arguments:

@decorator
@task
def add(x, y, **kwargs):

return x + y

or patch the decorator to preserve the original signature:

from inspect import getargspec
from celery.utils.functional import wraps

def decorator(task):

@wraps(task)
def _decorated(*args, **kwargs):

print("in decorator")
return task(*args, **kwargs)

_decorated.argspec = inspect.getargspec(task)

Also note the use of wraps() here, this is necessary to keep the original function name and docstring.

Note: The magic keyword arguments will be deprecated in the future, replaced by the task.request attribute in
2.2, and the keyword arguments will be removed in 3.0.

2.2.8 Task States

During its lifetime a task will transition through several possible states, and each state may have arbitrary metadata
attached to it. When a task moves into a new state the previous state is forgotten about, but some transitions can be
deducted, (e.g. a task now in the FAILED state, is implied to have been in the STARTED state at some point).

There are also sets of states, like the set of failure states, and the set of ready states.

The client uses the membership of these sets to decide whether the exception should be re-raised
(PROPAGATE_STATES), or whether the result can be cached (it can if the task is ready).

You can also define custom-states.

2.2. Tasks 21

Celery Documentation, Release 2.1.4

Built-in States

PENDING

Task is waiting for execution or unknown. Any task id that is not know is implied to be in the pending state.

STARTED

Task has been started. Not reported by default, to enable please see :attr‘Task.track_started‘.

metadata pid and hostname of the worker process executing the task.

SUCCESS

Task has been successfully executed.

metadata result contains the return value of the task.

propagates Yes

ready Yes

FAILURE

Task execution resulted in failure.

metadata result contains the exception occurred, and traceback contains the backtrace of the stack at the
point when the exception was raised.

propagates Yes

RETRY

Task is being retried.

metadata result contains the exception that caused the retry, and traceback contains the backtrace
of the stack at the point when the exceptions was raised.

propagates No

REVOKED

Task has been revoked.

propagates Yes

Custom states

You can easily define your own states, all you need is a unique name. The name of the state is usually an uppercase
string. As an example you could have a look at abortable tasks which defines its own custom ABORTED state.

Use Task.update_state to update a tasks state:

22 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

@task
def upload_files(filenames, **kwargs):

for i, file in enumerate(filenames):
upload_files.update_state(kwargs["task_id"], "PROGRESS",

{"current": i, "total": len(filenames)})

Here we created the state "PROGRESS", which tells any application aware of this state that the task is currently in
progress, and also where it is in the process by having current and total counts as part of the state metadata. This
can then be used to create e.g. progress bars.

2.2.9 How it works

Here comes the technical details, this part isn’t something you need to know, but you may be interested.

All defined tasks are listed in a registry. The registry contains a list of task names and their task classes. You can
investigate this registry yourself:

>>> from celery import registry
>>> from celery import task
>>> registry.tasks
{’celery.delete_expired_task_meta’:

<PeriodicTask: celery.delete_expired_task_meta (periodic)>,
’celery.task.http.HttpDispatchTask’:

<Task: celery.task.http.HttpDispatchTask (regular)>,
’celery.execute_remote’:

<Task: celery.execute_remote (regular)>,
’celery.map_async’:

<Task: celery.map_async (regular)>,
’celery.ping’:

<Task: celery.ping (regular)>}

This is the list of tasks built-in to celery. Note that we had to import celery.task first for these to show up. This
is because the tasks will only be registered when the module they are defined in is imported.

The default loader imports any modules listed in the CELERY_IMPORTS setting.

The entity responsible for registering your task in the registry is a meta class, TaskType. This is the default meta
class for Task.

If you want to register your task manually you can set mark the task as abstract:

class MyTask(Task):
abstract = True

This way the task won’t be registered, but any task inheriting from it will be.

When tasks are sent, we don’t send any actual function code, just the name of the task to execute. When the worker
then receives the message it can look up the name in its task registry to find the execution code.

This means that your workers should always be updated with the same software as the client. This is a drawback, but
the alternative is a technical challenge that has yet to be solved.

2.2. Tasks 23

Celery Documentation, Release 2.1.4

2.2.10 Tips and Best Practices

Ignore results you don’t want

If you don’t care about the results of a task, be sure to set the ignore_result option, as storing results wastes time
and resources.

@task(ignore_result=True)
def mytask(...)

something()

Results can even be disabled globally using the CELERY_IGNORE_RESULT setting.

Disable rate limits if they’re not used

Disabling rate limits altogether is recommended if you don’t have any tasks using them. This is because the rate limit
subsystem introduces quite a lot of complexity.

Set the CELERY_DISABLE_RATE_LIMITS setting to globally disable rate limits:

CELERY_DISABLE_RATE_LIMITS = True

Avoid launching synchronous subtasks

Having a task wait for the result of another task is really inefficient, and may even cause a deadlock if the worker pool
is exhausted.

Make your design asynchronous instead, for example by using callbacks.

Bad:

@task()
def update_page_info(url):

page = fetch_page.delay(url).get()
info = parse_page.delay(url, page).get()
store_page_info.delay(url, info)

@task()
def fetch_page(url):

return myhttplib.get(url)

@task()
def parse_page(url, page):

return myparser.parse_document(page)

@task()
def store_page_info(url, info):

return PageInfo.objects.create(url, info)

Good:

@task(ignore_result=True)
def update_page_info(url):

fetch_page -> parse_page -> store_page
fetch_page.delay(url, callback=subtask(parse_page,

callback=subtask(store_page_info)))

24 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

@task(ignore_result=True)
def fetch_page(url, callback=None):

page = myhttplib.get(url)
if callback:

The callback may have been serialized with JSON,
so best practice is to convert the subtask dict back
into a subtask object.
subtask(callback).delay(url, page)

@task(ignore_result=True)
def parse_page(url, page, callback=None):

info = myparser.parse_document(page)
if callback:

subtask(callback).delay(url, info)

@task(ignore_result=True)
def store_page_info(url, info):

PageInfo.objects.create(url, info)

We use subtask here to safely pass around the callback task. subtask is a subclass of dict used to wrap the
arguments and execution options for a single task invocation.

See also:

Subtasks for more information about subtasks.

2.2.11 Performance and Strategies

Granularity

The task granularity is the amount of computation needed by each subtask. In general it is better to split the problem
up into many small tasks, than have a few long running tasks.

With smaller tasks you can process more tasks in parallel and the tasks won’t run long enough to block the worker
from processing other waiting tasks.

However, executing a task does have overhead. A message needs to be sent, data may not be local, etc. So if the tasks
are too fine-grained the additional overhead may not be worth it in the end.

See also:

The book Art of Concurrency has a whole section dedicated to the topic of task granularity.

Data locality

The worker processing the task should be as close to the data as possible. The best would be to have a copy in memory,
the worst would be a full transfer from another continent.

If the data is far away, you could try to run another worker at location, or if that’s not possible - cache often used data,
or preload data you know is going to be used.

The easiest way to share data between workers is to use a distributed cache system, like memcached.

See also:

The paper Distributed Computing Economics by Jim Gray is an excellent introduction to the topic of data locality.

2.2. Tasks 25

http://oreilly.com/catalog/9780596521547
http://memcached.org/
http://research.microsoft.com/pubs/70001/tr-2003-24.pdf

Celery Documentation, Release 2.1.4

State

Since celery is a distributed system, you can’t know in which process, or on what machine the task will be executed.
You can’t even know if the task will run in a timely manner.

The ancient async sayings tells us that “asserting the world is the responsibility of the task”. What this means is that
the world view may have changed since the task was requested, so the task is responsible for making sure the world is
how it should be; If you have a task that re-indexes a search engine, and the search engine should only be re-indexed
at maximum every 5 minutes, then it must be the tasks responsibility to assert that, not the callers.

Another gotcha is Django model objects. They shouldn’t be passed on as arguments to tasks. It’s almost always better
to re-fetch the object from the database when the task is running instead, as using old data may lead to race conditions.

Imagine the following scenario where you have an article and a task that automatically expands some abbreviations in
it:

class Article(models.Model):
title = models.CharField()
body = models.TextField()

@task
def expand_abbreviations(article):

article.body.replace("MyCorp", "My Corporation")
article.save()

First, an author creates an article and saves it, then the author clicks on a button that initiates the abbreviation task.

>>> article = Article.objects.get(id=102)
>>> expand_abbreviations.delay(model_object)

Now, the queue is very busy, so the task won’t be run for another 2 minutes. In the meantime another author makes
changes to the article, so when the task is finally run, the body of the article is reverted to the old version because the
task had the old body in its argument.

Fixing the race condition is easy, just use the article id instead, and re-fetch the article in the task body:

@task
def expand_abbreviations(article_id):

article = Article.objects.get(id=article_id)
article.body.replace("MyCorp", "My Corporation")
article.save()

>>> expand_abbreviations(article_id)

There might even be performance benefits to this approach, as sending large messages may be expensive.

Database transactions

Let’s have a look at another example:

from django.db import transaction

@transaction.commit_on_success
def create_article(request):

article = Article.objects.create(....)
expand_abbreviations.delay(article.pk)

26 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

This is a Django view creating an article object in the database, then passing the primary key to a task. It uses the
commit_on_success decorator, which will commit the transaction when the view returns, or roll back if the view raises
an exception.

There is a race condition if the task starts executing before the transaction has been committed; The database object
does not exist yet!

The solution is to always commit transactions before sending tasks depending on state from the current transaction:

@transaction.commit_manually
def create_article(request):

try:
article = Article.objects.create(...)

except:
transaction.rollback()
raise

else:
transaction.commit()
expand_abbreviations.delay(article.pk)

2.2.12 Example

Let’s take a real wold example; A blog where comments posted needs to be filtered for spam. When the comment is
created, the spam filter runs in the background, so the user doesn’t have to wait for it to finish.

We have a Django blog application allowing comments on blog posts. We’ll describe parts of the models/views and
tasks for this application.

blog/models.py

The comment model looks like this:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class Comment(models.Model):
name = models.CharField(_("name"), max_length=64)
email_address = models.EmailField(_("e-mail address"))
homepage = models.URLField(_("home page"),

blank=True, verify_exists=False)
comment = models.TextField(_("comment"))
pub_date = models.DateTimeField(_("Published date"),

editable=False, auto_add_now=True)
is_spam = models.BooleanField(_("spam?"),

default=False, editable=False)

class Meta:
verbose_name = _("comment")
verbose_name_plural = _("comments")

In the view where the comment is posted, we first write the comment to the database, then we launch the spam filter
task in the background.

2.2. Tasks 27

Celery Documentation, Release 2.1.4

blog/views.py

from django import forms
from django.http import HttpResponseRedirect
from django.template.context import RequestContext
from django.shortcuts import get_object_or_404, render_to_response

from blog import tasks
from blog.models import Comment

class CommentForm(forms.ModelForm):

class Meta:
model = Comment

def add_comment(request, slug, template_name="comments/create.html"):
post = get_object_or_404(Entry, slug=slug)
remote_addr = request.META.get("REMOTE_ADDR")

if request.method == "post":
form = CommentForm(request.POST, request.FILES)
if form.is_valid():

comment = form.save()
Check spam asynchronously.
tasks.spam_filter.delay(comment_id=comment.id,

remote_addr=remote_addr)
return HttpResponseRedirect(post.get_absolute_url())

else:
form = CommentForm()

context = RequestContext(request, {"form": form})
return render_to_response(template_name, context_instance=context)

To filter spam in comments we use Akismet, the service used to filter spam in comments posted to the free weblog
platform Wordpress. Akismet is free for personal use, but for commercial use you need to pay. You have to sign up to
their service to get an API key.

To make API calls to Akismet we use the akismet.py library written by Michael Foord.

blog/tasks.py

from akismet import Akismet
from celery.decorators import task

from django.core.exceptions import ImproperlyConfigured
from django.contrib.sites.models import Site

from blog.models import Comment

@task
def spam_filter(comment_id, remote_addr=None, **kwargs):

logger = spam_filter.get_logger(**kwargs)
logger.info("Running spam filter for comment %s" % comment_id)

28 Chapter 2. User Guide

http://akismet.com/faq/
http://akismet.com/faq/
http://akismet.com/faq/
http://www.voidspace.org.uk/downloads/akismet.py
http://www.voidspace.org.uk/

Celery Documentation, Release 2.1.4

comment = Comment.objects.get(pk=comment_id)
current_domain = Site.objects.get_current().domain
akismet = Akismet(settings.AKISMET_KEY, "http://%s" % domain)
if not akismet.verify_key():

raise ImproperlyConfigured("Invalid AKISMET_KEY")

is_spam = akismet.comment_check(user_ip=remote_addr,
comment_content=comment.comment,
comment_author=comment.name,
comment_author_email=comment.email_address)

if is_spam:
comment.is_spam = True
comment.save()

return is_spam

2.3 Executing Tasks

• Basics
• ETA and countdown
• Expiration
• Serializers
• Connections and connection timeouts.
• Routing options
• AMQP options

2.3.1 Basics

Executing tasks is done with apply_async(), and the shortcut: delay().

delay is simple and convenient, as it looks like calling a regular function:

Task.delay(arg1, arg2, kwarg1="x", kwarg2="y")

The same using apply_async is written like this:

Task.apply_async(args=[arg1, arg2], kwargs={"kwarg1": "x", "kwarg2": "y"})

While delay is convenient, it doesn’t give you as much control as using apply_async. With apply_async you
can override the execution options available as attributes on the Task class (see Task options). In addition you can set
countdown/eta, task expiry, provide a custom broker connection and more.

Let’s go over these in more detail. All the examples uses a simple task, called add, taking two positional arguments
and returning the sum:

@task
def add(x, y):

return x + y

Note: You can also execute a task by name using send_task(), if you don’t have access to the task class:

2.3. Executing Tasks 29

Celery Documentation, Release 2.1.4

>>> from celery.execute import send_task
>>> result = send_task("tasks.add", [2, 2])
>>> result.get()
4

2.3.2 ETA and countdown

The ETA (estimated time of arrival) lets you set a specific date and time that is the earliest time at which your task will
be executed. countdown is a shortcut to set eta by seconds into the future.

>>> result = add.apply_async(args=[10, 10], countdown=3)
>>> result.get() # this takes at least 3 seconds to return
20

The task is guaranteed to be executed at some time after the specified date and time, but not necessarily at that exact
time. Possible reasons for broken deadlines may include many items waiting in the queue, or heavy network latency.
To make sure your tasks are executed in a timely manner you should monitor queue lengths. Use Munin, or similar
tools, to receive alerts, so appropriate action can be taken to ease the workload. See Munin.

While countdown is an integer, eta must be a datetime object, specifying an exact date and time (including
millisecond precision, and timezone information):

>>> from datetime import datetime, timedelta

>>> tomorrow = datetime.now() + timedelta(days=1)
>>> add.apply_async(args=[10, 10], eta=tomorrow)

2.3.3 Expiration

The expires argument defines an optional expiry time, either as seconds after task publish, or a specific date and
time using :class:~datetime.datetime‘:

>>> # Task expires after one minute from now.
>>> add.apply_async(args=[10, 10], expires=60)

>>> # Also supports datetime
>>> from datetime import datetime, timedelta
>>> add.apply_async(args=[10, 10], kwargs,
... expires=datetime.now() + timedelta(days=1)

When a worker receives an expired task it will mark the task as REVOKED (TaskRevokedError).

2.3.4 Serializers

Data transferred between clients and workers needs to be serialized. The default serializer is pickle, but you can
change this globally or for each individual task. There is built-in support for pickle, JSON, YAML and msgpack,
and you can also add your own custom serializers by registering them into the Carrot serializer registry (see Carrot:
Serialization of Data).

Each option has its advantages and disadvantages.

json – JSON is supported in many programming languages, is now a standard part of Python (since 2.6), and is
fairly fast to decode using the modern Python libraries such as cjson or simplejson.

30 Chapter 2. User Guide

http://packages.python.org/carrot/introduction.html#serialization-of-data
http://packages.python.org/carrot/introduction.html#serialization-of-data

Celery Documentation, Release 2.1.4

The primary disadvantage to JSON is that it limits you to the following data types: strings, Unicode, floats,
boolean, dictionaries, and lists. Decimals and dates are notably missing.

Also, binary data will be transferred using Base64 encoding, which will cause the transferred data to be around
34% larger than an encoding which supports native binary types.

However, if your data fits inside the above constraints and you need cross-language support, the default setting
of JSON is probably your best choice.

See http://json.org for more information.

pickle – If you have no desire to support any language other than Python, then using the pickle encoding will
gain you the support of all built-in Python data types (except class instances), smaller messages when send-
ing binary files, and a slight speedup over JSON processing.

See http://docs.python.org/library/pickle.html for more information.

yaml – YAML has many of the same characteristics as json, except that it natively supports more data types (in-
cluding dates, recursive references, etc.)

However, the Python libraries for YAML are a good bit slower than the libraries for JSON.

If you need a more expressive set of data types and need to maintain cross-language compatibility, then YAML
may be a better fit than the above.

See http://yaml.org/ for more information.

msgpack – msgpack is a binary serialization format that is closer to JSON in features. It is very young however,
and support should be considered experimental at this point.

See http://msgpack.org/ for more information.

The encoding used is available as a message header, so the worker knows how to deserialize any task. If you use a
custom serializer, this serializer must be available for the worker.

The client uses the following order to decide which serializer to use when sending a task:

1. The serializer argument to apply_async

2. The tasks serializer attribute

3. The default CELERY_TASK_SERIALIZER setting.

Using the ‘‘serializer‘‘ argument to ‘‘apply_async‘‘:

>>> add.apply_async(args=[10, 10], serializer="json")

2.3.5 Connections and connection timeouts.

Currently there is no support for broker connection pools, so apply_async establishes and closes a new connection
every time it is called. This is something you need to be aware of when sending more than one task at a time.

You handle the connection manually by creating a publisher:

numbers = [(2, 2), (4, 4), (8, 8), (16, 16)]

results = []
publisher = add.get_publisher()
try:

for args in numbers:
res = add.apply_async(args=args, publisher=publisher)
results.append(res)

finally:

2.3. Executing Tasks 31

http://json.org
http://docs.python.org/library/pickle.html
http://yaml.org/
http://msgpack.org/

Celery Documentation, Release 2.1.4

publisher.close()
publisher.connection.close()

print([res.get() for res in results])

Note: This particularly example is better expressed as a task set. See Task Sets. Tasksets already reuses connections.

The connection timeout is the number of seconds to wait before giving up on establishing the connection. You can set
this by using the connect_timeout argument to apply_async:

add.apply_async([10, 10], connect_timeout=3)

Or if you handle the connection manually:

publisher = add.get_publisher(connect_timeout=3)

2.3.6 Routing options

Celery uses the AMQP routing mechanisms to route tasks to different workers.

Messages (tasks) are sent to exchanges, a queue binds to an exchange with a routing key. Let’s look at an example:

Let’s pretend we have an application with lot of different tasks: some process video, others process images, and some
gather collective intelligence about its users. Some of these tasks are more important, so we want to make sure the
high priority tasks get sent to dedicated nodes.

For the sake of this example we have a single exchange called tasks. There are different types of exchanges, each
type interpreting the routing key in different ways, implementing different messaging scenarios.

The most common types used with Celery are direct and topic.

• direct

Matches the routing key exactly.

• topic

In the topic exchange the routing key is made up of words separated by dots (.). Words can be
matched by the wild cards * and #, where * matches one exact word, and # matches one or many
words.

For example, *.stock.# matches the routing keys usd.stock and euro.stock.db but not
stock.nasdaq.

We create three queues, video, image and lowpri that binds to the tasks exchange. For the queues we use the
following binding keys:

video: video.#
image: image.#
lowpri: misc.#

Now we can send our tasks to different worker machines, by making the workers listen to different queues:

>>> add.apply_async(args=[filename],
... routing_key="video.compress")

>>> add.apply_async(args=[filename, 360],
... routing_key="image.rotate")

>>> add.apply_async(args=[filename, selection],

32 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

... routing_key="image.crop")
>>> add.apply_async(routing_key="misc.recommend")

Later, if the crop task is consuming a lot of resources, we can bind new workers to handle just the "image.crop"
task, by creating a new queue that binds to "image.crop”.

See also:

To find out more about routing, please see Routing Tasks.

2.3.7 AMQP options

• mandatory

This sets the delivery to be mandatory. An exception will be raised if there are no running workers able to take on the
task.

Not supported by amqplib.

• immediate

Request immediate delivery. Will raise an exception if the task cannot be routed to a worker immediately.

Not supported by amqplib.

• priority

A number between 0 and 9, where 0 is the highest priority.

Note: RabbitMQ does not yet support AMQP priorities.

2.4 Workers Guide

• Starting the worker
• Stopping the worker
• Restarting the worker
• Concurrency
• Persistent revokes
• Time limits
• Max tasks per child setting
• Remote control

– The broadcast() function.
– Rate limits
– Remote shutdown
– Ping
– Enable/disable events
– Writing your own remote control commands

• Inspecting workers
– Dump of registered tasks
– Dump of currently executing tasks
– Dump of scheduled (ETA) tasks
– Dump of reserved tasks

2.4. Workers Guide 33

Celery Documentation, Release 2.1.4

2.4.1 Starting the worker

You can start celeryd to run in the foreground by executing the command:

$ celeryd --loglevel=INFO

You probably want to use a daemonization tool to start celeryd in the background. See Running celeryd as a
daemon for help using celeryd with popular daemonization tools.

For a full list of available command line options see celeryd, or simply do:

$ celeryd --help

You can also start multiple workers on the same machine. If you do so be sure to give a unique name to each individual
worker by specifying a host name with the –hostname|-n argument:

$ celeryd --loglevel=INFO --concurrency=10 -n worker1.example.com
$ celeryd --loglevel=INFO --concurrency=10 -n worker2.example.com
$ celeryd --loglevel=INFO --concurrency=10 -n worker3.example.com

2.4.2 Stopping the worker

Shutdown should be accomplished using the TERM signal.

When shutdown is initiated the worker will finish all currently executing tasks before it actually terminates, so if these
tasks are important you should wait for it to finish before doing anything drastic (like sending the KILL signal).

If the worker won’t shutdown after considerate time, for example because of tasks stuck in an infinite-loop, you can
use the KILL signal to force terminate the worker, but be aware that currently executing tasks will be lost (unless the
tasks have the acks_late option set).

Also as processes can’t override the KILL signal, the worker will not be able to reap its children, so make sure to do
so manually. This command usually does the trick:

$ ps auxww | grep celeryd | awk ’{print $2}’ | xargs kill -9

2.4.3 Restarting the worker

Other than stopping then starting the worker to restart, you can also restart the worker using the HUP signal:

$ kill -HUP $pid

The worker will then replace itself with a new instance using the same arguments as it was started with.

2.4.4 Concurrency

Multiprocessing is used to perform concurrent execution of tasks. The number of worker processes can be changed
using the --concurrency argument and defaults to the number of CPUs available on the machine.

More worker processes are usually better, but there’s a cut-off point where adding more processes affects performance
in negative ways. There is even some evidence to support that having multiple celeryd’s running, may perform better
than having a single worker. For example 3 celeryd’s with 10 worker processes each. You need to experiment to find
the numbers that works best for you, as this varies based on application, work load, task run times and other factors.

34 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

2.4.5 Persistent revokes

Revoking tasks works by sending a broadcast message to all the workers, the workers then keep a list of revoked tasks
in memory.

If you want tasks to remain revoked after worker restart you need to specify a file for these to be stored in, either by
using the --statedb argument to celeryd or the CELERYD_STATE_DB setting. See CELERYD_STATE_DB
for more information.

2.4.6 Time limits

New in version 2.0.

A single task can potentially run forever, if you have lots of tasks waiting for some event that will never happen you
will block the worker from processing new tasks indefinitely. The best way to defend against this scenario happening
is enabling time limits.

The time limit (--time-limit) is the maximum number of seconds a task may run before the process executing
it is terminated and replaced by a new process. You can also enable a soft time limit (--soft-time-limit), this
raises an exception the task can catch to clean up before the hard time limit kills it:

from celery.decorators import task
from celery.exceptions import SoftTimeLimitExceeded

@task()
def mytask():

try:
do_work()

except SoftTimeLimitExceeded:
clean_up_in_a_hurry()

Time limits can also be set using the CELERYD_TASK_TIME_LIMIT / CELERYD_SOFT_TASK_TIME_LIMIT
settings.

Note: Time limits does not currently work on Windows.

2.4.7 Max tasks per child setting

With this option you can configure the maximum number of tasks a worker can execute before it’s replaced by a new
process.

This is useful if you have memory leaks you have no control over for example from closed source C extensions.

The option can be set using the --maxtasksperchild argument to celeryd or using the
CELERYD_MAX_TASKS_PER_CHILD setting.

2.4.8 Remote control

New in version 2.0.

Workers have the ability to be remote controlled using a high-priority broadcast message queue. The commands can
be directed to all, or a specific list of workers.

Commands can also have replies. The client can then wait for and collect those replies. Since there’s no central
authority to know how many workers are available in the cluster, there is also no way to estimate how many workers

2.4. Workers Guide 35

Celery Documentation, Release 2.1.4

may send a reply, so the client has a configurable timeout — the deadline in seconds for replies to arrive in. This
timeout defaults to one second. If the worker doesn’t reply within the deadline it doesn’t necessarily mean the worker
didn’t reply, or worse is dead, but may simply be caused by network latency or the worker being slow at processing
commands, so adjust the timeout accordingly.

In addition to timeouts, the client can specify the maximum number of replies to wait for. If a destination is specified,
this limit is set to the number of destination hosts.

See also:

The celeryctl program is used to execute remote control commands from the command line. It supports all of the
commands listed below. See celeryctl: Management Utility for more information.

The broadcast() function.

This is the client function used to send commands to the workers. Some remote control commands also have higher-
level interfaces using broadcast() in the background, like rate_limit() and ping().

Sending the rate_limit command and keyword arguments:

>>> from celery.task.control import broadcast
>>> broadcast("rate_limit", arguments={"task_name": "myapp.mytask",
... "rate_limit": "200/m"})

This will send the command asynchronously, without waiting for a reply. To request a reply you have to use the
reply argument:

>>> broadcast("rate_limit", {"task_name": "myapp.mytask",
... "rate_limit": "200/m"}, reply=True)
[{’worker1.example.com’: ’New rate limit set successfully’},
{’worker2.example.com’: ’New rate limit set successfully’},
{’worker3.example.com’: ’New rate limit set successfully’}]

Using the destination argument you can specify a list of workers to receive the command:

>>> broadcast
>>> broadcast("rate_limit", {"task_name": "myapp.mytask",
... "rate_limit": "200/m"}, reply=True,
... destination=["worker1.example.com"])
[{’worker1.example.com’: ’New rate limit set successfully’}]

Of course, using the higher-level interface to set rate limits is much more convenient, but there are commands that can
only be requested using broadcast().

Rate limits

Example changing the rate limit for the myapp.mytask task to accept 200 tasks a minute on all servers:

>>> from celery.task.control import rate_limit
>>> rate_limit("myapp.mytask", "200/m")

Example changing the rate limit on a single host by specifying the destination hostname:

>>> rate_limit("myapp.mytask", "200/m",
... destination=["worker1.example.com"])

Warning: This won’t affect workers with the CELERY_DISABLE_RATE_LIMITS setting on. To re-enable rate
limits then you have to restart the worker.

36 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

Remote shutdown

This command will gracefully shut down the worker remotely:

>>> broadcast("shutdown") # shutdown all workers
>>> broadcast("shutdown, destination="worker1.example.com")

Ping

This command requests a ping from alive workers. The workers reply with the string ‘pong’, and that’s just about it.
It will use the default one second timeout for replies unless you specify a custom timeout:

>>> from celery.task.control import ping
>>> ping(timeout=0.5)
[{’worker1.example.com’: ’pong’},
{’worker2.example.com’: ’pong’},
{’worker3.example.com’: ’pong’}]

ping() also supports the destination argument, so you can specify which workers to ping:

>>> ping([’worker2.example.com’, ’worker3.example.com’])
[{’worker2.example.com’: ’pong’},
{’worker3.example.com’: ’pong’}]

Enable/disable events

You can enable/disable events by using the enable_events, disable_events commands. This is useful to
temporarily monitor a worker using celeryev/celerymon.

>>> broadcast("enable_events")
>>> broadcast("disable_events")

Writing your own remote control commands

Remote control commands are registered in the control panel and they take a single argu-
ment: the current ControlDispatch instance. From there you have access to the active
celery.worker.listener.CarrotListener if needed.

Here’s an example control command that restarts the broker connection:

from celery.worker.control import Panel

@Panel.register
def reset_connection(panel):

panel.logger.critical("Connection reset by remote control.")
panel.listener.reset_connection()
return {"ok": "connection reset"}

These can be added to task modules, or you can keep them in their own module then import them using the
CELERY_IMPORTS setting:

CELERY_IMPORTS = ("myapp.worker.control",)

2.4. Workers Guide 37

Celery Documentation, Release 2.1.4

2.4.9 Inspecting workers

celery.task.control.inspect lets you inspect running workers. It uses remote control commands under the
hood.

>>> from celery.task.control import inspect

Inspect all nodes.
>>> i = inspect()

Specify multiple nodes to inspect.
>>> i = inspect(["worker1.example.com", "worker2.example.com"])

Specify a single node to inspect.
>>> i = inspect("worker1.example.com")

Dump of registered tasks

You can get a list of tasks registered in the worker using the registered_tasks():

>>> i.registered_tasks()
[{’worker1.example.com’: [’celery.delete_expired_task_meta’,

’celery.execute_remote’,
’celery.map_async’,
’celery.ping’,
’celery.task.http.HttpDispatchTask’,
’tasks.add’,
’tasks.sleeptask’]}]

Dump of currently executing tasks

You can get a list of active tasks using active():

>>> i.active()
[{’worker1.example.com’:

[{"name": "tasks.sleeptask",
"id": "32666e9b-809c-41fa-8e93-5ae0c80afbbf",
"args": "(8,)",
"kwargs": "{}"}]}]

Dump of scheduled (ETA) tasks

You can get a list of tasks waiting to be scheduled by using scheduled():

>>> i.scheduled()
[{’worker1.example.com’:

[{"eta": "2010-06-07 09:07:52", "priority": 0,
"request": {

"name": "tasks.sleeptask",
"id": "1a7980ea-8b19-413e-91d2-0b74f3844c4d",
"args": "[1]",
"kwargs": "{}"}},

{"eta": "2010-06-07 09:07:53", "priority": 0,
"request": {

"name": "tasks.sleeptask",

38 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

"id": "49661b9a-aa22-4120-94b7-9ee8031d219d",
"args": "[2]",
"kwargs": "{}"}}]}]

Note that these are tasks with an eta/countdown argument, not periodic tasks.

Dump of reserved tasks

Reserved tasks are tasks that has been received, but is still waiting to be executed.

You can get a list of these using reserved():

>>> i.reserved()
[{’worker1.example.com’:

[{"name": "tasks.sleeptask",
"id": "32666e9b-809c-41fa-8e93-5ae0c80afbbf",
"args": "(8,)",
"kwargs": "{}"}]}]

2.5 Periodic Tasks

• Introduction
• Entries

– Available Fields
• Crontab schedules
• Starting celerybeat

– Using custom scheduler classes

2.5.1 Introduction

celerybeat is a scheduler. It kicks off tasks at regular intervals, which are then executed by the worker nodes available
in the cluster.

By default the entries are taken from the CELERYBEAT_SCHEDULE setting, but custom stores can also be used, like
storing the entries in an SQL database.

You have to ensure only a single scheduler is running for a schedule at a time, otherwise you would end up with
duplicate tasks. Using a centralized approach means the schedule does not have to be synchronized, and the service
can operate without using locks.

2.5.2 Entries

To schedule a task periodically you have to add an entry to the CELERYBEAT_SCHEDULE setting.

Example: Run the tasks.add task every 30 seconds.

from datetime import timedelta

CELERYBEAT_SCHEDULE = {
"runs-every-30-seconds": {

"task": "tasks.add",

2.5. Periodic Tasks 39

Celery Documentation, Release 2.1.4

"schedule": timedelta(seconds=30),
"args": (16, 16)

},
}

Using a timedelta for the schedule means the task will be executed 30 seconds after celerybeat starts, and
then every 30 seconds after the last run. A crontab like schedule also exists, see the section on Crontab schedules.

Available Fields

• task

The name of the task to execute.

• schedule

The frequency of execution.

This can be the number of seconds as an integer, a timedelta, or a crontab. You can also define
your own custom schedule types, by extending the interface of schedule.

• args

Positional arguments (list or tuple).

• kwargs

Keyword arguments (dict).

• options

Execution options (dict).

This can be any argument supported by apply_async(), e.g. exchange, routing_key,
expires, and so on.

• relative

By default timedelta schedules are scheduled “by the clock”. This means the frequency is
rounded to the nearest second, minute, hour or day depending on the period of the timedelta.

If relative is true the frequency is not rounded and will be relative to the time when celerybeat
was started.

2.5.3 Crontab schedules

If you want more control over when the task is executed, for example, a particular time of day or day of the week, you
can use the crontab schedule type:

from celery.schedules import crontab

CELERYBEAT_SCHEDULE = {
Executes every Monday morning at 7:30 A.M
"every-monday-morning": {

"task": "tasks.add",
"schedule": crontab(hour=7, minute=30, day_of_week=1),
"args": (16, 16),

},
}

40 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

The syntax of these crontab expressions are very flexible. Some examples:

Example Meaning
crontab() Execute every minute.
crontab(minute=0, hour=0) Execute daily at midnight.
crontab(minute=0, hour=”*/3”) Execute every three hours: 3am, 6am, 9am, noon, 3pm,

6pm, 9pm.

crontab(minute=0, hour=[0,3,6,9,12,15,18,21])
Same as previous.

crontab(minute=”*/15”) Execute every 15 minutes.
crontab(day_of_week=”sunday”) Execute every minute (!) at Sundays.

crontab(minute=”*”, hour=”*”, day_of_week=”sun”)
Same as previous.

crontab(minute=”*/10”, hour=”3,17,22”,
day_of_week=”thu,fri”)

Execute every ten minutes, but only between 3-4 am,
5-6 pm and 10-11 pm on Thursdays or Fridays.

crontab(minute=0, hour=”*/2,*/3”) Execute every even hour, and every hour divisible by
three. This means: at every hour except: 1am, 5am,
7am, 11am, 1pm, 5pm, 7pm, 11pm

crontab(minute=0, hour=”*/5”) Execute hour divisible by 5. This means that it is trig-
gered at 3pm, not 5pm (since 3pm equals the 24-hour
clock value of “15”, which is divisible by 5).

crontab(minute=0, hour=”*/3,8-17”) Execute every hour divisible by 3, and every hour during
office hours (8am-5pm).

2.5.4 Starting celerybeat

To start the celerybeat service:

$ celerybeat

You can also start celerybeat with celeryd by using the -B option, this is convenient if you only intend to use
one worker node:

$ celeryd -B

Celerybeat needs to store the last run times of the tasks in a local database file (named celerybeat-schedule by
default), so it needs access to write in the current directory, or alternatively you can specify a custom location for this
file:

$ celerybeat -s /home/celery/var/run/celerybeat-schedule

Note: To daemonize celerybeat see Running celeryd as a daemon.

Using custom scheduler classes

Custom scheduler classes can be specified on the command line (the -S argument). The default scheduler is
celery.beat.PersistentScheduler, which is simply keeping track of the last run times in a local database
file (a shelve).

django-celery also ships with a scheduler that stores the schedule in the Django database:

2.5. Periodic Tasks 41

Celery Documentation, Release 2.1.4

$ celerybeat -S djcelery.schedulers.DatabaseScheduler

Using django-celery‘s scheduler you can add, modify and remove periodic tasks from the Django Admin.

2.6 Sets of tasks, Subtasks and Callbacks

• Subtasks
– Callbacks

• Task Sets
– Results

2.6.1 Subtasks

New in version 2.0.

The subtask type is used to wrap the arguments and execution options for a single task invocation:

subtask(task_name_or_cls, args, kwargs, options)

For convenience every task also has a shortcut to create subtasks:

task.subtask(args, kwargs, options)

subtask is actually a dict subclass, which means it can be serialized with JSON or other encodings that doesn’t
support complex Python objects.

Also it can be regarded as a type, as the following usage works:

>>> s = subtask("tasks.add", args=(2, 2), kwargs={})

>>> subtask(dict(s)) # coerce dict into subtask

This makes it excellent as a means to pass callbacks around to tasks.

Callbacks

Let’s improve our add task so it can accept a callback that takes the result as an argument:

from celery.decorators import task
from celery.task.sets import subtask

@task
def add(x, y, callback=None):

result = x + y
if callback is not None:

subtask(callback).delay(result)
return result

subtask also knows how it should be applied, asynchronously by delay(), and eagerly by apply().

The best thing is that any arguments you add to subtask.delay, will be prepended to the arguments specified by
the subtask itself!

If you have the subtask:

42 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

>>> add.subtask(args=(10,))

subtask.delay(result) becomes:

>>> add.apply_async(args=(result, 10))

...

Now let’s execute our new add task with a callback:

>>> add.delay(2, 2, callback=add.subtask((8,)))

As expected this will first launch one task calculating 2 + 2, then another task calculating 4 + 8.

2.6.2 Task Sets

The TaskSet enables easy invocation of several tasks at once, and is then able to join the results in the same order
as the tasks were invoked.

A task set takes a list of subtask‘s:

>>> from celery.task.sets import TaskSet
>>> from tasks import add

>>> job = TaskSet(tasks=[
... add.subtask((4, 4)),
... add.subtask((8, 8)),
... add.subtask((16, 16)),
... add.subtask((32, 32)),
...])

>>> result = job.apply_async()

>>> result.ready() # has all subtasks completed?
True
>>> result.successful() # was all subtasks successful?

>>> result.join()
[4, 8, 16, 32, 64]

Results

When a TaskSet is applied it returns a TaskSetResult object.

TaskSetResult takes a list of AsyncResult instances and operates on them as if it was a single task.

It supports the following operations:

• successful()

Returns True if all of the subtasks finished successfully (e.g. did not raise an exception).

• failed()

Returns True if any of the subtasks failed.

• waiting()

Returns True if any of the subtasks is not ready yet.

2.6. Sets of tasks, Subtasks and Callbacks 43

Celery Documentation, Release 2.1.4

• ready()

Return True if all of the subtasks are ready.

• completed_count()

Returns the number of completed subtasks.

• revoke()

Revokes all of the subtasks.

• iterate()

Iterates over the return values of the subtasks as they finish, one by one.

• join()

Gather the results for all of the subtasks and return a list with them ordered by the order of which
they were called.

2.7 HTTP Callback Tasks (Webhooks)

• Basics
• Django webhook example
• Ruby on Rails webhook example
• Executing webhook tasks

2.7.1 Basics

If you need to call into another language, framework or similar, you can do so by using HTTP callback tasks.

The HTTP callback tasks uses GET/POST data to pass arguments and returns result as a JSON response. The scheme
to call a task is:

GET http://example.com/mytask/?arg1=a&arg2=b&arg3=c

or using POST:

POST http://example.com/mytask

Note: POST data needs to be form encoded.

Whether to use GET or POST is up to you and your requirements.

The web page should then return a response in the following format if the execution was successful:

{"status": "success", "retval":}

or if there was an error:

{"status": "failure": "reason": "Invalid moon alignment."}

44 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

2.7.2 Django webhook example

With this information you could define a simple task in Django:

from django.http import HttpResponse
from anyjson import serialize

def multiply(request):
x = int(request.GET["x"])
y = int(request.GET["y"])
result = x * y
response = {"status": "success", "retval": result}
return HttpResponse(serialize(response), mimetype="application/json")

2.7.3 Ruby on Rails webhook example

or in Ruby on Rails:

def multiply
@x = params[:x].to_i
@y = params[:y].to_i

@status = {:status => "success", :retval => @x * @y}

render :json => @status
end

You can easily port this scheme to any language/framework; new examples and libraries are very welcome.

2.7.4 Executing webhook tasks

To execute the task you use the URL class:

>>> from celery.task.http import URL
>>> res = URL("http://example.com/multiply").get_async(x=10, y=10)

URL is a shortcut to the HttpDispatchTask. You can subclass this to extend the functionality.

>>> from celery.task.http import HttpDispatchTask
>>> res = HttpDispatchTask.delay(url="http://example.com/multiply", method="GET", x=10, y=10)
>>> res.get()
100

The output of celeryd (or the log file if enabled) should show the task being executed:

[INFO/MainProcess] Task celery.task.http.HttpDispatchTask
[f2cc8efc-2a14-40cd-85ad-f1c77c94beeb] processed: 100

Since applying tasks can be done via HTTP using the djcelery.views.apply view, exe-
cuting tasks from other languages is easy. For an example service exposing tasks via HTTP
you should have a look at examples/celery_http_gateway in the Celery distribution:
http://github.com/ask/celery/tree/master/examples/celery_http_gateway/

2.7. HTTP Callback Tasks (Webhooks) 45

http://github.com/ask/celery/tree/master/examples/celery_http_gateway/

Celery Documentation, Release 2.1.4

2.8 Routing Tasks

Warning: This document refers to functionality only available in brokers using AMQP. Other brokers may
implement some functionality, see their respective documentation for more information, or contact the Mailing
list.

• Basics
– Automatic routing

* Changing the name of the default queue
* How the queues are defined

– Manual routing
• AMQP Primer

– Messages
– Producers, consumers and brokers
– Exchanges, queues and routing keys.
– Exchange types

* Direct exchanges
* Topic exchanges

– Related API commands
– Hands-on with the API

• Routing Tasks
– Defining queues
– Specifying task destination
– Routers

2.8.1 Basics

Automatic routing

The simplest way to do routing is to use the CELERY_CREATE_MISSING_QUEUES setting (on by default).

With this setting on, a named queue that is not already defined in CELERY_QUEUES will be created automatically.
This makes it easy to perform simple routing tasks.

Say you have two servers, x, and y that handles regular tasks, and one server z, that only handles feed related tasks.
You can use this configuration:

CELERY_ROUTES = {"feed.tasks.import_feed": {"queue": "feeds"}}

With this route enabled import feed tasks will be routed to the "feeds" queue, while all other tasks will be routed to
the default queue (named "celery" for historic reasons).

Now you can start server z to only process the feeds queue like this:

(z)$ celeryd -Q feeds

You can specify as many queues as you want, so you can make this server process the default queue as well:

(z)$ celeryd -Q feeds,celery

46 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

Changing the name of the default queue

You can change the name of the default queue by using the following configuration:

CELERY_QUEUES = {"default": {"exchange": "default",
"binding_key": "default"}}

CELERY_DEFAULT_QUEUE = "default"

How the queues are defined

The point with this feature is to hide the complex AMQP protocol for users with only basic needs. However – you
may still be interested in how these queues are declared.

A queue named "video" will be created with the following settings:

{"exchange": "video",
"exchange_type": "direct",
"routing_key": "video"}

The non-AMQP backends like ghettoq does not support exchanges, so they require the exchange to have the same
name as the queue. Using this design ensures it will work for them as well.

Manual routing

Say you have two servers, x, and y that handles regular tasks, and one server z, that only handles feed related tasks,
you can use this configuration:

CELERY_DEFAULT_QUEUE = "default"
CELERY_QUEUES = {

"default": {
"binding_key": "task.#",

},
"feed_tasks": {

"binding_key": "feed.#",
},

}
CELERY_DEFAULT_EXCHANGE = "tasks"
CELERY_DEFAULT_EXCHANGE_TYPE = "topic"
CELERY_DEFAULT_ROUTING_KEY = "task.default"

CELERY_QUEUES is a map of queue names and their exchange/type/binding_key, if you don’t
set exchange or exchange type, they will be taken from the CELERY_DEFAULT_EXCHANGE and
CELERY_DEFAULT_EXCHANGE_TYPE settings.

To route a task to the feed_tasks queue, you can add an entry in the CELERY_ROUTES setting:

CELERY_ROUTES = {
"feeds.tasks.import_feed": {

"queue": "feed_tasks",
"routing_key": "feed.import",

},
}

You can also override this using the routing_key argument to apply_async(), or send_task():

2.8. Routing Tasks 47

Celery Documentation, Release 2.1.4

>>> from feeds.tasks import import_feed
>>> import_feed.apply_async(args=["http://cnn.com/rss"],
... queue="feed_tasks",
... routing_key="feed.import")

To make server z consume from the feed queue exclusively you can start it with the -Q option:

(z)$ celeryd -Q feed_tasks --hostname=z.example.com

Servers x and y must be configured to consume from the default queue:

(x)$ celeryd -Q default --hostname=x.example.com
(y)$ celeryd -Q default --hostname=y.example.com

If you want, you can even have your feed processing worker handle regular tasks as well, maybe in times when there’s
a lot of work to do:

(z)$ celeryd -Q feed_tasks,default --hostname=z.example.com

If you have another queue but on another exchange you want to add, just specify a custom exchange and exchange
type:

CELERY_QUEUES = {
"feed_tasks": {

"binding_key": "feed.#",
},
"regular_tasks": {

"binding_key": "task.#",
},
"image_tasks": {

"binding_key": "image.compress",
"exchange": "mediatasks",
"exchange_type": "direct",

},
}

If you’re confused about these terms, you should read up on AMQP.

See also:

In addition to the AMQP Primer below, there’s Rabbits and Warrens, an excellent blog post describing queues and
exchanges. There’s also AMQP in 10 minutes*: Flexible Routing Model, and Standard Exchange Types. For users of
RabbitMQ the RabbitMQ FAQ could be useful as a source of information.

2.8.2 AMQP Primer

Messages

A message consists of headers and a body. Celery uses headers to store the content type of the message and its content
encoding. The content type is usually the serialization format used to serialize the message. The body contains the
name of the task to execute, the task id (UUID), the arguments to execute it with and some additional metadata – like
the number of retries or an ETA.

This is an example task message represented as a Python dictionary:

{"task": "myapp.tasks.add",
"id": "54086c5e-6193-4575-8308-dbab76798756",
"args": [4, 4],
"kwargs": {}}

48 Chapter 2. User Guide

http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/
http://bit.ly/95XFO1
http://bit.ly/EEWca
http://www.rabbitmq.com/faq.html

Celery Documentation, Release 2.1.4

Producers, consumers and brokers

The client sending messages is typically called a publisher, or a producer, while the entity receiving messages is called
a consumer.

The broker is the message server, routing messages from producers to consumers.

You are likely to see these terms used a lot in AMQP related material.

Exchanges, queues and routing keys.

1. Messages are sent to exchanges.

2. An exchange routes messages to one or more queues. Several exchange types exists, providing different ways
to do routing, or implementing different messaging scenarios.

3. The message waits in the queue until someone consumes it.

4. The message is deleted from the queue when it has been acknowledged.

The steps required to send and receive messages are:

1. Create an exchange

2. Create a queue

3. Bind the queue to the exchange.

Celery automatically creates the entities necessary for the queues in CELERY_QUEUES to work (except if the queue’s
auto_declare setting is set to False).

Here’s an example queue configuration with three queues; One for video, one for images and one default queue for
everything else:

CELERY_QUEUES = {
"default": {

"exchange": "default",
"binding_key": "default"},

"videos": {
"exchange": "media",
"binding_key": "media.video",

},
"images": {

"exchange": "media",
"binding_key": "media.image",

}
}
CELERY_DEFAULT_QUEUE = "default"
CELERY_DEFAULT_EXCHANGE_TYPE = "direct"
CELERY_DEFAULT_ROUTING_KEY = "default"

Note: In Celery the routing_key is the key used to send the message, while binding_key is the key the queue
is bound with. In the AMQP API they are both referred to as the routing key.

Exchange types

The exchange type defines how the messages are routed through the exchange. The exchange types defined in the stan-
dard are direct, topic, fanout and headers. Also non-standard exchange types are available as plug-ins to RabbitMQ,
like the last-value-cache plug-in by Michael Bridgen.

2.8. Routing Tasks 49

http://github.com/squaremo/rabbitmq-lvc-plugin

Celery Documentation, Release 2.1.4

Direct exchanges

Direct exchanges match by exact routing keys, so a queue bound by the routing key video only receives messages
with that routing key.

Topic exchanges

Topic exchanges matches routing keys using dot-separated words, and the wildcard characters: * (matches a single
word), and # (matches zero or more words).

With routing keys like usa.news, usa.weather, norway.news and norway.weather, bindings could be
*.news (all news), usa.# (all items in the USA) or usa.weather (all USA weather items).

Related API commands

exchange.declare(exchange_name, type, passive,
durable, auto_delete, internal)

Declares an exchange by name.

Parameters

• passive – Passive means the exchange won’t be created, but you can use this to check if the
exchange already exists.

• durable – Durable exchanges are persistent. That is - they survive a broker restart.

• auto_delete – This means the queue will be deleted by the broker when there are no more
queues using it.

queue.declare(queue_name, passive, durable, exclusive, auto_delete)
Declares a queue by name.

Exclusive queues can only be consumed from by the current connection. Exclusive also implies
auto_delete.

queue.bind(queue_name, exchange_name, routing_key)
Binds a queue to an exchange with a routing key. Unbound queues will not receive messages, so this is necessary.

queue.delete(name, if_unused=False, if_empty=False)
Deletes a queue and its binding.

exchange.delete(name, if_unused=False)
Deletes an exchange.

Note: Declaring does not necessarily mean “create”. When you declare you assert that the entity exists and that
it’s operable. There is no rule as to whom should initially create the exchange/queue/binding, whether consumer or
producer. Usually the first one to need it will be the one to create it.

Hands-on with the API

Celery comes with a tool called camqadm (short for Celery AMQ Admin). It’s used for command-line access to the
AMQP API, enabling access to administration tasks like creating/deleting queues and exchanges, purging queues or
sending messages.

You can write commands directly in the arguments to camqadm, or just start with no arguments to start it in shell-
mode:

50 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

$ camqadm
-> connecting to amqp://guest@localhost:5672/.
-> connected.
1>

Here 1> is the prompt. The number 1, is the number of commands you have executed so far. Type help for a list of
commands available. It also supports auto-completion, so you can start typing a command and then hit the tab key to
show a list of possible matches.

Let’s create a queue we can send messages to:

1> exchange.declare testexchange direct
ok.
2> queue.declare testqueue
ok. queue:testqueue messages:0 consumers:0.
3> queue.bind testqueue testexchange testkey
ok.

This created the direct exchange testexchange, and a queue named testqueue. The queue is bound to the
exchange using the routing key testkey.

From now on all messages sent to the exchange testexchange with routing key testkey will be moved to this
queue. We can send a message by using the basic.publish command:

4> basic.publish "This is a message!" testexchange testkey
ok.

Now that the message is sent we can retrieve it again. We use the basic.get command here, which pops a single
message off the queue, this command is not recommended for production as it implies polling, any real application
would declare consumers instead.

Pop a message off the queue:

5> basic.get testqueue
{’body’: ’This is a message!’,
’delivery_info’: {’delivery_tag’: 1,

’exchange’: u’testexchange’,
’message_count’: 0,
’redelivered’: False,
’routing_key’: u’testkey’},

’properties’: {}}

AMQP uses acknowledgment to signify that a message has been received and processed successfully. If the message
has not been acknowledged and consumer channel is closed, the message will be delivered to another consumer.

Note the delivery tag listed in the structure above; Within a connection channel, every received message has a unique
delivery tag, This tag is used to acknowledge the message. Also note that delivery tags are not unique across connec-
tions, so in another client the delivery tag 1 might point to a different message than in this channel.

You can acknowledge the message we received using basic.ack:

6> basic.ack 1
ok.

To clean up after our test session we should delete the entities we created:

7> queue.delete testqueue
ok. 0 messages deleted.
8> exchange.delete testexchange
ok.

2.8. Routing Tasks 51

Celery Documentation, Release 2.1.4

2.8.3 Routing Tasks

Defining queues

In Celery available queues are defined by the CELERY_QUEUES setting.

Here’s an example queue configuration with three queues; One for video, one for images and one default queue for
everything else:

CELERY_QUEUES = {
"default": {

"exchange": "default",
"binding_key": "default"},

"videos": {
"exchange": "media",
"exchange_type": "topic",
"binding_key": "media.video",

},
"images": {

"exchange": "media",
"exchange_type": "topic",
"binding_key": "media.image",

}
}
CELERY_DEFAULT_QUEUE = "default"
CELERY_DEFAULT_EXCHANGE = "default"
CELERY_DEFAULT_EXCHANGE_TYPE = "direct"
CELERY_DEFAULT_ROUTING_KEY = "default"

Here, the CELERY_DEFAULT_QUEUE will be used to route tasks that doesn’t have an explicit route.

The default exchange, exchange type and routing key will be used as the default routing values for tasks, and as the
default values for entries in CELERY_QUEUES.

Specifying task destination

The destination for a task is decided by the following (in order):

1. The Routers defined in CELERY_ROUTES.

2. The routing arguments to apply_async().

3. Routing related attributes defined on the Task itself.

It is considered best practice to not hard-code these settings, but rather leave that as configuration options by using
Routers; This is the most flexible approach, but sensible defaults can still be set as task attributes.

Routers

A router is a class that decides the routing options for a task.

All you need to define a new router is to create a class with a route_for_task method:

class MyRouter(object):

def route_for_task(self, task, args=None, kwargs=None):
if task == "myapp.tasks.compress_video":

return {"exchange": "video",
"exchange_type": "topic",

52 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

"routing_key": "video.compress"}
return None

If you return the queue key, it will expand with the defined settings of that queue in CELERY_QUEUES:

{"queue": "video", "routing_key": "video.compress"}

becomes -->

{"queue": "video",
"exchange": "video",
"exchange_type": "topic",
"routing_key": "video.compress"}

You install router classes by adding them to the CELERY_ROUTES setting:

CELERY_ROUTES = (MyRouter,)

Router classes can also be added by name:

CELERY_ROUTES = ("myapp.routers.MyRouter",)

For simple task name -> route mappings like the router example above, you can simply drop a dict into
CELERY_ROUTES to get the same behavior:

CELERY_ROUTES = ({"myapp.tasks.compress_video": {
"queue": "video",
"routing_key": "video.compress"

}},)

The routers will then be traversed in order, it will stop at the first router returning a true value, and use that as the final
route for the task.

2.9 Monitoring Guide

2.9. Monitoring Guide 53

Celery Documentation, Release 2.1.4

• Introduction
• Workers

– celeryctl: Management Utility
* Commands
* Specifying destination nodes

– Django Admin Monitor
* Starting the monitor
* Shutter frequency
* Using outside of Django

– celeryev: Curses Monitor
– celerymon: Web monitor

• RabbitMQ
– Inspecting queues

• Munin
• Events

– Snapshots
* Custom Camera

– Event Reference
* Task Events
* Worker Events

2.9.1 Introduction

There are several tools available to monitor and inspect Celery clusters.

This document describes some of these, as as well as features related to monitoring, like events and broadcast com-
mands.

2.9.2 Workers

celeryctl: Management Utility

New in version 2.1.

celeryctl is a command line utility to inspect and manage worker nodes (and to some degree tasks).

To list all the commands available do:

$ celeryctl help

or to get help for a specific command do:

$ celeryctl <command> --help

Commands

• status: List active nodes in this cluster

$ celeryctl status

• result: Show the result of a task

54 Chapter 2. User Guide

Celery Documentation, Release 2.1.4

$ celeryctl result -t tasks.add 4e196aa4-0141-4601-8138-7aa33db0f577

Note that you can omit the name of the task as long as the task doesn’t use a custom result backend.

• inspect active: List active tasks

$ celeryctl inspect active

These are all the tasks that are currently being executed.

• inspect scheduled: List scheduled ETA tasks

$ celeryctl inspect scheduled

These are tasks reserved by the worker because they have the eta or countdown argument set.

• inspect reserved: List reserved tasks

$ celeryctl inspect reserved

This will list all tasks that have been prefetched by the worker, and is currently waiting to be executed
(does not include tasks with an eta).

• inspect revoked: List history of revoked tasks

$ celeryctl inspect revoked

• inspect registered_tasks: List registered tasks

$ celeryctl inspect registered_tasks

• inspect states: Show worker statistics

$ celeryctl inspect stats

• inspect enable_events: Enable events

$ celeryctl inspect enable_events

• inspect disable_events: Disable events

$ celeryctl inspect disable_events

Note: All inspect commands supports a --timeout argument, This is the number of seconds to wait for
responses. You may have to increase this timeout if you’re getting empty responses due to latency.

Specifying destination nodes

By default the inspect commands operates on all workers. You can specify a single, or a list of workers by using the
--destination argument:

$ celeryctl inspect -d w1,w2 reserved

Django Admin Monitor

New in version 2.1.

2.9. Monitoring Guide 55

Celery Documentation, Release 2.1.4

When you add django-celery to your Django project you will automatically get a monitor section as part of the Django
admin interface.

This can also be used if you’re not using Celery with a Django project.

Screenshot

Starting the monitor

The Celery section will already be present in your admin interface, but you won’t see any data appearing until you
start the snapshot camera.

The camera takes snapshots of the events your workers sends at regular intervals, storing them in your database (See
Snapshots).

To start the camera run:

$ python manage.py celerycam

If you haven’t already enabled the sending of events you need to do so:

$ python manage.py celeryctl inspect enable_events

Tip You can enable events when the worker starts using the -E argument to celeryd.

Now that the camera has been started, and events have been enabled you should be able to see your workers and the
tasks in the admin interface (it may take some time for workers to show up).

The admin interface shows tasks, worker nodes, and even lets you perform some actions, like revoking and rate limiting
tasks, or shutting down worker nodes.

56 Chapter 2. User Guide

http://pypi.python.org/pypi/django-celery

Celery Documentation, Release 2.1.4

Shutter frequency

By default the camera takes a snapshot every second, if this is too frequent or you want to have higher precision, then
you can change this using the --frequency argument. This is a float describing how often, in seconds, it should
wake up to check if there are any new events:

$ python manage.py celerycam --frequency=3.0

The camera also supports rate limiting using the --maxrate argument. While the frequency controls how often the
camera thread wakes up, the rate limit controls how often it will actually take a snapshot.

The rate limits can be specified in seconds, minutes or hours by appending /s, /m or /h to the value. Example:
--maxrate=100/m, means “hundred writes a minute”.

The rate limit is off by default, which means it will take a snapshot for every --frequency seconds.

The events also expire after some time, so the database doesn’t fill up. Successful tasks are deleted after 1 day, failed
tasks after 3 days, and tasks in other states after 5 days.

Using outside of Django

django-celery also installs the djcelerymon program. This can be used by non-Django users, and runs both a web
server and a snapshot camera in the same process.

Installing

Using pip:

$ pip install -U django-celery

or using easy_install:

$ easy_install -U django-celery

Running

djcelerymon reads configuration from your Celery configuration module, and sets up the Django environment using
the same settings:

$ djcelerymon

Database tables will be created the first time the monitor is run. By default an sqlite3 database file named
djcelerymon.db is used, so make sure this file is writeable by the user running the monitor.

If you want to store the events in a different database, e.g. MySQL, then you can configure the DATABASE* settings
directly in your Celery config module. See http://docs.djangoproject.com/en/dev/ref/settings/#databases for more in-
formation about the database options available.

You will also be asked to create a superuser (and you need to create one to be able to log into the admin later):

Creating table auth_permission
Creating table auth_group_permissions
[...]

You just installed Django’s auth system, which means you don’t
have any superusers defined. Would you like to create
one now? (yes/no): yes
Username (Leave blank to use ’username’): username
E-mail address: me@example.com
Password: ******

2.9. Monitoring Guide 57

http://docs.djangoproject.com/en/dev/ref/settings/#databases

Celery Documentation, Release 2.1.4

Password (again): ******
Superuser created successfully.

[...]
Django version 1.2.1, using settings ’celeryconfig’
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Now that the service is started you can visit the monitor at http://127.0.0.1:8000, and log in using the user you created.

For a list of the command line options supported by djcelerymon, please see djcelerymon --help.

celeryev: Curses Monitor

New in version 2.0.

celeryev is a simple curses monitor displaying task and worker history. You can inspect the result and traceback of
tasks, and it also supports some management commands like rate limiting and shutting down workers.

celeryev is also used to start snapshot cameras (see Snapshots:

$ celeryev --camera=<camera-class> --frequency=1.0

and it includes a tool to dump events to stdout:

58 Chapter 2. User Guide

http://127.0.0.1:8000

Celery Documentation, Release 2.1.4

$ celeryev --dump

For a complete list of options use --help:

$ celeryev --help

celerymon: Web monitor

celerymon is the ongoing work to create a web monitor. It’s far from complete yet, and does currently only support
a JSON API. Help is desperately needed for this project, so if you, or someone you know would like to contribute
templates, design, code or help this project in any way, please get in touch!

Tip The Django admin monitor can be used even though you’re not using Celery with a Django project.
See Using outside of Django.

2.9.3 RabbitMQ

To manage a Celery cluster it is important to know how RabbitMQ can be monitored.

RabbitMQ ships with the rabbitmqctl(1) command, with this you can list queues, exchanges, bindings, queue lengths,
the memory usage of each queue, as well as manage users, virtual hosts and their permissions.

Note: The default virtual host ("/") is used in these examples, if you use a custom virtual host you have to add the
-p argument to the command, e.g: rabbitmqctl list_queues -p my_vhost

Inspecting queues

Finding the number of tasks in a queue:

$ rabbitmqctl list_queues name messages messages_ready \
messages_unacknowlged

Here messages_ready is the number of messages ready for delivery (sent but not received),
messages_unacknowledged is the number of messages that has been received by a worker but not acknowl-
edged yet (meaning it is in progress, or has been reserved). messages is the sum of ready and unacknowledged
messages combined.

Finding the number of workers currently consuming from a queue:

$ rabbitmqctl list_queues name consumers

Finding the amount of memory allocated to a queue:

$ rabbitmqctl list_queues name memory

Tip Adding the -q option to rabbitmqctl(1) makes the output easier to parse.

2.9.4 Munin

This is a list of known Munin plug-ins that can be useful when maintaining a Celery cluster.

• rabbitmq-munin: Munin plug-ins for RabbitMQ.

http://github.com/ask/rabbitmq-munin

2.9. Monitoring Guide 59

http://github.com/ask/celerymon/
http://www.rabbitmq.com/man/rabbitmqctl.1.man.html
http://www.rabbitmq.com/man/rabbitmqctl.1.man.html
http://github.com/ask/rabbitmq-munin

Celery Documentation, Release 2.1.4

• celery_tasks: Monitors the number of times each task type has been executed (requires celerymon).

http://exchange.munin-monitoring.org/plugins/celery_tasks-2/details

• celery_task_states: Monitors the number of tasks in each state (requires celerymon).

http://exchange.munin-monitoring.org/plugins/celery_tasks/details

2.9.5 Events

The worker has the ability to send a message whenever some event happens. These events are then captured by tools
like celerymon and celeryev to monitor the cluster.

Snapshots

Even a single worker can produce a huge amount of events, so storing the history of all events on disk may be very
expensive.

A sequence of events describes the cluster state in that time period, by taking periodic snapshots of this state we can
keep all history, but still only periodically write it to disk.

To take snapshots you need a Camera class, with this you can define what should happen every time the state is
captured; You can write it to a database, send it by e-mail or something else entirely.

celeryev is then used to take snapshots with the camera, for example if you want to capture state every 2 seconds using
the camera myapp.Camera you run celeryev with the following arguments:

$ celeryev -c myapp.Camera --frequency=2.0

Custom Camera

Here is an example camera, dumping the snapshot to screen:

from pprint import pformat

from celery.events.snapshot import Polaroid

class DumpCam(Polaroid):

def shutter(self, state):
if not state.event_count:

No new events since last snapshot.
return

print("Workers: %s" % (pformat(state.workers, indent=4),))
print("Tasks: %s" % (pformat(state.tasks, indent=4),))
print("Total: %s events, %s tasks" % (

state.event_count, state.task_count))

See the API reference for celery.events.state to read more about state objects.

Now you can use this cam with celeryev by specifying it with the -c option:

$ celeryev -c myapp.DumpCam --frequency=2.0

Or you can use it programmatically like this:

60 Chapter 2. User Guide

http://exchange.munin-monitoring.org/plugins/celery_tasks-2/details
http://exchange.munin-monitoring.org/plugins/celery_tasks/details

Celery Documentation, Release 2.1.4

from celery.events import EventReceiver
from celery.messaging import establish_connection
from celery.events.state import State
from myapp import DumpCam

def main():
state = State()
with establish_connection() as connection:

recv = EventReceiver(connection, handlers={"*": state.event})
with DumpCam(state, freq=1.0):

recv.capture(limit=None, timeout=None)

if __name__ == "__main__":
main()

Event Reference

This list contains the events sent by the worker, and their arguments.

Task Events

• task-received(uuid, name, args, kwargs, retries, eta, hostname, timestamp)

Sent when the worker receives a task.

• task-started(uuid, hostname, timestamp)

Sent just before the worker executes the task.

• task-succeeded(uuid, result, runtime, hostname, timestamp)

Sent if the task executed successfully.

Runtime is the time it took to execute the task using the pool. (Starting from the task is sent to the
worker pool, and ending when the pool result handler callback is called).

• task-failed(uuid, exception, traceback, hostname, timestamp)

Sent if the execution of the task failed.

• task-revoked(uuid)

Sent if the task has been revoked (Note that this is likely to be sent by more than one worker).

• task-retried(uuid, exception, traceback, hostname, timestamp)

Sent if the task failed, but will be retried in the future.

Worker Events

• worker-online(hostname, timestamp)

The worker has connected to the broker and is online.

• worker-heartbeat(hostname, timestamp)

Sent every minute, if the worker has not sent a heartbeat in 2 minutes, it is considered to be offline.

• worker-offline(hostname, timestamp)

2.9. Monitoring Guide 61

Celery Documentation, Release 2.1.4

The worker has disconnected from the broker.

2.10 Optimizing

2.10.1 Introduction

The default configuration, like any good default, is full of compromises. It is not tweaked to be optimal for any single
use case, but tries to find middle ground that works well enough for most situations.

There are key optimizations to be done if your application is mainly processing lots of short tasks, and also if you have
fewer but very long tasks.

2.10.2 Worker Settings

Prefetch limit

Prefetch is a term inherited from AMQP, and it is often misunderstood.

The prefetch limit is a limit for how many tasks a worker can reserve in advance. If this is set to zero, the worker will
keep consuming messages ad infinitum, not respecting that there may be other available worker nodes (that may be
able to process them sooner), or that the messages may not fit in memory.

The workers initial prefetch count is set by multiplying the CELERYD_PREFETCH_MULTIPLIER setting by the
number of child worker processes. The default is 4 messages per child process.

If you have many expensive tasks with a long duration you would want the multiplier value to be 1, which means it
will only reserve one unacknowledged task per worker process at a time.

However – If you have lots of short tasks, and throughput/roundtrip latency is important to you, then you want this
number to be large. Say 64, or 128 for example, as the worker is able to process a lot more tasks/s if the messages
have already been prefetched in memory. You may have to experiment to find the best value.

If you have a combination of both very long and short tasks, then the best option is to use two worker nodes that is
configured individually, and route the tasks accordingly (see Routing Tasks).

2.10.3 Scenario 1: Lots of short tasks

CELERYD_PREFETCH_MULTIPLIER = 128
CELERY_DISABLE_RATE_LIMITS = True

2.10.4 Scenario 2: Expensive tasks

CELERYD_PREFETCH_MULTIPLIER = 1

62 Chapter 2. User Guide

CHAPTER 3

Configuration and defaults

This document describes the configuration options available.

If you’re using the default loader, you must create the celeryconfig.py module and make sure it is available on
the Python path.

• Example configuration file
• Configuration Directives

– Concurrency settings
– Task result backend settings
– Database backend settings
– AMQP backend settings
– Cache backend settings
– Tokyo Tyrant backend settings
– Redis backend settings
– MongoDB backend settings
– Message Routing
– Broker Settings
– Task execution settings
– Worker: celeryd
– Error E-Mails
– Events
– Broadcast Commands
– Logging
– Custom Component Classes (advanced)
– Periodic Task Server: celerybeat
– Monitor Server: celerymon

3.1 Example configuration file

This is an example configuration file to get you started. It should contain all you need to run a basic Celery set-up.

List of modules to import when celery starts.
CELERY_IMPORTS = ("myapp.tasks",)

Result store settings.
CELERY_RESULT_BACKEND = "database"
CELERY_RESULT_DBURI = "sqlite:///mydatabase.db"

63

Celery Documentation, Release 2.1.4

Broker settings.
BROKER_HOST = "localhost"
BROKER_PORT = 5672
BROKER_VHOST = "/"
BROKER_USER = "guest"
BROKER_PASSWORD = "guest"

Worker settings
If you’re doing mostly I/O you can have more processes,
but if mostly spending CPU, try to keep it close to the
number of CPUs on your machine. If not set, the number of CPUs/cores
available will be used.
CELERYD_CONCURRENCY = 10
CELERYD_LOG_FILE = "celeryd.log"
CELERYD_LOG_LEVEL = "INFO"

3.2 Configuration Directives

3.2.1 Concurrency settings

CELERYD_CONCURRENCY

The number of concurrent worker processes, executing tasks simultaneously.

Defaults to the number of CPUs/cores available.

CELERYD_PREFETCH_MULTIPLIER

How many messages to prefetch at a time multiplied by the number of concurrent processes. The default is 4 (four
messages for each process). The default setting is usually a good choice, however – if you have very long running
tasks waiting in the queue and you have to start the workers, note that the first worker to start will receive four times
the number of messages initially. Thus the tasks may not be fairly distributed to the workers.

3.2.2 Task result backend settings

CELERY_RESULT_BACKEND

The backend used to store task results (tombstones). Can be one of the following:

• database (default) Use a relational database supported by SQLAlchemy. See Database backend settings.

• cache Use memcached to store the results. See Cache backend settings.

• mongodb Use MongoDB to store the results. See MongoDB backend settings.

• redis Use Redis to store the results. See Redis backend settings.

• tyrant Use Tokyo Tyrant to store the results. See Tokyo Tyrant backend settings.

• amqp Send results back as AMQP messages See AMQP backend settings.

64 Chapter 3. Configuration and defaults

http://sqlalchemy.org
http://memcached.org
http://mongodb.org
http://code.google.com/p/redis/
http://1978th.net/tokyotyrant/

Celery Documentation, Release 2.1.4

3.2.3 Database backend settings

CELERY_RESULT_DBURI

Please see Supported Databases for a table of supported databases. To use this backend you need to configure it with
an Connection String, some examples include:

sqlite (filename)
CELERY_RESULT_DBURI = "sqlite:///celerydb.sqlite"

mysql
CELERY_RESULT_DBURI = "mysql://scott:tiger@localhost/foo"

postgresql
CELERY_RESULT_DBURI = "postgresql://scott:tiger@localhost/mydatabase"

oracle
CELERY_RESULT_DBURI = "oracle://scott:tiger@127.0.0.1:1521/sidname"

See Connection String for more information about connection strings.

CELERY_RESULT_ENGINE_OPTIONS

To specify additional SQLAlchemy database engine options you can use the CELERY_RESULT_ENGINE_OPTIONS
setting:

echo enables verbose logging from SQLAlchemy.
CELERY_RESULT_ENGINE_OPTIONS = {"echo": True}

Example configuration

CELERY_RESULT_BACKEND = "database"
CELERY_RESULT_DBURI = "mysql://user:password@host/dbname"

3.2.4 AMQP backend settings

CELERY_AMQP_TASK_RESULT_EXPIRES

The time in seconds of which the task result queues should expire.

Note: AMQP result expiration requires RabbitMQ versions 2.1.0 and higher.

CELERY_RESULT_EXCHANGE

Name of the exchange to publish results in. Default is "celeryresults".

CELERY_RESULT_EXCHANGE_TYPE

The exchange type of the result exchange. Default is to use a direct exchange.

3.2. Configuration Directives 65

http://www.sqlalchemy.org/docs/dbengine.html#supported-databases
http://www.sqlalchemy.org/docs/dbengine.html#create-engine-url-arguments
http://www.sqlalchemy.org/docs/dbengine.html#create-engine-url-arguments

Celery Documentation, Release 2.1.4

CELERY_RESULT_SERIALIZER

Result message serialization format. Default is "pickle". See Serializers.

CELERY_RESULT_PERSISTENT

If set to True, result messages will be persistent. This means the messages will not be lost after a broker restart. The
default is for the results to be transient.

Example configuration

CELERY_RESULT_BACKEND = "amqp"
CELERY_AMQP_TASK_RESULT_EXPIRES = 18000 # 5 hours.

3.2.5 Cache backend settings

Note: The cache backend supports the pylibmc and python-memcached libraries. The latter is used only if pylibmc
is not installed.

CELERY_CACHE_BACKEND

Using a single memcached server:

CELERY_CACHE_BACKEND = ’memcached://127.0.0.1:11211/’

Using multiple memcached servers:

CELERY_RESULT_BACKEND = "cache"
CELERY_CACHE_BACKEND = ’memcached://172.19.26.240:11211;172.19.26.242:11211/’

CELERY_CACHE_BACKEND_OPTIONS

You can set pylibmc options using the CELERY_CACHE_BACKEND_OPTIONS setting:

CELERY_CACHE_BACKEND_OPTIONS = {"binary": True,
"behaviors": {"tcp_nodelay": True}}

3.2.6 Tokyo Tyrant backend settings

Note: The Tokyo Tyrant backend requires the pytyrant library: http://pypi.python.org/pypi/pytyrant/

This backend requires the following configuration directives to be set:

TT_HOST

Host name of the Tokyo Tyrant server.

66 Chapter 3. Configuration and defaults

http://sendapatch.se/projects/pylibmc/
http://sendapatch.se/projects/pylibmc/
http://pypi.python.org/pypi/pytyrant/

Celery Documentation, Release 2.1.4

TT_PORT

The port the Tokyo Tyrant server is listening to.

Example configuration

CELERY_RESULT_BACKEND = "tyrant"
TT_HOST = "localhost"
TT_PORT = 1978

3.2.7 Redis backend settings

Note: The Redis backend requires the redis library: http://pypi.python.org/pypi/redis/0.5.5

To install the redis package use pip or easy_install:

$ pip install redis

This backend requires the following configuration directives to be set.

REDIS_HOST

Host name of the Redis database server. e.g. “localhost”.

REDIS_PORT

Port to the Redis database server. e.g. 6379.

REDIS_DB

Database number to use. Default is 0

REDIS_PASSWORD

Password used to connect to the database.

Example configuration

CELERY_RESULT_BACKEND = "redis"
REDIS_HOST = "localhost"
REDIS_PORT = 6379
REDIS_DB = 0
REDIS_CONNECT_RETRY = True

3.2. Configuration Directives 67

http://pypi.python.org/pypi/redis/0.5.5

Celery Documentation, Release 2.1.4

3.2.8 MongoDB backend settings

Note: The MongoDB backend requires the pymongo library: http://github.com/mongodb/mongo-python-
driver/tree/master

CELERY_MONGODB_BACKEND_SETTINGS

This is a dict supporting the following keys:

• host Host name of the MongoDB server. Defaults to “localhost”.

• port The port the MongoDB server is listening to. Defaults to 27017.

• user User name to authenticate to the MongoDB server as (optional).

• password Password to authenticate to the MongoDB server (optional).

• database The database name to connect to. Defaults to “celery”.

• taskmeta_collection The collection name to store task meta data. Defaults to “celery_taskmeta”.

Example configuration

CELERY_RESULT_BACKEND = "mongodb"
CELERY_MONGODB_BACKEND_SETTINGS = {

"host": "192.168.1.100",
"port": 30000,
"database": "mydb",
"taskmeta_collection": "my_taskmeta_collection",

}

3.2.9 Message Routing

CELERY_QUEUES

The mapping of queues the worker consumes from. This is a dictionary of queue name/options. See Routing Tasks for
more information.

The default is a queue/exchange/binding key of "celery", with exchange type direct.

You don’t have to care about this unless you want custom routing facilities.

CELERY_ROUTES

A list of routers, or a single router used to route tasks to queues. When deciding the final destination of a task the
routers are consulted in order. See Routers for more information.

CELERY_CREATE_MISSING_QUEUES

If enabled (default), any queues specified that is not defined in CELERY_QUEUES will be automatically created. See
Automatic routing.

68 Chapter 3. Configuration and defaults

http://github.com/mongodb/mongo-python-driver/tree/master
http://github.com/mongodb/mongo-python-driver/tree/master

Celery Documentation, Release 2.1.4

CELERY_DEFAULT_QUEUE

The queue used by default, if no custom queue is specified. This queue must be listed in CELERY_QUEUES. The
default is: celery.

See also:

Changing the name of the default queue

CELERY_DEFAULT_EXCHANGE

Name of the default exchange to use when no custom exchange is specified. The default is: celery.

CELERY_DEFAULT_EXCHANGE_TYPE

Default exchange type used when no custom exchange is specified. The default is: direct.

CELERY_DEFAULT_ROUTING_KEY

The default routing key used when sending tasks. The default is: celery.

CELERY_DEFAULT_DELIVERY_MODE

Can be transient or persistent. The default is to send persistent messages.

3.2.10 Broker Settings

BROKER_BACKEND

The messaging backend to use. Default is "amqplib".

BROKER_HOST

Hostname of the broker.

BROKER_PORT

Custom port of the broker. Default is to use the default port for the selected backend.

BROKER_USER

Username to connect as.

BROKER_PASSWORD

Password to connect with.

3.2. Configuration Directives 69

Celery Documentation, Release 2.1.4

BROKER_VHOST

Virtual host. Default is "/".

BROKER_USE_SSL

Use SSL to connect to the broker. Off by default. This may not be supported by all transports.

BROKER_CONNECTION_TIMEOUT

The default timeout in seconds before we give up establishing a connection to the AMQP server. Default is 4 seconds.

BROKER_CONNECTION_RETRY

Automatically try to re-establish the connection to the AMQP broker if lost.

The time between retries is increased for each retry, and is not exhausted before
CELERY_BROKER_CONNECTION_MAX_RETRIES is exceeded.

This behavior is on by default.

CELERY_BROKER_CONNECTION_MAX_RETRIES

Maximum number of retries before we give up re-establishing a connection to the AMQP broker.

If this is set to 0 or None, we will retry forever.

Default is 100 retries.

3.2.11 Task execution settings

CELERY_ALWAYS_EAGER

If this is True, all tasks will be executed locally by blocking until it is finished. apply_async and Task.delay
will return a EagerResult which emulates the behavior of AsyncResult, except the result has already been
evaluated.

Tasks will never be sent to the queue, but executed locally instead.

CELERY_EAGER_PROPAGATES_EXCEPTIONS

If this is True, eagerly executed tasks (using .apply, or with CELERY_ALWAYS_EAGER on), will raise exceptions.

It’s the same as always running apply with throw=True.

CELERY_IGNORE_RESULT

Whether to store the task return values or not (tombstones). If you still want to store errors, just not successful return
values, you can set CELERY_STORE_ERRORS_EVEN_IF_IGNORED.

70 Chapter 3. Configuration and defaults

Celery Documentation, Release 2.1.4

CELERY_TASK_RESULT_EXPIRES

Time (in seconds, or a timedelta object) for when after stored task tombstones will be deleted.

A built-in periodic task will delete the results after this time (celery.task.builtins.backend_cleanup).

Note: For the moment this only works with the database, cache, redis and MongoDB backends. For the AMQP
backend see CELERY_AMQP_TASK_RESULT_EXPIRES.

When using the database or MongoDB backends, celerybeat must be running for the results to be expired.

CELERY_MAX_CACHED_RESULTS

Total number of results to store before results are evicted from the result cache. The default is 5000.

CELERY_TRACK_STARTED

If True the task will report its status as “started” when the task is executed by a worker. The default value is False
as the normal behaviour is to not report that level of granularity. Tasks are either pending, finished, or waiting to be
retried. Having a “started” state can be useful for when there are long running tasks and there is a need to report which
task is currently running.

CELERY_TASK_SERIALIZER

A string identifying the default serialization method to use. Can be pickle (default), json, yaml, or any custom
serialization methods that have been registered with carrot.serialization.registry.

See also:

Serializers.

CELERY_DEFAULT_RATE_LIMIT

The global default rate limit for tasks.

This value is used for tasks that does not have a custom rate limit The default is no rate limit.

CELERY_DISABLE_RATE_LIMITS

Disable all rate limits, even if tasks has explicit rate limits set.

CELERY_ACKS_LATE

Late ack means the task messages will be acknowledged after the task has been executed, not just before, which is the
default behavior.

See also:

FAQ: Should I use retry or acks_late?.

3.2. Configuration Directives 71

Celery Documentation, Release 2.1.4

3.2.12 Worker: celeryd

CELERY_IMPORTS

A sequence of modules to import when the celery daemon starts.

This is used to specify the task modules to import, but also to import signal handlers and additional remote control
commands, etc.

CELERYD_MAX_TASKS_PER_CHILD

Maximum number of tasks a pool worker process can execute before it’s replaced with a new one. Default is no limit.

CELERYD_TASK_TIME_LIMIT

Task hard time limit in seconds. The worker processing the task will be killed and replaced with a new one when this
is exceeded.

CELERYD_TASK_SOFT_TIME_LIMIT

Task soft time limit in seconds.

The SoftTimeLimitExceeded exception will be raised when this is exceeded. The task can catch this to e.g.
clean up before the hard time limit comes.

Example:

from celery.decorators import task
from celery.exceptions import SoftTimeLimitExceeded

@task()
def mytask():

try:
return do_work()

except SoftTimeLimitExceeded:
cleanup_in_a_hurry()

CELERY_STORE_ERRORS_EVEN_IF_IGNORED

If set, the worker stores all task errors in the result store even if Task.ignore_result is on.

CELERYD_STATE_DB

Name of the file used to stores persistent worker state (like revoked tasks). Can be a relative or absolute path, but be
aware that the suffix .db may be appended to the file name (depending on Python version).

Can also be set via the --statedb argument to celeryd.

Not enabled by default.

72 Chapter 3. Configuration and defaults

Celery Documentation, Release 2.1.4

CELERYD_ETA_SCHEDULER_PRECISION

Set the maximum time in seconds that the ETA scheduler can sleep between rechecking the schedule. Default is 1
second.

Setting this value to 1 second means the schedulers precision will be 1 second. If you need near millisecond precision
you can set this to 0.1.

3.2.13 Error E-Mails

CELERY_SEND_TASK_ERROR_EMAILS

The default value for the Task.send_error_emails attribute, which if set to True means errors occurring during task
execution will be sent to ADMINS by e-mail.

CELERY_TASK_ERROR_WHITELIST

A white list of exceptions to send error e-mails for.

ADMINS

List of (name, email_address) tuples for the administrators that should receive error e-mails.

SERVER_EMAIL

The e-mail address this worker sends e-mails from. Default is celery@localhost.

MAIL_HOST

The mail server to use. Default is "localhost".

MAIL_HOST_USER

User name (if required) to log on to the mail server with.

MAIL_HOST_PASSWORD

Password (if required) to log on to the mail server with.

MAIL_PORT

The port the mail server is listening on. Default is 25.

3.2. Configuration Directives 73

mailto:celery@localhost

Celery Documentation, Release 2.1.4

Example E-Mail configuration

This configuration enables the sending of error e-mails to george@vandelay.com and kramer@vandelay.com:

Enables error e-mails.
CELERY_SEND_TASK_ERROR_EMAILS = True

Name and e-mail addresses of recipients
ADMINS = (

("George Costanza", "george@vandelay.com"),
("Cosmo Kramer", "kosmo@vandelay.com"),

)

E-mail address used as sender (From field).
SERVER_EMAIL = "no-reply@vandelay.com"

Mailserver configuration
EMAIL_HOST = "mail.vandelay.com"
EMAIL_PORT = 25
EMAIL_HOST_USER = "servers"
EMAIL_HOST_PASSWORD = "s3cr3t"

EMAIL_TIMEOUT = 2 # two seconds is the default

3.2.14 Events

CELERY_SEND_EVENTS

Send events so the worker can be monitored by tools like celerymon.

CELERY_EVENT_QUEUE

Name of the queue to consume event messages from. Default is "celeryevent".

CELERY_EVENT_EXCHANGE

Name of the exchange to send event messages to. Default is "celeryevent".

CELERY_EVENT_EXCHANGE_TYPE

The exchange type of the event exchange. Default is to use a "direct" exchange.

CELERY_EVENT_ROUTING_KEY

Routing key used when sending event messages. Default is "celeryevent".

CELERY_EVENT_SERIALIZER

Message serialization format used when sending event messages. Default is "json". See Serializers.

74 Chapter 3. Configuration and defaults

mailto:george@vandelay.com
mailto:kramer@vandelay.com

Celery Documentation, Release 2.1.4

3.2.15 Broadcast Commands

CELERY_BROADCAST_QUEUE

Name prefix for the queue used when listening for broadcast messages. The workers host name will be appended to
the prefix to create the final queue name.

Default is "celeryctl".

CELERY_BROADCAST_EXCHANGE

Name of the exchange used for broadcast messages.

Default is "celeryctl".

CELERY_BROADCAST_EXCHANGE_TYPE

Exchange type used for broadcast messages. Default is "fanout".

3.2.16 Logging

CELERYD_LOG_FILE

The default file name the worker daemon logs messages to. Can be overridden using the --logfile option to
celeryd.

The default is None (stderr)

CELERYD_LOG_LEVEL

Worker log level, can be one of DEBUG, INFO, WARNING, ERROR or CRITICAL.

Can also be set via the --loglevel argument to celeryd.

See the logging module for more information.

CELERYD_LOG_FORMAT

The format to use for log messages.

Default is [%(asctime)s: %(levelname)s/%(processName)s] %(message)s

See the Python logging module for more information about log formats.

CELERYD_TASK_LOG_FORMAT

The format to use for log messages logged in tasks. Can be overridden using the --loglevel option to celeryd.

Default is:

[%(asctime)s: %(levelname)s/%(processName)s]
[%(task_name)s(%(task_id)s)] %(message)s

See the Python logging module for more information about log formats.

3.2. Configuration Directives 75

Celery Documentation, Release 2.1.4

CELERY_REDIRECT_STDOUTS

If enabled stdout and stderr will be redirected to the current logger.

Enabled by default. Used by celeryd and celerybeat.

CELERY_REDIRECT_STDOUTS_LEVEL

The log level output to stdout and stderr is logged as. Can be one of DEBUG, INFO, WARNING, ERROR or CRITICAL.

Default is WARNING.

3.2.17 Custom Component Classes (advanced)

CELERYD_POOL

Name of the task pool class used by the worker. Default is celery.concurrency.processes.TaskPool.

CELERYD_LISTENER

Name of the listener class used by the worker. Default is celery.worker.listener.CarrotListener.

CELERYD_MEDIATOR

Name of the mediator class used by the worker. Default is celery.worker.controllers.Mediator.

CELERYD_ETA_SCHEDULER

Name of the ETA scheduler class used by the worker. Default is
celery.worker.controllers.ScheduleController.

3.2.18 Periodic Task Server: celerybeat

CELERYBEAT_SCHEDULE

The periodic task schedule used by celerybeat. See Entries.

CELERYBEAT_SCHEDULER

The default scheduler class. Default is "celery.beat.PersistentScheduler".

Can also be set via the -S argument to celerybeat.

CELERYBEAT_SCHEDULE_FILENAME

Name of the file used by PersistentScheduler to store the last run times of periodic tasks. Can be a relative or
absolute path, but be aware that the suffix .db may be appended to the file name (depending on Python version).

Can also be set via the --schedule argument to celerybeat.

76 Chapter 3. Configuration and defaults

Celery Documentation, Release 2.1.4

CELERYBEAT_MAX_LOOP_INTERVAL

The maximum number of seconds celerybeat can sleep between checking the schedule. Default is 300 seconds (5
minutes).

CELERYBEAT_LOG_FILE

The default file name to log messages to. Can be overridden using the –logfile‘ option to celerybeat.

The default is None (stderr).

CELERYBEAT_LOG_LEVEL

Logging level. Can be any of DEBUG, INFO, WARNING, ERROR, or CRITICAL.

Can also be set via the --loglevel argument to celerybeat.

See the logging module for more information.

3.2.19 Monitor Server: celerymon

CELERYMON_LOG_FILE

The default file name to log messages to. Can be overridden using the --logfile argument to celerymon.

The default is None (stderr)

CELERYMON_LOG_LEVEL

Logging level. Can be any of DEBUG, INFO, WARNING, ERROR, or CRITICAL.

See the logging module for more information.

3.2. Configuration Directives 77

Celery Documentation, Release 2.1.4

78 Chapter 3. Configuration and defaults

CHAPTER 4

Cookbook

4.1 Creating Tasks

• Ensuring a task is only executed one at a time

4.1.1 Ensuring a task is only executed one at a time

You can accomplish this by using a lock.

In this example we’ll be using the cache framework to set a lock that is accessible for all workers.

It’s part of an imaginary RSS feed importer called djangofeeds. The task takes a feed URL as a single argument,
and imports that feed into a Django model called Feed. We ensure that it’s not possible for two or more workers to
import the same feed at the same time by setting a cache key consisting of the MD5 checksum of the feed URL.

The cache key expires after some time in case something unexpected happens (you never know, right?)

from celery.task import Task
from django.core.cache import cache
from django.utils.hashcompat import md5_constructor as md5
from djangofeeds.models import Feed

LOCK_EXPIRE = 60 * 5 # Lock expires in 5 minutes

class FeedImporter(Task):
name = "feed.import"

def run(self, feed_url, **kwargs):
logger = self.get_logger(**kwargs)

The cache key consists of the task name and the MD5 digest
of the feed URL.
feed_url_digest = md5(feed_url).hexdigest()
lock_id = "%s-lock-%s" % (self.name, feed_url_hexdigest)

cache.add fails if if the key already exists
acquire_lock = lambda: cache.add(lock_id, "true", LOCK_EXPIRE)
memcache delete is very slow, but we have to use it to take
advantage of using add() for atomic locking
release_lock = lambda: cache.delete(lock_id)

79

Celery Documentation, Release 2.1.4

logger.debug("Importing feed: %s" % feed_url)
if acquire_lock():

try:
feed = Feed.objects.import_feed(feed_url)

finally:
release_lock()

return feed.url

logger.debug(
"Feed %s is already being imported by another worker" % (

feed_url))
return

4.2 Running celeryd as a daemon

Celery does not daemonize itself, please use one of the following daemonization tools.

• start-stop-daemon (Debian/Ubuntu/++)
– Init script: celeryd

* Example configuration
* Example Django configuration
* Available options

– Init script: celerybeat
* Example configuration
* Example Django configuration
* Available options

– Troubleshooting
• supervisord
• launchd (OS X)

4.2.1 start-stop-daemon (Debian/Ubuntu/++)

See the contrib/debian/init.d/ directory in the celery distribution, this directory contains init scripts for celeryd and
celerybeat.

These scripts are configured in /etc/default/celeryd.

Init script: celeryd

Usage /etc/init.d/celeryd {start|stop|force-reload|restart|try-restart|status}

Configuration file /etc/default/celeryd

To configure celeryd you probably need to at least tell it where to change directory to when it starts (to find your
celeryconfig).

Example configuration

This is an example configuration for a Python project.

80 Chapter 4. Cookbook

http://github.com/ask/celery/tree/master/contrib/debian/

Celery Documentation, Release 2.1.4

/etc/default/celeryd:

Where to chdir at start.
CELERYD_CHDIR="/opt/Myproject/"

Extra arguments to celeryd
CELERYD_OPTS="--time-limit 300"

Name of the celery config module.#
CELERY_CONFIG_MODULE="celeryconfig"

Example Django configuration

This is an example configuration for those using django-celery:

Where the Django project is.
CELERYD_CHDIR="/opt/Project/"

Path to celeryd
CELERYD="/opt/Project/manage.py celeryd"

Name of the projects settings module.
export DJANGO_SETTINGS_MODULE="settings"

Available options

• CELERYD_OPTS Additional arguments to celeryd, see celeryd --help for a list.

• CELERYD_CHDIR Path to change directory to at start. Default is to stay in the current directory.

• CELERYD_PID_FILE Full path to the PID file. Default is /var/run/celeryd.pid.

• CELERYD_LOG_FILE Full path to the celeryd log file. Default is /var/log/celeryd.log

• CELERYD_LOG_LEVEL Log level to use for celeryd. Default is INFO.

• CELERYD Path to the celeryd program. Default is celeryd. You can point this to an virtualenv, or even use
manage.py for django.

• CELERYD_USER User to run celeryd as. Default is current user.

• CELERYD_GROUP Group to run celeryd as. Default is current user.

Init script: celerybeat

Usage /etc/init.d/celerybeat {start|stop|force-reload|restart|try-restart|status}

Configuration file /etc/default/celerybeat or /etc/default/celeryd

Example configuration

This is an example configuration for a Python project:

/etc/default/celeryd:

4.2. Running celeryd as a daemon 81

Celery Documentation, Release 2.1.4

Where to chdir at start.
CELERYD_CHDIR="/opt/Myproject/"

Extra arguments to celeryd
CELERYD_OPTS="--time-limit 300"

Extra arguments to celerybeat
CELERYBEAT_OPTS="--schedule=/var/run/celerybeat-schedule"

Name of the celery config module.#
CELERY_CONFIG_MODULE="celeryconfig"

Example Django configuration

This is an example configuration for those using django-celery:

Where the Django project is.
CELERYD_CHDIR="/opt/Project/"

Name of the projects settings module.
DJANGO_SETTINGS_MODULE="settings"

Path to celeryd
CELERYD="/opt/Project/manage.py celeryd"

Path to celerybeat
CELERYBEAT="/opt/Project/manage.py celerybeat"

Extra arguments to celerybeat
CELERYBEAT_OPTS="--schedule=/var/run/celerybeat-schedule"

Available options

• CELERYBEAT_OPTS Additional arguments to celerybeat, see celerybeat --help for a list.

• CELERYBEAT_PIDFILE Full path to the PID file. Default is /var/run/celeryd.pid.

• CELERYBEAT_LOGFILE Full path to the celeryd log file. Default is /var/log/celeryd.log

• CELERYBEAT_LOG_LEVEL Log level to use for celeryd. Default is INFO.

• CELERYBEAT Path to the celeryd program. Default is celeryd. You can point this to an virtualenv, or even
use manage.py for django.

• CELERYBEAT_USER User to run celeryd as. Default is current user.

• CELERYBEAT_GROUP Group to run celeryd as. Default is current user.

Troubleshooting

If you can’t get the init scripts to work, you should try running them in verbose mode:

$ sh -x /etc/init.d/celeryd start

This can reveal hints as to why the service won’t start.

82 Chapter 4. Cookbook

Celery Documentation, Release 2.1.4

Also you will see the commands generated, so you can try to run the celeryd command manually to read the resulting
error output.

For example my sh -x output does this:

++ start-stop-daemon --start --chdir /opt/Opal/release/opal --quiet \
--oknodo --background --make-pidfile --pidfile /var/run/celeryd.pid \
--exec /opt/Opal/release/opal/manage.py celeryd -- --time-limit=300 \
-f /var/log/celeryd.log -l INFO

Run the celeryd command after --exec (without the --) to show the actual resulting output:

$ /opt/Opal/release/opal/manage.py celeryd --time-limit=300 \
-f /var/log/celeryd.log -l INFO

4.2.2 supervisord

• contrib/supervisord/

4.2.3 launchd (OS X)

• contrib/mac/

This page contains common recipes and techniques.

4.2. Running celeryd as a daemon 83

http://github.com/ask/celery/tree/master/contrib/supervisord/
http://github.com/ask/celery/tree/master/contrib/mac/

Celery Documentation, Release 2.1.4

84 Chapter 4. Cookbook

CHAPTER 5

Community Resources

This is a list of external blog posts, tutorials and slides related to Celery. If you have a link that’s missing from this
list, please contact the mailing-list or submit a patch.

85

Celery Documentation, Release 2.1.4

• Resources
– Who’s using Celery
– Wiki
– Celery questions on Stack Overflow
– Mailing-list Archive: celery-users
– IRC Logs

• News
– Building a Django App Server with Chef
– Introducció a Celery (Catalan)
– Django and Celery - Death to Cron
– Celery Tips
– What’s your favorite Django app?
– Virtualenv Tips
– 10 Tools That Make Django Better
– Distributed Task Locking in Celery
– Celery — Python (Russian)
– Celery (Russian)
– Celery, RabbitMQ and sending messages directly.
– Cron dentro do Django com Celery (Portugese)
– RabbitMQCeleryDjango (Japanese)
– Kaninchen & Schlangen: RabbitMQ & Python (German)
– Celery - Eine asynchrone Task Queue (nicht nur) für Django (German)
– Asynchronous Processing Using Celery (historio.us)
– “Massaging the Pony: Message Queues and You” (Djangocon 2010)
– “Large problems, Mostly Solved” (Djangocon 2010)
– A Simple Celery with Django How-To
– Django and asynchronous jobs
– Celery: Django (Russian)
– Celery presentation at PyCon India 2010
– celery, django and virtualenv playing nice.
– Django Task Queueing with Celery
– django-celery presentation at DJUGL 2010.
– Django/Celery Quickstart (or, how I learned to stop using cron and love celery)
– Using Python magic to improve the deferred API
– How Celery, Carrot, and your messaging stack work
– Large Problems in Django, Mostly Solved: Delayed Execution
– Introduction to Celery
– RabbitMQ, Celery and Django
– Message Queues, Django and Celery Quick Start
– Background task processing and deferred execution in Django
– Build a processing queue [...] in less than a day using RabbitMQ and Celery
– How to get celeryd to work on FreeBSD
– Web-based 3D animation software
– Queued Storage Backend for Django
– RabbitMQ with Python and Ruby

5.1 Resources

5.1.1 Who’s using Celery

http://wiki.github.com/ask/celery/using

86 Chapter 5. Community Resources

http://wiki.github.com/ask/celery/using

Celery Documentation, Release 2.1.4

5.1.2 Wiki

http://wiki.github.com/ask/celery/

5.1.3 Celery questions on Stack Overflow

http://stackoverflow.com/search?q=celery&tab=newest

5.1.4 Mailing-list Archive: celery-users

http://blog.gmane.org/gmane.comp.python.amqp.celery.user

5.1.5 IRC Logs

http://botland.oebfare.com/logger/celery/

5.2 News

5.2.1 Building a Django App Server with Chef

http://ericholscher.com/blog/2010/nov/11/building-django-app-server-chef-part-4/

5.2.2 Introducció a Celery (Catalan)

http://trespams.com/2010/11/13/introduccio-celery/

5.2.3 Django and Celery - Death to Cron

http://tensixtyone.com/django-and-celery-death-to-cron

5.2.4 Celery Tips

http://ericholscher.com/blog/2010/nov/2/celery-tips/

5.2.5 What’s your favorite Django app?

http://jacobian.org/writing/favorite-apps/

5.2.6 Virtualenv Tips

http://ericholscher.com/blog/2010/nov/1/virtualenv-tips/

5.2. News 87

http://wiki.github.com/ask/celery/
http://stackoverflow.com/search?q=celery&tab=newest
http://blog.gmane.org/gmane.comp.python.amqp.celery.user
http://botland.oebfare.com/logger/celery/
http://ericholscher.com/blog/2010/nov/11/building-django-app-server-chef-part-4/
http://trespams.com/2010/11/13/introduccio-celery/
http://tensixtyone.com/django-and-celery-death-to-cron
http://ericholscher.com/blog/2010/nov/2/celery-tips/
http://jacobian.org/writing/favorite-apps/
http://ericholscher.com/blog/2010/nov/1/virtualenv-tips/

Celery Documentation, Release 2.1.4

5.2.7 10 Tools That Make Django Better

http://iamseb.com/seb/2010/10/10-django-tools/

5.2.8 Distributed Task Locking in Celery

http://www.loose-bits.com/2010_10_10_archive.html

5.2.9 Celery — Python (Russian)

http://www.bitbybit.ru/article/216

5.2.10 Celery (Russian)

http://vorushin.ru/blog/34-celery-described/

5.2.11 Celery, RabbitMQ and sending messages directly.

http://blog.timc3.com/2010/10/17/celery-rabbitmq-and-sending-messages-directly/

5.2.12 Cron dentro do Django com Celery (Portugese)

http://blog.avelino.us/2010/10/cron-dentro-do-django-com-celery.html

5.2.13 RabbitMQCeleryDjango (Japanese)

http://d.hatena.ne.jp/yuku_t/

5.2.14 Kaninchen & Schlangen: RabbitMQ & Python (German)

http://www.scribd.com/doc/37562923/Kaninchen-Schlangen-RabbitMQ-Python

5.2.15 Celery - Eine asynchrone Task Queue (nicht nur) für Django (German)

http://www.scribd.com/doc/39203296/Celery-Eine-asynchrone-Task-Queue-nicht-nur-fur-Django

5.2.16 Asynchronous Processing Using Celery (historio.us)

http://blog.historio.us/asynchronous-processing-using-celery

5.2.17 “Massaging the Pony: Message Queues and You” (Djangocon 2010)

http://www.slideshare.net/shawnrider/massaging-the-pony-message-queues-and-you

88 Chapter 5. Community Resources

http://iamseb.com/seb/2010/10/10-django-tools/
http://www.loose-bits.com/2010_10_10_archive.html
http://www.bitbybit.ru/article/216
http://vorushin.ru/blog/34-celery-described/
http://blog.timc3.com/2010/10/17/celery-rabbitmq-and-sending-messages-directly/
http://blog.avelino.us/2010/10/cron-dentro-do-django-com-celery.html
http://d.hatena.ne.jp/yuku_t/
http://www.scribd.com/doc/37562923/Kaninchen-Schlangen-RabbitMQ-Python
http://www.scribd.com/doc/39203296/Celery-Eine-asynchrone-Task-Queue-nicht-nur-fur-Django
http://blog.historio.us/asynchronous-processing-using-celery
http://www.slideshare.net/shawnrider/massaging-the-pony-message-queues-and-you

Celery Documentation, Release 2.1.4

5.2.18 “Large problems, Mostly Solved” (Djangocon 2010)

http://www.slideshare.net/ericholscher/large-problems

5.2.19 A Simple Celery with Django How-To

http://shawnmilo.blogspot.com/2010/07/simple-celery-with-django-how-to.html

5.2.20 Django and asynchronous jobs

http://www.davidfischer.name/2010/09/django-and-asynchronous-jobs/

5.2.21 Celery: Django (Russian)

http://www.proft.com.ua/2010/09/4/celery-dobavlyaem-parallelizm-v-django/

5.2.22 Celery presentation at PyCon India 2010

http://in.pycon.org/2010/talks/50-python-celery http://in.pycon.org/2010/static/files/talks/50/mahendra-celery-pycon-
2010.pdf

5.2.23 celery, django and virtualenv playing nice.

http://tumblr.whatupderek.com/post/1072002968/celery-django-and-virtualenv-playing-nice

5.2.24 Django Task Queueing with Celery

http://justinvoss.wordpress.com/2010/06/22/django-task-queueing-with-celery/

5.2.25 django-celery presentation at DJUGL 2010.

http://www.slideshare.net/matclayton/django-celery

5.2.26 Django/Celery Quickstart (or, how I learned to stop using cron and love cel-
ery)

http://bitkickers.blogspot.com/2010/07/djangocelery-quickstart-or-how-i.html

5.2.27 Using Python magic to improve the deferred API

http://blog.notdot.net/2010/06/Using-Python-magic-to-improve-the-deferred-API

5.2.28 How Celery, Carrot, and your messaging stack work

http://jasonmbaker.com/how-celery-carrot-and-your-messaging-stack-wo

5.2. News 89

http://www.slideshare.net/ericholscher/large-problems
http://shawnmilo.blogspot.com/2010/07/simple-celery-with-django-how-to.html
http://www.davidfischer.name/2010/09/django-and-asynchronous-jobs/
http://www.proft.com.ua/2010/09/4/celery-dobavlyaem-parallelizm-v-django/
http://in.pycon.org/2010/talks/50-python-celery
http://in.pycon.org/2010/static/files/talks/50/mahendra-celery-pycon-2010.pdf
http://in.pycon.org/2010/static/files/talks/50/mahendra-celery-pycon-2010.pdf
http://tumblr.whatupderek.com/post/1072002968/celery-django-and-virtualenv-playing-nice
http://justinvoss.wordpress.com/2010/06/22/django-task-queueing-with-celery/
http://www.slideshare.net/matclayton/django-celery
http://bitkickers.blogspot.com/2010/07/djangocelery-quickstart-or-how-i.html
http://blog.notdot.net/2010/06/Using-Python-magic-to-improve-the-deferred-API
http://jasonmbaker.com/how-celery-carrot-and-your-messaging-stack-wo

Celery Documentation, Release 2.1.4

5.2.29 Large Problems in Django, Mostly Solved: Delayed Execution

http://ericholscher.com/blog/2010/jun/23/large-problems-django-mostly-solved-delayed-execut/

5.2.30 Introduction to Celery

Awesome slides from when Idan Gazit had a talk about Celery at PyWeb-IL: http://www.slideshare.net/idangazit/an-
introduction-to-celery

5.2.31 RabbitMQ, Celery and Django

Great Celery tutorial by Robert Pogorzelski at his blog “Happy Stream of Thoughts”:
http://robertpogorzelski.com/blog/2009/09/10/rabbitmq-celery-and-django/

5.2.32 Message Queues, Django and Celery Quick Start

Celery tutorial by Rich Leland, the installation section is Mac OS X specific:
http://mathematism.com/2010/feb/16/message-queues-django-and-celery-quick-start/

5.2.33 Background task processing and deferred execution in Django

Alon Swartz writes about celery and RabbitMQ on his blog: http://www.turnkeylinux.org/blog/django-celery-
rabbitmq

5.2.34 Build a processing queue [...] in less than a day using RabbitMQ and Celery

Tutorial in 2 parts written by Tim Bull: http://timbull.com/build-a-processing-queue-with-multi-threading

5.2.35 How to get celeryd to work on FreeBSD

Installing multiprocessing on FreeBSD isn’t that easy, but thanks to Viktor Petersson we now have a step-to-step guide:
http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/

5.2.36 Web-based 3D animation software

Indy Chang Liu at ThinkingCactus uses Celery to render animations asynchronously (PDF):
http://ojs.pythonpapers.org/index.php/tppm/article/viewFile/105/122

5.2.37 Queued Storage Backend for Django

http://stepsandnumbers.com/archive/2010/01/04/queued-storage-backend-for-django/

5.2.38 RabbitMQ with Python and Ruby

http://www.slideshare.net/hungryblank/rabbitmq-with-python-and-ruby-rupy-2009

90 Chapter 5. Community Resources

http://ericholscher.com/blog/2010/jun/23/large-problems-django-mostly-solved-delayed-execut/
http://twitter.com/IdanGazit
http://groups.google.com/group/pyweb-il
http://www.slideshare.net/idangazit/an-introduction-to-celery
http://www.slideshare.net/idangazit/an-introduction-to-celery
http://robertpogorzelski.com/
http://robertpogorzelski.com/blog/2009/09/10/rabbitmq-celery-and-django/
http://twitter.com/richleland
http://mathematism.com/2010/feb/16/message-queues-django-and-celery-quick-start/
http://twitter.com/alonswartz
http://www.turnkeylinux.org/blog/django-celery-rabbitmq
http://www.turnkeylinux.org/blog/django-celery-rabbitmq
http://twitter.com/timbull
http://timbull.com/build-a-processing-queue-with-multi-threading
http://twitter.com/vpetersson
http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/
http://thinkingcactus.com/
http://ojs.pythonpapers.org/index.php/tppm/article/viewFile/105/122
http://stepsandnumbers.com/archive/2010/01/04/queued-storage-backend-for-django/
http://www.slideshare.net/hungryblank/rabbitmq-with-python-and-ruby-rupy-2009

CHAPTER 6

Contributing

• Community Code of Conduct
– Be considerate.
– Be respectful.
– Be collaborative.
– When you disagree, consult others.
– When you are unsure, ask for help.
– Step down considerately.

• Reporting a Bug
– Issue Trackers

• Coding Style

6.1 Community Code of Conduct

The goal is to maintain a diverse community that is pleasant for everyone. That is why we would greatly appreciate it
if everyone contributing to and interacting with the community also followed this Code of Conduct.

The Code of Conduct covers our behavior as members of the community, in any forum, mailing list, wiki, website,
Internet relay chat (IRC), public meeting or private correspondence.

The Code of Conduct is heavily based on the Ubuntu Code of Conduct, and the Pylons Code of Conduct.

6.1.1 Be considerate.

Your work will be used by other people, and you in turn will depend on the work of others. Any decision you take
will affect users and colleagues, and we expect you to take those consequences into account when making decisions.
Even if it’s not obvious at the time, our contributions to Ubuntu will impact the work of others. For example, changes
to code, infrastructure, policy, documentation and translations during a release may negatively impact others work.

6.1.2 Be respectful.

The Celery community and its members treat one another with respect. Everyone can make a valuable contribution
to Celery. We may not always agree, but disagreement is no excuse for poor behavior and poor manners. We might
all experience some frustration now and then, but we cannot allow that frustration to turn into a personal attack. It’s
important to remember that a community where people feel uncomfortable or threatened is not a productive one. We

91

http://www.ubuntu.com/community/conduct
http://docs.pylonshq.com/community/conduct.html

Celery Documentation, Release 2.1.4

expect members of the Celery community to be respectful when dealing with other contributors as well as with people
outside the Celery project and with users of Celery.

6.1.3 Be collaborative.

Collaboration is central to Celery and to the larger free software community. We should always be open to collab-
oration. Your work should be done transparently and patches from Celery should be given back to the community
when they are made, not just when the distribution releases. If you wish to work on new code for existing upstream
projects, at least keep those projects informed of your ideas and progress. It many not be possible to get consensus
from upstream, or even from your colleagues about the correct implementation for an idea, so don’t feel obliged to
have that agreement before you begin, but at least keep the outside world informed of your work, and publish your
work in a way that allows outsiders to test, discuss and contribute to your efforts.

6.1.4 When you disagree, consult others.

Disagreements, both political and technical, happen all the time and the Celery community is no exception. It is
important that we resolve disagreements and differing views constructively and with the help of the community and
community process. If you really want to go a different way, then we encourage you to make a derivative distribution
or alternate set of packages that still build on the work we’ve done to utilize as common of a core as possible.

6.1.5 When you are unsure, ask for help.

Nobody knows everything, and nobody is expected to be perfect. Asking questions avoids many problems down the
road, and so questions are encouraged. Those who are asked questions should be responsive and helpful. However,
when asking a question, care must be taken to do so in an appropriate forum.

6.1.6 Step down considerately.

Developers on every project come and go and Celery is no different. When you leave or disengage from the project,
in whole or in part, we ask that you do so in a way that minimizes disruption to the project. This means you should
tell people you are leaving and take the proper steps to ensure that others can pick up where you leave off.

6.2 Reporting a Bug

Bugs can always be described to the Mailing list, but the best way to report an issue and to ensure a timely response is
to use the issue tracker.

1. Create a GitHub account.

You need to create a GitHub account to be able to create new issues and participate in the discussion.

2. Determine if your bug is really a bug.

You should not file a bug if you are requesting support. For that you can use the Mailing list, or IRC.

3. Make sure your bug hasn’t already been reported.

Search through the appropriate Issue tracker. If a bug like yours was found, check if you have new information that
could be reported to help the developers fix the bug.

4. Collect information about the bug.

92 Chapter 6. Contributing

https://github.com/signup/free

Celery Documentation, Release 2.1.4

To have the best chance of having a bug fixed, we need to be able to easily reproduce the conditions that caused it.
Most of the time this information will be from a Python traceback message, though some bugs might be in design,
spelling or other errors on the website/docs/code.

If the error is from a Python traceback, include it in the bug report.

We also need to know what platform you’re running (Windows, OSX, Linux, etc), the version of your Python inter-
preter, and the version of Celery, and related packages that you were running when the bug occurred.

5. Submit the bug.

By default GitHub will email you to let you know when new comments have been made on your bug. In the event
you’ve turned this feature off, you should check back on occasion to ensure you don’t miss any questions a developer
trying to fix the bug might ask.

6.2.1 Issue Trackers

Bugs for a package in the Celery ecosystem should be reported to the relevant issue tracker.

• Celery: http://github.com/ask/celery/issues/

• Django-Celery: http://github.com/ask/django-celery/issues

• Flask-Celery: http://github.com/ask/flask-celery/issues

• Celery-Pylons: http://bitbucket.org/ianschenck/celery-pylons/issues

• Kombu: http://github.com/ask/kombu/issues

• Carrot: http://github.com/ask/carrot/issues

• Ghettoq: http://github.com/ask/ghettoq/issues

If you are unsure of the origin of the bug you can ask the Mailing list, or just use the Celery issue tracker.

6.3 Coding Style

You should probably be able to pick up the coding style from surrounding code, but it is a good idea to be aware of the
following conventions.

• All Python code must follow the PEP-8 guidelines.

pep8.py is an utility you can use to verify that your code is following the conventions.

• Docstrings must follow the PEP-257 conventions, and use the following style.

Do this:

def method(self, arg):
"""Short description.

More details.

"""

or:

def method(self, arg):
"""Short description."""

but not this:

6.3. Coding Style 93

http://github.com
http://github.com/ask/celery/issues/
http://github.com/ask/django-celery/issues
http://github.com/ask/flask-celery/issues
http://bitbucket.org/ianschenck/celery-pylons/issues
http://github.com/ask/kombu/issues
http://github.com/ask/carrot/issues
http://github.com/ask/ghettoq/issues
http://www.python.org/dev/peps/pep-0008/
http://pypi.python.org/pypi/pep8
http://www.python.org/dev/peps/pep-0257/

Celery Documentation, Release 2.1.4

def method(self, arg):
"""
Short description.
"""

• Lines should not exceed 78 columns.

• Import order

– Python standard library (import xxx)

– Python standard library (‘from xxx import‘)

– Third party packages.

– Other modules from the current package.

or in case of code using Django:

– Python standard library (import xxx)

– Python standard library (‘from xxx import‘)

– Third party packages.

– Django packages.

– Other modules from the current package.

Within these sections imports should be sorted by name.

Example:

import threading
import time

from collections import deque
from Queue import Queue, Empty

from celery.datastructures import TokenBucket
from celery.utils import timeutils
from celery.utils.compat import all, izip_longest, chain_from_iterable

• Wildcard imports must not be used (from xxx import *).

94 Chapter 6. Contributing

CHAPTER 7

Tutorials

Release 2.1

Date February 04, 2014

7.1 Using Celery with Redis/Database as the messaging queue.

There’s a plug-in for celery that enables the use of Redis or an SQL database as the messaging queue. This is not part
of celery itself, but exists as an extension to carrot.

• Installation
• Redis

– Configuration
• Database

– Configuration
– Important notes

7.1.1 Installation

You need to install the ghettoq library:

$ pip install -U ghettoq

7.1.2 Redis

For the Redis support you have to install the Python redis client:

$ pip install -U redis

Configuration

Configuration is easy, set the carrot backend, and configure the location of your Redis database:

95

http://pypi.python.org/pypi/carrot
http://pypi.python.org/pypi/ghettoq

Celery Documentation, Release 2.1.4

CARROT_BACKEND = "ghettoq.taproot.Redis"

BROKER_HOST = "localhost" # Maps to redis host.
BROKER_PORT = 6379 # Maps to redis port.
BROKER_VHOST = "0" # Maps to database number.

7.1.3 Database

Configuration

The database backend uses the Django DATABASE_* settings for database configuration values.

1. Set your carrot backend:

CARROT_BACKEND = "ghettoq.taproot.Database"

2. Add ghettoq to INSTALLED_APPS:

INSTALLED_APPS = ("ghettoq",)

3. Verify you database settings:

DATABASE_ENGINE = "mysql"
DATABASE_NAME = "mydb"
DATABASE_USER = "myuser"
DATABASE_PASSWORD = "secret"

The above is just an example, if you haven’t configured your database before you should read the Django
database settings reference: http://docs.djangoproject.com/en/1.1/ref/settings/#database-engine

1. Sync your database schema.

When using Django:

$ python manage.py syncdb

Important notes

These message queues does not have the concept of exchanges and routing keys, there’s only the queue entity. As a
result of this you need to set the name of the exchange to be the same as the queue:

CELERY_DEFAULT_EXCHANGE = "tasks"

or in a custom queue-mapping:

CELERY_QUEUES = {
"tasks": {"exchange": "tasks"},
"feeds": {"exchange": "feeds"},

}

This isn’t a problem if you use the default queue setting, as the default is already using the same name for
queue/exchange.

7.2 Tutorial: Creating a click counter using carrot and celery

96 Chapter 7. Tutorials

http://docs.djangoproject.com/en/1.1/ref/settings/#database-engine

Celery Documentation, Release 2.1.4

• Introduction
• The model
• Using carrot to send clicks as messages
• View and URLs
• Creating the periodic task
• Finishing

7.2.1 Introduction

A click counter should be easy, right? Just a simple view that increments a click in the DB and forwards you to the
real destination.

This would work well for most sites, but when traffic starts to increase, you are likely to bump into problems. One
database write for every click is not good if you have millions of clicks a day.

So what can you do? In this tutorial we will send the individual clicks as messages using carrot, and then process
them later with a celery periodic task.

Celery and carrot is excellent in tandem, and while this might not be the perfect example, you’ll at least see one
example how of they can be used to solve a task.

7.2.2 The model

The model is simple, Click has the URL as primary key and a number of clicks for that URL. Its manager,
ClickManager implements the increment_clicks method, which takes a URL and by how much to incre-
ment its count by.

clickmuncher/models.py:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class ClickManager(models.Manager):

def increment_clicks(self, for_url, increment_by=1):
"""Increment the click count for an URL.

>>> Click.objects.increment_clicks("http://google.com", 10)

"""
click, created = self.get_or_create(url=for_url,

defaults={"click_count": increment_by})
if not created:

click.click_count += increment_by
click.save()

return click.click_count

class Click(models.Model):
url = models.URLField(_(u"URL"), verify_exists=False, unique=True)
click_count = models.PositiveIntegerField(_(u"click_count"),

default=0)

7.2. Tutorial: Creating a click counter using carrot and celery 97

Celery Documentation, Release 2.1.4

objects = ClickManager()

class Meta:
verbose_name = _(u"URL clicks")
verbose_name_plural = _(u"URL clicks")

7.2.3 Using carrot to send clicks as messages

The model is normal django stuff, nothing new there. But now we get on to the messaging. It has been a tradition for
me to put the projects messaging related code in its own messaging.py module, and I will continue to do so here
so maybe you can adopt this practice. In this module we have two functions:

• send_increment_clicks

This function sends a simple message to the broker. The message body only contains the URL we want to
increment as plain-text, so the exchange and routing key play a role here. We use an exchange called clicks,
with a routing key of increment_click, so any consumer binding a queue to this exchange using this
routing key will receive these messages.

• process_clicks

This function processes all currently gathered clicks sent using send_increment_clicks. Instead of issu-
ing one database query for every click it processes all of the messages first, calculates the new click count and
issues one update per URL. A message that has been received will not be deleted from the broker until it has
been acknowledged by the receiver, so if the receiver dies in the middle of processing the message, it will be
re-sent at a later point in time. This guarantees delivery and we respect this feature here by not acknowledging
the message until the clicks has actually been written to disk.

Note: This could probably be optimized further with some hand-written SQL, but it will do for now. Let’s say
it’s an exercise left for the picky reader, albeit a discouraged one if you can survive without doing it.

On to the code...

clickmuncher/messaging.py:

from celery.messaging import establish_connection
from carrot.messaging import Publisher, Consumer
from clickmuncher.models import Click

def send_increment_clicks(for_url):
"""Send a message for incrementing the click count for an URL."""
connection = establish_connection()
publisher = Publisher(connection=connection,

exchange="clicks",
routing_key="increment_click",
exchange_type="direct")

publisher.send(for_url)

publisher.close()
connection.close()

def process_clicks():
"""Process all currently gathered clicks by saving them to the
database."""
connection = establish_connection()

98 Chapter 7. Tutorials

Celery Documentation, Release 2.1.4

consumer = Consumer(connection=connection,
queue="clicks",
exchange="clicks",
routing_key="increment_click",
exchange_type="direct")

First process the messages: save the number of clicks
for every URL.
clicks_for_url = {}
messages_for_url = {}
for message in consumer.iterqueue():

url = message.body
clicks_for_url[url] = clicks_for_url.get(url, 0) + 1
We also need to keep the message objects so we can ack the
messages as processed when we are finished with them.
if url in messages_for_url:

messages_for_url[url].append(message)
else:

messages_for_url[url] = [message]

Then increment the clicks in the database so we only need
one UPDATE/INSERT for each URL.
for url, click_count in clicks_for_urls.items():

Click.objects.increment_clicks(url, click_count)
Now that the clicks has been registered for this URL we can
acknowledge the messages
[message.ack() for message in messages_for_url[url]]

consumer.close()
connection.close()

7.2.4 View and URLs

This is also simple stuff, don’t think I have to explain this code to you. The interface is as follows, if you have a link
to http://google.com you would want to count the clicks for, you replace the URL with:

http://mysite/clickmuncher/count/?u=http://google.com

and the count view will send off an increment message and forward you to that site.

clickmuncher/views.py:

from django.http import HttpResponseRedirect
from clickmuncher.messaging import send_increment_clicks

def count(request):
url = request.GET["u"]
send_increment_clicks(url)
return HttpResponseRedirect(url)

clickmuncher/urls.py:

from django.conf.urls.defaults import patterns, url
from clickmuncher import views

urlpatterns = patterns("",

7.2. Tutorial: Creating a click counter using carrot and celery 99

http://google.com
http://mysite/clickmuncher/count/?u=http://google.com

Celery Documentation, Release 2.1.4

url(r’^$’, views.count, name="clickmuncher-count"),
)

7.2.5 Creating the periodic task

Processing the clicks every 30 minutes is easy using celery periodic tasks.

clickmuncher/tasks.py:

from celery.task import PeriodicTask
from clickmuncher.messaging import process_clicks
from datetime import timedelta

class ProcessClicksTask(PeriodicTask):
run_every = timedelta(minutes=30)

def run(self, **kwargs):
process_clicks()

We subclass from celery.task.base.PeriodicTask, set the run_every attribute and in the body of the
task just call the process_clicks function we wrote earlier.

7.2.6 Finishing

There are still ways to improve this application. The URLs could be cleaned so the URL http://google.com and
http://google.com/ is the same. Maybe it’s even possible to update the click count using a single UPDATE query?

If you have any questions regarding this tutorial, please send a mail to the mailing-list or come join us in the #celery
IRC channel at Freenode: http://celeryq.org/introduction.html#getting-help

100 Chapter 7. Tutorials

http://google.com
http://google.com/
http://celeryq.org/introduction.html#getting-help

CHAPTER 8

Frequently Asked Questions

101

Celery Documentation, Release 2.1.4

• General
– What kinds of things should I use Celery for?

• Misconceptions
– Is Celery dependent on pickle?
– Is Celery for Django only?
– Do I have to use AMQP/RabbitMQ?
– Is Celery multilingual?

• Troubleshooting
– MySQL is throwing deadlock errors, what can I do?
– celeryd is not doing anything, just hanging
– Why is Task.delay/apply*/celeryd just hanging?
– Why won’t celeryd run on FreeBSD?
– I’m having IntegrityError: Duplicate Key errors. Why?
– Why aren’t my tasks processed?
– Why won’t my Task run?
– Why won’t my Periodic Task run?
– How do I discard all waiting tasks?
– I’ve discarded messages, but there are still messages left in the queue?

• Results
– How do I get the result of a task if I have the ID that points there?

• Security
– Isn’t using pickle a security concern?
– Can messages be encrypted?
– Is it safe to run celeryd as root?

• Brokers
– Why is RabbitMQ crashing?
– Can I use Celery with ActiveMQ/STOMP?
– What features are not supported when using ghettoq/STOMP?

• Tasks
– How can I reuse the same connection when applying tasks?
– Can I execute a task by name?
– How can I get the task id of the current task?
– Can I specify a custom task_id?
– Can I use decorators with tasks?
– Can I use natural task ids?
– How can I run a task once another task has finished?
– Can I cancel the execution of a task?
– Why aren’t my remote control commands received by all workers?
– Can I send some tasks to only some servers?
– Can I change the interval of a periodic task at runtime?
– Does celery support task priorities?
– Should I use retry or acks_late?
– Can I schedule tasks to execute at a specific time?
– How do I shut down celeryd safely?
– How do I run celeryd in the background on [platform]?

• Windows
– celeryd keeps spawning processes at startup
– The -B / --beat option to celeryd doesn’t work?
– django-celery can’t find settings?

102 Chapter 8. Frequently Asked Questions

Celery Documentation, Release 2.1.4

8.1 General

8.1.1 What kinds of things should I use Celery for?

Answer: Queue everything and delight everyone is a good article describing why you would use a queue in a web
context.

These are some common use cases:

• Running something in the background. For example, to finish the web request as soon as possible, then update
the users page incrementally. This gives the user the impression of good performance and “snappiness”, even
though the real work might actually take some time.

• Running something after the web request has finished.

• Making sure something is done, by executing it asynchronously and using retries.

• Scheduling periodic work.

And to some degree:

• Distributed computing.

• Parallel execution.

8.2 Misconceptions

8.2.1 Is Celery dependent on pickle?

Answer: No.

Celery can support any serialization scheme and has support for JSON/YAML and Pickle by default. You can even
send one task using pickle, and another one with JSON seamlessly, this is because every task is associated with a
content-type. The default serialization scheme is pickle because it’s the most used, and it has support for sending
complex objects as task arguments.

You can set a global default serializer, the default serializer for a particular Task, or even what serializer to use when
sending a single task instance.

8.2.2 Is Celery for Django only?

Answer: No.

Celery does not depend on Django anymore. To use Celery with Django you have to use the django-celery package.

8.2.3 Do I have to use AMQP/RabbitMQ?

Answer: No.

You can also use Redis or an SQL database, see Using other queues.

Redis or a database won’t perform as well as an AMQP broker. If you have strict reliability requirements you are
encouraged to use RabbitMQ or another AMQP broker. Redis/database also use polling, so they are likely to consume
more resources. However, if you for some reason are not able to use AMQP, feel free to use these alternatives.
They will probably work fine for most use cases, and note that the above points are not specific to Celery; If using

8.1. General 103

http://decafbad.com/blog/2008/07/04/queue-everything-and-delight-everyone
http://pypi.python.org/pypi/django-celery
http://ask.github.com/celery/tutorials/otherqueues.html

Celery Documentation, Release 2.1.4

Redis/database as a queue worked fine for you before, it probably will now. You can always upgrade later if you need
to.

8.2.4 Is Celery multilingual?

Answer: Yes.

celeryd is an implementation of Celery in python. If the language has an AMQP client, there shouldn’t be much
work to create a worker in your language. A Celery worker is just a program connecting to the broker to process
messages.

Also, there’s another way to be language independent, and that is to use REST tasks, instead of your tasks being
functions, they’re URLs. With this information you can even create simple web servers that enable preloading of code.
See: User Guide: Remote Tasks.

8.3 Troubleshooting

8.3.1 MySQL is throwing deadlock errors, what can I do?

Answer: MySQL has default isolation level set to REPEATABLE-READ, if you don’t really need that, set it to
READ-COMMITTED. You can do that by adding the following to your my.cnf:

[mysqld]
transaction-isolation = READ-COMMITTED

For more information about InnoDB‘s transaction model see MySQL - The InnoDB Transaction Model and Locking
in the MySQL user manual.

(Thanks to Honza Kral and Anton Tsigularov for this solution)

8.3.2 celeryd is not doing anything, just hanging

Answer: See MySQL is throwing deadlock errors, what can I do?. or Why is Task.delay/apply* just hanging?.

8.3.3 Why is Task.delay/apply*/celeryd just hanging?

Answer: There is a bug in some AMQP clients that will make it hang if it’s not able to authenticate the current user,
the password doesn’t match or the user does not have access to the virtual host specified. Be sure to check your broker
logs (for RabbitMQ that is /var/log/rabbitmq/rabbit.log on most systems), it usually contains a message
describing the reason.

8.3.4 Why won’t celeryd run on FreeBSD?

Answer: multiprocessing.Pool requires a working POSIX semaphore implementation which isn’t enabled in FreeBSD
by default. You have to enable POSIX semaphores in the kernel and manually recompile multiprocessing.

Luckily, Viktor Petersson has written a tutorial to get you started with Celery on FreeBSD here:
http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/

104 Chapter 8. Frequently Asked Questions

http://ask.github.com/celery/userguide/remote-tasks.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-transaction-model.html
http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/

Celery Documentation, Release 2.1.4

8.3.5 I’m having IntegrityError: Duplicate Key errors. Why?

Answer: See MySQL is throwing deadlock errors, what can I do?. Thanks to howsthedotcom.

8.3.6 Why aren’t my tasks processed?

Answer: With RabbitMQ you can see how many consumers are currently receiving tasks by running the following
command:

$ rabbitmqctl list_queues -p <myvhost> name messages consumers
Listing queues ...
celery 2891 2

This shows that there’s 2891 messages waiting to be processed in the task queue, and there are two consumers pro-
cessing them.

One reason that the queue is never emptied could be that you have a stale worker process taking the messages hostage.
This could happen if celeryd wasn’t properly shut down.

When a message is received by a worker the broker waits for it to be acknowledged before marking the message as
processed. The broker will not re-send that message to another consumer until the consumer is shut down properly.

If you hit this problem you have to kill all workers manually and restart them:

ps auxww | grep celeryd | awk ’{print $2}’ | xargs kill

You might have to wait a while until all workers have finished the work they’re doing. If it’s still hanging after a long
time you can kill them by force with:

ps auxww | grep celeryd | awk ’{print $2}’ | xargs kill -9

8.3.7 Why won’t my Task run?

Answer: There might be syntax errors preventing the tasks module being imported.

You can find out if Celery is able to run the task by executing the task manually:

>>> from myapp.tasks import MyPeriodicTask
>>> MyPeriodicTask.delay()

Watch celeryd‘s log file to see if it’s able to find the task, or if some other error is happening.

8.3.8 Why won’t my Periodic Task run?

Answer: See Why won’t my Task run?.

8.3.9 How do I discard all waiting tasks?

Answer: Use discard_all(), like this:

>>> from celery.task.control import discard_all
>>> discard_all()
1753

8.3. Troubleshooting 105

Celery Documentation, Release 2.1.4

The number 1753 is the number of messages deleted.

You can also start celeryd with the --discard argument which will accomplish the same thing.

8.3.10 I’ve discarded messages, but there are still messages left in the queue?

Answer: Tasks are acknowledged (removed from the queue) as soon as they are actually executed. After the worker
has received a task, it will take some time until it is actually executed, especially if there are a lot of tasks already
waiting for execution. Messages that are not acknowledged are held on to by the worker until it closes the connection
to the broker (AMQP server). When that connection is closed (e.g. because the worker was stopped) the tasks will be
re-sent by the broker to the next available worker (or the same worker when it has been restarted), so to properly purge
the queue of waiting tasks you have to stop all the workers, and then discard the tasks using discard_all().

8.4 Results

8.4.1 How do I get the result of a task if I have the ID that points there?

Answer: Use Task.AsyncResult:

>>> result = MyTask.AsyncResult(task_id)
>>> result.get()

This will give you a BaseAsyncResult instance using the tasks current result backend.

If you need to specify a custom result backend you should use celery.result.BaseAsyncResult directly:

>>> from celery.result import BaseAsyncResult
>>> result = BaseAsyncResult(task_id, backend=...)
>>> result.get()

8.5 Security

8.5.1 Isn’t using pickle a security concern?

Answer: Yes, indeed it is.

You are right to have a security concern, as this can indeed be a real issue. It is essential that you protect against
unauthorized access to your broker, databases and other services transmitting pickled data.

For the task messages you can set the CELERY_TASK_SERIALIZER setting to “json” or “yaml” instead of pickle.
There is currently no alternative solution for task results (but writing a custom result backend using JSON is a simple
task)

Note that this is not just something you should be aware of with Celery, for example also Django uses pickle for its
cache client.

8.5.2 Can messages be encrypted?

Answer: Some AMQP brokers supports using SSL (including RabbitMQ). You can enable this using the
BROKER_USE_SSL setting.

It is also possible to add additional encryption and security to messages, if you have a need for this then you should
contact the Mailing list.

106 Chapter 8. Frequently Asked Questions

Celery Documentation, Release 2.1.4

8.5.3 Is it safe to run celeryd as root?

Answer: No!

We’re not currently aware of any security issues, but it would be incredibly naive to assume that they don’t exist, so
running the Celery services (celeryd, celerybeat, celeryev, etc) as an unprivileged user is recommended.

8.6 Brokers

8.6.1 Why is RabbitMQ crashing?

Answer: RabbitMQ will crash if it runs out of memory. This will be fixed in a future release of RabbitMQ. please
refer to the RabbitMQ FAQ: http://www.rabbitmq.com/faq.html#node-runs-out-of-memory

Note: This is no longer the case, RabbitMQ versions 2.0 and above includes a new persister, that is tolerant to out of
memory errors. RabbitMQ 2.1 or higher is recommended for Celery.

If you’re still running an older version of RabbitMQ and experience crashes, then please upgrade!

Misconfiguration of Celery can eventually lead to a crash on older version of RabbitMQ. Even if it doesn’t crash, this
can still consume a lot of resources, so it is very important that you are aware of the common pitfalls.

• Events.

Running celeryd with the -E/--events option will send messages for events happening inside of the worker.

Events should only be enabled if you have an active monitor consuming them, or if you purge the event queue period-
ically.

• AMQP backend results.

When running with the AMQP result backend, every task result will be sent as a message. If you don’t collect these
results, they will build up and RabbitMQ will eventually run out of memory.

If you don’t use the results for a task, make sure you set the ignore_result option:

Results can also be disabled globally using the CELERY_IGNORE_RESULT setting.

Note: Celery version 2.1 added support for automatic expiration of AMQP result backend results.

To use this you need to run RabbitMQ 2.1 or higher and enable the CELERY_AMQP_TASK_RESULT_EXPIRES
setting.

8.6.2 Can I use Celery with ActiveMQ/STOMP?

Answer: Yes, but this is somewhat experimental for now. It is working ok in a test configuration, but it has not been
tested in production. If you have any problems using STOMP with Celery, please report an issue here:

http://github.com/ask/celery/issues/

The STOMP carrot backend requires the stompy library:

$ pip install stompy
$ cd python-stomp
$ sudo python setup.py install
$ cd ..

8.6. Brokers 107

http://www.rabbitmq.com/faq.html#node-runs-out-of-memory
http://pypi.python.org/pypi/stompy

Celery Documentation, Release 2.1.4

In this example we will use a queue called celery which we created in the ActiveMQ web admin interface.

Note: When using ActiveMQ the queue name needs to have "/queue/" prepended to it. i.e. the queue celery
becomes /queue/celery.

Since STOMP doesn’t have exchanges and the routing capabilities of AMQP, you need to set exchange name to
the same as the queue name. This is a minor inconvenience since carrot needs to maintain the same interface for both
AMQP and STOMP.

Use the following settings in your celeryconfig.py/ django settings.py:

Use the stomp carrot backend.
CARROT_BACKEND = "stomp"

STOMP hostname and port settings.
BROKER_HOST = "localhost"
BROKER_PORT = 61613

The queue name to use (the exchange *must* be set to the
same as the queue name when using STOMP)
CELERY_DEFAULT_QUEUE = "/queue/celery"
CELERY_DEFAULT_EXCHANGE = "/queue/celery"

CELERY_QUEUES = {
"/queue/celery": {"exchange": "/queue/celery"}

}

8.6.3 What features are not supported when using ghettoq/STOMP?

This is a (possible incomplete) list of features not available when using the STOMP backend:

• routing keys

• exchange types (direct, topic, headers, etc)

• immediate

• mandatory

8.7 Tasks

8.7.1 How can I reuse the same connection when applying tasks?

Answer: See Connections and connection timeouts..

8.7.2 Can I execute a task by name?

Answer: Yes. Use celery.execute.send_task(). You can also execute a task by name from any language
that has an AMQP client.

>>> from celery.execute import send_task
>>> send_task("tasks.add", args=[2, 2], kwargs={})
<AsyncResult: 373550e8-b9a0-4666-bc61-ace01fa4f91d>

108 Chapter 8. Frequently Asked Questions

Celery Documentation, Release 2.1.4

8.7.3 How can I get the task id of the current task?

Answer: Celery does set some default keyword arguments if the task accepts them (you can accept them by either
using **kwargs, or list them specifically):

@task
def mytask(task_id=None):

cache.set(task_id, "Running")

The default keyword arguments are documented here: http://celeryq.org/docs/userguide/tasks.html#default-keyword-
arguments

8.7.4 Can I specify a custom task_id?

Answer: Yes. Use the task_id argument to apply_async():

>>> task.apply_async(args, kwargs, task_id="...")

8.7.5 Can I use decorators with tasks?

Answer: Yes. But please see note at Decorating tasks.

8.7.6 Can I use natural task ids?

Answer: Yes, but make sure it is unique, as the behavior for two tasks existing with the same id is undefined.

The world will probably not explode, but at the worst they can overwrite each others results.

8.7.7 How can I run a task once another task has finished?

Answer: You can safely launch a task inside a task. Also, a common pattern is to use callback tasks:

@task()
def add(x, y, callback=None):

result = x + y
if callback:

subtask(callback).delay(result)
return result

@task(ignore_result=True)
def log_result(result, **kwargs):

logger = log_result.get_logger(**kwargs)
logger.info("log_result got: %s" % (result,))

Invocation:

>>> add.delay(2, 2, callback=log_result.subtask())

See Sets of tasks, Subtasks and Callbacks for more information.

8.7. Tasks 109

http://celeryq.org/docs/userguide/tasks.html#default-keyword-arguments
http://celeryq.org/docs/userguide/tasks.html#default-keyword-arguments

Celery Documentation, Release 2.1.4

8.7.8 Can I cancel the execution of a task?

Answer: Yes. Use result.revoke:

>>> result = add.apply_async(args=[2, 2], countdown=120)
>>> result.revoke()

or if you only have the task id:

>>> from celery.task.control import revoke
>>> revoke(task_id)

8.7.9 Why aren’t my remote control commands received by all workers?

Answer: To receive broadcast remote control commands, every worker node uses its host name to create a unique
queue name to listen to, so if you have more than one worker with the same host name, the control commands will be
received in round-robin between them.

To work around this you can explicitly set the host name for every worker using the --hostname argument to
celeryd:

$ celeryd --hostname=$(hostname).1
$ celeryd --hostname=$(hostname).2

etc., etc...

8.7.10 Can I send some tasks to only some servers?

Answer: Yes. You can route tasks to an arbitrary server using AMQP, and a worker can bind to as many queues as it
wants.

See Routing Tasks for more information.

8.7.11 Can I change the interval of a periodic task at runtime?

Answer: Yes. You can override PeriodicTask.is_due or turn PeriodicTask.run_every into a property:

class MyPeriodic(PeriodicTask):

def run(self):
...

@property
def run_every(self):

return get_interval_from_database(...)

8.7.12 Does celery support task priorities?

Answer: No. In theory, yes, as AMQP supports priorities. However RabbitMQ doesn’t implement them yet.

The usual way to prioritize work in Celery, is to route high priority tasks to different servers. In the real world this
may actually work better than per message priorities. You can use this in combination with rate limiting to achieve a
highly responsive system.

110 Chapter 8. Frequently Asked Questions

Celery Documentation, Release 2.1.4

8.7.13 Should I use retry or acks_late?

Answer: Depends. It’s not necessarily one or the other, you may want to use both.

Task.retry is used to retry tasks, notably for expected errors that is catchable with the try: block. The AMQP transaction
is not used for these errors: if the task raises an exception it is still acknowledged!.

The acks_late setting would be used when you need the task to be executed again if the worker (for some reason)
crashes mid-execution. It’s important to note that the worker is not known to crash, and if it does it is usually an
unrecoverable error that requires human intervention (bug in the worker, or task code).

In an ideal world you could safely retry any task that has failed, but this is rarely the case. Imagine the following task:

@task()
def process_upload(filename, tmpfile):

Increment a file count stored in a database
increment_file_counter()
add_file_metadata_to_db(filename, tmpfile)
copy_file_to_destination(filename, tmpfile)

If this crashed in the middle of copying the file to its destination the world would contain incomplete state. This is not a
critical scenario of course, but you can probably imagine something far more sinister. So for ease of programming we
have less reliability; It’s a good default, users who require it and know what they are doing can still enable acks_late
(and in the future hopefully use manual acknowledgement)

In addition Task.retry has features not available in AMQP transactions: delay between retries, max retries, etc.

So use retry for Python errors, and if your task is reentrant combine that with acks_late if that level of reliability
is required.

8.7.14 Can I schedule tasks to execute at a specific time?

Answer: Yes. You can use the eta argument of Task.apply_async().

Or to schedule a periodic task at a specific time, use the celery.task.schedules.crontab schedule behavior:

from celery.task.schedules import crontab
from celery.decorators import periodic_task

@periodic_task(run_every=crontab(hours=7, minute=30, day_of_week="mon"))
def every_monday_morning():

print("This is run every Monday morning at 7:30")

8.7.15 How do I shut down celeryd safely?

Answer: Use the TERM signal, and the worker will finish all currently executing jobs and shut down as soon as
possible. No tasks should be lost.

You should never stop celeryd with the KILL signal (-9), unless you’ve tried TERM a few times and waited a few
minutes to let it get a chance to shut down. As if you do tasks may be terminated mid-execution, and they will not be
re-run unless you have the acks_late option set (Task.acks_late / CELERY_ACKS_LATE).

See also:

Stopping the worker

8.7. Tasks 111

Celery Documentation, Release 2.1.4

8.7.16 How do I run celeryd in the background on [platform]?

Answer: Please see Running celeryd as a daemon.

8.8 Windows

8.8.1 celeryd keeps spawning processes at startup

Answer: This is a known issue on Windows. You have to start celeryd with the command:

$ python -m celeryd.bin.celeryd

Any additional arguments can be appended to this command.

See http://bit.ly/bo9RSw

8.8.2 The -B / --beat option to celeryd doesn’t work?

Answer: That’s right. Run celerybeat and celeryd as separate services instead.

8.8.3 django-celery can’t find settings?

Answer: You need to specify the --settings argument to manage.py:

$ python manage.py celeryd start --settings=settings

See http://bit.ly/bo9RSw

112 Chapter 8. Frequently Asked Questions

http://bit.ly/bo9RSw
http://bit.ly/bo9RSw

CHAPTER 9

API Reference

Release 2.1

Date February 04, 2014

9.1 Task Decorators - celery.decorators

Decorators

celery.decorators.periodic_task(**options)
Task decorator to create a periodic task.

Example task, scheduling a task once every day:

from datetime import timedelta

@periodic_task(run_every=timedelta(days=1))
def cronjob(**kwargs):

logger = cronjob.get_logger(**kwargs)
logger.warn("Task running...")

celery.decorators.task(*args, **options)
Decorator to create a task class out of any callable.

Examples:

@task()
def refresh_feed(url):

return Feed.objects.get(url=url).refresh()

With setting extra options and using retry.

@task(exchange="feeds")
def refresh_feed(url, **kwargs):

try:
return Feed.objects.get(url=url).refresh()

except socket.error, exc:
refresh_feed.retry(args=[url], kwargs=kwargs, exc=exc)

Calling the resulting task:

>>> refresh_feed("http://example.com/rss") # Regular
<Feed: http://example.com/rss>

113

Celery Documentation, Release 2.1.4

>>> refresh_feed.delay("http://example.com/rss") # Async
<AsyncResult: 8998d0f4-da0b-4669-ba03-d5ab5ac6ad5d>

9.2 Defining Tasks - celery.task.base

class celery.task.base.Task
A celery task.

All subclasses of Task must define the run() method, which is the actual method the celery daemon
executes.

The run() method can take use of the default keyword arguments, as listed in the run() documentation.

The resulting class is callable, which if called will apply the run() method.

name
Name of the task.

abstract
If True the task is an abstract base class.

type
The type of task, currently this can be regular, or periodic, however if you want a periodic task, you
should subclass PeriodicTask instead.

queue
Select a destination queue for this task. The queue needs to exist in CELERY_QUEUES. The
routing_key, exchange and exchange_type attributes will be ignored if this is set.

routing_key
Override the global default routing_key for this task.

exchange
Override the global default exchange for this task.

exchange_type
Override the global default exchange type for this task.

delivery_mode
Override the global default delivery mode for this task. By default this is set to 2 (persistent). You can
change this to 1 to get non-persistent behavior, which means the messages are lost if the broker is restarted.

mandatory
Mandatory message routing. An exception will be raised if the task can’t be routed to a queue.

immediate:
Request immediate delivery. An exception will be raised if the task can’t be routed to a worker immedi-
ately.

priority:
The message priority. A number from 0 to 9, where 0 is the highest. Note that RabbitMQ doesn’t support
priorities yet.

max_retries
Maximum number of retries before giving up. If set to None, it will never stop retrying.

default_retry_delay
Default time in seconds before a retry of the task should be executed. Default is a 3 minute delay.

114 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

rate_limit
Set the rate limit for this task type, Examples: None (no rate limit), "100/s" (hundred tasks a second),
"100/m" (hundred tasks a minute), "100/h" (hundred tasks an hour)

ignore_result
Don’t store the return value of this task.

store_errors_even_if_ignored
If true, errors will be stored even if the task is configured to ignore results.

send_error_emails
If true, an e-mail will be sent to the admins whenever a task of this type raises an exception.

error_whitelist
List of exception types to send error e-mails for.

serializer
The name of a serializer that has been registered with carrot.serialization.registry. Exam-
ple: "json".

backend
The result store backend used for this task.

autoregister
If True the task is automatically registered in the task registry, which is the default behaviour.

track_started
If True the task will report its status as “started” when the task is executed by a worker. The default
value is False as the normal behaviour is to not report that level of granularity. Tasks are either pending,
finished, or waiting to be retried. Having a “started” status can be useful for when there are long running
tasks and there is a need to report which task is currently running.

The global default can be overridden by the CELERY_TRACK_STARTED setting.

acks_late
If set to True messages for this task will be acknowledged after the task has been executed, not just
before, which is the default behavior.

Note that this means the task may be executed twice if the worker crashes in the middle of execution,
which may be acceptable for some applications.

The global default can be overriden by the CELERY_ACKS_LATE setting.

expires
Default task expiry time in seconds or a datetime.

classmethod AsyncResult(task_id)
Get AsyncResult instance for this kind of task.

Parameters task_id – Task id to get result for.

exception MaxRetriesExceededError
The tasks max restart limit has been exceeded.

Task.after_return(status, retval, task_id, args, kwargs, einfo=None)
Handler called after the task returns.

Parameters

• status – Current task state.

• retval – Task return value/exception.

• task_id – Unique id of the task.

9.2. Defining Tasks - celery.task.base 115

Celery Documentation, Release 2.1.4

• args – Original arguments for the task that failed.

• kwargs – Original keyword arguments for the task that failed.

• einfo – ExceptionInfo instance, containing the traceback (if any).

The return value of this handler is ignored.

classmethod Task.apply(args=None, kwargs=None, **options)
Execute this task locally, by blocking until the task has finished executing.

Parameters

• args – positional arguments passed on to the task.

• kwargs – keyword arguments passed on to the task.

• throw – Re-raise task exceptions. Defaults to the
CELERY_EAGER_PROPAGATES_EXCEPTIONS setting.

:rtype celery.result.EagerResult:

See celery.execute.apply().

classmethod Task.apply_async(args=None, kwargs=None, **options)
Delay this task for execution by the celery daemon(s).

Parameters

• args – positional arguments passed on to the task.

• kwargs – keyword arguments passed on to the task.

• **options – Any keyword arguments to pass on to
celery.execute.apply_async().

See celery.execute.apply_async() for more information.

:returns celery.result.AsyncResult:

classmethod Task.delay(*args, **kwargs)
Shortcut to apply_async(), with star arguments, but doesn’t support the extra options.

Parameters

• *args – positional arguments passed on to the task.

• **kwargs – keyword arguments passed on to the task.

:returns celery.result.AsyncResult:

classmethod Task.establish_connection(connect_timeout=4)
Establish a connection to the message broker.

Task.execute(wrapper, pool, loglevel, logfile)
The method the worker calls to execute the task.

Parameters

• wrapper – A TaskRequest.

• pool – A task pool.

• loglevel – Current loglevel.

• logfile – Name of the currently used logfile.

116 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

classmethod Task.get_consumer(connection=None, connect_timeout=4)
Get a celery task message consumer.

:rtype celery.messaging.TaskConsumer:

Please be sure to close the AMQP connection when you’re done with this object. i.e.:

>>> consumer = self.get_consumer()
>>> # do something with consumer
>>> consumer.connection.close()

classmethod Task.get_logger(loglevel=None, logfile=None, propagate=False, **kwargs)
Get task-aware logger object.

See celery.log.setup_task_logger().

classmethod Task.get_publisher(connection=None, exchange=None, connect_timeout=4, ex-
change_type=None)

Get a celery task message publisher.

:rtype celery.messaging.TaskPublisher:

Please be sure to close the AMQP connection when you’re done with this object, i.e.:

>>> publisher = self.get_publisher()
>>> # do something with publisher
>>> publisher.connection.close()

Task.on_failure(exc, task_id, args, kwargs, einfo=None)
Error handler.

This is run by the worker when the task fails.

Parameters

• exc – The exception raised by the task.

• task_id – Unique id of the failed task.

• args – Original arguments for the task that failed.

• kwargs – Original keyword arguments for the task that failed.

• einfo – ExceptionInfo instance, containing the traceback.

The return value of this handler is ignored.

Task.on_retry(exc, task_id, args, kwargs, einfo=None)
Retry handler.

This is run by the worker when the task is to be retried.

Parameters

• exc – The exception sent to retry().

• task_id – Unique id of the retried task.

• args – Original arguments for the retried task.

• kwargs – Original keyword arguments for the retried task.

• einfo – ExceptionInfo instance, containing the traceback.

The return value of this handler is ignored.

9.2. Defining Tasks - celery.task.base 117

Celery Documentation, Release 2.1.4

Task.on_success(retval, task_id, args, kwargs)
Success handler.

Run by the worker if the task executes successfully.

Parameters

• retval – The return value of the task.

• task_id – Unique id of the executed task.

• args – Original arguments for the executed task.

• kwargs – Original keyword arguments for the executed task.

The return value of this handler is ignored.

classmethod Task.retry(args=None, kwargs=None, exc=None, throw=True, **options)
Retry the task.

Parameters

• args – Positional arguments to retry with.

• kwargs – Keyword arguments to retry with.

• exc – Optional exception to raise instead of MaxRetriesExceededError when the
max restart limit has been exceeded.

• countdown – Time in seconds to delay the retry for.

• eta – Explicit time and date to run the retry at (must be a datetime.datetime in-
stance).

• **options – Any extra options to pass on to meth:apply_async. See
celery.execute.apply_async().

• throw – If this is False, do not raise the RetryTaskError exception, that tells the
worker to mark the task as being retried. Note that this means the task will be marked as
failed if the task raises an exception, or successful if it returns.

Raises celery.exceptions.RetryTaskError To tell the worker that the task has been re-sent for
retry. This always happens, unless the throw keyword argument has been explicitly set to
False, and is considered normal operation.

Example

>>> class TwitterPostStatusTask(Task):
...
... def run(self, username, password, message, **kwargs):
... twitter = Twitter(username, password)
... try:
... twitter.post_status(message)
... except twitter.FailWhale, exc:
... # Retry in 5 minutes.
... self.retry([username, password, message], kwargs,
... countdown=60 * 5, exc=exc)

Task.run(*args, **kwargs)
The body of the task executed by the worker.

The following standard keyword arguments are reserved and is passed by the worker if the function/method
supports them:

•task_id

118 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

•task_name

•task_retries

•task_is_eager

•logfile

•loglevel

•delivery_info

Additional standard keyword arguments may be added in the future. To take these default arguments,
the task can either list the ones it wants explicitly or just take an arbitrary list of keyword arguments
(**kwargs).

classmethod Task.subtask(*args, **kwargs)
Returns a subtask object for this task that wraps arguments and execution options for a single task
invocation.

Task.update_state(task_id, state, meta=None)
Update task state.

Parameters

• task_id – Id of the task to update.

• state – New state (str).

• meta – State metadata (dict).

class celery.task.base.PeriodicTask
A periodic task is a task that behaves like a cron job.

Results of periodic tasks are not stored by default.

run_every
REQUIRED Defines how often the task is run (its interval), it can be a timedelta object, a crontab
object or an integer specifying the time in seconds.

relative
If set to True, run times are relative to the time when the server was started. This was the previous
behaviour, periodic tasks are now scheduled by the clock.

Raises NotImplementedError if the run_every attribute is not defined.

Example

>>> from celery.task import tasks, PeriodicTask
>>> from datetime import timedelta
>>> class EveryThirtySecondsTask(PeriodicTask):
... run_every = timedelta(seconds=30)
...
... def run(self, **kwargs):
... logger = self.get_logger(**kwargs)
... logger.info("Execute every 30 seconds")

>>> from celery.task import PeriodicTask
>>> from celery.task.schedules import crontab

>>> class EveryMondayMorningTask(PeriodicTask):
... run_every = crontab(hour=7, minute=30, day_of_week=1)
...

9.2. Defining Tasks - celery.task.base 119

Celery Documentation, Release 2.1.4

... def run(self, **kwargs):

... logger = self.get_logger(**kwargs)

... logger.info("Execute every Monday at 7:30AM.")

>>> class EveryMorningTask(PeriodicTask):
... run_every = crontab(hours=7, minute=30)
...
... def run(self, **kwargs):
... logger = self.get_logger(**kwargs)
... logger.info("Execute every day at 7:30AM.")

>>> class EveryQuarterPastTheHourTask(PeriodicTask):
... run_every = crontab(minute=15)
...
... def run(self, **kwargs):
... logger = self.get_logger(**kwargs)
... logger.info("Execute every 0:15 past the hour every day.")

is_due(last_run_at)
Returns tuple of two items (is_due, next_time_to_run), where next time to run is in seconds.

See celery.schedules.schedule.is_due() for more information.

remaining_estimate(last_run_at)
Returns when the periodic task should run next as a timedelta.

timedelta_seconds(delta)
Convert timedelta to seconds.

Doesn’t account for negative timedeltas.

class celery.task.base.TaskType
Metaclass for tasks.

Automatically registers the task in the task registry, except if the abstract attribute is set.

If no name attribute is provided, the name is automatically set to the name of the module it was defined in, and
the class name.

9.3 Task Sets, Subtasks and Callbacks - celery.task.sets

class celery.task.sets.TaskSet(task=None, tasks=None)
A task containing several subtasks, making it possible to track how many, or when all of the tasks has been
completed.

Parameters tasks – A list of subtask instances.

total
Total number of subtasks in this task set.

Example:

>>> from djangofeeds.tasks import RefreshFeedTask
>>> from celery.task.sets import TaskSet, subtask
>>> urls = ("http://cnn.com/rss",
... "http://bbc.co.uk/rss",
... "http://xkcd.com/rss")
>>> subtasks = [RefreshFeedTask.subtask(kwargs={"feed_url": url})
... for url in urls]

120 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

>>> taskset = TaskSet(tasks=subtasks)
>>> taskset_result = taskset.apply_async()
>>> list_of_return_values = taskset_result.join()

Publisher
alias of TaskPublisher

apply()
Applies the taskset locally.

apply_async(*args, **kwargs)
Run all tasks in the taskset.

Returns a celery.result.TaskSetResult instance.

Example

>>> ts = TaskSet(tasks=(
... RefreshFeedTask.subtask(["http://foo.com/rss"]),
... RefreshFeedTask.subtask(["http://bar.com/rss"]),
...))
>>> result = ts.apply_async()
>>> result.taskset_id
"d2c9b261-8eff-4bfb-8459-1e1b72063514"
>>> result.subtask_ids
["b4996460-d959-49c8-aeb9-39c530dcde25",
"598d2d18-ab86-45ca-8b4f-0779f5d6a3cb"]
>>> result.waiting()
True
>>> time.sleep(10)
>>> result.ready()
True
>>> result.successful()
True
>>> result.failed()
False
>>> result.join()
[True, True]

task

task_name

tasks

class celery.task.sets.subtask(task=None, args=None, kwargs=None, options=None, **extra)
Class that wraps the arguments and execution options for a single task invocation.

Used as the parts in a TaskSet or to safely pass tasks around as callbacks.

Parameters

• task – Either a task class/instance, or the name of a task.

• args – Positional arguments to apply.

• kwargs – Keyword arguments to apply.

• options – Additional options to celery.execute.apply_async().

Note that if the first argument is a dict, the other arguments will be ignored and the values in the dict will be
used instead.

9.3. Task Sets, Subtasks and Callbacks - celery.task.sets 121

Celery Documentation, Release 2.1.4

>>> s = subtask("tasks.add", args=(2, 2))
>>> subtask(s)
{"task": "tasks.add", args=(2, 2), kwargs={}, options={}}

apply(args=(), kwargs={}, **options)
Apply this task locally.

apply_async(args=(), kwargs={}, **options)
Apply this task asynchronously.

delay(*argmerge, **kwmerge)
Shortcut to apply_async(argmerge, kwargs).

get_type()

9.4 Executing Tasks - celery.execute

celery.execute.apply(task, args, kwargs, **options)
Apply the task locally.

Parameters throw – Re-raise task exceptions. Defaults to the
CELERY_EAGER_PROPAGATES_EXCEPTIONS setting.

This will block until the task completes, and returns a celery.result.EagerResult instance.

celery.execute.apply_async(*args, **kwargs)
Run a task asynchronously by the celery daemon(s).

Parameters

• task – The Task to run.

• args – The positional arguments to pass on to the task (a list or tuple).

• kwargs – The keyword arguments to pass on to the task (a dict)

• countdown – Number of seconds into the future that the task should execute. Defaults to
immediate delivery (Do not confuse that with the immediate setting, they are unrelated).

• eta – A datetime object that describes the absolute time and date of when the task should
execute. May not be specified if countdown is also supplied. (Do not confuse this with
the immediate setting, they are unrelated).

• expires – Either a int, describing the number of seconds, or a datetime object that
describes the absolute time and date of when the task should expire. The task will not be
executed after the expiration time.

• connection – Re-use existing broker connection instead of establishing a new one. The
connect_timeout argument is not respected if this is set.

• connect_timeout – The timeout in seconds, before we give up on establishing a connection
to the AMQP server.

• routing_key – The routing key used to route the task to a worker server. Defaults to the
tasks exchange attribute.

• exchange – The named exchange to send the task to. Defaults to the tasks exchange
attribute.

• exchange_type – The exchange type to initalize the exchange as if not already declared.
Defaults to the tasks exchange_type attribute.

122 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

• immediate – Request immediate delivery. Will raise an exception if the task cannot be
routed to a worker immediately. (Do not confuse this parameter with the countdown and
eta settings, as they are unrelated). Defaults to the tasks immediate attribute.

• mandatory – Mandatory routing. Raises an exception if there’s no running workers able to
take on this task. Defaults to the tasks mandatory attribute.

• priority – The task priority, a number between 0 and 9. Defaults to the tasks priority
attribute.

• serializer – A string identifying the default serialization method to use. De-
faults to the CELERY_TASK_SERIALIZER setting. Can be pickle json,
yaml, or any custom serialization methods that have been registered with
carrot.serialization.registry. Defaults to the tasks serializer at-
tribute.

Note: If the CELERY_ALWAYS_EAGER setting is set, it will be replaced by a local apply() call instead.

celery.execute.delay_task(task_name, *args, **kwargs)
Delay a task for execution by the celery daemon.

Parameters

• task_name – the name of a task registered in the task registry.

• *args – positional arguments to pass on to the task.

• **kwargs – keyword arguments to pass on to the task.

Raises celery.exceptions.NotRegistered exception if no such task has been registered in the task
registry.

:returns celery.result.AsyncResult:

Example

>>> r = delay_task("update_record", name="George Costanza", age=32)
>>> r.ready()
True
>>> r.result
"Record was updated"

celery.execute.send_task(*args, **kwargs)
Send task by name.

Useful if you don’t have access to the Task class.

Parameters name – Name of task to execute.

Supports the same arguments as apply_async().

9.5 Task Result - celery.result

class celery.result.AsyncResult(task_id, backend=None, task_name=None)
Pending task result using the default backend.

Parameters task_id – see task_id.

task_id
The unique identifier for this task.

9.5. Task Result - celery.result 123

Celery Documentation, Release 2.1.4

backend
Instance of celery.backends.DefaultBackend.

class celery.result.BaseAsyncResult(task_id, backend, task_name=None)
Base class for pending result, supports custom task result backend.

Parameters

• task_id – see task_id.

• backend – see backend.

task_id
The unique identifier for this task.

backend
The task result backend used.

exception TimeoutError
The operation timed out.

BaseAsyncResult.failed()
Returns True if the task failed by exception.

BaseAsyncResult.forget()
Forget about (and possibly remove the result of) this task.

BaseAsyncResult.get(timeout=None)
Alias to wait().

BaseAsyncResult.info
Get state metadata.

Alias to result().

BaseAsyncResult.ready()
Returns True if the task executed successfully, or raised an exception.

If the task is still running, pending, or is waiting for retry then False is returned.

BaseAsyncResult.result
When the task has been executed, this contains the return value.

If the task raised an exception, this will be the exception instance.

BaseAsyncResult.revoke(connection=None, connect_timeout=None)
Send revoke signal to all workers.

The workers will ignore the task if received.

BaseAsyncResult.state
The current status of the task.

Can be one of the following:

PENDING

The task is waiting for execution.

STARTED

The task has been started.

RETRY

The task is to be retried, possibly because of failure.

124 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

FAILURE

The task raised an exception, or has been retried more times than its limit. The result
attribute contains the exception raised.

SUCCESS

The task executed successfully. The result attribute contains the resulting value.

BaseAsyncResult.status
Deprecated alias of state.

BaseAsyncResult.successful()
Returns True if the task executed successfully.

BaseAsyncResult.traceback
Get the traceback of a failed task.

BaseAsyncResult.wait(timeout=None)
Wait for task, and return the result when it arrives.

Parameters timeout – How long to wait, in seconds, before the operation times out.

Raises celery.exceptions.TimeoutError if timeout is not None and the result does not arrive
within timeout seconds.

If the remote call raised an exception then that exception will be re-raised.

class celery.result.EagerResult(task_id, ret_value, status, traceback=None)
Result that we know has already been executed.

exception TimeoutError
The operation timed out.

EagerResult.ready()
Returns True if the task has been executed.

EagerResult.result
The tasks return value

EagerResult.revoke()

EagerResult.state
The tasks state.

EagerResult.status
The tasks status (alias to state).

EagerResult.successful()
Returns True if the task executed without failure.

EagerResult.traceback
The traceback if the task failed.

EagerResult.wait(timeout=None)
Wait until the task has been executed and return its result.

class celery.result.TaskSetResult(taskset_id, subtasks)
Working with TaskSet results.

An instance of this class is returned by TaskSet‘s apply_async(). It enables inspection of the subtasks
status and return values as a single entity.

Option taskset_id see taskset_id.

Option subtasks see subtasks.

9.5. Task Result - celery.result 125

Celery Documentation, Release 2.1.4

taskset_id
The UUID of the taskset itself.

subtasks
A list of AsyncResult instances for all of the subtasks.

completed_count()
Task completion count.

Returns the number of tasks completed.

failed()
Did the taskset fail?

Returns True if any of the tasks in the taskset failed. (i.e., raised an exception)

forget()
Forget about (and possible remove the result of) all the tasks in this taskset.

iterate()
Iterate over the return values of the tasks as they finish one by one.

Raises The exception if any of the tasks raised an exception.

itersubtasks()
Taskset subtask iterator.

Returns an iterator for iterating over the tasksets AsyncResult objects.

join(timeout=None, propagate=True)
Gather the results of all tasks in the taskset, and returns a list ordered by the order of the set.

Parameters

• timeout – The number of seconds to wait for results before the operation times out.

• propagate – If any of the subtasks raises an exception, the exception will be reraised.

Raises celery.exceptions.TimeoutError if timeout is not None and the operation takes
longer than timeout seconds.

Returns list of return values for all subtasks in order.

ready()
Is the task ready?

Returns True if all of the tasks in the taskset has been executed.

classmethod restore(taskset_id, backend=<celery.backends.amqp.AMQPBackend object at
0x48a73d0>)

Restore previously saved taskset result.

revoke(*args, **kwargs)

save(backend=<celery.backends.amqp.AMQPBackend object at 0x48a73d0>)
Save taskset result for later retrieval using restore().

Example:

>>> result.save()
>>> result = TaskSetResult.restore(task_id)

successful()
Was the taskset successful?

126 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

Returns True if all of the tasks in the taskset finished successfully (i.e. did not raise an excep-
tion).

total
The total number of tasks in the TaskSet.

waiting()
Is the taskset waiting?

Returns True if any of the tasks in the taskset is still waiting for execution.

9.6 Task Information and Utilities - celery.task

Working with tasks and task sets.

class celery.task.Task
A celery task.

All subclasses of Task must define the run() method, which is the actual method the celery daemon
executes.

The run() method can take use of the default keyword arguments, as listed in the run() documentation.

The resulting class is callable, which if called will apply the run() method.

name
Name of the task.

abstract
If True the task is an abstract base class.

type
The type of task, currently this can be regular, or periodic, however if you want a periodic task, you
should subclass PeriodicTask instead.

queue
Select a destination queue for this task. The queue needs to exist in CELERY_QUEUES. The
routing_key, exchange and exchange_type attributes will be ignored if this is set.

routing_key
Override the global default routing_key for this task.

exchange
Override the global default exchange for this task.

exchange_type
Override the global default exchange type for this task.

delivery_mode
Override the global default delivery mode for this task. By default this is set to 2 (persistent). You can
change this to 1 to get non-persistent behavior, which means the messages are lost if the broker is restarted.

mandatory
Mandatory message routing. An exception will be raised if the task can’t be routed to a queue.

immediate:
Request immediate delivery. An exception will be raised if the task can’t be routed to a worker immedi-
ately.

9.6. Task Information and Utilities - celery.task 127

Celery Documentation, Release 2.1.4

priority:
The message priority. A number from 0 to 9, where 0 is the highest. Note that RabbitMQ doesn’t support
priorities yet.

max_retries
Maximum number of retries before giving up. If set to None, it will never stop retrying.

default_retry_delay
Default time in seconds before a retry of the task should be executed. Default is a 3 minute delay.

rate_limit
Set the rate limit for this task type, Examples: None (no rate limit), "100/s" (hundred tasks a second),
"100/m" (hundred tasks a minute), "100/h" (hundred tasks an hour)

ignore_result
Don’t store the return value of this task.

store_errors_even_if_ignored
If true, errors will be stored even if the task is configured to ignore results.

send_error_emails
If true, an e-mail will be sent to the admins whenever a task of this type raises an exception.

error_whitelist
List of exception types to send error e-mails for.

serializer
The name of a serializer that has been registered with carrot.serialization.registry. Exam-
ple: "json".

backend
The result store backend used for this task.

autoregister
If True the task is automatically registered in the task registry, which is the default behaviour.

track_started
If True the task will report its status as “started” when the task is executed by a worker. The default
value is False as the normal behaviour is to not report that level of granularity. Tasks are either pending,
finished, or waiting to be retried. Having a “started” status can be useful for when there are long running
tasks and there is a need to report which task is currently running.

The global default can be overridden by the CELERY_TRACK_STARTED setting.

acks_late
If set to True messages for this task will be acknowledged after the task has been executed, not just
before, which is the default behavior.

Note that this means the task may be executed twice if the worker crashes in the middle of execution,
which may be acceptable for some applications.

The global default can be overriden by the CELERY_ACKS_LATE setting.

expires
Default task expiry time in seconds or a datetime.

classmethod AsyncResult(task_id)
Get AsyncResult instance for this kind of task.

Parameters task_id – Task id to get result for.

exception MaxRetriesExceededError
The tasks max restart limit has been exceeded.

128 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

Task.acks_late = False

Task.after_return(status, retval, task_id, args, kwargs, einfo=None)
Handler called after the task returns.

Parameters

• status – Current task state.

• retval – Task return value/exception.

• task_id – Unique id of the task.

• args – Original arguments for the task that failed.

• kwargs – Original keyword arguments for the task that failed.

• einfo – ExceptionInfo instance, containing the traceback (if any).

The return value of this handler is ignored.

classmethod Task.apply(args=None, kwargs=None, **options)
Execute this task locally, by blocking until the task has finished executing.

Parameters

• args – positional arguments passed on to the task.

• kwargs – keyword arguments passed on to the task.

• throw – Re-raise task exceptions. Defaults to the
CELERY_EAGER_PROPAGATES_EXCEPTIONS setting.

:rtype celery.result.EagerResult:

See celery.execute.apply().

classmethod Task.apply_async(args=None, kwargs=None, **options)
Delay this task for execution by the celery daemon(s).

Parameters

• args – positional arguments passed on to the task.

• kwargs – keyword arguments passed on to the task.

• **options – Any keyword arguments to pass on to
celery.execute.apply_async().

See celery.execute.apply_async() for more information.

:returns celery.result.AsyncResult:

Task.autoregister = True

Task.backend = <celery.backends.amqp.AMQPBackend object at 0x48a73d0>

Task.default_retry_delay = 180

classmethod Task.delay(*args, **kwargs)
Shortcut to apply_async(), with star arguments, but doesn’t support the extra options.

Parameters

• *args – positional arguments passed on to the task.

• **kwargs – keyword arguments passed on to the task.

:returns celery.result.AsyncResult:

9.6. Task Information and Utilities - celery.task 129

Celery Documentation, Release 2.1.4

Task.delivery_mode = 2

Task.disable_error_emails = False

Task.error_whitelist = ()

classmethod Task.establish_connection(connect_timeout=4)
Establish a connection to the message broker.

Task.exchange = None

Task.exchange_type = ‘direct’

Task.execute(wrapper, pool, loglevel, logfile)
The method the worker calls to execute the task.

Parameters

• wrapper – A TaskRequest.

• pool – A task pool.

• loglevel – Current loglevel.

• logfile – Name of the currently used logfile.

Task.expires = None

classmethod Task.get_consumer(connection=None, connect_timeout=4)
Get a celery task message consumer.

:rtype celery.messaging.TaskConsumer:

Please be sure to close the AMQP connection when you’re done with this object. i.e.:

>>> consumer = self.get_consumer()
>>> # do something with consumer
>>> consumer.connection.close()

classmethod Task.get_logger(loglevel=None, logfile=None, propagate=False, **kwargs)
Get task-aware logger object.

See celery.log.setup_task_logger().

classmethod Task.get_publisher(connection=None, exchange=None, connect_timeout=4, ex-
change_type=None)

Get a celery task message publisher.

:rtype celery.messaging.TaskPublisher:

Please be sure to close the AMQP connection when you’re done with this object, i.e.:

>>> publisher = self.get_publisher()
>>> # do something with publisher
>>> publisher.connection.close()

Task.ignore_result = False

Task.immediate = False

Task.mandatory = False

Task.max_retries = 5

Task.name = None

130 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

Task.on_failure(exc, task_id, args, kwargs, einfo=None)
Error handler.

This is run by the worker when the task fails.

Parameters

• exc – The exception raised by the task.

• task_id – Unique id of the failed task.

• args – Original arguments for the task that failed.

• kwargs – Original keyword arguments for the task that failed.

• einfo – ExceptionInfo instance, containing the traceback.

The return value of this handler is ignored.

Task.on_retry(exc, task_id, args, kwargs, einfo=None)
Retry handler.

This is run by the worker when the task is to be retried.

Parameters

• exc – The exception sent to retry().

• task_id – Unique id of the retried task.

• args – Original arguments for the retried task.

• kwargs – Original keyword arguments for the retried task.

• einfo – ExceptionInfo instance, containing the traceback.

The return value of this handler is ignored.

Task.on_success(retval, task_id, args, kwargs)
Success handler.

Run by the worker if the task executes successfully.

Parameters

• retval – The return value of the task.

• task_id – Unique id of the executed task.

• args – Original arguments for the executed task.

• kwargs – Original keyword arguments for the executed task.

The return value of this handler is ignored.

Task.priority = None

Task.queue = None

Task.rate_limit = None

classmethod Task.retry(args=None, kwargs=None, exc=None, throw=True, **options)
Retry the task.

Parameters

• args – Positional arguments to retry with.

• kwargs – Keyword arguments to retry with.

9.6. Task Information and Utilities - celery.task 131

Celery Documentation, Release 2.1.4

• exc – Optional exception to raise instead of MaxRetriesExceededError when the
max restart limit has been exceeded.

• countdown – Time in seconds to delay the retry for.

• eta – Explicit time and date to run the retry at (must be a datetime.datetime in-
stance).

• **options – Any extra options to pass on to meth:apply_async. See
celery.execute.apply_async().

• throw – If this is False, do not raise the RetryTaskError exception, that tells the
worker to mark the task as being retried. Note that this means the task will be marked as
failed if the task raises an exception, or successful if it returns.

Raises celery.exceptions.RetryTaskError To tell the worker that the task has been re-sent for
retry. This always happens, unless the throw keyword argument has been explicitly set to
False, and is considered normal operation.

Example

>>> class TwitterPostStatusTask(Task):
...
... def run(self, username, password, message, **kwargs):
... twitter = Twitter(username, password)
... try:
... twitter.post_status(message)
... except twitter.FailWhale, exc:
... # Retry in 5 minutes.
... self.retry([username, password, message], kwargs,
... countdown=60 * 5, exc=exc)

Task.routing_key = None

Task.run(*args, **kwargs)
The body of the task executed by the worker.

The following standard keyword arguments are reserved and is passed by the worker if the function/method
supports them:

•task_id

•task_name

•task_retries

•task_is_eager

•logfile

•loglevel

•delivery_info

Additional standard keyword arguments may be added in the future. To take these default arguments,
the task can either list the ones it wants explicitly or just take an arbitrary list of keyword arguments
(**kwargs).

Task.send_error_emails = False

Task.serializer = ‘pickle’

Task.store_errors_even_if_ignored = False

132 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

classmethod Task.subtask(*args, **kwargs)
Returns a subtask object for this task that wraps arguments and execution options for a single task
invocation.

Task.track_started = False

Task.type = ‘regular’

Task.update_state(task_id, state, meta=None)
Update task state.

Parameters

• task_id – Id of the task to update.

• state – New state (str).

• meta – State metadata (dict).

class celery.task.TaskSet(task=None, tasks=None)
A task containing several subtasks, making it possible to track how many, or when all of the tasks has been
completed.

Parameters tasks – A list of subtask instances.

total
Total number of subtasks in this task set.

Example:

>>> from djangofeeds.tasks import RefreshFeedTask
>>> from celery.task.sets import TaskSet, subtask
>>> urls = ("http://cnn.com/rss",
... "http://bbc.co.uk/rss",
... "http://xkcd.com/rss")
>>> subtasks = [RefreshFeedTask.subtask(kwargs={"feed_url": url})
... for url in urls]
>>> taskset = TaskSet(tasks=subtasks)
>>> taskset_result = taskset.apply_async()
>>> list_of_return_values = taskset_result.join()

Publisher
alias of TaskPublisher

apply()
Applies the taskset locally.

apply_async(*args, **kwargs)
Run all tasks in the taskset.

Returns a celery.result.TaskSetResult instance.

Example

>>> ts = TaskSet(tasks=(
... RefreshFeedTask.subtask(["http://foo.com/rss"]),
... RefreshFeedTask.subtask(["http://bar.com/rss"]),
...))
>>> result = ts.apply_async()
>>> result.taskset_id
"d2c9b261-8eff-4bfb-8459-1e1b72063514"
>>> result.subtask_ids
["b4996460-d959-49c8-aeb9-39c530dcde25",
"598d2d18-ab86-45ca-8b4f-0779f5d6a3cb"]

9.6. Task Information and Utilities - celery.task 133

Celery Documentation, Release 2.1.4

>>> result.waiting()
True
>>> time.sleep(10)
>>> result.ready()
True
>>> result.successful()
True
>>> result.failed()
False
>>> result.join()
[True, True]

task

task_name

tasks

class celery.task.PeriodicTask
A periodic task is a task that behaves like a cron job.

Results of periodic tasks are not stored by default.

run_every
REQUIRED Defines how often the task is run (its interval), it can be a timedelta object, a crontab
object or an integer specifying the time in seconds.

relative
If set to True, run times are relative to the time when the server was started. This was the previous
behaviour, periodic tasks are now scheduled by the clock.

Raises NotImplementedError if the run_every attribute is not defined.

Example

>>> from celery.task import tasks, PeriodicTask
>>> from datetime import timedelta
>>> class EveryThirtySecondsTask(PeriodicTask):
... run_every = timedelta(seconds=30)
...
... def run(self, **kwargs):
... logger = self.get_logger(**kwargs)
... logger.info("Execute every 30 seconds")

>>> from celery.task import PeriodicTask
>>> from celery.task.schedules import crontab

>>> class EveryMondayMorningTask(PeriodicTask):
... run_every = crontab(hour=7, minute=30, day_of_week=1)
...
... def run(self, **kwargs):
... logger = self.get_logger(**kwargs)
... logger.info("Execute every Monday at 7:30AM.")

>>> class EveryMorningTask(PeriodicTask):
... run_every = crontab(hours=7, minute=30)
...
... def run(self, **kwargs):
... logger = self.get_logger(**kwargs)
... logger.info("Execute every day at 7:30AM.")

134 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

>>> class EveryQuarterPastTheHourTask(PeriodicTask):
... run_every = crontab(minute=15)
...
... def run(self, **kwargs):
... logger = self.get_logger(**kwargs)
... logger.info("Execute every 0:15 past the hour every day.")

ignore_result = True

is_due(last_run_at)
Returns tuple of two items (is_due, next_time_to_run), where next time to run is in seconds.

See celery.schedules.schedule.is_due() for more information.

relative = False

remaining_estimate(last_run_at)
Returns when the periodic task should run next as a timedelta.

timedelta_seconds(delta)
Convert timedelta to seconds.

Doesn’t account for negative timedeltas.

type = ‘periodic’

celery.task.discard_all(*args, **kwargs)
Discard all waiting tasks.

This will ignore all tasks waiting for execution, and they will be deleted from the messaging server.

Returns the number of tasks discarded.

celery.task.dmap(fun, args, timeout=None)
Distribute processing of the arguments and collect the results.

Example

>>> from celery.task import dmap
>>> import operator
>>> dmap(operator.add, [[2, 2], [4, 4], [8, 8]])
[4, 8, 16]

celery.task.dmap_async(fun, args, timeout=None)
Distribute processing of the arguments and collect the results asynchronously.

:returns celery.result.AsyncResult:

Example

>>> from celery.task import dmap_async
>>> import operator
>>> presult = dmap_async(operator.add, [[2, 2], [4, 4], [8, 8]])
>>> presult
<AsyncResult: 373550e8-b9a0-4666-bc61-ace01fa4f91d>
>>> presult.status
’SUCCESS’
>>> presult.result
[4, 8, 16]

celery.task.execute_remote(fun, *args, **kwargs)
Execute arbitrary function/object remotely.

Parameters

9.6. Task Information and Utilities - celery.task 135

Celery Documentation, Release 2.1.4

• fun – A callable function or object.

• *args – Positional arguments to apply to the function.

• **kwargs – Keyword arguments to apply to the function.

The object must be picklable, so you can’t use lambdas or functions defined in the REPL (the objects must have
an associated module).

:returns class:celery.result.AsyncResult:

celery.task.ping()
Test if the server is alive.

Example:

>>> from celery.task import ping
>>> ping()
’pong’

class celery.task.HttpDispatchTask
Task dispatching to an URL.

Parameters

• url – The URL location of the HTTP callback task.

• method – Method to use when dispatching the callback. Usually GET or POST.

• **kwargs – Keyword arguments to pass on to the HTTP callback.

url
If this is set, this is used as the default URL for requests. Default is to require the user of the task to supply
the url as an argument, as this attribute is intended for subclasses.

method
If this is set, this is the default method used for requests. Default is to require the user of the task to supply
the method as an argument, as this attribute is intended for subclasses.

method = None

name = ‘celery.task.http.HttpDispatchTask’

run(url=None, method=’GET’, **kwargs)

url = None

9.7 Configuration - celery.conf

• Queues
• Sending E-Mails
• Execution
• Broker
• Celerybeat
• Celerymon
• Celeryd

136 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

9.7.1 Queues

celery.conf.QUEUES
Queue name/options mapping.

celery.conf.DEFAULT_QUEUE
Name of the default queue.

celery.conf.DEFAULT_EXCHANGE
Default exchange.

celery.conf.DEFAULT_EXCHANGE_TYPE
Default exchange type.

celery.conf.DEFAULT_DELIVERY_MODE
Default delivery mode ("persistent" or "non-persistent"). Default is "persistent".

celery.conf.DEFAULT_ROUTING_KEY
Default routing key used when sending tasks.

celery.conf.BROKER_CONNECTION_TIMEOUT
The timeout in seconds before we give up establishing a connection to the AMQP server.

celery.conf.BROADCAST_QUEUE
Name prefix for the queue used when listening for broadcast messages. The workers hostname will be appended
to the prefix to create the final queue name.

Default is "celeryctl".

celery.conf.BROADCAST_EXCHANGE
Name of the exchange used for broadcast messages.

Default is "celeryctl".

celery.conf.BROADCAST_EXCHANGE_TYPE
Exchange type used for broadcast messages. Default is "fanout".

celery.conf.EVENT_QUEUE
Name of queue used to listen for event messages. Default is "celeryevent".

celery.conf.EVENT_EXCHANGE
Exchange used to send event messages. Default is "celeryevent".

celery.conf.EVENT_EXCHANGE_TYPE
Exchange type used for the event exchange. Default is "topic".

celery.conf.EVENT_ROUTING_KEY
Routing key used for events. Default is "celeryevent".

celery.conf.EVENT_SERIALIZER
Type of serialization method used to serialize events. Default is "json".

celery.conf.RESULT_EXCHANGE
Exchange used by the AMQP result backend to publish task results. Default is "celeryresult".

9.7.2 Sending E-Mails

celery.conf.CELERY_SEND_TASK_ERROR_EMAILS
If set to True, errors in tasks will be sent to ADMINS by e-mail.

celery.conf.ADMINS
List of (name, email_address) tuples for the admins that should receive error e-mails.

9.7. Configuration - celery.conf 137

Celery Documentation, Release 2.1.4

celery.conf.SERVER_EMAIL
The e-mail address this worker sends e-mails from. Default is "celery@localhost".

celery.conf.MAIL_HOST
The mail server to use. Default is "localhost".

celery.conf.MAIL_HOST_USER
Username (if required) to log on to the mail server with.

celery.conf.MAIL_HOST_PASSWORD
Password (if required) to log on to the mail server with.

celery.conf.MAIL_PORT
The port the mail server is listening on. Default is 25.

9.7.3 Execution

celery.conf.ALWAYS_EAGER
Always execute tasks locally, don’t send to the queue.

celery.conf.EAGER_PROPAGATES_EXCEPTIONS
If set to True, celery.execute.apply() will re-raise task exceptions. It’s the same as always running
apply with throw=True.

celery.conf.TASK_RESULT_EXPIRES
Task tombstone expire time in seconds.

celery.conf.IGNORE_RESULT
If enabled, the default behavior will be to not store task results.

celery.conf.TRACK_STARTED
If enabled, the default behavior will be to track when tasks starts by storing the STARTED state.

celery.conf.ACKS_LATE
If enabled, the default behavior will be to acknowledge task messages after the task is executed.

celery.conf.STORE_ERRORS_EVEN_IF_IGNORED
If enabled, task errors will be stored even though Task.ignore_result is enabled.

celery.conf.MAX_CACHED_RESULTS
Total number of results to store before results are evicted from the result cache.

celery.conf.TASK_SERIALIZER
A string identifying the default serialization method to use. Can be pickle (default), json, yaml, or any
custom serialization methods that have been registered with carrot.serialization.registry.

Default is pickle.

celery.conf.RESULT_BACKEND
The backend used to store task results (tombstones).

celery.conf.CELERY_CACHE_BACKEND
Celery cache backend.

celery.conf.SEND_EVENTS
If set, celery will send events that can be captured by monitors like celerymon. Default is: False.

celery.conf.DEFAULT_RATE_LIMIT
The default rate limit applied to all tasks which doesn’t have a custom rate limit defined. (Default: None)

celery.conf.DISABLE_RATE_LIMITS
If True all rate limits will be disabled and all tasks will be executed as soon as possible.

138 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

9.7.4 Broker

celery.conf.BROKER_CONNECTION_RETRY
Automatically try to re-establish the connection to the AMQP broker if it’s lost.

celery.conf.BROKER_CONNECTION_MAX_RETRIES
Maximum number of retries before we give up re-establishing a connection to the broker.

If this is set to 0 or None, we will retry forever.

Default is 100 retries.

9.7.5 Celerybeat

celery.conf.CELERYBEAT_LOG_LEVEL
Default log level for celerybeat. Default is: INFO.

celery.conf.CELERYBEAT_LOG_FILE
Default log file for celerybeat. Default is: None (stderr)

celery.conf.CELERYBEAT_SCHEDULE_FILENAME
Name of the persistent schedule database file. Default is: celerybeat-schedule.

celery.conf.CELERYBEAT_MAX_LOOP_INTERVAL
The maximum number of seconds celerybeat is allowed to sleep between checking the schedule. The default
is 5 minutes, which means celerybeat can only sleep a maximum of 5 minutes after checking the schedule run-
times for a periodic task to apply. If you change the run_times of periodic tasks at run-time, you may consider
lowering this value for changes to take effect faster (A value of 5 minutes, means the changes will take effect in
5 minutes at maximum).

9.7.6 Celerymon

celery.conf.CELERYMON_LOG_LEVEL
Default log level for celerymon. Default is: INFO.

celery.conf.CELERYMON_LOG_FILE
Default log file for celerymon. Default is: None (stderr)

9.7.7 Celeryd

celery.conf.LOG_LEVELS
Mapping of log level names to logging module constants.

celery.conf.CELERYD_LOG_FORMAT
The format to use for log messages.

celery.conf.CELERYD_TASK_LOG_FORMAT
The format to use for task log messages.

celery.conf.CELERYD_LOG_FILE
Filename of the daemon log file. Default is: None (stderr)

celery.conf.CELERYD_LOG_LEVEL
Default log level for daemons. (WARN)

9.7. Configuration - celery.conf 139

Celery Documentation, Release 2.1.4

celery.conf.CELERYD_CONCURRENCY
The number of concurrent worker processes. If set to 0 (the default), the total number of available CPUs/cores
will be used.

celery.conf.CELERYD_PREFETCH_MULTIPLIER
The number of concurrent workers is multipled by this number to yield the wanted AMQP QoS message prefetch
count. Default is: 4

celery.conf.CELERYD_POOL
Name of the task pool class used by the worker. Default is
"celery.concurrency.processes.TaskPool".

celery.conf.CELERYD_LISTENER
Name of the listener class used by the worker. Default is "celery.worker.listener.CarrotListener".

celery.conf.CELERYD_MEDIATOR
Name of the mediator class used by the worker. Default is "celery.worker.controllers.Mediator".

celery.conf.CELERYD_ETA_SCHEDULER
Name of the ETA scheduler class used by the worker. Default is
"celery.worker.controllers.ScheduleController".

9.8 Remote Management of Workers - celery.task.control

celery.task.control.broadcast(*args, **kwargs)
Broadcast a control command to the celery workers.

Parameters

• command – Name of command to send.

• arguments – Keyword arguments for the command.

• destination – If set, a list of the hosts to send the command to, when empty broadcast to all
workers.

• connection – Custom broker connection to use, if not set, a connection will be established
automatically.

• connect_timeout – Timeout for new connection if a custom connection is not provided.

• reply – Wait for and return the reply.

• timeout – Timeout in seconds to wait for the reply.

• limit – Limit number of replies.

• callback – Callback called immediately for each reply received.

celery.task.control.discard_all(*args, **kwargs)
Discard all waiting tasks.

This will ignore all tasks waiting for execution, and they will be deleted from the messaging server.

Returns the number of tasks discarded.

celery.task.control.flatten_reply(reply)

class celery.task.control.inspect(destination=None, timeout=1, callback=None)

active(safe=False)

140 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

add_consumer(queue, exchange=None, exchange_type=’direct’, routing_key=None, **options)

cancel_consumer(queue, **kwargs)

disable_events()

enable_events()

ping()

registered_tasks()

reserved(safe=False)

revoked()

scheduled(safe=False)

stats()

celery.task.control.ping(destination=None, timeout=1, **kwargs)
Ping workers.

Returns answer from alive workers.

Parameters

• destination – If set, a list of the hosts to send the command to, when empty broadcast to all
workers.

• connection – Custom broker connection to use, if not set, a connection will be established
automatically.

• connect_timeout – Timeout for new connection if a custom connection is not provided.

• reply – Wait for and return the reply.

• timeout – Timeout in seconds to wait for the reply.

• limit – Limit number of replies.

celery.task.control.rate_limit(task_name, rate_limit, destination=None, **kwargs)
Set rate limit for task by type.

Parameters

• task_name – Type of task to change rate limit for.

• rate_limit – The rate limit as tasks per second, or a rate limit string ("100/m", etc. see
celery.task.base.Task.rate_limit for more information).

• destination – If set, a list of the hosts to send the command to, when empty broadcast to all
workers.

• connection – Custom broker connection to use, if not set, a connection will be established
automatically.

• connect_timeout – Timeout for new connection if a custom connection is not provided.

• reply – Wait for and return the reply.

• timeout – Timeout in seconds to wait for the reply.

• limit – Limit number of replies.

celery.task.control.revoke(task_id, destination=None, **kwargs)
Revoke a task by id.

If a task is revoked, the workers will ignore the task and not execute it after all.

9.8. Remote Management of Workers - celery.task.control 141

Celery Documentation, Release 2.1.4

Parameters

• task_id – Id of the task to revoke.

• destination – If set, a list of the hosts to send the command to, when empty broadcast to all
workers.

• connection – Custom broker connection to use, if not set, a connection will be established
automatically.

• connect_timeout – Timeout for new connection if a custom connection is not provided.

• reply – Wait for and return the reply.

• timeout – Timeout in seconds to wait for the reply.

• limit – Limit number of replies.

9.9 HTTP Callback Tasks - celery.task.http

class celery.task.http.HttpDispatch(url, method, task_kwargs, logger)
Make task HTTP request and collect the task result.

Parameters

• url – The URL to request.

• method – HTTP method used. Currently supported methods are GET and POST.

• task_kwargs – Task keyword arguments.

• logger – Logger used for user/system feedback.

dispatch()
Dispatch callback and return result.

http_headers

make_request(url, method, params)
Makes an HTTP request and returns the response.

timeout = 5

user_agent = ‘celery/2.1.4’

class celery.task.http.HttpDispatchTask
Task dispatching to an URL.

Parameters

• url – The URL location of the HTTP callback task.

• method – Method to use when dispatching the callback. Usually GET or POST.

• **kwargs – Keyword arguments to pass on to the HTTP callback.

url
If this is set, this is used as the default URL for requests. Default is to require the user of the task to supply
the url as an argument, as this attribute is intended for subclasses.

method
If this is set, this is the default method used for requests. Default is to require the user of the task to supply
the method as an argument, as this attribute is intended for subclasses.

method = None

142 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

name = ‘celery.task.http.HttpDispatchTask’

run(url=None, method=’GET’, **kwargs)

url = None

exception celery.task.http.InvalidResponseError
The remote server gave an invalid response.

class celery.task.http.MutableURL(url)
Object wrapping a Uniform Resource Locator.

Supports editing the query parameter list. You can convert the object back to a string, the query will be properly
urlencoded.

Examples

>>> url = URL("http://www.google.com:6580/foo/bar?x=3&y=4#foo")
>>> url.query
{’x’: ’3’, ’y’: ’4’}
>>> str(url)
’http://www.google.com:6580/foo/bar?y=4&x=3#foo’
>>> url.query["x"] = 10
>>> url.query.update({"George": "Costanza"})
>>> str(url)
’http://www.google.com:6580/foo/bar?y=4&x=10&George=Costanza#foo’

query

exception celery.task.http.RemoteExecuteError
The remote task gave a custom error.

class celery.task.http.URL(url, dispatcher=None)
HTTP Callback URL

Supports requesting an URL asynchronously.

Parameters

• url – URL to request.

• dispatcher – Class used to dispatch the request. By default this is HttpDispatchTask.

dispatcher
alias of HttpDispatchTask

get_async(**kwargs)

post_async(**kwargs)

exception celery.task.http.UnknownStatusError
The remote server gave an unknown status.

celery.task.http.extract_response(raw_response)
Extract the response text from a raw JSON response.

celery.task.http.maybe_utf8(value)
Encode utf-8 value, only if the value is actually utf-8.

celery.task.http.utf8dict(tup)
With a dict’s items() tuple return a new dict with any utf-8 keys/values encoded.

9.9. HTTP Callback Tasks - celery.task.http 143

Celery Documentation, Release 2.1.4

9.10 Periodic Task Schedule Behaviors - celery.schedules

class celery.schedules.crontab(minute=’*’, hour=’*’, day_of_week=’*’, nowfun=<built-in method
now of type object at 0x7fa9b7bd5c40>)

A crontab can be used as the run_every value of a PeriodicTask to add cron-like scheduling.

Like a cron job, you can specify units of time of when you would like the task to execute. It is a reasonably
complete implementation of cron’s features, so it should provide a fair degree of scheduling needs.

You can specify a minute, an hour, and/or a day of the week in any of the following formats:

minute

•A (list of) integers from 0-59 that represent the minutes of an hour of when execution should occur;
or

•A string representing a crontab pattern. This may get pretty advanced, like minute=”*/15” (for every
quarter) or minute=”1,13,30-45,50-59/2”.

hour

•A (list of) integers from 0-23 that represent the hours of a day of when execution should occur; or

•A string representing a crontab pattern. This may get pretty advanced, like hour=”*/3” (for every
three hours) or hour=”0,8-17/2” (at midnight, and every two hours during office hours).

day_of_week

•A (list of) integers from 0-6, where Sunday = 0 and Saturday = 6, that represent the days of a week
that execution should occur.

•A string representing a crontab pattern. This may get pretty advanced, like day_of_week=”mon-fri”
(for weekdays only). (Beware that day_of_week=”*/2” does not literally mean “every two days”, but
“every day that is divisible by two”!)

is_due(last_run_at)
Returns tuple of two items (is_due, next_time_to_run), where next time to run is in seconds.

See celery.schedules.schedule.is_due() for more information.

remaining_estimate(last_run_at)
Returns when the periodic task should run next as a timedelta.

class celery.schedules.crontab_parser(max_=60)
Parser for crontab expressions. Any expression of the form ‘groups’ (see BNF grammar below) is accepted and
expanded to a set of numbers. These numbers represent the units of time that the crontab needs to run on:

digit :: ’0’..’9’
dow :: ’a’..’z’
number :: digit+ | dow+
steps :: number
range :: number (’-’ number) ?
numspec :: ’*’ | range
expr :: numspec (’/’ steps) ?
groups :: expr (’,’ expr) *

The parser is a general purpose one, useful for parsing hours, minutes and day_of_week expressions. Example
usage:

>>> minutes = crontab_parser(60).parse("*/15")
[0, 15, 30, 45]
>>> hours = crontab_parser(24).parse("*/4")
[0, 4, 8, 12, 16, 20]

144 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

>>> day_of_week = crontab_parser(7).parse("*")
[0, 1, 2, 3, 4, 5, 6]

parse(cronspec)

celery.schedules.maybe_schedule(s, relative=False)

class celery.schedules.schedule(run_every=None, relative=False)

is_due(last_run_at)
Returns tuple of two items (is_due, next_time_to_run), where next time to run is in seconds.

e.g.

•(True, 20), means the task should be run now, and the next time to run is in 20 seconds.

•(False, 12), means the task should be run in 12 seconds.

You can override this to decide the interval at runtime, but keep in mind the value of
CELERYBEAT_MAX_LOOP_INTERVAL, which decides the maximum number of seconds celerybeat can
sleep between re-checking the periodic task intervals. So if you dynamically change the next run at value,
and the max interval is set to 5 minutes, it will take 5 minutes for the change to take effect, so you may con-
sider lowering the value of CELERYBEAT_MAX_LOOP_INTERVAL if responsiveness is of importance to
you.

relative = False

remaining_estimate(last_run_at)
Returns when the periodic task should run next as a timedelta.

9.11 Signals - celery.signals

• Basics
• Signals

– Task Signals
– Worker Signals

9.11.1 Basics

Several kinds of events trigger signals, you can connect to these signals to perform actions as they trigger.

Example connecting to the task_sent signal:

from celery.signals import task_sent

def task_sent_handler(sender=None, task_id=None, task=None, args=None,
kwargs=None, **kwds):

print("Got signal task_sent for task id %s" % (task_id,))

task_sent.connect(task_sent_handler)

Some signals also have a sender which you can filter by. For example the task_sent signal uses the task name as
a sender, so you can connect your handler to be called only when tasks with name "tasks.add" has been sent by
providing the sender argument to connect:

9.11. Signals - celery.signals 145

Celery Documentation, Release 2.1.4

task_sent.connect(task_sent_handler, sender="tasks.add")

9.11.2 Signals

Task Signals

celery.signals.task_sent
Dispatched when a task has been sent to the broker. Note that this is executed in the client process, the one
sending the task, not in the worker.

Sender is the name of the task being sent.

Provides arguments:

•task_id Id of the task to be executed.

•task The task being executed.

•args the tasks positional arguments.

•kwargs The tasks keyword arguments.

•eta The time to execute the task.

•taskset Id of the taskset this task is part of (if any).

celery.signals.task_prerun
Dispatched before a task is executed.

Sender is the task class being executed.

Provides arguments:

•task_id Id of the task to be executed.

•task The task being executed.

•args the tasks positional arguments.

•kwargs The tasks keyword arguments.

celery.signals.task_postrun
Dispatched after a task has been executed.

Sender is the task class executed.

Provides arguments:

•task_id Id of the task to be executed.

•task The task being executed.

•args The tasks positional arguments.

•kwargs The tasks keyword arguments.

•retval

The return value of the task.

146 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

Worker Signals

celery.signals.worker_init
Dispatched before the worker is started.

celery.signals.worker_ready
Dispatched when the worker is ready to accept work.

celery.signals.worker_process_init
Dispatched by each new pool worker process when it starts.

celery.signals.worker_shutdown
Dispatched when the worker is about to shut down.

9.12 Exceptions - celery.exceptions

Common Exceptions

exception celery.exceptions.AlreadyRegistered
The task is already registered.

exception celery.exceptions.ImproperlyConfigured
Celery is somehow improperly configured.

exception celery.exceptions.MaxRetriesExceededError
The tasks max restart limit has been exceeded.

exception celery.exceptions.NotConfigured
Celery has not been configured, as no config module has been found.

exception celery.exceptions.NotRegistered(message, *args, **kwargs)
The task is not registered.

exception celery.exceptions.QueueNotFound
Task routed to a queue not in CELERY_QUEUES.

exception celery.exceptions.RetryTaskError(message, exc, *args, **kwargs)
The task is to be retried later.

exception celery.exceptions.SoftTimeLimitExceeded
The soft time limit has been exceeded. This exception is raised to give the task a chance to clean up.

exception celery.exceptions.TaskRevokedError
The task has been revoked, so no result available.

exception celery.exceptions.TimeLimitExceeded
The time limit has been exceeded and the job has been terminated.

exception celery.exceptions.TimeoutError
The operation timed out.

exception celery.exceptions.WorkerLostError
The worker processing a job has exited prematurely.

9.13 Built-in Task Classes - celery.task.builtins

class celery.task.builtins.AsynchronousMapTask
Task used internally by dmap_async() and TaskSet.map_async().

9.12. Exceptions - celery.exceptions 147

Celery Documentation, Release 2.1.4

name = ‘celery.map_async’

run(serfun, args, timeout=None, **kwargs)

celery.task.builtins.DeleteExpiredTaskMetaTask
alias of backend_cleanup

class celery.task.builtins.ExecuteRemoteTask
Execute an arbitrary function or object.

Note You probably want execute_remote() instead, which this is an internal component of.

The object must be pickleable, so you can’t use lambdas or functions defined in the REPL (that is the python
shell, or ipython).

name = ‘celery.execute_remote’

run(ser_callable, fargs, fkwargs, **kwargs)

Parameters

• ser_callable – A pickled function or callable object.

• fargs – Positional arguments to apply to the function.

• fkwargs – Keyword arguments to apply to the function.

class celery.task.builtins.PingTask
The task used by ping().

name = ‘celery.ping’

run(**kwargs)

Returns the string "pong".

class celery.task.builtins.backend_cleanup

name = ‘celery.backend_cleanup’

run()

9.14 Loaders - celery.loaders

celery.loaders.current_loader()
Detect and return the current loader.

celery.loaders.get_loader_cls(loader)
Get loader class by name/alias

celery.loaders.load_settings()
Load the global settings object.

celery.loaders.setup_loader()

9.15 Loader Base Classes - celery.loaders.base

class celery.loaders.base.BaseLoader
The base class for loaders.

Loaders handles to following things:

148 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

•Reading celery client/worker configurations.

•What happens when a task starts? See on_task_init().

•What happens when the worker starts? See on_worker_init().

•What modules are imported to find tasks?

conf
Loader configuration.

configured = False

import_default_modules()

import_from_cwd(module, imp=None)
Import module, but make sure it finds modules located in the current directory.

Modules located in the current directory has precedence over modules located in sys.path.

import_module(module)

import_task_module(module)

init_worker()

mail_admins(subject, body, fail_silently=False)

on_process_cleanup()
This method is called after a task is executed.

on_task_init(task_id, task)
This method is called before a task is executed.

on_worker_init()
This method is called when the worker (celeryd) starts.

override_backends = {}

worker_initialized = False

9.16 Default Loader - celery.loaders.default

class celery.loaders.default.Loader
The default loader.

See the FAQ for example usage.

on_worker_init()
Imports modules at worker init so tasks can be registered and used by the worked.

The list of modules to import is taken from the CELERY_IMPORTS setting.

read_configuration()
Read configuration from celeryconfig.py and configure celery and Django so it can be used by
regular Python.

setup_settings(settingsdict)

celery.loaders.default.wanted_module_item(item)

9.16. Default Loader - celery.loaders.default 149

Celery Documentation, Release 2.1.4

9.17 Task Registry - celery.registry

celery.registry

class celery.registry.TaskRegistry
Site registry for tasks.

exception NotRegistered(message, *args, **kwargs)
The task is not registered.

TaskRegistry.filter_types(type)
Return all tasks of a specific type.

TaskRegistry.periodic()
Get all periodic task types.

TaskRegistry.pop(key, *args)

TaskRegistry.register(task)
Register a task in the task registry.

The task will be automatically instantiated if not already an instance.

TaskRegistry.regular()
Get all regular task types.

TaskRegistry.unregister(name)
Unregister task by name.

Parameters name – name of the task to unregister, or a celery.task.base.Task with a
valid name attribute.

Raises celery.exceptions.NotRegistered if the task has not been registered.

9.18 Task States - celery.states

• States
• Sets

– READY_STATES
– UNREADY_STATES
– EXCEPTION_STATES
– PROPAGATE_STATES
– ALL_STATES

9.18.1 States

See Task States.

9.18.2 Sets

READY_STATES

Set of states meaning the task result is ready (has been executed).

150 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

UNREADY_STATES

Set of states meaning the task result is not ready (has not been executed).

EXCEPTION_STATES

Set of states meaning the task returned an exception.

PROPAGATE_STATES

Set of exception states that should propagate exceptions to the user.

ALL_STATES

Set of all possible states.

celery.states.precedence(state)
Get the precedence index for state.

Lower index means higher precedence.

class celery.states.state
State is a subclass of str, implementing comparison methods adhering to state precedence rules.

compare(other, fun, default=False)

9.19 Messaging - celery.messaging

Sending and Receiving Messages

class celery.messaging.BroadcastConsumer(*args, **kwargs)
Consume broadcast commands

auto_delete = False

consume(*args, **kwargs)

durable = True

exchange = ‘celeryctl’

exchange_type = ‘fanout’

no_ack = True

queue = ‘celeryctl’

verify_exclusive()

class celery.messaging.BroadcastPublisher(connection, exchange=None, routing_key=None,
**kwargs)

Publish broadcast commands

ReplyTo
alias of ControlReplyConsumer

auto_delete = False

durable = True

9.19. Messaging - celery.messaging 151

Celery Documentation, Release 2.1.4

exchange = ‘celeryctl’

exchange_type = ‘fanout’

send(type, arguments, destination=None, reply_ticket=None)
Send broadcast command.

class celery.messaging.ConsumerSet(connection, from_dict=None, consumers=None, call-
backs=None, **options)

ConsumerSet with an optional decode error callback.

For more information see carrot.messaging.ConsumerSet.

on_decode_error
Callback called if a message had decoding errors. The callback is called with the signature:

callback(message, exception)

on_decode_error = None

class celery.messaging.ControlReplyConsumer(connection, ticket, **kwargs)

auto_delete = True

collect(limit=None, timeout=1, callback=None)

durable = False

exchange = ‘celerycrq’

exchange_type = ‘direct’

exclusive = False

no_ack = True

class celery.messaging.ControlReplyPublisher(connection, exchange=None, rout-
ing_key=None, **kwargs)

auto_delete = True

delivery_mode = ‘non-persistent’

durable = False

exchange = ‘celerycrq’

exchange_type = ‘direct’

class celery.messaging.EventConsumer(connection, queue=None, exchange=None, rout-
ing_key=None, **kwargs)

Consume events

auto_delete = False

durable = True

exchange = ‘celeryevent’

exchange_type = ‘direct’

no_ack = True

queue = ‘celeryevent’

routing_key = ‘celeryevent’

152 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

class celery.messaging.EventPublisher(connection, exchange=None, routing_key=None,
**kwargs)

Publish events

auto_delete = False

delivery_mode = 2

durable = True

exchange = ‘celeryevent’

exchange_type = ‘direct’

routing_key = ‘celeryevent’

serializer = ‘json’

class celery.messaging.TaskConsumer(connection, queue=None, exchange=None, rout-
ing_key=None, **kwargs)

Consume tasks

exchange = ‘celery’

exchange_type = ‘direct’

queue = ‘celery’

routing_key = ‘celery’

class celery.messaging.TaskPublisher(*args, **kwargs)
Publish tasks.

auto_declare = False

declare()

delay_task(task_name, task_args=None, task_kwargs=None, countdown=None, eta=None,
task_id=None, taskset_id=None, exchange=None, exchange_type=None, expires=None,
**kwargs)

Delay task for execution by the celery nodes.

exchange = ‘celery’

exchange_type = ‘direct’

routing_key = ‘celery’

serializer = ‘pickle’

celery.messaging.establish_connection(hostname=None, userid=None, password=None, vir-
tual_host=None, port=None, ssl=None, insist=None,
connect_timeout=None, backend_cls=None,
defaults=<module ‘celery.conf’ from ‘../cel-
ery/conf.pyc’>)

Establish a connection to the message broker.

celery.messaging.extract_msg_options(d)

celery.messaging.get_consumer_set(connection, queues=None, **options)
Get the carrot.messaging.ConsumerSet‘ for a queue configuration.

Defaults to the queues in CELERY_QUEUES.

celery.messaging.with_connection(fun)
Decorator for providing default message broker connection for functions supporting the connection and
connect_timeout keyword arguments.

9.19. Messaging - celery.messaging 153

Celery Documentation, Release 2.1.4

9.20 Contrib: Abortable tasks - celery.contrib.abortable

• Abortable tasks overview
– Usage example

9.20.1 Abortable tasks overview

For long-running Task‘s, it can be desirable to support aborting during execution. Of course, these tasks should be
built to support abortion specifically.

The AbortableTask serves as a base class for all Task objects that should support abortion by producers.

• Producers may invoke the abort() method on AbortableAsyncResult instances, to request abortion.

• Consumers (workers) should periodically check (and honor!) the is_aborted() method at controlled points
in their task’s run() method. The more often, the better.

The necessary intermediate communication is dealt with by the AbortableTask implementation.

Usage example

In the consumer:

from celery.contrib.abortable import AbortableTask

def MyLongRunningTask(AbortableTask):

def run(self, **kwargs):
logger = self.get_logger(**kwargs)
results = []
for x in xrange(100):

Check after every 5 loops..
if x % 5 == 0: # alternatively, check when some timer is due

if self.is_aborted(**kwargs):
Respect the aborted status and terminate
gracefully
logger.warning("Task aborted.")
return None

y = do_something_expensive(x)
results.append(y)

logger.info("Task finished.")
return results

In the producer:

from myproject.tasks import MyLongRunningTask

def myview(request):

async_result = MyLongRunningTask.delay()
async_result is of type AbortableAsyncResult

After 10 seconds, abort the task
time.sleep(10)
async_result.abort()

154 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

...

After the async_result.abort() call, the task execution is not aborted immediately. In fact, it is not guaranteed
to abort at all. Keep checking the async_result status, or call async_result.wait() to have it block until
the task is finished.

Note: In order to abort tasks, there needs to be communication between the producer and the consumer. This is
currently implemented through the database backend. Therefore, this class will only work with the database backends.

class celery.contrib.abortable.AbortableAsyncResult(task_id, backend=None,
task_name=None)

Represents a abortable result.

Specifically, this gives the AsyncResult a abort() method, which sets the state of the underlying Task to
"ABORTED".

abort()
Set the state of the task to ABORTED.

Abortable tasks monitor their state at regular intervals and terminate execution if so.

Be aware that invoking this method does not guarantee when the task will be aborted (or even if the task
will be aborted at all).

is_aborted()
Returns True if the task is (being) aborted.

class celery.contrib.abortable.AbortableTask
A celery task that serves as a base class for all Task‘s that support aborting during execution.

All subclasses of AbortableTask must call the is_aborted() method periodically and act accordingly
when the call evaluates to True.

classmethod AsyncResult(task_id)
Returns the accompanying AbortableAsyncResult instance.

is_aborted(**kwargs)
Checks against the backend whether this AbortableAsyncResult is ABORTED.

Always returns False in case the task_id parameter refers to a regular (non-abortable) Task.

Be aware that invoking this method will cause a hit in the backend (for example a database query), so find
a good balance between calling it regularly (for responsiveness), but not too often (for performance).

name = ‘celery.contrib.abortable.AbortableTask’

9.21 Events - celery.events

celery.events.Event(type, **fields)
Create an event.

An event is a dictionary, the only required field is the type.

class celery.events.EventDispatcher(connection, hostname=None, enabled=True)
Send events as messages.

Parameters

• connection – Carrot connection.

9.21. Events - celery.events 155

Celery Documentation, Release 2.1.4

• hostname – Hostname to identify ourselves as, by default uses the hostname returned by
socket.gethostname().

• enabled – Set to False to not actually publish any events, making send() a noop opera-
tion.

You need to close() this after use.

close()
Close the event dispatcher.

disable()

enable()

flush()

send(type, **fields)
Send event.

Parameters

• type – Kind of event.

• **fields – Event arguments.

class celery.events.EventReceiver(connection, handlers=None, wakeup=True)
Capture events.

Parameters

• connection – Carrot connection.

• handlers – Event handlers.

handlers‘ is a dict of event types and their handlers, the special handler "*‘" captures all events that doesn’t
have a handler.

capture(limit=None, timeout=None)
Open up a consumer capturing events.

This has to run in the main process, and it will never stop unless forced via KeyboardInterrupt or
SystemExit.

consumer()

handlers = {}

process(type, event)
Process the received event by dispatching it to the appropriate handler.

celery.events.create_event(type, fields)

9.22 In-memory Representation of Cluster State - celery.events.state

class celery.events.state.Element

class celery.events.state.State(callback=None, max_workers_in_memory=5000,
max_tasks_in_memory=10000)

Records clusters state.

alive_workers()
Returns a list of (seemingly) alive workers.

156 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

clear(ready=True)

clear_tasks(ready=True)

event(event)

event_count = 0

freeze_while(fun, *args, **kwargs)

get_or_create_task(uuid)
Get or create task by uuid.

get_or_create_worker(hostname, **kwargs)
Get or create worker by hostname.

task_count = 0

task_event(type, fields)
Process task event.

task_types()
Returns a list of all seen task types.

tasks_by_timestamp(limit=None)
Get tasks by timestamp.

Returns a list of (uuid, task) tuples.

tasks_by_type(name, limit=None)
Get all tasks by type.

Returns a list of (uuid, task) tuples.

tasks_by_worker(hostname, limit=None)
Get all tasks by worker.

Returns a list of (uuid, task) tuples.

worker_event(type, fields)
Process worker event.

class celery.events.state.Task(**fields)
Task State.

info(fields=None, extra=[])
merge(state, timestamp, fields)

merge_rules = {‘RECEIVED’: (‘name’, ‘args’, ‘kwargs’, ‘retries’, ‘eta’, ‘expires’)}

on_failed(timestamp=None, **fields)

on_received(timestamp=None, **fields)

on_retried(timestamp=None, **fields)

on_revoked(timestamp=None, **fields)

on_started(timestamp=None, **fields)

on_succeeded(timestamp=None, **fields)

ready

update(state, timestamp, fields)

9.22. In-memory Representation of Cluster State - celery.events.state 157

Celery Documentation, Release 2.1.4

class celery.events.state.Worker(**fields)
Worker State.

alive

heartbeat_max = 4

on_heartbeat(timestamp=None, **kwargs)

on_offline(**kwargs)

on_online(timestamp=None, **kwargs)

9.23 App: Worker Node - celery.apps.worker

class celery.apps.worker.Worker(concurrency=None, loglevel=None, logfile=None, host-
name=None, discard=False, run_clockservice=False, sched-
ule=None, task_time_limit=None, task_soft_time_limit=None,
max_tasks_per_child=None, queues=None, events=False,
db=None, include=None, defaults=None, pidfile=None,
redirect_stdouts=None, redirect_stdouts_level=None, sched-
uler_cls=None, **kwargs)

class WorkController(concurrency=None, logfile=None, loglevel=None, send_events=False,
hostname=None, ready_callback=<function noop at 0x487c050>, em-
bed_clockservice=False, pool_cls=’celery.concurrency.processes.TaskPool’,
listener_cls=’celery.worker.listener.CarrotListener’,
mediator_cls=’celery.worker.controllers.Mediator’,
eta_scheduler_cls=’celery.utils.timer2.Timer’,
schedule_filename=’celerybeat-schedule’, task_time_limit=None,
task_soft_time_limit=None, max_tasks_per_child=None,
pool_putlocks=True, disable_rate_limits=False, db=None, sched-
uler_cls=’celery.beat.PersistentScheduler’)

Executes tasks waiting in the task queue.

Parameters

• concurrency – see concurrency.

• logfile – see logfile.

• loglevel – see loglevel.

• embed_clockservice – see embed_clockservice.

• send_events – see send_events.

concurrency
The number of simultaneous processes doing work (default: conf.CELERYD_CONCURRENCY)

loglevel
The loglevel used (default: logging.INFO)

logfile
The logfile used, if no logfile is specified it uses stderr (default: cel-
ery.conf.CELERYD_LOG_FILE).

embed_clockservice
If True, celerybeat is embedded, running in the main worker process as a thread.

158 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

send_events
Enable the sending of monitoring events, these events can be captured by monitors (celerymon).

logger
The logging.Logger instance used for logging.

pool
The multiprocessing.Pool instance used.

ready_queue
The Queue.Queue that holds tasks ready for immediate processing.

schedule_controller
Instance of celery.worker.controllers.ScheduleController.

mediator
Instance of celery.worker.controllers.Mediator.

listener
Instance of CarrotListener.

concurrency = 0

logfile = None

loglevel = 40

on_timer_error(exc_info)

on_timer_tick(delay)

process_task(wrapper)
Process task by sending it to the pool of workers.

start()
Starts the workers main loop.

stop()
Graceful shutdown of the worker server.

terminate()
Not so graceful shutdown of the worker server.

Worker.die(msg, exitcode=1)

Worker.init_loader()

Worker.init_queues()

Worker.install_platform_tweaks(worker)
Install platform specific tweaks and workarounds.

Worker.on_listener_ready(listener)

Worker.osx_proxy_detection_workaround()
See http://github.com/ask/celery/issues#issue/161

Worker.purge_messages()

Worker.redirect_stdouts_to_logger()

Worker.run()

Worker.run_worker()

Worker.set_process_status(info)

9.23. App: Worker Node - celery.apps.worker 159

http://github.com/ask/celery/issues#issue/161

Celery Documentation, Release 2.1.4

Worker.startup_info()

Worker.tasklist(include_builtins=True)

Worker.worker_init()

celery.apps.worker.install_HUP_not_supported_handler(worker)

celery.apps.worker.install_worker_int_again_handler(worker)

celery.apps.worker.install_worker_int_handler(worker)

celery.apps.worker.install_worker_restart_handler(worker)

celery.apps.worker.install_worker_term_handler(worker)

celery.apps.worker.run_worker(*args, **kwargs)

9.24 App: Periodic Task Scheduler - celery.apps.beat

class celery.apps.beat.Beat(loglevel=None, logfile=None, schedule=None, max_interval=None,
scheduler_cls=None, defaults=None, socket_timeout=30, redi-
rect_stdouts=None, redirect_stdouts_level=None, **kwargs)

class Service(logger=None, max_interval=300, schedule={‘celery.backend_cleanup’: {‘task’:
‘celery.backend_cleanup’, ‘schedule’: <crontab: 00 04 * (m/h/d)>}},
schedule_filename=’celerybeat-schedule’, scheduler_cls=None)

get_scheduler(lazy=False)

scheduler

scheduler_cls
alias of PersistentScheduler

start(embedded_process=False)

stop(wait=False)

sync()

Beat.init_loader()

Beat.install_sync_handler(beat)
Install a SIGTERM + SIGINT handler that saves the celerybeat schedule.

Beat.run()

Beat.set_process_title()

Beat.setup_logging()

Beat.start_scheduler(logger=None)

Beat.startup_info(beat)

celery.apps.beat.run_celerybeat(*args, **kwargs)

9.25 Base Command - celery.bin.base

class celery.bin.base.Command(defaults=None)

160 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

Parser
alias of OptionParser

args = ‘’

create_parser(prog_name)

execute_from_commandline(argv=None)

get_options()

option_list = ()

parse_options(prog_name, arguments)
Parse the available options.

run(*args, **options)

usage()

version = ‘2.1.4’

9.26 celeryd - celery.bin.celeryd

celeryd

-c, --concurrency
Number of child processes processing the queue. The default is the number of CPUs available on your system.

-f, --logfile
Path to log file. If no logfile is specified, stderr is used.

-l, --loglevel
Logging level, choose between DEBUG, INFO, WARNING, ERROR, CRITICAL, or FATAL.

-n, --hostname
Set custom hostname.

-B, --beat
Also run the celerybeat periodic task scheduler. Please note that there must only be one instance of this
service.

-Q, --queues
List of queues to enable for this worker, separated by comma. By default all configured queues are enabled.
Example: -Q video,image

-I, --include
Comma separated list of additional modules to import. Example: -I foo.tasks,bar.tasks

-s, --schedule
Path to the schedule database if running with the -B option. Defaults to celerybeat-schedule. The
extension ”.db” will be appended to the filename.

--scheduler
Scheduler class to use. Default is celery.beat.PersistentScheduler

-E, --events
Send events that can be captured by monitors like celerymon.

--purge, --discard
Discard all waiting tasks before the daemon is started. WARNING: This is unrecoverable, and the tasks will be
deleted from the messaging server.

9.26. celeryd - celery.bin.celeryd 161

Celery Documentation, Release 2.1.4

--time-limit
Enables a hard time limit (in seconds) for tasks.

--soft-time-limit
Enables a soft time limit (in seconds) for tasks.

--maxtasksperchild
Maximum number of tasks a pool worker can execute before it’s terminated and replaced by a new worker.

class celery.bin.celeryd.WorkerCommand(defaults=None)

get_options()

run(*args, **kwargs)

celery.bin.celeryd.main()

celery.bin.celeryd.windows_main()

9.27 Celery Periodic Task Server - celery.bin.celerybeat

celerybeat

-s, --schedule
Path to the schedule database. Defaults to celerybeat-schedule. The extension ”.db” will be appended
to the filename.

-S, --scheduler
Scheduler class to use. Default is celery.beat.PersistentScheduler

-f, --logfile
Path to log file. If no logfile is specified, stderr is used.

-l, --loglevel
Logging level, choose between DEBUG, INFO, WARNING, ERROR, CRITICAL, or FATAL.

class celery.bin.celerybeat.BeatCommand(defaults=None)

get_options()

run(*args, **kwargs)

celery.bin.celerybeat.main()

9.28 celeryev: Curses Event Viewer - celery.bin.celeryev

celery.bin.celeryev.main()

celery.bin.celeryev.parse_options(arguments)
Parse the available options to celeryev.

celery.bin.celeryev.run_celeryev(dump=False, camera=None, frequency=1.0, maxrate=None,
loglevel=30, logfile=None, prog_name=’celeryev’,
**kwargs)

celery.bin.celeryev.set_process_status(prog, info=’‘)

162 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

9.29 celeryctl - celery.bin.celeryctl

class celery.bin.celeryctl.Command(no_color=False)

args = ‘’

create_parser(prog_name, command)

error(s)

help = ‘’

option_list = (<Option at 0x6a51c68: -q/–quiet>, <Option at 0x6a51cb0: –conf>, <Option at 0x6a51b48: –loader>, <Option at 0x6a51c20: -C/–no-color>)

out(s, fh=<open file ‘<stdout>’, mode ‘w’ at 0x7fa9bafbf150>)

prettify(n)

prettify_dict_ok_error(n)

prettify_list(n)

run(*args, **kwargs)

run_from_argv(argv)

usage(command)

version = ‘2.1.4’

exception celery.bin.celeryctl.Error

class celery.bin.celeryctl.apply(no_color=False)

args = ‘<task_name>’

option_list = (<Option at 0x6a51c68: -q/–quiet>, <Option at 0x6a51cb0: –conf>, <Option at 0x6a51b48: –loader>, <Option at 0x6a51c20: -C/–no-color>, <Option at 0x6a51050: -a/–args>, <Option at 0x6a510e0: -k/–kwargs>, <Option at 0x6a51098: –eta>, <Option at 0x6a51170: –countdown>, <Option at 0x6a51248: –expires>, <Option at 0x6a51320: –serializer>, <Option at 0x6a513f8: –queue>, <Option at 0x6a51518: –exchange>, <Option at 0x6a515f0: –routing-key>)

run(name, *_, **kw)

class celery.bin.celeryctl.celeryctl

commands = {‘status’: <class ‘celery.bin.celeryctl.status’>, ‘apply’: <class ‘celery.bin.celeryctl.apply’>, ‘inspect’: <class ‘celery.bin.celeryctl.inspect’>, ‘result’: <class ‘celery.bin.celeryctl.result’>, ‘help’: <class ‘celery.bin.celeryctl.help’>}

execute(command, argv=None)

execute_from_commandline(argv=None)

celery.bin.celeryctl.command(fun)

class celery.bin.celeryctl.help(no_color=False)

run(*args, **kwargs)

usage(command)

celery.bin.celeryctl.indent(s, n=4)

class celery.bin.celeryctl.inspect(no_color=False)

choices = {‘scheduled’: 1.0, ‘reserved’: 1.0, ‘cancel_consumer’: 1.0, ‘active’: 1.0, ‘add_consumer’: 1.0, ‘stats’: 1.0, ‘revoked’: 1.0, ‘enable_events’: 1.0, ‘ping’: 0.2, ‘disable_events’: 1.0, ‘registered_tasks’: 1.0}

option_list = (<Option at 0x6a51c68: -q/–quiet>, <Option at 0x6a51cb0: –conf>, <Option at 0x6a51b48: –loader>, <Option at 0x6a51c20: -C/–no-color>, <Option at 0x6a51998: -t/–timeout>, <Option at 0x6a51950: -d/–destination>)

9.29. celeryctl - celery.bin.celeryctl 163

Celery Documentation, Release 2.1.4

run(*args, **kwargs)

say(direction, title, body=’‘)

usage(command)

celery.bin.celeryctl.main()

class celery.bin.celeryctl.result(no_color=False)

args = ‘<task_id>’

option_list = (<Option at 0x6a51c68: -q/–quiet>, <Option at 0x6a51cb0: –conf>, <Option at 0x6a51b48: –loader>, <Option at 0x6a51c20: -C/–no-color>, <Option at 0x6a51830: -t/–task>)

run(task_id, *args, **kwargs)

class celery.bin.celeryctl.status(no_color=False)

option_list = (<Option at 0x6a51c68: -q/–quiet>, <Option at 0x6a51cb0: –conf>, <Option at 0x6a51b48: –loader>, <Option at 0x6a51c20: -C/–no-color>, <Option at 0x6a51998: -t/–timeout>, <Option at 0x6a51950: -d/–destination>)

run(*args, **kwargs)

9.30 caqmadm: AMQP API Command-line Shell - cel-
ery.bin.camqadm

camqadm

class celery.bin.camqadm.AMQPAdmin(*args, **kwargs)
The celery camqadm utility.

connect(conn=None)

run()

say(m)

class celery.bin.camqadm.AMQShell(*args, **kwargs)
AMQP API Shell.

Parameters

• connect – Function used to connect to the server, must return connection object.

• silent – If True, the commands won’t have annoying output not relevant when running in
non-shell mode.

amqp
Mapping of AMQP API commands and their Spec.

amqp = {‘queue.declare’: <celery.bin.camqadm.Spec object at 0x58a5210>, ‘queue.purge’: <celery.bin.camqadm.Spec object at 0x58a5750>, ‘exchange.delete’: <celery.bin.camqadm.Spec object at 0x58a5310>, ‘basic.publish’: <celery.bin.camqadm.Spec object at 0x58a52d0>, ‘basic.ack’: <celery.bin.camqadm.Spec object at 0x58a5e90>, ‘exchange.declare’: <celery.bin.camqadm.Spec object at 0x58a5390>, ‘queue.delete’: <celery.bin.camqadm.Spec object at 0x58a50d0>, ‘queue.bind’: <celery.bin.camqadm.Spec object at 0x58a5fd0>, ‘basic.get’: <celery.bin.camqadm.Spec object at 0x58a5e10>}

builtins = {‘exit’: ‘do_exit’, ‘EOF’: ‘do_exit’, ‘help’: ‘do_help’}

chan = None

completenames(text, *ignored)
Return all commands starting with text, for tab-completion.

conn = None

counter = 1

default(line)

164 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

dispatch(cmd, argline)
Dispatch and execute the command.

Lookup order is: builtins -> amqp.

display_command_help(cmd, short=False)

do_exit(*args)
The "exit" command.

do_help(*args)

get_amqp_api_command(cmd, arglist)
With a command name and a list of arguments, convert the arguments to Python values and find the
corresponding method on the AMQP channel object.

Returns tuple of (method, processed_args).

Example:

>>> get_amqp_api_command("queue.delete", ["pobox", "yes", "no"])
(<bound method Channel.queue_delete of
<amqplib.client_0_8.channel.Channel object at 0x...>>,
(’testfoo’, True, False))

get_names()

identchars = ‘.’

inc_counter = <method-wrapper ‘next’ of itertools.count object at 0x65ac488>

needs_reconnect = False

onecmd(line)
Parse line and execute command.

parseline(line)
Parse input line.

Returns tuple of three items: (command_name, arglist, original_line)

E.g:

>>> parseline("queue.delete A ’B’ C")
("queue.delete", "A ’B’ C", "queue.delete A ’B’ C")

prompt

prompt_fmt = ‘%d> ‘

respond(retval)
What to do with the return value of a command.

say(m)
Say something to the user. Disabled if silent‘.

class celery.bin.camqadm.Spec(*args, **kwargs)
AMQP Command specification.

Used to convert arguments to Python values and display various help and tooltips.

Parameters

• args – see args.

• returns – see returns.

9.30. caqmadm: AMQP API Command-line Shell - celery.bin.camqadm 165

Celery Documentation, Release 2.1.4

coerce(index, value)
Coerce value for argument at index.

E.g. if args is [("is_active", bool)]:

>>> coerce(0, "False")
False

format_arg(name, type, default_value=None)

format_response(response)
Format the return value of this command in a human-friendly way.

format_signature()

str_args_to_python(arglist)
Process list of string arguments to values according to spec.

e.g:

>>> spec = Spec([("queue", str), ("if_unused", bool)])
>>> spec.str_args_to_python("pobox", "true")
("pobox", True)

celery.bin.camqadm.camqadm(*args, **options)

celery.bin.camqadm.dump_message(message)

celery.bin.camqadm.format_declare_queue(ret)

celery.bin.camqadm.main()

celery.bin.camqadm.parse_options(arguments)
Parse the available options to celeryd.

celery.bin.camqadm.say(m)

9.31 Celeryd Multi Tool - celery.bin.celeryd_multi

• Examples

9.31.1 Examples

Advanced example starting 10 workers in the background:
* Three of the workers processes the images and video queue
* Two of the workers processes the data queue with loglevel DEBUG
* the rest processes the default’ queue.
$ celeryd-multi start 10 -l INFO -Q:1-3 images,video -Q:4,5:data

-Q default -L:4,5 DEBUG

You can show the commands necessary to start the workers with
the "show" command:
$ celeryd-multi show 10 -l INFO -Q:1-3 images,video -Q:4,5:data

-Q default -L:4,5 DEBUG

3 workers, with 3 processes each
$ celeryd-multi start 3 -c 3

166 Chapter 9. API Reference

Celery Documentation, Release 2.1.4

celeryd -n celeryd1.myhost -c 3
celeryd -n celeryd2.myhost -c 3
celeryd- n celeryd3.myhost -c 3

start 3 named workers
$ celeryd-multi start image video data -c 3
celeryd -n image.myhost -c 3
celeryd -n video.myhost -c 3
celeryd -n data.myhost -c 3

specify custom hostname
$ celeryd-multi start 2 -n worker.example.com -c 3
celeryd -n celeryd1.worker.example.com -c 3
celeryd -n celeryd2.worker.example.com -c 3

Additionl options are added to each celeryd’,
but you can also modify the options for ranges of or single workers

3 workers: Two with 3 processes, and one with 10 processes.
$ celeryd-multi start 3 -c 3 -c:1 10
celeryd -n celeryd1.myhost -c 10
celeryd -n celeryd2.myhost -c 3
celeryd -n celeryd3.myhost -c 3

can also specify options for named workers
$ celeryd-multi start image video data -c 3 -c:image 10
celeryd -n image.myhost -c 10
celeryd -n video.myhost -c 3
celeryd -n data.myhost -c 3

ranges and lists of workers in options is also allowed:
(-c:1-3 can also be written as -c:1,2,3)
$ celeryd-multi start 5 -c 3 -c:1-3 10
celeryd -n celeryd1.myhost -c 10
celeryd -n celeryd2.myhost -c 10
celeryd -n celeryd3.myhost -c 10
celeryd -n celeryd4.myhost -c 3
celeryd -n celeryd5.myhost -c 3

lists also works with named workers
$ celeryd-multi start foo bar baz xuzzy -c 3 -c:foo,bar,baz 10
celeryd -n foo.myhost -c 10
celeryd -n bar.myhost -c 10
celeryd -n baz.myhost -c 10
celeryd -n xuzzy.myhost -c 3

class celery.bin.celeryd_multi.MultiTool

error(msg=None)

execute_from_commandline(argv, cmd=’celeryd’)

expand(argv, cmd=None)

get(argv, cmd)

getpids(p, cmd, callback=None)

help(argv, cmd=None)

9.31. Celeryd Multi Tool - celery.bin.celeryd_multi 167

Celery Documentation, Release 2.1.4

info(msg, newline=True)

kill(argv, cmd)

names(argv, cmd)

node_alive(pid)

note(msg, newline=True)

restart(argv, cmd)

retcode = 0

show(argv, cmd)

shutdown_nodes(nodes, sig=15, retry=None, callback=None)

signal_node(nodename, pid, sig)

splash()

start(argv, cmd)

stop(argv, cmd)

usage()

waitexec(argv, path=’/home/docs/checkouts/readthedocs.org/user_builds/celery/envs/2.1-
archived/bin/python’)

with_detacher_default_options(p)

class celery.bin.celeryd_multi.NamespacedOptionParser(args)

add_option(name, value, short=False, ns=None)

optmerge(ns, defaults=None)

parse()

process_long_opt(arg, value=None)

process_short_opt(arg, value=None)

celery.bin.celeryd_multi.abbreviations(map)

celery.bin.celeryd_multi.findsig(args, default=15)

celery.bin.celeryd_multi.format_opt(opt, value)

celery.bin.celeryd_multi.main()

celery.bin.celeryd_multi.multi_args(p, cmd=’celeryd’, append=’‘, prefix=’‘, suffix=’‘)

celery.bin.celeryd_multi.parse_ns_range(ns, ranges=False)

celery.bin.celeryd_multi.quote(v)

celery.bin.celeryd_multi.say(m, newline=True)

168 Chapter 9. API Reference

CHAPTER 10

Internals

Release 2.1

Date February 04, 2014

10.1 Celery Deprecation Timeline

• Removals for version 2.0

10.1.1 Removals for version 2.0

• The following settings will be removed:

Setting name Replace with
CELERY_AMQP_CONSUMER_QUEUES CELERY_QUEUES
CELERY_AMQP_CONSUMER_QUEUES CELERY_QUEUES
CELERY_AMQP_EXCHANGE CELERY_DEFAULT_EXCHANGE
CELERY_AMQP_EXCHANGE_TYPE CELERY_DEFAULT_AMQP_EXCHANGE_TYPE
CELERY_AMQP_CONSUMER_ROUTING_KEY CELERY_QUEUES
CELERY_AMQP_PUBLISHER_ROUTING_KEY CELERY_DEFAULT_ROUTING_KEY

• CELERY_LOADER definitions without class name.

E.g. celery.loaders.default, needs to include the class name:
celery.loaders.default.Loader.

• TaskSet.run(). Use celery.task.base.TaskSet.apply_async() instead.

• The module celery.task.rest; use celery.task.http instead.

10.2 Internals: The worker

169

Celery Documentation, Release 2.1.4

• Introduction
• Data structures

– ready_queue
– eta_schedule

• Components
– CarrotListener
– ScheduleController
– Mediator
– TaskPool

10.2.1 Introduction

The worker consists of 4 main components: the broker listener, the scheduler, the mediator and the task pool. All these
components runs in parallel working with two data structures: the ready queue and the ETA schedule.

10.2.2 Data structures

ready_queue

The ready queue is either an instance of Queue.Queue, or celery.buckets.TaskBucket. The latter if rate limiting is
enabled.

eta_schedule

The ETA schedule is a heap queue sorted by time.

10.2.3 Components

CarrotListener

Receives messages from the broker using carrot.

When a message is received it’s converted into a celery.worker.job.TaskRequest object.

Tasks with an ETA are entered into the eta_schedule, messages that can be immediately processed are moved
directly to the ready_queue.

ScheduleController

The schedule controller is running the eta_schedule. If the scheduled tasks eta has passed it is moved to the
ready_queue, otherwise the thread sleeps until the eta is met (remember that the schedule is sorted by time).

Mediator

The mediator simply moves tasks in the ready_queue over to the task pool for execution using
celery.worker.job.TaskRequest.execute_using_pool().

170 Chapter 10. Internals

Celery Documentation, Release 2.1.4

TaskPool

This is a slightly modified multiprocessing.Pool. It mostly works the same way, except it makes sure all of
the workers are running at all times. If a worker is missing, it replaces it with a new one.

10.3 Task Message Protocol

• Message format
• Example message
• Serialization

10.3.1 Message format

• task string

Name of the task. required

• id string

Unique id of the task (UUID). required

• args list

List of arguments. Will be an empty list if not provided.

• kwargs dictionary

Dictionary of keyword arguments. Will be an empty dictionary if not provided.

• retries int

Current number of times this task has been retried. Defaults to 0 if not specified.

• eta string (ISO 8601)

Estimated time of arrival. This is the date and time in ISO 8601 format. If not provided the message is not
scheduled, but will be executed asap.

• expires (introduced after v2.0.2) string (ISO 8601)

Expiration date. This is the date and time in ISO 8601 format. If not provided the message will never
expire. The message will be expired when the message is received and the expiration date has been
exceeded.

10.3.2 Example message

This is an example invocation of the celery.task.PingTask task in JSON format:

{"task": "celery.task.PingTask",
"args": [],
"kwargs": {},
"retries": 0,
"eta": "2009-11-17T12:30:56.527191"}

10.3. Task Message Protocol 171

Celery Documentation, Release 2.1.4

10.3.3 Serialization

The protocol supports several serialization formats using the content_type message header.

The MIME-types supported by default are shown in the following table.

Scheme MIME Type
json application/json
yaml application/x-yaml
pickle application/x-python-serialize
msgpack application/x-msgpack

10.4 List of Worker Events

This is the list of events sent by the worker. The monitor uses these to visualize the state of the cluster.

• Task Events
• Worker Events

10.4.1 Task Events

• task-received(uuid, name, args, kwargs, retries, eta, hostname, timestamp)

Sent when the worker receives a task.

• task-started(uuid, hostname, timestamp)

Sent just before the worker executes the task.

• task-succeeded(uuid, result, runtime, hostname, timestamp)

Sent if the task executed successfully. Runtime is the time it took to execute the task using the pool.
(Time starting from the task is sent to the pool, and ending when the pool result handlers callback is
called).

• task-failed(uuid, exception, traceback, hostname, timestamp)

Sent if the execution of the task failed.

• task-revoked(uuid)

Sent if the task has been revoked (Note that this is likely to be sent by more than one worker)

• task-retried(uuid, exception, traceback, hostname, timestamp)

Sent if the task failed, but will be retried.

10.4.2 Worker Events

• worker-online(hostname, timestamp)

The worker has connected to the broker and is online.

• worker-heartbeat(hostname, timestamp)

Sent every minute, if the worker has not sent a heartbeat in 2 minutes, it’s considered to be offline.

• worker-offline(hostname, timestamp)

172 Chapter 10. Internals

Celery Documentation, Release 2.1.4

The worker has disconnected from the broker.

10.5 Module Index

10.5. Module Index 173

Celery Documentation, Release 2.1.4

• Worker
– celery.worker
– celery.worker.job
– celery.worker.pool
– celery.worker.listener
– celery.worker.controllers
– celery.worker.scheduler
– celery.worker.buckets
– celery.worker.heartbeat
– celery.worker.revoke
– celery.worker.control

• Tasks
– celery.decorators
– celery.registry
– celery.task
– celery.task.base
– celery.task.http
– celery.task.control
– celery.task.builtins

• Execution
– celery.execute
– celery.execute.trace
– celery.result
– celery.states

• Messaging
– celery.messaging

• Result backends
– celery.backends
– celery.backends.base
– celery.backends.amqp
– celery.backends.database

• Loaders
– celery.loaders
– celery.loaders.base - Loader base classes
– celery.loaders.default - The default loader

• CeleryBeat
– celery.beat

• Events
– celery.events

• Logging
– celery.log
– celery.utils.patch

• Configuration
– celery.conf

• Miscellaneous
– celery.datastructures
– celery.exceptions
– celery.platform
– celery.utils
– celery.utils.info
– celery.utils.compat

174 Chapter 10. Internals

Celery Documentation, Release 2.1.4

10.5.1 Worker

celery.worker

• WorkController

This is the worker’s main process. It starts and stops all the components required by the worker: Pool, Mediator,
Scheduler, ClockService, and Listener.

• process_initializer()

This is the function used to initialize pool processes. It sets up loggers and imports required task modules, etc.

celery.worker.job

• TaskRequest

A request to execute a task. Contains the task name, id, args and kwargs. Handles acknowledgement, execution,
writing results to backends and error handling (including error e-mails)

celery.worker.pool

celery.worker.listener

celery.worker.controllers

celery.worker.scheduler

celery.worker.buckets

celery.worker.heartbeat

celery.worker.revoke

celery.worker.control

• celery.worker.registry

• celery.worker.builtins

10.5. Module Index 175

Celery Documentation, Release 2.1.4

10.5.2 Tasks

celery.decorators

celery.registry

celery.task

celery.task.base

celery.task.http

celery.task.control

celery.task.builtins

10.5.3 Execution

celery.execute

celery.execute.trace

celery.result

celery.states

celery.signals

10.5.4 Messaging

celery.messaging

10.5.5 Result backends

celery.backends

celery.backends.base

celery.backends.amqp

celery.backends.database

10.5.6 Loaders

celery.loaders

Loader autodetection, and working with the currently selected loader.

176 Chapter 10. Internals

Celery Documentation, Release 2.1.4

celery.loaders.base - Loader base classes

celery.loaders.default - The default loader

10.5.7 CeleryBeat

celery.beat

10.5.8 Events

celery.events

10.5.9 Logging

celery.log

celery.utils.patch

10.5.10 Configuration

celery.conf

10.5.11 Miscellaneous

celery.datastructures

celery.exceptions

celery.platform

celery.utils

celery.utils.info

celery.utils.compat

10.6 Internal Module Reference

Release 2.1

Date February 04, 2014

10.6.1 Multiprocessing Worker - celery.worker

The Multiprocessing Worker Server

10.6. Internal Module Reference 177

Celery Documentation, Release 2.1.4

class celery.worker.WorkController(concurrency=None, logfile=None,
loglevel=None, send_events=False, host-
name=None, ready_callback=<function noop
at 0x487c050>, embed_clockservice=False,
pool_cls=’celery.concurrency.processes.TaskPool’,
listener_cls=’celery.worker.listener.CarrotListener’,
mediator_cls=’celery.worker.controllers.Mediator’,
eta_scheduler_cls=’celery.utils.timer2.Timer’,
schedule_filename=’celerybeat-schedule’,
task_time_limit=None, task_soft_time_limit=None,
max_tasks_per_child=None, pool_putlocks=True,
disable_rate_limits=False, db=None, sched-
uler_cls=’celery.beat.PersistentScheduler’)

Executes tasks waiting in the task queue.

Parameters

• concurrency – see concurrency.

• logfile – see logfile.

• loglevel – see loglevel.

• embed_clockservice – see embed_clockservice.

• send_events – see send_events.

concurrency
The number of simultaneous processes doing work (default: conf.CELERYD_CONCURRENCY)

loglevel
The loglevel used (default: logging.INFO)

logfile
The logfile used, if no logfile is specified it uses stderr (default: celery.conf.CELERYD_LOG_FILE).

embed_clockservice
If True, celerybeat is embedded, running in the main worker process as a thread.

send_events
Enable the sending of monitoring events, these events can be captured by monitors (celerymon).

logger
The logging.Logger instance used for logging.

pool
The multiprocessing.Pool instance used.

ready_queue
The Queue.Queue that holds tasks ready for immediate processing.

schedule_controller
Instance of celery.worker.controllers.ScheduleController.

mediator
Instance of celery.worker.controllers.Mediator.

listener
Instance of CarrotListener.

concurrency = 0

logfile = None

178 Chapter 10. Internals

Celery Documentation, Release 2.1.4

loglevel = 40

on_timer_error(exc_info)

on_timer_tick(delay)

process_task(wrapper)
Process task by sending it to the pool of workers.

start()
Starts the workers main loop.

stop()
Graceful shutdown of the worker server.

terminate()
Not so graceful shutdown of the worker server.

celery.worker.process_initializer(hostname)
Initializes the process so it can be used to process tasks.

Used for multiprocessing environments.

10.6.2 Worker Message Listener - celery.worker.listener

This module contains the component responsible for consuming messages from the broker, processing the messages
and keeping the broker connections up and running.

• start() is an infinite loop, which only iterates again if the connection is lost. For each iteration (at
start, or if the connection is lost) it calls reset_connection(), and starts the consumer by calling
consume_messages().

• reset_connection(), clears the internal queues, establishes a new connection to the broker, sets up the
task consumer (+ QoS), and the broadcast remote control command consumer.

Also if events are enabled it configures the event dispatcher and starts up the hartbeat thread.

• Finally it can consume messages. consume_messages() is simply an infinite loop waiting for events on the
AMQP channels.

Both the task consumer and the broadcast consumer uses the same callback: receive_message(). The
reason is that some carrot backends doesn’t support consuming from several channels simultaneously, so we use
a little nasty trick (_detect_wait_method()) to select the best possible channel distribution depending on
the functionality supported by the carrot backend.

• So for each message received the receive_message() method is called, this checks the payload of the
message for either a task key or a control key.

If the message is a task, it verifies the validity of the message converts it to a
celery.worker.job.TaskRequest, and sends it to on_task().

If the message is a control command the message is passed to on_control(), which in turn dispatches the
control command using the control dispatcher.

It also tries to handle malformed or invalid messages properly, so the worker doesn’t choke on them and die.
Any invalid messages are acknowledged immediately and logged, so the message is not resent again, and again.

• If the task has an ETA/countdown, the task is moved to the eta_schedule so the timer2.Timer can
schedule it at its deadline. Tasks without an eta are moved immediately to the ready_queue, so they can be
picked up by the Mediator to be sent to the pool.

10.6. Internal Module Reference 179

Celery Documentation, Release 2.1.4

• When a task with an ETA is received the QoS prefetch count is also incremented, so another message can be
reserved. When the ETA is met the prefetch count is decremented again, though this cannot happen immediately
because amqplib doesn’t support doing broker requests across threads. Instead the current prefetch count is kept
as a shared counter, so as soon as consume_messages() detects that the value has changed it will send out
the actual QoS event to the broker.

• Notice that when the connection is lost all internal queues are cleared because we can no longer ack the messages
reserved in memory. Hoever, this is not dangerous as the broker will resend them to another worker when the
channel is closed.

• WARNING: stop() does not close the connection! This is because some pre-acked messages may be in
processing, and they need to be finished before the channel is closed. For celeryd this means the pool must
finish the tasks it has acked early, then close the connection.

class celery.worker.listener.CarrotListener(ready_queue, eta_schedule, logger,
init_callback=<function noop at 0x487c050>,
send_events=False, hostname=None, ini-
tial_prefetch_count=2, pool=None)

Listen for messages received from the broker and move them the the ready queue for task processing.

Parameters

• ready_queue – See ready_queue.

• eta_schedule – See eta_schedule.

ready_queue
The queue that holds tasks ready for immediate processing.

eta_schedule
Scheduler for paused tasks. Reasons for being paused include a countdown/eta or that it’s waiting for retry.

send_events
Is events enabled?

init_callback
Callback to be called the first time the connection is active.

hostname
Current hostname. Defaults to the system hostname.

initial_prefetch_count
Initial QoS prefetch count for the task channel.

control_dispatch
Control command dispatcher. See celery.worker.control.ControlDispatch.

event_dispatcher
See celery.events.EventDispatcher.

hart
Heart sending out heart beats if events enabled.

logger
The logger used.

apply_eta_task(task)

close_connection()

consume_messages()
Consume messages forever (or until an exception is raised).

info

180 Chapter 10. Internals

Celery Documentation, Release 2.1.4

maybe_conn_error(fun)

on_control(control)
Handle received remote control command.

on_decode_error(message, exc)
Callback called if the message had decoding errors.

Parameters

• message – The message with errors.

• exc – The original exception instance.

on_task(task)
Handle received task.

If the task has an eta we enter it into the ETA schedule, otherwise we move it the ready queue for
immediate processing.

receive_message(message_data, message)
The callback called when a new message is received.

reset_connection()
Re-establish connection and set up consumers.

restart_heartbeat()

start()
Start the consumer.

If the connection is lost, it tries to re-establish the connection and restarts consuming messages.

stop()
Stop consuming.

Does not close connection.

stop_consumers(close=True)
Stop consuming.

class celery.worker.listener.QoS(consumer, initial_value, logger)
Quality of Service for Channel.

For thread-safe increment/decrement of a channels prefetch count value.

Parameters

• consumer – A carrot.messaging.Consumer instance.

• initial_value – Initial prefetch count value.

• logger – Logger used to log debug messages.

decrement()
Decrement the current prefetch count value by one.

decrement_eventually()
Decrement the value, but do not update the qos.

The MainThread will be responsible for calling update() when necessary.

increment()
Increment the current prefetch count value by one.

next

10.6. Internal Module Reference 181

Celery Documentation, Release 2.1.4

prev = None

set(pcount)
Set channel prefetch_count setting.

update()
Update prefetch count with current value.

10.6.3 Executable Jobs - celery.worker.job

exception celery.worker.job.AlreadyExecutedError
Tasks can only be executed once, as they might change world-wide state.

exception celery.worker.job.InvalidTaskError
The task has invalid data or is not properly constructed.

class celery.worker.job.TaskRequest(task_name, task_id, args, kwargs, on_ack=<function
noop at 0x487c050>, retries=0, delivery_info=None,
hostname=None, email_subject=None, email_body=None,
logger=None, eventer=None, eta=None, expires=None,
**opts)

A request for task execution.

Parameters

• task_name – see task_name.

• task_id – see task_id.

• args – see args

• kwargs – see kwargs.

task_name
Kind of task. Must be a name registered in the task registry.

task_id
UUID of the task.

args
List of positional arguments to apply to the task.

kwargs
Mapping of keyword arguments to apply to the task.

on_ack
Callback called when the task should be acknowledged.

message
The original message sent. Used for acknowledging the message.

executed
Set to True if the task has been executed. A task should only be executed once.

delivery_info
Additional delivery info, e.g. the contains the path from producer to consumer.

acknowledged
Set to True if the task has been acknowledged.

acknowledge()

acknowledged = False

182 Chapter 10. Internals

Celery Documentation, Release 2.1.4

email_body = ‘\nTask %(name)s with id %(id)s raised exception:\n%(exc)r\n\n\nTask was called with args: %(args)s kwargs: %(kwargs)s.\n\nThe contents of the full traceback was:\n\n%(traceback)s\n\n– \nJust to let you know,\nceleryd at %(hostname)s.\n’

email_subject = ‘ [celery@%(hostname)s] Error: Task %(name)s (%(id)s): %(exc)s\n ‘

error_msg = ‘ Task %(name)s[%(id)s] raised exception: %(exc)s\n%(traceback)s\n ‘

execute(loglevel=None, logfile=None)
Execute the task in a WorkerTaskTrace.

Parameters

• loglevel – The loglevel used by the task.

• logfile – The logfile used by the task.

execute_using_pool(pool, loglevel=None, logfile=None)
Like execute(), but using the multiprocessing pool.

Parameters

• pool – A multiprocessing.Pool instance.

• loglevel – The loglevel used by the task.

• logfile – The logfile used by the task.

executed = False

extend_with_default_kwargs(loglevel, logfile)
Extend the tasks keyword arguments with standard task arguments.

Currently these are logfile, loglevel, task_id, task_name, task_retries, and
delivery_info.

See celery.task.base.Task.run() for more information.

classmethod from_message(message, message_data, on_ack=<function noop at 0x487c050>, log-
ger=None, eventer=None, hostname=None)

Create a TaskRequest from a task message sent by celery.messaging.TaskPublisher.

Raises UnknownTaskError if the message does not describe a task, the message is also re-
jected.

:returns TaskRequest:

info(safe=False)

maybe_expire()

on_accepted(*a, **kw)
Handler called when task is accepted by worker pool.

on_failure(exc_info)
The handler used if the task raised an exception.

on_retry(exc_info)

on_success(ret_value)
The handler used if the task was successfully processed (without raising an exception).

on_timeout(soft)

repr_result(result, maxlen=46)

retry_msg = ‘ Task %(name)s[%(id)s] retry: %(exc)s\n ‘

revoked()

send_error_email(task, context, exc, whitelist=None, enabled=False, fail_silently=True)

10.6. Internal Module Reference 183

Celery Documentation, Release 2.1.4

send_event(type, **fields)

shortinfo()

success_msg = ‘ Task %(name)s[%(id)s] succeeded in %(runtime)ss: %(return_value)s\n ‘

time_start = None

class celery.worker.job.WorkerTaskTrace(*args, **kwargs)
Wraps the task in a jail, catches all exceptions, and saves the status and result of the task execution to the task
meta backend.

If the call was successful, it saves the result to the task result backend, and sets the task status to "SUCCESS".

If the call raises celery.exceptions.RetryTaskError, it extracts the original exception, uses that as
the result and sets the task status to "RETRY".

If the call results in an exception, it saves the exception as the task result, and sets the task status to "FAILURE".

Parameters

• task_name – The name of the task to execute.

• task_id – The unique id of the task.

• args – List of positional args to pass on to the function.

• kwargs – Keyword arguments mapping to pass on to the function.

Returns the evaluated functions return value on success, or the exception instance on failure.

execute()
Execute, trace and store the result of the task.

execute_safe(*args, **kwargs)
Same as execute(), but catches errors.

handle_failure(exc, type_, tb, strtb)
Handle exception.

handle_retry(exc, type_, tb, strtb)
Handle retry exception.

handle_success(retval, *args)
Handle successful execution.

celery.worker.job.execute_and_trace(task_name, *args, **kwargs)
This is a pickleable method used as a target when applying to pools.

It’s the same as:

>>> WorkerTaskTrace(task_name, *args, **kwargs).execute_safe()

10.6.4 Worker Controller Threads - celery.worker.controllers

Worker Controller Threads

class celery.worker.controllers.Mediator(ready_queue, callback, logger=None)
Thread continuously sending tasks in the queue to the pool.

ready_queue
The task queue, a Queue.Queue instance.

callback
The callback used to process tasks retrieved from the ready_queue.

184 Chapter 10. Internals

Celery Documentation, Release 2.1.4

move()

run()

stop()
Gracefully shutdown the thread.

10.6.5 Token Bucket (rate limiting) - celery.worker.buckets

class celery.worker.buckets.FastQueue(maxsize=0)
Queue.Queue supporting the interface of TokenBucketQueue.

clear()

expected_time(tokens=1)

items

wait(block=True)

exception celery.worker.buckets.RateLimitExceeded
The token buckets rate limit has been exceeded.

class celery.worker.buckets.TaskBucket(task_registry)
This is a collection of token buckets, each task type having its own token bucket. If the task type doesn’t have a
rate limit, it will have a plain Queue object instead of a TokenBucketQueue.

The put() operation forwards the task to its appropriate bucket, while the get() operation iterates over the
buckets and retrieves the first available item.

Say we have three types of tasks in the registry: celery.ping, feed.refresh and video.compress,
the TaskBucket will consist of the following items:

{"celery.ping": TokenBucketQueue(fill_rate=300),
"feed.refresh": Queue(),
"video.compress": TokenBucketQueue(fill_rate=2)}

The get operation will iterate over these until one of the buckets is able to return an item. The underlying
datastructure is a dict, so the order is ignored here.

Parameters task_registry – The task registry used to get the task type class for a given task name.

add_bucket_for_type(task_name)
Add a bucket for a task type.

Will read the tasks rate limit and create a TokenBucketQueue if it has one. If the task doesn’t have a
rate limit a regular Queue will be used.

clear()

empty()

get(block=True, timeout=None)
Retrive the task from the first available bucket.

Available as in, there is an item in the queue and you can consume tokens from it.

get_bucket_for_type(task_name)
Get the bucket for a particular task type.

get_nowait()

init_with_registry()
Initialize with buckets for all the task types in the registry.

10.6. Internal Module Reference 185

Celery Documentation, Release 2.1.4

items

put(request)
Put a TaskRequest into the appropiate bucket.

put_nowait(request)
Put a TaskRequest into the appropiate bucket.

qsize()
Get the total size of all the queues.

refresh()
Refresh rate limits for all task types in the registry.

update_bucket_for_type(task_name)

class celery.worker.buckets.TokenBucketQueue(fill_rate, queue=None, capacity=1)
Queue with rate limited get operations.

This uses the token bucket algorithm to rate limit the queue on get operations.

Parameters

• fill_rate – The rate in tokens/second that the bucket will be refilled.

• capacity – Maximum number of tokens in the bucket. Default is 1.

exception RateLimitExceeded
The token buckets rate limit has been exceeded.

TokenBucketQueue.clear()

TokenBucketQueue.empty()

TokenBucketQueue.expected_time(tokens=1)
Returns the expected time in seconds when a new token should be available.

TokenBucketQueue.get(block=True)
Remove and return an item from the queue.

Raises

• RateLimitExceeded – If a token could not be consumed from the token bucket (consum-
ing from the queue too fast).

• Queue.Empty – If an item is not immediately available.

Also see Queue.Queue.get().

TokenBucketQueue.get_nowait()
Remove and return an item from the queue without blocking.

Raises

• RateLimitExceeded – If a token could not be consumed from the token bucket (consum-
ing from the queue too fast).

• Queue.Empty – If an item is not immediately available.

Also see Queue.Queue.get_nowait().

TokenBucketQueue.items

TokenBucketQueue.put(item, block=True)
Put an item into the queue.

Also see Queue.Queue.put().

186 Chapter 10. Internals

Celery Documentation, Release 2.1.4

TokenBucketQueue.put_nowait(item)
Put an item into the queue without blocking.

Raises Queue.Full If a free slot is not immediately available.

Also see Queue.Queue.put_nowait()

TokenBucketQueue.qsize()
Returns the size of the queue.

See Queue.Queue.qsize().

TokenBucketQueue.wait(block=False)
Wait until a token can be retrieved from the bucket and return the next item.

celery.worker.buckets.chain_from_iterable()
chain.from_iterable(iterable) –> chain object

Alternate chain() contructor taking a single iterable argument that evaluates lazily.

10.6.6 Worker Heartbeats - celery.worker.heartbeat

class celery.worker.heartbeat.Heart(eventer, interval=None)
Thread sending heartbeats at an interval.

Parameters

• eventer – Event dispatcher used to send the event.

• interval – Time in seconds between heartbeats. Default is 2 minutes.

bpm
Beats per minute.

bpm = 0.5

run()

stop()
Gracefully shutdown the thread.

10.6.7 Worker Control - celery.worker.control

class celery.worker.control.ControlDispatch(logger=None, hostname=None, listener=None)
Execute worker control panel commands.

class Panel(logger, listener, hostname=None)

data = {‘stats’: <function stats at 0x63e7320>, ‘revoke’: <function revoke at 0x629f668>, ‘enable_events’: <function enable_events at 0x629fed8>, ‘set_loglevel’: <function set_loglevel at 0x63e70c8>, ‘dump_active’: <function dump_active at 0x63e72a8>, ‘dump_schedule’: <function dump_schedule at 0x63e71b8>, ‘rate_limit’: <function rate_limit at 0x63e7140>, ‘disable_events’: <function disable_events at 0x629ff50>, ‘cancel_consumer’: <function cancel_consumer at 0x63e75f0>, ‘dump_tasks’: <function dump_tasks at 0x63e7410>, ‘dump_reserved’: <function dump_reserved at 0x63e7230>, ‘add_consumer’: <function add_consumer at 0x63e7578>, ‘shutdown’: <function shutdown at 0x63e7500>, ‘dump_revoked’: <function dump_revoked at 0x63e7398>, ‘heartbeat’: <function heartbeat at 0x63e7050>, ‘ping’: <function ping at 0x63e7488>}

classmethod register(method, name=None)

ControlDispatch.ReplyPublisher
alias of ControlReplyPublisher

ControlDispatch.dispatch_from_message(message)
Dispatch by using message data received by the broker.

Example:

10.6. Internal Module Reference 187

Celery Documentation, Release 2.1.4

>>> def receive_message(message_data, message):
... control = message_data.get("control")
... if control:
... ControlDispatch().dispatch_from_message(control)

ControlDispatch.execute(command, kwargs=None, reply_to=None)
Execute control command by name and keyword arguments.

Parameters

• command – Name of the command to execute.

• kwargs – Keyword arguments.

ControlDispatch.reply(*args, **kwargs)

10.6.8 Built-in Remote Control Commands - celery.worker.control.builtins

celery.worker.control.builtins.add_consumer(panel, queue=None, exchange=None, ex-
change_type=’direct’, routing_key=None,
**options)

celery.worker.control.builtins.cancel_consumer(panel, queue=None, **_)

celery.worker.control.builtins.disable_events(panel)

celery.worker.control.builtins.dump_active(panel, safe=False, **kwargs)

celery.worker.control.builtins.dump_reserved(panel, safe=False, **kwargs)

celery.worker.control.builtins.dump_revoked(panel, **kwargs)

celery.worker.control.builtins.dump_schedule(panel, safe=False, **kwargs)

celery.worker.control.builtins.dump_tasks(panel, **kwargs)

celery.worker.control.builtins.enable_events(panel)

celery.worker.control.builtins.heartbeat(panel)

celery.worker.control.builtins.ping(panel, **kwargs)

celery.worker.control.builtins.rate_limit(panel, task_name, rate_limit, **kwargs)
Set new rate limit for a task type.

See celery.task.base.Task.rate_limit.

Parameters

• task_name – Type of task.

• rate_limit – New rate limit.

celery.worker.control.builtins.revoke(panel, task_id, **kwargs)
Revoke task by task id.

celery.worker.control.builtins.set_loglevel(panel, loglevel=None)

celery.worker.control.builtins.shutdown(panel, **kwargs)

celery.worker.control.builtins.stats(panel, **kwargs)

188 Chapter 10. Internals

Celery Documentation, Release 2.1.4

10.6.9 Remote Control Command Registry - celery.worker.control.registry

class celery.worker.control.registry.Panel(logger, listener, hostname=None)

data = {‘stats’: <function stats at 0x63e7320>, ‘revoke’: <function revoke at 0x629f668>, ‘enable_events’: <function enable_events at 0x629fed8>, ‘set_loglevel’: <function set_loglevel at 0x63e70c8>, ‘dump_active’: <function dump_active at 0x63e72a8>, ‘dump_schedule’: <function dump_schedule at 0x63e71b8>, ‘rate_limit’: <function rate_limit at 0x63e7140>, ‘disable_events’: <function disable_events at 0x629ff50>, ‘cancel_consumer’: <function cancel_consumer at 0x63e75f0>, ‘dump_tasks’: <function dump_tasks at 0x63e7410>, ‘dump_reserved’: <function dump_reserved at 0x63e7230>, ‘add_consumer’: <function add_consumer at 0x63e7578>, ‘shutdown’: <function shutdown at 0x63e7500>, ‘dump_revoked’: <function dump_revoked at 0x63e7398>, ‘heartbeat’: <function heartbeat at 0x63e7050>, ‘ping’: <function ping at 0x63e7488>}

classmethod register(method, name=None)

10.6.10 Worker State - celery.worker.state

class celery.worker.state.Persistent(filename)

close()

db

merge(d)

open()

save()

storage = <module ‘shelve’ from ‘/usr/lib/python2.7/shelve.pyc’>

sync(d)

celery.worker.state.REVOKE_EXPIRES = 3600

celery.worker.state.active_requests

Set of currently active TaskRequest‘s.

celery.worker.state.total_count

Count of tasks executed by the worker, sorted by type.

celery.worker.state.revoked

The list of currently revoked tasks. (PERSISTENT if statedb set).

celery.worker.state.task_accepted(request)
Updates global state when a task has been accepted.

celery.worker.state.task_ready(request)
Updates global state when a task is ready.

10.6.11 Multiprocessing Pool Support - celery.concurrency.processes

Process Pools.

class celery.concurrency.processes.TaskPool(limit, logger=None, initializer=None,
maxtasksperchild=None, timeout=None,
soft_timeout=None, putlocks=True, ini-
targs=())

Process Pool for processing tasks in parallel.

Parameters

• limit – see limit.

10.6. Internal Module Reference 189

Celery Documentation, Release 2.1.4

• logger – see logger.

limit
The number of processes that can run simultaneously.

logger
The logger used for debugging.

class Pool(processes=None, initializer=None, initargs=(), maxtasksperchild=None, timeout=None,
soft_timeout=None)

Class which supports an async version of the apply() builtin

class Process(group=None, target=None, name=None, args=(), kwargs={})
Process objects represent activity that is run in a separate process

The class is analagous to threading.Thread

authkey

daemon
Return whether process is a daemon

exitcode
Return exit code of process or None if it has yet to stop

ident
Return identifier (PID) of process or None if it has yet to start

is_alive()
Return whether process is alive

join(timeout=None)
Wait until child process terminates

name

pid
Return identifier (PID) of process or None if it has yet to start

run()
Method to be run in sub-process; can be overridden in sub-class

start()
Start child process

terminate()
Terminate process; sends SIGTERM signal or uses TerminateProcess()

class TaskPool.Pool.ResultHandler(outqueue, get, cache, poll, join_exited_workers, put-
lock)

body()

exception TaskPool.Pool.SoftTimeLimitExceeded
The soft time limit has been exceeded. This exception is raised to give the task a chance to clean up.

class TaskPool.Pool.Supervisor(pool)

body()

class TaskPool.Pool.TaskHandler(taskqueue, put, outqueue, pool)

body()

190 Chapter 10. Internals

Celery Documentation, Release 2.1.4

class TaskPool.Pool.TimeoutHandler(processes, cache, t_soft, t_hard, putlock)

body()

TaskPool.Pool.apply(func, args=(), kwds={})
Equivalent of apply() builtin

TaskPool.Pool.apply_async(func, args=(), kwds={}, callback=None, ac-
cept_callback=None, timeout_callback=None, wait-
forslot=False, error_callback=None)

Asynchronous equivalent of apply() builtin.

Callback is called when the functions return value is ready. The accept callback is called when the job
is accepted to be executed.

Simplified the flow is like this:

>>> if accept_callback:
... accept_callback()
>>> retval = func(*args, **kwds)
>>> if callback:
... callback(retval)

TaskPool.Pool.close()

TaskPool.Pool.imap(func, iterable, chunksize=1)
Equivalent of itertools.imap() – can be MUCH slower than Pool.map()

TaskPool.Pool.imap_unordered(func, iterable, chunksize=1)
Like imap() method but ordering of results is arbitrary

TaskPool.Pool.join()

TaskPool.Pool.map(func, iterable, chunksize=None)
Equivalent of map() builtin

TaskPool.Pool.map_async(func, iterable, chunksize=None, callback=None)
Asynchronous equivalent of map() builtin

TaskPool.Pool.terminate()

TaskPool.apply_async(target, args=None, kwargs=None, callbacks=None, errbacks=None, ac-
cept_callback=None, timeout_callback=None, **compat)

Equivalent of the :func:apply built-in function.

All callbacks and errbacks should complete immediately since otherwise the thread which handles
the result will get blocked.

TaskPool.info

TaskPool.on_ready(callbacks, errbacks, ret_value)
What to do when a worker task is ready and its return value has been collected.

TaskPool.on_worker_error(errbacks, exc)

TaskPool.safe_apply_callback(fun, *args)

TaskPool.start()
Run the task pool.

Will pre-fork all workers so they’re ready to accept tasks.

TaskPool.stop()
Gracefully stop the pool.

10.6. Internal Module Reference 191

Celery Documentation, Release 2.1.4

TaskPool.terminate()
Force terminate the pool.

celery.concurrency.processes.pingback(i)

10.6.12 extended multiprocessing.pool - celery.concurrency.processes.pool

class celery.concurrency.processes.pool.Pool(processes=None, initializer=None, ini-
targs=(), maxtasksperchild=None, time-
out=None, soft_timeout=None)

Class which supports an async version of the apply() builtin

class Process(group=None, target=None, name=None, args=(), kwargs={})
Process objects represent activity that is run in a separate process

The class is analagous to threading.Thread

authkey

daemon
Return whether process is a daemon

exitcode
Return exit code of process or None if it has yet to stop

ident
Return identifier (PID) of process or None if it has yet to start

is_alive()
Return whether process is alive

join(timeout=None)
Wait until child process terminates

name

pid
Return identifier (PID) of process or None if it has yet to start

run()
Method to be run in sub-process; can be overridden in sub-class

start()
Start child process

terminate()
Terminate process; sends SIGTERM signal or uses TerminateProcess()

class Pool.ResultHandler(outqueue, get, cache, poll, join_exited_workers, putlock)

body()

exception Pool.SoftTimeLimitExceeded
The soft time limit has been exceeded. This exception is raised to give the task a chance to clean up.

class Pool.Supervisor(pool)

body()

class Pool.TaskHandler(taskqueue, put, outqueue, pool)

192 Chapter 10. Internals

Celery Documentation, Release 2.1.4

body()

class Pool.TimeoutHandler(processes, cache, t_soft, t_hard, putlock)

body()

Pool.apply(func, args=(), kwds={})
Equivalent of apply() builtin

Pool.apply_async(func, args=(), kwds={}, callback=None, accept_callback=None, time-
out_callback=None, waitforslot=False, error_callback=None)

Asynchronous equivalent of apply() builtin.

Callback is called when the functions return value is ready. The accept callback is called when the job is
accepted to be executed.

Simplified the flow is like this:

>>> if accept_callback:
... accept_callback()
>>> retval = func(*args, **kwds)
>>> if callback:
... callback(retval)

Pool.close()

Pool.imap(func, iterable, chunksize=1)
Equivalent of itertools.imap() – can be MUCH slower than Pool.map()

Pool.imap_unordered(func, iterable, chunksize=1)
Like imap() method but ordering of results is arbitrary

Pool.join()

Pool.map(func, iterable, chunksize=None)
Equivalent of map() builtin

Pool.map_async(func, iterable, chunksize=None, callback=None)
Asynchronous equivalent of map() builtin

Pool.terminate()

10.6.13 Thread Pool Support EXPERIMENTAL - celery.concurrency.threads

class celery.concurrency.threads.TaskPool(limit, logger=None, **kwargs)

apply_async(target, args=None, kwargs=None, callbacks=None, errbacks=None, ac-
cept_callback=None, **compat)

on_ready(callbacks, errbacks, ret_value)
What to do when a worker task is ready and its return value has been collected.

start()

stop()

celery.concurrency.threads.do_work(target, args=(), kwargs={}, callback=None, ac-
cept_callback=None)

10.6. Internal Module Reference 193

Celery Documentation, Release 2.1.4

10.6.14 Clock Service - celery.beat

Periodic Task Scheduler

celery.beat.EmbeddedService(*args, **kwargs)
Return embedded clock service.

Parameters thread – Run threaded instead of as a separate process. Default is False.

class celery.beat.PersistentScheduler(*args, **kwargs)

close()

info

persistence = <module ‘shelve’ from ‘/usr/lib/python2.7/shelve.pyc’>

setup_schedule()

sync()

class celery.beat.ScheduleEntry(name=None, task=None, last_run_at=None, to-
tal_run_count=None, schedule=None, args=(), kwargs={},
options={}, relative=False)

An entry in the scheduler.

Parameters

• name – see name.

• schedule – see schedule.

• args – see args.

• kwargs – see kwargs.

• last_run_at – see last_run_at.

• total_run_count – see total_run_count.

name
The task name.

schedule
The schedule (run_every/crontab)

args
Args to apply.

kwargs
Keyword arguments to apply.

last_run_at
The time and date of when this task was last run.

total_run_count
Total number of times this periodic task has been executed.

is_due()
See celery.task.base.PeriodicTask.is_due().

next(last_run_at=None)
Returns a new instance of the same class, but with its date and count fields updated.

194 Chapter 10. Internals

Celery Documentation, Release 2.1.4

update(other)
Update values from another entry.

Does only update “editable” fields (schedule, args, kwargs, options).

class celery.beat.Scheduler(schedule=None, logger=None, max_interval=None, lazy=False,
**kwargs)

Scheduler for periodic tasks.

Parameters

• schedule – see schedule.

• logger – see logger.

• max_interval – see max_interval.

schedule
The schedule dict/shelve.

logger
The logger to use.

max_interval
Maximum time to sleep between re-checking the schedule.

Entry
alias of ScheduleEntry

Publisher
alias of TaskPublisher

add(**kwargs)

apply_async(entry, publisher=None, **kwargs)

close()

get_schedule()

info

maybe_due(entry, publisher=None)

merge_inplace(b)

reserve(entry)

schedule

send_task(*args, **kwargs)

setup_schedule()

sync()

tick()
Run a tick, that is one iteration of the scheduler.

Executes all due tasks.

update_from_dict(dict_)

exception celery.beat.SchedulingError
An error occured while scheduling a task.

class celery.beat.Service(logger=None, max_interval=300, schedule={},
schedule_filename=’celerybeat-schedule’, scheduler_cls=None)

10.6. Internal Module Reference 195

Celery Documentation, Release 2.1.4

get_scheduler(lazy=False)

scheduler

scheduler_cls
alias of PersistentScheduler

start(embedded_process=False)

stop(wait=False)

sync()

10.6.15 Backends - celery.backends

celery.backends.DefaultBackend

celery.backends.default_backend
An instance of DefaultBackend.

alias of AMQPBackend

celery.backends.get_backend_cls(backend)
Get backend class by name/alias

celery.backends.get_default_backend_cls = <functools.partial object at 0x48de0a8>

class celery.backends.DefaultBackend
The default backend class used for storing task results and status, specified in the
CELERY_RESULT_BACKEND setting.

10.6.16 Backend: Base - celery.backends.base

celery.backends.base

class celery.backends.base.BaseBackend(*args, **kwargs)
The base backend class. All backends should inherit from this.

EXCEPTION_STATES = frozenset([’FAILURE’, ‘RETRY’, ‘REVOKED’])

READY_STATES = frozenset([’FAILURE’, ‘REVOKED’, ‘SUCCESS’])

exception TimeoutError
The operation timed out.

BaseBackend.UNREADY_STATES = frozenset([’STARTED’, ‘RECEIVED’, ‘RETRY’, ‘PENDING’])

BaseBackend.cleanup()
Backend cleanup. Is run by celery.task.DeleteExpiredTaskMetaTask.

BaseBackend.encode_result(result, status)

BaseBackend.exception_to_python(exc)
Convert serialized exception to Python exception.

BaseBackend.forget(task_id)

BaseBackend.get_result(task_id)
Get the result of a task.

196 Chapter 10. Internals

Celery Documentation, Release 2.1.4

BaseBackend.get_status(task_id)
Get the status of a task.

BaseBackend.get_traceback(task_id)
Get the traceback for a failed task.

BaseBackend.mark_as_done(task_id, result)
Mark task as successfully executed.

BaseBackend.mark_as_failure(task_id, exc, traceback=None)
Mark task as executed with failure. Stores the execption.

BaseBackend.mark_as_retry(task_id, exc, traceback=None)
Mark task as being retries. Stores the current exception (if any).

BaseBackend.mark_as_revoked(task_id)

BaseBackend.mark_as_started(task_id, **meta)
Mark a task as started

BaseBackend.prepare_exception(exc)
Prepare exception for serialization.

BaseBackend.prepare_value(result)
Prepare value for storage.

BaseBackend.process_cleanup()
Cleanup actions to do at the end of a task worker process.

BaseBackend.reload_task_result(task_id)
Reload task result, even if it has been previously fetched.

BaseBackend.reload_taskset_result(task_id)
Reload taskset result, even if it has been previously fetched.

BaseBackend.restore_taskset(taskset_id, cache=True)
Get the result of a taskset.

BaseBackend.save_taskset(taskset_id, result)
Store the result and status of a task.

BaseBackend.store_result(task_id, result, status)
Store the result and status of a task.

BaseBackend.wait_for(task_id, timeout=None)
Wait for task and return its result.

If the task raises an exception, this exception will be re-raised by wait_for().

If timeout is not None, this raises the celery.exceptions.TimeoutError exception if the
operation takes longer than timeout seconds.

class celery.backends.base.BaseDictBackend(*args, **kwargs)

forget(task_id)

get_result(task_id)
Get the result of a task.

get_status(task_id)
Get the status of a task.

get_task_meta(task_id, cache=True)

10.6. Internal Module Reference 197

Celery Documentation, Release 2.1.4

get_taskset_meta(taskset_id, cache=True)

get_traceback(task_id)
Get the traceback for a failed task.

reload_task_result(task_id)

reload_taskset_result(taskset_id)

restore_taskset(taskset_id, cache=True)
Get the result for a taskset.

save_taskset(taskset_id, result)
Store the result of an executed taskset.

store_result(task_id, result, status, traceback=None)
Store task result and status.

class celery.backends.base.KeyValueStoreBackend(*args, **kwargs)

delete(key)

get(key)

get_key_for_task(task_id)
Get the cache key for a task by id.

get_key_for_taskset(task_id)
Get the cache key for a task by id.

set(key, value)

10.6.17 Backend: SQLAlchemy Database - celery.backends.database

class celery.backends.database.DatabaseBackend(dburi=None, result_expires=None, en-
gine_options=None, **kwargs)

The database result backend.

ResultSession()

cleanup()
Delete expired metadata.

10.6.18 Backend: Memcache - celery.backends.cache

class celery.backends.cache.CacheBackend(expires=datetime.timedelta(1), backend=None, op-
tions={}, **kwargs)

client

delete(key)

get(key)

set(key, value)

class celery.backends.cache.DummyClient(*args, **kwargs)

delete(key, *args, **kwargs)

get(key, *args, **kwargs)

198 Chapter 10. Internals

Celery Documentation, Release 2.1.4

set(key, value, *args, **kwargs)

celery.backends.cache.get_best_memcache(*args, **kwargs)

10.6.19 Backend: AMQP - celery.backends.amqp

celery.backends.amqp

class celery.backends.amqp.AMQPBackend(connection=None, exchange=None, ex-
change_type=None, persistent=None, serializer=None,
auto_delete=None, expires=None, **kwargs)

AMQP backend. Publish results by sending messages to the broker using the task id as routing key.

NOTE: Results published using this backend is read-once only. After the result has been read, the result is
deleted. (however, it’s still cached locally by the backend instance).

close()

connection

consume(task_id, timeout=None)

get_task_meta(task_id, cache=True)

poll(task_id)

reload_task_result(task_id)

reload_taskset_result(task_id)
Reload taskset result, even if it has been previously fetched.

restore_taskset(taskset_id, cache=True)
Get the result of a taskset.

save_taskset(taskset_id, result)
Store the result and status of a task.

store_result(task_id, result, status, traceback=None, max_retries=20, retry_delay=0.2)
Send task return value and status.

wait_for(task_id, timeout=None, cache=True)

exception celery.backends.amqp.AMQResultWarning

class celery.backends.amqp.ResultConsumer(connection, task_id, **kwargs)

auto_delete = True

durable = False

exchange = ‘celeryresults’

exchange_type = ‘direct’

no_ack = True

class celery.backends.amqp.ResultPublisher(connection, task_id, **kwargs)

auto_delete = True

delivery_mode = 1

durable = False

10.6. Internal Module Reference 199

Celery Documentation, Release 2.1.4

exchange = ‘celeryresults’

exchange_type = ‘direct’

serializer = ‘pickle’

10.6.20 Backend: MongoDB - celery.backends.mongodb

MongoDB backend for celery.

class celery.backends.mongodb.Bunch(**kw)

class celery.backends.mongodb.MongoBackend(*args, **kwargs)

cleanup()
Delete expired metadata.

mongodb_database = ‘celery’

mongodb_host = ‘localhost’

mongodb_password = None

mongodb_port = 27017

mongodb_taskmeta_collection = ‘celery_taskmeta’

mongodb_user = None

process_cleanup()

10.6.21 Backend: Redis - celery.backends.pyredis

class celery.backends.pyredis.RedisBackend(redis_host=None, redis_port=None, re-
dis_db=None, redis_timeout=None, re-
dis_password=None, redis_connect_retry=None,
redis_connect_timeout=None, expires=None)

Redis based task backend store.

redis_host
The hostname to the Redis server.

redis_port
The port to the Redis server.

Raises celery.exceptions.ImproperlyConfigured if the REDIS_HOST or REDIS_PORT
settings is not set.

close()
Close the connection to redis.

delete(key)

deprecated_settings = frozenset([’REDIS_TIMEOUT’, ‘REDIS_CONNECT_RETRY’])

expires = None

get(key)

200 Chapter 10. Internals

Celery Documentation, Release 2.1.4

open()
Get redis.Redis‘ instance with the current server configuration.

The connection is then cached until you do an explicit close().

process_cleanup()

redis_connect_retry = None

redis_db = 0

redis_host = ‘localhost’

redis_password = None

redis_port = 6379

redis_timeout = None

set(key, value)

10.6.22 Backend: Cassandra - celery.backends.cassandra

celery.backends.cassandra

class celery.backends.cassandra.CassandraBackend(servers=None, keyspace=None,
column_family=None, cassan-
dra_options=None, **kwargs)

Highly fault tolerant Cassandra backend.

servers
List of Cassandra servers with format: “hostname:port”.

Raises celery.exceptions.ImproperlyConfigured if module pycassa is not available.

cleanup()
Delete expired metadata.

column_family = None

i = 63

keyspace = None

process_cleanup()

servers = []

10.6.23 Backend: Tokyo Tyrant - celery.backends.tyrant

celery.backends.tyrant

class celery.backends.tyrant.TyrantBackend(tyrant_host=None, tyrant_port=None)
Tokyo Cabinet based task backend store.

tyrant_host
The hostname to the Tokyo Tyrant server.

tyrant_port
The port to the Tokyo Tyrant server.

10.6. Internal Module Reference 201

Celery Documentation, Release 2.1.4

close()
Close the tyrant connection and remove the cache.

delete(key)

get(key)

open()
Get pytyrant.PyTyrant‘ instance with the current server configuration.

The connection is then cached until you do an explicit close().

process_cleanup()

set(key, value)

tyrant_host = None

tyrant_port = None

10.6.24 Tracing Execution - celery.execute.trace

class celery.execute.trace.TaskTrace(task_name, task_id, args, kwargs, task=None, propa-
gate=None, **_)

execute()

handle_after_return(status, retval, type_, tb, strtb)

handle_failure(exc, type_, tb, strtb)
Handle exception.

handle_retry(exc, type_, tb, strtb)
Handle retry exception.

handle_success(retval, *args)
Handle successful execution.

class celery.execute.trace.TraceInfo(status=’PENDING’, retval=None, exc_info=None)

classmethod trace(fun, args, kwargs, propagate=False)
Trace the execution of a function, calling the appropiate callback if the function raises retry, an failure or
returned successfully.

Parameters propagate – If true, errors will propagate to the caller.

10.6.25 Serialization Tools - celery.serialization

exception celery.serialization.UnpickleableExceptionWrapper(exc_module,
exc_cls_name,
exc_args)

Wraps unpickleable exceptions.

Parameters

• exc_module – see exc_module.

• exc_cls_name – see exc_cls_name.

• exc_args – see exc_args

202 Chapter 10. Internals

Celery Documentation, Release 2.1.4

exc_module
The module of the original exception.

exc_cls_name
The name of the original exception class.

exc_args
The arguments for the original exception.

Example

>>> try:
... something_raising_unpickleable_exc()
>>> except Exception, e:
... exc = UnpickleableException(e.__class__.__module__,
... e.__class__.__name__,
... e.args)
... pickle.dumps(exc) # Works fine.

classmethod from_exception(exc)

restore()

celery.serialization.create_exception_cls(name, module, parent=None)
Dynamically create an exception class.

celery.serialization.find_nearest_pickleable_exception(exc)
With an exception instance, iterate over its super classes (by mro) and find the first super exception that is
pickleable. It does not go below Exception (i.e. it skips Exception, BaseException and object). If
that happens you should use UnpickleableException instead.

Parameters exc – An exception instance.

Returns the nearest exception if it’s not Exception or below, if it is it returns None.

:rtype Exception:

celery.serialization.get_pickleable_exception(exc)
Make sure exception is pickleable.

celery.serialization.get_pickled_exception(exc)
Get original exception from exception pickled using get_pickleable_exception().

celery.serialization.subclass_exception(name, parent, module)

10.6.26 Datastructures - celery.datastructures

class celery.datastructures.AttributeDict
Dict subclass with attribute access.

class celery.datastructures.ExceptionInfo(exc_info)
Exception wrapping an exception and its traceback.

Parameters exc_info – The exception tuple info as returned by
traceback.format_exception().

exception
The original exception.

traceback
A traceback from the point when exception was raised.

10.6. Internal Module Reference 203

Celery Documentation, Release 2.1.4

class celery.datastructures.LimitedSet(maxlen=None, expires=None)
Kind-of Set with limitations.

Good for when you need to test for membership (a in set), but the list might become to big, so you want to
limit it so it doesn’t consume too much resources.

Parameters

• maxlen – Maximum number of members before we start deleting expired members.

• expires – Time in seconds, before a membership expires.

add(value)
Add a new member.

as_dict()

chronologically

clear()
Remove all members

first
Get the oldest member.

pop_value(value)
Remove membership by finding value.

update(other)

class celery.datastructures.LocalCache(limit=None)
Dictionary with a finite number of keys.

Older items expires first.

class celery.datastructures.PositionQueue(length)
A positional queue of a specific length, with slots that are either filled or unfilled. When all of the positions are
filled, the queue is considered full().

Parameters length – see length.

length
The number of items required for the queue to be considered full.

class UnfilledPosition(position)
Describes an unfilled slot.

PositionQueue.filled
Returns the filled slots as a list.

PositionQueue.full()
Returns True if all of the slots has been filled.

class celery.datastructures.SharedCounter(initial_value)
Thread-safe counter.

Please note that the final value is not synchronized, this means that you should not update the value by using a
previous value, the only reliable operations are increment and decrement.

Example

>>> max_clients = SharedCounter(initial_value=10)

Thread one >>> max_clients += 1 # OK (safe)

Thread two >>> max_clients -= 3 # OK (safe)

204 Chapter 10. Internals

Celery Documentation, Release 2.1.4

Main thread >>> if client >= int(max_clients): # Max clients now at 8 ... wait()

>>> max_client = max_clients + 10 # NOT OK (unsafe)

decrement(n=1)
Decrement value.

increment(n=1)
Increment value.

class celery.datastructures.TokenBucket(fill_rate, capacity=1)
Token Bucket Algorithm.

See http://en.wikipedia.org/wiki/Token_Bucket Most of this code was stolen from an entry in the ASPN Python
Cookbook: http://code.activestate.com/recipes/511490/

Parameters

• fill_rate – see fill_rate.

• capacity – see capacity.

fill_rate
The rate in tokens/second that the bucket will be refilled.

capacity
Maximum number of tokens in the bucket. Default is 1.

timestamp
Timestamp of the last time a token was taken out of the bucket.

can_consume(tokens=1)

expected_time(tokens=1)
Returns the expected time in seconds when a new token should be available. Note: consumes a token from
the bucket

celery.datastructures.consume_queue(queue)
Iterator yielding all immediately available items in a Queue.Queue.

The iterator stops as soon as the queue raises Queue.Empty.

Example

>>> q = Queue()
>>> map(q.put, range(4))
>>> list(consume_queue(q))
[0, 1, 2, 3]
>>> list(consume_queue(q))
[]

10.6.27 Message Routers - celery.routes

class celery.routes.MapRoute(map)
Makes a router out of a dict.

route_for_task(task, *args, **kwargs)

class celery.routes.Router(routes=None, queues=None, create_missing=False)

add_queue(queue)

10.6. Internal Module Reference 205

http://en.wikipedia.org/wiki/Token_Bucket
http://code.activestate.com/recipes/511490/

Celery Documentation, Release 2.1.4

expand_destination(route)

lookup_route(task, args=None, kwargs=None)

route(options, task, args=(), kwargs={})

celery.routes.merge(a, b)
Like dict(a, **b) except it will keep values from a, if the value in b is None.

celery.routes.prepare(routes)
Expand ROUTES setting.

10.6.28 Logging - celery.log

celery.log

class celery.log.ColorFormatter(msg, use_color=True)

format(record)

formatException(ei)

class celery.log.LoggingProxy(logger, loglevel=None)
Forward file object to logging.Logger instance.

Parameters

• logger – The logging.Logger instance to forward to.

• loglevel – Loglevel to use when writing messages.

close()
When the object is closed, no write requests are forwarded to the logging object anymore.

closed = False

fileno()

flush()
This object is not buffered so any flush() requests are ignored.

isatty()
Always returns False. Just here for file support.

loglevel = 40

mode = ‘w’

name = None

write(data)

writelines(sequence)
writelines(sequence_of_strings) -> None.

Write the strings to the file.

The sequence can be any iterable object producing strings. This is equivalent to calling write() for each
string.

class celery.log.SilenceRepeated(action, max_iterations=10)
Only log action every n iterations.

206 Chapter 10. Internals

Celery Documentation, Release 2.1.4

celery.log.emergency_error(logfile, message)
Emergency error logging, for when there’s no standard file descriptors open because the process has been dae-
monized or for some other reason.

celery.log.get_default_logger(loglevel=None, name=’celery’)
Get default logger instance.

Parameters loglevel – Initial log level.

celery.log.get_task_logger(loglevel=None, name=None)

celery.log.redirect_stdouts_to_logger(logger, loglevel=None)
Redirect sys.stdout and sys.stderr to a logging instance.

Parameters

• logger – The logging.Logger instance to redirect to.

• loglevel – The loglevel redirected messages will be logged as.

celery.log.setup_logger(loglevel=30, logfile=None, format=’[%(asctime)s: %(level-
name)s/%(processName)s] %(message)s’, colorize=False, name=’celery’,
root=True, **kwargs)

Setup the multiprocessing logger. If logfile is not specified, then stderr is used.

Returns logger object.

celery.log.setup_logging_subsystem(loglevel=30, logfile=None, format=’[%(asctime)s:
%(levelname)s/%(processName)s] %(message)s’, col-
orize=False, **kwargs)

celery.log.setup_task_logger(loglevel=30, logfile=None, format=’[%(asctime)s: %(level-
name)s/%(processName)s] [%(task_name)s(%(task_id)s)] %(mes-
sage)s’, colorize=False, task_kwargs=None, propagate=False,
**kwargs)

Setup the task logger. If logfile is not specified, then stderr is used.

Returns logger object.

10.6.29 Event Snapshots - celery.events.snapshot

class celery.events.snapshot.Polaroid(state, freq=1.0, maxrate=None, cleanup_freq=3600.0,
logger=None)

cancel()

capture()

cleanup()

cleanup_signal = <Signal: Signal>

clear_after = False

debug(msg)

install()

on_cleanup()

on_shutter(state)

shutter()

shutter_signal = <Signal: Signal>

10.6. Internal Module Reference 207

Celery Documentation, Release 2.1.4

celery.events.snapshot.evcam(camera, freq=1.0, maxrate=None, loglevel=0, logfile=None)

10.6.30 Curses Monitor - celery.events.cursesmon

class celery.events.cursesmon.CursesMonitor(state, keymap=None)

alert(callback, title=None)

alert_remote_control_reply(reply)

background = 7

display_width

draw()

find_position()

foreground = 0

format_row(uuid, task, worker, timestamp, state)

greet = ‘celeryev 2.1.4’

handle_keypress()

help = ‘j:up k:down i:info t:traceback r:result c:revoke ^c: quit’

help_title = ‘Keys: ‘

info_str = ‘Info: ‘

init_screen()

keyalias = {258: ‘J’, 259: ‘K’, 343: ‘I’}

keymap = {}

limit = 20

move_selection(direction=1)

move_selection_down()

move_selection_up()

nap()

online_str = ‘Workers online: ‘

readline(x, y)

resetscreen()

revoke_selection()

screen_delay = 10

screen_width = None

selected_position = 0

selected_str = ‘Selected: ‘

selected_task = None

selection_info()

208 Chapter 10. Internals

Celery Documentation, Release 2.1.4

selection_rate_limit()

selection_result()

selection_traceback()

tasks

win = None

workers

class celery.events.cursesmon.DisplayThread(display)

run()

celery.events.cursesmon.evtop()

10.6.31 Event Dumper Tool - celery.events.dumper

class celery.events.dumper.Dumper

format_task_event(hostname, timestamp, type, task, event)

on_event(event)

celery.events.dumper.evdump()

celery.events.dumper.humanize_type(type)

10.6.32 SQLAlchemy Models - celery.db.models

class celery.db.models.Task(task_id)
Task result/status.

date_done

id

result

status

task_id

to_dict()

traceback

class celery.db.models.TaskSet(taskset_id, result)
TaskSet result

date_done

id

result

taskset_id

to_dict()

10.6. Internal Module Reference 209

Celery Documentation, Release 2.1.4

10.6.33 SQLAlchemy Session - celery.db.session

celery.db.session.ResultSession(dburi=None, **kwargs)

celery.db.session.create_session(dburi, **kwargs)

celery.db.session.get_engine(dburi, **kwargs)

celery.db.session.setup_results(engine)

10.6.34 Utilities - celery.utils

celery.utils.abbr(S, max, ellipsis=’...’)

celery.utils.abbrtask(S, max)

celery.utils.chunks(it, n)
Split an iterator into chunks with n elements each.

Examples

n == 2 >>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 2) >>> list(x) [[0, 1], [2, 3], [4, 5], [6,
7], [8, 9], [10]]

n == 3 >>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 3) >>> list(x) [[0, 1, 2], [3, 4, 5], [6, 7,
8], [9, 10]]

celery.utils.first(predicate, iterable)
Returns the first element in iterable that predicate returns a True value for.

celery.utils.firstmethod(method)
Returns a functions that with a list of instances, finds the first instance that returns a value for the given method.

The list can also contain promises (promise.)

celery.utils.fun_takes_kwargs(fun, kwlist=[])
With a function, and a list of keyword arguments, returns arguments in the list which the function takes.

If the object has an argspec attribute that is used instead of using the inspect.getargspec‘() intro-
spection.

Parameters

• fun – The function to inspect arguments of.

• kwlist – The list of keyword arguments.

Examples

>>> def foo(self, x, y, logfile=None, loglevel=None):
... return x * y
>>> fun_takes_kwargs(foo, ["logfile", "loglevel", "task_id"])
["logfile", "loglevel"]

>>> def foo(self, x, y, **kwargs):
>>> fun_takes_kwargs(foo, ["logfile", "loglevel", "task_id"])
["logfile", "loglevel", "task_id"]

celery.utils.gen_unique_id()
Generate a unique id, having - hopefully - a very small chance of collission.

For now this is provided by uuid.uuid4().

210 Chapter 10. Internals

Celery Documentation, Release 2.1.4

celery.utils.get_cls_by_name(name, aliases={})
Get class by name.

The name should be the full dot-separated path to the class:

modulename.ClassName

Example:

celery.concurrency.processes.TaskPool
^- class name

If aliases is provided, a dict containing short name/long name mappings, the name is looked up in the aliases
first.

Examples:

>>> get_cls_by_name("celery.concurrency.processes.TaskPool")
<class ’celery.concurrency.processes.TaskPool’>

>>> get_cls_by_name("default", {
... "default": "celery.concurrency.processes.TaskPool"})
<class ’celery.concurrency.processes.TaskPool’>

Does not try to look up non-string names. >>> from celery.concurrency.processes import TaskPool
>>> get_cls_by_name(TaskPool) is TaskPool True

celery.utils.get_full_cls_name(cls)
With a class, get its full module and class name.

celery.utils.instantiate(name, *args, **kwargs)
Instantiate class by name.

See get_cls_by_name().

celery.utils.is_iterable(obj)

celery.utils.kwdict(kwargs)
Make sure keyword arguments are not in unicode.

This should be fixed in newer Python versions, see: http://bugs.python.org/issue4978.

celery.utils.mattrgetter(*attrs)
Like operator.itemgetter() but returns None on missing attributes instead of raising
AttributeError.

celery.utils.maybe_iso8601(dt)
Either datetime | str -> datetime or None -> None

celery.utils.maybe_promise(value)
Evaluates if the value is a promise.

celery.utils.mitemgetter(*items)
Like operator.itemgetter() but returns None on missing items instead of raising KeyError.

class celery.utils.mpromise(fun, *args, **kwargs)
Memoized promise.

The function is only evaluated once, every subsequent access will return the same value.

evaluated
Set to to True after the promise has been evaluated.

evaluate()

10.6. Internal Module Reference 211

http://bugs.python.org/issue4978

Celery Documentation, Release 2.1.4

evaluated = False

celery.utils.noop(*args, **kwargs)
No operation.

Takes any arguments/keyword arguments and does nothing.

celery.utils.padlist(container, size, default=None)
Pad list with default elements.

Examples:

>>> first, last, city = padlist(["George", "Costanza", "NYC"], 3)
("George", "Costanza", "NYC")
>>> first, last, city = padlist(["George", "Costanza"], 3)
("George", "Costanza", None)
>>> first, last, city, planet = padlist(["George", "Costanza",

"NYC"], 4, default="Earth")
("George", "Costanza", "NYC", "Earth")

class celery.utils.promise(fun, *args, **kwargs)
A promise.

Evaluated when called or if the evaluate() method is called. The function is evaluated on every access, so
the value is not memoized (see mpromise).

Overloaded operations that will evaluate the promise: __str__(), __repr__(), __cmp__().

evaluate()

celery.utils.repeatlast(it)
Iterate over all elements in the iterator, and when its exhausted yield the last value infinitely.

celery.utils.retry_over_time(fun, catch, args=[], kwargs={}, errback=<function noop
at 0x487c050>, max_retries=None, interval_start=2, inter-
val_step=2, interval_max=30)

Retry the function over and over until max retries is exceeded.

For each retry we sleep a for a while before we try again, this interval is increased for every retry until the max
seconds is reached.

Parameters

• fun – The function to try

• catch – Exceptions to catch, can be either tuple or a single exception class.

• args – Positional arguments passed on to the function.

• kwargs – Keyword arguments passed on to the function.

• errback – Callback for when an exception in catch is raised. The callback must take two
arguments: exc and interval, where exc is the exception instance, and interval is
the time in seconds to sleep next..

• max_retries – Maximum number of retries before we give up. If this is not set, we will
retry forever.

• interval_start – How long (in seconds) we start sleeping between retries.

• interval_step – By how much the interval is increased for each retry.

• interval_max – Maximum number of seconds to sleep between retries.

celery.utils.truncate_text(text, maxlen=128, suffix=’...’)
Truncates text to a maximum number of characters.

212 Chapter 10. Internals

Celery Documentation, Release 2.1.4

10.6.35 Terminal Utilities - celery.utils.term

term utils.

>>> c = colored(enabled=True)
>>> print(str(c.red("the quick "), c.blue("brown ", c.bold("fox ")),

c.magenta(c.underline("jumps over")),
c.yellow(" the lazy "),
c.green("dog ")))

class celery.utils.term.colored(*s, **kwargs)

black(*s)

blink(*s)

blue(*s)

bold(*s)

bright(*s)

cyan(*s)

green(*s)

iblue(*s)

icyan(*s)

igreen(*s)

imagenta(*s)

ired(*s)

iwhite(*s)

iyellow(*s)

magenta(*s)

no_color()

node(s, op)

red(*s)

reset(*s)

reverse(*s)

underline(*s)

white(*s)

yellow(*s)

celery.utils.term.fg(s)

10.6.36 Time and Date Utilities - celery.utils.timeutils

celery.utils.timeutils.delta_resolution(dt, delta)
Round a datetime to the resolution of a timedelta.

10.6. Internal Module Reference 213

Celery Documentation, Release 2.1.4

If the timedelta is in days, the datetime will be rounded to the nearest days, if the timedelta is in hours the
datetime will be rounded to the nearest hour, and so on until seconds which will just return the original datetime.

celery.utils.timeutils.rate(rate)
Parses rate strings, such as "100/m" or "2/h" and converts them to seconds.

celery.utils.timeutils.remaining(start, ends_in, now=None, relative=True)
Calculate the remaining time for a start date and a timedelta.

e.g. “how many seconds left for 30 seconds after start?”

Parameters

• start – Start datetime.

• ends_in – The end delta as a timedelta.

• relative – If set to False, the end time will be calculated using delta_resolution()
(i.e. rounded to the resolution of ends_in).

• now – Function returning the current time and date, defaults to datetime.now().

celery.utils.timeutils.timedelta_seconds(delta)
Convert datetime.timedelta to seconds.

Doesn’t account for negative values.

celery.utils.timeutils.weekday(name)
Return the position of a weekday (0 - 7, where 0 is Sunday).

Example:

>>> weekday("sunday"), weekday("sun"), weekday("mon")
(0, 0, 1)

10.6.37 Debugging Info - celery.utils.info

celery.utils.info.format_broker_info(info=None)
Get message broker connection info string for log dumps.

celery.utils.info.format_queues(queues, indent=0)
Format routing table into string for log dumps.

celery.utils.info.get_broker_info(broker_connection=None)

celery.utils.info.humanize_seconds(secs, prefix=’‘)
Show seconds in human form, e.g. 60 is “1 minute”, 7200 is “2 hours”.

celery.utils.info.textindent(t, indent=0)
Indent text.

10.6.38 Python Compatibility - celery.utils.compat

class celery.utils.compat.OrderedDict(*args, **kwds)
Dictionary that remembers insertion order

clear()→ None. Remove all items from od.

copy()→ a shallow copy of od

classmethod fromkeys(S[, v])→ New ordered dictionary with keys from S
and values equal to v (which defaults to None).

214 Chapter 10. Internals

Celery Documentation, Release 2.1.4

items()

iteritems()

iterkeys()

itervalues()

keys()

pop(key, default=<object object at 0x3f8a650>)

popitem() -> (k, v)
Return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false.

setdefault(key, default=None)

update(other=(), **kwds)

values()

celery.utils.compat.chain_from_iterable()
chain.from_iterable(iterable) –> chain object

Alternate chain() contructor taking a single iterable argument that evaluates lazily.

celery.utils.compat.log_with_extra(logger, level, msg, *args, **kwargs)

10.6.39 Sending E-mail - celery.utils.mail

class celery.utils.mail.Mailer(host=’localhost’, port=0, user=None, password=None, time-
out=None)

send(message)

class celery.utils.mail.Message(to=None, sender=None, subject=None, body=None, charset=’us-
ascii’)

exception celery.utils.mail.SendmailWarning
Problem happened while sending the e-mail message.

celery.utils.mail.mail_admins(subject, message, fail_silently=False)
Send a message to the admins in conf.ADMINS.

10.6.40 Compatibility Patches - celery.utils.patch

celery.utils.patch.ensure_process_aware_logger()

10.6.41 functools compat - celery.utils.functional

Functional utilities for Python 2.4 compatibility.

10.6.42 timer2 - celery.utils.timer2

timer2 - Scheduler for Python functions.

class celery.utils.timer2.Entry(fun, args=None, kwargs=None)

cancel()

10.6. Internal Module Reference 215

Celery Documentation, Release 2.1.4

cancelled = False

class celery.utils.timer2.Schedule(max_interval=2, on_error=None)
ETA scheduler.

clear()

empty()
Is the schedule empty?

enter(entry, eta=None, priority=0)
Enter function into the scheduler.

Parameters

• entry – Item to enter.

• eta – Scheduled time as a datetime.datetime object.

• priority – Unused.

handle_error(exc_info)

info()

on_error = None

queue

exception celery.utils.timer2.TimedFunctionFailed

class celery.utils.timer2.Timer(schedule=None, on_error=None, on_tick=None, **kwargs)

class Entry(fun, args=None, kwargs=None)

cancel()

cancelled = False

Timer.apply_after(msecs, fun, args=(), kwargs={}, priority=0)

Timer.apply_at(eta, fun, args=(), kwargs={}, priority=0)

Timer.apply_entry(entry)

Timer.apply_interval(msecs, fun, args=(), kwargs={}, priority=0)

Timer.cancel(tref)

Timer.clear()

Timer.empty()

Timer.ensure_started()

Timer.enter(entry, eta, priority=None)

Timer.enter_after(msecs, entry, priority=0)

Timer.exit_after(msecs, priority=10)

Timer.next()

Timer.on_tick = None

Timer.queue

Timer.run()

216 Chapter 10. Internals

Celery Documentation, Release 2.1.4

Timer.running = False

Timer.stop()

celery.utils.timer2.to_timestamp(d)

10.6.43 Signal Dispatch - celery.utils.dispatch

10.6.44 Signals: Dispatcher - celery.utils.dispatch.signal

Signal class.

class celery.utils.dispatch.signal.Signal(providing_args=None)
Base class for all signals

receivers
Internal attribute, holds a dictionary of
‘‘{receriverkey (id): weakref(receiver)}‘‘ mappings.

connect(receiver, sender=None, weak=True, dispatch_uid=None)
Connect receiver to sender for signal.

Parameters

• receiver – A function or an instance method which is to receive signals. Receivers must
be hashable objects.

if weak is True, then receiver must be weak-referencable (more precisely
saferef.safe_ref() must be able to create a reference to the receiver).

Receivers must be able to accept keyword arguments.

If receivers have a dispatch_uid attribute, the receiver will not be added if another
receiver already exists with that dispatch_uid.

• sender – The sender to which the receiver should respond. Must either be of type
Signal, or None to receive events from any sender.

• weak – Whether to use weak references to the receiver. By default, the module will
attempt to use weak references to the receiver objects. If this parameter is false, then
strong references will be used.

• dispatch_uid – An identifier used to uniquely identify a particular instance of a receiver.
This will usually be a string, though it may be anything hashable.

disconnect(receiver=None, sender=None, weak=True, dispatch_uid=None)
Disconnect receiver from sender for signal.

If weak references are used, disconnect need not be called. The receiver will be removed from dispatch
automatically.

Parameters

• receiver – The registered receiver to disconnect. May be none if dispatch_uid is
specified.

• sender – The registered sender to disconnect.

• weak – The weakref state to disconnect.

• dispatch_uid – the unique identifier of the receiver to disconnect

10.6. Internal Module Reference 217

Celery Documentation, Release 2.1.4

send(sender, **named)
Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through send, terminating the dispatch loop, so it
is quite possible to not have all receivers called if a raises an error.

Parameters

• sender – The sender of the signal. Either a specific object or None.

• **named – Named arguments which will be passed to receivers.

Returns a list of tuple pairs: [(receiver, response), ...].

send_robust(sender, **named)
Send signal from sender to all connected receivers catching errors.

Parameters

• sender – The sender of the signal. Can be any python object (normally one registered with
a connect if you actually want something to occur).

• **named – Named arguments which will be passed to receivers. These arguments must
be a subset of the argument names defined in providing_args.

Returns a list of tuple pairs: [(receiver, response), ...].

Raises DispatcherKeyError

if any receiver raises an error (specifically any subclass of Exception), the error instance is returned as
the result for that receiver.

10.6.45 Signals: Safe References - celery.utils.dispatch.saferef

“Safe weakrefs”, originally from pyDispatcher.

Provides a way to safely weakref any function, including bound methods (which aren’t handled by the core weakref
module).

class celery.utils.dispatch.saferef.BoundMethodWeakref(target, on_delete=None)
‘Safe’ and reusable weak references to instance methods.

BoundMethodWeakref objects provide a mechanism for referencing a bound method without requiring that the
method object itself (which is normally a transient object) is kept alive. Instead, the BoundMethodWeakref
object keeps weak references to both the object and the function which together define the instance method.

key
the identity key for the reference, calculated by the class’s calculate_key() method applied to the
target instance method

deletion_methods
sequence of callable objects taking single argument, a reference to this object which will be called when
either the target object or target function is garbage collected (i.e. when this object becomes invalid).
These are specified as the on_delete parameters of safe_ref() calls.

weak_self
weak reference to the target object

weak_func
weak reference to the target function

218 Chapter 10. Internals

Celery Documentation, Release 2.1.4

_all_instances
class attribute pointing to all live BoundMethodWeakref objects indexed by the class’s
calculate_key(target) method applied to the target objects. This weak value dictionary is
used to short-circuit creation so that multiple references to the same (object, function) pair produce the
same BoundMethodWeakref instance.

classmethod calculate_key(target)
Calculate the reference key for this reference

Currently this is a two-tuple of the id()‘s of the target object and the target function respectively.

class celery.utils.dispatch.saferef.BoundNonDescriptorMethodWeakref(target,
on_delete=None)

A specialized BoundMethodWeakref, for platforms where instance methods are not descriptors.

It assumes that the function name and the target attribute name are the same, instead of assuming that the
function is a descriptor. This approach is equally fast, but not 100% reliable because functions can be stored on
an attribute named differenty than the function’s name such as in:

>>> class A(object):
... pass

>>> def foo(self):
... return "foo"
>>> A.bar = foo

But this shouldn’t be a common use case. So, on platforms where methods aren’t descriptors (such as Jython)
this implementation has the advantage of working in the most cases.

celery.utils.dispatch.saferef.get_bound_method_weakref(target, on_delete)
Instantiates the appropiate BoundMethodWeakRef, depending on the details of the underlying class method
implementation.

celery.utils.dispatch.saferef.safe_ref(target, on_delete=None)
Return a safe weak reference to a callable target

Parameters

• target – the object to be weakly referenced, if it’s a bound method reference, will create a
BoundMethodWeakref, otherwise creates a simple weakref.ref.

• on_delete – if provided, will have a hard reference stored to the callable to be called after
the safe reference goes out of scope with the reference object, (either a weakref.ref or
a BoundMethodWeakref) as argument.

10.6.46 Platform Specific - celery.platforms

class celery.platforms.DaemonContext(pidfile=None, working_directory=’/’, umask=0,
**kwargs)

close()

detach()

open()

exception celery.platforms.LockFailed

class celery.platforms.PIDFile(path)

acquire()

10.6. Internal Module Reference 219

Celery Documentation, Release 2.1.4

is_locked()

read_pid()

release()

remove()

remove_if_stale()

write_pid()

celery.platforms.create_daemon_context(logfile=None, pidfile=None, uid=None, gid=None,
**options)

celery.platforms.create_pidlock(pidfile)
Create and verify pidfile.

If the pidfile already exists the program exits with an error message, however if the process it refers to is not
running anymore, the pidfile is just deleted.

celery.platforms.get_fdmax(default=None)

celery.platforms.ignore_signal(signal_name)
Ignore signal using SIG_IGN.

Does nothing if the platform doesn’t support signals, or the specified signal in particular.

celery.platforms.install_signal_handler(signal_name, handler)
Install a handler.

Does nothing if the current platform doesn’t support signals, or the specified signal in particular.

celery.platforms.parse_gid(gid)
Parse group id.

gid can be an integer (gid) or a string (group name), if a group name the gid is taken from the password file.

celery.platforms.parse_uid(uid)
Parse user id.

uid can be an interger (uid) or a string (username), if a username the uid is taken from the password file.

celery.platforms.reset_signal(signal_name)
Reset signal to the default signal handler.

Does nothing if the platform doesn’t support signals, or the specified signal in particular.

celery.platforms.set_effective_user(uid=None, gid=None)
Change process privileges to new user/group.

If uid and gid is set the effective user/group is set.

If only uid is set, the effective uer is set, and the group is set to the users primary group.

If only gid is set, the effective group is set.

celery.platforms.set_mp_process_title(progname, info=None, hostname=None)
Set the ps name using the multiprocessing process name.

Only works if setproctitle is installed.

celery.platforms.set_process_title(progname, info=None)
Set the ps name for the currently running process.

Only works if setproctitle is installed.

220 Chapter 10. Internals

Celery Documentation, Release 2.1.4

celery.platforms.setegid(gid)
Set effective group id.

celery.platforms.seteuid(uid)
Set effective user id.

celery.platforms.strargv(argv)

10.6. Internal Module Reference 221

Celery Documentation, Release 2.1.4

222 Chapter 10. Internals

CHAPTER 11

Change history

223

Celery Documentation, Release 2.1.4

• 2.1.5
• 2.1.4

– Fixes
– Documentation

• 2.1.3
• 2.1.2

– Fixes
• 2.1.1

– Fixes
– News

• 2.1.0
– Important Notes
– News
– Fixes
– Experimental
– Documentation

• 2.0.3
– Fixes
– Documentation

• 2.0.2
• 2.0.1
• 2.0.0

– Foreword
– Upgrading for Django-users
– Upgrading for others

* Database result backend
* Cache result backend

– Backward incompatible changes
– News

• 1.0.6
• 1.0.5

– Critical
– Changes

• 1.0.4
• 1.0.3

– Important notes
– News
– Remote control commands
– Fixes

• 1.0.2
• 1.0.1
• 1.0.0

– Backward incompatible changes
– Deprecations
– News
– Changes
– Bugs
– Documentation

• 0.8.4
• 0.8.3
• 0.8.2
• 0.8.1

– Very important note
– Important changes
– Changes

• 0.8.0
– Backward incompatible changes
– Important changes
– News

• 0.6.0
– Important changes
– News

• 0.4.1
• 0.4.0
• 0.3.20
• 0.3.7
• 0.3.3
• 0.3.2
• 0.3.1
• 0.3.0
• 0.2.0
• 0.2.0-pre3
• 0.2.0-pre2
• 0.2.0-pre1
• 0.1.15
• 0.1.14
• 0.1.13
• 0.1.12
• 0.1.11
• 0.1.10
• 0.1.8
• 0.1.7
• 0.1.6
• 0.1.0

224 Chapter 11. Change history

Celery Documentation, Release 2.1.4

11.1 2.1.5

• In 2.2 remote control commands are not persistent anymore. There is now a new setting you can use to disable
persistence in 2.1 as well: the CELERY_BROADCAST_PERSISTENT setting.

This setting will not have any effect in 2.2.

11.2 2.1.4

release-date 2010-12-03 12:00 PM CEST

• Celery programs now hijacks the root logger by default (Issue #250).

In 2.1 logging behavior was changed to not configure logging if it was already configured. The prob-
lem is that some libraries does not play nice and hijack the root logger, or use logging.basicConfig –
resulting in users not getting any output or logs.

So instead we now always hijack the root logger, but if you want the previous behavior you can
disable the CELERYD_HIJACK_ROOT_LOGGER setting:

CELERYD_HIJACK_ROOT_LOGGER = False

11.2.1 Fixes

• Execution options to apply_async now takes precedence over options returned by active routers. This was a
regression introduced recently (Issue #244).

• celeryev curses monitor: Long arguments are now truncated so curses doesn’t crash with out of bounds errors.
(Issue #235).

• celeryd: Channel errors occurring while handling control commands no longer crash the worker but are instead
logged with severity error.

• SQLAlchemy database backend: Fixed a race condition occurring when the client wrote the pending state. Just
like the Django database backend, it does no longer save the pending state (Issue #261 + Issue #262).

• task.apply: propagate=True now raises exceptions from the original frame, keeping the same stacktrace (Issue
#256).

• Error email body now uses repr(exception) instead of str(exception), as the latter could result in Unicode decode
errors (Issue #245).

• Error e-mail timeout value is now configurable by using the EMAIL_TIMEOUT setting.

• celeryev: Now works on Windows (but the curses monitor won’t work without having curses).

• Unit test output no longer emits non-standard characters.

• celeryd: The broadcast consumer is now closed if the connection is reset.

• celeryd: Now properly handles errors occurring while trying to acknowledge the message.

• Happy holidays :)

11.1. 2.1.5 225

Celery Documentation, Release 2.1.4

11.2.2 Documentation

• Adding Contributing.

• Added Optimizing.

• Added Security section to the FAQ.

• Periodic Task User Guide: Fixed typo in crontab example table (Issue #239).

11.3 2.1.3

release-date 2010-11-09 17:00 PM CEST

• Fixed deadlocks in timer2 which could lead to djcelerymon/celeryev -c hanging.

• EventReceiver: now sends heartbeat request to find workers.

This means celeryev and friends finds workers immediately at startup.

• celeryev cursesmon: Set screen_delay to 10ms, so the screen refreshes more often.

• Fixed pickling errors when pickling AsyncResult on older Python versions.

• celeryd: prefetch count was decremented by eta tasks even if there were no active prefetch limits.

11.4 2.1.2

release-date 2010-10-29 15:00 PM CEST

11.4.1 Fixes

• AMQP result backend: Delete result queue after having successfully polled the result.

• task.queue attribute and queue argument to apply_async was not working.

• Fixed bug with task log messages being output twice when logging to stderr.

– Default logfile is now sys.__stderr__ instead of sys.stderr, so the messages are not being redirected back
to the stderr logger.

– In addition task loggers now disable propagate by default. You can re-enable this by using the propagate
argument to task.get_logger.

• A 2 second timeout for sending error e-mails has been added.

The mail server used should have as little latency as possible, as the sending of error e-mails is
currently blocking the worker. Preferably the mailserver should be local.

• celeryd: Now sends the task-retried event for retried tasks.

This means retried tasks will show as RETRY in the event monitors.

• Logging should now handle utf-8 correctly.

• celeryd: Added exc_info error logging messages.

This is used by tools like django-sentry to provide more context.

• The time_start for a task is now set when the task is acknowledged, not when it is sent to the pool.

226 Chapter 11. Change history

http://github.com/dcramer/django-sentry

Celery Documentation, Release 2.1.4

See Issue #233.

• Fixed Sunday issue with the crontab scheduler.

• Fixed a race condition where Timer.enter is called twice before the thread actually runs.

• The mail_admins method is now in the loader, so it can be overriden. (django-celery now uses the Django mail
admins mechanism)).

• celeryd: Added –scheduler option to be used in combination with -B.

See Issue #229.

• Tasks Userguide: Added section about decorating tasks (Issue #224).

• Now links to celery-pylons on PyPI instead of on Bitbucket.

• celeryd: Now honors ignore result for WorkerLostError and timeout errors.

• celerybeat: Fixed UnboundLocalError in celerybeat logging when using logging setup signals.

• celeryd: All log messages now includes exc_info.

• ETA scheduler now uses a not_empty condition to wait for new tasks instead of a sleep polling loop

• celeryd now shows the total runtime for a task in the task succeeded log message.

11.5 2.1.1

release-date 2010-10-14 14:00 PM CEST

11.5.1 Fixes

• Now working on Windows again.

Removed dependency on the pwd/grp modules.

• snapshots: Fixed race condition leading to loss of events.

• celeryd: Reject tasks with an eta that cannot be converted to a time stamp.

See issue #209

• concurrency.processes.pool: The semaphore was released twice for each task (both at ACK and result ready).

This has been fixed, and it is now released only once per task.

• docs/configuration: Fixed typo CELERYD_SOFT_TASK_TIME_LIMIT ->
CELERYD_TASK_SOFT_TIME_LIMIT.

See issue #214

• control command dump_scheduled: was using old .info attribute

• celeryd-multi: Fixed set changed size during iteration bug occurring in the restart command.

• celeryd: Accidentally tried to use additional command line arguments.

This would lead to an error like:

11.5. 2.1.1 227

Celery Documentation, Release 2.1.4

got multiple values for keyword argument ’concurrency’.

Additional command line arguments are now ignored, and does not produce this error. How-
ever – we do reserve the right to use positional arguments in the future, so please do not
depend on this behavior.

• celerybeat: Now respects routers and task execution options again.

• celerybeat: Now reuses the publisher instead of the connection.

• Cache result backend: Using float as the expires argument to cache.set is deprecated by the memcached
libraries, so we now automatically cast to int.

• unit tests: No longer emits logging and warnings in test output.

11.5.2 News

• Now depends on carrot version 0.10.7.

• Added CELERY_REDIRECT_STDOUTS, and CELERYD_REDIRECT_STDOUTS_LEVEL settings.

CELERY_REDIRECT_STDOUTS is used by celeryd and celerybeat. All output to stdout and
stderr will be redirected to the current logger if enabled.

CELERY_REDIRECT_STDOUTS_LEVEL decides the log level used and is WARNING by default.

• Added CELERYBEAT_SCHEDULER setting.

This setting is used to define the default for the -S option to celerybeat.

Example:

CELERYBEAT_SCHEDULER = "djcelery.schedulers.DatabaseScheduler"

• Added Task.expires: Used to set default expiry time for tasks.

• New remote control commands: add_consumer and cancel_consumer.

add_consumer(queue, exchange, exchange_type, routing_key,
**options)

Tells the worker to declare and consume from the specified declaration.

cancel_consumer(queue_name)
Tells the worker to stop consuming from queue (by queue name).

Commands also added to celeryctl and inspect.

Example using celeryctl to start consuming from queue “queue”, in exchange “exchange”, of type
“direct” using binding key “key”:

$ celeryctl inspect add_consumer queue exchange direct key
$ celeryctl inspect cancel_consumer queue

See celeryctl: Management Utility for more information about the celeryctl program.

Another example using inspect:

>>> from celery.task.control import inspect
>>> inspect.add_consumer(queue="queue", exchange="exchange",
... exchange_type="direct",
... routing_key="key",
... durable=False,
... auto_delete=True)

228 Chapter 11. Change history

Celery Documentation, Release 2.1.4

>>> inspect.cancel_consumer("queue")

• celerybeat: Now logs the traceback if a message can’t be sent.

• celerybeat: Now enables a default socket timeout of 30 seconds.

• README/introduction/homepage: Added link to Flask-Celery.

11.6 2.1.0

release-date 2010-10-08 12:00 PM CEST

11.6.1 Important Notes

• Celery is now following the versioning semantics defined by semver.

This means we are no longer allowed to use odd/even versioning semantics By our previous version-
ing scheme this stable release should have been version 2.2.

• Now depends on Carrot 0.10.7.

• No longer depends on SQLAlchemy, this needs to be installed separately if the database result backend is used.

• django-celery now comes with a monitor for the Django Admin interface. This can also be used if you’re not a
Django user. See Django Admin Monitor and Using outside of Django for more information.

• If you get an error after upgrading saying: AttributeError: ’module’ object has no
attribute ’system’,

Then this is because the celery.platform module has been renamed to celery.platforms
to not collide with the built-in platform module.

You have to remove the old platform.py (and maybe platform.pyc) file from your previous
Celery installation.

To do this use python to find the location of this module:

$ python
>>> import celery.platform
>>> celery.platform
<module ’celery.platform’ from ’/opt/devel/celery/celery/platform.pyc’>

Here the compiled module is in /opt/devel/celery/celery/, to remove the offending files
do:

$ rm -f /opt/devel/celery/celery/platform.py*

11.6.2 News

• Added support for expiration of AMQP results (requires RabbitMQ 2.1.0)

The new configuration option CELERY_AMQP_TASK_RESULT_EXPIRES sets the expiry time in
seconds (can be int or float):

CELERY_AMQP_TASK_RESULT_EXPIRES = 30 * 60 # 30 minutes.
CELERY_AMQP_TASK_RESULT_EXPIRES = 0.80 # 800 ms.

11.6. 2.1.0 229

http://github.com/ask/flask-celery
http://semver.org

Celery Documentation, Release 2.1.4

• celeryev: Event Snapshots

If enabled, celeryd sends messages about what the worker is doing. These messages are called
“events”. The events are used by real-time monitors to show what the cluster is doing, but they are
not very useful for monitoring over a longer period of time. Snapshots lets you take “pictures” of the
clusters state at regular intervals. This can then be stored in a database to generate statistics with, or
even monitoring over longer time periods.

django-celery now comes with a Celery monitor for the Django Admin interface. To use this you
need to run the django-celery snapshot camera, which stores snapshots to the database at configurable
intervals. See Using outside of Django for information about using this monitor if you’re not using
Django.

To use the Django admin monitor you need to do the following:

1. Create the new database tables.

$ python manage.py syncdb

2. Start the django-celery snapshot camera:

$ python manage.py celerycam

3. Open up the django admin to monitor your cluster.

The admin interface shows tasks, worker nodes, and even lets you perform some actions, like revok-
ing and rate limiting tasks, and shutting down worker nodes.

There’s also a Debian init.d script for celeryev available, see Running celeryd as a daemon for
more information.

New command line arguments to celeryev:

– -c|--camera: Snapshot camera class to use.

– --logfile|-f: Log file

– --loglevel|-l: Log level

– --maxrate|-r: Shutter rate limit.

– --freq|-F: Shutter frequency

The --camera argument is the name of a class used to take snapshots with. It must support the
interface defined by celery.events.snapshot.Polaroid.

Shutter frequency controls how often the camera thread wakes up, while the rate limit controls how
often it will actually take a snapshot. The rate limit can be an integer (snapshots/s), or a rate limit
string which has the same syntax as the task rate limit strings ("200/m", "10/s", "1/h", etc).

For the Django camera case, this rate limit can be used to control how often the snapshots are written
to the database, and the frequency used to control how often the thread wakes up to check if there’s
anything new.

The rate limit is off by default, which means it will take a snapshot for every --frequency sec-
onds.

See also:

Django Admin Monitor and Snapshots.

• broadcast(): Added callback argument, this can be used to process replies immediately as they arrive.

• celeryctl: New command-line utility to manage and inspect worker nodes, apply tasks and inspect the results of
tasks.

230 Chapter 11. Change history

Celery Documentation, Release 2.1.4

See also:

The celeryctl: Management Utility section in the User Guide.

Some examples:

$ celeryctl apply tasks.add -a ’[2, 2]’ --countdown=10

$ celeryctl inspect active
$ celeryctl inspect registered_tasks
$ celeryctl inspect scheduled
$ celeryctl inspect --help
$ celeryctl apply --help

• Added the ability to set an expiry date and time for tasks.

Example:

>>> # Task expires after one minute from now.
>>> task.apply_async(args, kwargs, expires=60)
>>> # Also supports datetime
>>> task.apply_async(args, kwargs,
... expires=datetime.now() + timedelta(days=1)

When a worker receives a task that has been expired it will be marked as revoked
(celery.exceptions.TaskRevokedError).

• Changed the way logging is configured.

We now configure the root logger instead of only configuring our custom logger. In addition we
don’t hijack the multiprocessing logger anymore, but instead use a custom logger name for different
applications:

Application Logger Name
celeryd “celery”
celerybeat “celery.beat”
celeryev “celery.ev”

This means that the loglevel and logfile arguments will affect all registered loggers (even
those from 3rd party libraries). Unless you configure the loggers manually as shown below, that is.

Users can choose to configure logging by subscribing to the :data:‘~celery.signals.setup_logging‘
signal:

from logging.config import fileConfig
from celery import signals

def setup_logging(**kwargs):
fileConfig("logging.conf")

signals.setup_logging.connect(setup_logging)

If there are no receivers for this signal, the logging subsystem will be configured using the
--loglevel/--logfile argument, this will be used for all defined loggers.

Remember that celeryd also redirects stdout and stderr to the celery logger, if manually configure
logging you also need to redirect the stdouts manually:

from logging.config import fileConfig
from celery import log

def setup_logging(**kwargs):
import logging

11.6. 2.1.0 231

Celery Documentation, Release 2.1.4

fileConfig("logging.conf")
stdouts = logging.getLogger("mystdoutslogger")
log.redirect_stdouts_to_logger(stdouts, loglevel=logging.WARNING)

• celeryd: Added command-line option -I/--include:

A comma separated list of (task) modules to be imported.

Example:

$ celeryd -I app1.tasks,app2.tasks

• celeryd: now emits a warning if running as the root user (euid is 0).

• celery.messaging.establish_connection(): Ability to override defaults used using keyword ar-
gument “defaults”.

• celeryd: Now uses multiprocessing.freeze_support() so that it should work with py2exe, PyIn-
staller, cx_Freeze, etc.

• celeryd: Now includes more metadata for the STARTED state: PID and host name of the worker that started the
task.

See issue #181

• subtask: Merge additional keyword arguments to subtask() into task keyword arguments.

e.g.:

>>> s = subtask((1, 2), {"foo": "bar"}, baz=1)
>>> s.args
(1, 2)
>>> s.kwargs
{"foo": "bar", "baz": 1}

See issue #182.

• celeryd: Now emits a warning if there is already a worker node using the same name running on the same virtual
host.

• AMQP result backend: Sending of results are now retried if the connection is down.

• AMQP result backend: result.get(): Wait for next state if state is not in READY_STATES.

• TaskSetResult now supports subscription.

>>> res = TaskSet(tasks).apply_async()
>>> res[0].get()

• Added Task.send_error_emails + Task.error_whitelist, so these can be configured per task
instead of just by the global setting.

• Added Task.store_errors_even_if_ignored, so it can be changed per Task, not just by the global
setting.

• The crontab scheduler no longer wakes up every second, but implements remaining_estimate (Optimiza-
tion).

• celeryd: Store FAILURE result if the WorkerLostError exception occurs (worker process disappeared).

• celeryd: Store FAILURE result if one of the *TimeLimitExceeded exceptions occurs.

• Refactored the periodic task responsible for cleaning up results.

232 Chapter 11. Change history

Celery Documentation, Release 2.1.4

– The backend cleanup task is now only added to the schedule if
CELERY_TASK_RESULT_EXPIRES is set.

– If the schedule already contains a periodic task named “celery.backend_cleanup” it won’t change
it, so the behavior of the backend cleanup task can be easily changed.

– The task is now run every day at 4:00 AM, rather than every day since the first time it was run
(using crontab schedule instead of run_every)

– Renamed celery.task.builtins.DeleteExpiredTaskMetaTask ->
celery.task.builtins.backend_cleanup

– The task itself has been renamed from “celery.delete_expired_task_meta” to “cel-
ery.backend_cleanup”

See issue #134.

• Implemented AsyncResult.forget for sqla/cache/redis/tyrant backends. (Forget and remove task result).

See issue #184.

• TaskSetResult.join: Added ‘propagate=True’ argument.

When set to False exceptions occurring in subtasks will not be re-raised.

• Added Task.update_state(task_id, state, meta) as a shortcut to
task.backend.store_result(task_id, meta, state).

The backend interface is “private” and the terminology outdated, so better to move this to Task so
it can be used.

• timer2: Set self.running=False in stop() so it won’t try to join again on subsequent calls to stop().

• Log colors are now disabled by default on Windows.

• celery.platform renamed to celery.platforms, so it doesn’t collide with the built-in platform
module.

• Exceptions occurring in Mediator+Pool callbacks are now caught and logged instead of taking down the worker.

• Redis result backend: Now supports result expiration using the Redis EXPIRE command.

• unit tests: Don’t leave threads running at tear down.

• celeryd: Task results shown in logs are now truncated to 46 chars.

• Task.__name__ is now an alias to self.__class__.__name__. This way tasks introspects more like
regular functions.

• Task.retry: Now raises TypeError if kwargs argument is empty.

See issue #164.

• timedelta_seconds: Use timedelta.total_seconds if running on Python 2.7

• TokenBucket: Generic Token Bucket algorithm

• celery.events.state: Recording of cluster state can now be paused and resumed, including support for
buffering.

State.freeze(buffer=True)
Pauses recording of the stream.

If buffer is true, events received while being frozen will be buffered, and may be replayed
later.

11.6. 2.1.0 233

Celery Documentation, Release 2.1.4

State.thaw(replay=True)
Resumes recording of the stream.

If replay is true, then the recorded buffer will be applied.

State.freeze_while(fun)
With a function to apply, freezes the stream before, and replays the buffer after the function
returns.

• EventReceiver.capture Now supports a timeout keyword argument.

• celeryd: The mediator thread is now disabled if CELERY_RATE_LIMITS is enabled, and tasks are directly
sent to the pool without going through the ready queue (Optimization).

11.6.3 Fixes

• Pool: Process timed out by TimeoutHandler must be joined by the Supervisor, so don’t remove it from the
internal process list.

See issue #192.

• TaskPublisher.delay_task now supports exchange argument, so exchange can be overridden when sending tasks
in bulk using the same publisher

See issue #187.

• celeryd no longer marks tasks as revoked if CELERY_IGNORE_RESULT is enabled.

See issue #207.

• AMQP Result backend: Fixed bug with result.get() if CELERY_TRACK_STARTED enabled.

result.get() would stop consuming after receiving the STARTED state.

• Fixed bug where new processes created by the pool supervisor becomes stuck while reading from the task
Queue.

See http://bugs.python.org/issue10037

• Fixed timing issue when declaring the remote control command reply queue

This issue could result in replies being lost, but have now been fixed.

• Backward compatible LoggerAdapter implementation: Now works for Python 2.4.

Also added support for several new methods: fatal, makeRecord, _log, log,
isEnabledFor, addHandler, removeHandler.

11.6.4 Experimental

• celeryd-multi: Added daemonization support.

celeryd-multi can now be used to start, stop and restart worker nodes.

$ celeryd-multi start jerry elaine george kramer

This also creates PID files and log files (celeryd@jerry.pid, ..., celeryd@jerry.log. To
specify a location for these files use the --pidfile and --logfile arguments with the %n
format:

$ celeryd-multi start jerry elaine george kramer \
--logfile=/var/log/celeryd@%n.log \
--pidfile=/var/run/celeryd@%n.pid

234 Chapter 11. Change history

http://bugs.python.org/issue10037

Celery Documentation, Release 2.1.4

Stopping:

$ celeryd-multi stop jerry elaine george kramer

Restarting. The nodes will be restarted one by one as the old ones are shutdown:

$ celeryd-multi restart jerry elaine george kramer

Killing the nodes (WARNING: Will discard currently executing tasks):

$ celeryd-multi kill jerry elaine george kramer

See celeryd-multi help for help.

• celeryd-multi: start command renamed to show.

celeryd-multi start will now actually start and detach worker nodes. To just generate the
commands you have to use celeryd-multi show.

• celeryd: Added --pidfile argument.

The worker will write its pid when it starts. The worker will not be started if this file exists and the
pid contained is still alive.

• Added generic init.d script using celeryd-multi

http://github.com/ask/celery/tree/master/contrib/generic-init.d/celeryd

11.6.5 Documentation

• Added User guide section: Monitoring

• Added user guide section: Periodic Tasks

Moved from getting-started/periodic-tasks and updated.

• tutorials/external moved to new section: “community”.

• References has been added to all sections in the documentation.

This makes it easier to link between documents.

11.7 2.0.3

release-date 2010-08-27 12:00 P.M CEST

11.7.1 Fixes

• celeryd: Properly handle connection errors happening while closing consumers.

• celeryd: Events are now buffered if the connection is down, then sent when the connection is re-established.

• No longer depends on the mailer package.

This package had a name space collision with django-mailer, so its functionality was replaced.

• Redis result backend: Documentation typos: Redis doesn’t have database names, but database numbers. The
default database is now 0.

• inspect: registered_tasks was requesting an invalid command because of a typo.

11.7. 2.0.3 235

http://github.com/ask/celery/tree/master/contrib/generic-init.d/celeryd

Celery Documentation, Release 2.1.4

See issue #170.

• CELERY_ROUTES: Values defined in the route should now have precedence over values defined in
CELERY_QUEUES when merging the two.

With the follow settings:

CELERY_QUEUES = {"cpubound": {"exchange": "cpubound",
"routing_key": "cpubound"}}

CELERY_ROUTES = {"tasks.add": {"queue": "cpubound",
"routing_key": "tasks.add",
"serializer": "json"}}

The final routing options for tasks.add will become:

{"exchange": "cpubound",
"routing_key": "tasks.add",
"serializer": "json"}

This was not the case before: the values in CELERY_QUEUES would take precedence.

• Worker crashed if the value of CELERY_TASK_ERROR_WHITELIST was not an iterable

• apply(): Make sure kwargs["task_id"] is always set.

• AsyncResult.traceback: Now returns None, instead of raising KeyError if traceback is missing.

• inspect: Replies did not work correctly if no destination was specified.

• Can now store result/metadata for custom states.

• celeryd: A warning is now emitted if the sending of task error e-mails fails.

• celeryev: Curses monitor no longer crashes if the terminal window is resized.

See issue #160.

• celeryd: On OS X it is not possible to run os.exec* in a process that is threaded.

This breaks the SIGHUP restart handler, and is now disabled on OS X, emitting a warning
instead.

See issue #152.

• celery.execute.trace: Properly handle raise(str), which is still allowed in Python 2.4.

See issue #175.

• Using urllib2 in a periodic task on OS X crashed because of the proxy auto detection used in OS X.

This is now fixed by using a workaround. See issue #143.

• Debian init scripts: Commands should not run in a sub shell

See issue #163.

• Debian init scripts: Use the absolute path of celeryd to allow stat

See issue #162.

11.7.2 Documentation

• getting-started/broker-installation: Fixed typo

set_permissions "" -> set_permissions ".*".

236 Chapter 11. Change history

Celery Documentation, Release 2.1.4

• Tasks User Guide: Added section on database transactions.

See issue #169.

• Routing User Guide: Fixed typo “feed”: -> {“queue”: “feeds”}.

See issue #169.

• Documented the default values for the CELERYD_CONCURRENCY and
CELERYD_PREFETCH_MULTIPLIER settings.

• Tasks User Guide: Fixed typos in the subtask example

• celery.signals: Documented worker_process_init.

• Daemonization cookbook: Need to export DJANGO_SETTINGS_MODULE in /etc/default/celeryd.

• Added some more FAQs from stack overflow

• Daemonization cookbook: Fixed typo CELERYD_LOGFILE/CELERYD_PIDFILE

to CELERYD_LOG_FILE / CELERYD_PID_FILE

Also added troubleshooting section for the init scripts.

11.8 2.0.2

release-date 2010-07-22 11:31 A.M CEST

• Routes: When using the dict route syntax, the exchange for a task could disappear making the task unroutable.

See issue #158.

• Test suite now passing on Python 2.4

• No longer have to type PYTHONPATH=. to use celeryconfig in the current directory.

This is accomplished by the default loader ensuring that the current directory is in sys.path when
loading the config module. sys.path is reset to its original state after loading.

Adding the current working directory to sys.path without the user knowing may be a security issue,
as this means someone can drop a Python module in the users directory that executes arbitrary com-
mands. This was the original reason not to do this, but if done only when loading the config module,
this means that the behavior will only apply to the modules imported in the config module, which I
think is a good compromise (certainly better than just explicitly setting PYTHONPATH=. anyway)

• Experimental Cassandra backend added.

• celeryd: SIGHUP handler accidentally propagated to worker pool processes.

In combination with 7a7c44e39344789f11b5346e9cc8340f5fe4846c this would make each child pro-
cess start a new celeryd when the terminal window was closed :/

• celeryd: Do not install SIGHUP handler if running from a terminal.

This fixes the problem where celeryd is launched in the background when closing the terminal.

• celeryd: Now joins threads at shutdown.

See issue #152.

• Test tear down: Don’t use atexit but nose’s teardown() functionality instead.

See issue #154.

• Debian init script for celeryd: Stop now works correctly.

11.8. 2.0.2 237

Celery Documentation, Release 2.1.4

• Task logger: warn method added (synonym for warning)

• Can now define a white list of errors to send error e-mails for.

Example:

CELERY_TASK_ERROR_WHITELIST = (’myapp.MalformedInputError’)

See issue #153.

• celeryd: Now handles overflow exceptions in time.mktime while parsing the ETA field.

• LoggerWrapper: Try to detect loggers logging back to stderr/stdout making an infinite loop.

• Added celery.task.control.inspect: Inspects a running worker.

Examples:

Inspect a single worker
>>> i = inspect("myworker.example.com")

Inspect several workers
>>> i = inspect(["myworker.example.com", "myworker2.example.com"])

Inspect all workers consuming on this vhost.
>>> i = inspect()

Methods

Get currently executing tasks
>>> i.active()

Get currently reserved tasks
>>> i.reserved()

Get the current eta schedule
>>> i.scheduled()

Worker statistics and info
>>> i.stats()

List of currently revoked tasks
>>> i.revoked()

List of registered tasks
>>> i.registered_tasks()

• Remote control commands dump_active/dump_reserved/dump_schedule now replies with detailed
task requests.

Containing the original arguments and fields of the task requested.

In addition the remote control command set_loglevel has been added, this only changes the log level
for the main process.

• Worker control command execution now catches errors and returns their string representation in the reply.

• Functional test suite added

celery.tests.functional.case contains utilities to start and stop an embedded celeryd
process, for use in functional testing.

238 Chapter 11. Change history

Celery Documentation, Release 2.1.4

11.9 2.0.1

release-date 2010-07-09 03:02 P.M CEST

• multiprocessing.pool: Now handles encoding errors, so that pickling errors doesn’t crash the worker processes.

• The remote control command replies was not working with RabbitMQ 1.8.0’s stricter equivalence checks.

If you’ve already hit this problem you may have to delete the declaration:

$ camqadm exchange.delete celerycrq

or:

$ python manage.py camqadm exchange.delete celerycrq

• A bug sneaked in the ETA scheduler that made it only able to execute one task per second(!)

The scheduler sleeps between iterations so it doesn’t consume too much CPU. It keeps a list of the
scheduled items sorted by time, at each iteration it sleeps for the remaining time of the item with the
nearest deadline. If there are no eta tasks it will sleep for a minimum amount of time, one second by
default.

A bug sneaked in here, making it sleep for one second for every task that was scheduled. This has
been fixed, so now it should move tasks like hot knife through butter.

In addition a new setting has been added to control the minimum sleep interval;
CELERYD_ETA_SCHEDULER_PRECISION. A good value for this would be a float between 0
and 1, depending on the needed precision. A value of 0.8 means that when the ETA of a task is met,
it will take at most 0.8 seconds for the task to be moved to the ready queue.

• Pool: Supervisor did not release the semaphore.

This would lead to a deadlock if all workers terminated prematurely.

• Added Python version trove classifiers: 2.4, 2.5, 2.6 and 2.7

• Tests now passing on Python 2.7.

• Task.__reduce__: Tasks created using the task decorator can now be pickled.

• setup.py: nose added to tests_require.

• Pickle should now work with SQLAlchemy 0.5.x

• New homepage design by Jan Henrik Helmers: http://celeryproject.org

• New Sphinx theme by Armin Ronacher: http://docs.celeryproject.org/

• Fixed “pending_xref” errors shown in the HTML rendering of the documentation. Apparently this was caused
by new changes in Sphinx 1.0b2.

• Router classes in CELERY_ROUTES are now imported lazily.

Importing a router class in a module that also loads the Celery environment would cause a circular
dependency. This is solved by importing it when needed after the environment is set up.

• CELERY_ROUTES was broken if set to a single dict.

This example in the docs should now work again:

CELERY_ROUTES = {"feed.tasks.import_feed": "feeds"}

• CREATE_MISSING_QUEUES was not honored by apply_async.

• New remote control command: stats

11.9. 2.0.1 239

http://celeryproject.org
http://docs.celeryproject.org/

Celery Documentation, Release 2.1.4

Dumps information about the worker, like pool process ids, and total number of tasks executed by
type.

Example reply:

[{’worker.local’:
’total’: {’tasks.sleeptask’: 6},
’pool’: {’timeouts’: [None, None],

’processes’: [60376, 60377],
’max-concurrency’: 2,
’max-tasks-per-child’: None,
’put-guarded-by-semaphore’: True}}]

• New remote control command: dump_active

Gives a list of tasks currently being executed by the worker. By default arguments are passed through
repr in case there are arguments that is not JSON encodable. If you know the arguments are JSON
safe, you can pass the argument safe=True.

Example reply:

>>> broadcast("dump_active", arguments={"safe": False}, reply=True)
[{’worker.local’: [

{’args’: ’(1,)’,
’time_start’: 1278580542.6300001,
’name’: ’tasks.sleeptask’,
’delivery_info’: {

’consumer_tag’: ’30’,
’routing_key’: ’celery’,
’exchange’: ’celery’},

’hostname’: ’casper.local’,
’acknowledged’: True,
’kwargs’: ’{}’,
’id’: ’802e93e9-e470-47ed-b913-06de8510aca2’,

}
]}]

• Added experimental support for persistent revokes.

Use the -S|--statedb argument to celeryd to enable it:

$ celeryd --statedb=/var/run/celeryd

This will use the file: /var/run/celeryd.db, as the shelve module automatically adds the
.db suffix.

11.10 2.0.0

release-date 2010-07-02 02:30 P.M CEST

11.10.1 Foreword

Celery 2.0 contains backward incompatible changes, the most important being that the Django dependency has been
removed so Celery no longer supports Django out of the box, but instead as an add-on package called django-celery.

We’re very sorry for breaking backwards compatibility, but there’s also many new and exciting features to make up
for the time you lose upgrading, so be sure to read the News section.

240 Chapter 11. Change history

http://pypi.python.org/pypi/django-celery

Celery Documentation, Release 2.1.4

Quite a lot of potential users have been upset about the Django dependency, so maybe this is a chance to get wider
adoption by the Python community as well.

Big thanks to all contributors, testers and users!

11.10.2 Upgrading for Django-users

Django integration has been moved to a separate package: django-celery.

• To upgrade you need to install the django-celery module and change:

INSTALLED_APPS = "celery"

to:

INSTALLED_APPS = "djcelery"

• If you use mod_wsgi you need to add the following line to your .wsgi file:

import os
os.environ["CELERY_LOADER"] = "django"

• The following modules has been moved to django-celery:

Module name Replace with
celery.models djcelery.models
celery.managers djcelery.managers
celery.views djcelery.views
celery.urls djcelery.urls
celery.management djcelery.management
celery.loaders.djangoapp djcelery.loaders
celery.backends.database djcelery.backends.database
celery.backends.cache djcelery.backends.cache

Importing djcelery will automatically setup Celery to use Django loader. loader. It does this by setting the
CELERY_LOADER environment variable to "django" (it won’t change it if a loader is already set.)

When the Django loader is used, the “database” and “cache” result backend aliases will point to the djcelery
backends instead of the built-in backends, and configuration will be read from the Django settings.

11.10.3 Upgrading for others

Database result backend

The database result backend is now using SQLAlchemy instead of the Django ORM, see Supported Databases for a
table of supported databases.

The DATABASE_* settings has been replaced by a single setting: CELERY_RESULT_DBURI. The value here should
be an SQLAlchemy Connection String, some examples include:

sqlite (filename)
CELERY_RESULT_DBURI = "sqlite:///celerydb.sqlite"

mysql
CELERY_RESULT_DBURI = "mysql://scott:tiger@localhost/foo"

postgresql
CELERY_RESULT_DBURI = "postgresql://scott:tiger@localhost/mydatabase"

11.10. 2.0.0 241

http://pypi.python.org/pypi/django-celery
http://pypi.python.org/pypi/django-celery
http://pypi.python.org/pypi/django-celery
http://www.sqlalchemy.org
http://www.sqlalchemy.org/docs/dbengine.html#supported-databases
http://www.sqlalchemy.org/docs/dbengine.html#create-engine-url-arguments

Celery Documentation, Release 2.1.4

oracle
CELERY_RESULT_DBURI = "oracle://scott:tiger@127.0.0.1:1521/sidname"

See SQLAlchemy Connection Strings for more information about connection strings.

To specify additional SQLAlchemy database engine options you can use the CELERY_RESULT_ENGINE_OPTIONS
setting:

echo enables verbose logging from SQLAlchemy.
CELERY_RESULT_ENGINE_OPTIONS = {"echo": True}

Cache result backend

The cache result backend is no longer using the Django cache framework, but it supports mostly the same configuration
syntax:

CELERY_CACHE_BACKEND = "memcached://A.example.com:11211;B.example.com"

To use the cache backend you must either have the pylibmc or python-memcached library installed, of which the
former is regarded as the best choice.

The support backend types are memcached:// and memory://, we haven’t felt the need to support any of the
other backends provided by Django.

11.10.4 Backward incompatible changes

• Default (python) loader now prints warning on missing celeryconfig.py instead of raising
ImportError.

celeryd raises ImproperlyConfigured if the configuration is not set up. This makes it possible
to use –help etc., without having a working configuration.

Also this makes it possible to use the client side of celery without being configured:

>>> from carrot.connection import BrokerConnection
>>> conn = BrokerConnection("localhost", "guest", "guest", "/")
>>> from celery.execute import send_task
>>> r = send_task("celery.ping", args=(), kwargs={}, connection=conn)
>>> from celery.backends.amqp import AMQPBackend
>>> r.backend = AMQPBackend(connection=conn)
>>> r.get()
’pong’

• The following deprecated settings has been removed (as scheduled by the deprecation timeline):

Setting name Replace with
CELERY_AMQP_CONSUMER_QUEUES CELERY_QUEUES
CELERY_AMQP_EXCHANGE CELERY_DEFAULT_EXCHANGE
CELERY_AMQP_EXCHANGE_TYPE CELERY_DEFAULT_EXCHANGE_TYPE
CELERY_AMQP_CONSUMER_ROUTING_KEY CELERY_QUEUES
CELERY_AMQP_PUBLISHER_ROUTING_KEY CELERY_DEFAULT_ROUTING_KEY

• The celery.task.rest module has been removed, use celery.task.http instead (as scheduled by
the deprecation timeline).

• It’s no longer allowed to skip the class name in loader names. (as scheduled by the deprecation timeline):

Assuming the implicit Loader class name is no longer supported, if you use e.g.:

242 Chapter 11. Change history

http://www.sqlalchemy.org/docs/dbengine.html#create-engine-url-arguments
http://pypi.python.org/pypi/pylibmc
http://pypi.python.org/pypi/python-memcached
http://ask.github.com/celery/internals/deprecation.html
http://ask.github.com/celery/internals/deprecation.html
http://ask.github.com/celery/internals/deprecation.html

Celery Documentation, Release 2.1.4

CELERY_LOADER = "myapp.loaders"

You need to include the loader class name, like this:

CELERY_LOADER = "myapp.loaders.Loader"

• CELERY_TASK_RESULT_EXPIRES now defaults to 1 day.

Previous default setting was to expire in 5 days.

• AMQP backend: Don’t use different values for auto_delete.

This bug became visible with RabbitMQ 1.8.0, which no longer allows conflicting declarations for
the auto_delete and durable settings.

If you’ve already used celery with this backend chances are you have to delete the previous declara-
tion:

$ camqadm exchange.delete celeryresults

• Now uses pickle instead of cPickle on Python versions <= 2.5

cPickle is broken in Python <= 2.5.

It unsafely and incorrectly uses relative instead of absolute imports, so e.g.:

exceptions.KeyError

becomes:

celery.exceptions.KeyError

Your best choice is to upgrade to Python 2.6, as while the pure pickle version has worse performance,
it is the only safe option for older Python versions.

11.10.5 News

• celeryev: Curses Celery Monitor and Event Viewer.

This is a simple monitor allowing you to see what tasks are executing in real-time and investigate
tracebacks and results of ready tasks. It also enables you to set new rate limits and revoke tasks.

Screenshot:

If you run celeryev with the -d switch it will act as an event dumper, simply dumping the events
it receives to standard out:

$ celeryev -d
-> celeryev: starting capture...
casper.local [2010-06-04 10:42:07.020000] heartbeat
casper.local [2010-06-04 10:42:14.750000] task received:

tasks.add(61a68756-27f4-4879-b816-3cf815672b0e) args=[2, 2] kwargs={}
eta=2010-06-04T10:42:16.669290, retries=0

casper.local [2010-06-04 10:42:17.230000] task started
tasks.add(61a68756-27f4-4879-b816-3cf815672b0e) args=[2, 2] kwargs={}

casper.local [2010-06-04 10:42:17.960000] task succeeded:
tasks.add(61a68756-27f4-4879-b816-3cf815672b0e)
args=[2, 2] kwargs={} result=4, runtime=0.782663106918

The fields here are, in order: *sender hostname*, *timestamp*, *event type* and

additional event fields.

11.10. 2.0.0 243

Celery Documentation, Release 2.1.4

244 Chapter 11. Change history

Celery Documentation, Release 2.1.4

• AMQP result backend: Now supports .ready(), .successful(), .result, .status, and even re-
sponds to changes in task state

• New user guides:

– Workers Guide

– Sets of tasks, Subtasks and Callbacks

– Routing Tasks

• celeryd: Standard out/error is now being redirected to the log file.

• billiard has been moved back to the celery repository.

Module name celery equivalent
billiard.pool celery.concurrency.processes.pool
billiard.serialization celery.serialization
billiard.utils.functional celery.utils.functional

The billiard distribution may be maintained, depending on interest.

• now depends on carrot >= 0.10.5

• now depends on pyparsing

• celeryd: Added --purge as an alias to --discard.

• celeryd: Ctrl+C (SIGINT) once does warm shutdown, hitting Ctrl+C twice forces termination.

• Added support for using complex crontab-expressions in periodic tasks. For example, you can now use:

>>> crontab(minute="*/15")

or even:

>>> crontab(minute="*/30", hour="8-17,1-2", day_of_week="thu-fri")

See Periodic Tasks.

• celeryd: Now waits for available pool processes before applying new tasks to the pool.

This means it doesn’t have to wait for dozens of tasks to finish at shutdown because it has applied
prefetched tasks without having any pool processes available to immediately accept them.

See issue #122.

• New built-in way to do task callbacks using subtask.

See Sets of tasks, Subtasks and Callbacks for more information.

• TaskSets can now contain several types of tasks.

TaskSet has been refactored to use a new syntax, please see Sets of tasks, Subtasks and Callbacks for more
information.

The previous syntax is still supported, but will be deprecated in version 1.4.

• TaskSet failed() result was incorrect.

See issue #132.

• Now creates different loggers per task class.

See issue #129.

• Missing queue definitions are now created automatically.

11.10. 2.0.0 245

Celery Documentation, Release 2.1.4

You can disable this using the CELERY_CREATE_MISSING_QUEUES setting.

The missing queues are created with the following options:

CELERY_QUEUES[name] = {"exchange": name,
"exchange_type": "direct",
"routing_key": "name}

This feature is added for easily setting up routing using the -Q option to celeryd:

$ celeryd -Q video, image

See the new routing section of the User Guide for more information: Routing Tasks.

• New Task option: Task.queue

If set, message options will be taken from the corresponding entry in CELERY_QUEUES.
exchange, exchange_type and routing_key will be ignored

• Added support for task soft and hard time limits.

New settings added:

– CELERYD_TASK_TIME_LIMIT

Hard time limit. The worker processing the task will be killed and replaced with a new
one when this is exceeded.

– CELERYD_SOFT_TASK_TIME_LIMIT

Soft time limit. The celery.exceptions.SoftTimeLimitExceeded excep-
tion will be raised when this is exceeded. The task can catch this to e.g. clean up before
the hard time limit comes.

New command line arguments to celeryd added: --time-limit and --soft-time-limit.

What’s left?

This won’t work on platforms not supporting signals (and specifically the SIGUSR1 signal) yet. So
an alternative the ability to disable the feature all together on nonconforming platforms must be
implemented.

Also when the hard time limit is exceeded, the task result should be a TimeLimitExceeded
exception.

• Test suite is now passing without a running broker, using the carrot in-memory backend.

• Log output is now available in colors.

Log level Color
DEBUG Blue
WARNING Yellow
CRITICAL Magenta
ERROR Red

This is only enabled when the log output is a tty. You can explicitly enable/disable this feature using
the CELERYD_LOG_COLOR setting.

• Added support for task router classes (like the django multi-db routers)

– New setting: CELERY_ROUTES

This is a single, or a list of routers to traverse when sending tasks. Dictionaries in this list converts to
a celery.routes.MapRoute instance.

246 Chapter 11. Change history

Celery Documentation, Release 2.1.4

Examples:

>>> CELERY_ROUTES = {"celery.ping": "default",
"mytasks.add": "cpu-bound",
"video.encode": {

"queue": "video",
"exchange": "media"
"routing_key": "media.video.encode"}}

>>> CELERY_ROUTES = ("myapp.tasks.Router",
{"celery.ping": "default})

Where myapp.tasks.Router could be:

class Router(object):

def route_for_task(self, task, args=None, kwargs=None):
if task == "celery.ping":

return "default"

route_for_task may return a string or a dict. A string then means it’s a queue name in
CELERY_QUEUES, a dict means it’s a custom route.

When sending tasks, the routers are consulted in order. The first router that doesn’t return None is
the route to use. The message options is then merged with the found route settings, where the routers
settings have priority.

Example if apply_async() has these arguments:

>>> Task.apply_async(immediate=False, exchange="video",
... routing_key="video.compress")

and a router returns:

{"immediate": True,
"exchange": "urgent"}

the final message options will be:

immediate=True, exchange="urgent", routing_key="video.compress"

(and any default message options defined in the Task class)

• New Task handler called after the task returns: after_return().

• ExceptionInfo now passed to on_retry()/ on_failure() as einfo keyword argument.

• celeryd: Added CELERYD_MAX_TASKS_PER_CHILD / --maxtasksperchild

Defines the maximum number of tasks a pool worker can process before the process is terminated
and replaced by a new one.

• Revoked tasks now marked with state REVOKED, and result.get() will now raise TaskRevokedError.

• celery.task.control.ping() now works as expected.

• apply(throw=True) / CELERY_EAGER_PROPAGATES_EXCEPTIONS: Makes eager execution re-raise
task errors.

• New signal: worker_process_init: Sent inside the pool worker process at init.

• celeryd -Q option: Ability to specify list of queues to use, disabling other configured queues.

11.10. 2.0.0 247

Celery Documentation, Release 2.1.4

For example, if CELERY_QUEUES defines four queues: image, video, data and default, the
following command would make celeryd only consume from the image and video queues:

$ celeryd -Q image,video

• celeryd: New return value for the revoke control command:

Now returns:

{"ok": "task $id revoked"}

instead of True.

• celeryd: Can now enable/disable events using remote control

Example usage:

>>> from celery.task.control import broadcast
>>> broadcast("enable_events")
>>> broadcast("disable_events")

• Removed top-level tests directory. Test config now in celery.tests.config

This means running the unit tests doesn’t require any special setup. celery/tests/__init__ now con-
figures the CELERY_CONFIG_MODULE and CELERY_LOADER environment variables, so when
nosetests imports that, the unit test environment is all set up.

Before you run the tests you need to install the test requirements:

$ pip install -r contrib/requirements/test.txt

Running all tests:

$ nosetests

Specifying the tests to run:

$ nosetests celery.tests.test_task

Producing HTML coverage:

$ nosetests --with-coverage3

The coverage output is then located in celery/tests/cover/index.html.

• celeryd: New option --version: Dump version info and exit.

• celeryd-multi: Tool for shell scripts to start multiple workers.

Some examples:

Advanced example with 10 workers:
* Three of the workers processes the images and video queue
* Two of the workers processes the data queue with loglevel DEBUG
* the rest processes the default’ queue.
$ celeryd-multi start 10 -l INFO -Q:1-3 images,video -Q:4,5:data

-Q default -L:4,5 DEBUG

get commands to start 10 workers, with 3 processes each
$ celeryd-multi start 3 -c 3
celeryd -n celeryd1.myhost -c 3
celeryd -n celeryd2.myhost -c 3
celeryd- n celeryd3.myhost -c 3

248 Chapter 11. Change history

Celery Documentation, Release 2.1.4

start 3 named workers
$ celeryd-multi start image video data -c 3
celeryd -n image.myhost -c 3
celeryd -n video.myhost -c 3
celeryd -n data.myhost -c 3

specify custom hostname
$ celeryd-multi start 2 -n worker.example.com -c 3
celeryd -n celeryd1.worker.example.com -c 3
celeryd -n celeryd2.worker.example.com -c 3

Additionl options are added to each celeryd’,
but you can also modify the options for ranges of or single workers

3 workers: Two with 3 processes, and one with 10 processes.
$ celeryd-multi start 3 -c 3 -c:1 10
celeryd -n celeryd1.myhost -c 10
celeryd -n celeryd2.myhost -c 3
celeryd -n celeryd3.myhost -c 3

can also specify options for named workers
$ celeryd-multi start image video data -c 3 -c:image 10
celeryd -n image.myhost -c 10
celeryd -n video.myhost -c 3
celeryd -n data.myhost -c 3

ranges and lists of workers in options is also allowed:
(-c:1-3 can also be written as -c:1,2,3)
$ celeryd-multi start 5 -c 3 -c:1-3 10
celeryd-multi -n celeryd1.myhost -c 10
celeryd-multi -n celeryd2.myhost -c 10
celeryd-multi -n celeryd3.myhost -c 10
celeryd-multi -n celeryd4.myhost -c 3
celeryd-multi -n celeryd5.myhost -c 3

lists also works with named workers
$ celeryd-multi start foo bar baz xuzzy -c 3 -c:foo,bar,baz 10
celeryd-multi -n foo.myhost -c 10
celeryd-multi -n bar.myhost -c 10
celeryd-multi -n baz.myhost -c 10
celeryd-multi -n xuzzy.myhost -c 3

• The worker now calls the result backends process_cleanup method after task execution instead of before.

• AMQP result backend now supports Pika.

11.11 1.0.6

release-date 2010-06-30 09:57 A.M CEST

• RabbitMQ 1.8.0 has extended their exchange equivalence tests to include auto_delete and durable. This
broke the AMQP backend.

If you’ve already used the AMQP backend this means you have to delete the previous definitions:

$ camqadm exchange.delete celeryresults

11.11. 1.0.6 249

Celery Documentation, Release 2.1.4

or:

$ python manage.py camqadm exchange.delete celeryresults

11.12 1.0.5

release-date 2010-06-01 02:36 P.M CEST

11.12.1 Critical

• SIGINT/Ctrl+C killed the pool, abruptly terminating the currently executing tasks.

Fixed by making the pool worker processes ignore SIGINT.

• Should not close the consumers before the pool is terminated, just cancel the consumers.

See issue #122.

• Now depends on billiard >= 0.3.1

• celeryd: Previously exceptions raised by worker components could stall startup, now it correctly logs the excep-
tions and shuts down.

• celeryd: Prefetch counts was set too late. QoS is now set as early as possible, so celeryd can’t slurp in all the
messages at start-up.

11.12.2 Changes

• celery.contrib.abortable: Abortable tasks.

Tasks that defines steps of execution, the task can then be aborted after each step has completed.

• EventDispatcher: No longer creates AMQP channel if events are disabled

• Added required RPM package names under [bdist_rpm] section, to support building RPMs from the sources
using setup.py

• Running unit tests: NOSE_VERBOSE environment var now enables verbose output from Nose.

• celery.execute.apply(): Pass log file/log level arguments as task kwargs.

See issue #110.

• celery.execute.apply: Should return exception, not ExceptionInfo on error.

See issue #111.

• Added new entries to the FAQs:

– Should I use retry or acks_late?

– Can I execute a task by name?

11.13 1.0.4

release-date 2010-05-31 09:54 A.M CEST

• Changelog merged with 1.0.5 as the release was never announced.

250 Chapter 11. Change history

Celery Documentation, Release 2.1.4

11.14 1.0.3

release-date 2010-05-15 03:00 P.M CEST

11.14.1 Important notes

• Messages are now acknowledged just before the task function is executed.

This is the behavior we’ve wanted all along, but couldn’t have because of limitations in the multipro-
cessing module. The previous behavior was not good, and the situation worsened with the release of
1.0.1, so this change will definitely improve reliability, performance and operations in general.

For more information please see http://bit.ly/9hom6T

• Database result backend: result now explicitly sets null=True as django-picklefield version 0.1.5
changed the default behavior right under our noses :(

See: http://bit.ly/d5OwMr

This means those who created their celery tables (via syncdb or celeryinit) with picklefield versions
>= 0.1.5 has to alter their tables to allow the result field to be NULL manually.

MySQL:

ALTER TABLE celery_taskmeta MODIFY result TEXT NULL

PostgreSQL:

ALTER TABLE celery_taskmeta ALTER COLUMN result DROP NOT NULL

• Removed Task.rate_limit_queue_type, as it was not really useful and made it harder to refactor some
parts.

• Now depends on carrot >= 0.10.4

• Now depends on billiard >= 0.3.0

11.14.2 News

• AMQP backend: Added timeout support for result.get() / result.wait().

• New task option: Task.acks_late (default: CELERY_ACKS_LATE)

Late ack means the task messages will be acknowledged after the task has been executed, not just
before, which is the default behavior.

Note: This means the tasks may be executed twice if the worker crashes in mid-execution. Not
acceptable for most applications, but desirable for others.

• Added crontab-like scheduling to periodic tasks.

Like a cron job, you can specify units of time of when you would like the task to execute. While not
a full implementation of cron’s features, it should provide a fair degree of common scheduling needs.

You can specify a minute (0-59), an hour (0-23), and/or a day of the week (0-6 where 0 is Sunday, or
by names: sun, mon, tue, wed, thu, fri, sat).

Examples:

11.14. 1.0.3 251

http://bit.ly/9hom6T
http://bit.ly/d5OwMr

Celery Documentation, Release 2.1.4

from celery.task.schedules import crontab
from celery.decorators import periodic_task

@periodic_task(run_every=crontab(hour=7, minute=30))
def every_morning():

print("Runs every morning at 7:30a.m")

@periodic_task(run_every=crontab(hour=7, minute=30, day_of_week="mon"))
def every_monday_morning():

print("Run every monday morning at 7:30a.m")

@periodic_task(run_every=crontab(minutes=30))
def every_hour():

print("Runs every hour on the clock. e.g. 1:30, 2:30, 3:30 etc.")

Note: This a late addition. While we have unittests, due to the nature of this feature we haven’t been
able to completely test this in practice, so consider this experimental.

• TaskPool.apply_async: Now supports the accept_callback argument.

• apply_async: Now raises ValueError if task args is not a list, or kwargs is not a tuple (Issue #95).

• Task.max_retries can now be None, which means it will retry forever.

• Celerybeat: Now reuses the same connection when publishing large sets of tasks.

• Modified the task locking example in the documentation to use cache.add for atomic locking.

• Added experimental support for a started status on tasks.

If Task.track_started is enabled the task will report its status as “started” when the task is
executed by a worker.

The default value is False as the normal behaviour is to not report that level of granularity. Tasks
are either pending, finished, or waiting to be retried. Having a “started” status can be useful for when
there are long running tasks and there is a need to report which task is currently running.

The global default can be overridden by the CELERY_TRACK_STARTED setting.

• User Guide: New section Tips and Best Practices.

Contributions welcome!

11.14.3 Remote control commands

• Remote control commands can now send replies back to the caller.

Existing commands has been improved to send replies, and the client interface in
celery.task.control has new keyword arguments: reply, timeout and limit. Where
reply means it will wait for replies, timeout is the time in seconds to stop waiting for replies, and
limit is the maximum number of replies to get.

By default, it will wait for as many replies as possible for one second.

– rate_limit(task_name, destination=all, reply=False, timeout=1, limit=0)

Worker returns {"ok": message} on success, or {"failure": message}
on failure.

252 Chapter 11. Change history

Celery Documentation, Release 2.1.4

>>> from celery.task.control import rate_limit
>>> rate_limit("tasks.add", "10/s", reply=True)
[{’worker1’: {’ok’: ’new rate limit set successfully’}},
{’worker2’: {’ok’: ’new rate limit set successfully’}}]

– ping(destination=all, reply=False, timeout=1, limit=0)

Worker returns the simple message "pong".

>>> from celery.task.control import ping
>>> ping(reply=True)
[{’worker1’: ’pong’},
{’worker2’: ’pong’},

– revoke(destination=all, reply=False, timeout=1, limit=0)

Worker simply returns True.

>>> from celery.task.control import revoke
>>> revoke("419e46eb-cf6a-4271-86a8-442b7124132c", reply=True)
[{’worker1’: True},
{’worker2’; True}]

• You can now add your own remote control commands!

Remote control commands are functions registered in the command registry. Registering a command
is done using celery.worker.control.Panel.register():

from celery.task.control import Panel

@Panel.register
def reset_broker_connection(panel, **kwargs):

panel.listener.reset_connection()
return {"ok": "connection re-established"}

With this module imported in the worker, you can launch the command using
celery.task.control.broadcast:

>>> from celery.task.control import broadcast
>>> broadcast("reset_broker_connection", reply=True)
[{’worker1’: {’ok’: ’connection re-established’},
{’worker2’: {’ok’: ’connection re-established’}}]

TIP You can choose the worker(s) to receive the command by using the destination argument:

>>> broadcast("reset_broker_connection", destination=["worker1"])
[{’worker1’: {’ok’: ’connection re-established’}]

• New remote control command: dump_reserved

Dumps tasks reserved by the worker, waiting to be executed:

>>> from celery.task.control import broadcast
>>> broadcast("dump_reserved", reply=True)
[{’myworker1’: [<TaskRequest>]}]

• New remote control command: dump_schedule

Dumps the workers currently registered ETA schedule. These are tasks with an eta (or
countdown) argument waiting to be executed by the worker.

11.14. 1.0.3 253

Celery Documentation, Release 2.1.4

>>> from celery.task.control import broadcast
>>> broadcast("dump_schedule", reply=True)
[{’w1’: []},
{’w3’: []},
{’w2’: [’0. 2010-05-12 11:06:00 pri0 <TaskRequest

{name:"opalfeeds.tasks.refresh_feed_slice",
id:"95b45760-4e73-4ce8-8eac-f100aa80273a",
args:"(<Feeds freq_max:3600 freq_min:60

start:2184.0 stop:3276.0>,)",
kwargs:"{’page’: 2}"}>’]},

{’w4’: [’0. 2010-05-12 11:00:00 pri0 <TaskRequest
{name:"opalfeeds.tasks.refresh_feed_slice",
id:"c053480b-58fb-422f-ae68-8d30a464edfe",
args:"(<Feeds freq_max:3600 freq_min:60

start:1092.0 stop:2184.0>,)",
kwargs:"{\’page\’: 1}"}>’,

’1. 2010-05-12 11:12:00 pri0 <TaskRequest
{name:"opalfeeds.tasks.refresh_feed_slice",
id:"ab8bc59e-6cf8-44b8-88d0-f1af57789758",
args:"(<Feeds freq_max:3600 freq_min:60

start:3276.0 stop:4365>,)",
kwargs:"{\’page\’: 3}"}>’]}]

11.14.4 Fixes

• Mediator thread no longer blocks for more than 1 second.

With rate limits enabled and when there was a lot of remaining time, the mediator thread could block
shutdown (and potentially block other jobs from coming in).

• Remote rate limits was not properly applied (Issue #98).

• Now handles exceptions with Unicode messages correctly in TaskRequest.on_failure.

• Database backend: TaskMeta.result: default value should be None not empty string.

11.15 1.0.2

release-date 2010-03-31 12:50 P.M CET

• Deprecated: CELERY_BACKEND, please use CELERY_RESULT_BACKEND instead.

• We now use a custom logger in tasks. This logger supports task magic keyword arguments in formats.

The default format for tasks (CELERYD_TASK_LOG_FORMAT) now includes the id and the name
of tasks so the origin of task log messages can easily be traced.

Example output::

[2010-03-25 13:11:20,317: INFO/PoolWorker-1] [tasks.add(a6e1c5ad-60d9-42a0-8b24-
9e39363125a4)] Hello from add

To revert to the previous behavior you can set:

CELERYD_TASK_LOG_FORMAT = """
[%(asctime)s: %(levelname)s/%(processName)s] %(message)s

""".strip()

254 Chapter 11. Change history

Celery Documentation, Release 2.1.4

• Unit tests: Don’t disable the django test database tear down, instead fixed the underlying issue which was caused
by modifications to the DATABASE_NAME setting (Issue #82).

• Django Loader: New config CELERY_DB_REUSE_MAX (max number of tasks to reuse the same database
connection)

The default is to use a new connection for every task. We would very much like to reuse the connec-
tion, but a safe number of reuses is not known, and we don’t have any way to handle the errors that
might happen, which may even be database dependent.

See: http://bit.ly/94fwdd

• celeryd: The worker components are now configurable: CELERYD_POOL, CELERYD_LISTENER,
CELERYD_MEDIATOR, and CELERYD_ETA_SCHEDULER.

The default configuration is as follows:

CELERYD_POOL = "celery.concurrency.processes.TaskPool"
CELERYD_MEDIATOR = "celery.worker.controllers.Mediator"
CELERYD_ETA_SCHEDULER = "celery.worker.controllers.ScheduleController"
CELERYD_LISTENER = "celery.worker.listener.CarrotListener"

The CELERYD_POOL setting makes it easy to swap out the multiprocessing pool with a threaded
pool, or how about a twisted/eventlet pool?

Consider the competition for the first pool plug-in started!

• Debian init scripts: Use -a not && (Issue #82).

• Debian init scripts: Now always preserves $CELERYD_OPTS from the /etc/default/celeryd and
/etc/default/celerybeat.

• celery.beat.Scheduler: Fixed a bug where the schedule was not properly flushed to disk if the schedule had not
been properly initialized.

• celerybeat: Now syncs the schedule to disk when receiving the SIGTERM and SIGINT signals.

• Control commands: Make sure keywords arguments are not in Unicode.

• ETA scheduler: Was missing a logger object, so the scheduler crashed when trying to log that a task had been
revoked.

• management.commands.camqadm: Fixed typo camqpadm -> camqadm (Issue #83).

• PeriodicTask.delta_resolution: Was not working for days and hours, now fixed by rounding to the nearest
day/hour.

• Fixed a potential infinite loop in BaseAsyncResult.__eq__, although there is no evidence that it has ever
been triggered.

• celeryd: Now handles messages with encoding problems by acking them and emitting an error message.

11.16 1.0.1

release-date 2010-02-24 07:05 P.M CET

• Tasks are now acknowledged early instead of late.

This is done because messages can only be acknowledged within the same connection channel, so if
the connection is lost we would have to refetch the message again to acknowledge it.

11.16. 1.0.1 255

http://bit.ly/94fwdd

Celery Documentation, Release 2.1.4

This might or might not affect you, but mostly those running tasks with a really long execution
time are affected, as all tasks that has made it all the way into the pool needs to be executed be-
fore the worker can safely terminate (this is at most the number of pool workers, multiplied by the
CELERYD_PREFETCH_MULTIPLIER setting.)

We multiply the prefetch count by default to increase the performance at times with bursts of tasks
with a short execution time. If this doesn’t apply to your use case, you should be able to set the
prefetch multiplier to zero, without sacrificing performance.

Note: A patch to multiprocessing is currently being worked on, this patch would enable us to
use a better solution, and is scheduled for inclusion in the 2.0.0 release.

• celeryd now shutdowns cleanly when receiving the SIGTERM signal.

• celeryd now does a cold shutdown if the SIGINT signal is received (Ctrl+C), this means it tries to terminate as
soon as possible.

• Caching of results now moved to the base backend classes, so no need to implement this functionality in the
base classes.

• Caches are now also limited in size, so their memory usage doesn’t grow out of control.

You can set the maximum number of results the cache can hold using the
CELERY_MAX_CACHED_RESULTS setting (the default is five thousand results). In addi-
tion, you can refetch already retrieved results using backend.reload_task_result +
backend.reload_taskset_result (that’s for those who want to send results incremen-
tally).

• celeryd now works on Windows again.

Warning: If you’re using Celery with Django, you can’t use project.settings as the
settings module name, but the following should work:

$ python manage.py celeryd --settings=settings

• Execution: .messaging.TaskPublisher.send_task now incorporates all the functionality ap-
ply_async previously did.

Like converting countdowns to eta, so celery.execute.apply_async() is now simply
a convenient front-end to celery.messaging.TaskPublisher.send_task(), using the
task classes default options.

Also celery.execute.send_task() has been introduced, which can apply tasks using just
the task name (useful if the client does not have the destination task in its task registry).

Example:

>>> from celery.execute import send_task
>>> result = send_task("celery.ping", args=[], kwargs={})
>>> result.get()
’pong’

• camqadm: This is a new utility for command line access to the AMQP API.

Excellent for deleting queues/bindings/exchanges, experimentation and testing:

$ camqadm
1> help

Gives an interactive shell, type help for a list of commands.

256 Chapter 11. Change history

Celery Documentation, Release 2.1.4

When using Django, use the management command instead:

$ python manage.py camqadm
1> help

• Redis result backend: To conform to recent Redis API changes, the following settings has been deprecated:

– REDIS_TIMEOUT

– REDIS_CONNECT_RETRY

These will emit a DeprecationWarning if used.

A REDIS_PASSWORD setting has been added, so you can use the new simple authentication mech-
anism in Redis.

• The redis result backend no longer calls SAVE when disconnecting, as this is apparently better handled by Redis
itself.

• If settings.DEBUG is on, celeryd now warns about the possible memory leak it can result in.

• The ETA scheduler now sleeps at most two seconds between iterations.

• The ETA scheduler now deletes any revoked tasks it might encounter.

As revokes are not yet persistent, this is done to make sure the task is revoked even though it’s
currently being hold because its eta is e.g. a week into the future.

• The task_id argument is now respected even if the task is executed eagerly (either using apply, or
CELERY_ALWAYS_EAGER).

• The internal queues are now cleared if the connection is reset.

• New magic keyword argument: delivery_info.

Used by retry() to resend the task to its original destination using the same exchange/routing_key.

• Events: Fields was not passed by .send() (fixes the UUID key errors in celerymon)

• Added --schedule/-s option to celeryd, so it is possible to specify a custom schedule filename when using
an embedded celerybeat server (the -B/--beat) option.

• Better Python 2.4 compatibility. The test suite now passes.

• task decorators: Now preserve docstring as cls.__doc__, (was previously copied to cls.run.__doc__)

• The testproj directory has been renamed to tests and we’re now using nose + django-nose for test
discovery, and unittest2 for test cases.

• New pip requirements files available in contrib/requirements.

• TaskPublisher: Declarations are now done once (per process).

• Added Task.delivery_mode and the CELERY_DEFAULT_DELIVERY_MODE setting.

These can be used to mark messages non-persistent (i.e. so they are lost if the broker is restarted).

• Now have our own ImproperlyConfigured exception, instead of using the Django one.

• Improvements to the Debian init scripts: Shows an error if the program is not executable. Does not modify
CELERYD when using django with virtualenv.

11.17 1.0.0

release-date 2010-02-10 04:00 P.M CET

11.17. 1.0.0 257

Celery Documentation, Release 2.1.4

11.17.1 Backward incompatible changes

• Celery does not support detaching anymore, so you have to use the tools available on your platform, or something
like Supervisord to make celeryd/celerybeat/celerymon into background processes.

We’ve had too many problems with celeryd daemonizing itself, so it was decided it has to be removed.
Example startup scripts has been added to contrib/:

– Debian, Ubuntu, (start-stop-daemon)

contrib/debian/init.d/celeryd contrib/debian/init.d/celerybeat

– Mac OS X launchd

contrib/mac/org.celeryq.celeryd.plist
contrib/mac/org.celeryq.celerybeat.plist
contrib/mac/org.celeryq.celerymon.plist

– Supervisord (http://supervisord.org)

contrib/supervisord/supervisord.conf

In addition to --detach, the following program arguments has been removed: --uid, --gid,
--workdir, --chroot, --pidfile, --umask. All good daemonization tools should support
equivalent functionality, so don’t worry.

Also the following configuration keys has been removed: CELERYD_PID_FILE,
CELERYBEAT_PID_FILE, CELERYMON_PID_FILE.

• Default celeryd loglevel is now WARN, to enable the previous log level start celeryd with --loglevel=INFO.

• Tasks are automatically registered.

This means you no longer have to register your tasks manually. You don’t have to change your old
code right away, as it doesn’t matter if a task is registered twice.

If you don’t want your task to be automatically registered you can set the abstract attribute

class MyTask(Task):
abstract = True

By using abstract only tasks subclassing this task will be automatically registered (this works
like the Django ORM).

If you don’t want subclasses to be registered either, you can set the autoregister attribute to
False.

Incidentally, this change also fixes the problems with automatic name assignment and relative im-
ports. So you also don’t have to specify a task name anymore if you use relative imports.

• You can no longer use regular functions as tasks.

This change was added because it makes the internals a lot more clean and simple. However, you
can now turn functions into tasks by using the @task decorator:

from celery.decorators import task

@task
def add(x, y):

return x + y

See also:

Tasks for more information about the task decorators.

258 Chapter 11. Change history

http://supervisord.org

Celery Documentation, Release 2.1.4

• The periodic task system has been rewritten to a centralized solution.

This means celeryd no longer schedules periodic tasks by default, but a new daemon has been
introduced: celerybeat.

To launch the periodic task scheduler you have to run celerybeat:

$ celerybeat

Make sure this is running on one server only, if you run it twice, all periodic tasks will also be
executed twice.

If you only have one worker server you can embed it into celeryd like this:

$ celeryd --beat # Embed celerybeat in celeryd.

• The supervisor has been removed.

This means the -S and --supervised options to celeryd is no longer supported. Please use
something like http://supervisord.org instead.

• TaskSet.join has been removed, use TaskSetResult.join instead.

• The task status "DONE" has been renamed to “SUCCESS”.

• AsyncResult.is_done has been removed, use AsyncResult.successful instead.

• The worker no longer stores errors if Task.ignore_result is set, to revert to the previous behaviour set
CELERY_STORE_ERRORS_EVEN_IF_IGNORED to True.

• The statistics functionality has been removed in favor of events, so the -S and –statistics‘ switches has been
removed.

• The module celery.task.strategy has been removed.

• celery.discovery has been removed, and it’s autodiscover function is now in
celery.loaders.djangoapp. Reason: Internal API.

• The CELERY_LOADER environment variable now needs loader class name in addition to module name,

E.g. where you previously had: “celery.loaders.default”, you now need “cel-
ery.loaders.default.Loader”, using the previous syntax will result in a DeprecationWarning.

• Detecting the loader is now lazy, and so is not done when importing celery.loaders.

To make this happen celery.loaders.settings has been renamed to load_settings
and is now a function returning the settings object. celery.loaders.current_loader is
now also a function, returning the current loader.

So:

loader = current_loader

needs to be changed to:

loader = current_loader()

11.17.2 Deprecations

• The following configuration variables has been renamed and will be deprecated in v2.0:

– CELERYD_DAEMON_LOG_FORMAT -> CELERYD_LOG_FORMAT

– CELERYD_DAEMON_LOG_LEVEL -> CELERYD_LOG_LEVEL

11.17. 1.0.0 259

http://supervisord.org

Celery Documentation, Release 2.1.4

– CELERY_AMQP_CONNECTION_TIMEOUT -> CELERY_BROKER_CONNECTION_TIMEOUT

– CELERY_AMQP_CONNECTION_RETRY -> CELERY_BROKER_CONNECTION_RETRY

– CELERY_AMQP_CONNECTION_MAX_RETRIES -> CELERY_BROKER_CONNECTION_MAX_RETRIES

– SEND_CELERY_TASK_ERROR_EMAILS -> CELERY_SEND_TASK_ERROR_EMAILS

• The public API names in celery.conf has also changed to a consistent naming scheme.

• We now support consuming from an arbitrary number of queues.

To do this we had to rename the configuration syntax. If you use any of the custom AMQP routing
options (queue/exchange/routing_key, etc.), you should read the new FAQ entry: http://bit.ly/aiWoH.

The previous syntax is deprecated and scheduled for removal in v2.0.

• TaskSet.run has been renamed to TaskSet.apply_async.

TaskSet.run has now been deprecated, and is scheduled for removal in v2.0.

11.17.3 News

• Rate limiting support (per task type, or globally).

• New periodic task system.

• Automatic registration.

• New cool task decorator syntax.

• celeryd now sends events if enabled with the -E argument.

Excellent for monitoring tools, one is already in the making (http://github.com/ask/celerymon).

Current events include: worker-heartbeat, task-[received/succeeded/failed/retried], worker-online,
worker-offline.

• You can now delete (revoke) tasks that has already been applied.

• You can now set the hostname celeryd identifies as using the --hostname argument.

• Cache backend now respects the CELERY_TASK_RESULT_EXPIRES setting.

• Message format has been standardized and now uses ISO-8601 format for dates instead of datetime.

• celeryd now responds to the SIGHUP signal by restarting itself.

• Periodic tasks are now scheduled on the clock.

I.e. timedelta(hours=1) means every hour at :00 minutes, not every hour from the server
starts. To revert to the previous behaviour you can set PeriodicTask.relative = True.

• Now supports passing execute options to a TaskSets list of args, e.g.:

>>> ts = TaskSet(add, [([2, 2], {}, {"countdown": 1}),
... ([4, 4], {}, {"countdown": 2}),
... ([8, 8], {}, {"countdown": 3})])
>>> ts.run()

• Got a 3x performance gain by setting the prefetch count to four times the concurrency, (from an average task
round-trip of 0.1s to 0.03s!).

A new setting has been added: CELERYD_PREFETCH_MULTIPLIER, which is set to 4 by default.

• Improved support for webhook tasks.

260 Chapter 11. Change history

http://bit.ly/aiWoH
http://github.com/ask/celerymon

Celery Documentation, Release 2.1.4

celery.task.rest is now deprecated, replaced with the new and shiny celery.task.http.
With more reflective names, sensible interface, and it’s possible to override the methods used to
perform HTTP requests.

• The results of task sets are now cached by storing it in the result backend.

11.17.4 Changes

• Now depends on carrot >= 0.8.1

• New dependencies: billiard, python-dateutil, django-picklefield

• No longer depends on python-daemon

• The uuid distribution is added as a dependency when running Python 2.4.

• Now remembers the previously detected loader by keeping it in the CELERY_LOADER environment variable.

This may help on windows where fork emulation is used.

• ETA no longer sends datetime objects, but uses ISO 8601 date format in a string for better compatibility with
other platforms.

• No longer sends error mails for retried tasks.

• Task can now override the backend used to store results.

• Refactored the ExecuteWrapper, apply and CELERY_ALWAYS_EAGER now also executes the task callbacks
and signals.

• Now using a proper scheduler for the tasks with an ETA.

This means waiting eta tasks are sorted by time, so we don’t have to poll the whole list all the time.

• Now also imports modules listed in CELERY_IMPORTS when running with django (as documented).

• Log level for stdout/stderr changed from INFO to ERROR

• ImportErrors are now properly propagated when autodiscovering tasks.

• You can now use celery.messaging.establish_connection to establish a connection to the broker.

• When running as a separate service the periodic task scheduler does some smart moves to not poll too regularly.

If you need faster poll times you can lower the value of CELERYBEAT_MAX_LOOP_INTERVAL.

• You can now change periodic task intervals at runtime, by making run_every a property, or subclassing
PeriodicTask.is_due.

• The worker now supports control commands enabled through the use of a broadcast queue, you can remotely
revoke tasks or set the rate limit for a task type. See celery.task.control.

• The services now sets informative process names (as shown in ps listings) if the setproctitle module is
installed.

• celery.exceptions.NotRegistered now inherits from KeyError, and
TaskRegistry.__getitem__‘‘+‘‘pop raises NotRegistered instead

• You can set the loader via the CELERY_LOADER environment variable.

• You can now set CELERY_IGNORE_RESULT to ignore task results by default (if enabled, tasks doesn’t save
results or errors to the backend used).

• celeryd now correctly handles malformed messages by throwing away and acknowledging the message, instead
of crashing.

11.17. 1.0.0 261

Celery Documentation, Release 2.1.4

11.17.5 Bugs

• Fixed a race condition that could happen while storing task results in the database.

11.17.6 Documentation

• Reference now split into two sections; API reference and internal module reference.

11.18 0.8.4

release-date 2010-02-05 01:52 P.M CEST

• Now emits a warning if the –detach argument is used. –detach should not be used anymore, as it has several not
easily fixed bugs related to it. Instead, use something like start-stop-daemon, Supervisord or launchd (os x).

• Make sure logger class is process aware, even if running Python >= 2.6.

• Error e-mails are not sent anymore when the task is retried.

11.19 0.8.3

release-date 2009-12-22 09:43 A.M CEST

• Fixed a possible race condition that could happen when storing/querying task results using the database backend.

• Now has console script entry points in the setup.py file, so tools like Buildout will correctly install the programs
celeryd and celeryinit.

11.20 0.8.2

release-date 2009-11-20 03:40 P.M CEST

• QOS Prefetch count was not applied properly, as it was set for every message received (which apparently behaves
like, “receive one more”), instead of only set when our wanted value changed.

11.21 0.8.1

release-date 2009-11-16 05:21 P.M CEST

11.21.1 Very important note

This release (with carrot 0.8.0) enables AMQP QoS (quality of service), which means the workers will only receive
as many messages as it can handle at a time. As with any release, you should test this version upgrade on your
development servers before rolling it out to production!

262 Chapter 11. Change history

Celery Documentation, Release 2.1.4

11.21.2 Important changes

• If you’re using Python < 2.6 and you use the multiprocessing backport, then multiprocessing version 2.6.2.1 is
required.

• All AMQP_* settings has been renamed to BROKER_*, and in addition AMQP_SERVER has been renamed to
BROKER_HOST, so before where you had:

AMQP_SERVER = "localhost"
AMQP_PORT = 5678
AMQP_USER = "myuser"
AMQP_PASSWORD = "mypassword"
AMQP_VHOST = "celery"

You need to change that to:

BROKER_HOST = "localhost"
BROKER_PORT = 5678
BROKER_USER = "myuser"
BROKER_PASSWORD = "mypassword"
BROKER_VHOST = "celery"

• Custom carrot backends now need to include the backend class name, so before where you had:

CARROT_BACKEND = "mycustom.backend.module"

you need to change it to:

CARROT_BACKEND = "mycustom.backend.module.Backend"

where Backend is the class name. This is probably "Backend", as that was the previously implied name.

• New version requirement for carrot: 0.8.0

11.21.3 Changes

• Incorporated the multiprocessing backport patch that fixes the processName error.

• Ignore the result of PeriodicTask’s by default.

• Added a Redis result store backend

• Allow /etc/default/celeryd to define additional options for the celeryd init script.

• MongoDB periodic tasks issue when using different time than UTC fixed.

• Windows specific: Negate test for available os.fork (thanks miracle2k)

• Now tried to handle broken PID files.

• Added a Django test runner to contrib that sets CELERY_ALWAYS_EAGER = True for testing with the
database backend.

• Added a CELERY_CACHE_BACKEND setting for using something other than the django-global cache backend.

• Use custom implementation of functools.partial (curry) for Python 2.4 support (Probably still problems with
running on 2.4, but it will eventually be supported)

• Prepare exception to pickle when saving RETRY status for all backends.

• SQLite no concurrency limit should only be effective if the database backend is used.

11.21. 0.8.1 263

Celery Documentation, Release 2.1.4

11.22 0.8.0

release-date 2009-09-22 03:06 P.M CEST

11.22.1 Backward incompatible changes

• Add traceback to result value on failure.

Note: If you use the database backend you have to re-create the database table
celery_taskmeta.

Contact the Mailing list or IRC channel for help doing this.

• Database tables are now only created if the database backend is used, so if you change back to the database
backend at some point, be sure to initialize tables (django: syncdb, python: celeryinit).

Note: This is only applies if using Django version 1.1 or higher.

• Now depends on carrot version 0.6.0.

• Now depends on python-daemon 1.4.8

11.22.2 Important changes

• Celery can now be used in pure Python (outside of a Django project).

This means celery is no longer Django specific.

For more information see the FAQ entry Is Celery for Django only?.

• Celery now supports task retries.

See Cookbook: Retrying Tasks for more information.

• We now have an AMQP result store backend.

It uses messages to publish task return value and status. And it’s incredibly fast!

See issue #6 for more info!

• AMQP QoS (prefetch count) implemented:

This to not receive more messages than we can handle.

• Now redirects stdout/stderr to the celeryd log file when detached

• Now uses inspect.getargspec to only pass default arguments the task supports.

• Add Task.on_success, .on_retry, .on_failure handlers

See celery.task.base.Task.on_success(), celery.task.base.Task.on_retry(),
celery.task.base.Task.on_failure(),

• celery.utils.gen_unique_id: Workaround for http://bugs.python.org/issue4607

• You can now customize what happens at worker start, at process init, etc., by creating your own loaders.
(see celery.loaders.default, celery.loaders.djangoapp, celery.loaders.)

• Support for multiple AMQP exchanges and queues.

264 Chapter 11. Change history

http://ask.github.com/celery/cookbook/task-retries.html
http://bugs.python.org/issue4607

Celery Documentation, Release 2.1.4

This feature misses documentation and tests, so anyone interested is encouraged to improve this
situation.

• celeryd now survives a restart of the AMQP server!

Automatically re-establish AMQP broker connection if it’s lost.

New settings:

– AMQP_CONNECTION_RETRY Set to True to enable connection retries.

– AMQP_CONNECTION_MAX_RETRIES. Maximum number of restarts before we give up. Default:
100.

11.22.3 News

• Fix an incompatibility between python-daemon and multiprocessing, which resulted in the [Errno 10]
No child processes problem when detaching.

• Fixed a possible DjangoUnicodeDecodeError being raised when saving pickled data to Django‘s mem-
cached cache backend.

• Better Windows compatibility.

• New version of the pickled field (taken from http://www.djangosnippets.org/snippets/513/)

• New signals introduced: task_sent, task_prerun and task_postrun, see celery.signals for
more information.

• TaskSetResult.join caused TypeError when timeout=None. Thanks Jerzy Kozera. Closes #31

• views.apply should return HttpResponse instance. Thanks to Jerzy Kozera. Closes #32

• PeriodicTask: Save conversion of run_every from int to timedelta to the class attribute instead
of on the instance.

• Exceptions has been moved to celery.exceptions, but are still available in the previous module.

• Try to rollback transaction and retry saving result if an error happens while setting task status with the
database backend.

• jail() refactored into celery.execute.ExecuteWrapper.

• views.apply now correctly sets mime-type to “application/json”

• views.task_status now returns exception if state is RETRY

• views.task_status now returns traceback if state is FAILURE or RETRY

• Documented default task arguments.

• Add a sensible __repr__ to ExceptionInfo for easier debugging

• Fix documentation typo .. import map -> .. import dmap. Thanks to mikedizon

11.23 0.6.0

release-date 2009-08-07 06:54 A.M CET

11.23. 0.6.0 265

http://www.djangosnippets.org/snippets/513/

Celery Documentation, Release 2.1.4

11.23.1 Important changes

• Fixed a bug where tasks raising unpickleable exceptions crashed pool workers. So if you’ve had pool
workers mysteriously disappearing, or problems with celeryd stopping working, this has been fixed in
this version.

• Fixed a race condition with periodic tasks.

• The task pool is now supervised, so if a pool worker crashes, goes away or stops responding, it is automati-
cally replaced with a new one.

• Task.name is now automatically generated out of class module+name, e.g.
"djangotwitter.tasks.UpdateStatusesTask". Very convenient. No idea why we
didn’t do this before. Some documentation is updated to not manually specify a task name.

11.23.2 News

• Tested with Django 1.1

• New Tutorial: Creating a click counter using carrot and celery

• Database entries for periodic tasks are now created at celeryd startup instead of for each check (which
has been a forgotten TODO/XXX in the code for a long time)

• New settings variable: CELERY_TASK_RESULT_EXPIRES Time (in seconds, or a datetime.timedelta ob-
ject) for when after stored task results are deleted. For the moment this only works for the database
backend.

• celeryd now emits a debug log message for which periodic tasks has been launched.

• The periodic task table is now locked for reading while getting periodic task status. (MySQL only so far,
seeking patches for other engines)

• A lot more debugging information is now available by turning on the DEBUG log level (–
loglevel=DEBUG).

• Functions/methods with a timeout argument now works correctly.

• New: celery.strategy.even_time_distribution: With an iterator yielding task args, kwargs tu-
ples, evenly distribute the processing of its tasks throughout the time window available.

• Log message Unknown task ignored... now has log level ERROR

• Log message "Got task from broker" is now emitted for all tasks, even if the task has an ETA (esti-
mated time of arrival). Also the message now includes the ETA for the task (if any).

• Acknowledgement now happens in the pool callback. Can’t do ack in the job target, as it’s not pickleable
(can’t share AMQP connection, etc.)).

• Added note about .delay hanging in README

• Tests now passing in Django 1.1

• Fixed discovery to make sure app is in INSTALLED_APPS

• Previously overridden pool behavior (process reap, wait until pool worker available, etc.) is now handled
by multiprocessing.Pool itself.

• Convert statistics data to Unicode for use as kwargs. Thanks Lucy!

266 Chapter 11. Change history

Celery Documentation, Release 2.1.4

11.24 0.4.1

release-date 2009-07-02 01:42 P.M CET

• Fixed a bug with parsing the message options (mandatory, routing_key, priority, immediate)

11.25 0.4.0

release-date 2009-07-01 07:29 P.M CET

• Adds eager execution. celery.execute.apply‘|‘Task.apply executes the function blocking until the task is done,
for API compatibility it returns an celery.result.EagerResult instance. You can configure celery to always run
tasks locally by setting the CELERY_ALWAYS_EAGER setting to True.

• Now depends on anyjson.

• 99% coverage using python coverage 3.0.

11.26 0.3.20

release-date 2009-06-25 08:42 P.M CET

• New arguments to apply_async (the advanced version of delay_task), countdown and eta;

>>> # Run 10 seconds into the future.
>>> res = apply_async(MyTask, countdown=10);

>>> # Run 1 day from now
>>> res = apply_async(MyTask,
... eta=datetime.now() + timedelta(days=1))

• Now unlinks stale PID files

• Lots of more tests.

• Now compatible with carrot >= 0.5.0.

• IMPORTANT The subtask_ids attribute on the TaskSetResult instance has been removed. To get this
information instead use:

>>> subtask_ids = [subtask.task_id for subtask in ts_res.subtasks]

• Taskset.run() now respects extra message options from the task class.

• Task: Add attribute ignore_result: Don’t store the status and return value. This means you can’t use the
celery.result.AsyncResult to check if the task is done, or get its return value. Only use if you need
the performance and is able live without these features. Any exceptions raised will store the return value/status
as usual.

• Task: Add attribute disable_error_emails to disable sending error emails for that task.

• Should now work on Windows (although running in the background won’t work, so using the --detach
argument results in an exception being raised.)

• Added support for statistics for profiling and monitoring. To start sending statistics start celeryd with the
--statistics option. Then after a while you can dump the results by running python manage.py
celerystats. See celery.monitoring for more information.

11.24. 0.4.1 267

Celery Documentation, Release 2.1.4

• The celery daemon can now be supervised (i.e. it is automatically restarted if it crashes). To use this start celeryd
with the --supervised option (or alternatively -S).

• views.apply: View applying a task. Example

http://e.com/celery/apply/task_name/arg1/arg2//?kwarg1=a&kwarg2=b

Warning: Use with caution! Do not expose this URL to the public without first ensuring that
your code is safe!

• Refactored celery.task. It’s now split into three modules:

– celery.task

Contains apply_async, delay_task, discard_all, and task shortcuts, plus imports ob-
jects from celery.task.base and celery.task.builtins

– celery.task.base

Contains task base classes: Task, PeriodicTask, TaskSet, AsynchronousMapTask,
ExecuteRemoteTask.

– celery.task.builtins

Built-in tasks: PingTask, DeleteExpiredTaskMetaTask.

11.27 0.3.7

release-date 2008-06-16 11:41 P.M CET

• IMPORTANT Now uses AMQP‘s basic.consume instead of basic.get. This means we’re no longer polling the
broker for new messages.

• IMPORTANT Default concurrency limit is now set to the number of CPUs available on the system.

• IMPORTANT tasks.register: Renamed task_name argument to name, so

>>> tasks.register(func, task_name="mytask")

has to be replaced with:

>>> tasks.register(func, name="mytask")

• The daemon now correctly runs if the pidlock is stale.

• Now compatible with carrot 0.4.5

• Default AMQP connection timeout is now 4 seconds.

• AsyncResult.read() was always returning True.

• Only use README as long_description if the file exists so easy_install doesn’t break.

• celery.view: JSON responses now properly set its mime-type.

• apply_async now has a connection keyword argument so you can re-use the same AMQP connection if
you want to execute more than one task.

• Handle failures in task_status view such that it won’t throw 500s.

• Fixed typo AMQP_SERVER in documentation to AMQP_HOST.

• Worker exception e-mails sent to administrators now works properly.

268 Chapter 11. Change history

Celery Documentation, Release 2.1.4

• No longer depends on django, so installing celery won’t affect the preferred Django version installed.

• Now works with PostgreSQL (psycopg2) again by registering the PickledObject field.

• celeryd: Added --detach option as an alias to --daemon, and it’s the term used in the documentation
from now on.

• Make sure the pool and periodic task worker thread is terminated properly at exit. (So Ctrl-C works again).

• Now depends on python-daemon.

• Removed dependency to simplejson

• Cache Backend: Re-establishes connection for every task process if the Django cache backend is mem-
cached/libmemcached.

• Tyrant Backend: Now re-establishes the connection for every task executed.

11.28 0.3.3

release-date 2009-06-08 01:07 P.M CET

• The PeriodicWorkController now sleeps for 1 second between checking for periodic tasks to execute.

11.29 0.3.2

release-date 2009-06-08 01:07 P.M CET

• celeryd: Added option --discard: Discard (delete!) all waiting messages in the queue.

• celeryd: The --wakeup-after option was not handled as a float.

11.30 0.3.1

release-date 2009-06-08 01:07 P.M CET

• The PeriodicTask‘ worker is now running in its own thread instead of blocking the TaskController loop.

• Default QUEUE_WAKEUP_AFTER has been lowered to 0.1 (was 0.3)

11.31 0.3.0

release-date 2009-06-08 12:41 P.M CET

Warning: This is a development version, for the stable release, please see versions 0.2.x.

VERY IMPORTANT: Pickle is now the encoder used for serializing task arguments, so be sure to flush your task
queue before you upgrade.

• IMPORTANT TaskSet.run() now returns a celery.result.TaskSetResult instance, which lets you inspect the
status and return values of a taskset as it was a single entity.

• IMPORTANT Celery now depends on carrot >= 0.4.1.

11.28. 0.3.3 269

Celery Documentation, Release 2.1.4

• The celery daemon now sends task errors to the registered admin e-mails. To turn off this feature, set
SEND_CELERY_TASK_ERROR_EMAILS to False in your settings.py. Thanks to Grégoire Cachet.

• You can now run the celery daemon by using manage.py:

$ python manage.py celeryd

Thanks to Grégoire Cachet.

• Added support for message priorities, topic exchanges, custom routing keys for tasks. This means we have
introduced celery.task.apply_async, a new way of executing tasks.

You can use celery.task.delay and celery.Task.delay like usual, but if you want greater control
over the message sent, you want celery.task.apply_async and celery.Task.apply_async.

This also means the AMQP configuration has changed. Some settings has been renamed, while others are new:

CELERY_AMQP_EXCHANGE
CELERY_AMQP_PUBLISHER_ROUTING_KEY
CELERY_AMQP_CONSUMER_ROUTING_KEY
CELERY_AMQP_CONSUMER_QUEUE
CELERY_AMQP_EXCHANGE_TYPE

See the entry Can I send some tasks to only some servers? in the FAQ for more information.

• Task errors are now logged using log level ERROR instead of INFO, and stacktraces are dumped. Thanks to
Grégoire Cachet.

• Make every new worker process re-establish it’s Django DB connection, this solving the “MySQL connection
died?” exceptions. Thanks to Vitaly Babiy and Jirka Vejrazka.

• IMPORTANT Now using pickle to encode task arguments. This means you now can pass complex python
objects to tasks as arguments.

• Removed dependency to yadayada.

• Added a FAQ, see docs/faq.rst.

• Now converts any Unicode keys in task kwargs to regular strings. Thanks Vitaly Babiy.

• Renamed the TaskDaemon to WorkController.

• celery.datastructures.TaskProcessQueue is now renamed to celery.pool.TaskPool.

• The pool algorithm has been refactored for greater performance and stability.

11.32 0.2.0

release-date 2009-05-20 05:14 P.M CET

• Final release of 0.2.0

• Compatible with carrot version 0.4.0.

• Fixes some syntax errors related to fetching results from the database backend.

11.33 0.2.0-pre3

release-date 2009-05-20 05:14 P.M CET

270 Chapter 11. Change history

http://bit.ly/celery_AMQP_routing
http://ask.github.com/celery/faq.html

Celery Documentation, Release 2.1.4

• Internal release. Improved handling of unpickleable exceptions, get_result now tries to recreate something
looking like the original exception.

11.34 0.2.0-pre2

release-date 2009-05-20 01:56 P.M CET

• Now handles unpickleable exceptions (like the dynamically generated subclasses of
django.core.exception.MultipleObjectsReturned).

11.35 0.2.0-pre1

release-date 2009-05-20 12:33 P.M CET

• It’s getting quite stable, with a lot of new features, so bump version to 0.2. This is a pre-release.

• celery.task.mark_as_read() and celery.task.mark_as_failure() has
been removed. Use celery.backends.default_backend.mark_as_read(), and
celery.backends.default_backend.mark_as_failure() instead.

11.36 0.1.15

release-date 2009-05-19 04:13 P.M CET

• The celery daemon was leaking AMQP connections, this should be fixed, if you have any problems with too
many files open (like emfile errors in rabbit.log, please contact us!

11.37 0.1.14

release-date 2009-05-19 01:08 P.M CET

• Fixed a syntax error in the TaskSet class. (No such variable TimeOutError).

11.38 0.1.13

release-date 2009-05-19 12:36 P.M CET

• Forgot to add yadayada to install requirements.

• Now deletes all expired task results, not just those marked as done.

• Able to load the Tokyo Tyrant backend class without django configuration, can specify tyrant settings directly
in the class constructor.

• Improved API documentation

• Now using the Sphinx documentation system, you can build the html documentation by doing

$ cd docs
$ make html

11.34. 0.2.0-pre2 271

Celery Documentation, Release 2.1.4

and the result will be in docs/.build/html.

11.39 0.1.12

release-date 2009-05-18 04:38 P.M CET

• delay_task() etc. now returns celery.task.AsyncResult object, which lets you check the result
and any failure that might have happened. It kind of works like the multiprocessing.AsyncResult
class returned by multiprocessing.Pool.map_async.

• Added dmap() and dmap_async(). This works like the multiprocessing.Pool versions except they are
tasks distributed to the celery server. Example:

>>> from celery.task import dmap
>>> import operator
>>> dmap(operator.add, [[2, 2], [4, 4], [8, 8]])
>>> [4, 8, 16]

>>> from celery.task import dmap_async
>>> import operator
>>> result = dmap_async(operator.add, [[2, 2], [4, 4], [8, 8]])
>>> result.ready()
False
>>> time.sleep(1)
>>> result.ready()
True
>>> result.result
[4, 8, 16]

• Refactored the task metadata cache and database backends, and added a new backend for Tokyo Tyrant. You
can set the backend in your django settings file. E.g.:

CELERY_RESULT_BACKEND = "database"; # Uses the database
CELERY_RESULT_BACKEND = "cache"; # Uses the django cache framework
CELERY_RESULT_BACKEND = "tyrant"; # Uses Tokyo Tyrant
TT_HOST = "localhost"; # Hostname for the Tokyo Tyrant server.
TT_PORT = 6657; # Port of the Tokyo Tyrant server.

11.40 0.1.11

release-date 2009-05-12 02:08 P.M CET

• The logging system was leaking file descriptors, resulting in servers stopping with the EMFILES (too many
open files) error. (fixed)

11.41 0.1.10

release-date 2009-05-11 12:46 P.M CET

• Tasks now supports both positional arguments and keyword arguments.

• Requires carrot 0.3.8.

• The daemon now tries to reconnect if the connection is lost.

272 Chapter 11. Change history

Celery Documentation, Release 2.1.4

11.42 0.1.8

release-date 2009-05-07 12:27 P.M CET

• Better test coverage

• More documentation

• celeryd doesn’t emit Queue is empty message if settings.CELERYD_EMPTY_MSG_EMIT_EVERY is
0.

11.43 0.1.7

release-date 2009-04-30 1:50 P.M CET

• Added some unit tests

• Can now use the database for task metadata (like if the task has been executed or not). Set
settings.CELERY_TASK_META

• Can now run python setup.py test to run the unit tests from within the tests project.

• Can set the AMQP exchange/routing key/queue using settings.CELERY_AMQP_EXCHANGE,
settings.CELERY_AMQP_ROUTING_KEY, and settings.CELERY_AMQP_CONSUMER_QUEUE.

11.44 0.1.6

release-date 2009-04-28 2:13 P.M CET

• Introducing TaskSet. A set of subtasks is executed and you can find out how many, or if all them, are done
(excellent for progress bars and such)

• Now catches all exceptions when running Task.__call__, so the daemon doesn’t die. This doesn’t happen for
pure functions yet, only Task classes.

• autodiscover() now works with zipped eggs.

• celeryd: Now adds current working directory to sys.path for convenience.

• The run_every attribute of PeriodicTask classes can now be a datetime.timedelta() object.

• celeryd: You can now set the DJANGO_PROJECT_DIR variable for celeryd and it will add that to
sys.path for easy launching.

• Can now check if a task has been executed or not via HTTP.

• You can do this by including the celery urls.py into your project,

>>> url(r’^celery/$’, include("celery.urls"))

then visiting the following url,:

http://mysite/celery/$task_id/done/

this will return a JSON dictionary like e.g:

>>> {"task": {"id": $task_id, "executed": true}}

• delay_task now returns string id, not uuid.UUID instance.

11.42. 0.1.8 273

Celery Documentation, Release 2.1.4

• Now has PeriodicTasks, to have cron like functionality.

• Project changed name from crunchy to celery. The details of the name change request is in
docs/name_change_request.txt.

11.45 0.1.0

release-date 2009-04-24 11:28 A.M CET

• Initial release

274 Chapter 11. Change history

CHAPTER 12

Interesting Links

12.1 celery

• IRC logs from #celery (Freenode): http://botland.oebfare.com/logger/celery/

12.2 AMQP

• RabbitMQ-shovel: Message Relocation Equipment (as a plug-in to RabbitMQ)

• Shovel: An AMQP Relay (generic AMQP shovel)

12.3 RabbitMQ

• Trixx: Administration and Monitoring tool for RabbitMQ (in development).

• Cony: HTTP based service for providing insight into running RabbitMQ processes.

• RabbitMQ Munin Plug-ins: Use Munin to monitor RabbitMQ, and alert on critical events.

275

http://botland.oebfare.com/logger/celery/
http://bit.ly/xFEde
http://github.com/aaronfeng/trixx/tree/master
http://rabbitmq.com/
http://github.com/gmr/Cony/tree/master
http://rabbitmq.com/
http://github.com/ask/rabbitmq-munin/
http://munin.projects.linpro.no/
http://rabbitmq.com/

Celery Documentation, Release 2.1.4

276 Chapter 12. Interesting Links

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

277

Celery Documentation, Release 2.1.4

278 Chapter 13. Indices and tables

Python Module Index

c
celery.apps.beat, 160
celery.apps.worker, 158
celery.backends, 196
celery.backends.amqp, 199
celery.backends.base, 196
celery.backends.cache, 198
celery.backends.cassandra, 201
celery.backends.database, 198
celery.backends.mongodb, 200
celery.backends.pyredis, 200
celery.backends.tyrant, 201
celery.beat, 194
celery.bin.base, 160
celery.bin.camqadm, 164
celery.bin.celerybeat, 162
celery.bin.celeryctl, 163
celery.bin.celeryd, 161
celery.bin.celeryd_multi, 166
celery.bin.celeryev, 162
celery.concurrency.processes, 189
celery.concurrency.processes.pool, 192
celery.concurrency.threads, 193
celery.contrib.abortable, 154
celery.datastructures, 203
celery.db.models, 209
celery.db.session, 210
celery.decorators, 113
celery.events, 155
celery.events.cursesmon, 208
celery.events.dumper, 209
celery.events.snapshot, 207
celery.events.state, 156
celery.exceptions, 147
celery.execute, 122
celery.execute.trace, 202
celery.loaders, 148
celery.loaders.base, 148
celery.loaders.default, 149
celery.log, 206

celery.messaging, 151
celery.platforms, 219
celery.registry, 150
celery.result, 123
celery.routes, 205
celery.schedules, 144
celery.serialization, 202
celery.states, 150
celery.task, 127
celery.task.base, 114
celery.task.builtins, 147
celery.task.control, 140
celery.task.http, 44
celery.task.sets, 120
celery.utils, 210
celery.utils.compat, 214
celery.utils.dispatch, 217
celery.utils.dispatch.saferef, 218
celery.utils.dispatch.signal, 217
celery.utils.functional, 215
celery.utils.info, 214
celery.utils.mail, 215
celery.utils.patch, 215
celery.utils.term, 213
celery.utils.timer2, 215
celery.utils.timeutils, 213
celery.worker, 177
celery.worker.buckets, 185
celery.worker.control, 187
celery.worker.control.builtins, 188
celery.worker.control.registry, 189
celery.worker.controllers, 184
celery.worker.heartbeat, 187
celery.worker.job, 182
celery.worker.listener, 179
celery.worker.state, 189

279

	Getting Started
	Introduction
	Broker Installation
	First steps with Celery
	Resources

	User Guide
	Overview
	Tasks
	Executing Tasks
	Workers Guide
	Periodic Tasks
	Sets of tasks, Subtasks and Callbacks
	HTTP Callback Tasks (Webhooks)
	Routing Tasks
	Monitoring Guide
	Optimizing

	Configuration and defaults
	Example configuration file
	Configuration Directives

	Cookbook
	Creating Tasks
	Running celeryd as a daemon

	Community Resources
	Resources
	News

	Contributing
	Community Code of Conduct
	Reporting a Bug
	Coding Style

	Tutorials
	Using Celery with Redis/Database as the messaging queue.
	Tutorial: Creating a click counter using carrot and celery

	Frequently Asked Questions
	General
	Misconceptions
	Troubleshooting
	Results
	Security
	Brokers
	Tasks
	Windows

	API Reference
	Task Decorators - celery.decorators
	Defining Tasks - celery.task.base
	Task Sets, Subtasks and Callbacks - celery.task.sets
	Executing Tasks - celery.execute
	Task Result - celery.result
	Task Information and Utilities - celery.task
	Configuration - celery.conf
	Remote Management of Workers - celery.task.control
	HTTP Callback Tasks - celery.task.http
	Periodic Task Schedule Behaviors - celery.schedules
	Signals - celery.signals
	Exceptions - celery.exceptions
	Built-in Task Classes - celery.task.builtins
	Loaders - celery.loaders
	Loader Base Classes - celery.loaders.base
	Default Loader - celery.loaders.default
	Task Registry - celery.registry
	Task States - celery.states
	Messaging - celery.messaging
	Contrib: Abortable tasks - celery.contrib.abortable
	Events - celery.events
	In-memory Representation of Cluster State - celery.events.state
	App: Worker Node - celery.apps.worker
	App: Periodic Task Scheduler - celery.apps.beat
	Base Command - celery.bin.base
	celeryd - celery.bin.celeryd
	Celery Periodic Task Server - celery.bin.celerybeat
	celeryev: Curses Event Viewer - celery.bin.celeryev
	celeryctl - celery.bin.celeryctl
	caqmadm: AMQP API Command-line Shell - celery.bin.camqadm
	Celeryd Multi Tool - celery.bin.celeryd_multi

	Internals
	Celery Deprecation Timeline
	Internals: The worker
	Task Message Protocol
	List of Worker Events
	Module Index
	Internal Module Reference

	Change history
	2.1.5
	2.1.4
	2.1.3
	2.1.2
	2.1.1
	2.1.0
	2.0.3
	2.0.2
	2.0.1
	2.0.0
	1.0.6
	1.0.5
	1.0.4
	1.0.3
	1.0.2
	1.0.1
	1.0.0
	0.8.4
	0.8.3
	0.8.2
	0.8.1
	0.8.0
	0.6.0
	0.4.1
	0.4.0
	0.3.20
	0.3.7
	0.3.3
	0.3.2
	0.3.1
	0.3.0
	0.2.0
	0.2.0-pre3
	0.2.0-pre2
	0.2.0-pre1
	0.1.15
	0.1.14
	0.1.13
	0.1.12
	0.1.11
	0.1.10
	0.1.8
	0.1.7
	0.1.6
	0.1.0

	Interesting Links
	celery
	AMQP
	RabbitMQ

	Indices and tables
	Python Module Index

