

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Celery - Distributed Task Queue

Celery is a simple, flexible and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

Celery is Open Source and licensed under the BSD License [http://www.opensource.org/licenses/BSD-3-Clause].

Getting Started

	If you are new to Celery you can get started by following
the First Steps with Celery tutorial.

	You can also check out the FAQ.

Contents

	Copyright

	Getting Started
	Introduction to Celery

	Brokers

	First Steps with Celery

	Next Steps

	Resources

	User Guide
	Application

	Tasks

	Calling Tasks

	Canvas: Designing Workflows

	Workers Guide

	Periodic Tasks

	HTTP Callback Tasks (Webhooks)

	Routing Tasks

	Monitoring and Management Guide

	Security

	Optimizing

	Concurrency

	Signals

	Extensions and Bootsteps

	Configuration and defaults

	Django

	Contributing

	Community Resources

	Tutorials

	Frequently Asked Questions

	Change history

	What’s new in Celery 3.1 (Cipater)

	What’s new in Celery 3.0 (Chiastic Slide)

	What’s new in Celery 2.5

	API Reference

	Internals

	History

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Copyright

Celery User Manual

by Ask Solem

Copyright © 2009-2015, Ask Solem.

All rights reserved. This material may be copied or distributed only
subject to the terms and conditions set forth in the Creative Commons
Attribution-ShareAlike 4.0 International
<http://creativecommons.org/licenses/by-nc-sa/3.0/us/>`_ license.

You may share and adapt the material, even for commercial purposes, but
you must give the original author credit.
If you alter, transform, or build upon this
work, you may distribute the resulting work only under the same license or
a license compatible to this one.

Note

While the Celery documentation is offered under the
Creative Commons Attribution-ShareAlike 4.0 International license
the Celery software is offered under the
BSD License (3 Clause) [http://www.opensource.org/licenses/BSD-3-Clause]

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Getting Started

	Release:	3.1

	Date:	Nov 12, 2017

	Introduction to Celery
	What is a Task Queue?

	What do I need?

	Get Started

	Celery is…

	Features

	Framework Integration

	Quickjump

	Installation

	Brokers
	Broker Instructions

	Experimental Transports

	Broker Overview

	First Steps with Celery
	Choosing a Broker

	Installing Celery

	Application

	Running the celery worker server

	Calling the task

	Keeping Results

	Configuration

	Where to go from here

	Troubleshooting

	Next Steps
	Using Celery in your Application

	Calling Tasks

	Canvas: Designing Workflows

	Routing

	Remote Control

	Timezone

	Optimization

	What to do now?

	Resources
	Getting Help

	Bug tracker

	Wiki

	Contributing

	License

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Introduction to Celery

	What is a Task Queue?

	What do I need?

	Get Started

	Celery is…

	Features

	Framework Integration

	Quickjump

	Installation

What is a Task Queue?

Task queues are used as a mechanism to distribute work across threads or
machines.

A task queue’s input is a unit of work called a task. Dedicated worker
processes constantly monitor task queues for new work to perform.

Celery communicates via messages, usually using a broker
to mediate between clients and workers. To initiate a task, a client adds a
message to the queue, which the broker then delivers to a worker.

A Celery system can consist of multiple workers and brokers, giving way
to high availability and horizontal scaling.

Celery is written in Python, but the protocol can be implemented in any
language. So far there’s RCelery [http://leapfrogdevelopment.github.com/rcelery/] for the Ruby programming language,
node-celery [https://github.com/mher/node-celery] for Node.js and a PHP client [https://github.com/gjedeer/celery-php]. Language interoperability can also be achieved
by using webhooks.

What do I need?

Version Requirements

Celery version 3.0 runs on

	Python ❨2.5, 2.6, 2.7, 3.2, 3.3❩

	PyPy ❨1.8, 1.9❩

	Jython ❨2.5, 2.7❩.

This is the last version to support Python 2.5,
and from the next version Python 2.6 or newer is required.
The last version to support Python 2.4 was Celery series 2.2.

Celery requires a message transport to send and receive messages.
The RabbitMQ and Redis broker transports are feature complete,
but there’s also support for a myriad of other experimental solutions, including
using SQLite for local development.

Celery can run on a single machine, on multiple machines, or even
across data centers.

Get Started

If this is the first time you’re trying to use Celery, or you are
new to Celery 3.0 coming from previous versions then you should read our
getting started tutorials:

	First Steps with Celery

	Next Steps

Celery is…

	Simple

Celery is easy to use and maintain, and it doesn’t need configuration files.

It has an active, friendly community you can talk to for support,
including a mailing-list [http://groups.google.com/group/celery-users] and an IRC channel.

Here’s one of the simplest applications you can make:

from celery import Celery

app = Celery('hello', broker='amqp://guest@localhost//')

@app.task
def hello():
 return 'hello world'

	Highly Available

Workers and clients will automatically retry in the event
of connection loss or failure, and some brokers support
HA in way of Master/Master or Master/Slave replication.

	Fast

A single Celery process can process millions of tasks a minute,
with sub-millisecond round-trip latency (using RabbitMQ,
py-librabbitmq, and optimized settings).

	Flexible

Almost every part of Celery can be extended or used on its own,
Custom pool implementations, serializers, compression schemes, logging,
schedulers, consumers, producers, autoscalers, broker transports and much more.

It supports

	
	Brokers

	RabbitMQ, Redis,

	MongoDB (exp), ZeroMQ (exp)

	CouchDB (exp), SQLAlchemy (exp)

	Django ORM (exp), Amazon SQS, (exp)

	and more…

	Concurrency

	prefork (multiprocessing),

	Eventlet [http://eventlet.net/], gevent [http://gevent.org/]

	threads/single threaded

	
	Result Stores

	AMQP, Redis

	memcached, MongoDB

	SQLAlchemy, Django ORM

	Apache Cassandra

	Serialization

	pickle, json, yaml, msgpack.

	zlib, bzip2 compression.

	Cryptographic message signing.

Features

	
	Monitoring

A stream of monitoring events is emitted by workers and
is used by built-in and external tools to tell you what
your cluster is doing – in real-time.

Read more….

	Workflows

Simple and complex workflows can be composed using
a set of powerful primitives we call the “canvas”,
including grouping, chaining, chunking and more.

Read more….

	Time & Rate Limits

You can control how many tasks can be executed per second/minute/hour,
or how long a task can be allowed to run, and this can be set as
a default, for a specific worker or individually for each task type.

Read more….

	Scheduling

You can specify the time to run a task in seconds or a
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime], or or you can use
periodic tasks for recurring events based on a
simple interval, or crontab expressions
supporting minute, hour, day of week, day of month, and
month of year.

Read more….

	
	Autoreloading

In development workers can be configured to automatically reload source
code as it changes, including inotify(7) support on Linux.

Read more….

	Autoscaling

Dynamically resizing the worker pool depending on load,
or custom metrics specified by the user, used to limit
memory usage in shared hosting/cloud environments or to
enforce a given quality of service.

Read more….

	Resource Leak Protection

The --maxtasksperchild option is used for user tasks
leaking resources, like memory or file descriptors, that
are simply out of your control.

Read more….

	User Components

Each worker component can be customized, and additional components
can be defined by the user. The worker is built up using “bootsteps” — a
dependency graph enabling fine grained control of the worker’s
internals.

Framework Integration

Celery is easy to integrate with web frameworks, some of which even have
integration packages:

	Django [http://djangoproject.com/]
	django-celery [http://pypi.python.org/pypi/django-celery]

	Pyramid [http://docs.pylonsproject.org/en/latest/docs/pyramid.html]
	pyramid_celery [http://pypi.python.org/pypi/pyramid_celery/]

	Pylons [http://pylonshq.com/]
	celery-pylons [http://pypi.python.org/pypi/celery-pylons]

	Flask [http://flask.pocoo.org/]
	not needed

	web2py [http://web2py.com/]
	web2py-celery [http://code.google.com/p/web2py-celery/]

	Tornado [http://www.tornadoweb.org/]
	tornado-celery [http://github.com/mher/tornado-celery/]

The integration packages are not strictly necessary, but they can make
development easier, and sometimes they add important hooks like closing
database connections at fork(2).

Quickjump

I want to ⟶

	
	get the return value of a task

	use logging from my task

	learn about best practices

	create a custom task base class

	add a callback to a group of tasks

	split a task into several chunks

	optimize the worker

	see a list of built-in task states

	create custom task states

	set a custom task name

	track when a task starts

	retry a task when it fails

	get the id of the current task

	
	know what queue a task was delivered to

	see a list of running workers

	purge all messages

	inspect what the workers are doing

	see what tasks a worker has registerd

	migrate tasks to a new broker

	see a list of event message types

	contribute to Celery

	learn about available configuration settings

	receive email when a task fails

	get a list of people and companies using Celery

	write my own remote control command

	change worker queues at runtime

Jump to ⟶

	
	Brokers

	Applications

	Tasks

	Calling

	
	Workers

	Daemonizing

	Monitoring

	Optimizing

	
	Security

	Routing

	Configuration

	Django

	
	Contributing

	Signals

	FAQ

	API Reference

Installation

You can install Celery either via the Python Package Index (PyPI)
or from source.

To install using pip,:

$ pip install -U Celery

To install using easy_install,:

$ easy_install -U Celery

Bundles

Celery also defines a group of bundles that can be used
to install Celery and the dependencies for a given feature.

You can specify these in your requirements or on the pip comand-line
by using brackets. Multiple bundles can be specified by separating them by
commas.

$ pip install "celery[librabbitmq]"

$ pip install "celery[librabbitmq,redis,auth,msgpack]"

The following bundles are available:

Serializers

	celery[auth]:	for using the auth serializer.

	celery[msgpack]:

	 	for using the msgpack serializer.

	celery[yaml]:	for using the yaml serializer.

Concurrency

	celery[eventlet]:

	 	for using the eventlet pool.

	celery[gevent]:	for using the gevent pool.

	celery[threads]:

	 	for using the thread pool.

Transports and Backends

	celery[librabbitmq]:

	 	for using the librabbitmq C library.

	celery[redis]:	for using Redis as a message transport or as a result backend.

	celery[mongodb]:

	 	for using MongoDB as a message transport (experimental),
or as a result backend (supported).

	celery[sqs]:	for using Amazon SQS as a message transport (experimental).

	celery[memcache]:

	 	for using memcached as a result backend.

	celery[cassandra]:

	 	for using Apache Cassandra as a result backend.

	celery[couchdb]:

	 	for using CouchDB as a message transport (experimental).

	celery[couchbase]:

	 	for using CouchBase as a result backend.

	celery[beanstalk]:

	 	for using Beanstalk as a message transport (experimental).

	celery[zookeeper]:

	 	for using Zookeeper as a message transport.

	celery[zeromq]:	for using ZeroMQ as a message transport (experimental).

	celery[sqlalchemy]:

	 	for using SQLAlchemy as a message transport (experimental),
or as a result backend (supported).

	celery[pyro]:	for using the Pyro4 message transport (experimental).

	celery[slmq]:	for using the SoftLayer Message Queue transport (experimental).

Downloading and installing from source

Download the latest version of Celery from
http://pypi.python.org/pypi/celery/

You can install it by doing the following,:

$ tar xvfz celery-0.0.0.tar.gz
$ cd celery-0.0.0
$ python setup.py build
python setup.py install

The last command must be executed as a privileged user if
you are not currently using a virtualenv.

Using the development version

With pip

The Celery development version also requires the development
versions of kombu, amqp and billiard.

You can install the latest snapshot of these using the following
pip commands:

$ pip install https://github.com/celery/celery/zipball/master#egg=celery
$ pip install https://github.com/celery/billiard/zipball/master#egg=billiard
$ pip install https://github.com/celery/py-amqp/zipball/master#egg=amqp
$ pip install https://github.com/celery/kombu/zipball/master#egg=kombu

With git

Please the Contributing section.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Brokers

	Release:	3.1

	Date:	Nov 12, 2017

Celery supports several message transport alternatives.

Broker Instructions

	Using RabbitMQ

	Using Redis

Experimental Transports

	Using SQLAlchemy

	Using the Django Database

	Using MongoDB

	Using Amazon SQS

	Using CouchDB

	Using Beanstalk

	Using IronMQ

Broker Overview

This is comparison table of the different transports supports,
more information can be found in the documentation for each
individual transport (see Broker Instructions).

	Name
	Status
	Monitoring
	Remote Control

	RabbitMQ
	Stable
	Yes
	Yes

	Redis
	Stable
	Yes
	Yes

	Mongo DB
	Experimental
	Yes
	Yes

	Beanstalk
	Experimental
	No
	No

	Amazon SQS
	Experimental
	No
	No

	Couch DB
	Experimental
	No
	No

	Zookeeper
	Experimental
	No
	No

	Django DB
	Experimental
	No
	No

	SQLAlchemy
	Experimental
	No
	No

	Iron MQ
	3rd party
	No
	No

Experimental brokers may be functional but they do not have
dedicated maintainers.

Missing monitor support means that the transport does not
implement events, and as such Flower, celery events, celerymon
and other event-based monitoring tools will not work.

Remote control means the ability to inspect and manage workers
at runtime using the celery inspect and celery control commands
(and other tools using the remote control API).

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Using RabbitMQ

	Installation & Configuration

	Installing the RabbitMQ Server
	Setting up RabbitMQ

	Installing RabbitMQ on OS X
	Configuring the system host name

	Starting/Stopping the RabbitMQ server

Installation & Configuration

RabbitMQ is the default broker so it does not require any additional
dependencies or initial configuration, other than the URL location of
the broker instance you want to use:

>>> BROKER_URL = 'amqp://guest:guest@localhost:5672//'

For a description of broker URLs and a full list of the
various broker configuration options available to Celery,
see Broker Settings.

Installing the RabbitMQ Server

See Installing RabbitMQ [http://www.rabbitmq.com/install.html] over at RabbitMQ’s website. For Mac OS X
see Installing RabbitMQ on OS X.

Note

If you’re getting nodedown errors after installing and using
rabbitmqctl then this blog post can help you identify
the source of the problem:

http://www.somic.org/2009/02/19/on-rabbitmqctl-and-badrpcnodedown/

Setting up RabbitMQ

To use celery we need to create a RabbitMQ user, a virtual host and
allow that user access to that virtual host:

$ sudo rabbitmqctl add_user myuser mypassword

$ sudo rabbitmqctl add_vhost myvhost

$ sudo rabbitmqctl set_user_tags myuser mytag

$ sudo rabbitmqctl set_permissions -p myvhost myuser ".*" ".*" ".*"

See the RabbitMQ Admin Guide [http://www.rabbitmq.com/admin-guide.html] for more information about access control [http://www.rabbitmq.com/admin-guide.html#access-control].

Installing RabbitMQ on OS X

The easiest way to install RabbitMQ on OS X is using Homebrew [http://github.com/mxcl/homebrew/] the new and
shiny package management system for OS X.

First, install homebrew using the one-line command provided by the Homebrew
documentation [https://github.com/Homebrew/homebrew/wiki/Installation]:

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Finally, we can install rabbitmq using brew:

$ brew install rabbitmq

After you’ve installed rabbitmq with brew you need to add the following to
your path to be able to start and stop the broker: add it to the startup file for your
shell (e.g. .bash_profile or .profile).

PATH=$PATH:/usr/local/sbin

Configuring the system host name

If you’re using a DHCP server that is giving you a random host name, you need
to permanently configure the host name. This is because RabbitMQ uses the host name
to communicate with nodes.

Use the scutil command to permanently set your host name:

$ sudo scutil --set HostName myhost.local

Then add that host name to /etc/hosts so it’s possible to resolve it
back into an IP address:

127.0.0.1 localhost myhost myhost.local

If you start the rabbitmq server, your rabbit node should now be rabbit@myhost,
as verified by rabbitmqctl:

$ sudo rabbitmqctl status
Status of node rabbit@myhost ...
[{running_applications,[{rabbit,"RabbitMQ","1.7.1"},
 {mnesia,"MNESIA CXC 138 12","4.4.12"},
 {os_mon,"CPO CXC 138 46","2.2.4"},
 {sasl,"SASL CXC 138 11","2.1.8"},
 {stdlib,"ERTS CXC 138 10","1.16.4"},
 {kernel,"ERTS CXC 138 10","2.13.4"}]},
{nodes,[rabbit@myhost]},
{running_nodes,[rabbit@myhost]}]
...done.

This is especially important if your DHCP server gives you a host name
starting with an IP address, (e.g. 23.10.112.31.comcast.net), because
then RabbitMQ will try to use rabbit@23, which is an illegal host name.

Starting/Stopping the RabbitMQ server

To start the server:

$ sudo rabbitmq-server

you can also run it in the background by adding the -detached option
(note: only one dash):

$ sudo rabbitmq-server -detached

Never use kill to stop the RabbitMQ server, but rather use the
rabbitmqctl command:

$ sudo rabbitmqctl stop

When the server is running, you can continue reading Setting up RabbitMQ.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Using Redis

Installation

For the Redis support you have to install additional dependencies.
You can install both Celery and these dependencies in one go using
the celery[redis] bundle:

$ pip install -U celery[redis]

Configuration

Configuration is easy, just configure the location of
your Redis database:

BROKER_URL = 'redis://localhost:6379/0'

Where the URL is in the format of:

redis://:password@hostname:port/db_number

all fields after the scheme are optional, and will default to localhost on port 6379,
using database 0.

If a unix socket connection should be used, the URL needs to be in the format:

redis+socket:///path/to/redis.sock

Specifying a different database number when using a unix socket is possible
by adding the virtual_host parameter to the URL:

redis+socket:///path/to/redis.sock?virtual_host=db_number

Visibility Timeout

The visibility timeout defines the number of seconds to wait
for the worker to acknowledge the task before the message is redelivered
to another worker. Be sure to see Caveats below.

This option is set via the BROKER_TRANSPORT_OPTIONS setting:

BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 3600} # 1 hour.

The default visibility timeout for Redis is 1 hour.

Results

If you also want to store the state and return values of tasks in Redis,
you should configure these settings:

CELERY_RESULT_BACKEND = 'redis://localhost:6379/0'

For a complete list of options supported by the Redis result backend, see
Redis backend settings

Caveats

	Broadcast messages will be seen by all virtual hosts by default.

You have to set a transport option to prefix the messages so that
they will only be received by the active virtual host:

BROKER_TRANSPORT_OPTIONS = {'fanout_prefix': True}

Note that you will not be able to communicate with workers running older
versions or workers that does not have this setting enabled.

This setting will be the default in the future, so better to migrate
sooner rather than later.

	Workers will receive all task related events by default.

To avoid this you must set the fanout_patterns fanout option so that
the workers may only subscribe to worker related events:

BROKER_TRANSPORT_OPTIONS = {'fanout_patterns': True}

Note that this change is backward incompatible so all workers in the
cluster must have this option enabled, or else they will not be able to
communicate.

This option will be enabled by default in the future.

	If a task is not acknowledged within the Visibility Timeout
the task will be redelivered to another worker and executed.

This causes problems with ETA/countdown/retry tasks where the
time to execute exceeds the visibility timeout; in fact if that
happens it will be executed again, and again in a loop.

So you have to increase the visibility timeout to match
the time of the longest ETA you are planning to use.

Note that Celery will redeliver messages at worker shutdown,
so having a long visibility timeout will only delay the redelivery
of ‘lost’ tasks in the event of a power failure or forcefully terminated
workers.

Periodic tasks will not be affected by the visibility timeout,
as this is a concept separate from ETA/countdown.

You can increase this timeout by configuring a transport option
with the same name:

BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 43200}

The value must be an int describing the number of seconds.

	Monitoring events (as used by flower and other tools) are global
and is not affected by the virtual host setting.

This is caused by a limitation in Redis. The Redis PUB/SUB channels
are global and not affected by the database number.

	Redis may evict keys from the database in some situations

If you experience an error like:

InconsistencyError, Probably the key ('_kombu.binding.celery') has been
removed from the Redis database.

you may want to configure the redis-server to not evict keys by setting
the timeout parameter to 0.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Using SQLAlchemy

Experimental Status

The SQLAlchemy transport is unstable in many areas and there are
several issues open. Unfortunately we don’t have the resources or funds
required to improve the situation, so we’re looking for contributors
and partners willing to help.

Installation

Configuration

Celery needs to know the location of your database, which should be the usual
SQLAlchemy connection string, but with ‘sqla+’ prepended to it:

BROKER_URL = 'sqla+sqlite:///celerydb.sqlite'

This transport uses only the BROKER_URL setting, which have to be
an SQLAlchemy database URI.

Please see SQLAlchemy: Supported Databases [http://www.sqlalchemy.org/docs/core/engines.html#supported-databases] for a table of supported databases.

Here’s a list of examples using a selection of other SQLAlchemy Connection Strings [http://www.sqlalchemy.org/docs/core/engines.html#database-urls]:

sqlite (filename)
BROKER_URL = 'sqla+sqlite:///celerydb.sqlite'

mysql
BROKER_URL = 'sqla+mysql://scott:tiger@localhost/foo'

postgresql
BROKER_URL = 'sqla+postgresql://scott:tiger@localhost/mydatabase'

oracle
BROKER_URL = 'sqla+oracle://scott:tiger@127.0.0.1:1521/sidname'

Results

To store results in the database as well, you should configure the result
backend. See Database backend settings.

Limitations

The SQLAlchemy database transport does not currently support:

	Remote control commands (celery events command, broadcast)

	Events, including the Django Admin monitor.

	Using more than a few workers (can lead to messages being executed
multiple times).

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Using the Django Database

Experimental Status

The Django database transport is in need of improvements in many areas
and there are several open bugs. Unfortunately we don’t have the resources or funds
required to improve the situation, so we’re looking for contributors
and partners willing to help.

Installation

Configuration

The database transport uses the Django DATABASE_* settings for database
configuration values.

	Set your broker transport:

BROKER_URL = 'django://'

	Add kombu.transport.django to INSTALLED_APPS:

INSTALLED_APPS = ('kombu.transport.django',)

	Sync your database schema:

 $ python manage.py migrate kombu_transport_django

Or if you are using a version of Django lower than 1.7

 $ python manage.py syncdb

Limitations

The Django database transport does not currently support:

	Remote control commands (celery events command, broadcast)

	Events, including the Django Admin monitor.

	Using more than a few workers (can lead to messages being executed
multiple times).

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Using MongoDB

Experimental Status

The MongoDB transport is in need of improvements in many areas and there
are several open bugs. Unfortunately we don’t have the resources or funds
required to improve the situation, so we’re looking for contributors
and partners willing to help.

Installation

For the MongoDB support you have to install additional dependencies.
You can install both Celery and these dependencies in one go using
the celery[mongodb] bundle:

$ pip install -U celery[mongodb]

Configuration

Configuration is easy, set the transport, and configure the location of
your MongoDB database:

BROKER_URL = 'mongodb://localhost:27017/database_name'

Where the URL is in the format of:

mongodb://userid:password@hostname:port/database_name

The host name will default to localhost and the port to 27017,
and so they are optional. userid and password are also optional,
but needed if your MongoDB server requires authentication.

Results

If you also want to store the state and return values of tasks in MongoDB,
you should see MongoDB backend settings.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Using Amazon SQS

Experimental Status

The SQS transport is in need of improvements in many areas and there
are several open bugs. Unfortunately we don’t have the resources or funds
required to improve the situation, so we’re looking for contributors
and partners willing to help.

Installation

For the Amazon SQS support you have to install the boto [http://pypi.python.org/pypi/boto] library:

$ pip install -U boto

Configuration

You have to specify SQS in the broker URL:

BROKER_URL = 'sqs://ABCDEFGHIJKLMNOPQRST:ZYXK7NiynGlTogH8Nj+P9nlE73sq3@'

where the URL format is:

sqs://aws_access_key_id:aws_secret_access_key@

you must remember to include the “@” at the end.

The login credentials can also be set using the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY,
in that case the broker url may only be sqs://.

Note

If you specify AWS credentials in the broker URL, then please keep in mind
that the secret access key may contain unsafe characters that needs to be
URL encoded.

Options

Region

The default region is us-east-1 but you can select another region
by configuring the BROKER_TRANSPORT_OPTIONS setting:

BROKER_TRANSPORT_OPTIONS = {'region': 'eu-west-1'}

See also

An overview of Amazon Web Services regions can be found here:

http://aws.amazon.com/about-aws/globalinfrastructure/

Visibility Timeout

The visibility timeout defines the number of seconds to wait
for the worker to acknowledge the task before the message is redelivered
to another worker. Also see caveats below.

This option is set via the BROKER_TRANSPORT_OPTIONS setting:

BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 3600} # 1 hour.

The default visibility timeout is 30 seconds.

Polling Interval

The polling interval decides the number of seconds to sleep between
unsuccessful polls. This value can be either an int or a float.
By default the value is 1 second, which means that the worker will
sleep for one second whenever there are no more messages to read.

You should note that more frequent polling is also more expensive, so increasing
the polling interval can save you money.

The polling interval can be set via the BROKER_TRANSPORT_OPTIONS
setting:

BROKER_TRANSPORT_OPTIONS = {'polling_interval': 0.3}

Very frequent polling intervals can cause busy loops, which results in the
worker using a lot of CPU time. If you need sub-millisecond precision you
should consider using another transport, like RabbitMQ <broker-amqp>,
or Redis <broker-redis>.

Queue Prefix

By default Celery will not assign any prefix to the queue names,
If you have other services using SQS you can configure it do so
using the BROKER_TRANSPORT_OPTIONS setting:

BROKER_TRANSPORT_OPTIONS = {'queue_name_prefix': 'celery-'}

Caveats

	If a task is not acknowledged within the visibility_timeout,
the task will be redelivered to another worker and executed.

This causes problems with ETA/countdown/retry tasks where the
time to execute exceeds the visibility timeout; in fact if that
happens it will be executed again, and again in a loop.

So you have to increase the visibility timeout to match
the time of the longest ETA you are planning to use.

Note that Celery will redeliver messages at worker shutdown,
so having a long visibility timeout will only delay the redelivery
of ‘lost’ tasks in the event of a power failure or forcefully terminated
workers.

Periodic tasks will not be affected by the visibility timeout,
as it is a concept separate from ETA/countdown.

The maximum visibility timeout supported by AWS as of this writing
is 12 hours (43200 seconds):

BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 43200}

	SQS does not yet support worker remote control commands.

	SQS does not yet support events, and so cannot be used with
celery events, celerymon or the Django Admin
monitor.

Results

Multiple products in the Amazon Web Services family could be a good candidate
to store or publish results with, but there is no such result backend included
at this point.

Warning

Do not use the amqp result backend with SQS.

It will create one queue for every task, and the queues will
not be collected. This could cost you money that would be better
spent contributing an AWS result store backend back to Celery :)

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Using CouchDB

Experimental Status

The CouchDB transport is in need of improvements in many areas and there
are several open bugs. Unfortunately we don’t have the resources or funds
required to improve the situation, so we’re looking for contributors
and partners willing to help.

Installation

For the CouchDB support you have to install additional dependencies.
You can install both Celery and these dependencies in one go using
the celery[couchdb] bundle:

$ pip install -U celery[couchdb]

Configuration

Configuration is easy, set the transport, and configure the location of
your CouchDB database:

BROKER_URL = 'couchdb://localhost:5984/database_name'

Where the URL is in the format of:

couchdb://userid:password@hostname:port/database_name

The host name will default to localhost and the port to 5984,
and so they are optional. userid and password are also optional,
but needed if your CouchDB server requires authentication.

Results

Storing task state and results in CouchDB is currently not supported.

Limitations

The CouchDB message transport does not currently support:

	Remote control commands (celery inspect,
celery control, broadcast)

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Using Beanstalk

Out of order

The Beanstalk transport is currently not working well.

We are interested in contributions and donations that can go towards
improving this situation.

Installation

For the Beanstalk support you have to install additional dependencies.
You can install both Celery and these dependencies in one go using
the celery[beanstalk] bundle:

$ pip install -U celery[beanstalk]

Configuration

Configuration is easy, set the transport, and configure the location of
your Beanstalk database:

BROKER_URL = 'beanstalk://localhost:11300'

Where the URL is in the format of:

beanstalk://hostname:port

The host name will default to localhost and the port to 11300,
and so they are optional.

Results

Using Beanstalk to store task state and results is currently not supported.

Limitations

The Beanstalk message transport does not currently support:

	Remote control commands (celery control,
celery inspect, broadcast)

	Authentication

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Using IronMQ

Installation

For IronMQ support, you’ll need the [iron_celery](http://github.com/iron-io/iron_celery) library:

$ pip install iron_celery

As well as an [Iron.io account](http://www.iron.io). Sign up for free at [iron.io](http://www.iron.io).

Configuration

First, you’ll need to import the iron_celery library right after you import Celery, for example:

from celery import Celery
import iron_celery

app = Celery('mytasks', broker='ironmq://', backend='ironcache://')

You have to specify IronMQ in the broker URL:

BROKER_URL = 'ironmq://ABCDEFGHIJKLMNOPQRST:ZYXK7NiynGlTogH8Nj+P9nlE73sq3@'

where the URL format is:

ironmq://project_id:token@

you must remember to include the “@” at the end.

The login credentials can also be set using the environment variables
IRON_TOKEN and IRON_PROJECT_ID, which are set automatically if you use the IronMQ Heroku add-on.
And in this case the broker url may only be:

ironmq://

Clouds

The default cloud/region is AWS us-east-1. You can choose the IronMQ Rackspace (ORD) cloud by changing the URL to:

ironmq://project_id:token@mq-rackspace-ord.iron.io

Results

You can store results in IronCache with the same Iron.io credentials, just set the results URL with the same syntax
as the broker URL, but changing the start to ironcache:

ironcache:://project_id:token@

This will default to a cache named “Celery”, if you want to change that:

ironcache:://project_id:token@/awesomecache

More Information

You can find more information in the [iron_celery README](http://github.com/iron-io/iron_celery).

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

First Steps with Celery

Celery is a task queue with batteries included.
It is easy to use so that you can get started without learning
the full complexities of the problem it solves. It is designed
around best practices so that your product can scale
and integrate with other languages, and it comes with the
tools and support you need to run such a system in production.

In this tutorial you will learn the absolute basics of using Celery.
You will learn about;

	Choosing and installing a message transport (broker).

	Installing Celery and creating your first task.

	Starting the worker and calling tasks.

	Keeping track of tasks as they transition through different states,
and inspecting return values.

Celery may seem daunting at first - but don’t worry - this tutorial
will get you started in no time. It is deliberately kept simple, so
to not confuse you with advanced features.
After you have finished this tutorial
it’s a good idea to browse the rest of the documentation,
for example the Next Steps tutorial, which will
showcase Celery’s capabilities.

	Choosing a Broker
	RabbitMQ

	Redis

	Using a database

	Other brokers

	Installing Celery

	Application

	Running the celery worker server

	Calling the task

	Keeping Results

	Configuration

	Where to go from here

	Troubleshooting
	Worker does not start: Permission Error

	Result backend does not work or tasks are always in PENDING state.

	Segmentation fault at start when using RabbitMQ

Choosing a Broker

Celery requires a solution to send and receive messages; usually this
comes in the form of a separate service called a message broker.

There are several choices available, including:

RabbitMQ

RabbitMQ [http://www.rabbitmq.com/] is feature-complete, stable, durable and easy to install.
It’s an excellent choice for a production environment.
Detailed information about using RabbitMQ with Celery:

Using RabbitMQ

If you are using Ubuntu or Debian install RabbitMQ by executing this
command:

$ sudo apt-get install rabbitmq-server

When the command completes the broker is already running in the background,
ready to move messages for you: Starting rabbitmq-server: SUCCESS.

And don’t worry if you’re not running Ubuntu or Debian, you can go to this
website to find similarly simple installation instructions for other
platforms, including Microsoft Windows:

http://www.rabbitmq.com/download.html

Redis

Redis [http://redis.io/] is also feature-complete, but is more susceptible to data loss in
the event of abrupt termination or power failures. Detailed information about using Redis:

Using Redis

Using a database

Using a database as a message queue is not recommended, but can be sufficient
for very small installations. Your options include:

	Using SQLAlchemy

	Using the Django Database

If you’re already using a Django database for example, using it as your
message broker can be convenient while developing even if you use a more
robust system in production.

Other brokers

In addition to the above, there are other experimental transport implementations
to choose from, including Amazon SQS, Using MongoDB
and IronMQ.

See Broker Overview for a full list.

Installing Celery

Celery is on the Python Package Index (PyPI), so it can be installed
with standard Python tools like pip or easy_install:

$ pip install celery

Application

The first thing you need is a Celery instance, which is called the celery
application or just “app” for short. Since this instance is used as
the entry-point for everything you want to do in Celery, like creating tasks and
managing workers, it must be possible for other modules to import it.

In this tutorial you will keep everything contained in a single module,
but for larger projects you want to create
a dedicated module.

Let’s create the file tasks.py:

from celery import Celery

app = Celery('tasks', broker='amqp://guest@localhost//')

@app.task
def add(x, y):
 return x + y

The first argument to Celery is the name of the current module,
this is needed so that names can be automatically generated, the second
argument is the broker keyword argument which specifies the URL of the
message broker you want to use, using RabbitMQ here, which is already the
default option. See Choosing a Broker above for more choices,
e.g. for RabbitMQ you can use amqp://localhost, or for Redis you can
use redis://localhost.

You defined a single task, called add, which returns the sum of two numbers.

Running the celery worker server

You now run the worker by executing our program with the worker
argument:

$ celery -A tasks worker --loglevel=info

Note

See the Troubleshooting section if the worker
does not start.

In production you will want to run the worker in the
background as a daemon. To do this you need to use the tools provided
by your platform, or something like supervisord [http://supervisord.org] (see Running the worker as a daemon
for more information).

For a complete listing of the command-line options available, do:

$ celery worker --help

There are also several other commands available, and help is also available:

$ celery help

Calling the task

To call our task you can use the delay() method.

This is a handy shortcut to the apply_async()
method which gives greater control of the task execution (see
Calling Tasks):

>>> from tasks import add
>>> add.delay(4, 4)

The task has now been processed by the worker you started earlier,
and you can verify that by looking at the workers console output.

Calling a task returns an AsyncResult instance,
which can be used to check the state of the task, wait for the task to finish
or get its return value (or if the task failed, the exception and traceback).
But this isn’t enabled by default, and you have to configure Celery to
use a result backend, which is detailed in the next section.

Keeping Results

If you want to keep track of the tasks’ states, Celery needs to store or send
the states somewhere. There are several
built-in result backends to choose from: SQLAlchemy [http://www.sqlalchemy.org/]/Django [http://djangoproject.com] ORM,
Memcached [http://memcached.org], Redis [http://redis.io/], AMQP (RabbitMQ [http://www.rabbitmq.com/]), and MongoDB [http://www.mongodb.org] – or you can define your own.

For this example you will use the rpc result backend, which sends states
back as transient messages. The backend is specified via the backend argument to
Celery, (or via the CELERY_RESULT_BACKEND setting if
you choose to use a configuration module):

app = Celery('tasks', backend='rpc://', broker='amqp://')

Or if you want to use Redis as the result backend, but still use RabbitMQ as
the message broker (a popular combination):

app = Celery('tasks', backend='redis://localhost', broker='amqp://')

To read more about result backends please see Result Backends.

Now with the result backend configured, let’s call the task again.
This time you’ll hold on to the AsyncResult instance returned
when you call a task:

>>> result = add.delay(4, 4)

The ready() method returns whether the task
has finished processing or not:

>>> result.ready()
False

You can wait for the result to complete, but this is rarely used
since it turns the asynchronous call into a synchronous one:

>>> result.get(timeout=1)
8

In case the task raised an exception, get() will
re-raise the exception, but you can override this by specifying
the propagate argument:

>>> result.get(propagate=False)

If the task raised an exception you can also gain access to the
original traceback:

>>> result.traceback
…

See celery.result for the complete result object reference.

Configuration

Celery, like a consumer appliance, doesn’t need much to be operated.
It has an input and an output, where you must connect the input to a broker and maybe
the output to a result backend if so wanted. But if you look closely at the back
there’s a lid revealing loads of sliders, dials and buttons: this is the configuration.

The default configuration should be good enough for most uses, but there are
many things to tweak so Celery works just the way you want it to.
Reading about the options available is a good idea to get familiar with what
can be configured. You can read about the options in the
Configuration and defaults reference.

The configuration can be set on the app directly or by using a dedicated
configuration module.
As an example you can configure the default serializer used for serializing
task payloads by changing the CELERY_TASK_SERIALIZER setting:

app.conf.CELERY_TASK_SERIALIZER = 'json'

If you are configuring many settings at once you can use update:

app.conf.update(
 CELERY_TASK_SERIALIZER='json',
 CELERY_ACCEPT_CONTENT=['json'], # Ignore other content
 CELERY_RESULT_SERIALIZER='json',
 CELERY_TIMEZONE='Europe/Oslo',
 CELERY_ENABLE_UTC=True,
)

For larger projects using a dedicated configuration module is useful,
in fact you are discouraged from hard coding
periodic task intervals and task routing options, as it is much
better to keep this in a centralized location, and especially for libraries
it makes it possible for users to control how they want your tasks to behave,
you can also imagine your SysAdmin making simple changes to the configuration
in the event of system trouble.

You can tell your Celery instance to use a configuration module,
by calling the app.config_from_object() method:

app.config_from_object('celeryconfig')

This module is often called “celeryconfig”, but you can use any
module name.

A module named celeryconfig.py must then be available to load from the
current directory or on the Python path, it could look like this:

celeryconfig.py:

BROKER_URL = 'amqp://'
CELERY_RESULT_BACKEND = 'rpc://'

CELERY_TASK_SERIALIZER = 'json'
CELERY_RESULT_SERIALIZER = 'json'
CELERY_ACCEPT_CONTENT=['json']
CELERY_TIMEZONE = 'Europe/Oslo'
CELERY_ENABLE_UTC = True

To verify that your configuration file works properly, and doesn’t
contain any syntax errors, you can try to import it:

$ python -m celeryconfig

For a complete reference of configuration options, see Configuration and defaults.

To demonstrate the power of configuration files, this is how you would
route a misbehaving task to a dedicated queue:

celeryconfig.py:

CELERY_ROUTES = {
 'tasks.add': 'low-priority',
}

Or instead of routing it you could rate limit the task
instead, so that only 10 tasks of this type can be processed in a minute
(10/m):

celeryconfig.py:

CELERY_ANNOTATIONS = {
 'tasks.add': {'rate_limit': '10/m'}
}

If you are using RabbitMQ or Redis as the
broker then you can also direct the workers to set a new rate limit
for the task at runtime:

$ celery -A tasks control rate_limit tasks.add 10/m
worker@example.com: OK
 new rate limit set successfully

See Routing Tasks to read more about task routing,
and the CELERY_ANNOTATIONS setting for more about annotations,
or Monitoring and Management Guide for more about remote control commands,
and how to monitor what your workers are doing.

Where to go from here

If you want to learn more you should continue to the
Next Steps tutorial, and after that you
can study the User Guide.

Troubleshooting

There’s also a troubleshooting section in the Frequently Asked Questions.

Worker does not start: Permission Error

	If you’re using Debian, Ubuntu or other Debian-based distributions:

Debian recently renamed the /dev/shm special file to /run/shm.

A simple workaround is to create a symbolic link:

ln -s /run/shm /dev/shm

	Others:

If you provide any of the --pidfile, --logfile or
--statedb arguments, then you must make sure that they
point to a file/directory that is writable and readable by the
user starting the worker.

Result backend does not work or tasks are always in PENDING state.

All tasks are PENDING by default, so the state would have been
better named “unknown”. Celery does not update any state when a task
is sent, and any task with no history is assumed to be pending (you know
the task id after all).

	Make sure that the task does not have ignore_result enabled.

Enabling this option will force the worker to skip updating
states.

	Make sure the CELERY_IGNORE_RESULT setting is not enabled.

	Make sure that you do not have any old workers still running.

It’s easy to start multiple workers by accident, so make sure
that the previous worker is properly shutdown before you start a new one.

An old worker that is not configured with the expected result backend
may be running and is hijacking the tasks.

The –pidfile argument can be set to an absolute path to make sure
this doesn’t happen.

	Make sure the client is configured with the right backend.

If for some reason the client is configured to use a different backend
than the worker, you will not be able to receive the result,
so make sure the backend is correct by inspecting it:

>>> result = task.delay(…)
>>> print(result.backend)

Segmentation fault at start when using RabbitMQ

Remove python-librabbitmq (https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736348).

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Next Steps

The First Steps with Celery guide is intentionally minimal. In this guide
I will demonstrate what Celery offers in more detail, including
how to add Celery support for your application and library.

This document does not document all of Celery’s features and
best practices, so it’s recommended that you also read the
User Guide

	Using Celery in your Application

	Calling Tasks

	Canvas: Designing Workflows

	Routing

	Remote Control

	Timezone

	Optimization

	What to do now?

Using Celery in your Application

Our Project

Project layout:

proj/__init__.py
 /celery.py
 /tasks.py

proj/celery.py

from __future__ import absolute_import

from celery import Celery

app = Celery('proj',
 broker='amqp://',
 backend='amqp://',
 include=['proj.tasks'])

Optional configuration, see the application user guide.
app.conf.update(
 CELERY_TASK_RESULT_EXPIRES=3600,
)

if __name__ == '__main__':
 app.start()

In this module you created our Celery instance (sometimes
referred to as the app). To use Celery within your project
you simply import this instance.

	The broker argument specifies the URL of the broker to use.

See Choosing a Broker for more information.

	The backend argument specifies the result backend to use,

It’s used to keep track of task state and results.
While results are disabled by default I use the amqp result backend here
because I demonstrate how retrieving results work later, you may want to use
a different backend for your application. They all have different
strengths and weaknesses. If you don’t need results it’s better
to disable them. Results can also be disabled for individual tasks
by setting the @task(ignore_result=True) option.

See Keeping Results for more information.

	The include argument is a list of modules to import when
the worker starts. You need to add our tasks module here so
that the worker is able to find our tasks.

proj/tasks.py

from __future__ import absolute_import

from proj.celery import app

@app.task
def add(x, y):
 return x + y

@app.task
def mul(x, y):
 return x * y

@app.task
def xsum(numbers):
 return sum(numbers)

Starting the worker

The celery program can be used to start the worker (you need to run the worker in the directory above proj):

$ celery -A proj worker -l info

When the worker starts you should see a banner and some messages:

-------------- celery@halcyon.local v3.1 (Cipater)
---- **** -----
--- * *** * -- [Configuration]
-- * - **** --- . broker: amqp://guest@localhost:5672//
- ** ---------- . app: __main__:0x1012d8590
- ** ---------- . concurrency: 8 (processes)
- ** ---------- . events: OFF (enable -E to monitor this worker)
- ** ----------
- *** --- * --- [Queues]
-- ******* ---- . celery: exchange:celery(direct) binding:celery
--- ***** -----

[2012-06-08 16:23:51,078: WARNING/MainProcess] celery@halcyon.local has started.

– The broker is the URL you specifed in the broker argument in our celery
module, you can also specify a different broker on the command-line by using
the -b option.

– Concurrency is the number of prefork worker process used
to process your tasks concurrently, when all of these are busy doing work
new tasks will have to wait for one of the tasks to finish before
it can be processed.

The default concurrency number is the number of CPU’s on that machine
(including cores), you can specify a custom number using -c [https://docs.python.org/dev/using/cmdline.html#cmdoption-c] option.
There is no recommended value, as the optimal number depends on a number of
factors, but if your tasks are mostly I/O-bound then you can try to increase
it, experimentation has shown that adding more than twice the number
of CPU’s is rarely effective, and likely to degrade performance
instead.

Including the default prefork pool, Celery also supports using
Eventlet, Gevent, and threads (see Concurrency).

– Events is an option that when enabled causes Celery to send
monitoring messages (events) for actions occurring in the worker.
These can be used by monitor programs like celery events,
and Flower - the real-time Celery monitor, which you can read about in
the Monitoring and Management guide.

– Queues is the list of queues that the worker will consume
tasks from. The worker can be told to consume from several queues
at once, and this is used to route messages to specific workers
as a means for Quality of Service, separation of concerns,
and emulating priorities, all described in the Routing Guide.

You can get a complete list of command-line arguments
by passing in the –help flag:

$ celery worker --help

These options are described in more detailed in the Workers Guide.

Stopping the worker

To stop the worker simply hit Ctrl+C. A list of signals supported
by the worker is detailed in the Workers Guide.

In the background

In production you will want to run the worker in the background, this is
described in detail in the daemonization tutorial.

The daemonization scripts uses the celery multi command to
start one or more workers in the background:

$ celery multi start w1 -A proj -l info
celery multi v3.1.1 (Cipater)
> Starting nodes...
 > w1.halcyon.local: OK

You can restart it too:

$ celery multi restart w1 -A proj -l info
celery multi v3.1.1 (Cipater)
> Stopping nodes...
 > w1.halcyon.local: TERM -> 64024
> Waiting for 1 node.....
 > w1.halcyon.local: OK
> Restarting node w1.halcyon.local: OK
celery multi v3.1.1 (Cipater)
> Stopping nodes...
 > w1.halcyon.local: TERM -> 64052

or stop it:

$ celery multi stop w1 -A proj -l info

The stop command is asynchronous so it will not wait for the
worker to shutdown. You will probably want to use the stopwait command
instead which will ensure all currently executing tasks is completed:

$ celery multi stopwait w1 -A proj -l info

Note

celery multi doesn’t store information about workers
so you need to use the same command-line arguments when
restarting. Only the same pidfile and logfile arguments must be
used when stopping.

By default it will create pid and log files in the current directory,
to protect against multiple workers launching on top of each other
you are encouraged to put these in a dedicated directory:

$ mkdir -p /var/run/celery
$ mkdir -p /var/log/celery
$ celery multi start w1 -A proj -l info --pidfile=/var/run/celery/%n.pid \
 --logfile=/var/log/celery/%n%I.log

With the multi command you can start multiple workers, and there is a powerful
command-line syntax to specify arguments for different workers too,
e.g:

$ celery multi start 10 -A proj -l info -Q:1-3 images,video -Q:4,5 data \
 -Q default -L:4,5 debug

For more examples see the multi module in the API
reference.

About the --app argument

The --app argument specifies the Celery app instance to use,
it must be in the form of module.path:attribute

But it also supports a shortcut form If only a package name is specified,
where it’ll try to search for the app instance, in the following order:

With --app=proj:

	an attribute named proj.app, or

	an attribute named proj.celery, or

	any attribute in the module proj where the value is a Celery
application, or

If none of these are found it’ll try a submodule named proj.celery:

	an attribute named proj.celery.app, or

	an attribute named proj.celery.celery, or

	Any atribute in the module proj.celery where the value is a Celery
application.

This scheme mimics the practices used in the documentation,
i.e. proj:app for a single contained module, and proj.celery:app
for larger projects.

Calling Tasks

You can call a task using the delay() method:

>>> add.delay(2, 2)

This method is actually a star-argument shortcut to another method called
apply_async():

>>> add.apply_async((2, 2))

The latter enables you to specify execution options like the time to run
(countdown), the queue it should be sent to and so on:

>>> add.apply_async((2, 2), queue='lopri', countdown=10)

In the above example the task will be sent to a queue named lopri and the
task will execute, at the earliest, 10 seconds after the message was sent.

Applying the task directly will execute the task in the current process,
so that no message is sent:

>>> add(2, 2)
4

These three methods - delay(), apply_async(), and applying
(__call__), represents the Celery calling API, which are also used for
subtasks.

A more detailed overview of the Calling API can be found in the
Calling User Guide.

Every task invocation will be given a unique identifier (an UUID), this
is the task id.

The delay and apply_async methods return an AsyncResult
instance, which can be used to keep track of the tasks execution state.
But for this you need to enable a result backend so that
the state can be stored somewhere.

Results are disabled by default because of the fact that there is no result
backend that suits every application, so to choose one you need to consider
the drawbacks of each individual backend. For many tasks
keeping the return value isn’t even very useful, so it’s a sensible default to
have. Also note that result backends are not used for monitoring tasks and workers,
for that Celery uses dedicated event messages (see Monitoring and Management Guide).

If you have a result backend configured you can retrieve the return
value of a task:

>>> res = add.delay(2, 2)
>>> res.get(timeout=1)
4

You can find the task’s id by looking at the id attribute:

>>> res.id
d6b3aea2-fb9b-4ebc-8da4-848818db9114

You can also inspect the exception and traceback if the task raised an
exception, in fact result.get() will propagate any errors by default:

>>> res = add.delay(2)
>>> res.get(timeout=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/devel/celery/celery/result.py", line 113, in get
 interval=interval)
File "/opt/devel/celery/celery/backends/amqp.py", line 138, in wait_for
 raise meta['result']
TypeError: add() takes exactly 2 arguments (1 given)

If you don’t wish for the errors to propagate then you can disable that
by passing the propagate argument:

>>> res.get(propagate=False)
TypeError('add() takes exactly 2 arguments (1 given)',)

In this case it will return the exception instance raised instead,
and so to check whether the task succeeded or failed you will have to
use the corresponding methods on the result instance:

>>> res.failed()
True

>>> res.successful()
False

So how does it know if the task has failed or not? It can find out by looking
at the tasks state:

>>> res.state
'FAILURE'

A task can only be in a single state, but it can progress through several
states. The stages of a typical task can be:

PENDING -> STARTED -> SUCCESS

The started state is a special state that is only recorded if the
CELERY_TRACK_STARTED setting is enabled, or if the
@task(track_started=True) option is set for the task.

The pending state is actually not a recorded state, but rather
the default state for any task id that is unknown, which you can see
from this example:

>>> from proj.celery import app

>>> res = app.AsyncResult('this-id-does-not-exist')
>>> res.state
'PENDING'

If the task is retried the stages can become even more complex,
e.g, for a task that is retried two times the stages would be:

PENDING -> STARTED -> RETRY -> STARTED -> RETRY -> STARTED -> SUCCESS

To read more about task states you should see the States section
in the tasks user guide.

Calling tasks is described in detail in the
Calling Guide.

Canvas: Designing Workflows

You just learned how to call a task using the tasks delay method,
and this is often all you need, but sometimes you may want to pass the
signature of a task invocation to another process or as an argument to another
function, for this Celery uses something called subtasks.

A subtask wraps the arguments and execution options of a single task
invocation in a way such that it can be passed to functions or even serialized
and sent across the wire.

You can create a subtask for the add task using the arguments (2, 2),
and a countdown of 10 seconds like this:

>>> add.subtask((2, 2), countdown=10)
tasks.add(2, 2)

There is also a shortcut using star arguments:

>>> add.s(2, 2)
tasks.add(2, 2)

And there’s that calling API again…

Subtask instances also supports the calling API, which means that they
have the delay and apply_async methods.

But there is a difference in that the subtask may already have
an argument signature specified. The add task takes two arguments,
so a subtask specifying two arguments would make a complete signature:

>>> s1 = add.s(2, 2)
>>> res = s1.delay()
>>> res.get()
4

But, you can also make incomplete signatures to create what we call
partials:

incomplete partial: add(?, 2)
>>> s2 = add.s(2)

s2 is now a partial subtask that needs another argument to be complete,
and this can be resolved when calling the subtask:

resolves the partial: add(8, 2)
>>> res = s2.delay(8)
>>> res.get()
10

Here you added the argument 8, which was prepended to the existing argument 2
forming a complete signature of add(8, 2).

Keyword arguments can also be added later, these are then merged with any
existing keyword arguments, but with new arguments taking precedence:

>>> s3 = add.s(2, 2, debug=True)
>>> s3.delay(debug=False) # debug is now False.

As stated subtasks supports the calling API, which means that:

	subtask.apply_async(args=(), kwargs={}, **options)

Calls the subtask with optional partial arguments and partial
keyword arguments. Also supports partial execution options.

	subtask.delay(*args, **kwargs)

Star argument version of apply_async. Any arguments will be prepended
to the arguments in the signature, and keyword arguments is merged with any
existing keys.

So this all seems very useful, but what can you actually do with these?
To get to that I must introduce the canvas primitives…

The Primitives

	
	group

	chain

	chord

	
	map

	starmap

	chunks

The primitives are subtasks themselves, so that they can be combined
in any number of ways to compose complex workflows.

Note

These examples retrieve results, so to try them out you need
to configure a result backend. The example project
above already does that (see the backend argument to Celery).

Let’s look at some examples:

Groups

A group calls a list of tasks in parallel,
and it returns a special result instance that lets you inspect the results
as a group, and retrieve the return values in order.

>>> from celery import group
>>> from proj.tasks import add

>>> group(add.s(i, i) for i in xrange(10))().get()
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

	Partial group

>>> g = group(add.s(i) for i in xrange(10))
>>> g(10).get()
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Chains

Tasks can be linked together so that after one task returns the other
is called:

>>> from celery import chain
>>> from proj.tasks import add, mul

(4 + 4) * 8
>>> chain(add.s(4, 4) | mul.s(8))().get()
64

or a partial chain:

(? + 4) * 8
>>> g = chain(add.s(4) | mul.s(8))
>>> g(4).get()
64

Chains can also be written like this:

>>> (add.s(4, 4) | mul.s(8))().get()
64

Chords

A chord is a group with a callback:

>>> from celery import chord
>>> from proj.tasks import add, xsum

>>> chord((add.s(i, i) for i in xrange(10)), xsum.s())().get()
90

A group chained to another task will be automatically converted
to a chord:

>>> (group(add.s(i, i) for i in xrange(10)) | xsum.s())().get()
90

Since these primitives are all of the subtask type they
can be combined almost however you want, e.g:

>>> upload_document.s(file) | group(apply_filter.s() for filter in filters)

Be sure to read more about workflows in the Canvas user
guide.

Routing

Celery supports all of the routing facilities provided by AMQP,
but it also supports simple routing where messages are sent to named queues.

The CELERY_ROUTES setting enables you to route tasks by name
and keep everything centralized in one location:

app.conf.update(
 CELERY_ROUTES = {
 'proj.tasks.add': {'queue': 'hipri'},
 },
)

You can also specify the queue at runtime
with the queue argument to apply_async:

>>> from proj.tasks import add
>>> add.apply_async((2, 2), queue='hipri')

You can then make a worker consume from this queue by
specifying the -Q option:

$ celery -A proj worker -Q hipri

You may specify multiple queues by using a comma separated list,
for example you can make the worker consume from both the default
queue, and the hipri queue, where
the default queue is named celery for historical reasons:

$ celery -A proj worker -Q hipri,celery

The order of the queues doesn’t matter as the worker will
give equal weight to the queues.

To learn more about routing, including taking use of the full
power of AMQP routing, see the Routing Guide.

Remote Control

If you’re using RabbitMQ (AMQP), Redis or MongoDB as the broker then
you can control and inspect the worker at runtime.

For example you can see what tasks the worker is currently working on:

$ celery -A proj inspect active

This is implemented by using broadcast messaging, so all remote
control commands are received by every worker in the cluster.

You can also specify one or more workers to act on the request
using the --destination option, which is a comma separated
list of worker host names:

$ celery -A proj inspect active --destination=celery@example.com

If a destination is not provided then every worker will act and reply
to the request.

The celery inspect command contains commands that
does not change anything in the worker, it only replies information
and statistics about what is going on inside the worker.
For a list of inspect commands you can execute:

$ celery -A proj inspect --help

Then there is the celery control command, which contains
commands that actually changes things in the worker at runtime:

$ celery -A proj control --help

For example you can force workers to enable event messages (used
for monitoring tasks and workers):

$ celery -A proj control enable_events

When events are enabled you can then start the event dumper
to see what the workers are doing:

$ celery -A proj events --dump

or you can start the curses interface:

$ celery -A proj events

when you’re finished monitoring you can disable events again:

$ celery -A proj control disable_events

The celery status command also uses remote control commands
and shows a list of online workers in the cluster:

$ celery -A proj status

You can read more about the celery command and monitoring
in the Monitoring Guide.

Timezone

All times and dates, internally and in messages uses the UTC timezone.

When the worker receives a message, for example with a countdown set it
converts that UTC time to local time. If you wish to use
a different timezone than the system timezone then you must
configure that using the CELERY_TIMEZONE setting:

app.conf.CELERY_TIMEZONE = 'Europe/London'

Optimization

The default configuration is not optimized for throughput by default,
it tries to walk the middle way between many short tasks and fewer long
tasks, a compromise between throughput and fair scheduling.

If you have strict fair scheduling requirements, or want to optimize
for throughput then you should read the Optimizing Guide.

If you’re using RabbitMQ then you should install the librabbitmq
module, which is an AMQP client implemented in C:

$ pip install librabbitmq

What to do now?

Now that you have read this document you should continue
to the User Guide.

There’s also an API reference if you are so inclined.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Resources

	Getting Help
	Mailing list

	IRC

	Bug tracker

	Wiki

	Contributing

	License

Getting Help

Mailing list

For discussions about the usage, development, and future of celery,
please join the celery-users [http://groups.google.com/group/celery-users/] mailing list.

IRC

Come chat with us on IRC. The #celery channel is located at the Freenode [http://freenode.net]
network.

Bug tracker

If you have any suggestions, bug reports or annoyances please report them
to our issue tracker at http://github.com/celery/celery/issues/

Wiki

http://wiki.github.com/celery/celery/

Contributing

Development of celery happens at Github: http://github.com/celery/celery

You are highly encouraged to participate in the development
of celery. If you don’t like Github (for some reason) you’re welcome
to send regular patches.

Be sure to also read the Contributing to Celery [http://docs.celeryproject.org/en/master/contributing.html] section in the
documentation.

License

This software is licensed under the New BSD License. See the LICENSE
file in the top distribution directory for the full license text.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

User Guide

	Release:	3.1

	Date:	Nov 12, 2017

	Application

	Tasks

	Calling Tasks

	Canvas: Designing Workflows

	Workers Guide

	Periodic Tasks

	HTTP Callback Tasks (Webhooks)

	Routing Tasks

	Monitoring and Management Guide

	Security

	Optimizing

	Concurrency

	Signals

	Extensions and Bootsteps

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Application

	Main Name

	Configuration

	Laziness

	Breaking the chain

	Abstract Tasks

The Celery library must be instantiated before use, this instance
is called an application (or app for short).

The application is thread-safe so that multiple Celery applications
with different configurations, components and tasks can co-exist in the
same process space.

Let’s create one now:

>>> from celery import Celery
>>> app = Celery()
>>> app
<Celery __main__:0x100469fd0>

The last line shows the textual representation of the application,
which includes the name of the celery class (Celery), the name of the
current main module (__main__), and the memory address of the object
(0x100469fd0).

Main Name

Only one of these is important, and that is the main module name.
Let’s look at why that is.

When you send a task message in Celery, that message will not contain
any source code, but only the name of the task you want to execute.
This works similarly to how host names work on the internet: every worker
maintains a mapping of task names to their actual functions, called the task
registry.

Whenever you define a task, that task will also be added to the local registry:

>>> @app.task
... def add(x, y):
... return x + y

>>> add
<@task: __main__.add>

>>> add.name
__main__.add

>>> app.tasks['__main__.add']
<@task: __main__.add>

and there you see that __main__ again; whenever Celery is not able
to detect what module the function belongs to, it uses the main module
name to generate the beginning of the task name.

This is only a problem in a limited set of use cases:

	If the module that the task is defined in is run as a program.

	If the application is created in the Python shell (REPL).

For example here, where the tasks module is also used to start a worker
with app.worker_main():

tasks.py:

from celery import Celery
app = Celery()

@app.task
def add(x, y): return x + y

if __name__ == '__main__':
 app.worker_main()

When this module is executed the tasks will be named starting with “__main__”,
but when the module is imported by another process, say to call a task,
the tasks will be named starting with “tasks” (the real name of the module):

>>> from tasks import add
>>> add.name
tasks.add

You can specify another name for the main module:

>>> app = Celery('tasks')
>>> app.main
'tasks'

>>> @app.task
... def add(x, y):
... return x + y

>>> add.name
tasks.add

See also

Names

Configuration

There are several options you can set that will change how
Celery works. These options can be set directly on the app instance,
or you can use a dedicated configuration module.

The configuration is available as app.conf:

>>> app.conf.CELERY_TIMEZONE
'Europe/London'

where you can also set configuration values directly:

>>> app.conf.CELERY_ENABLE_UTC = True

and update several keys at once by using the update method:

>>> app.conf.update(
... CELERY_ENABLE_UTC=True,
... CELERY_TIMEZONE='Europe/London',
...)

The configuration object consists of multiple dictionaries
that are consulted in order:

	Changes made at runtime.

	The configuration module (if any)

	The default configuration (celery.app.defaults).

You can even add new default sources by using the app.add_defaults()
method.

See also

Go to the Configuration reference for a complete
listing of all the available settings, and their default values.

config_from_object

The app.config_from_object() method loads configuration
from a configuration object.

This can be a configuration module, or any object with configuration attributes.

Note that any configuration that was previously set will be reset when
config_from_object() is called. If you want to set additional
configuration you should do so after.

Example 1: Using the name of a module

from celery import Celery

app = Celery()
app.config_from_object('celeryconfig')

The celeryconfig module may then look like this:

celeryconfig.py:

CELERY_ENABLE_UTC = True
CELERY_TIMEZONE = 'Europe/London'

Example 2: Using a configuration module

Tip

Using the name of a module is recomended
as this means that the module doesn’t need to be serialized
when the prefork pool is used. If you’re
experiencing configuration pickle errors then please try using
the name of a module instead.

from celery import Celery

app = Celery()
import celeryconfig
app.config_from_object(celeryconfig)

Example 3: Using a configuration class/object

from celery import Celery

app = Celery()

class Config:
 CELERY_ENABLE_UTC = True
 CELERY_TIMEZONE = 'Europe/London'

app.config_from_object(Config)
or using the fully qualified name of the object:
app.config_from_object('module:Config')

config_from_envvar

The app.config_from_envvar() takes the configuration module name
from an environment variable

For example – to load configuration from a module specified in the
environment variable named CELERY_CONFIG_MODULE:

import os
from celery import Celery

#: Set default configuration module name
os.environ.setdefault('CELERY_CONFIG_MODULE', 'celeryconfig')

app = Celery()
app.config_from_envvar('CELERY_CONFIG_MODULE')

You can then specify the configuration module to use via the environment:

$ CELERY_CONFIG_MODULE="celeryconfig.prod" celery worker -l info

Censored configuration

If you ever want to print out the configuration, as debugging information
or similar, you may also want to filter out sensitive information like
passwords and API keys.

Celery comes with several utilities used for presenting the configuration,
one is humanize():

>>> app.conf.humanize(with_defaults=False, censored=True)

This method returns the configuration as a tabulated string. This will
only contain changes to the configuration by default, but you can include the
default keys and values by changing the with_defaults argument.

If you instead want to work with the configuration as a dictionary, then you
can use the table() method:

>>> app.conf.table(with_defaults=False, censored=True)

Please note that Celery will not be able to remove all sensitive information,
as it merely uses a regular expression to search for commonly named keys.
If you add custom settings containing sensitive information you should name
the keys using a name that Celery identifies as secret.

A configuration setting will be censored if the name contains any of
these substrings:

API, TOKEN, KEY, SECRET, PASS, SIGNATURE, DATABASE

Laziness

The application instance is lazy, meaning that it will not be evaluated
until something is actually needed.

Creating a Celery instance will only do the following:

	Create a logical clock instance, used for events.

	Create the task registry.

	Set itself as the current app (but not if the set_as_current
argument was disabled)

	Call the app.on_init() callback (does nothing by default).

The app.task() decorator does not actually create the
tasks at the point when it’s called, instead it will defer the creation
of the task to happen either when the task is used, or after the
application has been finalized,

This example shows how the task is not created until
you use the task, or access an attribute (in this case repr()):

>>> @app.task
>>> def add(x, y):
... return x + y

>>> type(add)
<class 'celery.local.PromiseProxy'>

>>> add.__evaluated__()
False

>>> add # <-- causes repr(add) to happen
<@task: __main__.add>

>>> add.__evaluated__()
True

Finalization of the app happens either explicitly by calling
app.finalize() – or implicitly by accessing the app.tasks
attribute.

Finalizing the object will:

	Copy tasks that must be shared between apps

Tasks are shared by default, but if the
shared argument to the task decorator is disabled,
then the task will be private to the app it’s bound to.

	Evaluate all pending task decorators.

	Make sure all tasks are bound to the current app.

Tasks are bound to an app so that they can read default
values from the configuration.

The “default app”.

Celery did not always work this way, it used to be that
there was only a module-based API, and for backwards compatibility
the old API is still there.

Celery always creates a special app that is the “default app”,
and this is used if no custom application has been instantiated.

The celery.task module is there to accommodate the old API,
and should not be used if you use a custom app. You should
always use the methods on the app instance, not the module based API.

For example, the old Task base class enables many compatibility
features where some may be incompatible with newer features, such
as task methods:

from celery.task import Task # << OLD Task base class.

from celery import Task # << NEW base class.

The new base class is recommended even if you use the old
module-based API.

Breaking the chain

While it’s possible to depend on the current app
being set, the best practice is to always pass the app instance
around to anything that needs it.

I call this the “app chain”, since it creates a chain
of instances depending on the app being passed.

The following example is considered bad practice:

from celery import current_app

class Scheduler(object):

 def run(self):
 app = current_app

Instead it should take the app as an argument:

class Scheduler(object):

 def __init__(self, app):
 self.app = app

Internally Celery uses the celery.app.app_or_default() function
so that everything also works in the module-based compatibility API

from celery.app import app_or_default

class Scheduler(object):
 def __init__(self, app=None):
 self.app = app_or_default(app)

In development you can set the CELERY_TRACE_APP
environment variable to raise an exception if the app
chain breaks:

$ CELERY_TRACE_APP=1 celery worker -l info

Evolving the API

Celery has changed a lot in the 3 years since it was initially
created.

For example, in the beginning it was possible to use any callable as
a task:

def hello(to):
 return 'hello {0}'.format(to)

>>> from celery.execute import apply_async

>>> apply_async(hello, ('world!',))

or you could also create a Task class to set
certain options, or override other behavior

from celery.task import Task
from celery.registry import tasks

class Hello(Task):
 send_error_emails = True

 def run(self, to):
 return 'hello {0}'.format(to)
tasks.register(Hello)

>>> Hello.delay('world!')

Later, it was decided that passing arbitrary call-ables
was an anti-pattern, since it makes it very hard to use
serializers other than pickle, and the feature was removed
in 2.0, replaced by task decorators:

from celery.task import task

@task(send_error_emails=True)
def hello(x):
 return 'hello {0}'.format(to)

Abstract Tasks

All tasks created using the task() decorator
will inherit from the application’s base Task class.

You can specify a different base class with the base argument:

@app.task(base=OtherTask):
def add(x, y):
 return x + y

To create a custom task class you should inherit from the neutral base
class: celery.Task.

from celery import Task

class DebugTask(Task):
 abstract = True

 def __call__(self, *args, **kwargs):
 print('TASK STARTING: {0.name}[{0.request.id}]'.format(self))
 return super(DebugTask, self).__call__(*args, **kwargs)

Tip

If you override the tasks __call__ method, then it’s very important
that you also call super so that the base call method can set up the
default request used when a task is called directly.

The neutral base class is special because it’s not bound to any specific app
yet. Concrete subclasses of this class will be bound, so you should
always mark generic base classes as abstract

Once a task is bound to an app it will read configuration to set default values
and so on.

It’s also possible to change the default base class for an application
by changing its app.Task() attribute:

>>> from celery import Celery, Task

>>> app = Celery()

>>> class MyBaseTask(Task):
... abstract = True
... send_error_emails = True

>>> app.Task = MyBaseTask
>>> app.Task
<unbound MyBaseTask>

>>> @app.task
... def add(x, y):
... return x + y

>>> add
<@task: __main__.add>

>>> add.__class__.mro()
[<class add of <Celery __main__:0x1012b4410>>,
 <unbound MyBaseTask>,
 <unbound Task>,
 <type 'object'>]

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Tasks

Tasks are the building blocks of Celery applications.

A task is a class that can be created out of any callable. It performs
dual roles in that it defines both what happens when a task is
called (sends a message), and what happens when a worker receives that message.

Every task class has a unique name, and this name is referenced in messages
so that the worker can find the right function to execute.

A task message does not disappear
until the message has been acknowledged by a worker. A worker can reserve
many messages in advance and even if the worker is killed – caused by power failure
or otherwise – the message will be redelivered to another worker.

Ideally task functions should be idempotent, which means that
the function will not cause unintended effects even if called
multiple times with the same arguments.
Since the worker cannot detect if your tasks are idempotent, the default
behavior is to acknowledge the message in advance, before it’s executed,
so that a task that has already been started is never executed again.

If your task is idempotent you can set the acks_late option
to have the worker acknowledge the message after the task returns
instead. See also the FAQ entry Should I use retry or acks_late?.

–

In this chapter you will learn all about defining tasks,
and this is the table of contents:

	Basics

	Names

	Context

	Logging

	Retrying

	List of Options

	States

	Semipredicates

	Custom task classes

	How it works

	Tips and Best Practices

	Performance and Strategies

	Example

Basics

You can easily create a task from any callable by using
the task() decorator:

from .models import User

@app.task
def create_user(username, password):
 User.objects.create(username=username, password=password)

There are also many options that can be set for the task,
these can be specified as arguments to the decorator:

@app.task(serializer='json')
def create_user(username, password):
 User.objects.create(username=username, password=password)

How do I import the task decorator? And what is “app”?

The task decorator is available on your Celery application instance,
if you don’t know what that is then please read First Steps with Celery.

If you’re using Django or are still using the “old” module based celery API,
then you can import the task decorator like this:

from celery import task

@task
def add(x, y):
 return x + y

Multiple decorators

When using multiple decorators in combination with the task
decorator you must make sure that the task
decorator is applied last (which in Python oddly means that it must
be the first in the list):

@app.task
@decorator2
@decorator1
def add(x, y):
 return x + y

Names

Every task must have a unique name, and a new name
will be generated out of the function name if a custom name is not provided.

For example:

>>> @app.task(name='sum-of-two-numbers')
>>> def add(x, y):
... return x + y

>>> add.name
'sum-of-two-numbers'

A best practice is to use the module name as a namespace,
this way names won’t collide if there’s already a task with that name
defined in another module.

>>> @app.task(name='tasks.add')
>>> def add(x, y):
... return x + y

You can tell the name of the task by investigating its name attribute:

>>> add.name
'tasks.add'

Which is exactly the name that would have been generated anyway,
if the module name is “tasks.py”:

tasks.py:

@app.task
def add(x, y):
 return x + y

>>> from tasks import add
>>> add.name
'tasks.add'

Automatic naming and relative imports

Relative imports and automatic name generation do not go well together,
so if you’re using relative imports you should set the name explicitly.

For example if the client imports the module “myapp.tasks” as ”.tasks”, and
the worker imports the module as “myapp.tasks”, the generated names won’t match
and an NotRegistered error will be raised by the worker.

This is also the case when using Django and using project.myapp-style
naming in INSTALLED_APPS:

INSTALLED_APPS = ['project.myapp']

If you install the app under the name project.myapp then the
tasks module will be imported as project.myapp.tasks,
so you must make sure you always import the tasks using the same name:

>>> from project.myapp.tasks import mytask # << GOOD

>>> from myapp.tasks import mytask # << BAD!!!

The second example will cause the task to be named differently
since the worker and the client imports the modules under different names:

>>> from project.myapp.tasks import mytask
>>> mytask.name
'project.myapp.tasks.mytask'

>>> from myapp.tasks import mytask
>>> mytask.name
'myapp.tasks.mytask'

So for this reason you must be consistent in how you
import modules, which is also a Python best practice.

Similarly, you should not use old-style relative imports:

from module import foo # BAD!

from proj.module import foo # GOOD!

New-style relative imports are fine and can be used:

from .module import foo # GOOD!

If you want to use Celery with a project already using these patterns
extensively and you don’t have the time to refactor the existing code
then you can consider specifying the names explicitly instead of relying
on the automatic naming:

@task(name='proj.tasks.add')
def add(x, y):
 return x + y

Context

request contains information and state related to
the executing task.

The request defines the following attributes:

	id:	The unique id of the executing task.

	group:	The unique id a group, if this task is a member.

	chord:	The unique id of the chord this task belongs to (if the task
is part of the header).

	args:	Positional arguments.

	kwargs:	Keyword arguments.

	retries:	How many times the current task has been retried.
An integer starting at 0.

	is_eager:	Set to True if the task is executed locally in
the client, and not by a worker.

	eta:	The original ETA of the task (if any).
This is in UTC time (depending on the CELERY_ENABLE_UTC
setting).

	expires:	The original expiry time of the task (if any).
This is in UTC time (depending on the CELERY_ENABLE_UTC
setting).

	logfile:	The file the worker logs to. See Logging.

	loglevel:	The current log level used.

	hostname:	Hostname of the worker instance executing the task.

	delivery_info:	Additional message delivery information. This is a mapping
containing the exchange and routing key used to deliver this
task. Used by e.g. retry()
to resend the task to the same destination queue.
Availability of keys in this dict depends on the
message broker used.

	called_directly:

	 	This flag is set to true if the task was not
executed by the worker.

	callbacks:	A list of subtasks to be called if this task returns successfully.

	errback:	A list of subtasks to be called if this task fails.

	utc:	Set to true the caller has utc enabled (CELERY_ENABLE_UTC).

New in version 3.1.

	headers:	Mapping of message headers (may be None).

	reply_to:	Where to send reply to (queue name).

	correlation_id:	Usually the same as the task id, often used in amqp
to keep track of what a reply is for.

An example task accessing information in the context is:

@app.task(bind=True)
def dump_context(self, x, y):
 print('Executing task id {0.id}, args: {0.args!r} kwargs: {0.kwargs!r}'.format(
 self.request))

The bind argument means that the function will be a “bound method” so
that you can access attributes and methods on the task type instance.

Logging

The worker will automatically set up logging for you, or you can
configure logging manually.

A special logger is available named “celery.task”, you can inherit
from this logger to automatically get the task name and unique id as part
of the logs.

The best practice is to create a common logger
for all of your tasks at the top of your module:

from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)

@app.task
def add(x, y):
 logger.info('Adding {0} + {1}'.format(x, y))
 return x + y

Celery uses the standard Python logger library,
for which documentation can be found in the logging [https://docs.python.org/dev/library/logging.html#module-logging]
module.

You can also use print() [https://docs.python.org/dev/library/functions.html#print], as anything written to standard
out/-err will be redirected to the logging system (you can disable this,
see CELERY_REDIRECT_STDOUTS).

Note

The worker will not update the redirection if you create a logger instance
somewhere in your task or task module.

If you want to redirect sys.stdout and sys.stderr to a custom
logger you have to enable this manually, for example:

import sys

logger = get_task_logger(__name__)

@app.task(bind=True)
def add(self, x, y):
 old_outs = sys.stdout, sys.stderr
 rlevel = self.app.conf.CELERY_REDIRECT_STDOUTS_LEVEL
 try:
 self.app.log.redirect_stdouts_to_logger(logger, rlevel)
 print('Adding {0} + {1}'.format(x, y))
 return x + y
 finally:
 sys.stdout, sys.stderr = old_outs

Retrying

retry() can be used to re-execute the task,
for example in the event of recoverable errors.

When you call retry it will send a new message, using the same
task-id, and it will take care to make sure the message is delivered
to the same queue as the originating task.

When a task is retried this is also recorded as a task state,
so that you can track the progress of the task using the result
instance (see States).

Here’s an example using retry:

@app.task(bind=True)
def send_twitter_status(self, oauth, tweet):
 try:
 twitter = Twitter(oauth)
 twitter.update_status(tweet)
 except (Twitter.FailWhaleError, Twitter.LoginError) as exc:
 raise self.retry(exc=exc)

Note

The retry() call will raise an exception so any code after the retry
will not be reached. This is the Retry
exception, it is not handled as an error but rather as a semi-predicate
to signify to the worker that the task is to be retried,
so that it can store the correct state when a result backend is enabled.

This is normal operation and always happens unless the
throw argument to retry is set to False.

The bind argument to the task decorator will give access to self (the
task type instance).

The exc method is used to pass exception information that is
used in logs, and when storing task results.
Both the exception and the traceback will
be available in the task state (if a result backend is enabled).

If the task has a max_retries value the current exception
will be re-raised if the max number of retries has been exceeded,
but this will not happen if:

	An exc argument was not given.

In this case the MaxRetriesExceeded
exception will be raised.

	There is no current exception

If there’s no original exception to re-raise the exc
argument will be used instead, so:

self.retry(exc=Twitter.LoginError())

will raise the exc argument given.

Using a custom retry delay

When a task is to be retried, it can wait for a given amount of time
before doing so, and the default delay is defined by the
default_retry_delay
attribute. By default this is set to 3 minutes. Note that the
unit for setting the delay is in seconds (int or float).

You can also provide the countdown argument to retry() to
override this default.

@app.task(bind=True, default_retry_delay=30 * 60) # retry in 30 minutes.
def add(self, x, y):
 try:
 …
 except Exception as exc:
 raise self.retry(exc=exc, countdown=60) # override the default and
 # retry in 1 minute

List of Options

The task decorator can take a number of options that change the way
the task behaves, for example you can set the rate limit for a task
using the rate_limit option.

Any keyword argument passed to the task decorator will actually be set
as an attribute of the resulting task class, and this is a list
of the built-in attributes.

General

	
Task.name

	The name the task is registered as.

You can set this name manually, or a name will be
automatically generated using the module and class name. See
Names.

	
Task.request

	If the task is being executed this will contain information
about the current request. Thread local storage is used.

See Context.

	
Task.abstract

	Abstract classes are not registered, but are used as the
base class for new task types.

	
Task.max_retries

	The maximum number of attempted retries before giving up.
If the number of retries exceeds this value a MaxRetriesExceeded
exception will be raised. NOTE: You have to call retry()
manually, as it will not automatically retry on exception..

The default value is 3.
A value of None will disable the retry limit and the
task will retry forever until it succeeds.

	
Task.throws

	Optional tuple of expected error classes that should not be regarded
as an actual error.

Errors in this list will be reported as a failure to the result backend,
but the worker will not log the event as an error, and no traceback will
be included.

Example:

@task(throws=(KeyError, HttpNotFound)):
def get_foo():
 something()

Error types:

	Expected errors (in Task.throws)

Logged with severity INFO, traceback excluded.

	Unexpected errors

Logged with severity ERROR, with traceback included.

	
Task.trail

	By default the task will keep track of subtasks called
(task.request.children), and this will be stored with the final result
in the result backend, available to the client via
AsyncResult.children.

This list of task can grow quite big for tasks starting many subtasks,
and you can set this attribute to False to disable it.

	
Task.default_retry_delay

	Default time in seconds before a retry of the task
should be executed. Can be either int [https://docs.python.org/dev/library/functions.html#int] or float [https://docs.python.org/dev/library/functions.html#float].
Default is a 3 minute delay.

	
Task.rate_limit

	Set the rate limit for this task type which limits the number of tasks
that can be run in a given time frame. Tasks will still complete when
a rate limit is in effect, but it may take some time before it’s allowed to
start.

If this is None no rate limit is in effect.
If it is an integer or float, it is interpreted as “tasks per second”.

The rate limits can be specified in seconds, minutes or hours
by appending “/s”, “/m” or “/h” to the value. Tasks will be evenly
distributed over the specified time frame.

Example: “100/m” (hundred tasks a minute). This will enforce a minimum
delay of 600ms between starting two tasks on the same worker instance.

Default is the CELERY_DEFAULT_RATE_LIMIT setting,
which if not specified means rate limiting for tasks is disabled by default.

Note that this is a per worker instance rate limit, and not a global
rate limit. To enforce a global rate limit (e.g. for an API with a
maximum number of requests per second), you must restrict to a given
queue.

	
Task.time_limit

	The hard time limit, in seconds, for this task. If not set then the workers default
will be used.

	
Task.soft_time_limit

	The soft time limit for this task. If not set then the workers default
will be used.

	
Task.ignore_result

	Don’t store task state. Note that this means you can’t use
AsyncResult to check if the task is ready,
or get its return value.

	
Task.store_errors_even_if_ignored

	If True, errors will be stored even if the task is configured
to ignore results.

	
Task.send_error_emails

	Send an email whenever a task of this type fails.
Defaults to the CELERY_SEND_TASK_ERROR_EMAILS setting.
See Error E-Mails for more information.

	
Task.ErrorMail

	If the sending of error emails is enabled for this task, then
this is the class defining the logic to send error mails.

	
Task.serializer

	A string identifying the default serialization
method to use. Defaults to the CELERY_TASK_SERIALIZER
setting. Can be pickle, json, yaml, or any custom
serialization methods that have been registered with
kombu.serialization.registry.

Please see Serializers for more information.

	
Task.compression

	A string identifying the default compression scheme to use.

Defaults to the CELERY_MESSAGE_COMPRESSION setting.
Can be gzip, or bzip2, or any custom compression schemes
that have been registered with the kombu.compression [http://kombu.readthedocs.io/en/latest/reference/kombu.compression.html#module-kombu.compression] registry.

Please see Compression for more information.

	
Task.backend

	The result store backend to use for this task. An instance of one of the
backend classes in celery.backends. Defaults to app.backend which is
defined by the CELERY_RESULT_BACKEND setting.

	
Task.acks_late

	If set to True messages for this task will be acknowledged
after the task has been executed, not just before, which is
the default behavior.

Note that this means the task may be executed twice if the worker
crashes in the middle of execution, which may be acceptable for some
applications.

The global default can be overridden by the CELERY_ACKS_LATE
setting.

	
Task.track_started

	If True the task will report its status as “started”
when the task is executed by a worker.
The default value is False as the normal behaviour is to not
report that level of granularity. Tasks are either pending, finished,
or waiting to be retried. Having a “started” status can be useful for
when there are long running tasks and there is a need to report which
task is currently running.

The host name and process id of the worker executing the task
will be available in the state metadata (e.g. result.info[‘pid’])

The global default can be overridden by the
CELERY_TRACK_STARTED setting.

See also

The API reference for Task.

States

Celery can keep track of the tasks current state. The state also contains the
result of a successful task, or the exception and traceback information of a
failed task.

There are several result backends to choose from, and they all have
different strengths and weaknesses (see Result Backends).

During its lifetime a task will transition through several possible states,
and each state may have arbitrary metadata attached to it. When a task
moves into a new state the previous state is
forgotten about, but some transitions can be deducted, (e.g. a task now
in the FAILED state, is implied to have been in the
STARTED state at some point).

There are also sets of states, like the set of
FAILURE_STATES, and the set of READY_STATES.

The client uses the membership of these sets to decide whether
the exception should be re-raised (PROPAGATE_STATES), or whether
the state can be cached (it can if the task is ready).

You can also define Custom states.

Result Backends

If you want to keep track of tasks or need the return values, then Celery
must store or send the states somewhere so that they can be retrieved later.
There are several built-in result backends to choose from: SQLAlchemy/Django ORM,
Memcached, RabbitMQ/QPid (rpc), MongoDB, and Redis – or you can define your own.

No backend works well for every use case.
You should read about the strengths and weaknesses of each backend, and choose
the most appropriate for your needs.

See also

Task result backend settings

RPC Result Backend (RabbitMQ/QPid)

The RPC result backend (rpc://) is special as it does not actually store
the states, but rather sends them as messages. This is an important difference as it
means that a result can only be retrieved once, and only by the client
that initiated the task. Two different processes can not wait for the same result.

Even with that limitation, it is an excellent choice if you need to receive
state changes in real-time. Using messaging means the client does not have to
poll for new states.

The messages are transient (non-persistent) by default, so the results will
disappear if the broker restarts. You can configure the result backend to send
persistent messages using the CELERY_RESULT_PERSISTENT setting.

Database Result Backend

Keeping state in the database can be convenient for many, especially for
web applications with a database already in place, but it also comes with
limitations.

	Polling the database for new states is expensive, and so you should
increase the polling intervals of operations such as result.get().

	Some databases use a default transaction isolation level that
is not suitable for polling tables for changes.

In MySQL the default transaction isolation level is REPEATABLE-READ, which
means the transaction will not see changes by other transactions until the
transaction is committed. It is recommended that you change to the
READ-COMMITTED isolation level.

Built-in States

PENDING

Task is waiting for execution or unknown.
Any task id that is not known is implied to be in the pending state.

STARTED

Task has been started.
Not reported by default, to enable please see app.Task.track_started.

	metadata:	pid and hostname of the worker process executing
the task.

SUCCESS

Task has been successfully executed.

	metadata:	result contains the return value of the task.

	propagates:	Yes

	ready:	Yes

FAILURE

Task execution resulted in failure.

	metadata:	result contains the exception occurred, and traceback
contains the backtrace of the stack at the point when the
exception was raised.

	propagates:	Yes

RETRY

Task is being retried.

	metadata:	result contains the exception that caused the retry,
and traceback contains the backtrace of the stack at the point
when the exceptions was raised.

	propagates:	No

REVOKED

Task has been revoked.

	propagates:	Yes

Custom states

You can easily define your own states, all you need is a unique name.
The name of the state is usually an uppercase string. As an example
you could have a look at abortable tasks
which defines its own custom ABORTED state.

Use update_state() to update a task’s state:

@app.task(bind=True)
def upload_files(self, filenames):
 for i, file in enumerate(filenames):
 if not self.request.called_directly:
 self.update_state(state='PROGRESS',
 meta={'current': i, 'total': len(filenames)})

Here I created the state “PROGRESS”, which tells any application
aware of this state that the task is currently in progress, and also where
it is in the process by having current and total counts as part of the
state metadata. This can then be used to create e.g. progress bars.

Creating pickleable exceptions

A rarely known Python fact is that exceptions must conform to some
simple rules to support being serialized by the pickle module.

Tasks that raise exceptions that are not pickleable will not work
properly when Pickle is used as the serializer.

To make sure that your exceptions are pickleable the exception
MUST provide the original arguments it was instantiated
with in its .args attribute. The simplest way
to ensure this is to have the exception call Exception.__init__.

Let’s look at some examples that work, and one that doesn’t:

OK:
class HttpError(Exception):
 pass

BAD:
class HttpError(Exception):

 def __init__(self, status_code):
 self.status_code = status_code

OK:
class HttpError(Exception):

 def __init__(self, status_code):
 self.status_code = status_code
 Exception.__init__(self, status_code) # <-- REQUIRED

So the rule is:
For any exception that supports custom arguments *args,
Exception.__init__(self, *args) must be used.

There is no special support for keyword arguments, so if you
want to preserve keyword arguments when the exception is unpickled
you have to pass them as regular args:

class HttpError(Exception):

 def __init__(self, status_code, headers=None, body=None):
 self.status_code = status_code
 self.headers = headers
 self.body = body

 super(HttpError, self).__init__(status_code, headers, body)

Semipredicates

The worker wraps the task in a tracing function which records the final
state of the task. There are a number of exceptions that can be used to
signal this function to change how it treats the return of the task.

Ignore

The task may raise Ignore to force the worker to ignore the
task. This means that no state will be recorded for the task, but the
message is still acknowledged (removed from queue).

This can be used if you want to implement custom revoke-like
functionality, or manually store the result of a task.

Example keeping revoked tasks in a Redis set:

from celery.exceptions import Ignore

@app.task(bind=True)
def some_task(self):
 if redis.ismember('tasks.revoked', self.request.id):
 raise Ignore()

Example that stores results manually:

from celery import states
from celery.exceptions import Ignore

@app.task(bind=True)
def get_tweets(self, user):
 timeline = twitter.get_timeline(user)
 if not self.request.called_directly:
 self.update_state(state=states.SUCCESS, meta=timeline)
 raise Ignore()

Reject

The task may raise Reject to reject the task message using
AMQPs basic_reject method. This will not have any effect unless
Task.acks_late is enabled.

Rejecting a message has the same effect as acking it, but some
brokers may implement additional functionality that can be used.
For example RabbitMQ supports the concept of Dead Letter Exchanges [http://www.rabbitmq.com/dlx.html]
where a queue can be configured to use a dead letter exchange that rejected
messages are redelivered to.

Reject can also be used to requeue messages, but please be very careful
when using this as it can easily result in an infinite message loop.

Example using reject when a task causes an out of memory condition:

import errno
from celery.exceptions import Reject

@app.task(bind=True, acks_late=True)
def render_scene(self, path):
 file = get_file(path)
 try:
 renderer.render_scene(file)

 # if the file is too big to fit in memory
 # we reject it so that it's redelivered to the dead letter exchange
 # and we can manually inspect the situation.
 except MemoryError as exc:
 raise Reject(exc, requeue=False)
 except OSError as exc:
 if exc.errno == errno.ENOMEM:
 raise Reject(exc, requeue=False)

 # For any other error we retry after 10 seconds.
 except Exception as exc:
 raise self.retry(exc, countdown=10)

Example requeuing the message:

from celery.exceptions import Reject

@app.task(bind=True, acks_late=True)
def requeues(self):
 if not self.request.delivery_info['redelivered']:
 raise Reject('no reason', requeue=True)
 print('received two times')

Consult your broker documentation for more details about the basic_reject
method.

Retry

The Retry exception is raised by the Task.retry method
to tell the worker that the task is being retried.

Custom task classes

All tasks inherit from the app.Task class.
The run() method becomes the task body.

As an example, the following code,

@app.task
def add(x, y):
 return x + y

will do roughly this behind the scenes:

class _AddTask(app.Task):

 def run(self, x, y):
 return x + y
add = app.tasks[_AddTask.name]

Instantiation

A task is not instantiated for every request, but is registered
in the task registry as a global instance.

This means that the __init__ constructor will only be called
once per process, and that the task class is semantically closer to an
Actor.

If you have a task,

from celery import Task

class NaiveAuthenticateServer(Task):

 def __init__(self):
 self.users = {'george': 'password'}

 def run(self, username, password):
 try:
 return self.users[username] == password
 except KeyError:
 return False

And you route every request to the same process, then it
will keep state between requests.

This can also be useful to cache resources,
e.g. a base Task class that caches a database connection:

from celery import Task

class DatabaseTask(Task):
 abstract = True
 _db = None

 @property
 def db(self):
 if self._db is None:
 self._db = Database.connect()
 return self._db

that can be added to tasks like this:

@app.task(base=DatabaseTask)
def process_rows():
 for row in process_rows.db.table.all():
 …

The db attribute of the process_rows task will then
always stay the same in each process.

Abstract classes

Abstract classes are not registered, but are used as the
base class for new task types.

from celery import Task

class DebugTask(Task):
 abstract = True

 def after_return(self, *args, **kwargs):
 print('Task returned: {0!r}'.format(self.request))

@app.task(base=DebugTask)
def add(x, y):
 return x + y

Handlers

	
after_return(self, status, retval, task_id, args, kwargs, einfo)

	Handler called after the task returns.

	Parameters:	
	status – Current task state.

	retval – Task return value/exception.

	task_id – Unique id of the task.

	args – Original arguments for the task that returned.

	kwargs – Original keyword arguments for the task
that returned.

	einfo – ExceptionInfo
instance, containing the traceback (if any).

The return value of this handler is ignored.

	
on_failure(self, exc, task_id, args, kwargs, einfo)

	This is run by the worker when the task fails.

	Parameters:	
	exc – The exception raised by the task.

	task_id – Unique id of the failed task.

	args – Original arguments for the task that failed.

	kwargs – Original keyword arguments for the task
that failed.

	einfo – ExceptionInfo
instance, containing the traceback.

The return value of this handler is ignored.

	
on_retry(self, exc, task_id, args, kwargs, einfo)

	This is run by the worker when the task is to be retried.

	Parameters:	
	exc – The exception sent to retry().

	task_id – Unique id of the retried task.

	args – Original arguments for the retried task.

	kwargs – Original keyword arguments for the retried task.

	einfo – ExceptionInfo
instance, containing the traceback.

The return value of this handler is ignored.

	
on_success(self, retval, task_id, args, kwargs)

	Run by the worker if the task executes successfully.

	Parameters:	
	retval – The return value of the task.

	task_id – Unique id of the executed task.

	args – Original arguments for the executed task.

	kwargs – Original keyword arguments for the executed task.

The return value of this handler is ignored.

How it works

Here come the technical details. This part isn’t something you need to know,
but you may be interested.

All defined tasks are listed in a registry. The registry contains
a list of task names and their task classes. You can investigate this registry
yourself:

>>> from proj.celery import app
>>> app.tasks
{'celery.chord_unlock':
 <@task: celery.chord_unlock>,
 'celery.backend_cleanup':
 <@task: celery.backend_cleanup>,
 'celery.chord':
 <@task: celery.chord>}

This is the list of tasks built-in to celery. Note that tasks
will only be registered when the module they are defined in is imported.

The default loader imports any modules listed in the
CELERY_IMPORTS setting.

The entity responsible for registering your task in the registry is the
metaclass: TaskType.

If you want to register your task manually you can mark the
task as abstract:

class MyTask(Task):
 abstract = True

This way the task won’t be registered, but any task inheriting from
it will be.

When tasks are sent, no actual function code is sent with it, just the name
of the task to execute. When the worker then receives the message it can look
up the name in its task registry to find the execution code.

This means that your workers should always be updated with the same software
as the client. This is a drawback, but the alternative is a technical
challenge that has yet to be solved.

Tips and Best Practices

Ignore results you don’t want

If you don’t care about the results of a task, be sure to set the
ignore_result option, as storing results
wastes time and resources.

@app.task(ignore_result=True)
def mytask(…):
 something()

Results can even be disabled globally using the CELERY_IGNORE_RESULT
setting.

Disable rate limits if they’re not used

Disabling rate limits altogether is recommended if you don’t have
any tasks using them. This is because the rate limit subsystem introduces
quite a lot of complexity.

Set the CELERY_DISABLE_RATE_LIMITS setting to globally disable
rate limits:

CELERY_DISABLE_RATE_LIMITS = True

You find additional optimization tips in the
Optimizing Guide.

Avoid launching synchronous subtasks

Having a task wait for the result of another task is really inefficient,
and may even cause a deadlock if the worker pool is exhausted.

Make your design asynchronous instead, for example by using callbacks.

Bad:

@app.task
def update_page_info(url):
 page = fetch_page.delay(url).get()
 info = parse_page.delay(url, page).get()
 store_page_info.delay(url, info)

@app.task
def fetch_page(url):
 return myhttplib.get(url)

@app.task
def parse_page(url, page):
 return myparser.parse_document(page)

@app.task
def store_page_info(url, info):
 return PageInfo.objects.create(url, info)

Good:

def update_page_info(url):
 # fetch_page -> parse_page -> store_page
 chain = fetch_page.s(url) | parse_page.s() | store_page_info.s(url)
 chain()

@app.task()
def fetch_page(url):
 return myhttplib.get(url)

@app.task()
def parse_page(page):
 return myparser.parse_document(page)

@app.task(ignore_result=True)
def store_page_info(info, url):
 PageInfo.objects.create(url=url, info=info)

Here I instead created a chain of tasks by linking together
different subtask()‘s.
You can read about chains and other powerful constructs
at Canvas: Designing Workflows.

Performance and Strategies

Granularity

The task granularity is the amount of computation needed by each subtask.
In general it is better to split the problem up into many small tasks rather
than have a few long running tasks.

With smaller tasks you can process more tasks in parallel and the tasks
won’t run long enough to block the worker from processing other waiting tasks.

However, executing a task does have overhead. A message needs to be sent, data
may not be local, etc. So if the tasks are too fine-grained the additional
overhead may not be worth it in the end.

See also

The book Art of Concurrency [http://oreilly.com/catalog/9780596521547] has a section dedicated to the topic
of task granularity [AOC1].

	[AOC1]	Breshears, Clay. Section 2.2.1, “The Art of Concurrency”.
O’Reilly Media, Inc. May 15, 2009. ISBN-13 978-0-596-52153-0.

Data locality

The worker processing the task should be as close to the data as
possible. The best would be to have a copy in memory, the worst would be a
full transfer from another continent.

If the data is far away, you could try to run another worker at location, or
if that’s not possible - cache often used data, or preload data you know
is going to be used.

The easiest way to share data between workers is to use a distributed cache
system, like memcached [http://memcached.org/].

See also

The paper Distributed Computing Economics [http://research.microsoft.com/pubs/70001/tr-2003-24.pdf] by Jim Gray is an excellent
introduction to the topic of data locality.

State

Since celery is a distributed system, you can’t know in which process, or
on what machine the task will be executed. You can’t even know if the task will
run in a timely manner.

The ancient async sayings tells us that “asserting the world is the
responsibility of the task”. What this means is that the world view may
have changed since the task was requested, so the task is responsible for
making sure the world is how it should be; If you have a task
that re-indexes a search engine, and the search engine should only be
re-indexed at maximum every 5 minutes, then it must be the tasks
responsibility to assert that, not the callers.

Another gotcha is Django model objects. They shouldn’t be passed on as
arguments to tasks. It’s almost always better to re-fetch the object from
the database when the task is running instead, as using old data may lead
to race conditions.

Imagine the following scenario where you have an article and a task
that automatically expands some abbreviations in it:

class Article(models.Model):
 title = models.CharField()
 body = models.TextField()

@app.task
def expand_abbreviations(article):
 article.body.replace('MyCorp', 'My Corporation')
 article.save()

First, an author creates an article and saves it, then the author
clicks on a button that initiates the abbreviation task:

>>> article = Article.objects.get(id=102)
>>> expand_abbreviations.delay(article)

Now, the queue is very busy, so the task won’t be run for another 2 minutes.
In the meantime another author makes changes to the article, so
when the task is finally run, the body of the article is reverted to the old
version because the task had the old body in its argument.

Fixing the race condition is easy, just use the article id instead, and
re-fetch the article in the task body:

@app.task
def expand_abbreviations(article_id):
 article = Article.objects.get(id=article_id)
 article.body.replace('MyCorp', 'My Corporation')
 article.save()

>>> expand_abbreviations(article_id)

There might even be performance benefits to this approach, as sending large
messages may be expensive.

Database transactions

Let’s have a look at another example:

from django.db import transaction

@transaction.commit_on_success
def create_article(request):
 article = Article.objects.create(…)
 expand_abbreviations.delay(article.pk)

This is a Django view creating an article object in the database,
then passing the primary key to a task. It uses the commit_on_success
decorator, which will commit the transaction when the view returns, or
roll back if the view raises an exception.

There is a race condition if the task starts executing
before the transaction has been committed; The database object does not exist
yet!

The solution is to always commit transactions before sending tasks
depending on state from the current transaction:

@transaction.commit_manually
def create_article(request):
 try:
 article = Article.objects.create(…)
 except:
 transaction.rollback()
 raise
 else:
 transaction.commit()
 expand_abbreviations.delay(article.pk)

Note

Django 1.6 (and later) now enables autocommit mode by default,
and commit_on_success/commit_manually are deprecated.

This means each SQL query is wrapped and executed in individual
transactions, making it less likely to experience the
problem described above.

However, enabling ATOMIC_REQUESTS on the database
connection will bring back the transaction-per-request model and the
race condition along with it. In this case, the simple solution is
using the @transaction.non_atomic_requests decorator to go back
to autocommit for that view only.

Example

Let’s take a real world example: a blog where comments posted need to be
filtered for spam. When the comment is created, the spam filter runs in the
background, so the user doesn’t have to wait for it to finish.

I have a Django blog application allowing comments
on blog posts. I’ll describe parts of the models/views and tasks for this
application.

blog/models.py

The comment model looks like this:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class Comment(models.Model):
 name = models.CharField(_('name'), max_length=64)
 email_address = models.EmailField(_('email address'))
 homepage = models.URLField(_('home page'),
 blank=True, verify_exists=False)
 comment = models.TextField(_('comment'))
 pub_date = models.DateTimeField(_('Published date'),
 editable=False, auto_add_now=True)
 is_spam = models.BooleanField(_('spam?'),
 default=False, editable=False)

 class Meta:
 verbose_name = _('comment')
 verbose_name_plural = _('comments')

In the view where the comment is posted, I first write the comment
to the database, then I launch the spam filter task in the background.

blog/views.py

from django import forms
from django.http import HttpResponseRedirect
from django.template.context import RequestContext
from django.shortcuts import get_object_or_404, render_to_response

from blog import tasks
from blog.models import Comment

class CommentForm(forms.ModelForm):

 class Meta:
 model = Comment

def add_comment(request, slug, template_name='comments/create.html'):
 post = get_object_or_404(Entry, slug=slug)
 remote_addr = request.META.get('REMOTE_ADDR')

 if request.method == 'post':
 form = CommentForm(request.POST, request.FILES)
 if form.is_valid():
 comment = form.save()
 # Check spam asynchronously.
 tasks.spam_filter.delay(comment_id=comment.id,
 remote_addr=remote_addr)
 return HttpResponseRedirect(post.get_absolute_url())
 else:
 form = CommentForm()

 context = RequestContext(request, {'form': form})
 return render_to_response(template_name, context_instance=context)

To filter spam in comments I use Akismet [http://akismet.com/faq/], the service
used to filter spam in comments posted to the free weblog platform
Wordpress. Akismet [http://akismet.com/faq/] is free for personal use, but for commercial use you
need to pay. You have to sign up to their service to get an API key.

To make API calls to Akismet [http://akismet.com/faq/] I use the akismet.py [http://www.voidspace.org.uk/downloads/akismet.py] library written by
Michael Foord [http://www.voidspace.org.uk/].

blog/tasks.py

from celery import Celery

from akismet import Akismet

from django.core.exceptions import ImproperlyConfigured
from django.contrib.sites.models import Site

from blog.models import Comment

app = Celery(broker='amqp://')

@app.task
def spam_filter(comment_id, remote_addr=None):
 logger = spam_filter.get_logger()
 logger.info('Running spam filter for comment %s', comment_id)

 comment = Comment.objects.get(pk=comment_id)
 current_domain = Site.objects.get_current().domain
 akismet = Akismet(settings.AKISMET_KEY,
 'http://{0}'.format(current_domain))
 if not akismet.verify_key():
 raise ImproperlyConfigured('Invalid AKISMET_KEY')

 is_spam = akismet.comment_check(user_ip=remote_addr,
 comment_content=comment.comment,
 comment_author=comment.name,
 comment_author_email=comment.email_address)
 if is_spam:
 comment.is_spam = True
 comment.save()

 return is_spam

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Calling Tasks

	Basics

	Linking (callbacks/errbacks)

	ETA and countdown

	Expiration

	Message Sending Retry

	Serializers

	Compression

	Connections

	Routing options

Basics

This document describes Celery’s uniform “Calling API”
used by task instances and the canvas.

The API defines a standard set of execution options, as well as three methods:

	apply_async(args[, kwargs[, …]])

Sends a task message.

	delay(*args, **kwargs)

Shortcut to send a task message, but does not support execution
options.

	calling (__call__)

Applying an object supporting the calling API (e.g. add(2, 2))
means that the task will be executed in the current process, and
not by a worker (a message will not be sent).

Quick Cheat Sheet

	
	T.delay(arg, kwarg=value)

	always a shortcut to .apply_async.

	T.apply_async((arg,), {'kwarg': value})

	
	T.apply_async(countdown=10)

	executes 10 seconds from now.

	
	T.apply_async(eta=now + timedelta(seconds=10))

	executes 10 seconds from now, specifed using eta

	
	T.apply_async(countdown=60, expires=120)

	executes in one minute from now, but expires after 2 minutes.

	
	T.apply_async(expires=now + timedelta(days=2))

	expires in 2 days, set using datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime].

Example

The delay() method is convenient as it looks like calling a regular
function:

task.delay(arg1, arg2, kwarg1='x', kwarg2='y')

Using apply_async() instead you have to write:

task.apply_async(args=[arg1, arg2], kwargs={'kwarg1': 'x', 'kwarg2': 'y'})

Tip

If the task is not registered in the current process
you can use send_task() to call the task by name instead.

So delay is clearly convenient, but if you want to set additional execution
options you have to use apply_async.

The rest of this document will go into the task execution
options in detail. All examples use a task
called add, returning the sum of two arguments:

@app.task
def add(x, y):
 return x + y

There’s another way…

You will learn more about this later while reading about the Canvas, but subtask‘s are objects used to pass around
the signature of a task invocation, (for example to send it over the
network), and they also support the Calling API:

task.s(arg1, arg2, kwarg1='x', kwargs2='y').apply_async()

Linking (callbacks/errbacks)

Celery supports linking tasks together so that one task follows another.
The callback task will be applied with the result of the parent task
as a partial argument:

add.apply_async((2, 2), link=add.s(16))

What is s?

The add.s call used here is called a subtask, I talk
more about subtasks in the canvas guide,
where you can also learn about chain, which
is a simpler way to chain tasks together.

In practice the link execution option is considered an internal
primitive, and you will probably not use it directly, but
rather use chains instead.

Here the result of the first task (4) will be sent to a new
task that adds 16 to the previous result, forming the expression
[image: (2 + 2) + 16 = 20]

You can also cause a callback to be applied if task raises an exception
(errback), but this behaves differently from a regular callback
in that it will be passed the id of the parent task, not the result.
This is because it may not always be possible to serialize
the exception raised, and so this way the error callback requires
a result backend to be enabled, and the task must retrieve the result
of the task instead.

This is an example error callback:

@app.task(bind=True)
def error_handler(self, uuid):
 result = self.app.AsyncResult(uuid)
 print('Task {0} raised exception: {1!r}\n{2!r}'.format(
 uuid, result.result, result.traceback))

it can be added to the task using the link_error execution
option:

add.apply_async((2, 2), link_error=error_handler.s())

In addition, both the link and link_error options can be expressed
as a list:

add.apply_async((2, 2), link=[add.s(16), other_task.s()])

The callbacks/errbacks will then be called in order, and all
callbacks will be called with the return value of the parent task
as a partial argument.

ETA and countdown

The ETA (estimated time of arrival) lets you set a specific date and time that
is the earliest time at which your task will be executed. countdown is
a shortcut to set eta by seconds into the future.

>>> result = add.apply_async((2, 2), countdown=3)
>>> result.get() # this takes at least 3 seconds to return
20

The task is guaranteed to be executed at some time after the
specified date and time, but not necessarily at that exact time.
Possible reasons for broken deadlines may include many items waiting
in the queue, or heavy network latency. To make sure your tasks
are executed in a timely manner you should monitor the queue for congestion. Use
Munin, or similar tools, to receive alerts, so appropriate action can be
taken to ease the workload. See Munin.

While countdown is an integer, eta must be a datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]
object, specifying an exact date and time (including millisecond precision,
and timezone information):

>>> from datetime import datetime, timedelta

>>> tomorrow = datetime.utcnow() + timedelta(days=1)
>>> add.apply_async((2, 2), eta=tomorrow)

Expiration

The expires argument defines an optional expiry time,
either as seconds after task publish, or a specific date and time using
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]:

>>> # Task expires after one minute from now.
>>> add.apply_async((10, 10), expires=60)

>>> # Also supports datetime
>>> from datetime import datetime, timedelta
>>> add.apply_async((10, 10), kwargs,
... expires=datetime.now() + timedelta(days=1)

When a worker receives an expired task it will mark
the task as REVOKED (TaskRevokedError).

Message Sending Retry

Celery will automatically retry sending messages in the event of connection
failure, and retry behavior can be configured – like how often to retry, or a maximum
number of retries – or disabled all together.

To disable retry you can set the retry execution option to False:

add.apply_async((2, 2), retry=False)

Related Settings

	
	CELERY_TASK_PUBLISH_RETRY

	
	CELERY_TASK_PUBLISH_RETRY_POLICY

Retry Policy

A retry policy is a mapping that controls how retries behave,
and can contain the following keys:

	max_retries

Maximum number of retries before giving up, in this case the
exception that caused the retry to fail will be raised.

A value of 0 or None means it will retry forever.

The default is to retry 3 times.

	interval_start

Defines the number of seconds (float or integer) to wait between
retries. Default is 0, which means the first retry will be
instantaneous.

	interval_step

On each consecutive retry this number will be added to the retry
delay (float or integer). Default is 0.2.

	interval_max

Maximum number of seconds (float or integer) to wait between
retries. Default is 0.2.

For example, the default policy correlates to:

add.apply_async((2, 2), retry=True, retry_policy={
 'max_retries': 3,
 'interval_start': 0,
 'interval_step': 0.2,
 'interval_max': 0.2,
})

the maximum time spent retrying will be 0.4 seconds. It is set relatively
short by default because a connection failure could lead to a retry pile effect
if the broker connection is down: e.g. many web server processes waiting
to retry blocking other incoming requests.

Serializers

Security

The pickle module allows for execution of arbitrary functions,
please see the security guide.

Celery also comes with a special serializer that uses
cryptography to sign your messages.

Data transferred between clients and workers needs to be serialized,
so every message in Celery has a content_type header that
describes the serialization method used to encode it.

The default serializer is pickle [https://docs.python.org/dev/library/pickle.html#module-pickle], but you can
change this using the CELERY_TASK_SERIALIZER setting,
or for each individual task, or even per message.

There’s built-in support for pickle [https://docs.python.org/dev/library/pickle.html#module-pickle], JSON, YAML
and msgpack, and you can also add your own custom serializers by registering
them into the Kombu serializer registry (see ref:kombu:guide-serialization).

Each option has its advantages and disadvantages.

	json – JSON is supported in many programming languages, is now

	a standard part of Python (since 2.6), and is fairly fast to decode
using the modern Python libraries such as cjson or simplejson.

The primary disadvantage to JSON is that it limits you to the following
data types: strings, Unicode, floats, boolean, dictionaries, and lists.
Decimals and dates are notably missing.

Also, binary data will be transferred using Base64 encoding, which will
cause the transferred data to be around 34% larger than an encoding which
supports native binary types.

However, if your data fits inside the above constraints and you need
cross-language support, the default setting of JSON is probably your
best choice.

See http://json.org for more information.

	pickle – If you have no desire to support any language other than

	Python, then using the pickle encoding will gain you the support of
all built-in Python data types (except class instances), smaller
messages when sending binary files, and a slight speedup over JSON
processing.

See http://docs.python.org/library/pickle.html for more information.

	yaml – YAML has many of the same characteristics as json,

	except that it natively supports more data types (including dates,
recursive references, etc.)

However, the Python libraries for YAML are a good bit slower than the
libraries for JSON.

If you need a more expressive set of data types and need to maintain
cross-language compatibility, then YAML may be a better fit than the above.

See http://yaml.org/ for more information.

	msgpack – msgpack is a binary serialization format that is closer to JSON

	in features. It is very young however, and support should be considered
experimental at this point.

See http://msgpack.org/ for more information.

The encoding used is available as a message header, so the worker knows how to
deserialize any task. If you use a custom serializer, this serializer must
be available for the worker.

The following order is used to decide which serializer
to use when sending a task:

	The serializer execution option.

	The Task.serializer attribute

	The CELERY_TASK_SERIALIZER setting.

Example setting a custom serializer for a single task invocation:

>>> add.apply_async((10, 10), serializer='json')

Compression

Celery can compress the messages using either gzip, or bzip2.
You can also create your own compression schemes and register
them in the kombu compression registry [http://kombu.readthedocs.io/en/latest/reference/kombu.compression.html#kombu.compression.register].

The following order is used to decide which compression scheme
to use when sending a task:

	The compression execution option.

	The Task.compression attribute.

	The CELERY_MESSAGE_COMPRESSION attribute.

Example specifying the compression used when calling a task:

>>> add.apply_async((2, 2), compression='zlib')

Connections

Automatic Pool Support

Since version 2.3 there is support for automatic connection pools,
so you don’t have to manually handle connections and publishers
to reuse connections.

The connection pool is enabled by default since version 2.5.

See the BROKER_POOL_LIMIT setting for more information.

You can handle the connection manually by creating a
publisher:

results = []
with add.app.pool.acquire(block=True) as connection:
 with add.get_publisher(connection) as publisher:
 try:
 for args in numbers:
 res = add.apply_async((2, 2), publisher=publisher)
 results.append(res)
print([res.get() for res in results])

Though this particular example is much better expressed as a group:

>>> from celery import group

>>> numbers = [(2, 2), (4, 4), (8, 8), (16, 16)]
>>> res = group(add.s(i) for i in numbers).apply_async()

>>> res.get()
[4, 8, 16, 32]

Routing options

Celery can route tasks to different queues.

Simple routing (name <-> name) is accomplished using the queue option:

add.apply_async(queue='priority.high')

You can then assign workers to the priority.high queue by using
the workers -Q argument:

$ celery -A proj worker -l info -Q celery,priority.high

See also

Hard-coding queue names in code is not recommended, the best practice
is to use configuration routers (CELERY_ROUTES).

To find out more about routing, please see Routing Tasks.

Advanced Options

These options are for advanced users who want to take use of
AMQP’s full routing capabilities. Interested parties may read the
routing guide.

	exchange

Name of exchange (or a kombu.entity.Exchange) to
send the message to.

	routing_key

Routing key used to determine.

	priority

A number between 0 and 9, where 0 is the highest priority.

Supported by: redis, beanstalk

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Canvas: Designing Workflows

	Signatures
	Partials

	Immutability

	Callbacks

	The Primitives
	Chains

	Groups

	Chords

	Map & Starmap

	Chunks

Signatures

New in version 2.0.

You just learned how to call a task using the tasks delay method
in the calling guide, and this is often all you need,
but sometimes you may want to pass the signature of a task invocation to
another process or as an argument to another function.

A signature() wraps the arguments, keyword arguments, and execution options
of a single task invocation in a way such that it can be passed to functions
or even serialized and sent across the wire.

Signatures are often nicknamed “subtasks” because they describe a task to be called
within a task.

	You can create a signature for the add task using its name like this:

>>> from celery import signature
>>> signature('tasks.add', args=(2, 2), countdown=10)
tasks.add(2, 2)

This task has a signature of arity 2 (two arguments): (2, 2),
and sets the countdown execution option to 10.

	or you can create one using the task’s subtask method:

>>> add.subtask((2, 2), countdown=10)
tasks.add(2, 2)

	There is also a shortcut using star arguments:

>>> add.s(2, 2)
tasks.add(2, 2)

	Keyword arguments are also supported:

>>> add.s(2, 2, debug=True)
tasks.add(2, 2, debug=True)

	From any signature instance you can inspect the different fields:

>>> s = add.subtask((2, 2), {'debug': True}, countdown=10)
>>> s.args
(2, 2)
>>> s.kwargs
{'debug': True}
>>> s.options
{'countdown': 10}

	It supports the “Calling API” which means it supports delay and
apply_async or being called directly.

Calling the signature will execute the task inline in the current process:

>>> add(2, 2)
4
>>> add.s(2, 2)()
4

delay is our beloved shortcut to apply_async taking star-arguments:

>>> result = add.delay(2, 2)
>>> result.get()
4

apply_async takes the same arguments as the app.Task.apply_async() method:

>>> add.apply_async(args, kwargs, **options)
>>> add.subtask(args, kwargs, **options).apply_async()

>>> add.apply_async((2, 2), countdown=1)
>>> add.subtask((2, 2), countdown=1).apply_async()

	You can’t define options with s(), but a chaining
set call takes care of that:

>>> add.s(2, 2).set(countdown=1)
proj.tasks.add(2, 2)

Partials

With a signature, you can execute the task in a worker:

>>> add.s(2, 2).delay()
>>> add.s(2, 2).apply_async(countdown=1)

Or you can call it directly in the current process:

>>> add.s(2, 2)()
4

Specifying additional args, kwargs or options to apply_async/delay
creates partials:

	Any arguments added will be prepended to the args in the signature:

>>> partial = add.s(2) # incomplete signature
>>> partial.delay(4) # 2 + 4
>>> partial.apply_async((4,)) # same

	Any keyword arguments added will be merged with the kwargs in the signature,
with the new keyword arguments taking precedence:

>>> s = add.s(2, 2)
>>> s.delay(debug=True) # -> add(2, 2, debug=True)
>>> s.apply_async(kwargs={'debug': True}) # same

	Any options added will be merged with the options in the signature,
with the new options taking precedence:

>>> s = add.subtask((2, 2), countdown=10)
>>> s.apply_async(countdown=1) # countdown is now 1

You can also clone signatures to create derivates:

>>> s = add.s(2)
proj.tasks.add(2)

>>> s.clone(args=(4,), kwargs={'debug': True})
proj.tasks.add(4, 2, debug=True)

Immutability

New in version 3.0.

Partials are meant to be used with callbacks, any tasks linked or chord
callbacks will be applied with the result of the parent task.
Sometimes you want to specify a callback that does not take
additional arguments, and in that case you can set the signature
to be immutable:

>>> add.apply_async((2, 2), link=reset_buffers.subtask(immutable=True))

The .si() shortcut can also be used to create immutable signatures:

>>> add.apply_async((2, 2), link=reset_buffers.si())

Only the execution options can be set when a signature is immutable,
so it’s not possible to call the signature with partial args/kwargs.

Note

In this tutorial I sometimes use the prefix operator ~ to signatures.
You probably shouldn’t use it in your production code, but it’s a handy shortcut
when experimenting in the Python shell:

>>> ~sig

>>> # is the same as
>>> sig.delay().get()

Callbacks

New in version 3.0.

Callbacks can be added to any task using the link argument
to apply_async:

add.apply_async((2, 2), link=other_task.s())

The callback will only be applied if the task exited successfully,
and it will be applied with the return value of the parent task as argument.

As I mentioned earlier, any arguments you add to a signature,
will be prepended to the arguments specified by the signature itself!

If you have the signature:

>>> sig = add.s(10)

then sig.delay(result) becomes:

>>> add.apply_async(args=(result, 10))

...

Now let’s call our add task with a callback using partial
arguments:

>>> add.apply_async((2, 2), link=add.s(8))

As expected this will first launch one task calculating [image: 2 + 2], then
another task calculating [image: 4 + 8].

The Primitives

New in version 3.0.

Overview

	group

The group primitive is a signature that takes a list of tasks that should
be applied in parallel.

	chain

The chain primitive lets us link together signatures so that one is called
after the other, essentially forming a chain of callbacks.

	chord

A chord is just like a group but with a callback. A chord consists
of a header group and a body, where the body is a task that should execute
after all of the tasks in the header are complete.

	map

The map primitive works like the built-in map function, but creates
a temporary task where a list of arguments is applied to the task.
E.g. task.map([1, 2]) results in a single task
being called, applying the arguments in order to the task function so
that the result is:

res = [task(1), task(2)]

	starmap

Works exactly like map except the arguments are applied as *args.
For example add.starmap([(2, 2), (4, 4)]) results in a single
task calling:

res = [add(2, 2), add(4, 4)]

	chunks

Chunking splits a long list of arguments into parts, e.g the operation:

>>> items = zip(xrange(1000), xrange(1000)) # 1000 items
>>> add.chunks(items, 10)

will split the list of items into chunks of 10, resulting in 100
tasks (each processing 10 items in sequence).

The primitives are also signature objects themselves, so that they can be combined
in any number of ways to compose complex workflows.

Here’s some examples:

	Simple chain

Here’s a simple chain, the first task executes passing its return value
to the next task in the chain, and so on.

>>> from celery import chain

2 + 2 + 4 + 8
>>> res = chain(add.s(2, 2), add.s(4), add.s(8))()
>>> res.get()
16

This can also be written using pipes:

>>> (add.s(2, 2) | add.s(4) | add.s(8))().get()
16

	Immutable signatures

Signatures can be partial so arguments can be
added to the existing arguments, but you may not always want that,
for example if you don’t want the result of the previous task in a chain.

In that case you can mark the signature as immutable, so that the arguments
cannot be changed:

>>> add.subtask((2, 2), immutable=True)

There’s also an .si shortcut for this:

>>> add.si(2, 2)

Now you can create a chain of independent tasks instead:

>>> res = (add.si(2, 2) | add.si(4, 4) | add.s(8, 8))()
>>> res.get()
16

>>> res.parent.get()
8

>>> res.parent.parent.get()
4

	Simple group

You can easily create a group of tasks to execute in parallel:

>>> from celery import group
>>> res = group(add.s(i, i) for i in xrange(10))()
>>> res.get(timeout=1)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

	Simple chord

The chord primitive enables us to add callback to be called when
all of the tasks in a group have finished executing, which is often
required for algorithms that aren’t embarrassingly parallel:

>>> from celery import chord
>>> res = chord((add.s(i, i) for i in xrange(10)), xsum.s())()
>>> res.get()
90

The above example creates 10 task that all start in parallel,
and when all of them are complete the return values are combined
into a list and sent to the xsum task.

The body of a chord can also be immutable, so that the return value
of the group is not passed on to the callback:

>>> chord((import_contact.s(c) for c in contacts),
... notify_complete.si(import_id)).apply_async()

Note the use of .si above which creates an immutable signature.

	Blow your mind by combining

Chains can be partial too:

>>> c1 = (add.s(4) | mul.s(8))

(16 + 4) * 8
>>> res = c1(16)
>>> res.get()
160

Which means that you can combine chains:

((4 + 16) * 2 + 4) * 8
>>> c2 = (add.s(4, 16) | mul.s(2) | (add.s(4) | mul.s(8)))

>>> res = c2()
>>> res.get()
352

Chaining a group together with another task will automatically
upgrade it to be a chord:

>>> c3 = (group(add.s(i, i) for i in xrange(10)) | xsum.s())
>>> res = c3()
>>> res.get()
90

Groups and chords accepts partial arguments too, so in a chain
the return value of the previous task is forwarded to all tasks in the group:

>>> new_user_workflow = (create_user.s() | group(
... import_contacts.s(),
... send_welcome_email.s()))
... new_user_workflow.delay(username='artv',
... first='Art',
... last='Vandelay',
... email='art@vandelay.com')

If you don’t want to forward arguments to the group then
you can make the signatures in the group immutable:

>>> res = (add.s(4, 4) | group(add.si(i, i) for i in xrange(10)))()
>>> res.get()
<GroupResult: de44df8c-821d-4c84-9a6a-44769c738f98 [
 bc01831b-9486-4e51-b046-480d7c9b78de,
 2650a1b8-32bf-4771-a645-b0a35dcc791b,
 dcbee2a5-e92d-4b03-b6eb-7aec60fd30cf,
 59f92e0a-23ea-41ce-9fad-8645a0e7759c,
 26e1e707-eccf-4bf4-bbd8-1e1729c3cce3,
 2d10a5f4-37f0-41b2-96ac-a973b1df024d,
 e13d3bdb-7ae3-4101-81a4-6f17ee21df2d,
 104b2be0-7b75-44eb-ac8e-f9220bdfa140,
 c5c551a5-0386-4973-aa37-b65cbeb2624b,
 83f72d71-4b71-428e-b604-6f16599a9f37]>

>>> res.parent.get()
8

Chains

New in version 3.0.

Tasks can be linked together, which in practice means adding
a callback task:

>>> res = add.apply_async((2, 2), link=mul.s(16))
>>> res.get()
4

The linked task will be applied with the result of its parent
task as the first argument, which in the above case will result
in mul(4, 16) since the result is 4.

You can also add error callbacks using the link_error argument:

>>> add.apply_async((2, 2), link_error=log_error.s())

>>> add.subtask((2, 2), link_error=log_error.s())

Since exceptions can only be serialized when pickle is used
the error callbacks take the id of the parent task as argument instead:

from __future__ import print_function
import os
from proj.celery import app

@app.task
def log_error(task_id):
 result = app.AsyncResult(task_id)
 result.get(propagate=False) # make sure result written.
 with open(os.path.join('/var/errors', task_id), 'a') as fh:
 print('--\n\n{0} {1} {2}'.format(
 task_id, result.result, result.traceback), file=fh)

To make it even easier to link tasks together there is
a special signature called chain that lets
you chain tasks together:

>>> from celery import chain
>>> from proj.tasks import add, mul

(4 + 4) * 8 * 10
>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
proj.tasks.add(4, 4) | proj.tasks.mul(8) | proj.tasks.mul(10)

Calling the chain will call the tasks in the current process
and return the result of the last task in the chain:

>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
>>> res.get()
640

It also sets parent attributes so that you can
work your way up the chain to get intermediate results:

>>> res.parent.get()
64

>>> res.parent.parent.get()
8

>>> res.parent.parent
<AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>

Chains can also be made using the | (pipe) operator:

>>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()

Note

It’s not possible to synchronize on groups, so a group chained to another
signature is automatically upgraded to a chord:

will actually be a chord when finally evaluated
res = (group(add.s(i, i) for i in range(10)) | xsum.s()).delay()

Trails

Tasks will keep track of what subtasks a task calls in the
result backend (unless disabled using Task.trail)
and this can be accessed from the result instance:

>>> res.children
[<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]

>>> res.children[0].get()
64

The result instance also has a collect() method
that treats the result as a graph, enabling you to iterate over
the results:

>>> list(res.collect())
[(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),
 (<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]

By default collect() will raise an
IncompleteStream exception if the graph is not fully
formed (one of the tasks has not completed yet),
but you can get an intermediate representation of the graph
too:

>>> for result, value in res.collect(intermediate=True)):
....

Graphs

In addition you can work with the result graph as a
DependencyGraph:

>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()

>>> res.parent.parent.graph
285fa253-fcf8-42ef-8b95-0078897e83e6(1)
 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
872c3995-6fa0-46ca-98c2-5a19155afcf0(2)
 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
 463afec2-5ed4-4036-b22d-ba067ec64f52(0)

You can even convert these graphs to dot format:

>>> with open('graph.dot', 'w') as fh:
... res.parent.parent.graph.to_dot(fh)

and create images:

$ dot -Tpng graph.dot -o graph.png

[image: ../_images/result_graph.png]

Groups

New in version 3.0.

A group can be used to execute several tasks in parallel.

The group function takes a list of signatures:

>>> from celery import group
>>> from proj.tasks import add

>>> group(add.s(2, 2), add.s(4, 4))
(proj.tasks.add(2, 2), proj.tasks.add(4, 4))

If you call the group, the tasks will be applied
one after one in the current process, and a GroupResult
instance is returned which can be used to keep track of the results,
or tell how many tasks are ready and so on:

>>> g = group(add.s(2, 2), add.s(4, 4))
>>> res = g()
>>> res.get()
[4, 8]

Group also supports iterators:

>>> group(add.s(i, i) for i in xrange(100))()

A group is a signature object, so it can be used in combination
with other signatures.

Group Results

The group task returns a special result too,
this result works just like normal task results, except
that it works on the group as a whole:

>>> from celery import group
>>> from tasks import add

>>> job = group([
... add.s(2, 2),
... add.s(4, 4),
... add.s(8, 8),
... add.s(16, 16),
... add.s(32, 32),
...])

>>> result = job.apply_async()

>>> result.ready() # have all subtasks completed?
True
>>> result.successful() # were all subtasks successful?
True
>>> result.get()
[4, 8, 16, 32, 64]

The GroupResult takes a list of
AsyncResult instances and operates on them as
if it was a single task.

It supports the following operations:

	successful()

Return True if all of the subtasks finished
successfully (e.g. did not raise an exception).

	failed()

Return True if any of the subtasks failed.

	waiting()

Return True if any of the subtasks
is not ready yet.

	ready()

Return True if all of the subtasks
are ready.

	completed_count()

Return the number of completed subtasks.

	revoke()

Revoke all of the subtasks.

	join()

Gather the results for all of the subtasks
and return a list with them ordered by the order of which they
were called.

Chords

New in version 2.3.

Note

Tasks used within a chord must not ignore their results. If the result
backend is disabled for any task (header or body) in your chord you
should read “Important Notes”.

A chord is a task that only executes after all of the tasks in a group have
finished executing.

Let’s calculate the sum of the expression
[image: 1 + 1 + 2 + 2 + 3 + 3 ... n + n] up to a hundred digits.

First you need two tasks, add() and tsum() (sum() [https://docs.python.org/dev/library/functions.html#sum] is
already a standard function):

@app.task
def add(x, y):
 return x + y

@app.task
def tsum(numbers):
 return sum(numbers)

Now you can use a chord to calculate each addition step in parallel, and then
get the sum of the resulting numbers:

>>> from celery import chord
>>> from tasks import add, tsum

>>> chord(add.s(i, i)
... for i in xrange(100))(tsum.s()).get()
9900

This is obviously a very contrived example, the overhead of messaging and
synchronization makes this a lot slower than its Python counterpart:

sum(i + i for i in xrange(100))

The synchronization step is costly, so you should avoid using chords as much
as possible. Still, the chord is a powerful primitive to have in your toolbox
as synchronization is a required step for many parallel algorithms.

Let’s break the chord expression down:

>>> callback = tsum.s()
>>> header = [add.s(i, i) for i in range(100)]
>>> result = chord(header)(callback)
>>> result.get()
9900

Remember, the callback can only be executed after all of the tasks in the
header have returned. Each step in the header is executed as a task, in
parallel, possibly on different nodes. The callback is then applied with
the return value of each task in the header. The task id returned by
chord() is the id of the callback, so you can wait for it to complete
and get the final return value (but remember to never have a task wait
for other tasks)

Error handling

So what happens if one of the tasks raises an exception?

This was not documented for some time and before version 3.1
the exception value will be forwarded to the chord callback.

From 3.1 errors will propagate to the callback, so the callback will not be executed
instead the callback changes to failure state, and the error is set
to the ChordError exception:

>>> c = chord([add.s(4, 4), raising_task.s(), add.s(8, 8)])
>>> result = c()
>>> result.get()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "*/celery/result.py", line 120, in get
 interval=interval)
 File "*/celery/backends/amqp.py", line 150, in wait_for
 raise meta['result']
celery.exceptions.ChordError: Dependency 97de6f3f-ea67-4517-a21c-d867c61fcb47
 raised ValueError('something something',)

If you’re running 3.0.14 or later you can enable the new behavior via
the CELERY_CHORD_PROPAGATES setting:

CELERY_CHORD_PROPAGATES = True

While the traceback may be different depending on which result backend is
being used, you can see the error description includes the id of the task that failed
and a string representation of the original exception. You can also
find the original traceback in result.traceback.

Note that the rest of the tasks will still execute, so the third task
(add.s(8, 8)) is still executed even though the middle task failed.
Also the ChordError only shows the task that failed
first (in time): it does not respect the ordering of the header group.

Important Notes

Tasks used within a chord must not ignore their results. In practice this
means that you must enable a CELERY_RESULT_BACKEND in order to use
chords. Additionally, if CELERY_IGNORE_RESULT is set to True
in your configuration, be sure that the individual tasks to be used within
the chord are defined with ignore_result=False. This applies to both
Task subclasses and decorated tasks.

Example Task subclass:

class MyTask(Task):
 abstract = True
 ignore_result = False

Example decorated task:

@app.task(ignore_result=False)
def another_task(project):
 do_something()

By default the synchronization step is implemented by having a recurring task
poll the completion of the group every second, calling the signature when
ready.

Example implementation:

from celery import maybe_signature

@app.task(bind=True)
def unlock_chord(self, group, callback, interval=1, max_retries=None):
 if group.ready():
 return maybe_signature(callback).delay(group.join())
 raise self.retry(countdown=interval, max_retries=max_retries)

This is used by all result backends except Redis and Memcached, which
increment a counter after each task in the header, then applying the callback
when the counter exceeds the number of tasks in the set. Note: chords do not
properly work with Redis before version 2.2; you will need to upgrade to at
least 2.2 to use them.

The Redis and Memcached approach is a much better solution, but not easily
implemented in other backends (suggestions welcome!).

Note

If you are using chords with the Redis result backend and also overriding
the Task.after_return() method, you need to make sure to call the
super method or else the chord callback will not be applied.

def after_return(self, *args, **kwargs):
 do_something()
 super(MyTask, self).after_return(*args, **kwargs)

Map & Starmap

map and starmap are built-in tasks
that calls the task for every element in a sequence.

They differ from group in that

	only one task message is sent

	the operation is sequential.

For example using map:

>>> from proj.tasks import add

>>> ~xsum.map([range(10), range(100)])
[45, 4950]

is the same as having a task doing:

@app.task
def temp():
 return [xsum(range(10)), xsum(range(100))]

and using starmap:

>>> ~add.starmap(zip(range(10), range(10)))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

is the same as having a task doing:

@app.task
def temp():
 return [add(i, i) for i in range(10)]

Both map and starmap are signature objects, so they can be used as
other signatures and combined in groups etc., for example
to call the starmap after 10 seconds:

>>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)

Chunks

Chunking lets you divide an iterable of work into pieces, so that if
you have one million objects, you can create 10 tasks with hundred
thousand objects each.

Some may worry that chunking your tasks results in a degradation
of parallelism, but this is rarely true for a busy cluster
and in practice since you are avoiding the overhead of messaging
it may considerably increase performance.

To create a chunks signature you can use app.Task.chunks():

>>> add.chunks(zip(range(100), range(100)), 10)

As with group the act of sending the messages for
the chunks will happen in the current process when called:

>>> from proj.tasks import add

>>> res = add.chunks(zip(range(100), range(100)), 10)()
>>> res.get()
[[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
 [20, 22, 24, 26, 28, 30, 32, 34, 36, 38],
 [40, 42, 44, 46, 48, 50, 52, 54, 56, 58],
 [60, 62, 64, 66, 68, 70, 72, 74, 76, 78],
 [80, 82, 84, 86, 88, 90, 92, 94, 96, 98],
 [100, 102, 104, 106, 108, 110, 112, 114, 116, 118],
 [120, 122, 124, 126, 128, 130, 132, 134, 136, 138],
 [140, 142, 144, 146, 148, 150, 152, 154, 156, 158],
 [160, 162, 164, 166, 168, 170, 172, 174, 176, 178],
 [180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]

while calling .apply_async will create a dedicated
task so that the individual tasks are applied in a worker
instead:

>>> add.chunks(zip(range(100), range(100)), 10).apply_async()

You can also convert chunks to a group:

>>> group = add.chunks(zip(range(100), range(100)), 10).group()

and with the group skew the countdown of each task by increments
of one:

>>> group.skew(start=1, stop=10)()

which means that the first task will have a countdown of 1, the second
a countdown of 2 and so on.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Workers Guide

	Starting the worker

	Stopping the worker

	Restarting the worker

	Process Signals

	Variables in file paths

	Concurrency

	Remote control

	Commands

	Time Limits

	Rate Limits

	Max tasks per child setting

	Autoscaling

	Queues

	Autoreloading

	Inspecting workers

	Additional Commands

	Writing your own remote control commands

Starting the worker

Daemonizing

You probably want to use a daemonization tool to start
in the background. See Running the worker as a daemon for help
detaching the worker using popular daemonization tools.

You can start the worker in the foreground by executing the command:

$ celery -A proj worker -l info

For a full list of available command-line options see
worker, or simply do:

$ celery worker --help

You can also start multiple workers on the same machine. If you do so
be sure to give a unique name to each individual worker by specifying a
host name with the --hostname|-n argument:

$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker1.%h
$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker2.%h
$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker3.%h

The hostname argument can expand the following variables:

	%h: Hostname including domain name.

	%n: Hostname only.

	%d: Domain name only.

E.g. if the current hostname is george.example.com then
these will expand to:

	worker1.%h -> worker1.george.example.com

	worker1.%n -> worker1.george

	worker1.%d -> worker1.example.com

Note for supervisord users.

The % sign must be escaped by adding a second one: %%h.

Stopping the worker

Shutdown should be accomplished using the TERM signal.

When shutdown is initiated the worker will finish all currently executing
tasks before it actually terminates, so if these tasks are important you should
wait for it to finish before doing anything drastic (like sending the KILL
signal).

If the worker won’t shutdown after considerate time, for example because
of tasks stuck in an infinite-loop, you can use the KILL signal to
force terminate the worker, but be aware that currently executing tasks will
be lost (unless the tasks have the acks_late
option set).

Also as processes can’t override the KILL signal, the worker will
not be able to reap its children, so make sure to do so manually. This
command usually does the trick:

$ ps auxww | grep 'celery worker' | awk '{print $2}' | xargs kill -9

Restarting the worker

To restart the worker you should send the TERM signal and start a new
instance. The easiest way to manage workers for development
is by using celery multi:

$ celery multi start 1 -A proj -l info -c4 --pidfile=/var/run/celery/%n.pid
$ celery multi restart 1 --pidfile=/var/run/celery/%n.pid

For production deployments you should be using init scripts or other process
supervision systems (see Running the worker as a daemon).

Other than stopping then starting the worker to restart, you can also
restart the worker using the HUP signal, but note that the worker
will be responsible for restarting itself so this is prone to problems and
is not recommended in production:

$ kill -HUP $pid

Note

Restarting by HUP only works if the worker is running
in the background as a daemon (it does not have a controlling
terminal).

HUP is disabled on OS X because of a limitation on
that platform.

Process Signals

The worker’s main process overrides the following signals:

	TERM
	Warm shutdown, wait for tasks to complete.

	QUIT
	Cold shutdown, terminate ASAP

	USR1
	Dump traceback for all active threads.

	USR2
	Remote debug, see celery.contrib.rdb.

Variables in file paths

The file path arguments for --logfile, --pidfile and --statedb
can contain variables that the worker will expand:

Node name replacements

	%h: Hostname including domain name.

	%n: Hostname only.

	%d: Domain name only.

	%i: Prefork pool process index or 0 if MainProcess.

	%I: Prefork pool process index with separator.

E.g. if the current hostname is george.example.com then
these will expand to:

	--logfile=%h.log -> george.example.com.log

	--logfile=%n.log -> george.log

	--logfile=%d -> example.com.log

Prefork pool process index

The prefork pool process index specifiers will expand into a different
filename depending on the process that will eventually need to open the file.

This can be used to specify one log file per child process.

Note that the numbers will stay within the process limit even if processes
exit or if autoscale/maxtasksperchild/time limits are used. I.e. the number
is the process index not the process count or pid.

	%i - Pool process index or 0 if MainProcess.

Where -n worker1@example.com -c2 -f %n-%i.log will result in
three log files:

	worker1-0.log (main process)

	worker1-1.log (pool process 1)

	worker1-2.log (pool process 2)

	%I - Pool process index with separator.

Where -n worker1@example.com -c2 -f %n%I.log will result in
three log files:

	worker1.log (main process)

	worker1-1.log (pool process 1)

	worker1-2.log (pool process 2)

Concurrency

By default multiprocessing is used to perform concurrent execution of tasks,
but you can also use Eventlet. The number
of worker processes/threads can be changed using the --concurrency
argument and defaults to the number of CPUs available on the machine.

Number of processes (multiprocessing/prefork pool)

More pool processes are usually better, but there’s a cut-off point where
adding more pool processes affects performance in negative ways.
There is even some evidence to support that having multiple worker
instances running, may perform better than having a single worker.
For example 3 workers with 10 pool processes each. You need to experiment
to find the numbers that works best for you, as this varies based on
application, work load, task run times and other factors.

Remote control

New in version 2.0.

The celery command

The celery program is used to execute remote control
commands from the command-line. It supports all of the commands
listed below. See Management Command-line Utilities (inspect/control) for more information.

pool support: prefork, eventlet, gevent, blocking:threads/solo (see note)
broker support: amqp, redis

Workers have the ability to be remote controlled using a high-priority
broadcast message queue. The commands can be directed to all, or a specific
list of workers.

Commands can also have replies. The client can then wait for and collect
those replies. Since there’s no central authority to know how many
workers are available in the cluster, there is also no way to estimate
how many workers may send a reply, so the client has a configurable
timeout — the deadline in seconds for replies to arrive in. This timeout
defaults to one second. If the worker doesn’t reply within the deadline
it doesn’t necessarily mean the worker didn’t reply, or worse is dead, but
may simply be caused by network latency or the worker being slow at processing
commands, so adjust the timeout accordingly.

In addition to timeouts, the client can specify the maximum number
of replies to wait for. If a destination is specified, this limit is set
to the number of destination hosts.

Note

The solo and threads pool supports remote control commands,
but any task executing will block any waiting control command,
so it is of limited use if the worker is very busy. In that
case you must increase the timeout waiting for replies in the client.

The broadcast() function.

This is the client function used to send commands to the workers.
Some remote control commands also have higher-level interfaces using
broadcast() in the background, like
rate_limit() and ping().

Sending the rate_limit command and keyword arguments:

>>> app.control.broadcast('rate_limit',
... arguments={'task_name': 'myapp.mytask',
... 'rate_limit': '200/m'})

This will send the command asynchronously, without waiting for a reply.
To request a reply you have to use the reply argument:

>>> app.control.broadcast('rate_limit', {
... 'task_name': 'myapp.mytask', 'rate_limit': '200/m'}, reply=True)
[{'worker1.example.com': 'New rate limit set successfully'},
 {'worker2.example.com': 'New rate limit set successfully'},
 {'worker3.example.com': 'New rate limit set successfully'}]

Using the destination argument you can specify a list of workers
to receive the command:

>>> app.control.broadcast('rate_limit', {
... 'task_name': 'myapp.mytask',
... 'rate_limit': '200/m'}, reply=True,
... destination=['worker1@example.com'])
[{'worker1.example.com': 'New rate limit set successfully'}]

Of course, using the higher-level interface to set rate limits is much
more convenient, but there are commands that can only be requested
using broadcast().

Commands

revoke: Revoking tasks

	pool support:	all

	broker support:	amqp, redis

	command:	celery -A proj control revoke <task_id>

All worker nodes keeps a memory of revoked task ids, either in-memory or
persistent on disk (see Persistent revokes).

When a worker receives a revoke request it will skip executing
the task, but it won’t terminate an already executing task unless
the terminate option is set.

Note

The terminate option is a last resort for administrators when
a task is stuck. It’s not for terminating the task,
it’s for terminating the process that is executing the task, and that
process may have already started processing another task at the point
when the signal is sent, so for this reason you must never call this
programatically.

If terminate is set the worker child process processing the task
will be terminated. The default signal sent is TERM, but you can
specify this using the signal argument. Signal can be the uppercase name
of any signal defined in the signal [https://docs.python.org/dev/library/signal.html#module-signal] module in the Python Standard
Library.

Terminating a task also revokes it.

Example

>>> result.revoke()

>>> AsyncResult(id).revoke()

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed')

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed',
... terminate=True)

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed',
... terminate=True, signal='SIGKILL')

Revoking multiple tasks

New in version 3.1.

The revoke method also accepts a list argument, where it will revoke
several tasks at once.

Example

>>> app.control.revoke([
... '7993b0aa-1f0b-4780-9af0-c47c0858b3f2',
... 'f565793e-b041-4b2b-9ca4-dca22762a55d',
... 'd9d35e03-2997-42d0-a13e-64a66b88a618',
])

The GroupResult.revoke method takes advantage of this since
version 3.1.

Persistent revokes

Revoking tasks works by sending a broadcast message to all the workers,
the workers then keep a list of revoked tasks in memory. When a worker starts
up it will synchronize revoked tasks with other workers in the cluster.

The list of revoked tasks is in-memory so if all workers restart the list
of revoked ids will also vanish. If you want to preserve this list between
restarts you need to specify a file for these to be stored in by using the –statedb
argument to celery worker:

celery -A proj worker -l info --statedb=/var/run/celery/worker.state

or if you use celery multi you will want to create one file per
worker instance so then you can use the %n format to expand the current node
name:

celery multi start 2 -l info --statedb=/var/run/celery/%n.state

See also Variables in file paths

Note that remote control commands must be working for revokes to work.
Remote control commands are only supported by the RabbitMQ (amqp) and Redis
at this point.

Time Limits

New in version 2.0.

pool support: prefork/gevent

Soft, or hard?

The time limit is set in two values, soft and hard.
The soft time limit allows the task to catch an exception
to clean up before it is killed: the hard timeout is not catchable
and force terminates the task.

A single task can potentially run forever, if you have lots of tasks
waiting for some event that will never happen you will block the worker
from processing new tasks indefinitely. The best way to defend against
this scenario happening is enabling time limits.

The time limit (–time-limit) is the maximum number of seconds a task
may run before the process executing it is terminated and replaced by a
new process. You can also enable a soft time limit (–soft-time-limit),
this raises an exception the task can catch to clean up before the hard
time limit kills it:

from myapp import app
from celery.exceptions import SoftTimeLimitExceeded

@app.task
def mytask():
 try:
 do_work()
 except SoftTimeLimitExceeded:
 clean_up_in_a_hurry()

Time limits can also be set using the CELERYD_TASK_TIME_LIMIT /
CELERYD_TASK_SOFT_TIME_LIMIT settings.

Note

Time limits do not currently work on Windows and other
platforms that do not support the SIGUSR1 signal.

Changing time limits at runtime

New in version 2.3.

broker support: amqp, redis

There is a remote control command that enables you to change both soft
and hard time limits for a task — named time_limit.

Example changing the time limit for the tasks.crawl_the_web task
to have a soft time limit of one minute, and a hard time limit of
two minutes:

>>> app.control.time_limit('tasks.crawl_the_web',
 soft=60, hard=120, reply=True)
[{'worker1.example.com': {'ok': 'time limits set successfully'}}]

Only tasks that starts executing after the time limit change will be affected.

Rate Limits

Changing rate-limits at runtime

Example changing the rate limit for the myapp.mytask task to execute
at most 200 tasks of that type every minute:

>>> app.control.rate_limit('myapp.mytask', '200/m')

The above does not specify a destination, so the change request will affect
all worker instances in the cluster. If you only want to affect a specific
list of workers you can include the destination argument:

>>> app.control.rate_limit('myapp.mytask', '200/m',
... destination=['celery@worker1.example.com'])

Warning

This won’t affect workers with the
CELERY_DISABLE_RATE_LIMITS setting enabled.

Max tasks per child setting

New in version 2.0.

pool support: prefork

With this option you can configure the maximum number of tasks
a worker can execute before it’s replaced by a new process.

This is useful if you have memory leaks you have no control over
for example from closed source C extensions.

The option can be set using the workers –maxtasksperchild argument
or using the CELERYD_MAX_TASKS_PER_CHILD setting.

Autoscaling

New in version 2.2.

pool support: prefork, gevent

The autoscaler component is used to dynamically resize the pool
based on load:

	
	The autoscaler adds more pool processes when there is work to do,

	
	and starts removing processes when the workload is low.

It’s enabled by the --autoscale option, which needs two
numbers: the maximum and minimum number of pool processes:

--autoscale=AUTOSCALE
 Enable autoscaling by providing
 max_concurrency,min_concurrency. Example:
 --autoscale=10,3 (always keep 3 processes, but grow to
 10 if necessary).

You can also define your own rules for the autoscaler by subclassing
Autoscaler.
Some ideas for metrics include load average or the amount of memory available.
You can specify a custom autoscaler with the CELERYD_AUTOSCALER setting.

Queues

A worker instance can consume from any number of queues.
By default it will consume from all queues defined in the
CELERY_QUEUES setting (which if not specified defaults to the
queue named celery).

You can specify what queues to consume from at startup,
by giving a comma separated list of queues to the -Q option:

$ celery -A proj worker -l info -Q foo,bar,baz

If the queue name is defined in CELERY_QUEUES it will use that
configuration, but if it’s not defined in the list of queues Celery will
automatically generate a new queue for you (depending on the
CELERY_CREATE_MISSING_QUEUES option).

You can also tell the worker to start and stop consuming from a queue at
runtime using the remote control commands add_consumer and
cancel_consumer.

Queues: Adding consumers

The add_consumer control command will tell one or more workers
to start consuming from a queue. This operation is idempotent.

To tell all workers in the cluster to start consuming from a queue
named “foo” you can use the celery control program:

$ celery -A proj control add_consumer foo
-> worker1.local: OK
 started consuming from u'foo'

If you want to specify a specific worker you can use the
--destination` argument:

$ celery -A proj control add_consumer foo -d worker1.local

The same can be accomplished dynamically using the app.control.add_consumer() method:

>>> app.control.add_consumer('foo', reply=True)
[{u'worker1.local': {u'ok': u"already consuming from u'foo'"}}]

>>> app.control.add_consumer('foo', reply=True,
... destination=['worker1@example.com'])
[{u'worker1.local': {u'ok': u"already consuming from u'foo'"}}]

By now I have only shown examples using automatic queues,
If you need more control you can also specify the exchange, routing_key and
even other options:

>>> app.control.add_consumer(
... queue='baz',
... exchange='ex',
... exchange_type='topic',
... routing_key='media.*',
... options={
... 'queue_durable': False,
... 'exchange_durable': False,
... },
... reply=True,
... destination=['w1@example.com', 'w2@example.com'])

Queues: Canceling consumers

You can cancel a consumer by queue name using the cancel_consumer
control command.

To force all workers in the cluster to cancel consuming from a queue
you can use the celery control program:

$ celery -A proj control cancel_consumer foo

The --destination argument can be used to specify a worker, or a
list of workers, to act on the command:

$ celery -A proj control cancel_consumer foo -d worker1.local

You can also cancel consumers programmatically using the
app.control.cancel_consumer() method:

>>> app.control.cancel_consumer('foo', reply=True)
[{u'worker1.local': {u'ok': u"no longer consuming from u'foo'"}}]

Queues: List of active queues

You can get a list of queues that a worker consumes from by using
the active_queues control command:

$ celery -A proj inspect active_queues
[...]

Like all other remote control commands this also supports the
--destination argument used to specify which workers should
reply to the request:

$ celery -A proj inspect active_queues -d worker1.local
[...]

This can also be done programmatically by using the
app.control.inspect.active_queues() method:

>>> app.control.inspect().active_queues()
[...]

>>> app.control.inspect(['worker1.local']).active_queues()
[...]

Autoreloading

New in version 2.5.

pool support: prefork, eventlet, gevent, threads, solo

Starting celery worker with the --autoreload option will
enable the worker to watch for file system changes to all imported task
modules (and also any non-task modules added to the
CELERY_IMPORTS setting or the -I|--include option).

This is an experimental feature intended for use in development only,
using auto-reload in production is discouraged as the behavior of reloading
a module in Python is undefined, and may cause hard to diagnose bugs and
crashes. Celery uses the same approach as the auto-reloader found in e.g.
the Django runserver command.

When auto-reload is enabled the worker starts an additional thread
that watches for changes in the file system. New modules are imported,
and already imported modules are reloaded whenever a change is detected,
and if the prefork pool is used the child processes will finish the work
they are doing and exit, so that they can be replaced by fresh processes
effectively reloading the code.

File system notification backends are pluggable, and it comes with three
implementations:

	inotify (Linux)

Used if the pyinotify library is installed.
If you are running on Linux this is the recommended implementation,
to install the pyinotify library you have to run the following
command:

$ pip install pyinotify

	kqueue (OS X/BSD)

	stat

The fallback implementation simply polls the files using stat and is very
expensive.

You can force an implementation by setting the CELERYD_FSNOTIFY
environment variable:

$ env CELERYD_FSNOTIFY=stat celery worker -l info --autoreload

Pool Restart Command

New in version 2.5.

Requires the CELERYD_POOL_RESTARTS setting to be enabled.

The remote control command pool_restart sends restart requests to
the workers child processes. It is particularly useful for forcing
the worker to import new modules, or for reloading already imported
modules. This command does not interrupt executing tasks.

Example

Running the following command will result in the foo and bar modules
being imported by the worker processes:

>>> app.control.broadcast('pool_restart',
... arguments={'modules': ['foo', 'bar']})

Use the reload argument to reload modules it has already imported:

>>> app.control.broadcast('pool_restart',
... arguments={'modules': ['foo'],
... 'reload': True})

If you don’t specify any modules then all known tasks modules will
be imported/reloaded:

>>> app.control.broadcast('pool_restart', arguments={'reload': True})

The modules argument is a list of modules to modify. reload
specifies whether to reload modules if they have previously been imported.
By default reload is disabled. The pool_restart command uses the
Python reload() function to reload modules, or you can provide
your own custom reloader by passing the reloader argument.

Note

Module reloading comes with caveats that are documented in reload().
Please read this documentation and make sure your modules are suitable
for reloading.

See also

	http://pyunit.sourceforge.net/notes/reloading.html

	http://www.indelible.org/ink/python-reloading/

	http://docs.python.org/library/functions.html#reload

Inspecting workers

app.control.inspect lets you inspect running workers. It
uses remote control commands under the hood.

You can also use the celery command to inspect workers,
and it supports the same commands as the app.control interface.

Inspect all nodes.
>>> i = app.control.inspect()

Specify multiple nodes to inspect.
>>> i = app.control.inspect(['worker1.example.com',
 'worker2.example.com'])

Specify a single node to inspect.
>>> i = app.control.inspect('worker1.example.com')

Dump of registered tasks

You can get a list of tasks registered in the worker using the
registered():

>>> i.registered()
[{'worker1.example.com': ['tasks.add',
 'tasks.sleeptask']}]

Dump of currently executing tasks

You can get a list of active tasks using
active():

>>> i.active()
[{'worker1.example.com':
 [{'name': 'tasks.sleeptask',
 'id': '32666e9b-809c-41fa-8e93-5ae0c80afbbf',
 'args': '(8,)',
 'kwargs': '{}'}]}]

Dump of scheduled (ETA) tasks

You can get a list of tasks waiting to be scheduled by using
scheduled():

>>> i.scheduled()
[{'worker1.example.com':
 [{'eta': '2010-06-07 09:07:52', 'priority': 0,
 'request': {
 'name': 'tasks.sleeptask',
 'id': '1a7980ea-8b19-413e-91d2-0b74f3844c4d',
 'args': '[1]',
 'kwargs': '{}'}},
 {'eta': '2010-06-07 09:07:53', 'priority': 0,
 'request': {
 'name': 'tasks.sleeptask',
 'id': '49661b9a-aa22-4120-94b7-9ee8031d219d',
 'args': '[2]',
 'kwargs': '{}'}}]}]

Note

These are tasks with an eta/countdown argument, not periodic tasks.

Dump of reserved tasks

Reserved tasks are tasks that have been received, but are still waiting to be
executed.

You can get a list of these using
reserved():

>>> i.reserved()
[{'worker1.example.com':
 [{'name': 'tasks.sleeptask',
 'id': '32666e9b-809c-41fa-8e93-5ae0c80afbbf',
 'args': '(8,)',
 'kwargs': '{}'}]}]

Statistics

The remote control command inspect stats (or
stats()) will give you a long list of useful (or not
so useful) statistics about the worker:

$ celery -A proj inspect stats

The output will include the following fields:

	broker

Section for broker information.

	connect_timeout

Timeout in seconds (int/float) for establishing a new connection.

	heartbeat

Current heartbeat value (set by client).

	hostname

Hostname of the remote broker.

	insist

No longer used.

	login_method

Login method used to connect to the broker.

	port

Port of the remote broker.

	ssl

SSL enabled/disabled.

	transport

Name of transport used (e.g. amqp or redis)

	transport_options

Options passed to transport.

	uri_prefix

Some transports expects the host name to be an URL, this applies to
for example SQLAlchemy where the host name part is the connection URI:

redis+socket:///tmp/redis.sock

In this example the uri prefix will be redis.

	userid

User id used to connect to the broker with.

	virtual_host

Virtual host used.

	clock

Value of the workers logical clock. This is a positive integer and should
be increasing every time you receive statistics.

	pid

Process id of the worker instance (Main process).

	pool

Pool-specific section.

	max-concurrency

Max number of processes/threads/green threads.

	max-tasks-per-child

Max number of tasks a thread may execute before being recycled.

	processes

List of pids (or thread-id’s).

	put-guarded-by-semaphore

Internal

	timeouts

Default values for time limits.

	writes

Specific to the prefork pool, this shows the distribution of writes
to each process in the pool when using async I/O.

	prefetch_count

Current prefetch count value for the task consumer.

	rusage

System usage statistics. The fields available may be different
on your platform.

From getrusage(2):

	stime

Time spent in operating system code on behalf of this process.

	utime

Time spent executing user instructions.

	maxrss

The maximum resident size used by this process (in kilobytes).

	idrss

Amount of unshared memory used for data (in kilobytes times ticks of
execution)

	isrss

Amount of unshared memory used for stack space (in kilobytes times
ticks of execution)

	ixrss

Amount of memory shared with other processes (in kilobytes times
ticks of execution).

	inblock

Number of times the file system had to read from the disk on behalf of
this process.

	oublock

Number of times the file system has to write to disk on behalf of
this process.

	majflt

Number of page faults which were serviced by doing I/O.

	minflt

Number of page faults which were serviced without doing I/O.

	msgrcv

Number of IPC messages received.

	msgsnd

Number of IPC messages sent.

	nvcsw

Number of times this process voluntarily invoked a context switch.

	nivcsw

Number of times an involuntary context switch took place.

	nsignals

Number of signals received.

	nswap

The number of times this process was swapped entirely out of memory.

	total

List of task names and a total number of times that task have been
executed since worker start.

Additional Commands

Remote shutdown

This command will gracefully shut down the worker remotely:

>>> app.control.broadcast('shutdown') # shutdown all workers
>>> app.control.broadcast('shutdown, destination="worker1@example.com")

Ping

This command requests a ping from alive workers.
The workers reply with the string ‘pong’, and that’s just about it.
It will use the default one second timeout for replies unless you specify
a custom timeout:

>>> app.control.ping(timeout=0.5)
[{'worker1.example.com': 'pong'},
 {'worker2.example.com': 'pong'},
 {'worker3.example.com': 'pong'}]

ping() also supports the destination argument,
so you can specify which workers to ping:

>>> ping(['worker2.example.com', 'worker3.example.com'])
[{'worker2.example.com': 'pong'},
 {'worker3.example.com': 'pong'}]

Enable/disable events

You can enable/disable events by using the enable_events,
disable_events commands. This is useful to temporarily monitor
a worker using celery events/celerymon.

>>> app.control.enable_events()
>>> app.control.disable_events()

Writing your own remote control commands

Remote control commands are registered in the control panel and
they take a single argument: the current
ControlDispatch instance.
From there you have access to the active
Consumer if needed.

Here’s an example control command that increments the task prefetch count:

from celery.worker.control import Panel

@Panel.register
def increase_prefetch_count(state, n=1):
 state.consumer.qos.increment_eventually(n)
 return {'ok': 'prefetch count incremented'}

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Periodic Tasks

	Introduction

	Time Zones

	Entries
	Available Fields

	Crontab schedules

	Starting the Scheduler
	Using custom scheduler classes

Introduction

celery beat is a scheduler. It kicks off tasks at regular intervals,
which are then executed by the worker nodes available in the cluster.

By default the entries are taken from the CELERYBEAT_SCHEDULE setting,
but custom stores can also be used, like storing the entries
in an SQL database.

You have to ensure only a single scheduler is running for a schedule
at a time, otherwise you would end up with duplicate tasks. Using
a centralized approach means the schedule does not have to be synchronized,
and the service can operate without using locks.

Time Zones

The periodic task schedules uses the UTC time zone by default,
but you can change the time zone used using the CELERY_TIMEZONE
setting.

An example time zone could be Europe/London:

CELERY_TIMEZONE = 'Europe/London'

This setting must be added to your app, either by configuration it directly
using (app.conf.CELERY_TIMEZONE = 'Europe/London'), or by adding
it to your configuration module if you have set one up using
app.config_from_object. See Configuration for
more information about configuration options.

The default scheduler (storing the schedule in the celerybeat-schedule
file) will automatically detect that the time zone has changed, and so will
reset the schedule itself, but other schedulers may not be so smart (e.g. the
Django database scheduler, see below) and in that case you will have to reset the
schedule manually.

Django Users

Celery recommends and is compatible with the new USE_TZ setting introduced
in Django 1.4.

For Django users the time zone specified in the TIME_ZONE setting
will be used, or you can specify a custom time zone for Celery alone
by using the CELERY_TIMEZONE setting.

The database scheduler will not reset when timezone related settings
change, so you must do this manually:

$ python manage.py shell
>>> from djcelery.models import PeriodicTask
>>> PeriodicTask.objects.update(last_run_at=None)

Entries

To schedule a task periodically you have to add an entry to the
CELERYBEAT_SCHEDULE setting.

Example: Run the tasks.add task every 30 seconds.

from datetime import timedelta

CELERYBEAT_SCHEDULE = {
 'add-every-30-seconds': {
 'task': 'tasks.add',
 'schedule': timedelta(seconds=30),
 'args': (16, 16)
 },
}

CELERY_TIMEZONE = 'UTC'

Note

If you are wondering where these settings should go then
please see Configuration. You can either
set these options on your app directly or you can keep
a separate module for configuration.

If you want to use a single item tuple for args, don’t forget
that the constructor is a comma and not a pair of parentheses.

Using a timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] for the schedule means the task will
be sent in 30 second intervals (the first task will be sent 30 seconds
after celery beat starts, and then every 30 seconds
after the last run).

A crontab like schedule also exists, see the section on Crontab schedules.

Like with cron, the tasks may overlap if the first task does not complete
before the next. If that is a concern you should use a locking
strategy to ensure only one instance can run at a time (see for example
Ensuring a task is only executed one at a time).

Available Fields

	task

The name of the task to execute.

	schedule

The frequency of execution.

This can be the number of seconds as an integer, a
timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta], or a crontab.
You can also define your own custom schedule types, by extending the
interface of schedule.

	args

Positional arguments (list [https://docs.python.org/dev/library/stdtypes.html#list] or tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]).

	kwargs

Keyword arguments (dict [https://docs.python.org/dev/library/stdtypes.html#dict]).

	options

Execution options (dict [https://docs.python.org/dev/library/stdtypes.html#dict]).

This can be any argument supported by
apply_async(),
e.g. exchange, routing_key, expires, and so on.

	relative

By default timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] schedules are scheduled
“by the clock”. This means the frequency is rounded to the nearest
second, minute, hour or day depending on the period of the timedelta.

If relative is true the frequency is not rounded and will be
relative to the time when celery beat was started.

Crontab schedules

If you want more control over when the task is executed, for
example, a particular time of day or day of the week, you can use
the crontab schedule type:

from celery.schedules import crontab

CELERYBEAT_SCHEDULE = {
 # Executes every Monday morning at 7:30 A.M
 'add-every-monday-morning': {
 'task': 'tasks.add',
 'schedule': crontab(hour=7, minute=30, day_of_week=1),
 'args': (16, 16),
 },
}

The syntax of these crontab expressions are very flexible. Some examples:

	Example
	Meaning

	crontab()
	Execute every minute.

	crontab(minute=0, hour=0)
	Execute daily at midnight.

	crontab(minute=0, hour='*/3')
	Execute every three hours:
midnight, 3am, 6am, 9am,
noon, 3pm, 6pm, 9pm.

	
	crontab(minute=0,

	hour='0,3,6,9,12,15,18,21')

	Same as previous.

	crontab(minute='*/15')
	Execute every 15 minutes.

	crontab(day_of_week='sunday')
	Execute every minute (!) at Sundays.

	
	crontab(minute='*',

	hour='*',
day_of_week='sun')

	Same as previous.

	
	crontab(minute='*/10',

	hour='3,17,22',
day_of_week='thu,fri')

	Execute every ten minutes, but only
between 3-4 am, 5-6 pm and 10-11 pm on
Thursdays or Fridays.

	crontab(minute=0, hour='*/2,*/3')
	Execute every even hour, and every hour
divisible by three. This means:
at every hour except: 1am,
5am, 7am, 11am, 1pm, 5pm, 7pm,
11pm

	crontab(minute=0, hour='*/5')
	Execute hour divisible by 5. This means
that it is triggered at 3pm, not 5pm
(since 3pm equals the 24-hour clock
value of “15”, which is divisible by 5).

	crontab(minute=0, hour='*/3,8-17')
	Execute every hour divisible by 3, and
every hour during office hours (8am-5pm).

	crontab(0, 0, day_of_month='2')
	Execute on the second day of every month.

	
	crontab(0, 0,

	day_of_month='2-30/3')

	Execute on every even numbered day.

	
	crontab(0, 0,

	day_of_month='1-7,15-21')

	Execute on the first and third weeks of
the month.

	
	crontab(0, 0, day_of_month='11',

	month_of_year='5')

	Execute on 11th of May every year.

	
	crontab(0, 0,

	month_of_year='*/3')

	Execute on the first month of every
quarter.

See celery.schedules.crontab for more documentation.

Starting the Scheduler

To start the celery beat service:

$ celery -A proj beat

You can also start embed beat inside the worker by enabling
workers -B option, this is convenient if you will never run
more than one worker node, but it’s not commonly used and for that
reason is not recommended for production use:

$ celery -A proj worker -B

Beat needs to store the last run times of the tasks in a local database
file (named celerybeat-schedule by default), so it needs access to
write in the current directory, or alternatively you can specify a custom
location for this file:

$ celery -A proj beat -s /home/celery/var/run/celerybeat-schedule

Note

To daemonize beat see Running the worker as a daemon.

Using custom scheduler classes

Custom scheduler classes can be specified on the command-line (the -S
argument). The default scheduler is celery.beat.PersistentScheduler,
which is simply keeping track of the last run times in a local database file
(a shelve [https://docs.python.org/dev/library/shelve.html#module-shelve]).

django-celery also ships with a scheduler that stores the schedule in the
Django database:

$ celery -A proj beat -S djcelery.schedulers.DatabaseScheduler

Using django-celery‘s scheduler you can add, modify and remove periodic
tasks from the Django Admin.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

HTTP Callback Tasks (Webhooks)

	Basics
	Enabling the HTTP task

	Django webhook example

	Ruby on Rails webhook example

	Calling webhook tasks

Basics

If you need to call into another language, framework or similar, you can
do so by using HTTP callback tasks.

The HTTP callback tasks uses GET/POST data to pass arguments and returns
result as a JSON response. The scheme to call a task is:

GET http://example.com/mytask/?arg1=a&arg2=b&arg3=c

or using POST:

POST http://example.com/mytask

Note

POST data needs to be form encoded.

Whether to use GET or POST is up to you and your requirements.

The web page should then return a response in the following format
if the execution was successful:

{'status': 'success', 'retval': …}

or if there was an error:

{'status': 'failure', 'reason': 'Invalid moon alignment.'}

Enabling the HTTP task

To enable the HTTP dispatch task you have to add celery.task.http
to CELERY_IMPORTS, or start the worker with -I
celery.task.http.

Django webhook example

With this information you could define a simple task in Django:

from django.http import HttpResponse
from anyjson import serialize

def multiply(request):
 x = int(request.GET['x'])
 y = int(request.GET['y'])
 result = x * y
 response = {'status': 'success', 'retval': result}
 return HttpResponse(serialize(response), mimetype='application/json')

Ruby on Rails webhook example

or in Ruby on Rails:

def multiply
 @x = params[:x].to_i
 @y = params[:y].to_i

 @status = {:status => 'success', :retval => @x * @y}

 render :json => @status
end

You can easily port this scheme to any language/framework;
new examples and libraries are very welcome.

Calling webhook tasks

To call a task you can use the URL class:

>>> from celery.task.http import URL
>>> res = URL('http://example.com/multiply').get_async(x=10, y=10)

URL is a shortcut to the HttpDispatchTask.
You can subclass this to extend the
functionality.

>>> from celery.task.http import HttpDispatchTask
>>> res = HttpDispatchTask.delay(
... url='http://example.com/multiply',
... method='GET', x=10, y=10)
>>> res.get()
100

The output of celery worker (or the log file if enabled) should show the
task being executed:

[INFO/MainProcess] Task celery.task.http.HttpDispatchTask
 [f2cc8efc-2a14-40cd-85ad-f1c77c94beeb] processed: 100

Since calling tasks can be done via HTTP using the
djcelery.views.apply() view, calling tasks from other languages is easy.
For an example service exposing tasks via HTTP you should have a look at
examples/celery_http_gateway in the Celery distribution:
http://github.com/celery/celery/tree/master/examples/celery_http_gateway/

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Routing Tasks

Note

Alternate routing concepts like topic and fanout may not be
available for all transports, please consult the
transport comparison table [http://kombu.readthedocs.io/en/latest/introduction.html#transport-comparison].

	Basics
	Automatic routing
	Changing the name of the default queue

	How the queues are defined

	Manual routing

	AMQP Primer
	Messages

	Producers, consumers and brokers

	Exchanges, queues and routing keys.

	Exchange types
	Direct exchanges

	Topic exchanges

	Related API commands

	Hands-on with the API

	Routing Tasks
	Defining queues

	Specifying task destination

	Routers

	Broadcast

Basics

Automatic routing

The simplest way to do routing is to use the
CELERY_CREATE_MISSING_QUEUES setting (on by default).

With this setting on, a named queue that is not already defined in
CELERY_QUEUES will be created automatically. This makes it easy to
perform simple routing tasks.

Say you have two servers, x, and y that handles regular tasks,
and one server z, that only handles feed related tasks. You can use this
configuration:

CELERY_ROUTES = {'feed.tasks.import_feed': {'queue': 'feeds'}}

With this route enabled import feed tasks will be routed to the
“feeds” queue, while all other tasks will be routed to the default queue
(named “celery” for historical reasons).

Now you can start server z to only process the feeds queue like this:

user@z:/$ celery -A proj worker -Q feeds

You can specify as many queues as you want, so you can make this server
process the default queue as well:

user@z:/$ celery -A proj worker -Q feeds,celery

Changing the name of the default queue

You can change the name of the default queue by using the following
configuration:

from kombu import Exchange, Queue

CELERY_DEFAULT_QUEUE = 'default'
CELERY_QUEUES = (
 Queue('default', Exchange('default'), routing_key='default'),
)

How the queues are defined

The point with this feature is to hide the complex AMQP protocol for users
with only basic needs. However – you may still be interested in how these queues
are declared.

A queue named “video” will be created with the following settings:

{'exchange': 'video',
 'exchange_type': 'direct',
 'routing_key': 'video'}

The non-AMQP backends like ghettoq does not support exchanges, so they
require the exchange to have the same name as the queue. Using this design
ensures it will work for them as well.

Manual routing

Say you have two servers, x, and y that handles regular tasks,
and one server z, that only handles feed related tasks, you can use this
configuration:

from kombu import Queue

CELERY_DEFAULT_QUEUE = 'default'
CELERY_QUEUES = (
 Queue('default', routing_key='task.#'),
 Queue('feed_tasks', routing_key='feed.#'),
)
CELERY_DEFAULT_EXCHANGE = 'tasks'
CELERY_DEFAULT_EXCHANGE_TYPE = 'topic'
CELERY_DEFAULT_ROUTING_KEY = 'task.default'

CELERY_QUEUES is a list of Queue
instances.
If you don’t set the exchange or exchange type values for a key, these
will be taken from the CELERY_DEFAULT_EXCHANGE and
CELERY_DEFAULT_EXCHANGE_TYPE settings.

To route a task to the feed_tasks queue, you can add an entry in the
CELERY_ROUTES setting:

CELERY_ROUTES = {
 'feeds.tasks.import_feed': {
 'queue': 'feed_tasks',
 'routing_key': 'feed.import',
 },
}

You can also override this using the routing_key argument to
Task.apply_async(), or send_task():

>>> from feeds.tasks import import_feed
>>> import_feed.apply_async(args=['http://cnn.com/rss'],
... queue='feed_tasks',
... routing_key='feed.import')

To make server z consume from the feed queue exclusively you can
start it with the -Q option:

user@z:/$ celery -A proj worker -Q feed_tasks --hostname=z@%h

Servers x and y must be configured to consume from the default queue:

user@x:/$ celery -A proj worker -Q default --hostname=x@%h
user@y:/$ celery -A proj worker -Q default --hostname=y@%h

If you want, you can even have your feed processing worker handle regular
tasks as well, maybe in times when there’s a lot of work to do:

user@z:/$ celery -A proj worker -Q feed_tasks,default --hostname=z@%h

If you have another queue but on another exchange you want to add,
just specify a custom exchange and exchange type:

from kombu import Exchange, Queue

CELERY_QUEUES = (
 Queue('feed_tasks', routing_key='feed.#'),
 Queue('regular_tasks', routing_key='task.#'),
 Queue('image_tasks', exchange=Exchange('mediatasks', type='direct'),
 routing_key='image.compress'),
)

If you’re confused about these terms, you should read up on AMQP.

See also

In addition to the AMQP Primer below, there’s
Rabbits and Warrens [http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/], an excellent blog post describing queues and
exchanges. There’s also AMQP in 10 minutes*: Flexible Routing Model [http://bit.ly/95XFO1],
and Standard Exchange Types [http://bit.ly/EEWca]. For users of RabbitMQ the RabbitMQ FAQ [http://www.rabbitmq.com/faq.html]
could be useful as a source of information.

AMQP Primer

Messages

A message consists of headers and a body. Celery uses headers to store
the content type of the message and its content encoding. The
content type is usually the serialization format used to serialize the
message. The body contains the name of the task to execute, the
task id (UUID), the arguments to apply it with and some additional
metadata – like the number of retries or an ETA.

This is an example task message represented as a Python dictionary:

{'task': 'myapp.tasks.add',
 'id': '54086c5e-6193-4575-8308-dbab76798756',
 'args': [4, 4],
 'kwargs': {}}

Producers, consumers and brokers

The client sending messages is typically called a publisher, or
a producer, while the entity receiving messages is called
a consumer.

The broker is the message server, routing messages from producers
to consumers.

You are likely to see these terms used a lot in AMQP related material.

Exchanges, queues and routing keys.

	Messages are sent to exchanges.

	An exchange routes messages to one or more queues. Several exchange types
exists, providing different ways to do routing, or implementing
different messaging scenarios.

	The message waits in the queue until someone consumes it.

	The message is deleted from the queue when it has been acknowledged.

The steps required to send and receive messages are:

	Create an exchange

	Create a queue

	Bind the queue to the exchange.

Celery automatically creates the entities necessary for the queues in
CELERY_QUEUES to work (except if the queue’s auto_declare
setting is set to False).

Here’s an example queue configuration with three queues;
One for video, one for images and one default queue for everything else:

from kombu import Exchange, Queue

CELERY_QUEUES = (
 Queue('default', Exchange('default'), routing_key='default'),
 Queue('videos', Exchange('media'), routing_key='media.video'),
 Queue('images', Exchange('media'), routing_key='media.image'),
)
CELERY_DEFAULT_QUEUE = 'default'
CELERY_DEFAULT_EXCHANGE_TYPE = 'direct'
CELERY_DEFAULT_ROUTING_KEY = 'default'

Exchange types

The exchange type defines how the messages are routed through the exchange.
The exchange types defined in the standard are direct, topic,
fanout and headers. Also non-standard exchange types are available
as plug-ins to RabbitMQ, like the last-value-cache plug-in [http://github.com/squaremo/rabbitmq-lvc-plugin] by Michael
Bridgen.

Direct exchanges

Direct exchanges match by exact routing keys, so a queue bound by
the routing key video only receives messages with that routing key.

Topic exchanges

Topic exchanges matches routing keys using dot-separated words, and the
wildcard characters: * (matches a single word), and # (matches
zero or more words).

With routing keys like usa.news, usa.weather, norway.news and
norway.weather, bindings could be *.news (all news), usa.# (all
items in the USA) or usa.weather (all USA weather items).

Related API commands

	
exchange.declare(exchange_name, type, passive,

	
durable, auto_delete, internal)

	Declares an exchange by name.

See amqp:Channel.exchange_declare [http://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.exchange_declare].

	Parameters:	
	passive – Passive means the exchange won’t be created, but you
can use this to check if the exchange already exists.

	durable – Durable exchanges are persistent. That is - they survive
a broker restart.

	auto_delete – This means the queue will be deleted by the broker
when there are no more queues using it.

	
queue.declare(queue_name, passive, durable, exclusive, auto_delete)

	Declares a queue by name.

See amqp:Channel.queue_declare [http://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_declare]

Exclusive queues can only be consumed from by the current connection.
Exclusive also implies auto_delete.

	
queue.bind(queue_name, exchange_name, routing_key)

	Binds a queue to an exchange with a routing key.

Unbound queues will not receive messages, so this is necessary.

See amqp:Channel.queue_bind [http://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_bind]

	
queue.delete(name, if_unused=False, if_empty=False)

	Deletes a queue and its binding.

See amqp:Channel.queue_delete [http://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_delete]

	
exchange.delete(name, if_unused=False)

	Deletes an exchange.

See amqp:Channel.exchange_delete [http://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.exchange_delete]

Note

Declaring does not necessarily mean “create”. When you declare you
assert that the entity exists and that it’s operable. There is no
rule as to whom should initially create the exchange/queue/binding,
whether consumer or producer. Usually the first one to need it will
be the one to create it.

Hands-on with the API

Celery comes with a tool called celery amqp
that is used for command line access to the AMQP API, enabling access to
administration tasks like creating/deleting queues and exchanges, purging
queues or sending messages. It can also be used for non-AMQP brokers,
but different implementation may not implement all commands.

You can write commands directly in the arguments to celery amqp,
or just start with no arguments to start it in shell-mode:

$ celery -A proj amqp
-> connecting to amqp://guest@localhost:5672/.
-> connected.
1>

Here 1> is the prompt. The number 1, is the number of commands you
have executed so far. Type help for a list of commands available.
It also supports auto-completion, so you can start typing a command and then
hit the tab key to show a list of possible matches.

Let’s create a queue you can send messages to:

$ celery -A proj amqp
1> exchange.declare testexchange direct
ok.
2> queue.declare testqueue
ok. queue:testqueue messages:0 consumers:0.
3> queue.bind testqueue testexchange testkey
ok.

This created the direct exchange testexchange, and a queue
named testqueue. The queue is bound to the exchange using
the routing key testkey.

From now on all messages sent to the exchange testexchange with routing
key testkey will be moved to this queue. You can send a message by
using the basic.publish command:

4> basic.publish 'This is a message!' testexchange testkey
ok.

Now that the message is sent you can retrieve it again. You can use the
basic.get` command here, which polls for new messages on the queue
(which is alright for maintainence tasks, for services you’d want to use
basic.consume instead)

Pop a message off the queue:

5> basic.get testqueue
{'body': 'This is a message!',
 'delivery_info': {'delivery_tag': 1,
 'exchange': u'testexchange',
 'message_count': 0,
 'redelivered': False,
 'routing_key': u'testkey'},
 'properties': {}}

AMQP uses acknowledgment to signify that a message has been received
and processed successfully. If the message has not been acknowledged
and consumer channel is closed, the message will be delivered to
another consumer.

Note the delivery tag listed in the structure above; Within a connection
channel, every received message has a unique delivery tag,
This tag is used to acknowledge the message. Also note that
delivery tags are not unique across connections, so in another client
the delivery tag 1 might point to a different message than in this channel.

You can acknowledge the message you received using basic.ack:

6> basic.ack 1
ok.

To clean up after our test session you should delete the entities you created:

7> queue.delete testqueue
ok. 0 messages deleted.
8> exchange.delete testexchange
ok.

Routing Tasks

Defining queues

In Celery available queues are defined by the CELERY_QUEUES setting.

Here’s an example queue configuration with three queues;
One for video, one for images and one default queue for everything else:

default_exchange = Exchange('default', type='direct')
media_exchange = Exchange('media', type='direct')

CELERY_QUEUES = (
 Queue('default', default_exchange, routing_key='default'),
 Queue('videos', media_exchange, routing_key='media.video'),
 Queue('images', media_exchange, routing_key='media.image')
)
CELERY_DEFAULT_QUEUE = 'default'
CELERY_DEFAULT_EXCHANGE = 'default'
CELERY_DEFAULT_ROUTING_KEY = 'default'

Here, the CELERY_DEFAULT_QUEUE will be used to route tasks that
doesn’t have an explicit route.

The default exchange, exchange type and routing key will be used as the
default routing values for tasks, and as the default values for entries
in CELERY_QUEUES.

Specifying task destination

The destination for a task is decided by the following (in order):

	The Routers defined in CELERY_ROUTES.

	The routing arguments to Task.apply_async().

	Routing related attributes defined on the Task
itself.

It is considered best practice to not hard-code these settings, but rather
leave that as configuration options by using Routers;
This is the most flexible approach, but sensible defaults can still be set
as task attributes.

Routers

A router is a class that decides the routing options for a task.

All you need to define a new router is to create a class with a
route_for_task method:

class MyRouter(object):

 def route_for_task(self, task, args=None, kwargs=None):
 if task == 'myapp.tasks.compress_video':
 return {'exchange': 'video',
 'exchange_type': 'topic',
 'routing_key': 'video.compress'}
 return None

If you return the queue key, it will expand with the defined settings of
that queue in CELERY_QUEUES:

{'queue': 'video', 'routing_key': 'video.compress'}

becomes –>

{'queue': 'video',
 'exchange': 'video',
 'exchange_type': 'topic',
 'routing_key': 'video.compress'}

You install router classes by adding them to the CELERY_ROUTES
setting:

CELERY_ROUTES = (MyRouter(),)

Router classes can also be added by name:

CELERY_ROUTES = ('myapp.routers.MyRouter',)

For simple task name -> route mappings like the router example above,
you can simply drop a dict into CELERY_ROUTES to get the
same behavior:

CELERY_ROUTES = ({'myapp.tasks.compress_video': {
 'queue': 'video',
 'routing_key': 'video.compress'
 }},)

The routers will then be traversed in order, it will stop at the first router
returning a true value, and use that as the final route for the task.

Broadcast

Celery can also support broadcast routing.
Here is an example exchange broadcast_tasks that delivers
copies of tasks to all workers connected to it:

from kombu.common import Broadcast

CELERY_QUEUES = (Broadcast('broadcast_tasks'),)

CELERY_ROUTES = {'tasks.reload_cache': {'queue': 'broadcast_tasks'}}

Now the tasks.reload_cache task will be sent to every
worker consuming from this queue.

Broadcast & Results

Note that Celery result does not define what happens if two
tasks have the same task_id. If the same task is distributed to more
than one worker, then the state history may not be preserved.

It is a good idea to set the task.ignore_result attribute in
this case.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Monitoring and Management Guide

	Introduction

	Workers
	Management Command-line Utilities (inspect/control)
	Commands

	Specifying destination nodes

	Flower: Real-time Celery web-monitor
	Features

	Usage

	celery events: Curses Monitor

	RabbitMQ
	Inspecting queues

	Redis
	Inspecting queues

	Munin

	Events
	Snapshots
	Custom Camera

	Real-time processing

	Event Reference
	Task Events
	task-sent

	task-received

	task-started

	task-succeeded

	task-failed

	task-revoked

	task-retried

	Worker Events
	worker-online

	worker-heartbeat

	worker-offline

Introduction

There are several tools available to monitor and inspect Celery clusters.

This document describes some of these, as as well as
features related to monitoring, like events and broadcast commands.

Workers

Management Command-line Utilities (inspect/control)

celery can also be used to inspect
and manage worker nodes (and to some degree tasks).

To list all the commands available do:

$ celery help

or to get help for a specific command do:

$ celery <command> --help

Commands

	shell: Drop into a Python shell.

The locals will include the celery variable, which is the current app.
Also all known tasks will be automatically added to locals (unless the
--without-tasks flag is set).

Uses Ipython, bpython, or regular python in that order if installed.
You can force an implementation using --force-ipython|-I,
--force-bpython|-B, or --force-python|-P.

	status: List active nodes in this cluster

$ celery -A proj status

	result: Show the result of a task

$ celery -A proj result -t tasks.add 4e196aa4-0141-4601-8138-7aa33db0f577

Note that you can omit the name of the task as long as the
task doesn’t use a custom result backend.

	purge: Purge messages from all configured task queues.

Warning

There is no undo for this operation, and messages will
be permanently deleted!

$ celery -A proj purge

	inspect active: List active tasks

$ celery -A proj inspect active

These are all the tasks that are currently being executed.

	inspect scheduled: List scheduled ETA tasks

$ celery -A proj inspect scheduled

These are tasks reserved by the worker because they have the
eta or countdown argument set.

	inspect reserved: List reserved tasks

$ celery -A proj inspect reserved

This will list all tasks that have been prefetched by the worker,
and is currently waiting to be executed (does not include tasks
with an eta).

	inspect revoked: List history of revoked tasks

$ celery -A proj inspect revoked

	inspect registered: List registered tasks

$ celery -A proj inspect registered

	inspect stats: Show worker statistics (see Statistics)

$ celery -A proj inspect stats

	control enable_events: Enable events

$ celery -A proj control enable_events

	control disable_events: Disable events

$ celery -A proj control disable_events

	migrate: Migrate tasks from one broker to another (EXPERIMENTAL).

$ celery -A proj migrate redis://localhost amqp://localhost

This command will migrate all the tasks on one broker to another.
As this command is new and experimental you should be sure to have
a backup of the data before proceeding.

Note

All inspect and control commands supports a --timeout argument,
This is the number of seconds to wait for responses.
You may have to increase this timeout if you’re not getting a response
due to latency.

Specifying destination nodes

By default the inspect and control commands operates on all workers.
You can specify a single, or a list of workers by using the
–destination argument:

$ celery -A proj inspect -d w1,w2 reserved

$ celery -A proj control -d w1,w2 enable_events

Flower: Real-time Celery web-monitor

Flower is a real-time web based monitor and administration tool for Celery.
It is under active development, but is already an essential tool.
Being the recommended monitor for Celery, it obsoletes the Django-Admin
monitor, celerymon and the ncurses based monitor.

Flower is pronounced like “flow”, but you can also use the botanical version
if you prefer.

Features

	Real-time monitoring using Celery Events

	Task progress and history

	Ability to show task details (arguments, start time, runtime, and more)

	Graphs and statistics

	Remote Control

	View worker status and statistics

	Shutdown and restart worker instances

	Control worker pool size and autoscale settings

	View and modify the queues a worker instance consumes from

	View currently running tasks

	View scheduled tasks (ETA/countdown)

	View reserved and revoked tasks

	Apply time and rate limits

	Configuration viewer

	Revoke or terminate tasks

	HTTP API

	OpenID authentication

Screenshots

[image: ../_images/dashboard.png]

[image: ../_images/monitor.png]

More screenshots [https://github.com/mher/flower/tree/master/docs/screenshots]:

Usage

You can use pip to install Flower:

$ pip install flower

Running the flower command will start a web-server that you can visit:

$ celery -A proj flower

The default port is http://localhost:5555, but you can change this using the –port argument:

$ celery -A proj flower --port=5555

Broker URL can also be passed through the –broker argument :

$ celery flower --broker=amqp://guest:guest@localhost:5672//
or
$ celery flower --broker=redis://guest:guest@localhost:6379/0

Then, you can visit flower in your web browser :

$ open http://localhost:5555

Flower has many more features than are detailed here, including
authorization options. Check out the official documentation [http://flower.readthedocs.org/en/latest/] for more
information.

celery events: Curses Monitor

New in version 2.0.

celery events is a simple curses monitor displaying
task and worker history. You can inspect the result and traceback of tasks,
and it also supports some management commands like rate limiting and shutting
down workers. This monitor was started as a proof of concept, and you
probably want to use Flower instead.

Starting:

$ celery -A proj events

You should see a screen like:

[image: ../_images/celeryevshotsm1.jpg]

celery events is also used to start snapshot cameras (see
Snapshots:

$ celery -A proj events --camera=<camera-class> --frequency=1.0

and it includes a tool to dump events to stdout:

$ celery -A proj events --dump

For a complete list of options use --help:

$ celery events --help

RabbitMQ

To manage a Celery cluster it is important to know how
RabbitMQ can be monitored.

RabbitMQ ships with the rabbitmqctl(1) [http://www.rabbitmq.com/man/rabbitmqctl.1.man.html] command,
with this you can list queues, exchanges, bindings,
queue lengths, the memory usage of each queue, as well
as manage users, virtual hosts and their permissions.

Note

The default virtual host ("/") is used in these
examples, if you use a custom virtual host you have to add
the -p argument to the command, e.g:
rabbitmqctl list_queues -p my_vhost …

Inspecting queues

Finding the number of tasks in a queue:

$ rabbitmqctl list_queues name messages messages_ready \
 messages_unacknowledged

Here messages_ready is the number of messages ready
for delivery (sent but not received), messages_unacknowledged
is the number of messages that has been received by a worker but
not acknowledged yet (meaning it is in progress, or has been reserved).
messages is the sum of ready and unacknowledged messages.

Finding the number of workers currently consuming from a queue:

$ rabbitmqctl list_queues name consumers

Finding the amount of memory allocated to a queue:

$ rabbitmqctl list_queues name memory

	Tip:	Adding the -q option to rabbitmqctl(1) [http://www.rabbitmq.com/man/rabbitmqctl.1.man.html] makes the output
easier to parse.

Redis

If you’re using Redis as the broker, you can monitor the Celery cluster using
the redis-cli(1) command to list lengths of queues.

Inspecting queues

Finding the number of tasks in a queue:

$ redis-cli -h HOST -p PORT -n DATABASE_NUMBER llen QUEUE_NAME

The default queue is named celery. To get all available queues, invoke:

$ redis-cli -h HOST -p PORT -n DATABASE_NUMBER keys *

Note

Queue keys only exists when there are tasks in them, so if a key
does not exist it simply means there are no messages in that queue.
This is because in Redis a list with no elements in it is automatically
removed, and hence it won’t show up in the keys command output,
and llen for that list returns 0.

Also, if you’re using Redis for other purposes, the
output of the keys command will include unrelated values stored in
the database. The recommended way around this is to use a
dedicated DATABASE_NUMBER for Celery, you can also use
database numbers to separate Celery applications from each other (virtual
hosts), but this will not affect the monitoring events used by e.g. Flower
as Redis pub/sub commands are global rather than database based.

Munin

This is a list of known Munin plug-ins that can be useful when
maintaining a Celery cluster.

	rabbitmq-munin: Munin plug-ins for RabbitMQ.

http://github.com/ask/rabbitmq-munin

	celery_tasks: Monitors the number of times each task type has
been executed (requires celerymon).

http://exchange.munin-monitoring.org/plugins/celery_tasks-2/details

	celery_task_states: Monitors the number of tasks in each state
(requires celerymon).

http://exchange.munin-monitoring.org/plugins/celery_tasks/details

Events

The worker has the ability to send a message whenever some event
happens. These events are then captured by tools like Flower,
and celery events to monitor the cluster.

Snapshots

New in version 2.1.

Even a single worker can produce a huge amount of events, so storing
the history of all events on disk may be very expensive.

A sequence of events describes the cluster state in that time period,
by taking periodic snapshots of this state you can keep all history, but
still only periodically write it to disk.

To take snapshots you need a Camera class, with this you can define
what should happen every time the state is captured; You can
write it to a database, send it by email or something else entirely.

celery events is then used to take snapshots with the camera,
for example if you want to capture state every 2 seconds using the
camera myapp.Camera you run celery events with the following
arguments:

$ celery -A proj events -c myapp.Camera --frequency=2.0

Custom Camera

Cameras can be useful if you need to capture events and do something
with those events at an interval. For real-time event processing
you should use app.events.Receiver directly, like in
Real-time processing.

Here is an example camera, dumping the snapshot to screen:

from pprint import pformat

from celery.events.snapshot import Polaroid

class DumpCam(Polaroid):

 def on_shutter(self, state):
 if not state.event_count:
 # No new events since last snapshot.
 return
 print('Workers: {0}'.format(pformat(state.workers, indent=4)))
 print('Tasks: {0}'.format(pformat(state.tasks, indent=4)))
 print('Total: {0.event_count} events, {0.task_count} tasks'.format(
 state))

See the API reference for celery.events.state to read more
about state objects.

Now you can use this cam with celery events by specifying
it with the -c [https://docs.python.org/dev/using/cmdline.html#cmdoption-c] option:

$ celery -A proj events -c myapp.DumpCam --frequency=2.0

Or you can use it programmatically like this:

from celery import Celery
from myapp import DumpCam

def main(app, freq=1.0):
 state = app.events.State()
 with app.connection() as connection:
 recv = app.events.Receiver(connection, handlers={'*': state.event})
 with DumpCam(state, freq=freq):
 recv.capture(limit=None, timeout=None)

if __name__ == '__main__':
 app = Celery(broker='amqp://guest@localhost//')
 main(app)

Real-time processing

To process events in real-time you need the following

	An event consumer (this is the Receiver)

	A set of handlers called when events come in.

You can have different handlers for each event type,
or a catch-all handler can be used (‘*’)

	State (optional)

app.events.State is a convenient in-memory representation
of tasks and workers in the cluster that is updated as events come in.

It encapsulates solutions for many common things, like checking if a
worker is still alive (by verifying heartbeats), merging event fields
together as events come in, making sure timestamps are in sync, and so on.

Combining these you can easily process events in real-time:

from celery import Celery

def my_monitor(app):
 state = app.events.State()

 def announce_failed_tasks(event):
 state.event(event)
 # task name is sent only with -received event, and state
 # will keep track of this for us.
 task = state.tasks.get(event['uuid'])

 print('TASK FAILED: %s[%s] %s' % (
 task.name, task.uuid, task.info(),))

 with app.connection() as connection:
 recv = app.events.Receiver(connection, handlers={
 'task-failed': announce_failed_tasks,
 '*': state.event,
 })
 recv.capture(limit=None, timeout=None, wakeup=True)

if __name__ == '__main__':
 app = Celery(broker='amqp://guest@localhost//')
 my_monitor(app)

Note

The wakeup argument to capture sends a signal to all workers
to force them to send a heartbeat. This way you can immediately see
workers when the monitor starts.

You can listen to specific events by specifying the handlers:

from celery import Celery

def my_monitor(app):
 state = app.events.State()

 def announce_failed_tasks(event):
 state.event(event)
 # task name is sent only with -received event, and state
 # will keep track of this for us.
 task = state.tasks.get(event['uuid'])

 print('TASK FAILED: %s[%s] %s' % (
 task.name, task.uuid, task.info(),))

 with app.connection() as connection:
 recv = app.events.Receiver(connection, handlers={
 'task-failed': announce_failed_tasks,
 })
 recv.capture(limit=None, timeout=None, wakeup=True)

if __name__ == '__main__':
 app = Celery(broker='amqp://guest@localhost//')
 my_monitor(app)

Event Reference

This list contains the events sent by the worker, and their arguments.

Task Events

task-sent

	signature:	task-sent(uuid, name, args, kwargs, retries, eta, expires,
queue, exchange, routing_key)

Sent when a task message is published and
the CELERY_SEND_TASK_SENT_EVENT setting is enabled.

task-received

	signature:	task-received(uuid, name, args, kwargs, retries, eta, hostname,
timestamp)

Sent when the worker receives a task.

task-started

	signature:	task-started(uuid, hostname, timestamp, pid)

Sent just before the worker executes the task.

task-succeeded

	signature:	task-succeeded(uuid, result, runtime, hostname, timestamp)

Sent if the task executed successfully.

Runtime is the time it took to execute the task using the pool.
(Starting from the task is sent to the worker pool, and ending when the
pool result handler callback is called).

task-failed

	signature:	task-failed(uuid, exception, traceback, hostname, timestamp)

Sent if the execution of the task failed.

task-revoked

	signature:	task-revoked(uuid, terminated, signum, expired)

Sent if the task has been revoked (Note that this is likely
to be sent by more than one worker).

	
	terminated is set to true if the task process was terminated,

	and the signum field set to the signal used.

	expired is set to true if the task expired.

task-retried

	signature:	task-retried(uuid, exception, traceback, hostname, timestamp)

Sent if the task failed, but will be retried in the future.

Worker Events

worker-online

	signature:	worker-online(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys)

The worker has connected to the broker and is online.

	hostname: Hostname of the worker.

	timestamp: Event timestamp.

	freq: Heartbeat frequency in seconds (float).

	sw_ident: Name of worker software (e.g. py-celery).

	sw_ver: Software version (e.g. 2.2.0).

	sw_sys: Operating System (e.g. Linux, Windows, Darwin).

worker-heartbeat

	signature:	worker-heartbeat(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys,
active, processed)

Sent every minute, if the worker has not sent a heartbeat in 2 minutes,
it is considered to be offline.

	hostname: Hostname of the worker.

	timestamp: Event timestamp.

	freq: Heartbeat frequency in seconds (float).

	sw_ident: Name of worker software (e.g. py-celery).

	sw_ver: Software version (e.g. 2.2.0).

	sw_sys: Operating System (e.g. Linux, Windows, Darwin).

	active: Number of currently executing tasks.

	processed: Total number of tasks processed by this worker.

worker-offline

	signature:	worker-offline(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys)

The worker has disconnected from the broker.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Security

	Introduction

	Areas of Concern
	Broker

	Client

	Worker

	Serializers

	Message Signing

	Intrusion Detection
	Logs

	Tripwire

Introduction

While Celery is written with security in mind, it should be treated as an
unsafe component.

Depending on your Security Policy [http://en.wikipedia.org/wiki/Security_policy], there are
various steps you can take to make your Celery installation more secure.

Areas of Concern

Broker

It is imperative that the broker is guarded from unwanted access, especially
if accessible to the public.
By default, workers trust that the data they get from the broker has not
been tampered with. See Message Signing for information on how to make
the broker connection more trustworthy.

The first line of defence should be to put a firewall in front of the broker,
allowing only white-listed machines to access it.

Keep in mind that both firewall misconfiguration, and temporarily disabling
the firewall, is common in the real world. Solid security policy includes
monitoring of firewall equipment to detect if they have been disabled, be it
accidentally or on purpose.

In other words, one should not blindly trust the firewall either.

If your broker supports fine-grained access control, like RabbitMQ,
this is something you should look at enabling. See for example
http://www.rabbitmq.com/access-control.html.

If supported by your broker backend, you can enable end-to-end SSL encryption
and authentication using BROKER_USE_SSL.

Client

In Celery, “client” refers to anything that sends messages to the
broker, e.g. web-servers that apply tasks.

Having the broker properly secured doesn’t matter if arbitrary messages
can be sent through a client.

[Need more text here]

Worker

The default permissions of tasks running inside a worker are the same ones as
the privileges of the worker itself. This applies to resources such as
memory, file-systems and devices.

An exception to this rule is when using the multiprocessing based task pool,
which is currently the default. In this case, the task will have access to
any memory copied as a result of the fork() call (does not apply
under MS Windows), and access to memory contents written
by parent tasks in the same worker child process.

Limiting access to memory contents can be done by launching every task
in a subprocess (fork() + execve()).

Limiting file-system and device access can be accomplished by using
chroot [http://en.wikipedia.org/wiki/Chroot], jail [http://en.wikipedia.org/wiki/FreeBSD_jail], sandboxing [http://en.wikipedia.org/wiki/Sandbox_(computer_security)], virtual machines or other
mechanisms as enabled by the platform or additional software.

Note also that any task executed in the worker will have the
same network access as the machine on which it’s running. If the worker
is located on an internal network it’s recommended to add firewall rules for
outbound traffic.

Serializers

The default pickle serializer is convenient because it supports
arbitrary Python objects, whereas other serializers only
work with a restricted set of types.

But for the same reasons the pickle serializer is inherently insecure [*],
and should be avoided whenever clients are untrusted or
unauthenticated.

	[*]	http://nadiana.com/python-pickle-insecure

You can disable untrusted content by specifying
a white-list of accepted content-types in the CELERY_ACCEPT_CONTENT
setting:

New in version 3.0.18.

Note

This setting was first supported in version 3.0.18. If you’re
running an earlier version it will simply be ignored, so make
sure you’re running a version that supports it.

CELERY_ACCEPT_CONTENT = ['json']

This accepts a list of serializer names and content-types, so you could
also specify the content type for json:

CELERY_ACCEPT_CONTENT = ['application/json']

Celery also comes with a special auth serializer that validates
communication between Celery clients and workers, making sure
that messages originates from trusted sources.
Using Public-key cryptography the auth serializer can verify the
authenticity of senders, to enable this read Message Signing
for more information.

Message Signing

Celery can use the pyOpenSSL [http://pypi.python.org/pypi/pyOpenSSL] library to sign message using
Public-key cryptography, where
messages sent by clients are signed using a private key
and then later verified by the worker using a public certificate.

Optimally certificates should be signed by an official
Certificate Authority [http://en.wikipedia.org/wiki/Certificate_authority], but they can also be self-signed.

To enable this you should configure the CELERY_TASK_SERIALIZER
setting to use the auth serializer.
Also required is configuring the
paths used to locate private keys and certificates on the file-system:
the CELERY_SECURITY_KEY,
CELERY_SECURITY_CERTIFICATE and CELERY_SECURITY_CERT_STORE
settings respectively.
With these configured it is also necessary to call the
celery.setup_security() function. Note that this will also
disable all insecure serializers so that the worker won’t accept
messages with untrusted content types.

This is an example configuration using the auth serializer,
with the private key and certificate files located in /etc/ssl.

CELERY_SECURITY_KEY = '/etc/ssl/private/worker.key'
CELERY_SECURITY_CERTIFICATE = '/etc/ssl/certs/worker.pem'
CELERY_SECURITY_CERT_STORE = '/etc/ssl/certs/*.pem'
from celery.security import setup_security
setup_security()

Note

While relative paths are not disallowed, using absolute paths
is recommended for these files.

Also note that the auth serializer won’t encrypt the contents of
a message, so if needed this will have to be enabled separately.

Intrusion Detection

The most important part when defending your systems against
intruders is being able to detect if the system has been compromised.

Logs

Logs are usually the first place to look for evidence
of security breaches, but they are useless if they can be tampered with.

A good solution is to set up centralized logging with a dedicated logging
server. Access to it should be restricted.
In addition to having all of the logs in a single place, if configured
correctly, it can make it harder for intruders to tamper with your logs.

This should be fairly easy to setup using syslog (see also syslog-ng [http://en.wikipedia.org/wiki/Syslog-ng] and
rsyslog [http://www.rsyslog.com/].). Celery uses the logging [https://docs.python.org/dev/library/logging.html#module-logging] library, and already has
support for using syslog.

A tip for the paranoid is to send logs using UDP and cut the
transmit part of the logging server’s network cable :-)

Tripwire

Tripwire [http://tripwire.com/] is a (now commercial) data integrity tool, with several
open source implementations, used to keep
cryptographic hashes of files in the file-system, so that administrators
can be alerted when they change. This way when the damage is done and your
system has been compromised you can tell exactly what files intruders
have changed (password files, logs, backdoors, rootkits and so on).
Often this is the only way you will be able to detect an intrusion.

Some open source implementations include:

	OSSEC [http://www.ossec.net/]

	Samhain [http://la-samhna.de/samhain/index.html]

	Open Source Tripwire [http://sourceforge.net/projects/tripwire/]

	AIDE [http://aide.sourceforge.net/]

Also, the ZFS [http://en.wikipedia.org/wiki/ZFS] file-system comes with built-in integrity checks
that can be used.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Optimizing

Introduction

The default configuration makes a lot of compromises. It’s not optimal for
any single case, but works well enough for most situations.

There are optimizations that can be applied based on specific use cases.

Optimizations can apply to different properties of the running environment,
be it the time tasks take to execute, the amount of memory used, or
responsiveness at times of high load.

Ensuring Operations

In the book Programming Pearls [http://www.cs.bell-labs.com/cm/cs/pearls/], Jon Bentley presents the concept of
back-of-the-envelope calculations by asking the question;

❝ How much water flows out of the Mississippi River in a day? ❞

The point of this exercise [*] is to show that there is a limit
to how much data a system can process in a timely manner.
Back of the envelope calculations can be used as a means to plan for this
ahead of time.

In Celery; If a task takes 10 minutes to complete,
and there are 10 new tasks coming in every minute, the queue will never
be empty. This is why it’s very important
that you monitor queue lengths!

A way to do this is by using Munin.
You should set up alerts, that will notify you as soon as any queue has
reached an unacceptable size. This way you can take appropriate action
like adding new worker nodes, or revoking unnecessary tasks.

	[*]	The chapter is available to read for free here:
The back of the envelope [http://books.google.com/books?id=kse_7qbWbjsC&pg=PA67]. The book is a classic text. Highly
recommended.

General Settings

librabbitmq (Python 2 only)

If you’re using RabbitMQ (AMQP) as the broker then you can install the
librabbitmq module to use an optimized client written in C:

$ pip install librabbitmq

The ‘amqp’ transport will automatically use the librabbitmq module if it’s
installed, or you can also specify the transport you want directly by using
the pyamqp:// or librabbitmq:// prefixes.

Broker Connection Pools

The broker connection pool is enabled by default since version 2.5.

You can tweak the BROKER_POOL_LIMIT setting to minimize
contention, and the value should be based on the number of
active threads/greenthreads using broker connections.

Using Transient Queues

Queues created by Celery are persistent by default. This means that
the broker will write messages to disk to ensure that the tasks will
be executed even if the broker is restarted.

But in some cases it’s fine that the message is lost, so not all tasks
require durability. You can create a transient queue for these tasks
to improve performance:

from kombu import Exchange, Queue

CELERY_QUEUES = (
 Queue('celery', routing_key='celery'),
 Queue('transient', routing_key='transient',
 delivery_mode=1),
)

The delivery_mode changes how the messages to this queue are delivered.
A value of 1 means that the message will not be written to disk, and a value
of 2 (default) means that the message can be written to disk.

To direct a task to your new transient queue you can specify the queue
argument (or use the CELERY_ROUTES setting):

task.apply_async(args, queue='transient')

For more information see the routing guide.

Worker Settings

Prefetch Limits

Prefetch is a term inherited from AMQP that is often misunderstood
by users.

The prefetch limit is a limit for the number of tasks (messages) a worker
can reserve for itself. If it is zero, the worker will keep
consuming messages, not respecting that there may be other
available worker nodes that may be able to process them sooner [†],
or that the messages may not even fit in memory.

The workers’ default prefetch count is the
CELERYD_PREFETCH_MULTIPLIER setting multiplied by the number
of concurrency slots[*]_ (processes/threads/greenthreads).

If you have many tasks with a long duration you want
the multiplier value to be 1, which means it will only reserve one
task per worker process at a time.

However – If you have many short-running tasks, and throughput/round trip
latency is important to you, this number should be large. The worker is
able to process more tasks per second if the messages have already been
prefetched, and is available in memory. You may have to experiment to find
the best value that works for you. Values like 50 or 150 might make sense in
these circumstances. Say 64, or 128.

If you have a combination of long- and short-running tasks, the best option
is to use two worker nodes that are configured separately, and route
the tasks according to the run-time. (see Routing Tasks).

	[†]	RabbitMQ and other brokers deliver messages round-robin,
so this doesn’t apply to an active system. If there is no prefetch
limit and you restart the cluster, there will be timing delays between
nodes starting. If there are 3 offline nodes and one active node,
all messages will be delivered to the active node.

	[‡]	This is the concurrency setting; CELERYD_CONCURRENCY or the
-c [https://docs.python.org/dev/using/cmdline.html#cmdoption-c] option to the celery worker program.

Reserve one task at a time

When using early acknowledgement (default), a prefetch multiplier of 1
means the worker will reserve at most one extra task for every active
worker process.

When users ask if it’s possible to disable “prefetching of tasks”, often
what they really want is to have a worker only reserve as many tasks as there
are child processes.

But this is not possible without enabling late acknowledgements
acknowledgements; A task that has been started, will be
retried if the worker crashes mid execution so the task must be idempotent [http://en.wikipedia.org/wiki/Idempotent]
(see also notes at Should I use retry or acks_late?).

You can enable this behavior by using the following configuration options:

CELERY_ACKS_LATE = True
CELERYD_PREFETCH_MULTIPLIER = 1

Prefork pool prefetch settings

The prefork pool will asynchronously send as many tasks to the processes
as it can and this means that the processes are, in effect, prefetching
tasks.

This benefits performance but it also means that tasks may be stuck
waiting for long running tasks to complete:

-> send task T1 to process A
A executes T1
-> send task T2 to process B
B executes T2
<- T2 complete sent by process B

-> send task T3 to process A
A still executing T1, T3 stuck in local buffer and will not start until
T1 returns, and other queued tasks will not be sent to idle processes
<- T1 complete sent by process A
A executes T3

The worker will send tasks to the process as long as the pipe buffer is
writable. The pipe buffer size varies based on the operating system: some may
have a buffer as small as 64kb but on recent Linux versions the buffer
size is 1MB (can only be changed system wide).

You can disable this prefetching behavior by enabling the -Ofair
worker option:

$ celery -A proj worker -l info -Ofair

With this option enabled the worker will only write to processes that are
available for work, disabling the prefetch behavior:

-> send task T1 to process A

A executes T1
-> send task T2 to process B
B executes T2
<- T2 complete sent by process B

-> send T3 to process B
B executes T3

<- T3 complete sent by process B
<- T1 complete sent by process A

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Concurrency

	Release:	3.1

	Date:	Nov 12, 2017

	Concurrency with Eventlet
	Introduction

	Enabling Eventlet

	Examples

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Concurrency with Eventlet

Introduction

The Eventlet [http://eventlet.net] homepage describes it as;
A concurrent networking library for Python that allows you to
change how you run your code, not how you write it.

	It uses epoll(4) [http://linux.die.net/man/4/epoll] or libevent [http://monkey.org/~provos/libevent/] for
highly scalable non-blocking I/O [http://en.wikipedia.org/wiki/Asynchronous_I/O#Select.28.2Fpoll.29_loops].

	Coroutines [http://en.wikipedia.org/wiki/Coroutine] ensure that the developer uses a blocking style of
programming that is similar to threading, but provide the benefits of
non-blocking I/O.

	The event dispatch is implicit, which means you can easily use Eventlet
from the Python interpreter, or as a small part of a larger application.

Celery supports Eventlet as an alternative execution pool implementation.
It is in some cases superior to prefork, but you need to ensure
your tasks do not perform blocking calls, as this will halt all
other operations in the worker until the blocking call returns.

The prefork pool can take use of multiple processes, but how many is
often limited to a few processes per CPU. With Eventlet you can efficiently
spawn hundreds, or thousands of green threads. In an informal test with a
feed hub system the Eventlet pool could fetch and process hundreds of feeds
every second, while the prefork pool spent 14 seconds processing 100
feeds. Note that is one of the applications evented I/O is especially good
at (asynchronous HTTP requests). You may want a mix of both Eventlet and
prefork workers, and route tasks according to compatibility or
what works best.

Enabling Eventlet

You can enable the Eventlet pool by using the -P option to
celery worker:

$ celery -A proj worker -P eventlet -c 1000

Examples

See the Eventlet examples [https://github.com/celery/celery/tree/master/examples/eventlet] directory in the Celery distribution for
some examples taking use of Eventlet support.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Signals

	Basics

	Signals
	Task Signals
	before_task_publish

	after_task_publish

	task_prerun

	task_postrun

	task_retry

	task_success

	task_failure

	task_revoked

	App Signals
	import_modules

	Worker Signals
	celeryd_after_setup

	celeryd_init

	worker_init

	worker_ready

	worker_process_init

	worker_process_shutdown

	worker_shutdown

	Beat Signals
	beat_init

	beat_embedded_init

	Eventlet Signals
	eventlet_pool_started

	eventlet_pool_preshutdown

	eventlet_pool_postshutdown

	eventlet_pool_apply

	Logging Signals
	setup_logging

	after_setup_logger

	after_setup_task_logger

	Command signals
	user_preload_options

	Deprecated Signals
	task_sent

Signals allows decoupled applications to receive notifications when
certain actions occur elsewhere in the application.

Celery ships with many signals that your application can hook into
to augment behavior of certain actions.

Basics

Several kinds of events trigger signals, you can connect to these signals
to perform actions as they trigger.

Example connecting to the after_task_publish signal:

from celery.signals import after_task_publish

@after_task_publish.connect
def task_sent_handler(sender=None, body=None, **kwargs):
 print('after_task_publish for task id {body[id]}'.format(
 body=body,
))

Some signals also have a sender which you can filter by. For example the
after_task_publish signal uses the task name as a sender, so by
providing the sender argument to
connect you can
connect your handler to be called every time a task with name “proj.tasks.add”
is published:

@after_task_publish.connect(sender='proj.tasks.add')
def task_sent_handler(sender=None, body=None, **kwargs):
 print('after_task_publish for task id {body[id]}'.format(
 body=body,
))

Signals use the same implementation as django.core.dispatch. As a result other
keyword parameters (e.g. signal) are passed to all signal handlers by default.

The best practice for signal handlers is to accept arbitrary keyword
arguments (i.e. **kwargs). That way new celery versions can add additional
arguments without breaking user code.

Signals

Task Signals

before_task_publish

New in version 3.1.

Dispatched before a task is published.
Note that this is executed in the process sending the task.

Sender is the name of the task being sent.

Provides arguments:

	body

Task message body.

This is a mapping containing the task message fields
(see Task Messages).

	exchange

Name of the exchange to send to or a Exchange [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Exchange] object.

	routing_key

Routing key to use when sending the message.

	headers

Application headers mapping (can be modified).

	properties

Message properties (can be modified)

	declare

List of entities (Exchange [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Exchange],
Queue [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Queue] or binding to declare before
publishing the message. Can be modified.

	retry_policy

Mapping of retry options. Can be any argument to
kombu.Connection.ensure() [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Connection.ensure] and can be modified.

after_task_publish

Dispatched when a task has been sent to the broker.
Note that this is executed in the process that sent the task.

Sender is the name of the task being sent.

Provides arguments:

	body

The task message body, see Task Messages
for a reference of possible fields that can be defined.

	exchange

Name of the exchange or Exchange [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Exchange] object used.

	routing_key

Routing key used.

task_prerun

Dispatched before a task is executed.

Sender is the task object being executed.

Provides arguments:

	
	task_id

	Id of the task to be executed.

	
	task

	The task being executed.

	
	args

	the tasks positional arguments.

	
	kwargs

	The tasks keyword arguments.

task_postrun

Dispatched after a task has been executed.

Sender is the task object executed.

Provides arguments:

	
	task_id

	Id of the task to be executed.

	
	task

	The task being executed.

	
	args

	The tasks positional arguments.

	
	kwargs

	The tasks keyword arguments.

	
	retval

	The return value of the task.

	state

Name of the resulting state.

task_retry

Dispatched when a task will be retried.

Sender is the task object.

Provides arguments:

	request

The current task request.

	reason

Reason for retry (usually an exception instance, but can always be
coerced to str [https://docs.python.org/dev/library/stdtypes.html#str]).

	einfo

Detailed exception information, including traceback
(a billiard.einfo.ExceptionInfo object).

task_success

Dispatched when a task succeeds.

Sender is the task object executed.

Provides arguments

	
	result

	Return value of the task.

task_failure

Dispatched when a task fails.

Sender is the task object executed.

Provides arguments:

	
	task_id

	Id of the task.

	
	exception

	Exception instance raised.

	
	args

	Positional arguments the task was called with.

	
	kwargs

	Keyword arguments the task was called with.

	
	traceback

	Stack trace object.

	
	einfo

	The celery.datastructures.ExceptionInfo instance.

task_revoked

Dispatched when a task is revoked/terminated by the worker.

Sender is the task object revoked/terminated.

Provides arguments:

	request

This is a Request instance, and not
task.request. When using the prefork pool this signal
is dispatched in the parent process, so task.request is not available
and should not be used. Use this object instead, which should have many
of the same fields.

	
	terminated

	Set to True if the task was terminated.

	
	signum

	Signal number used to terminate the task. If this is None and
terminated is True then TERM should be assumed.

	expired
Set to True if the task expired.

App Signals

import_modules

This signal is sent when a program (worker, beat, shell) etc, asks
for modules in the CELERY_INCLUDE and CELERY_IMPORTS
settings to be imported.

Sender is the app instance.

Worker Signals

celeryd_after_setup

This signal is sent after the worker instance is set up,
but before it calls run. This means that any queues from the -Q
option is enabled, logging has been set up and so on.

It can be used to e.g. add custom queues that should always be consumed
from, disregarding the -Q option. Here’s an example
that sets up a direct queue for each worker, these queues can then be
used to route a task to any specific worker:

from celery.signals import celeryd_after_setup

@celeryd_after_setup.connect
def setup_direct_queue(sender, instance, **kwargs):
 queue_name = '{0}.dq'.format(sender) # sender is the nodename of the worker
 instance.app.amqp.queues.select_add(queue_name)

Provides arguments:

	sender
Hostname of the worker.

	
	instance

	This is the celery.apps.worker.Worker instance to be initialized.
Note that only the app and hostname (nodename) attributes have been
set so far, and the rest of __init__ has not been executed.

	
	conf

	The configuration of the current app.

celeryd_init

This is the first signal sent when celery worker starts up.
The sender is the host name of the worker, so this signal can be used
to setup worker specific configuration:

from celery.signals import celeryd_init

@celeryd_init.connect(sender='worker12@example.com')
def configure_worker12(conf=None, **kwargs):
 conf.CELERY_DEFAULT_RATE_LIMIT = '10/m'

or to set up configuration for multiple workers you can omit specifying a
sender when you connect:

from celery.signals import celeryd_init

@celeryd_init.connect
def configure_workers(sender=None, conf=None, **kwargs):
 if sender in ('worker1@example.com', 'worker2@example.com'):
 conf.CELERY_DEFAULT_RATE_LIMIT = '10/m'
 if sender == 'worker3@example.com':
 conf.CELERYD_PREFETCH_MULTIPLIER = 0

Provides arguments:

	sender
Nodename of the worker.

	
	instance

	This is the celery.apps.worker.Worker instance to be initialized.
Note that only the app and hostname (nodename) attributes have been
set so far, and the rest of __init__ has not been executed.

	
	conf

	The configuration of the current app.

	options

Options passed to the worker from command-line arguments (including
defaults).

worker_init

Dispatched before the worker is started.

worker_ready

Dispatched when the worker is ready to accept work.

worker_process_init

Dispatched in all pool child processes when they start.

Note that handlers attached to this signal must not be blocking
for more than 4 seconds, or the process will be killed assuming
it failed to start.

worker_process_shutdown

Dispatched in all pool child processes just before they exit.

Note: There is no guarantee that this signal will be dispatched,
similarly to finally blocks it’s impossible to guarantee that handlers
will be called at shutdown, and if called it may be interrupted during.

Provides arguments:

	pid

The pid of the child process that is about to shutdown.

	exitcode

The exitcode that will be used when the child process exits.

worker_shutdown

Dispatched when the worker is about to shut down.

Beat Signals

beat_init

Dispatched when celery beat starts (either standalone or embedded).
Sender is the celery.beat.Service instance.

beat_embedded_init

Dispatched in addition to the beat_init signal when celery
beat is started as an embedded process. Sender is the
celery.beat.Service instance.

Eventlet Signals

eventlet_pool_started

Sent when the eventlet pool has been started.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_preshutdown

Sent when the worker shutdown, just before the eventlet pool
is requested to wait for remaining workers.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_postshutdown

Sent when the pool has been joined and the worker is ready to shutdown.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_apply

Sent whenever a task is applied to the pool.

Sender is the celery.concurrency.eventlet.TaskPool instance.

Provides arguments:

	target

The target function.

	args

Positional arguments.

	kwargs

Keyword arguments.

Logging Signals

setup_logging

Celery won’t configure the loggers if this signal is connected,
so you can use this to completely override the logging configuration
with your own.

If you would like to augment the logging configuration setup by
Celery then you can use the after_setup_logger and
after_setup_task_logger signals.

Provides arguments:

	
	loglevel

	The level of the logging object.

	
	logfile

	The name of the logfile.

	
	format

	The log format string.

	
	colorize

	Specify if log messages are colored or not.

after_setup_logger

Sent after the setup of every global logger (not task loggers).
Used to augment logging configuration.

Provides arguments:

	
	logger

	The logger object.

	
	loglevel

	The level of the logging object.

	
	logfile

	The name of the logfile.

	
	format

	The log format string.

	
	colorize

	Specify if log messages are colored or not.

after_setup_task_logger

Sent after the setup of every single task logger.
Used to augment logging configuration.

Provides arguments:

	
	logger

	The logger object.

	
	loglevel

	The level of the logging object.

	
	logfile

	The name of the logfile.

	
	format

	The log format string.

	
	colorize

	Specify if log messages are colored or not.

Command signals

user_preload_options

This signal is sent after any of the Celery command line programs
are finished parsing the user preload options.

It can be used to add additional command-line arguments to the
celery umbrella command:

from celery import Celery
from celery import signals
from celery.bin.base import Option

app = Celery()
app.user_options['preload'].add(Option(
 '--monitoring', action='store_true',
 help='Enable our external monitoring utility, blahblah',
))

@signals.user_preload_options.connect
def handle_preload_options(options, **kwargs):
 if options['monitoring']:
 enable_monitoring()

Sender is the Command instance, which depends
on what program was called (e.g. for the umbrella command it will be
a CeleryCommand) object).

Provides arguments:

	app

The app instance.

	options

Mapping of the parsed user preload options (with default values).

Deprecated Signals

task_sent

This signal is deprecated, please use after_task_publish instead.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Extensions and Bootsteps

	Custom Message Consumers

	Blueprints

	Worker
	Attributes

	Example worker bootstep

	Consumer
	Attributes

	Methods

	Installing Bootsteps

	Command-line programs
	Adding new command-line options

	Adding new celery sub-commands

	Worker API
	Hub [http://kombu.readthedocs.io/en/latest/reference/kombu.async.html#kombu.async.Hub] - The workers async event loop.

	Timer - Scheduling events

Custom Message Consumers

You may want to embed custom Kombu consumers to manually process your messages.

For that purpose a special ConsumerStep bootstep class
exists, where you only need to define the get_consumers method, which must
return a list of kombu.Consumer [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Consumer] objects to start
whenever the connection is established:

from celery import Celery
from celery import bootsteps
from kombu import Consumer, Exchange, Queue

my_queue = Queue('custom', Exchange('custom'), 'routing_key')

app = Celery(broker='amqp://')

class MyConsumerStep(bootsteps.ConsumerStep):

 def get_consumers(self, channel):
 return [Consumer(channel,
 queues=[my_queue],
 callbacks=[self.handle_message],
 accept=['json'])]

 def handle_message(self, body, message):
 print('Received message: {0!r}'.format(body))
 message.ack()
app.steps['consumer'].add(MyConsumerStep)

def send_me_a_message(self, who='world!', producer=None):
 with app.producer_or_acquire(producer) as producer:
 producer.send(
 {'hello': who},
 serializer='json',
 exchange=my_queue.exchange,
 routing_key='routing_key',
 declare=[my_queue],
 retry=True,
)

if __name__ == '__main__':
 send_me_a_message('celery')

Note

Kombu Consumers can take use of two different message callback dispatching
mechanisms. The first one is the callbacks argument which accepts
a list of callbacks with a (body, message) signature,
the second one is the on_message argument which takes a single
callback with a (message,) signature. The latter will not
automatically decode and deserialize the payload which is useful
in many cases:

def get_consumers(self, channel):
 return [Consumer(channel, queues=[my_queue],
 on_message=self.on_message)]

def on_message(self, message):
 payload = message.decode()
 print(
 'Received message: {0!r} {props!r} rawlen={s}'.format(
 payload, props=message.properties, s=len(message.body),
))
 message.ack()

Blueprints

Bootsteps is a technique to add functionality to the workers.
A bootstep is a custom class that defines hooks to do custom actions
at different stages in the worker. Every bootstep belongs to a blueprint,
and the worker currently defines two blueprints: Worker, and Consumer

	Figure A: Bootsteps in the Worker and Consumer blueprints. Starting

	from the bottom up the first step in the worker blueprint
is the Timer, and the last step is to start the Consumer blueprint,
which then establishes the broker connection and starts
consuming messages.

[image: ../_images/worker_graph_full.png]

Worker

The Worker is the first blueprint to start, and with it starts major components like
the event loop, processing pool, the timer, and also optional components
like the autoscaler. When the worker is fully started it will continue
to the Consumer blueprint.

The WorkController is the core worker implementation,
and contains several methods and attributes that you can use in your bootstep.

Attributes

	
app

	The current app instance.

	
hostname

	The workers node name (e.g. worker1@example.com)

	
blueprint

	This is the worker Blueprint.

	
hub

	Event loop object (Hub [http://kombu.readthedocs.io/en/latest/reference/kombu.async.html#kombu.async.Hub]). You can use
this to register callbacks in the event loop.

This is only supported by async I/O enabled transports (amqp, redis),
in which case the worker.use_eventloop attribute should be set.

Your worker bootstep must require the Hub bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker.components:Hub',)

	
pool

	The current process/eventlet/gevent/thread pool.
See celery.concurrency.base.BasePool.

Your worker bootstep must require the Pool bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker.components:Pool',)

	
timer

	Timer [http://kombu.readthedocs.io/en/latest/reference/kombu.async.timer.html#kombu.async.timer.Timer] used to schedule functions.

Your worker bootstep must require the Timer bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker.components:Timer',)

	
statedb

	Database <celery.worker.state.Persistent>` to persist state between
worker restarts.

This is only defined if the statedb argument is enabled.

Your worker bootstep must require the Statedb bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker.components:Statedb',)

	
autoscaler

	Autoscaler used to automatically grow
and shrink the number of processes in the pool.

This is only defined if the autoscale argument is enabled.

Your worker bootstep must require the Autoscaler bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker.autoscaler:Autoscaler',)

	
autoreloader

	Autoreloader used to automatically
reload use code when the filesystem changes.

This is only defined if the autoreload argument is enabled.
Your worker bootstep must require the Autoreloader bootstep to use this;

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker.autoreloader:Autoreloader',)

Example worker bootstep

An example Worker bootstep could be:

from celery import bootsteps

class ExampleWorkerStep(bootsteps.StartStopStep):
 requires = ('Pool',)

 def __init__(self, worker, **kwargs):
 print('Called when the WorkController instance is constructed')
 print('Arguments to WorkController: {0!r}'.format(kwargs))

 def create(self, worker):
 # this method can be used to delegate the action methods
 # to another object that implements ``start`` and ``stop``.
 return self

 def start(self, worker):
 print('Called when the worker is started.')

 def stop(self, worker):
 print("Called when the worker shuts down.")

 def terminate(self, worker):
 print("Called when the worker terminates")

Every method is passed the current WorkController instance as the first
argument.

Another example could use the timer to wake up at regular intervals:

from celery import bootsteps

class DeadlockDetection(bootsteps.StartStopStep):
 requires = ('Timer',)

 def __init__(self, worker, deadlock_timeout=3600):
 self.timeout = deadlock_timeout
 self.requests = []
 self.tref = None

 def start(self, worker):
 # run every 30 seconds.
 self.tref = worker.timer.call_repeatedly(
 30.0, self.detect, (worker,), priority=10,
)

 def stop(self, worker):
 if self.tref:
 self.tref.cancel()
 self.tref = None

 def detect(self, worker):
 # update active requests
 for req in self.worker.active_requests:
 if req.time_start and time() - req.time_start > self.timeout:
 raise SystemExit()

Consumer

The Consumer blueprint establishes a connection to the broker, and
is restarted every time this connection is lost. Consumer bootsteps
include the worker heartbeat, the remote control command consumer, and
importantly, the task consumer.

When you create consumer bootsteps you must take into account that it must
be possible to restart your blueprint. An additional ‘shutdown’ method is
defined for consumer bootsteps, this method is called when the worker is
shutdown.

Attributes

	
app

	The current app instance.

	
controller

	The parent WorkController object that created this consumer.

	
hostname

	The workers node name (e.g. worker1@example.com)

	
blueprint

	This is the worker Blueprint.

	
hub

	Event loop object (Hub [http://kombu.readthedocs.io/en/latest/reference/kombu.async.html#kombu.async.Hub]). You can use
this to register callbacks in the event loop.

This is only supported by async I/O enabled transports (amqp, redis),
in which case the worker.use_eventloop attribute should be set.

Your worker bootstep must require the Hub bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker:Hub',)

	
connection

	The current broker connection (kombu.Connection [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Connection]).

A consumer bootstep must require the ‘Connection’ bootstep
to use this:

class Step(bootsteps.StartStopStep):
 requires = ('celery.worker.consumer:Connection',)

	
event_dispatcher

	A app.events.Dispatcher object that can be used to send events.

A consumer bootstep must require the Events bootstep to use this.

class Step(bootsteps.StartStopStep):
 requires = ('celery.worker.consumer:Events',)

	
gossip

	Worker to worker broadcast communication
(Gossip).

A consumer bootstep must require the Gossip bootstep to use this.

class RatelimitStep(bootsteps.StartStopStep):
 """Rate limit tasks based on the number of workers in the
 cluster."""
 requires = ('celery.worker.consumer:Gossip',)

 def start(self, c):
 self.c = c
 self.c.gossip.on.node_join.add(self.on_cluster_size_change)
 self.c.gossip.on.node_leave.add(self.on_cluster_size_change)
 self.c.gossip.on.node_lost.add(self.on_node_lost)
 self.tasks = [
 self.app.tasks['proj.tasks.add']
 self.app.tasks['proj.tasks.mul']
]
 self.last_size = None

 def on_cluster_size_change(self, worker):
 cluster_size = len(self.c.gossip.state.alive_workers())
 if cluster_size != self.last_size:
 for task in self.tasks:
 task.rate_limit = 1.0 / cluster_size
 self.c.reset_rate_limits()
 self.last_size = cluster_size

 def on_node_lost(self, worker):
 # may have processed heartbeat too late, so wake up soon
 # in order to see if the worker recovered.
 self.c.timer.call_after(10.0, self.on_cluster_size_change)

Callbacks

	<set> gossip.on.node_join

Called whenever a new node joins the cluster, providing a
Worker instance.

	<set> gossip.on.node_leave

Called whenever a new node leaves the cluster (shuts down),
providing a Worker instance.

	<set> gossip.on.node_lost

Called whenever heartbeat was missed for a worker instance in the
cluster (heartbeat not received or processed in time),
providing a Worker instance.

This does not necessarily mean the worker is actually offline, so use a time
out mechanism if the default heartbeat timeout is not sufficient.

	
pool

	The current process/eventlet/gevent/thread pool.
See celery.concurrency.base.BasePool.

	
timer

	Timer <celery.utils.timer2.Schedule used to schedule functions.

	
heart

	Responsible for sending worker event heartbeats
(Heart).

Your consumer bootstep must require the Heart bootstep to use this:

class Step(bootsteps.StartStopStep):
 requires = ('celery.worker.consumer:Heart',)

	
task_consumer

	The kombu.Consumer [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Consumer] object used to consume task messages.

Your consumer bootstep must require the Tasks bootstep to use this:

class Step(bootsteps.StartStopStep):
 requires = ('celery.worker.consumer:Tasks',)

	
strategies

	Every registered task type has an entry in this mapping,
where the value is used to execute an incoming message of this task type
(the task execution strategy). This mapping is generated by the Tasks
bootstep when the consumer starts:

for name, task in app.tasks.items():
 strategies[name] = task.start_strategy(app, consumer)
 task.__trace__ = celery.app.trace.build_tracer(
 name, task, loader, hostname
)

Your consumer bootstep must require the Tasks bootstep to use this:

class Step(bootsteps.StartStopStep):
 requires = ('celery.worker.consumer:Tasks',)

	
task_buckets

	A defaultdict [https://docs.python.org/dev/library/collections.html#collections.defaultdict] used to lookup the rate limit for
a task by type.
Entries in this dict may be None (for no limit) or a
TokenBucket [http://kombu.readthedocs.io/en/latest/reference/kombu.utils.limits.html#kombu.utils.limits.TokenBucket] instance implementing
consume(tokens) and expected_time(tokens).

TokenBucket implements the token bucket algorithm [http://en.wikipedia.org/wiki/Token_bucket], but any algorithm
may be used as long as it conforms to the same interface and defines the
two methods above.

	
qos

	The QoS object can be used to change the
task channels current prefetch_count value, e.g:

increment at next cycle
consumer.qos.increment_eventually(1)
decrement at next cycle
consumer.qos.decrement_eventually(1)
consumer.qos.set(10)

Methods

	
consumer.reset_rate_limits()

	Updates the task_buckets mapping for all registered task types.

	
consumer.bucket_for_task(type, Bucket=TokenBucket)

	Creates rate limit bucket for a task using its task.rate_limit
attribute.

	
consumer.add_task_queue(name, exchange=None, exchange_type=None,

	
routing_key=None, **options):

	Adds new queue to consume from. This will persist on connection restart.

	
consumer.cancel_task_queue(name)

	Stop consuming from queue by name. This will persist on connection
restart.

	
apply_eta_task(request)

	Schedule eta task to execute based on the request.eta attribute.
(Request)

Installing Bootsteps

app.steps['worker'] and app.steps['consumer'] can be modified
to add new bootsteps:

>>> app = Celery()
>>> app.steps['worker'].add(MyWorkerStep) # < add class, do not instantiate
>>> app.steps['consumer'].add(MyConsumerStep)

>>> app.steps['consumer'].update([StepA, StepB])

>>> app.steps['consumer']
{step:proj.StepB{()}, step:proj.MyConsumerStep{()}, step:proj.StepA{()}

The order of steps is not important here as the order is decided by the
resulting dependency graph (Step.requires).

To illustrate how you can install bootsteps and how they work, this is an example step that
prints some useless debugging information.
It can be added both as a worker and consumer bootstep:

from celery import Celery
from celery import bootsteps

class InfoStep(bootsteps.Step):

 def __init__(self, parent, **kwargs):
 # here we can prepare the Worker/Consumer object
 # in any way we want, set attribute defaults and so on.
 print('{0!r} is in init'.format(parent))

 def start(self, parent):
 # our step is started together with all other Worker/Consumer
 # bootsteps.
 print('{0!r} is starting'.format(parent))

 def stop(self, parent):
 # the Consumer calls stop every time the consumer is restarted
 # (i.e. connection is lost) and also at shutdown. The Worker
 # will call stop at shutdown only.
 print('{0!r} is stopping'.format(parent))

 def shutdown(self, parent):
 # shutdown is called by the Consumer at shutdown, it's not
 # called by Worker.
 print('{0!r} is shutting down'.format(parent))

 app = Celery(broker='amqp://')
 app.steps['worker'].add(InfoStep)
 app.steps['consumer'].add(InfoStep)

Starting the worker with this step installed will give us the following
logs:

<Worker: w@example.com (initializing)> is in init
<Consumer: w@example.com (initializing)> is in init
[2013-05-29 16:18:20,544: WARNING/MainProcess]
 <Worker: w@example.com (running)> is starting
[2013-05-29 16:18:21,577: WARNING/MainProcess]
 <Consumer: w@example.com (running)> is starting
<Consumer: w@example.com (closing)> is stopping
<Worker: w@example.com (closing)> is stopping
<Consumer: w@example.com (terminating)> is shutting down

The print statements will be redirected to the logging subsystem after
the worker has been initialized, so the “is starting” lines are timestamped.
You may notice that this does no longer happen at shutdown, this is because
the stop and shutdown methods are called inside a signal handler,
and it’s not safe to use logging inside such a handler.
Logging with the Python logging module is not reentrant,
which means that you cannot interrupt the function and
call it again later. It’s important that the stop and shutdown methods
you write is also reentrant.

Starting the worker with --loglevel=debug will show us more
information about the boot process:

[2013-05-29 16:18:20,509: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2013-05-29 16:18:20,511: DEBUG/MainProcess] | Worker: Building graph...
<celery.apps.worker.Worker object at 0x101ad8410> is in init
[2013-05-29 16:18:20,511: DEBUG/MainProcess] | Worker: New boot order:
 {Hub, Queues (intra), Pool, Autoreloader, Timer, StateDB,
 Autoscaler, InfoStep, Beat, Consumer}
[2013-05-29 16:18:20,514: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2013-05-29 16:18:20,514: DEBUG/MainProcess] | Consumer: Building graph...
<celery.worker.consumer.Consumer object at 0x101c2d8d0> is in init
[2013-05-29 16:18:20,515: DEBUG/MainProcess] | Consumer: New boot order:
 {Connection, Mingle, Events, Gossip, InfoStep, Agent,
 Heart, Control, Tasks, event loop}
[2013-05-29 16:18:20,522: DEBUG/MainProcess] | Worker: Starting Hub
[2013-05-29 16:18:20,522: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,522: DEBUG/MainProcess] | Worker: Starting Pool
[2013-05-29 16:18:20,542: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,543: DEBUG/MainProcess] | Worker: Starting InfoStep
[2013-05-29 16:18:20,544: WARNING/MainProcess]
 <celery.apps.worker.Worker object at 0x101ad8410> is starting
[2013-05-29 16:18:20,544: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,544: DEBUG/MainProcess] | Worker: Starting Consumer
[2013-05-29 16:18:20,544: DEBUG/MainProcess] | Consumer: Starting Connection
[2013-05-29 16:18:20,559: INFO/MainProcess] Connected to amqp://guest@127.0.0.1:5672//
[2013-05-29 16:18:20,560: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,560: DEBUG/MainProcess] | Consumer: Starting Mingle
[2013-05-29 16:18:20,560: INFO/MainProcess] mingle: searching for neighbors
[2013-05-29 16:18:21,570: INFO/MainProcess] mingle: no one here
[2013-05-29 16:18:21,570: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,571: DEBUG/MainProcess] | Consumer: Starting Events
[2013-05-29 16:18:21,572: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,572: DEBUG/MainProcess] | Consumer: Starting Gossip
[2013-05-29 16:18:21,577: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,577: DEBUG/MainProcess] | Consumer: Starting InfoStep
[2013-05-29 16:18:21,577: WARNING/MainProcess]
 <celery.worker.consumer.Consumer object at 0x101c2d8d0> is starting
[2013-05-29 16:18:21,578: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,578: DEBUG/MainProcess] | Consumer: Starting Heart
[2013-05-29 16:18:21,579: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,579: DEBUG/MainProcess] | Consumer: Starting Control
[2013-05-29 16:18:21,583: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,583: DEBUG/MainProcess] | Consumer: Starting Tasks
[2013-05-29 16:18:21,606: DEBUG/MainProcess] basic.qos: prefetch_count->80
[2013-05-29 16:18:21,606: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,606: DEBUG/MainProcess] | Consumer: Starting event loop
[2013-05-29 16:18:21,608: WARNING/MainProcess] celery@example.com ready.

Command-line programs

Adding new command-line options

Command-specific options

You can add additional command-line options to the worker, beat and
events commands by modifying the user_options attribute of the
application instance.

Celery commands uses the optparse [https://docs.python.org/dev/library/optparse.html#module-optparse] module to parse command-line
arguments, and so you have to use optparse [https://docs.python.org/dev/library/optparse.html#module-optparse] specific option instances created
using optparse.make_option(). Please see the optparse [https://docs.python.org/dev/library/optparse.html#module-optparse]
documentation to read about the fields supported.

Example adding a custom option to the celery worker command:

from celery import Celery
from celery.bin import Option # <-- alias to optparse.make_option

app = Celery(broker='amqp://')

app.user_options['worker'].add(
 Option('--enable-my-option', action='store_true', default=False,
 help='Enable custom option.'),
)

All bootsteps will now receive this argument as a keyword argument to
Bootstep.__init__:

from celery import bootsteps

class MyBootstep(bootsteps.Step):

 def __init__(self, worker, enable_my_option=False, **options):
 if enable_my_option:
 party()

app.steps['worker'].add(MyBootstep)

Preload options

The celery umbrella command supports the concept of ‘preload
options’, which are special options passed to all subcommands and parsed
outside of the main parsing step.

The list of default preload options can be found in the API reference:
celery.bin.base.

You can add new preload options too, e.g. to specify a configuration template:

from celery import Celery
from celery import signals
from celery.bin import Option

app = Celery()
app.user_options['preload'].add(
 Option('-Z', '--template', default='default',
 help='Configuration template to use.'),
)

@signals.user_preload_options.connect
def on_preload_parsed(options, **kwargs):
 use_template(options['template'])

Adding new celery sub-commands

New commands can be added to the celery umbrella command by using
setuptools entry-points [http://reinout.vanrees.org/weblog/2010/01/06/zest-releaser-entry-points.html].

Entry-points is special metadata that can be added to your packages setup.py program,
and then after installation, read from the system using the pkg_resources module.

Celery recognizes celery.commands entry-points to install additional
subcommands, where the value of the entry-point must point to a valid subclass
of celery.bin.base.Command. There is limited documentation,
unfortunately, but you can find inspiration from the various commands in the
celery.bin package.

This is how the Flower [http://pypi.python.org/pypi/flower] monitoring extension adds the celery flower command,
by adding an entry-point in setup.py:

setup(
 name='flower',
 entry_points={
 'celery.commands': [
 'flower = flower.command:FlowerCommand',
],
 }
)

The command definition is in two parts separated by the equal sign, where the
first part is the name of the sub-command (flower), then the second part is
the fully qualified symbol path to the class that implements the command:

flower.command:FlowerCommand

The module path and the name of the attribute should be separated by colon
as above.

In the module flower/command.py, the command class is defined
something like this:

from celery.bin.base import Command, Option

class FlowerCommand(Command):

 def get_options(self):
 return (
 Option('--port', default=8888, type='int',
 help='Webserver port',
),
 Option('--debug', action='store_true'),
)

 def run(self, port=None, debug=False, **kwargs):
 print('Running our command')

Worker API

Hub [http://kombu.readthedocs.io/en/latest/reference/kombu.async.html#kombu.async.Hub] - The workers async event loop.

	supported transports:

	 	amqp, redis

New in version 3.0.

The worker uses asynchronous I/O when the amqp or redis broker transports are
used. The eventual goal is for all transports to use the eventloop, but that
will take some time so other transports still use a threading-based solution.

	
hub.add(fd, callback, flags)

	

	
hub.add_reader(fd, callback, *args)

	Add callback to be called when fd is readable.

The callback will stay registered until explictly removed using
hub.remove(fd), or the fd is automatically discarded
because it’s no longer valid.

Note that only one callback can be registered for any given fd at a time,
so calling add a second time will remove any callback that
was previously registered for that fd.

A file descriptor is any file-like object that supports the fileno
method, or it can be the file descriptor number (int).

	
hub.add_writer(fd, callback, *args)

	Add callback to be called when fd is writable.
See also notes for hub.add_reader() above.

	
hub.remove(fd)

	Remove all callbacks for fd from the loop.

Timer - Scheduling events

	
timer.call_after(secs, callback, args=(), kwargs=(),

	
priority=0)

	

	
timer.call_repeatedly(secs, callback, args=(), kwargs=(),

	
priority=0)

	

	
timer.call_at(eta, callback, args=(), kwargs=(),

	
priority=0)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Configuration and defaults

This document describes the configuration options available.

If you’re using the default loader, you must create the celeryconfig.py
module and make sure it is available on the Python path.

	Example configuration file

	Configuration Directives
	Time and date settings

	Task settings

	Concurrency settings

	Task result backend settings

	Database backend settings

	RPC backend settings

	Cache backend settings

	Redis backend settings

	MongoDB backend settings

	Cassandra backend settings

	IronCache backend settings

	Couchbase backend settings

	AMQP backend settings

	Message Routing

	Broker Settings

	Task execution settings

	Worker

	Error E-Mails

	Events

	Broadcast Commands

	Logging

	Security

	Custom Component Classes (advanced)

	Periodic Task Server: celery beat

	Monitor Server: celerymon

Example configuration file

This is an example configuration file to get you started.
It should contain all you need to run a basic Celery set-up.

Broker settings.
BROKER_URL = 'amqp://guest:guest@localhost:5672//'

List of modules to import when celery starts.
CELERY_IMPORTS = ('myapp.tasks',)

Using the database to store task state and results.
CELERY_RESULT_BACKEND = 'db+sqlite:///results.db'

CELERY_ANNOTATIONS = {'tasks.add': {'rate_limit': '10/s'}}

Configuration Directives

Time and date settings

CELERY_ENABLE_UTC

New in version 2.5.

If enabled dates and times in messages will be converted to use
the UTC timezone.

Note that workers running Celery versions below 2.5 will assume a local
timezone for all messages, so only enable if all workers have been
upgraded.

Enabled by default since version 3.0.

CELERY_TIMEZONE

Configure Celery to use a custom time zone.
The timezone value can be any time zone supported by the pytz [http://pypi.python.org/pypi/pytz/]
library.

If not set the UTC timezone is used. For backwards compatibility
there is also a CELERY_ENABLE_UTC setting, and this is set
to false the system local timezone is used instead.

Task settings

CELERY_ANNOTATIONS

This setting can be used to rewrite any task attribute from the
configuration. The setting can be a dict, or a list of annotation
objects that filter for tasks and return a map of attributes
to change.

This will change the rate_limit attribute for the tasks.add
task:

CELERY_ANNOTATIONS = {'tasks.add': {'rate_limit': '10/s'}}

or change the same for all tasks:

CELERY_ANNOTATIONS = {'*': {'rate_limit': '10/s'}}

You can change methods too, for example the on_failure handler:

def my_on_failure(self, exc, task_id, args, kwargs, einfo):
 print('Oh no! Task failed: {0!r}'.format(exc))

CELERY_ANNOTATIONS = {'*': {'on_failure': my_on_failure}}

If you need more flexibility then you can use objects
instead of a dict to choose which tasks to annotate:

class MyAnnotate(object):

 def annotate(self, task):
 if task.name.startswith('tasks.'):
 return {'rate_limit': '10/s'}

CELERY_ANNOTATIONS = (MyAnnotate(), {…})

Concurrency settings

CELERYD_CONCURRENCY

The number of concurrent worker processes/threads/green threads executing
tasks.

If you’re doing mostly I/O you can have more processes,
but if mostly CPU-bound, try to keep it close to the
number of CPUs on your machine. If not set, the number of CPUs/cores
on the host will be used.

Defaults to the number of available CPUs.

CELERYD_PREFETCH_MULTIPLIER

How many messages to prefetch at a time multiplied by the number of
concurrent processes. The default is 4 (four messages for each
process). The default setting is usually a good choice, however – if you
have very long running tasks waiting in the queue and you have to start the
workers, note that the first worker to start will receive four times the
number of messages initially. Thus the tasks may not be fairly distributed
to the workers.

To disable prefetching, set CELERYD_PREFETCH_MULTIPLIER to 1. Setting
CELERYD_PREFETCH_MULTIPLIER to 0 will allow the worker to keep consuming
as many messages as it wants.

For more on prefetching, read Prefetch Limits

Note

Tasks with ETA/countdown are not affected by prefetch limits.

Task result backend settings

CELERY_RESULT_BACKEND

	Deprecated aliases:

	 	CELERY_BACKEND

The backend used to store task results (tombstones).
Disabled by default.
Can be one of the following:

	
	rpc

	Send results back as AMQP messages
See RPC backend settings.

	
	database

	Use a relational database supported by SQLAlchemy [http://sqlalchemy.org].
See Database backend settings.

	
	redis

	Use Redis [http://redis.io] to store the results.
See Redis backend settings.

	
	cache

	Use memcached [http://memcached.org] to store the results.
See Cache backend settings.

	
	mongodb

	Use MongoDB [http://mongodb.org] to store the results.
See MongoDB backend settings.

	
	cassandra

	Use Cassandra [http://cassandra.apache.org/] to store the results.
See Cassandra backend settings.

	
	ironcache

	Use IronCache [http://www.iron.io/cache] to store the results.
See IronCache backend settings.

	
	couchbase

	Use Couchbase [http://www.couchbase.com/] to store the results.
See Couchbase backend settings.

	
	amqp

	Older AMQP backend (badly) emulating a database-based backend.
See CELERY_RESULT_PERSISTENT.

CELERY_RESULT_SERIALIZER

Result serialization format. Default is pickle. See
Serializers for information about supported
serialization formats.

Database backend settings

Database URL Examples

To use the database backend you have to configure the
CELERY_RESULT_BACKEND setting with a connection URL and the db+
prefix:

CELERY_RESULT_BACKEND = 'db+scheme://user:password@host:port/dbname'

Examples:

sqlite (filename)
CELERY_RESULT_BACKEND = 'db+sqlite:///results.sqlite'

mysql
CELERY_RESULT_BACKEND = 'db+mysql://scott:tiger@localhost/foo'

postgresql
CELERY_RESULT_BACKEND = 'db+postgresql://scott:tiger@localhost/mydatabase'

oracle
CELERY_RESULT_BACKEND = 'db+oracle://scott:tiger@127.0.0.1:1521/sidname'

Please see Supported Databases [http://www.sqlalchemy.org/docs/core/engines.html#supported-databases] for a table of supported databases,
and Connection String [http://www.sqlalchemy.org/docs/core/engines.html#database-urls] for more information about connection
strings (which is the part of the URI that comes after the db+ prefix).

CELERY_RESULT_DBURI

This setting is no longer used as it’s now possible to specify
the database URL directly in the CELERY_RESULT_BACKEND setting.

CELERY_RESULT_ENGINE_OPTIONS

To specify additional SQLAlchemy database engine options you can use
the CELERY_RESULT_ENGINE_OPTIONS setting:

echo enables verbose logging from SQLAlchemy.
CELERY_RESULT_ENGINE_OPTIONS = {'echo': True}

Short lived sessions

CELERY_RESULT_DB_SHORT_LIVED_SESSIONS = True

Short lived sessions are disabled by default. If enabled they can drastically reduce
performance, especially on systems processing lots of tasks. This option is useful
on low-traffic workers that experience errors as a result of cached database connections
going stale through inactivity. For example, intermittent errors like
(OperationalError) (2006, ‘MySQL server has gone away’) can be fixed by enabling
short lived sessions. This option only affects the database backend.

Specifying Table Names

When SQLAlchemy is configured as the result backend, Celery automatically
creates two tables to store result metadata for tasks. This setting allows
you to customize the table names:

use custom table names for the database result backend.
CELERY_RESULT_DB_TABLENAMES = {
 'task': 'myapp_taskmeta',
 'group': 'myapp_groupmeta',
}

RPC backend settings

CELERY_RESULT_PERSISTENT

If set to True, result messages will be persistent. This means the
messages will not be lost after a broker restart. The default is for the
results to be transient.

Example configuration

CELERY_RESULT_BACKEND = 'rpc://'
CELERY_RESULT_PERSISTENT = False

Cache backend settings

Note

The cache backend supports the pylibmc [http://sendapatch.se/projects/pylibmc/] and python-memcached
libraries. The latter is used only if pylibmc [http://sendapatch.se/projects/pylibmc/] is not installed.

Using a single memcached server:

CELERY_RESULT_BACKEND = 'cache+memcached://127.0.0.1:11211/'

Using multiple memcached servers:

CELERY_RESULT_BACKEND = """
 cache+memcached://172.19.26.240:11211;172.19.26.242:11211/
""".strip()

The “memory” backend stores the cache in memory only:

CELERY_RESULT_BACKEND = 'cache'
CELERY_CACHE_BACKEND = 'memory'

CELERY_CACHE_BACKEND_OPTIONS

You can set pylibmc options using the CELERY_CACHE_BACKEND_OPTIONS
setting:

CELERY_CACHE_BACKEND_OPTIONS = {'binary': True,
 'behaviors': {'tcp_nodelay': True}}

CELERY_CACHE_BACKEND

This setting is no longer used as it’s now possible to specify
the cache backend directly in the CELERY_RESULT_BACKEND setting.

Redis backend settings

Configuring the backend URL

Note

The Redis backend requires the redis library:
http://pypi.python.org/pypi/redis/

To install the redis package use pip or easy_install:

$ pip install redis

This backend requires the CELERY_RESULT_BACKEND
setting to be set to a Redis URL:

CELERY_RESULT_BACKEND = 'redis://:password@host:port/db'

For example:

CELERY_RESULT_BACKEND = 'redis://localhost/0'

which is the same as:

CELERY_RESULT_BACKEND = 'redis://'

The fields of the URL is defined as folows:

	host

Host name or IP address of the Redis server. e.g. localhost.

	port

Port to the Redis server. Default is 6379.

	db

Database number to use. Default is 0.
The db can include an optional leading slash.

	password

Password used to connect to the database.

CELERY_REDIS_MAX_CONNECTIONS

Maximum number of connections available in the Redis connection
pool used for sending and retrieving results.

MongoDB backend settings

Note

The MongoDB backend requires the pymongo library:
http://github.com/mongodb/mongo-python-driver/tree/master

CELERY_MONGODB_BACKEND_SETTINGS

This is a dict supporting the following keys:

	
	database

	The database name to connect to. Defaults to celery.

	
	taskmeta_collection

	The collection name to store task meta data.
Defaults to celery_taskmeta.

	
	max_pool_size

	Passed as max_pool_size to PyMongo’s Connection or MongoClient
constructor. It is the maximum number of TCP connections to keep
open to MongoDB at a given time. If there are more open connections
than max_pool_size, sockets will be closed when they are released.
Defaults to 10.

	options

Additional keyword arguments to pass to the mongodb connection
constructor. See the pymongo docs to see a list of arguments
supported.

Example configuration

CELERY_RESULT_BACKEND = 'mongodb://192.168.1.100:30000/'
CELERY_MONGODB_BACKEND_SETTINGS = {
 'database': 'mydb',
 'taskmeta_collection': 'my_taskmeta_collection',
}

Cassandra backend settings

Note

The Cassandra backend requires the pycassa library:
http://pypi.python.org/pypi/pycassa/

To install the pycassa package use pip or easy_install:

$ pip install pycassa

This backend requires the following configuration directives to be set.

CASSANDRA_SERVERS

List of host:port Cassandra servers. e.g.:

CASSANDRA_SERVERS = ['localhost:9160']

CASSANDRA_KEYSPACE

The keyspace in which to store the results. e.g.:

CASSANDRA_KEYSPACE = 'tasks_keyspace'

CASSANDRA_COLUMN_FAMILY

The column family in which to store the results. e.g.:

CASSANDRA_COLUMN_FAMILY = 'tasks'

CASSANDRA_READ_CONSISTENCY

The read consistency used. Values can be ONE, QUORUM or ALL.

CASSANDRA_WRITE_CONSISTENCY

The write consistency used. Values can be ONE, QUORUM or ALL.

CASSANDRA_DETAILED_MODE

Enable or disable detailed mode. Default is False.
This mode allows to use the power of Cassandra wide columns to
store all states for a task as a wide column, instead of only the last one.

To use this mode, you need to configure your ColumnFamily to
use the TimeUUID type as a comparator:

create column family task_results with comparator = TimeUUIDType;

CASSANDRA_OPTIONS

Options to be passed to the pycassa connection pool [http://pycassa.github.com/pycassa/api/pycassa/pool.html] (optional).

Example configuration

CASSANDRA_SERVERS = ['localhost:9160']
CASSANDRA_KEYSPACE = 'celery'
CASSANDRA_COLUMN_FAMILY = 'task_results'
CASSANDRA_READ_CONSISTENCY = 'ONE'
CASSANDRA_WRITE_CONSISTENCY = 'ONE'
CASSANDRA_DETAILED_MODE = True
CASSANDRA_OPTIONS = {
 'timeout': 300,
 'max_retries': 10
}

IronCache backend settings

Note

The IronCache backend requires the iron_celery library:
http://pypi.python.org/pypi/iron_celery

To install the iron_celery package use pip or easy_install:

$ pip install iron_celery

IronCache is configured via the URL provided in CELERY_RESULT_BACKEND, for example:

CELERY_RESULT_BACKEND = 'ironcache://project_id:token@'

Or to change the cache name:

ironcache:://project_id:token@/awesomecache

For more information, see: https://github.com/iron-io/iron_celery

Couchbase backend settings

Note

The Couchbase backend requires the couchbase library:
https://pypi.python.org/pypi/couchbase

To install the couchbase package use pip or easy_install:

$ pip install couchbase

This backend can be configured via the CELERY_RESULT_BACKEND
set to a couchbase URL:

CELERY_RESULT_BACKEND = 'couchbase://username:password@host:port/bucket'

CELERY_COUCHBASE_BACKEND_SETTINGS

This is a dict supporting the following keys:

	
	host

	Host name of the Couchbase server. Defaults to localhost.

	
	port

	The port the Couchbase server is listening to. Defaults to 8091.

	
	bucket

	The default bucket the Couchbase server is writing to.
Defaults to default.

	
	username

	User name to authenticate to the Couchbase server as (optional).

	
	password

	Password to authenticate to the Couchbase server (optional).

AMQP backend settings

Do not use in production.

This is the old AMQP result backend that creates one queue per task,
if you want to send results back as message please consider using the
RPC backend instead, or if you need the results to be persistent
use a result backend designed for that purpose (e.g. Redis, or a database).

Note

The AMQP backend requires RabbitMQ 1.1.0 or higher to automatically
expire results. If you are running an older version of RabbitMQ
you should disable result expiration like this:

CELERY_TASK_RESULT_EXPIRES = None

CELERY_RESULT_EXCHANGE

Name of the exchange to publish results in. Default is celeryresults.

CELERY_RESULT_EXCHANGE_TYPE

The exchange type of the result exchange. Default is to use a direct
exchange.

CELERY_RESULT_PERSISTENT

If set to True, result messages will be persistent. This means the
messages will not be lost after a broker restart. The default is for the
results to be transient.

Example configuration

CELERY_RESULT_BACKEND = 'amqp'
CELERY_TASK_RESULT_EXPIRES = 18000 # 5 hours.

Message Routing

CELERY_QUEUES

Most users will not want to specify this setting and should rather use
the automatic routing facilities.

If you really want to configure advanced routing, this setting should
be a list of kombu.Queue [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Queue] objects the worker will consume from.

Note that workers can be overriden this setting via the -Q option,
or individual queues from this list (by name) can be excluded using
the -X option.

Also see Basics for more information.

The default is a queue/exchange/binding key of celery, with
exchange type direct.

See also CELERY_ROUTES

CELERY_ROUTES

A list of routers, or a single router used to route tasks to queues.
When deciding the final destination of a task the routers are consulted
in order.

A router can be specified as either:

	A router class instances

	A string which provides the path to a router class

	A dict containing router specification. It will be converted to a celery.routes.MapRoute instance.

Examples:

CELERY_ROUTES = {"celery.ping": "default",
 "mytasks.add": "cpu-bound",
 "video.encode": {
 "queue": "video",
 "exchange": "media"
 "routing_key": "media.video.encode"}}

CELERY_ROUTES = ("myapp.tasks.Router", {"celery.ping": "default})

Where myapp.tasks.Router could be:

class Router(object):

 def route_for_task(self, task, args=None, kwargs=None):
 if task == "celery.ping":
 return "default"

route_for_task may return a string or a dict. A string then means
it’s a queue name in CELERY_QUEUES, a dict means it’s a custom route.

When sending tasks, the routers are consulted in order. The first
router that doesn’t return None is the route to use. The message options
is then merged with the found route settings, where the routers settings
have priority.

Example if apply_async() has these arguments:

Task.apply_async(immediate=False, exchange="video",
 routing_key="video.compress")

and a router returns:

{"immediate": True, "exchange": "urgent"}

the final message options will be:

immediate=True, exchange="urgent", routing_key="video.compress"

(and any default message options defined in the
Task class)

Values defined in CELERY_ROUTES have precedence over values defined in
CELERY_QUEUES when merging the two.

With the follow settings:

CELERY_QUEUES = {"cpubound": {"exchange": "cpubound",
 "routing_key": "cpubound"}}

CELERY_ROUTES = {"tasks.add": {"queue": "cpubound",
 "routing_key": "tasks.add",
 "serializer": "json"}}

The final routing options for tasks.add will become:

{"exchange": "cpubound",
 "routing_key": "tasks.add",
 "serializer": "json"}

See Routers for more examples.

CELERY_QUEUE_HA_POLICY

	brokers:	RabbitMQ

This will set the default HA policy for a queue, and the value
can either be a string (usually all):

CELERY_QUEUE_HA_POLICY = 'all'

Using ‘all’ will replicate the queue to all current nodes,
Or you can give it a list of nodes to replicate to:

CELERY_QUEUE_HA_POLICY = ['rabbit@host1', 'rabbit@host2']

Using a list will implicitly set x-ha-policy to ‘nodes’ and
x-ha-policy-params to the given list of nodes.

See http://www.rabbitmq.com/ha.html for more information.

CELERY_WORKER_DIRECT

This option enables so that every worker has a dedicated queue,
so that tasks can be routed to specific workers.

The queue name for each worker is automatically generated based on
the worker hostname and a .dq suffix, using the C.dq exchange.

For example the queue name for the worker with node name w1@example.com
becomes:

w1@example.com.dq

Then you can route the task to the task by specifying the hostname
as the routing key and the C.dq exchange:

CELERY_ROUTES = {
 'tasks.add': {'exchange': 'C.dq', 'routing_key': 'w1@example.com'}
}

CELERY_CREATE_MISSING_QUEUES

If enabled (default), any queues specified that are not defined in
CELERY_QUEUES will be automatically created. See
Automatic routing.

CELERY_DEFAULT_QUEUE

The name of the default queue used by .apply_async if the message has
no route or no custom queue has been specified.

This queue must be listed in CELERY_QUEUES.
If CELERY_QUEUES is not specified then it is automatically
created containing one queue entry, where this name is used as the name of
that queue.

The default is: celery.

See also

Changing the name of the default queue

CELERY_DEFAULT_EXCHANGE

Name of the default exchange to use when no custom exchange is
specified for a key in the CELERY_QUEUES setting.

The default is: celery.

CELERY_DEFAULT_EXCHANGE_TYPE

Default exchange type used when no custom exchange type is specified
for a key in the CELERY_QUEUES setting.
The default is: direct.

CELERY_DEFAULT_ROUTING_KEY

The default routing key used when no custom routing key
is specified for a key in the CELERY_QUEUES setting.

The default is: celery.

CELERY_DEFAULT_DELIVERY_MODE

Can be transient or persistent. The default is to send
persistent messages.

Broker Settings

CELERY_ACCEPT_CONTENT

A whitelist of content-types/serializers to allow.

If a message is received that is not in this list then
the message will be discarded with an error.

By default any content type is enabled (including pickle and yaml)
so make sure untrusted parties do not have access to your broker.
See Security for more.

Example:

using serializer name
CELERY_ACCEPT_CONTENT = ['json']

or the actual content-type (MIME)
CELERY_ACCEPT_CONTENT = ['application/json']

BROKER_FAILOVER_STRATEGY

Default failover strategy for the broker Connection object. If supplied,
may map to a key in ‘kombu.connection.failover_strategies’, or be a reference
to any method that yields a single item from a supplied list.

Example:

Random failover strategy
def random_failover_strategy(servers):
 it = list(it) # don't modify callers list
 shuffle = random.shuffle
 for _ in repeat(None):
 shuffle(it)
 yield it[0]

BROKER_FAILOVER_STRATEGY=random_failover_strategy

BROKER_TRANSPORT

	Aliases:	BROKER_BACKEND

	Deprecated aliases:

	 	CARROT_BACKEND

BROKER_URL

Default broker URL. This must be an URL in the form of:

transport://userid:password@hostname:port/virtual_host

Only the scheme part (transport://) is required, the rest
is optional, and defaults to the specific transports default values.

The transport part is the broker implementation to use, and the
default is amqp, which uses librabbitmq by default or falls back to
pyamqp if that is not installed. Also there are many other choices including
redis, beanstalk, sqlalchemy, django, mongodb,
couchdb.
It can also be a fully qualified path to your own transport implementation.

More than broker URL, of the same transport, can also be specified.
The broker URLs can be passed in as a single string that is semicolon delimited:

BROKER_URL = 'transport://userid:password@hostname:port//;transport://userid:password@hostname:port//'

Or as a list:

BROKER_URL = [
 'transport://userid:password@localhost:port//',
 'transport://userid:password@hostname:port//'
]

The brokers will then be used in the BROKER_FAILOVER_STRATEGY.

See URLs [http://kombu.readthedocs.io/en/latest/userguide/connections.html#connection-urls] in the Kombu documentation for more
information.

BROKER_HEARTBEAT

	transports supported:

	 	pyamqp

It’s not always possible to detect connection loss in a timely
manner using TCP/IP alone, so AMQP defines something called heartbeats
that’s is used both by the client and the broker to detect if
a connection was closed.

Heartbeats are disabled by default.

If the heartbeat value is 10 seconds, then
the heartbeat will be monitored at the interval specified
by the BROKER_HEARTBEAT_CHECKRATE setting, which by default is
double the rate of the heartbeat value
(so for the default 10 seconds, the heartbeat is checked every 5 seconds).

BROKER_HEARTBEAT_CHECKRATE

	transports supported:

	 	pyamqp

At intervals the worker will monitor that the broker has not missed
too many heartbeats. The rate at which this is checked is calculated
by dividing the BROKER_HEARTBEAT value with this value,
so if the heartbeat is 10.0 and the rate is the default 2.0, the check
will be performed every 5 seconds (twice the heartbeat sending rate).

BROKER_USE_SSL

	transports supported:

	 	pyamqp

Toggles SSL usage on broker connection and SSL settings.

If True the connection will use SSL with default SSL settings.
If set to a dict, will configure SSL connection according to the specified
policy. The format used is python ssl.wrap_socket()
options [https://docs.python.org/3/library/ssl.html#ssl.wrap_socket].

Default is False (no SSL).

Note that SSL socket is generally served on a separate port by the broker.

Example providing a client cert and validating the server cert against a custom
certificate authority:

import ssl

BROKER_USE_SSL = {
 'keyfile': '/var/ssl/private/worker-key.pem',
 'certfile': '/var/ssl/amqp-server-cert.pem',
 'ca_certs': '/var/ssl/myca.pem',
 'cert_reqs': ssl.CERT_REQUIRED
}

Warning

Be careful using BROKER_USE_SSL=True. It is possible that your default
configuration will not validate the server cert at all. Please read Python
ssl module security
considerations [https://docs.python.org/3/library/ssl.html#ssl-security].

BROKER_POOL_LIMIT

New in version 2.3.

The maximum number of connections that can be open in the connection pool.

The pool is enabled by default since version 2.5, with a default limit of ten
connections. This number can be tweaked depending on the number of
threads/greenthreads (eventlet/gevent) using a connection. For example
running eventlet with 1000 greenlets that use a connection to the broker,
contention can arise and you should consider increasing the limit.

If set to None or 0 the connection pool will be disabled and
connections will be established and closed for every use.

Default (since 2.5) is to use a pool of 10 connections.

BROKER_CONNECTION_TIMEOUT

The default timeout in seconds before we give up establishing a connection
to the AMQP server. Default is 4 seconds.

BROKER_CONNECTION_RETRY

Automatically try to re-establish the connection to the AMQP broker if lost.

The time between retries is increased for each retry, and is
not exhausted before BROKER_CONNECTION_MAX_RETRIES is
exceeded.

This behavior is on by default.

BROKER_CONNECTION_MAX_RETRIES

Maximum number of retries before we give up re-establishing a connection
to the AMQP broker.

If this is set to 0 or None, we will retry forever.

Default is 100 retries.

BROKER_LOGIN_METHOD

Set custom amqp login method, default is AMQPLAIN.

BROKER_TRANSPORT_OPTIONS

New in version 2.2.

A dict of additional options passed to the underlying transport.

See your transport user manual for supported options (if any).

Example setting the visibility timeout (supported by Redis and SQS
transports):

BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 18000} # 5 hours

Task execution settings

CELERY_ALWAYS_EAGER

If this is True, all tasks will be executed locally by blocking until
the task returns. apply_async() and Task.delay() will return
an EagerResult instance, which emulates the API
and behavior of AsyncResult, except the result
is already evaluated.

That is, tasks will be executed locally instead of being sent to
the queue.

CELERY_EAGER_PROPAGATES_EXCEPTIONS

If this is True, eagerly executed tasks (applied by task.apply(),
or when the CELERY_ALWAYS_EAGER setting is enabled), will
propagate exceptions.

It’s the same as always running apply() with throw=True.

CELERY_IGNORE_RESULT

Whether to store the task return values or not (tombstones).
If you still want to store errors, just not successful return values,
you can set CELERY_STORE_ERRORS_EVEN_IF_IGNORED.

CELERY_MESSAGE_COMPRESSION

Default compression used for task messages.
Can be gzip, bzip2 (if available), or any custom
compression schemes registered in the Kombu compression registry.

The default is to send uncompressed messages.

CELERY_TASK_RESULT_EXPIRES

Time (in seconds, or a timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] object) for when after
stored task tombstones will be deleted.

A built-in periodic task will delete the results after this time
(celery.task.backend_cleanup).

A value of None or 0 means results will never expire (depending
on backend specifications).

Default is to expire after 1 day.

Note

For the moment this only works with the amqp, database, cache, redis and MongoDB
backends.

When using the database or MongoDB backends, celery beat must be
running for the results to be expired.

CELERY_MAX_CACHED_RESULTS

Result backends caches ready results used by the client.

This is the total number of results to cache before older results are evicted.
The default is 100. 0 or None means no limit, and a value of -1
will disable the cache.

CELERY_CHORD_PROPAGATES

New in version 3.0.14.

This setting defines what happens when a task part of a chord raises an
exception:

	If propagate is True the chord callback will change state to FAILURE
with the exception value set to a ChordError
instance containing information about the error and the task that failed.

This is the default behavior in Celery 3.1+

	If propagate is False the exception value will instead be forwarded
to the chord callback.

This was the default behavior before version 3.1.

CELERY_TRACK_STARTED

If True the task will report its status as “started” when the
task is executed by a worker. The default value is False as
the normal behaviour is to not report that level of granularity. Tasks
are either pending, finished, or waiting to be retried. Having a “started”
state can be useful for when there are long running tasks and there is a
need to report which task is currently running.

CELERY_TASK_SERIALIZER

A string identifying the default serialization method to use. Can be
pickle (default), json, yaml, msgpack or any custom serialization
methods that have been registered with kombu.serialization.registry.

See also

Serializers.

CELERY_TASK_PUBLISH_RETRY

New in version 2.2.

Decides if publishing task messages will be retried in the case
of connection loss or other connection errors.
See also CELERY_TASK_PUBLISH_RETRY_POLICY.

Enabled by default.

CELERY_TASK_PUBLISH_RETRY_POLICY

New in version 2.2.

Defines the default policy when retrying publishing a task message in
the case of connection loss or other connection errors.

See Message Sending Retry for more information.

CELERY_DEFAULT_RATE_LIMIT

The global default rate limit for tasks.

This value is used for tasks that does not have a custom rate limit
The default is no rate limit.

CELERY_DISABLE_RATE_LIMITS

Disable all rate limits, even if tasks has explicit rate limits set.

CELERY_ACKS_LATE

Late ack means the task messages will be acknowledged after the task
has been executed, not just before, which is the default behavior.

See also

FAQ: Should I use retry or acks_late?.

Worker

CELERY_IMPORTS

A sequence of modules to import when the worker starts.

This is used to specify the task modules to import, but also
to import signal handlers and additional remote control commands, etc.

The modules will be imported in the original order.

CELERY_INCLUDE

Exact same semantics as CELERY_IMPORTS, but can be used as a means
to have different import categories.

The modules in this setting are imported after the modules in
CELERY_IMPORTS.

CELERYD_WORKER_LOST_WAIT

In some cases a worker may be killed without proper cleanup,
and the worker may have published a result before terminating.
This value specifies how long we wait for any missing results before
raising a WorkerLostError exception.

Default is 10.0

CELERYD_MAX_TASKS_PER_CHILD

Maximum number of tasks a pool worker process can execute before
it’s replaced with a new one. Default is no limit.

CELERYD_TASK_TIME_LIMIT

Task hard time limit in seconds. The worker processing the task will
be killed and replaced with a new one when this is exceeded.

CELERYD_TASK_SOFT_TIME_LIMIT

Task soft time limit in seconds.

The SoftTimeLimitExceeded exception will be
raised when this is exceeded. The task can catch this to
e.g. clean up before the hard time limit comes.

Example:

from celery.exceptions import SoftTimeLimitExceeded

@app.task
def mytask():
 try:
 return do_work()
 except SoftTimeLimitExceeded:
 cleanup_in_a_hurry()

CELERY_STORE_ERRORS_EVEN_IF_IGNORED

If set, the worker stores all task errors in the result store even if
Task.ignore_result is on.

CELERYD_STATE_DB

Name of the file used to stores persistent worker state (like revoked tasks).
Can be a relative or absolute path, but be aware that the suffix .db
may be appended to the file name (depending on Python version).

Can also be set via the --statedb argument to
worker.

Not enabled by default.

CELERYD_TIMER_PRECISION

Set the maximum time in seconds that the ETA scheduler can sleep between
rechecking the schedule. Default is 1 second.

Setting this value to 1 second means the schedulers precision will
be 1 second. If you need near millisecond precision you can set this to 0.1.

CELERY_ENABLE_REMOTE_CONTROL

Specify if remote control of the workers is enabled.

Default is True.

Error E-Mails

CELERY_SEND_TASK_ERROR_EMAILS

The default value for the Task.send_error_emails attribute, which if
set to True means errors occurring during task execution will be
sent to ADMINS by email.

Disabled by default.

ADMINS

List of (name, email_address) tuples for the administrators that should
receive error emails.

SERVER_EMAIL

The email address this worker sends emails from.
Default is celery@localhost.

EMAIL_HOST

The mail server to use. Default is localhost.

EMAIL_HOST_USER

User name (if required) to log on to the mail server with.

EMAIL_HOST_PASSWORD

Password (if required) to log on to the mail server with.

EMAIL_PORT

The port the mail server is listening on. Default is 25.

EMAIL_USE_SSL

Use SSL when connecting to the SMTP server. Disabled by default.

EMAIL_USE_TLS

Use TLS when connecting to the SMTP server. Disabled by default.

EMAIL_TIMEOUT

Timeout in seconds for when we give up trying to connect
to the SMTP server when sending emails.

The default is 2 seconds.

Example E-Mail configuration

This configuration enables the sending of error emails to
george@vandelay.com and kramer@vandelay.com:

Enables error emails.
CELERY_SEND_TASK_ERROR_EMAILS = True

Name and email addresses of recipients
ADMINS = (
 ('George Costanza', 'george@vandelay.com'),
 ('Cosmo Kramer', 'kosmo@vandelay.com'),
)

Email address used as sender (From field).
SERVER_EMAIL = 'no-reply@vandelay.com'

Mailserver configuration
EMAIL_HOST = 'mail.vandelay.com'
EMAIL_PORT = 25
EMAIL_HOST_USER = 'servers'
EMAIL_HOST_PASSWORD = 's3cr3t'

Events

CELERY_SEND_EVENTS

Send events so the worker can be monitored by tools like celerymon.

CELERY_SEND_TASK_SENT_EVENT

New in version 2.2.

If enabled, a task-sent event will be sent for every task so tasks can be
tracked before they are consumed by a worker.

Disabled by default.

CELERY_EVENT_QUEUE_TTL

	transports supported:

	 	amqp

Message expiry time in seconds (int/float) for when messages sent to a monitor clients
event queue is deleted (x-message-ttl)

For example, if this value is set to 10 then a message delivered to this queue
will be deleted after 10 seconds.

Disabled by default.

CELERY_EVENT_QUEUE_EXPIRES

	transports supported:

	 	amqp

Expiry time in seconds (int/float) for when a monitor clients
event queue will be deleted (x-expires).

Default is never, relying on the queue autodelete setting.

CELERY_EVENT_SERIALIZER

Message serialization format used when sending event messages.
Default is json. See Serializers.

Broadcast Commands

CELERY_BROADCAST_QUEUE

Name prefix for the queue used when listening for broadcast messages.
The workers host name will be appended to the prefix to create the final
queue name.

Default is celeryctl.

CELERY_BROADCAST_EXCHANGE

Name of the exchange used for broadcast messages.

Default is celeryctl.

CELERY_BROADCAST_EXCHANGE_TYPE

Exchange type used for broadcast messages. Default is fanout.

Logging

CELERYD_HIJACK_ROOT_LOGGER

New in version 2.2.

By default any previously configured handlers on the root logger will be
removed. If you want to customize your own logging handlers, then you
can disable this behavior by setting
CELERYD_HIJACK_ROOT_LOGGER = False.

Note

Logging can also be customized by connecting to the
celery.signals.setup_logging signal.

CELERYD_LOG_COLOR

Enables/disables colors in logging output by the Celery apps.

By default colors are enabled if

	the app is logging to a real terminal, and not a file.

	the app is not running on Windows.

CELERYD_LOG_FORMAT

The format to use for log messages.

Default is [%(asctime)s: %(levelname)s/%(processName)s] %(message)s

See the Python logging [https://docs.python.org/dev/library/logging.html#module-logging] module for more information about log
formats.

CELERYD_TASK_LOG_FORMAT

The format to use for log messages logged in tasks. Can be overridden using
the --loglevel option to worker.

Default is:

[%(asctime)s: %(levelname)s/%(processName)s]
 [%(task_name)s(%(task_id)s)] %(message)s

See the Python logging [https://docs.python.org/dev/library/logging.html#module-logging] module for more information about log
formats.

CELERY_REDIRECT_STDOUTS

If enabled stdout and stderr will be redirected
to the current logger.

Enabled by default.
Used by celery worker and celery beat.

CELERY_REDIRECT_STDOUTS_LEVEL

The log level output to stdout and stderr is logged as.
Can be one of DEBUG, INFO, WARNING,
ERROR or CRITICAL.

Default is WARNING.

Security

CELERY_SECURITY_KEY

New in version 2.5.

The relative or absolute path to a file containing the private key
used to sign messages when Message Signing is used.

CELERY_SECURITY_CERTIFICATE

New in version 2.5.

The relative or absolute path to an X.509 certificate file
used to sign messages when Message Signing is used.

CELERY_SECURITY_CERT_STORE

New in version 2.5.

The directory containing X.509 certificates used for
Message Signing. Can be a glob with wildcards,
(for example /etc/certs/*.pem).

Custom Component Classes (advanced)

CELERYD_POOL

Name of the pool class used by the worker.

Eventlet/Gevent

Never use this option to select the eventlet or gevent pool.
You must use the -P option to celery worker instead, to
ensure the monkey patches are not applied too late, causing things
to break in strange ways.

Default is celery.concurrency.prefork:TaskPool.

CELERYD_POOL_RESTARTS

If enabled the worker pool can be restarted using the
pool_restart remote control command.

Disabled by default.

CELERYD_AUTOSCALER

New in version 2.2.

Name of the autoscaler class to use.

Default is celery.worker.autoscale:Autoscaler.

CELERYD_AUTORELOADER

Name of the autoreloader class used by the worker to reload
Python modules and files that have changed.

Default is: celery.worker.autoreload:Autoreloader.

CELERYD_CONSUMER

Name of the consumer class used by the worker.
Default is celery.worker.consumer.Consumer

CELERYD_TIMER

Name of the ETA scheduler class used by the worker.
Default is celery.utils.timer2.Timer, or one overrided
by the pool implementation.

Periodic Task Server: celery beat

CELERYBEAT_SCHEDULE

The periodic task schedule used by beat.
See Entries.

CELERYBEAT_SCHEDULER

The default scheduler class. Default is celery.beat:PersistentScheduler.

Can also be set via the -S [https://docs.python.org/dev/using/cmdline.html#id3] argument to
beat.

CELERYBEAT_SCHEDULE_FILENAME

Name of the file used by PersistentScheduler to store the last run times
of periodic tasks. Can be a relative or absolute path, but be aware that the
suffix .db may be appended to the file name (depending on Python version).

Can also be set via the --schedule argument to
beat.

CELERYBEAT_SYNC_EVERY

The number of periodic tasks that can be called before another database sync
is issued.
Defaults to 0 (sync based on timing - default of 3 minutes as determined by
scheduler.sync_every). If set to 1, beat will call sync after every task
message sent.

CELERYBEAT_MAX_LOOP_INTERVAL

The maximum number of seconds beat can sleep
between checking the schedule.

The default for this value is scheduler specific.
For the default celery beat scheduler the value is 300 (5 minutes),
but for e.g. the django-celery database scheduler it is 5 seconds
because the schedule may be changed externally, and so it must take
changes to the schedule into account.

Also when running celery beat embedded (-B [https://docs.python.org/dev/using/cmdline.html#id1]) on Jython as a thread
the max interval is overridden and set to 1 so that it’s possible
to shut down in a timely manner.

Monitor Server: celerymon

CELERYMON_LOG_FORMAT

The format to use for log messages.

Default is [%(asctime)s: %(levelname)s/%(processName)s] %(message)s

See the Python logging [https://docs.python.org/dev/library/logging.html#module-logging] module for more information about log
formats.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Django

	Release:	3.1

	Date:	Nov 12, 2017

	First steps with Django
	Using Celery with Django

	Starting the worker process

	Where to go from here

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

First steps with Django

Using Celery with Django

Note

Previous versions of Celery required a separate library to work with Django,
but since 3.1 this is no longer the case. Django is supported out of the
box now so this document only contains a basic way to integrate Celery and
Django. You will use the same API as non-Django users so it’s recommended that
you read the First Steps with Celery tutorial
first and come back to this tutorial. When you have a working example you can
continue to the Next Steps guide.

To use Celery with your Django project you must first define
an instance of the Celery library (called an “app”)

If you have a modern Django project layout like:

- proj/
 - proj/__init__.py
 - proj/settings.py
 - proj/urls.py
- manage.py

then the recommended way is to create a new proj/proj/celery.py module
that defines the Celery instance:

	file:	proj/proj/celery.py

from __future__ import absolute_import

import os

from celery import Celery

set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')

from django.conf import settings # noqa

app = Celery('proj')

Using a string here means the worker will not have to
pickle the object when using Windows.
app.config_from_object('django.conf:settings')
app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

@app.task(bind=True)
def debug_task(self):
 print('Request: {0!r}'.format(self.request))

Then you need to import this app in your proj/proj/__init__.py
module. This ensures that the app is loaded when Django starts
so that the @shared_task decorator (mentioned later) will use it:

proj/proj/__init__.py:

from __future__ import absolute_import

This will make sure the app is always imported when
Django starts so that shared_task will use this app.
from .celery import app as celery_app # noqa

Note that this example project layout is suitable for larger projects,
for simple projects you may use a single contained module that defines
both the app and tasks, like in the First Steps with Celery tutorial.

Let’s break down what happens in the first module,
first we import absolute imports from the future, so that our
celery.py module will not clash with the library:

from __future__ import absolute_import

Then we set the default DJANGO_SETTINGS_MODULE
for the celery command-line program:

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')

Specifying the settings here means the celery command line program
will know where your Django project is. This statement must always appear before
the app instance is created, which is what we do next:

app = Celery('proj')

This is your instance of the library, you can have many instances
but there’s probably no reason for that when using Django.

We also add the Django settings module as a configuration source
for Celery. This means that you don’t have to use multiple
configuration files, and instead configure Celery directly
from the Django settings.

You can pass the object directly here, but using a string is better since
then the worker doesn’t have to serialize the object when using Windows
or execv:

app.config_from_object('django.conf:settings')

Next, a common practice for reusable apps is to define all tasks
in a separate tasks.py module, and Celery does have a way to
autodiscover these modules:

app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

With the line above Celery will automatically discover tasks in reusable
apps if you follow the tasks.py convention:

- app1/
 - app1/tasks.py
 - app1/models.py
- app2/
 - app2/tasks.py
 - app2/models.py

This way you do not have to manually add the individual modules
to the CELERY_IMPORTS setting. The lambda so that the
autodiscovery can happen only when needed, and so that importing your
module will not evaluate the Django settings object.

Finally, the debug_task example is a task that dumps
its own request information. This is using the new bind=True task option
introduced in Celery 3.1 to easily refer to the current task instance.

Using the @shared_task decorator

The tasks you write will probably live in reusable apps, and reusable
apps cannot depend on the project itself, so you also cannot import your app
instance directly.

The @shared_task decorator lets you create tasks without having any
concrete app instance:

demoapp/tasks.py:

from __future__ import absolute_import

from celery import shared_task

@shared_task
def add(x, y):
 return x + y

@shared_task
def mul(x, y):
 return x * y

@shared_task
def xsum(numbers):
 return sum(numbers)

See also

You can find the full source code for the Django example project at:
https://github.com/celery/celery/tree/3.1/examples/django/

Using the Django ORM/Cache as a result backend.

If you want to store task results in the Django database then
you still need to install the django-celery library for that
(alternatively you can use the SQLAlchemy result backend).

The django-celery library implements result backends using
the Django ORM and the Django Cache frameworks.

To use this extension in your project you need to follow these four steps:

	Install the django-celery library:

$ pip install django-celery

	Add djcelery to INSTALLED_APPS.

	Create the celery database tables.

This step will create the tables used to store results
when using the database result backend and the tables used
by the database periodic task scheduler. You can skip
this step if you don’t use these.

If you are using south [http://pypi.python.org/pypi/South/] for schema migrations, you’ll want to:

$ python manage.py migrate djcelery

For those who are not using south, a normal syncdb will work:

$ python manage.py syncdb

	Configure celery to use the django-celery backend.

For the database backend you must use:

app.conf.update(
 CELERY_RESULT_BACKEND='djcelery.backends.database:DatabaseBackend',
)

For the cache backend you can use:

app.conf.update(
 CELERY_RESULT_BACKEND='djcelery.backends.cache:CacheBackend',
)

If you have connected Celery to your Django settings then you can
add this directly into your settings module (without the
app.conf.update part)

Relative Imports

You have to be consistent in how you import the task module, e.g. if
you have project.app in INSTALLED_APPS then you also
need to import the tasks from project.app or else the names
of the tasks will be different.

See Automatic naming and relative imports

Starting the worker process

In a production environment you will want to run the worker in the background
as a daemon - see Running the worker as a daemon - but for testing and
development it is useful to be able to start a worker instance by using the
celery worker manage command, much as you would use Django’s runserver:

$ celery -A proj worker -l info

For a complete listing of the command-line options available,
use the help command:

$ celery help

Where to go from here

If you want to learn more you should continue to the
Next Steps tutorial, and after that you
can study the User Guide.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Contributing

Welcome!

This document is fairly extensive and you are not really expected
to study this in detail for small contributions;

The most important rule is that contributing must be easy
and that the community is friendly and not nitpicking on details
such as coding style.

If you’re reporting a bug you should read the Reporting bugs section
below to ensure that your bug report contains enough information
to successfully diagnose the issue, and if you’re contributing code
you should try to mimic the conventions you see surrounding the code
you are working on, but in the end all patches will be cleaned up by
the person merging the changes so don’t worry too much.

	Community Code of Conduct
	Be considerate.

	Be respectful.

	Be collaborative.

	When you disagree, consult others.

	When you are unsure, ask for help.

	Step down considerately.

	Reporting Bugs
	Security

	Other bugs

	Issue Trackers

	Contributors guide to the codebase

	Versions

	Branches
	master branch

	Maintenance branches

	Archived branches

	Feature branches

	Tags

	Working on Features & Patches
	Forking and setting up the repository

	Running the unit test suite

	Creating pull requests
	Calculating test coverage

	Running the tests on all supported Python versions

	Building the documentation

	Verifying your contribution
	pyflakes & PEP8

	API reference

	Coding Style

	Contributing features requiring additional libraries

	Contacts
	Committers
	Ask Solem

	Mher Movsisyan

	Steeve Morin

	Website
	Mauro Rocco

	Jan Henrik Helmers

	Packages
	celery

	kombu

	amqp

	billiard

	librabbitmq

	celerymon

	django-celery

	cl

	cyme

	Deprecated

	Release Procedure
	Updating the version number

	Releasing

Community Code of Conduct

The goal is to maintain a diverse community that is pleasant for everyone.
That is why we would greatly appreciate it if everyone contributing to and
interacting with the community also followed this Code of Conduct.

The Code of Conduct covers our behavior as members of the community,
in any forum, mailing list, wiki, website, Internet relay chat (IRC), public
meeting or private correspondence.

The Code of Conduct is heavily based on the Ubuntu Code of Conduct [http://www.ubuntu.com/community/conduct], and
the Pylons Code of Conduct [http://docs.pylonshq.com/community/conduct.html].

Be considerate.

Your work will be used by other people, and you in turn will depend on the
work of others. Any decision you take will affect users and colleagues, and
we expect you to take those consequences into account when making decisions.
Even if it’s not obvious at the time, our contributions to Celery will impact
the work of others. For example, changes to code, infrastructure, policy,
documentation and translations during a release may negatively impact
others work.

Be respectful.

The Celery community and its members treat one another with respect. Everyone
can make a valuable contribution to Celery. We may not always agree, but
disagreement is no excuse for poor behavior and poor manners. We might all
experience some frustration now and then, but we cannot allow that frustration
to turn into a personal attack. It’s important to remember that a community
where people feel uncomfortable or threatened is not a productive one. We
expect members of the Celery community to be respectful when dealing with
other contributors as well as with people outside the Celery project and with
users of Celery.

Be collaborative.

Collaboration is central to Celery and to the larger free software community.
We should always be open to collaboration. Your work should be done
transparently and patches from Celery should be given back to the community
when they are made, not just when the distribution releases. If you wish
to work on new code for existing upstream projects, at least keep those
projects informed of your ideas and progress. It many not be possible to
get consensus from upstream, or even from your colleagues about the correct
implementation for an idea, so don’t feel obliged to have that agreement
before you begin, but at least keep the outside world informed of your work,
and publish your work in a way that allows outsiders to test, discuss and
contribute to your efforts.

When you disagree, consult others.

Disagreements, both political and technical, happen all the time and
the Celery community is no exception. It is important that we resolve
disagreements and differing views constructively and with the help of the
community and community process. If you really want to go a different
way, then we encourage you to make a derivative distribution or alternate
set of packages that still build on the work we’ve done to utilize as common
of a core as possible.

When you are unsure, ask for help.

Nobody knows everything, and nobody is expected to be perfect. Asking
questions avoids many problems down the road, and so questions are
encouraged. Those who are asked questions should be responsive and helpful.
However, when asking a question, care must be taken to do so in an appropriate
forum.

Step down considerately.

Developers on every project come and go and Celery is no different. When you
leave or disengage from the project, in whole or in part, we ask that you do
so in a way that minimizes disruption to the project. This means you should
tell people you are leaving and take the proper steps to ensure that others
can pick up where you leave off.

Reporting Bugs

Security

You must never report security related issues, vulnerabilities or bugs
including sensitive information to the bug tracker, or elsewhere in public.
Instead sensitive bugs must be sent by email to security@celeryproject.org.

If you’d like to submit the information encrypted our PGP key is:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.15 (Darwin)

mQENBFJpWDkBCADFIc9/Fpgse4owLNvsTC7GYfnJL19XO0hnL99sPx+DPbfr+cSE
9wiU+Wp2TfUX7pCLEGrODiEP6ZCZbgtiPgId+JYvMxpP6GXbjiIlHRw1EQNH8RlX
cVxy3rQfVv8PGGiJuyBBjxzvETHW25htVAZ5TI1+CkxmuyyEYqgZN2fNd0wEU19D
+c10G1gSECbCQTCbacLSzdpngAt1Gkrc96r7wGHBBSvDaGDD2pFSkVuTLMbIRrVp
lnKOPMsUijiip2EMr2DvfuXiUIUvaqInTPNWkDynLoh69ib5xC19CSVLONjkKBsr
Pe+qAY29liBatatpXsydY7GIUzyBT3MzgMJlABEBAAG0MUNlbGVyeSBTZWN1cml0
eSBUZWFtIDxzZWN1cml0eUBjZWxlcnlwcm9qZWN0Lm9yZz6JATgEEwECACIFAlJp
WDkCGwMGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJEOArFOUDCicIw1IH/26f
CViDC7/P13jr+srRdjAsWvQztia9HmTlY8cUnbmkR9w6b6j3F2ayw8VhkyFWgYEJ
wtPBv8mHKADiVSFARS+0yGsfCkia5wDSQuIv6XqRlIrXUyqJbmF4NUFTyCZYoh+C
ZiQpN9xGhFPr5QDlMx2izWg1rvWlG1jY2Es1v/xED3AeCOB1eUGvRe/uJHKjGv7J
rj0pFcptZX+WDF22AN235WYwgJM6TrNfSu8sv8vNAQOVnsKcgsqhuwomSGsOfMQj
LFzIn95MKBBU1G5wOs7JtwiV9jefGqJGBO2FAvOVbvPdK/saSnB+7K36dQcIHqms
5hU4Xj0RIJiod5idlRC5AQ0EUmlYOQEIAJs8OwHMkrdcvy9kk2HBVbdqhgAREMKy
gmphDp7prRL9FqSY/dKpCbG0u82zyJypdb7QiaQ5pfPzPpQcd2dIcohkkh7G3E+e
hS2L9AXHpwR26/PzMBXyr2iNnNc4vTksHvGVDxzFnRpka6vbI/hrrZmYNYh9EAiv
uhE54b3/XhXwFgHjZXb9i8hgJ3nsO0pRwvUAM1bRGMbvf8e9F+kqgV0yWYNnh6QL
4Vpl1+epqp2RKPHyNQftbQyrAHXT9kQF9pPlx013MKYaFTADscuAp4T3dy7xmiwS
crqMbZLzfrxfFOsNxTUGE5vmJCcm+mybAtRo4aV6ACohAO9NevMx8pUAEQEAAYkB
HwQYAQIACQUCUmlYOQIbDAAKCRDgKxTlAwonCNFbB/9esir/f7TufE+isNqErzR/
aZKZo2WzZR9c75kbqo6J6DYuUHe6xI0OZ2qZ60iABDEZAiNXGulysFLCiPdatQ8x
8zt3DF9BMkEck54ZvAjpNSern6zfZb1jPYWZq3TKxlTs/GuCgBAuV4i5vDTZ7xK/
aF+OFY5zN7ciZHkqLgMiTZ+RhqRcK6FhVBP/Y7d9NlBOcDBTxxE1ZO1ute6n7guJ
ciw4hfoRk8qNN19szZuq3UU64zpkM2sBsIFM9tGF2FADRxiOaOWZHmIyVZriPFqW
RUwjSjs7jBVNq0Vy4fCu/5+e+XLOUBOoqtM5W7ELt0t1w9tXebtPEetV86in8fU2
=0chn
-----END PGP PUBLIC KEY BLOCK-----

Other bugs

Bugs can always be described to the Mailing list, but the best
way to report an issue and to ensure a timely response is to use the
issue tracker.

	Create a GitHub account.

You need to create a GitHub account [https://github.com/signup/free] to be able to create new issues
and participate in the discussion.

	Determine if your bug is really a bug.

You should not file a bug if you are requesting support. For that you can use
the Mailing list, or IRC.

	Make sure your bug hasn’t already been reported.

Search through the appropriate Issue tracker. If a bug like yours was found,
check if you have new information that could be reported to help
the developers fix the bug.

	Check if you’re using the latest version.

A bug could be fixed by some other improvements and fixes - it might not have an
existing report in the bug tracker. Make sure you’re using the latest releases of
celery, billiard and kombu.

	Collect information about the bug.

To have the best chance of having a bug fixed, we need to be able to easily
reproduce the conditions that caused it. Most of the time this information
will be from a Python traceback message, though some bugs might be in design,
spelling or other errors on the website/docs/code.

	If the error is from a Python traceback, include it in the bug report.

	We also need to know what platform you’re running (Windows, OS X, Linux,
etc.), the version of your Python interpreter, and the version of Celery,
and related packages that you were running when the bug occurred.

	If you are reporting a race condition or a deadlock, tracebacks can be
hard to get or might not be that useful. Try to inspect the process to
get more diagnostic data. Some ideas:

	Enable celery’s breakpoint signal and use it
to inspect the process’s state. This will allow you to open a
pdb [https://docs.python.org/dev/library/pdb.html#module-pdb] session.

	Collect tracing data using strace_(Linux), dtruss (OSX) and ktrace(BSD),
ltrace [http://en.wikipedia.org/wiki/Ltrace] and lsof [http://en.wikipedia.org/wiki/Lsof].

	Include the output from the celery report command:

$ celery -A proj report

This will also include your configuration settings and it try to
remove values for keys known to be sensitive, but make sure you also
verify the information before submitting so that it doesn’t contain
confidential information like API tokens and authentication
credentials.

	Submit the bug.

By default GitHub [http://github.com] will email you to let you know when new comments have
been made on your bug. In the event you’ve turned this feature off, you
should check back on occasion to ensure you don’t miss any questions a
developer trying to fix the bug might ask.

Issue Trackers

Bugs for a package in the Celery ecosystem should be reported to the relevant
issue tracker.

	Celery: http://github.com/celery/celery/issues/

	Kombu: http://github.com/celery/kombu/issues

	pyamqp: http://github.com/celery/pyamqp/issues

	librabbitmq: http://github.com/celery/librabbitmq/issues

	Django-Celery: http://github.com/celery/django-celery/issues

If you are unsure of the origin of the bug you can ask the
Mailing list, or just use the Celery issue tracker.

Contributors guide to the codebase

There’s a separate section for internal details,
including details about the codebase and a style guide.

Read Contributors Guide to the Code for more!

Versions

Version numbers consists of a major version, minor version and a release number.
Since version 2.1.0 we use the versioning semantics described by
semver: http://semver.org.

Stable releases are published at PyPI
while development releases are only available in the GitHub git repository as tags.
All version tags starts with “v”, so version 0.8.0 is the tag v0.8.0.

Branches

Current active version branches:

	master (http://github.com/celery/celery/tree/master)

	3.1 (http://github.com/celery/celery/tree/3.1)

	3.0 (http://github.com/celery/celery/tree/3.0)

You can see the state of any branch by looking at the Changelog:

https://github.com/celery/celery/blob/master/Changelog

If the branch is in active development the topmost version info should
contain metadata like:

2.4.0
======
:release-date: TBA
:status: DEVELOPMENT
:branch: master

The status field can be one of:

	PLANNING

The branch is currently experimental and in the planning stage.

	DEVELOPMENT

The branch is in active development, but the test suite should
be passing and the product should be working and possible for users to test.

	FROZEN

The branch is frozen, and no more features will be accepted.
When a branch is frozen the focus is on testing the version as much
as possible before it is released.

master branch

The master branch is where development of the next version happens.

Maintenance branches

Maintenance branches are named after the version, e.g. the maintenance branch
for the 2.2.x series is named 2.2. Previously these were named
releaseXX-maint.

The versions we currently maintain is:

	3.1

This is the current series.

	3.0

This is the previous series, and the last version to support Python 2.5.

Archived branches

Archived branches are kept for preserving history only,
and theoretically someone could provide patches for these if they depend
on a series that is no longer officially supported.

An archived version is named X.Y-archived.

Our currently archived branches are:

	2.5-archived

	2.4-archived

	2.3-archived

	2.1-archived

	2.0-archived

	1.0-archived

Feature branches

Major new features are worked on in dedicated branches.
There is no strict naming requirement for these branches.

Feature branches are removed once they have been merged into a release branch.

Tags

Tags are used exclusively for tagging releases. A release tag is
named with the format vX.Y.Z, e.g. v2.3.1.
Experimental releases contain an additional identifier vX.Y.Z-id, e.g.
v3.0.0-rc1. Experimental tags may be removed after the official release.

Working on Features & Patches

Note

Contributing to Celery should be as simple as possible,
so none of these steps should be considered mandatory.

You can even send in patches by email if that is your preferred
work method. We won’t like you any less, any contribution you make
is always appreciated!

However following these steps may make maintainers life easier,
and may mean that your changes will be accepted sooner.

Forking and setting up the repository

First you need to fork the Celery repository, a good introduction to this
is in the Github Guide: Fork a Repo [http://help.github.com/fork-a-repo/].

After you have cloned the repository you should checkout your copy
to a directory on your machine:

$ git clone git@github.com:username/celery.git

When the repository is cloned enter the directory to set up easy access
to upstream changes:

$ cd celery
$ git remote add upstream git://github.com/celery/celery.git
$ git fetch upstream

If you need to pull in new changes from upstream you should
always use the --rebase option to git pull:

git pull --rebase upstream master

With this option you don’t clutter the history with merging
commit notes. See Rebasing merge commits in git [http://notes.envato.com/developers/rebasing-merge-commits-in-git/].
If you want to learn more about rebasing see the Rebase [http://help.github.com/rebase/]
section in the Github guides.

If you need to work on a different branch than master you can
fetch and checkout a remote branch like this:

git checkout --track -b 3.0-devel origin/3.0-devel

Running the unit test suite

To run the Celery test suite you need to install a few dependencies.
A complete list of the dependencies needed are located in
requirements/test.txt.

Installing the test requirements:

$ pip install -U -r requirements/test.txt

When installation of dependencies is complete you can execute
the test suite by calling nosetests:

$ nosetests

Some useful options to nosetests are:

	-x [https://docs.python.org/dev/using/cmdline.html#cmdoption-x]

Stop running the tests at the first test that fails.

	-s [https://docs.python.org/dev/using/cmdline.html#cmdoption-s]

Don’t capture output

	--nologcapture

Don’t capture log output.

	-v [https://docs.python.org/dev/using/cmdline.html#id4]

Run with verbose output.

If you want to run the tests for a single test file only
you can do so like this:

$ nosetests celery.tests.test_worker.test_worker_job

Creating pull requests

When your feature/bugfix is complete you may want to submit
a pull requests so that it can be reviewed by the maintainers.

Creating pull requests is easy, and also let you track the progress
of your contribution. Read the Pull Requests [http://help.github.com/send-pull-requests/] section in the Github
Guide to learn how this is done.

You can also attach pull requests to existing issues by following
the steps outlined here: http://bit.ly/koJoso

Calculating test coverage

To calculate test coverage you must first install the coverage module.

Installing the coverage module:

$ pip install -U coverage

Code coverage in HTML:

$ nosetests --with-coverage --cover-html

The coverage output will then be located at
celery/tests/cover/index.html.

Code coverage in XML (Cobertura-style):

$ nosetests --with-coverage --cover-xml --cover-xml-file=coverage.xml

The coverage XML output will then be located at coverage.xml

Running the tests on all supported Python versions

There is a tox configuration file in the top directory of the
distribution.

To run the tests for all supported Python versions simply execute:

$ tox

If you only want to test specific Python versions use the -e
option:

$ tox -e py26

Building the documentation

To build the documentation you need to install the dependencies
listed in requirements/docs.txt:

$ pip install -U -r requirements/docs.txt

After these dependencies are installed you should be able to
build the docs by running:

$ cd docs
$ rm -rf .build
$ make html

Make sure there are no errors or warnings in the build output.
After building succeeds the documentation is available at .build/html.

Verifying your contribution

To use these tools you need to install a few dependencies. These dependencies
can be found in requirements/pkgutils.txt.

Installing the dependencies:

$ pip install -U -r requirements/pkgutils.txt

pyflakes & PEP8

To ensure that your changes conform to PEP8 and to run pyflakes
execute:

$ paver flake8

To not return a negative exit code when this command fails use the
-E [https://docs.python.org/dev/using/cmdline.html#cmdoption-e] option, this can be convenient while developing:

$ paver flake8 -E

API reference

To make sure that all modules have a corresponding section in the API
reference please execute:

$ paver autodoc
$ paver verifyindex

If files are missing you can add them by copying an existing reference file.

If the module is internal it should be part of the internal reference
located in docs/internals/reference/. If the module is public
it should be located in docs/reference/.

For example if reference is missing for the module celery.worker.awesome
and this module is considered part of the public API, use the following steps:

Use an existing file as a template:

$ cd docs/reference/
$ cp celery.schedules.rst celery.worker.awesome.rst

Edit the file using your favorite editor:

$ vim celery.worker.awesome.rst

 # change every occurance of ``celery.schedules`` to
 # ``celery.worker.awesome``

Edit the index using your favorite editor:

$ vim index.rst

 # Add ``celery.worker.awesome`` to the index.

Commit your changes:

Add the file to git
$ git add celery.worker.awesome.rst
$ git add index.rst
$ git commit celery.worker.awesome.rst index.rst \
 -m "Adds reference for celery.worker.awesome"

Coding Style

You should probably be able to pick up the coding style
from surrounding code, but it is a good idea to be aware of the
following conventions.

	All Python code must follow the PEP-8 [http://www.python.org/dev/peps/pep-0008/] guidelines.

pep8.py [http://pypi.python.org/pypi/pep8] is an utility you can use to verify that your code
is following the conventions.

	Docstrings must follow the PEP-257 [http://www.python.org/dev/peps/pep-0257/] conventions, and use the following
style.

Do this:

def method(self, arg):
 """Short description.

 More details.

 """

or:

def method(self, arg):
 """Short description."""

but not this:

def method(self, arg):
 """
 Short description.
 """

	Lines should not exceed 78 columns.

You can enforce this in vim by setting the textwidth option:

set textwidth=78

If adhering to this limit makes the code less readable, you have one more
character to go on, which means 78 is a soft limit, and 79 is the hard
limit :)

	Import order

	Python standard library (import xxx)

	Python standard library (‘from xxx import`)

	Third party packages.

	Other modules from the current package.

or in case of code using Django:

	Python standard library (import xxx)

	Python standard library (‘from xxx import`)

	Third party packages.

	Django packages.

	Other modules from the current package.

Within these sections the imports should be sorted by module name.

Example:

import threading
import time

from collections import deque
from Queue import Queue, Empty

from .datastructures import TokenBucket
from .five import zip_longest, items, range
from .utils import timeutils

	Wildcard imports must not be used (from xxx import *).

	For distributions where Python 2.5 is the oldest support version
additional rules apply:

	Absolute imports must be enabled at the top of every module:

from __future__ import absolute_import

	If the module uses the with statement and must be compatible
with Python 2.5 (celery is not) then it must also enable that:

from __future__ import with_statement

	Every future import must be on its own line, as older Python 2.5
releases did not support importing multiple features on the
same future import line:

Good
from __future__ import absolute_import
from __future__ import with_statement

Bad
from __future__ import absolute_import, with_statement

(Note that this rule does not apply if the package does not include
support for Python 2.5)

	Note that we use “new-style` relative imports when the distribution
does not support Python versions below 2.5

This requires Python 2.5 or later:

from . import submodule

Contributing features requiring additional libraries

Some features like a new result backend may require additional libraries
that the user must install.

We use setuptools extra_requires for this, and all new optional features
that require 3rd party libraries must be added.

	Add a new requirements file in requirements/extras

E.g. for the Cassandra backend this is
requirements/extras/cassandra.txt, and the file looks like this:

pycassa

These are pip requirement files so you can have version specifiers and
multiple packages are separated by newline. A more complex example could
be:

pycassa 2.0 breaks Foo
pycassa>=1.0,<2.0
thrift

	Modify setup.py

After the requirements file is added you need to add it as an option
to setup.py in the extras_require section:

extra['extras_require'] = {
 # ...
 'cassandra': extras('cassandra.txt'),
}

	Document the new feature in docs/includes/installation.txt

You must add your feature to the list in the Bundles section
of docs/includes/installation.txt.

After you’ve made changes to this file you need to render
the distro README file:

$ pip install -U requirements/pkgutils.txt
$ paver readme

That’s all that needs to be done, but remember that if your feature
adds additional configuration options then these needs to be documented
in docs/configuration.rst. Also all settings need to be added to the
celery/app/defaults.py module.

Result backends require a separate section in the docs/configuration.rst
file.

Contacts

This is a list of people that can be contacted for questions
regarding the official git repositories, PyPI packages
Read the Docs pages.

If the issue is not an emergency then it is better
to report an issue.

Committers

Ask Solem

	github:	https://github.com/ask

	twitter:	http://twitter.com/#!/asksol

Mher Movsisyan

	github:	https://github.com/mher

	twitter:	http://twitter.com/#!/movsm

Steeve Morin

	github:	https://github.com/steeve

	twitter:	http://twitter.com/#!/steeve

Website

The Celery Project website is run and maintained by

Mauro Rocco

	github:	https://github.com/fireantology

	twitter:	https://twitter.com/#!/fireantology

with design by:

Jan Henrik Helmers

	web:	http://www.helmersworks.com

	twitter:	http://twitter.com/#!/helmers

Packages

celery

	git:	https://github.com/celery/celery

	CI:	http://travis-ci.org/#!/celery/celery

	PyPI:	http://pypi.python.org/pypi/celery

	docs:	http://docs.celeryproject.org

kombu

Messaging library.

	git:	https://github.com/celery/kombu

	CI:	http://travis-ci.org/#!/celery/kombu

	PyPI:	http://pypi.python.org/pypi/kombu

	docs:	http://kombu.readthedocs.org

amqp

Python AMQP 0.9.1 client.

	git:	https://github.com/celery/py-amqp

	CI:	http://travis-ci.org/#!/celery/py-amqp

	PyPI:	http://pypi.python.org/pypi/amqp

	docs:	http://amqp.readthedocs.org

billiard

Fork of multiprocessing containing improvements
that will eventually be merged into the Python stdlib.

	git:	https://github.com/celery/billiard

	PyPI:	http://pypi.python.org/pypi/billiard

librabbitmq

Very fast Python AMQP client written in C.

	git:	https://github.com/celery/librabbitmq

	PyPI:	http://pypi.python.org/pypi/librabbitmq

celerymon

Celery monitor web-service.

	git:	https://github.com/celery/celerymon

	PyPI:	http://pypi.python.org/pypi/celerymon

django-celery

Django <-> Celery Integration.

	git:	https://github.com/celery/django-celery

	PyPI:	http://pypi.python.org/pypi/django-celery

	docs:	http://docs.celeryproject.org/en/latest/django

cl

Actor library.

	git:	https://github.com/celery/cl

	PyPI:	http://pypi.python.org/pypi/cl

cyme

Distributed Celery Instance manager.

	git:	https://github.com/celery/cyme

	PyPI:	http://pypi.python.org/pypi/cyme

	docs:	http://cyme.readthedocs.org/

Deprecated

	Flask-Celery

	git:	https://github.com/ask/Flask-Celery

	PyPI:	http://pypi.python.org/pypi/Flask-Celery

	carrot

	git:	https://github.com/ask/carrot

	PyPI:	http://pypi.python.org/pypi/carrot

	ghettoq

	git:	https://github.com/ask/ghettoq

	PyPI:	http://pypi.python.org/pypi/ghettoq

	kombu-sqlalchemy

	git:	https://github.com/ask/kombu-sqlalchemy

	PyPI:	http://pypi.python.org/pypi/kombu-sqlalchemy

	django-kombu

	git:	https://github.com/ask/django-kombu

	PyPI:	http://pypi.python.org/pypi/django-kombu

	pylibrabbitmq

Old name for librabbitmq.

	git:	None

	PyPI:	http://pypi.python.org/pypi/pylibrabbitmq

Release Procedure

Updating the version number

The version number must be updated two places:

	celery/__init__.py

	docs/include/introduction.txt

After you have changed these files you must render
the README files. There is a script to convert sphinx syntax
to generic reStructured Text syntax, and the paver task readme
does this for you:

$ paver readme

Now commit the changes:

$ git commit -a -m "Bumps version to X.Y.Z"

and make a new version tag:

$ git tag vX.Y.Z
$ git push --tags

Releasing

Commands to make a new public stable release:

$ paver releaseok # checks pep8, autodoc index, runs tests and more
$ paver removepyc # Remove .pyc files
$ git clean -xdn # Check that there's no left-over files in the repo
$ python setup.py sdist upload # Upload package to PyPI

If this is a new release series then you also need to do the
following:

	
	Go to the Read The Docs management interface at:

	http://readthedocs.org/projects/celery/?fromdocs=celery

	Enter “Edit project”

Change default branch to the branch of this series, e.g. 2.4
for series 2.4.

	Also add the previous version under the “versions” tab.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Community Resources

This is a list of external blog posts, tutorials and slides related
to Celery. If you have a link that’s missing from this list, please
contact the mailing-list or submit a patch.

	Resources
	Who’s using Celery

	Wiki

	Celery questions on Stack Overflow

	Mailing-list Archive: celery-users

	News

Resources

Who’s using Celery

http://wiki.github.com/celery/celery/using

Wiki

http://wiki.github.com/celery/celery/

Celery questions on Stack Overflow

http://stackoverflow.com/search?q=celery&tab=newest

Mailing-list Archive: celery-users

http://blog.gmane.org/gmane.comp.python.amqp.celery.user

News

This section has moved to the Celery homepage:
http://celeryproject.org/community/

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Tutorials

	Release:	3.1

	Date:	Nov 12, 2017

	Running the worker as a daemon
	Generic init scripts

	Usage systemd

	supervisord

	launchd (OS X)

	Windows

	CentOS

	Debugging Tasks Remotely (using pdb)
	Basics

	Tips

	Task Cookbook
	Ensuring a task is only executed one at a time

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Running the worker as a daemon

Celery does not daemonize itself, please use one of the following
daemonization tools.

	Generic init scripts
	Init script: celeryd
	Example configuration

	Example Django configuration

	Available options

	Init script: celerybeat
	Example configuration

	Example Django configuration

	Available options

	Usage systemd
	Service file: celery.service
	Example configuration

	Example Django configuration

	Troubleshooting

	supervisord

	launchd (OS X)

	Windows

	CentOS

Generic init scripts

See the extra/generic-init.d/ [http://github.com/celery/celery/tree/3.1/extra/generic-init.d/] directory Celery distribution.

This directory contains generic bash init scripts for the
celery worker program,
these should run on Linux, FreeBSD, OpenBSD, and other Unix-like platforms.

Init script: celeryd

	Usage:	/etc/init.d/celeryd {start|stop|restart|status}

	Configuration file:

	 	/etc/default/celeryd

To configure this script to run the worker properly you probably need to at least
tell it where to change
directory to when it starts (to find the module containing your app, or your
configuration module).

The daemonization script is configured by the file /etc/default/celeryd,
which is a shell (sh) script. You can add environment variables and the
configuration options below to this file. To add environment variables you
must also export them (e.g. export DISPLAY=":0")

Superuser privileges required

The init scripts can only be used by root,
and the shell configuration file must also be owned by root.

Unprivileged users do not need to use the init script,
instead they can use the celery multi utility (or
celery worker --detach):

$ celery multi start worker1 \
 -A proj \
 --pidfile="$HOME/run/celery/%n.pid" \
 --logfile="$HOME/log/celery/%n.log"

$ celery multi restart worker1 \
 -A proj \
 --logfile="$HOME/log/celery/%n%I.log" \
 --pidfile="$HOME/run/celery/%n.pid

$ celery multi stopwait worker1 --pidfile="$HOME/run/celery/%n.pid"

Example configuration

This is an example configuration for a Python project.

/etc/default/celeryd:

Names of nodes to start
most people will only start one node:
CELERYD_NODES="worker1"
but you can also start multiple and configure settings
for each in CELERYD_OPTS (see `celery multi --help` for examples):
#CELERYD_NODES="worker1 worker2 worker3"
alternatively, you can specify the number of nodes to start:
#CELERYD_NODES=10

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use
comment out this line if you don't use an app
CELERY_APP="proj"
or fully qualified:
#CELERY_APP="proj.tasks:app"

Where to chdir at start.
CELERYD_CHDIR="/opt/Myproject/"

Extra command-line arguments to the worker
CELERYD_OPTS="--time-limit=300 --concurrency=8"

%N will be replaced with the first part of the nodename.
CELERYD_LOG_FILE="/var/log/celery/%N.log"
CELERYD_PID_FILE="/var/run/celery/%N.pid"

Workers should run as an unprivileged user.
You need to create this user manually (or you can choose
a user/group combination that already exists, e.g. nobody).
CELERYD_USER="celery"
CELERYD_GROUP="celery"

If enabled pid and log directories will be created if missing,
and owned by the userid/group configured.
CELERY_CREATE_DIRS=1

Example Django configuration

Django users now uses the exact same template as above,
but make sure that the module that defines your Celery app instance
also sets a default value for DJANGO_SETTINGS_MODULE
as shown in the example Django project in First steps with Django.

Available options

	
	CELERY_APP

	App instance to use (value for --app argument).
If you’re still using the old API, or django-celery, then you
can omit this setting.

	
	CELERY_BIN

	Absolute or relative path to the celery program.
Examples:

	celery

	/usr/local/bin/celery

	/virtualenvs/proj/bin/celery

	/virtualenvs/proj/bin/python -m celery

	
	CELERYD_NODES

	List of node names to start (separated by space).

	
	CELERYD_OPTS

	Additional command-line arguments for the worker, see
celery worker –help for a list. This also supports the extended
syntax used by multi to configure settings for individual nodes.
See celery multi –help for some multi-node configuration examples.

	
	CELERYD_CHDIR

	Path to change directory to at start. Default is to stay in the current
directory.

	
	CELERYD_PID_FILE

	Full path to the PID file. Default is /var/run/celery/%N.pid

	
	CELERYD_LOG_FILE

	Full path to the worker log file. Default is /var/log/celery/%N.log

	
	CELERYD_LOG_LEVEL

	Worker log level. Default is INFO.

	
	CELERYD_USER

	User to run the worker as. Default is current user.

	
	CELERYD_GROUP

	Group to run worker as. Default is current user.

	
	CELERY_CREATE_DIRS

	Always create directories (log directory and pid file directory).
Default is to only create directories when no custom logfile/pidfile set.

	
	CELERY_CREATE_RUNDIR

	Always create pidfile directory. By default only enabled when no custom
pidfile location set.

	
	CELERY_CREATE_LOGDIR

	Always create logfile directory. By default only enable when no custom
logfile location set.

Init script: celerybeat

	Usage:	/etc/init.d/celerybeat {start|stop|restart}

	Configuration file:

	 	/etc/default/celerybeat or /etc/default/celeryd

Example configuration

This is an example configuration for a Python project:

/etc/default/celerybeat:

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use
comment out this line if you don't use an app
CELERY_APP="proj"
or fully qualified:
#CELERY_APP="proj.tasks:app"

Where to chdir at start.
CELERYBEAT_CHDIR="/opt/Myproject/"

Extra arguments to celerybeat
CELERYBEAT_OPTS="--schedule=/var/run/celery/celerybeat-schedule"

Example Django configuration

You should use the same template as above, but make sure the
DJANGO_SETTINGS_MODULE variable is set (and exported), and that
CELERYD_CHDIR is set to the projects directory:

export DJANGO_SETTINGS_MODULE="settings"

CELERYD_CHDIR="/opt/MyProject"

Available options

	
	CELERY_APP

	App instance to use (value for --app argument).

	
	CELERYBEAT_OPTS

	Additional arguments to celerybeat, see celerybeat –help for a
list.

	
	CELERYBEAT_PID_FILE

	Full path to the PID file. Default is /var/run/celeryd.pid.

	
	CELERYBEAT_LOG_FILE

	Full path to the celeryd log file. Default is /var/log/celeryd.log

	
	CELERYBEAT_LOG_LEVEL

	Log level to use for celeryd. Default is INFO.

	
	CELERYBEAT_USER

	User to run beat as. Default is current user.

	
	CELERYBEAT_GROUP

	Group to run beat as. Default is current user.

	
	CELERY_CREATE_DIRS

	Always create directories (log directory and pid file directory).
Default is to only create directories when no custom logfile/pidfile set.

	
	CELERY_CREATE_RUNDIR

	Always create pidfile directory. By default only enabled when no custom
pidfile location set.

	
	CELERY_CREATE_LOGDIR

	Always create logfile directory. By default only enable when no custom
logfile location set.

Usage systemd

Service file: celery.service

	Usage:	systemctl {start|stop|restart|status} celery.service

	Configuration file:

	 	/etc/conf.d/celery

To create a temporary folders for the log and pid files change user and group in
/usr/lib/tmpfiles.d/celery.conf.
To configure user, group, chdir change settings User, Group and WorkingDirectory defines
in /usr/lib/systemd/system/celery.service.

Example configuration

This is an example configuration for a Python project:

/etc/conf.d/celery:

Name of nodes to start
here we have a single node
CELERYD_NODES="w1"
or we could have three nodes:
#CELERYD_NODES="w1 w2 w3"

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

How to call manage.py
CELERYD_MULTI="multi"

Extra command-line arguments to the worker
CELERYD_OPTS="--time-limit=300 --concurrency=8"

%N will be replaced with the first part of the nodename.
CELERYD_LOG_FILE="/var/log/celery/%N.log"
CELERYD_PID_FILE="/var/run/celery/%N.pid"

Example Django configuration

This is an example configuration for those using django-celery:

Name of nodes to start
here we have a single node
CELERYD_NODES="w1"
or we could have three nodes:
#CELERYD_NODES="w1 w2 w3"

Absolute path to "manage.py"
CELERY_BIN="/opt/Myproject/manage.py"

How to call manage.py
CELERYD_MULTI="celery multi"

Extra command-line arguments to the worker
CELERYD_OPTS="--time-limit=300 --concurrency=8"

%N will be replaced with the first part of the nodename.
CELERYD_LOG_FILE="/var/log/celery/%N.log"
CELERYD_PID_FILE="/var/run/celery/%N.pid"

To add an environment variable such as DJANGO_SETTINGS_MODULE use the
Environment in celery.service.

Troubleshooting

If you can’t get the init scripts to work, you should try running
them in verbose mode:

sh -x /etc/init.d/celeryd start

This can reveal hints as to why the service won’t start.

If the worker starts with “OK” but exits almost immediately afterwards
and there is nothing in the log file, then there is probably an error
but as the daemons standard outputs are already closed you’ll
not be able to see them anywhere. For this situation you can use
the C_FAKEFORK environment variable to skip the
daemonization step:

C_FAKEFORK=1 sh -x /etc/init.d/celeryd start

and now you should be able to see the errors.

Commonly such errors are caused by insufficient permissions
to read from, or write to a file, and also by syntax errors
in configuration modules, user modules, 3rd party libraries,
or even from Celery itself (if you’ve found a bug, in which case
you should report it).

supervisord [http://supervisord.org/]

	extra/supervisord/ [http://github.com/celery/celery/tree/3.1/extra/supervisord/]

launchd (OS X)

	extra/osx [http://github.com/celery/celery/tree/3.1/extra/osx/]

Windows

See this excellent external tutorial:

http://www.calazan.com/windows-tip-run-applications-in-the-background-using-task-scheduler/

CentOS

In CentOS we can take advantage of built-in service helpers, such as the
pid-based status checker function in /etc/init.d/functions.
See the sample script in http://github.com/celery/celery/tree/3.1/extra/centos/.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Debugging Tasks Remotely (using pdb)

Basics

celery.contrib.rdb is an extended version of pdb [https://docs.python.org/dev/library/pdb.html#module-pdb] that
enables remote debugging of processes that does not have terminal
access.

Example usage:

from celery import task
from celery.contrib import rdb

@task()
def add(x, y):
 result = x + y
 rdb.set_trace() # <- set breakpoint
 return result

set_trace() sets a breakpoint at the current
location and creates a socket you can telnet into to remotely debug
your task.

The debugger may be started by multiple processes at the same time,
so rather than using a fixed port the debugger will search for an
available port, starting from the base port (6900 by default).
The base port can be changed using the environment variable
CELERY_RDB_PORT.

By default the debugger will only be available from the local host,
to enable access from the outside you have to set the environment
variable CELERY_RDB_HOST.

When the worker encounters your breakpoint it will log the following
information:

[INFO/MainProcess] Received task:
 tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8]
[WARNING/PoolWorker-1] Remote Debugger:6900:
 Please telnet 127.0.0.1 6900. Type `exit` in session to continue.
[2011-01-18 14:25:44,119: WARNING/PoolWorker-1] Remote Debugger:6900:
 Waiting for client...

If you telnet the port specified you will be presented
with a pdb shell:

$ telnet localhost 6900
Connected to localhost.
Escape character is '^]'.
> /opt/devel/demoapp/tasks.py(128)add()
-> return result
(Pdb)

Enter help to get a list of available commands,
It may be a good idea to read the Python Debugger Manual [http://docs.python.org/library/pdb.html] if
you have never used pdb before.

To demonstrate, we will read the value of the result variable,
change it and continue execution of the task:

(Pdb) result
4
(Pdb) result = 'hello from rdb'
(Pdb) continue
Connection closed by foreign host.

The result of our vandalism can be seen in the worker logs:

[2011-01-18 14:35:36,599: INFO/MainProcess] Task
 tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8] succeeded
 in 61.481s: 'hello from rdb'

Tips

Enabling the breakpoint signal

If the environment variable CELERY_RDBSIG is set, the worker
will open up an rdb instance whenever the SIGUSR2 signal is sent.
This is the case for both main and worker processes.

For example starting the worker with:

CELERY_RDBSIG=1 celery worker -l info

You can start an rdb session for any of the worker processes by executing:

kill -USR2 <pid>

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Task Cookbook

	Ensuring a task is only executed one at a time

Ensuring a task is only executed one at a time

You can accomplish this by using a lock.

In this example we’ll be using the cache framework to set a lock that is
accessible for all workers.

It’s part of an imaginary RSS feed importer called djangofeeds.
The task takes a feed URL as a single argument, and imports that feed into
a Django model called Feed. We ensure that it’s not possible for two or
more workers to import the same feed at the same time by setting a cache key
consisting of the MD5 checksum of the feed URL.

The cache key expires after some time in case something unexpected happens
(you never know, right?)

from celery import task
from celery.utils.log import get_task_logger
from django.core.cache import cache
from hashlib import md5
from djangofeeds.models import Feed

logger = get_task_logger(__name__)

LOCK_EXPIRE = 60 * 5 # Lock expires in 5 minutes

@task(bind=True)
def import_feed(self, feed_url):
 # The cache key consists of the task name and the MD5 digest
 # of the feed URL.
 feed_url_hexdigest = md5(feed_url).hexdigest()
 lock_id = '{0}-lock-{1}'.format(self.name, feed_url_hexdigest)

 # cache.add fails if the key already exists
 acquire_lock = lambda: cache.add(lock_id, 'true', LOCK_EXPIRE)
 # memcache delete is very slow, but we have to use it to take
 # advantage of using add() for atomic locking
 release_lock = lambda: cache.delete(lock_id)

 logger.debug('Importing feed: %s', feed_url)
 if acquire_lock():
 try:
 feed = Feed.objects.import_feed(feed_url)
 finally:
 release_lock()
 return feed.url

 logger.debug(
 'Feed %s is already being imported by another worker', feed_url)

Note that in order for this to work correctly you need to be using a cache
backend that supports an atomic .add operation. memcached is known
to work well for this purpose.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Frequently Asked Questions

	General
	What kinds of things should I use Celery for?

	Misconceptions
	Does Celery really consist of 50.000 lines of code?

	Does Celery have many dependencies?
	celery

	django-celery

	kombu

	Is Celery heavy-weight?

	Is Celery dependent on pickle?

	Is Celery for Django only?

	Do I have to use AMQP/RabbitMQ?

	Is Celery multilingual?

	Troubleshooting
	MySQL is throwing deadlock errors, what can I do?

	The worker is not doing anything, just hanging

	Task results aren’t reliably returning

	Why is Task.delay/apply*/the worker just hanging?

	Does it work on FreeBSD?

	I’m having IntegrityError: Duplicate Key errors. Why?

	Why aren’t my tasks processed?

	Why won’t my Task run?

	Why won’t my periodic task run?

	How do I purge all waiting tasks?

	I’ve purged messages, but there are still messages left in the queue?

	Results
	How do I get the result of a task if I have the ID that points there?

	Security
	Isn’t using pickle a security concern?

	Can messages be encrypted?

	Is it safe to run celery worker as root?

	Brokers
	Why is RabbitMQ crashing?

	Can I use Celery with ActiveMQ/STOMP?

	What features are not supported when not using an AMQP broker?

	Tasks
	How can I reuse the same connection when calling tasks?

	Sudo in a subprocess [https://docs.python.org/dev/library/subprocess.html#module-subprocess] returns None

	Why do workers delete tasks from the queue if they are unable to process them?

	Can I call a task by name?

	How can I get the task id of the current task?

	Can I specify a custom task_id?

	Can I use decorators with tasks?

	Can I use natural task ids?

	How can I run a task once another task has finished?

	Can I cancel the execution of a task?

	Why aren’t my remote control commands received by all workers?

	Can I send some tasks to only some servers?

	Can I change the interval of a periodic task at runtime?

	Does celery support task priorities?

	Should I use retry or acks_late?

	Can I schedule tasks to execute at a specific time?

	How can I safely shut down the worker?

	How do I run the worker in the background on [platform]?

	Django
	What purpose does the database tables created by django-celery have?

	Windows
	The -B / –beat option to worker doesn’t work?

General

What kinds of things should I use Celery for?

Answer: Queue everything and delight everyone [http://decafbad.com/blog/2008/07/04/queue-everything-and-delight-everyone] is a good article
describing why you would use a queue in a web context.

These are some common use cases:

	Running something in the background. For example, to finish the web request
as soon as possible, then update the users page incrementally.
This gives the user the impression of good performance and “snappiness”, even
though the real work might actually take some time.

	Running something after the web request has finished.

	Making sure something is done, by executing it asynchronously and using
retries.

	Scheduling periodic work.

And to some degree:

	Distributed computing.

	Parallel execution.

Misconceptions

Does Celery really consist of 50.000 lines of code?

Answer: No, this and similarly large numbers have
been reported at various locations.

The numbers as of this writing are:

	core: 7,141 lines of code.

	tests: 14,209 lines.

	backends, contrib, compat utilities: 9,032 lines.

Lines of code is not a useful metric, so
even if Celery did consist of 50k lines of code you would not
be able to draw any conclusions from such a number.

Does Celery have many dependencies?

A common criticism is that Celery uses too many dependencies.
The rationale behind such a fear is hard to imagine, especially considering
code reuse as the established way to combat complexity in modern software
development, and that the cost of adding dependencies is very low now
that package managers like pip and PyPI makes the hassle of installing
and maintaining dependencies a thing of the past.

Celery has replaced several dependencies along the way, and
the current list of dependencies are:

celery

	kombu [http://pypi.python.org/pypi/kombu]

Kombu is part of the Celery ecosystem and is the library used
to send and receive messages. It is also the library that enables
us to support many different message brokers. It is also used by the
OpenStack project, and many others, validating the choice to separate
it from the Celery codebase.

	billiard [http://pypi.python.org/pypi/billiard]

Billiard is a fork of the Python multiprocessing module containing
many performance and stability improvements. It is an eventual goal
that these improvements will be merged back into Python one day.

It is also used for compatibility with older Python versions
that don’t come with the multiprocessing module.

	pytz

The pytz module provides timezone definitions and related tools.

django-celery

If you use django-celery then you don’t have to install celery separately,
as it will make sure that the required version is installed.

django-celery does not have any other dependencies.

kombu

Kombu depends on the following packages:

	amqp [http://pypi.python.org/pypi/amqp]

The underlying pure-Python amqp client implementation. AMQP being the default
broker this is a natural dependency.

	anyjson [http://pypi.python.org/pypi/anyjson]

anyjson is an utility library to select the best possible
JSON implementation.

Note

For compatibility reasons additional packages may be installed
if you are running on older Python versions,
for example Python 2.6 depends on the importlib,
and ordereddict libraries.

Also, to handle the dependencies for popular configuration
choices Celery defines a number of “bundle” packages,
see Bundles.

Is Celery heavy-weight?

Celery poses very little overhead both in memory footprint and
performance.

But please note that the default configuration is not optimized for time nor
space, see the Optimizing guide for more information.

Is Celery dependent on pickle?

Answer: No.

Celery can support any serialization scheme and has built-in support for
JSON, YAML, Pickle and msgpack. Also, as every task is associated with a
content type, you can even send one task using pickle, and another using JSON.

The default serialization format is pickle simply because it is
convenient (it supports sending complex Python objects as task arguments).

If you need to communicate with other languages you should change
to a serialization format that is suitable for that.

You can set a global default serializer, the default serializer for a
particular Task, or even what serializer to use when sending a single task
instance.

Is Celery for Django only?

Answer: No.

You can use Celery with any framework, web or otherwise.

Do I have to use AMQP/RabbitMQ?

Answer: No.

Although using RabbitMQ is recommended you can also use Redis. There are also
experimental transports available such as MongoDB, Beanstalk, CouchDB, or using
SQL databases. See Brokers for more information.

The experimental transports may have reliability problems and
limited broadcast and event functionality.
For example remote control commands only works with AMQP and Redis.

Redis or a database won’t perform as well as
an AMQP broker. If you have strict reliability requirements you are
encouraged to use RabbitMQ or another AMQP broker. Some transports also uses
polling, so they are likely to consume more resources. However, if you for
some reason are not able to use AMQP, feel free to use these alternatives.
They will probably work fine for most use cases, and note that the above
points are not specific to Celery; If using Redis/database as a queue worked
fine for you before, it probably will now. You can always upgrade later
if you need to.

Is Celery multilingual?

Answer: Yes.

worker is an implementation of Celery in Python. If the
language has an AMQP client, there shouldn’t be much work to create a worker
in your language. A Celery worker is just a program connecting to the broker
to process messages.

Also, there’s another way to be language independent, and that is to use REST
tasks, instead of your tasks being functions, they’re URLs. With this
information you can even create simple web servers that enable preloading of
code. See: User Guide: Remote Tasks.

Troubleshooting

MySQL is throwing deadlock errors, what can I do?

Answer: MySQL has default isolation level set to REPEATABLE-READ,
if you don’t really need that, set it to READ-COMMITTED.
You can do that by adding the following to your my.cnf:

[mysqld]
transaction-isolation = READ-COMMITTED

For more information about InnoDB`s transaction model see MySQL - The InnoDB
Transaction Model and Locking [http://dev.mysql.com/doc/refman/5.1/en/innodb-transaction-model.html] in the MySQL user manual.

(Thanks to Honza Kral and Anton Tsigularov for this solution)

The worker is not doing anything, just hanging

	Answer: See MySQL is throwing deadlock errors, what can I do?.

	or Why is Task.delay/apply* just hanging?.

Task results aren’t reliably returning

Answer: If you’re using the database backend for results, and in particular
using MySQL, see MySQL is throwing deadlock errors, what can I do?.

Why is Task.delay/apply*/the worker just hanging?

Answer: There is a bug in some AMQP clients that will make it hang if
it’s not able to authenticate the current user, the password doesn’t match or
the user does not have access to the virtual host specified. Be sure to check
your broker logs (for RabbitMQ that is /var/log/rabbitmq/rabbit.log on
most systems), it usually contains a message describing the reason.

Does it work on FreeBSD?

Answer: Depends

When using the RabbitMQ (AMQP) and Redis transports it should work
out of the box.

For other transports the compatibility prefork pool is
used which requires a working POSIX semaphore implementation,
this is enabled in FreeBSD by default since FreeBSD 8.x.
For older version of FreeBSD, you have to enable
POSIX semaphores in the kernel and manually recompile billiard.

Luckily, Viktor Petersson has written a tutorial to get you started with
Celery on FreeBSD here:
http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/

I’m having IntegrityError: Duplicate Key errors. Why?

Answer: See MySQL is throwing deadlock errors, what can I do?.
Thanks to howsthedotcom.

Why aren’t my tasks processed?

Answer: With RabbitMQ you can see how many consumers are currently
receiving tasks by running the following command:

$ rabbitmqctl list_queues -p <myvhost> name messages consumers
Listing queues ...
celery 2891 2

This shows that there’s 2891 messages waiting to be processed in the task
queue, and there are two consumers processing them.

One reason that the queue is never emptied could be that you have a stale
worker process taking the messages hostage. This could happen if the worker
wasn’t properly shut down.

When a message is received by a worker the broker waits for it to be
acknowledged before marking the message as processed. The broker will not
re-send that message to another consumer until the consumer is shut down
properly.

If you hit this problem you have to kill all workers manually and restart
them:

ps auxww | grep celeryd | awk '{print $2}' | xargs kill

You might have to wait a while until all workers have finished the work they’re
doing. If it’s still hanging after a long time you can kill them by force
with:

ps auxww | grep celeryd | awk '{print $2}' | xargs kill -9

Why won’t my Task run?

Answer: There might be syntax errors preventing the tasks module being imported.

You can find out if Celery is able to run the task by executing the
task manually:

>>> from myapp.tasks import MyPeriodicTask
>>> MyPeriodicTask.delay()

Watch the workers log file to see if it’s able to find the task, or if some
other error is happening.

Why won’t my periodic task run?

Answer: See Why won’t my Task run?.

How do I purge all waiting tasks?

Answer: You can use the celery purge command to purge
all configured task queues:

$ celery -A proj purge

or programatically:

>>> from proj.celery import app
>>> app.control.purge()
1753

If you only want to purge messages from a specific queue
you have to use the AMQP API or the celery amqp utility:

$ celery -A proj amqp queue.purge <queue name>

The number 1753 is the number of messages deleted.

You can also start worker with the
--purge argument, to purge messages when the worker starts.

I’ve purged messages, but there are still messages left in the queue?

Answer: Tasks are acknowledged (removed from the queue) as soon
as they are actually executed. After the worker has received a task, it will
take some time until it is actually executed, especially if there are a lot
of tasks already waiting for execution. Messages that are not acknowledged are
held on to by the worker until it closes the connection to the broker (AMQP
server). When that connection is closed (e.g. because the worker was stopped)
the tasks will be re-sent by the broker to the next available worker (or the
same worker when it has been restarted), so to properly purge the queue of
waiting tasks you have to stop all the workers, and then purge the tasks
using celery.control.purge().

Results

How do I get the result of a task if I have the ID that points there?

Answer: Use task.AsyncResult:

>>> result = my_task.AsyncResult(task_id)
>>> result.get()

This will give you a AsyncResult instance
using the tasks current result backend.

If you need to specify a custom result backend, or you want to use
the current application’s default backend you can use
app.AsyncResult:

>>> result = app.AsyncResult(task_id)
>>> result.get()

Security

Isn’t using pickle a security concern?

Answer: Yes, indeed it is.

You are right to have a security concern, as this can indeed be a real issue.
It is essential that you protect against unauthorized
access to your broker, databases and other services transmitting pickled
data.

Note that this is not just something you should be aware of with Celery, for
example also Django uses pickle for its cache client.

For the task messages you can set the CELERY_TASK_SERIALIZER
setting to “json” or “yaml” instead of pickle.

Similarly for task results you can set CELERY_RESULT_SERIALIZER.

For more details of the formats used and the lookup order when
checking which format to use for a task see Serializers

Can messages be encrypted?

Answer: Some AMQP brokers supports using SSL (including RabbitMQ).
You can enable this using the BROKER_USE_SSL setting.

It is also possible to add additional encryption and security to messages,
if you have a need for this then you should contact the Mailing list.

Is it safe to run celery worker as root?

Answer: No!

We’re not currently aware of any security issues, but it would
be incredibly naive to assume that they don’t exist, so running
the Celery services (celery worker, celery beat,
celeryev, etc) as an unprivileged user is recommended.

Brokers

Why is RabbitMQ crashing?

Answer: RabbitMQ will crash if it runs out of memory. This will be fixed in a
future release of RabbitMQ. please refer to the RabbitMQ FAQ:
http://www.rabbitmq.com/faq.html#node-runs-out-of-memory

Note

This is no longer the case, RabbitMQ versions 2.0 and above
includes a new persister, that is tolerant to out of memory
errors. RabbitMQ 2.1 or higher is recommended for Celery.

If you’re still running an older version of RabbitMQ and experience
crashes, then please upgrade!

Misconfiguration of Celery can eventually lead to a crash
on older version of RabbitMQ. Even if it doesn’t crash, this
can still consume a lot of resources, so it is very
important that you are aware of the common pitfalls.

	Events.

Running worker with the -E [https://docs.python.org/dev/using/cmdline.html#cmdoption-e]/--events
option will send messages for events happening inside of the worker.

Events should only be enabled if you have an active monitor consuming them,
or if you purge the event queue periodically.

	AMQP backend results.

When running with the AMQP result backend, every task result will be sent
as a message. If you don’t collect these results, they will build up and
RabbitMQ will eventually run out of memory.

Results expire after 1 day by default. It may be a good idea
to lower this value by configuring the CELERY_TASK_RESULT_EXPIRES
setting.

If you don’t use the results for a task, make sure you set the
ignore_result option:

Can I use Celery with ActiveMQ/STOMP?

Answer: No. It used to be supported by Carrot,
but is not currently supported in Kombu.

What features are not supported when not using an AMQP broker?

This is an incomplete list of features not available when
using the virtual transports:

	Remote control commands (supported only by Redis).

	Monitoring with events may not work in all virtual transports.

	
	The header and fanout exchange types

	(fanout is supported by Redis).

Tasks

How can I reuse the same connection when calling tasks?

Answer: See the BROKER_POOL_LIMIT setting.
The connection pool is enabled by default since version 2.5.

Sudo in a subprocess [https://docs.python.org/dev/library/subprocess.html#module-subprocess] returns None

There is a sudo configuration option that makes it illegal for process
without a tty to run sudo:

Defaults requiretty

If you have this configuration in your /etc/sudoers file then
tasks will not be able to call sudo when the worker is running as a daemon.
If you want to enable that, then you need to remove the line from sudoers.

See: http://timelordz.com/wiki/Apache_Sudo_Commands

Why do workers delete tasks from the queue if they are unable to process them?

Answer:

The worker rejects unknown tasks, messages with encoding errors and messages
that don’t contain the proper fields (as per the task message protocol).

If it did not reject them they could be redelivered again and again,
causing a loop.

Recent versions of RabbitMQ has the ability to configure a dead-letter
queue for exchange, so that rejected messages is moved there.

Can I call a task by name?

Answer: Yes. Use app.send_task().
You can also call a task by name from any language
that has an AMQP client.

>>> app.send_task('tasks.add', args=[2, 2], kwargs={})
<AsyncResult: 373550e8-b9a0-4666-bc61-ace01fa4f91d>

How can I get the task id of the current task?

Answer: The current id and more is available in the task request:

@app.task(bind=True)
def mytask(self):
 cache.set(self.request.id, "Running")

For more information see Context.

Can I specify a custom task_id?

Answer: Yes. Use the task_id argument to Task.apply_async():

>>> task.apply_async(args, kwargs, task_id='…')

Can I use decorators with tasks?

Answer: Yes. But please see note in the sidebar at Basics.

Can I use natural task ids?

Answer: Yes, but make sure it is unique, as the behavior
for two tasks existing with the same id is undefined.

The world will probably not explode, but at the worst
they can overwrite each others results.

How can I run a task once another task has finished?

Answer: You can safely launch a task inside a task.
Also, a common pattern is to add callbacks to tasks:

from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)

@app.task
def add(x, y):
 return x + y

@app.task(ignore_result=True)
def log_result(result):
 logger.info("log_result got: %r", result)

Invocation:

>>> (add.s(2, 2) | log_result.s()).delay()

See Canvas: Designing Workflows for more information.

Can I cancel the execution of a task?

Answer: Yes. Use result.revoke:

>>> result = add.apply_async(args=[2, 2], countdown=120)
>>> result.revoke()

or if you only have the task id:

>>> from proj.celery import app
>>> app.control.revoke(task_id)

Why aren’t my remote control commands received by all workers?

Answer: To receive broadcast remote control commands, every worker node
uses its host name to create a unique queue name to listen to,
so if you have more than one worker with the same host name, the
control commands will be received in round-robin between them.

To work around this you can explicitly set the nodename for every worker
using the -n [http://cyme.readthedocs.io/en/latest/reference/cyme.management.commands.cyme.html#cmdoption-cyme-n] argument to worker:

$ celery -A proj worker -n worker1@%h
$ celery -A proj worker -n worker2@%h

where %h is automatically expanded into the current hostname.

Can I send some tasks to only some servers?

Answer: Yes. You can route tasks to an arbitrary server using AMQP,
and a worker can bind to as many queues as it wants.

See Routing Tasks for more information.

Can I change the interval of a periodic task at runtime?

Answer: Yes. You can use the Django database scheduler, or you can
create a new schedule subclass and override
is_due():

from celery.schedules import schedule

class my_schedule(schedule):

 def is_due(self, last_run_at):
 return …

Does celery support task priorities?

Answer: No. In theory, yes, as AMQP supports priorities. However
RabbitMQ doesn’t implement them yet.

The usual way to prioritize work in Celery, is to route high priority tasks
to different servers. In the real world this may actually work better than per message
priorities. You can use this in combination with rate limiting to achieve a
highly responsive system.

Should I use retry or acks_late?

Answer: Depends. It’s not necessarily one or the other, you may want
to use both.

Task.retry is used to retry tasks, notably for expected errors that
is catchable with the try: block. The AMQP transaction is not used
for these errors: if the task raises an exception it is still acknowledged!

The acks_late setting would be used when you need the task to be
executed again if the worker (for some reason) crashes mid-execution.
It’s important to note that the worker is not known to crash, and if
it does it is usually an unrecoverable error that requires human
intervention (bug in the worker, or task code).

In an ideal world you could safely retry any task that has failed, but
this is rarely the case. Imagine the following task:

@app.task
def process_upload(filename, tmpfile):
 # Increment a file count stored in a database
 increment_file_counter()
 add_file_metadata_to_db(filename, tmpfile)
 copy_file_to_destination(filename, tmpfile)

If this crashed in the middle of copying the file to its destination
the world would contain incomplete state. This is not a critical
scenario of course, but you can probably imagine something far more
sinister. So for ease of programming we have less reliability;
It’s a good default, users who require it and know what they
are doing can still enable acks_late (and in the future hopefully
use manual acknowledgement).

In addition Task.retry has features not available in AMQP
transactions: delay between retries, max retries, etc.

So use retry for Python errors, and if your task is idempotent
combine that with acks_late if that level of reliability
is required.

Can I schedule tasks to execute at a specific time?

Answer: Yes. You can use the eta argument of Task.apply_async().

Or to schedule a periodic task at a specific time, use the
celery.schedules.crontab schedule behavior:

from celery.schedules import crontab
from celery.task import periodic_task

@periodic_task(run_every=crontab(hour=7, minute=30, day_of_week="mon"))
def every_monday_morning():
 print("This is run every Monday morning at 7:30")

How can I safely shut down the worker?

Answer: Use the TERM signal, and the worker will finish all currently
executing jobs and shut down as soon as possible. No tasks should be lost.

You should never stop worker with the KILL signal
(-9), unless you’ve tried TERM a few times and waited a few
minutes to let it get a chance to shut down.

Also make sure you kill the main worker process, not its child processes.
You can direct a kill signal to a specific child process if you know the
process is currently executing a task the worker shutdown is depending on,
but this also means that a WorkerLostError state will be set for the
task so the task will not run again.

Identifying the type of process is easier if you have installed the
setproctitle module:

pip install setproctitle

With this library installed you will be able to see the type of process in ps
listings, but the worker must be restarted for this to take effect.

See also

Stopping the worker

How do I run the worker in the background on [platform]?

Answer: Please see Running the worker as a daemon.

Django

What purpose does the database tables created by django-celery have?

Several database tables are created by default, these relate to

	Monitoring

When you use the django-admin monitor, the cluster state is written
to the TaskState and WorkerState models.

	Periodic tasks

When the database-backed schedule is used the periodic task
schedule is taken from the PeriodicTask model, there are
also several other helper tables (IntervalSchedule,
CrontabSchedule, PeriodicTasks).

	Task results

The database result backend is enabled by default when using django-celery
(this is for historical reasons, and thus for backward compatibility).

The results are stored in the TaskMeta and TaskSetMeta models.
these tables are not created if another result backend is configured.

Windows

The -B / –beat option to worker doesn’t work?

Answer: That’s right. Run celery beat and celery worker as separate
services instead.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Change history

This document contains change notes for bugfix releases in the 3.1.x series
(Cipater), please see What’s new in Celery 3.1 (Cipater) for an overview of what’s
new in Celery 3.1.

3.1.25

	release-date:	2016-10-10 12:00 PM PDT

	release-by:	Ask Solem

	Requirements

	Now depends on Kombu 3.0.37 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-37]

	Fixed problem with chords in group introduced in 3.1.24 (Issue #3504 [https://github.com/celery/celery/issues/3504]).

3.1.24

	release-date:	2016-09-30 04:21 PM PDT

	release-by:	Ask Solem

	Requirements

	Now depends on Kombu 3.0.36 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-36].

	Now supports Task protocol 2 from the future 4.0 release.

Workers running 3.1.24 are now able to process messages
sent using the new task message protocol [http://docs.celeryproject.org/en/master/internals/protocol.html#version-2] to be introduced
in Celery 4.0.

Users upgrading to Celery 4.0 when this is released are encouraged
to upgrade to this version as an intermediate step, as this
means workers not yet upgraded will be able to process
messages from clients/workers running 4.0.

	Task.send_events can now be set to disable sending of events
for that task only.

Example when defining the task:

@app.task(send_events=False)
def add(x, y):
 return x + y

	Utils: Fixed compatibility with recent :pypi:`psutil` versions
(Issue #3262 [https://github.com/celery/celery/issues/3262]).

	Canvas: Chord now forwards partial arguments to its subtasks.

Fix contributed by Tayfun Sen.

	App: Arguments to app such as backend, broker, etc
are now pickled and sent to the child processes on Windows.

Fix contributed by Jeremy Zafran.

	Deployment: Generic init scripts now supports being symlinked
in runlevel directories (Issue #3208 [https://github.com/celery/celery/issues/3208]).

	Deployment: Updated CentOS scripts to work with CentOS 7.

Contributed by Joe Sanford.

	Events: The curses monitor no longer crashes when the
result of a task is empty.

Fix contributed by Dongweiming.

	Worker: repr(worker) would crash when called early
in the startup process (Issue #2514 [https://github.com/celery/celery/issues/2514]).

	Tasks: GroupResult now defines __bool__ and __nonzero__.

This is to fix an issue where a ResultSet or GroupResult with an empty
result list are not properly tupled with the as_tuple() method when it is
a parent result. This is due to the as_tuple() method performing a logical
and operation on the ResultSet.

Fix contributed by Colin McIntosh.

	Worker: Fixed wrong values in autoscale related logging message.

Fix contributed by @raducc.

	Documentation improvements by

	Alexandru Chirila

	Michael Aquilina

	Mikko Ekström

	Mitchel Humpherys

	Thomas A. Neil

	Tiago Moreira Vieira

	Yuriy Syrovetskiy

	@dessant

3.1.23

	release-date:	2016-03-09 06:00 P.M PST

	release-by:	Ask Solem

	Programs: Last release broke support for the --hostnmame argument
to celery multi and celery worker --detach
(Issue #3103 [https://github.com/celery/celery/issues/3103]).

	Results: MongoDB result backend could crash the worker at startup
if not configured using an URL.

3.1.22

	release-date:	2016-03-07 01:30 P.M PST

	release-by:	Ask Solem

	Programs: The worker would crash immediately on startup on
backend.as_uri() when using some result backends (Issue #3094 [https://github.com/celery/celery/issues/3094]).

	Programs: celery multi/celery worker --detach
would create an extraneous logfile including literal formats (e.g. %I)
in the filename (Issue #3096 [https://github.com/celery/celery/issues/3096]).

3.1.21

	release-date:	2016-03-04 11:16 A.M PST

	release-by:	Ask Solem

	Requirements

	Now depends on Kombu 3.0.34 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-34].

	Now depends on billiard 3.3.0.23.

	Prefork pool: Fixes 100% CPU loop on Linux epoll (Issue #1845 [https://github.com/celery/celery/issues/1845]).

Also potential fix for: Issue #2142 [https://github.com/celery/celery/issues/2142], Issue #2606 [https://github.com/celery/celery/issues/2606]

	Prefork pool: Fixes memory leak related to processes exiting
(Issue #2927 [https://github.com/celery/celery/issues/2927]).

	Worker: Fixes crash at startup when trying to censor passwords
in MongoDB and Cache result backend URLs (Issue #3079 [https://github.com/celery/celery/issues/3079], Issue #3045 [https://github.com/celery/celery/issues/3045],
Issue #3049 [https://github.com/celery/celery/issues/3049], Issue #3068 [https://github.com/celery/celery/issues/3068], Issue #3073 [https://github.com/celery/celery/issues/3073]).

Fix contributed by Maxime Verger.

	Task: An exception is now raised if countdown/expires is less
than -2147483648 (Issue #3078 [https://github.com/celery/celery/issues/3078]).

	Programs: celery shell --ipython now compatible with newer
IPython versions.

	Programs: The DuplicateNodeName warning emitted by inspect/control
now includes a list of the node names returned.

Contributed by Sebastian Kalinowski.

	Utils: The .discard(item) method of
LimitedSet did not actually remove the item
(Issue #3087 [https://github.com/celery/celery/issues/3087]).

Fix contributed by Dave Smith.

	Worker: Node name formatting now emits less confusing error message
for unmatched format keys (Issue #3016 [https://github.com/celery/celery/issues/3016]).

	Results: amqp/rpc backends: Fixed deserialization of JSON exceptions
(Issue #2518 [https://github.com/celery/celery/issues/2518]).

Fix contributed by Allard Hoeve.

	Prefork pool: The process inqueue damaged error message now includes
the original exception raised.

	Documentation: Includes improvements by:

	Jeff Widman.

3.1.20

	release-date:	2016-01-22 06:50 P.M UTC

	release-by:	Ask Solem

	Requirements

	Now depends on Kombu 3.0.33 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-33].

	Now depends on billiard 3.3.0.22.

Includes binary wheels for Microsoft Windows x86 and x86_64!

	Task: Error emails now uses utf-8 charset by default (Issue #2737 [https://github.com/celery/celery/issues/2737]).

	Task: Retry now forwards original message headers (Issue #3017 [https://github.com/celery/celery/issues/3017]).

	Worker: Bootsteps can now hook into on_node_join/leave/lost.

See extending-consumer-gossip for an example.

	Events: Fixed handling of DST timezones (Issue #2983 [https://github.com/celery/celery/issues/2983]).

	Results: Redis backend stopped respecting certain settings.

Contributed by Jeremy Llewellyn.

	Results: Database backend now properly supports JSON exceptions
(Issue #2441 [https://github.com/celery/celery/issues/2441]).

	Results: Redis new_join did not properly call task errbacks on chord
error (Issue #2796 [https://github.com/celery/celery/issues/2796]).

	Results: Restores Redis compatibility with redis-py < 2.10.0
(Issue #2903 [https://github.com/celery/celery/issues/2903]).

	Results: Fixed rare issue with chord error handling (Issue #2409 [https://github.com/celery/celery/issues/2409]).

	Tasks: Using queue-name values in CELERY_ROUTES now works
again (Issue #2987 [https://github.com/celery/celery/issues/2987]).

	General: Result backend password now sanitized in report output
(Issue #2812 [https://github.com/celery/celery/issues/2812], Issue #2004 [https://github.com/celery/celery/issues/2004]).

	Configuration: Now gives helpful error message when the result backend
configuration points to a module, and not a class (Issue #2945 [https://github.com/celery/celery/issues/2945]).

	Results: Exceptions sent by JSON serialized workers are now properly
handled by pickle configured workers.

	Programs: celery control autoscale now works (Issue #2950 [https://github.com/celery/celery/issues/2950]).

	Programs: celery beat --detached now runs after fork callbacks.

	General: Fix for LRU cache implementation on Python 3.5 (Issue #2897 [https://github.com/celery/celery/issues/2897]).

Contributed by Dennis Brakhane.

Python 3.5’s OrderedDict does not allow mutation while it is being
iterated over. This breaks “update” if it is called with a dict
larger than the maximum size.

This commit changes the code to a version that does not iterate over
the dict, and should also be a little bit faster.

	Init scripts: The beat init script now properly reports service as down
when no pid file can be found.

Eric Zarowny

	Beat: Added cleaning of corrupted scheduler files for some storage
backend errors (Issue #2985 [https://github.com/celery/celery/issues/2985]).

Fix contributed by Aleksandr Kuznetsov.

	Beat: Now syncs the schedule even if the schedule is empty.

Fix contributed by Colin McIntosh.

	Supervisord: Set higher process priority in supervisord example.

Contributed by George Tantiras.

	Documentation: Includes improvements by:

	Bryson

	Caleb Mingle

	Christopher Martin

	Dieter Adriaenssens

	Jason Veatch

	Jeremy Cline

	Juan Rossi

	Kevin Harvey

	Kevin McCarthy

	Kirill Pavlov

	Marco Buttu

	Mayflower

	Mher Movsisyan

	Michael Floering

	michael-k

	Nathaniel Varona

	Rudy Attias

	Ryan Luckie

	Steven Parker

	squfrans

	Tadej Janež

	TakesxiSximada

	Tom S

3.1.19

	release-date:	2015-10-26 01:00 P.M UTC

	release-by:	Ask Solem

	Requirements

	Now depends on Kombu 3.0.29 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-29].

	Now depends on billiard 3.3.0.21.

	Results: Fixed MongoDB result backend URL parsing problem
(Issue celery/kombu#375).

	Worker: Task request now properly sets priority in delivery_info.

Fix contributed by Gerald Manipon.

	Beat: PyPy shelve may raise KeyError when setting keys
(Issue #2862 [https://github.com/celery/celery/issues/2862]).

	Programs: celery beat --deatched now working on PyPy.

Fix contributed by Krzysztof Bujniewicz.

	Results: Redis result backend now ensures all pipelines are cleaned up.

Contributed by Justin Patrin.

	Results: Redis result backend now allows for timeout to be set in the
query portion of the result backend URL.

E.g. CELERY_RESULT_BACKEND = 'redis://?timeout=10'

Contributed by Justin Patrin.

	Results: result.get now properly handles failures where the
exception value is set to None (Issue #2560 [https://github.com/celery/celery/issues/2560]).

	Prefork pool: Fixed attribute error proc.dead.

	Worker: Fixed worker hanging when gossip/heartbeat disabled
(Issue #1847 [https://github.com/celery/celery/issues/1847]).

Fix contributed by Aaron Webber and Bryan Helmig.

	Results: MongoDB result backend now supports pymongo 3.x
(Issue #2744 [https://github.com/celery/celery/issues/2744]).

Fix contributed by Sukrit Khera.

	Results: RPC/amqp backends did not deserialize exceptions properly
(Issue #2691 [https://github.com/celery/celery/issues/2691]).

Fix contributed by Sukrit Khera.

	Programs: Fixed problem with celery amqp‘s
basic_publish (Issue #2013 [https://github.com/celery/celery/issues/2013]).

	Worker: Embedded beat now properly sets app for thread/process
(Issue #2594 [https://github.com/celery/celery/issues/2594]).

	Documentation: Many improvements and typos fixed.

Contributions by:

Carlos Garcia-Dubus
D. Yu
jerry
Jocelyn Delalande
Josh Kupershmidt
Juan Rossi
kanemra
Paul Pearce
Pavel Savchenko
Sean Wang
Seungha Kim
Zhaorong Ma

3.1.18

	release-date:	2015-04-22 05:30 P.M UTC

	release-by:	Ask Solem

	Requirements

	Now depends on Kombu 3.0.25 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-25].

	Now depends on billiard 3.3.0.20.

	Django: Now supports Django 1.8 (Issue #2536 [https://github.com/celery/celery/issues/2536]).

Fix contributed by Bence Tamas and Mickaël Penhard.

	Results: MongoDB result backend now compatible with pymongo 3.0.

Fix contributed by Fatih Sucu.

	Tasks: Fixed bug only happening when a task has multiple callbacks
(Issue #2515 [https://github.com/celery/celery/issues/2515]).

Fix contributed by NotSqrt.

	Commands: Preload options now support --arg value syntax.

Fix contributed by John Anderson.

	Compat: A typo caused celery.log.setup_logging_subsystem to be
undefined.

Fix contributed by Gunnlaugur Thor Briem.

	init scripts: The celerybeat generic init script now uses
/bin/sh instead of bash (Issue #2496 [https://github.com/celery/celery/issues/2496]).

Fix contributed by Jelle Verstraaten.

	Django: Fixed a TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] sometimes occurring in logging
when validating models.

Fix contributed by Alexander.

	Commands: Worker now supports new --executable argument that can
be used with --detach.

Contributed by Bert Vanderbauwhede.

	Canvas: Fixed crash in chord unlock fallback task (Issue #2404 [https://github.com/celery/celery/issues/2404]).

	Worker: Fixed rare crash occurring with --autoscale enabled
(Issue #2411 [https://github.com/celery/celery/issues/2411]).

	Django: Properly recycle worker Django database connections when the
Django CONN_MAX_AGE setting is enabled (Issue #2453 [https://github.com/celery/celery/issues/2453]).

Fix contributed by Luke Burden.

3.1.17

	release-date:	2014-11-19 03:30 P.M UTC

	release-by:	Ask Solem

Do not enable the CELERYD_FORCE_EXECV setting!

Please review your configuration and disable this option if you’re using the
RabbitMQ or Redis transport.

Keeping this option enabled after 3.1 means the async based prefork pool will
be disabled, which can easily cause instability.

	Requirements

	Now depends on Kombu 3.0.24 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-24].

Includes the new Qpid transport coming in Celery 3.2, backported to
support those who may still require Python 2.6 compatibility.

	Now depends on billiard 3.3.0.19.

	celery[librabbitmq] now depends on librabbitmq 1.6.1.

	Task: The timing of ETA/countdown tasks were off after the example LocalTimezone
implementation in the Python documentation no longer works in Python 3.4.
(Issue #2306 [https://github.com/celery/celery/issues/2306]).

	Task: Raising Ignore no longer sends
task-failed event (Issue #2365 [https://github.com/celery/celery/issues/2365]).

	Redis result backend: Fixed unbound local errors.

Fix contributed by Thomas French.

	Task: Callbacks was not called properly if link was a list of
signatures (Issuse #2350).

	Canvas: chain and group now handles json serialized signatures
(Issue #2076 [https://github.com/celery/celery/issues/2076]).

	Results: .join_native() would accidentally treat the STARTED
state as being ready (Issue #2326 [https://github.com/celery/celery/issues/2326]).

This could lead to the chord callback being called with invalid arguments
when using chords with the CELERY_TRACK_STARTED setting
enabled.

	Canvas: The chord_size attribute is now set for all canvas primitives,
making sure more combinations will work with the new_join optimization
for Redis (Issue #2339 [https://github.com/celery/celery/issues/2339]).

	Task: Fixed problem with app not being properly propagated to
trace_task in all cases.

Fix contributed by kristaps.

	Worker: Expires from task message now associated with a timezone.

Fix contributed by Albert Wang.

	Cassandra result backend: Fixed problems when using detailed mode.

When using the Cassandra backend in detailed mode, a regression
caused errors when attempting to retrieve results.

Fix contributed by Gino Ledesma.

	Mongodb Result backend: Pickling the backend instance will now include
the original url (Issue #2347 [https://github.com/celery/celery/issues/2347]).

Fix contributed by Sukrit Khera.

	Task: Exception info was not properly set for tasks raising
Reject (Issue #2043 [https://github.com/celery/celery/issues/2043]).

	Worker: Duplicates are now removed when loading the set of revoked tasks
from the worker state database (Issue #2336 [https://github.com/celery/celery/issues/2336]).

	celery.contrib.rdb: Fixed problems with rdb.set_trace calling stop
from the wrong frame.

Fix contributed by llllllllll.

	Canvas: chain and chord can now be immutable.

	Canvas: chord.apply_async will now keep partial args set in
self.args (Issue #2299 [https://github.com/celery/celery/issues/2299]).

	Results: Small refactoring so that results are decoded the same way in
all result backends.

	Logging: The processName format was introduced in Py2.6.2 so for
compatibility this format is now excluded when using earlier versions
(Issue #1644 [https://github.com/celery/celery/issues/1644]).

3.1.16

	release-date:	2014-10-03 06:00 P.M UTC

	release-by:	Ask Solem

	Worker: 3.1.15 broke -Ofair behavior (Issue #2286 [https://github.com/celery/celery/issues/2286]).

This regression could result in all tasks executing
in a single child process if -Ofair was enabled.

	Canvas: celery.signature now properly forwards app argument
in all cases.

	Task: .retry() did not raise the exception correctly
when called without a current exception.

Fix contributed by Andrea Rabbaglietti.

	Worker: The enable_events remote control command
disabled worker-related events by mistake (Issue #2272 [https://github.com/celery/celery/issues/2272]).

Fix contributed by Konstantinos Koukopoulos.

	Django: Adds support for Django 1.7 class names in INSTALLED_APPS
when using app.autodiscover_tasks() (Issue #2248 [https://github.com/celery/celery/issues/2248]).

	Sphinx: celery.contrib.sphinx now uses getfullargspec
on Python 3 (Issue #2302 [https://github.com/celery/celery/issues/2302]).

	Redis/Cache Backends: Chords will now run at most once if one or more tasks
in the chord are executed multiple times for some reason.

3.1.15

	release-date:	2014-09-14 11:00 P.M UTC

	release-by:	Ask Solem

	Django: Now makes sure django.setup() is called
before importing any task modules (Django 1.7 compatibility, Issue #2227 [https://github.com/celery/celery/issues/2227])

	Results: result.get() was misbehaving by calling
backend.get_task_meta in a finally call leading to
AMQP result backend queues not being properly cleaned up (Issue #2245 [https://github.com/celery/celery/issues/2245]).

3.1.14

	release-date:	2014-09-08 03:00 P.M UTC

	release-by:	Ask Solem

	Requirements

	Now depends on Kombu 3.0.22 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-22].

	Init scripts: The generic worker init scripts status command
now gets an accurate pidfile list (Issue #1942 [https://github.com/celery/celery/issues/1942]).

	
	Init scripts: The generic beat script now implements the status

	command.

Contributed by John Whitlock.

	Commands: Multi now writes informational output to stdout instead of stderr.

	Worker: Now ignores not implemented error for pool.restart
(Issue #2153 [https://github.com/celery/celery/issues/2153]).

	Task: Retry no longer raises retry exception when executed in eager
mode (Issue #2164 [https://github.com/celery/celery/issues/2164]).

	AMQP Result backend: Now ensured on_interval is called at least
every second for blocking calls to properly propagate parent errors.

	Django: Compatibility with Django 1.7 on Windows (Issue #2126 [https://github.com/celery/celery/issues/2126]).

	Programs: –umask argument can be now specified in both octal (if starting
with 0) or decimal.

3.1.13

Security Fixes

	[Security: CELERYSA-0002 [http://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0002.txt]] Insecure default umask.

The built-in utility used to daemonize the Celery worker service sets
an insecure umask by default (umask 0).

This means that any files or directories created by the worker will
end up having world-writable permissions.

Special thanks to Red Hat for originally discovering and reporting the
issue!

This version will no longer set a default umask by default, so if unset
the umask of the parent process will be used.

News

	Requirements

	Now depends on Kombu 3.0.21 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-21].

	Now depends on billiard 3.3.0.18.

	App: backend argument now also sets the CELERY_RESULT_BACKEND
setting.

	Task: signature_from_request now propagates reply_to so that
the RPC backend works with retried tasks (Issue #2113 [https://github.com/celery/celery/issues/2113]).

	Task: retry will no longer attempt to requeue the task if sending
the retry message fails.

Unrelated exceptions being raised could cause a message loop, so it was
better to remove this behavior.

	Beat: Accounts for standard 1ms drift by always waking up 0.010s
earlier.

This will adjust the latency so that the periodic tasks will not move
1ms after every invocation.

	Documentation fixes

Contributed by Yuval Greenfield, Lucas Wiman, nicholsonjf

	Worker: Removed an outdated assert statement that could lead to errors
being masked (Issue #2086 [https://github.com/celery/celery/issues/2086]).

3.1.12

	release-date:	2014-06-09 10:12 P.M UTC

	release-by:	Ask Solem

	Requirements

Now depends on Kombu 3.0.19 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-19].

	App: Connections were not being closed after fork due to an error in the
after fork handler (Issue #2055 [https://github.com/celery/celery/issues/2055]).

This could manifest itself by causing framing errors when using RabbitMQ.
(Unexpected frame).

	Django: django.setup() was being called too late when
using Django 1.7 (Issue #1802 [https://github.com/celery/celery/issues/1802]).

	Django: Fixed problems with event timezones when using Django
(Substantial drift).

Celery did not take into account that Django modifies the
time.timeone attributes and friends.

	Canvas: Signature.link now works when the link option is a scalar
value (Issue #2019 [https://github.com/celery/celery/issues/2019]).

	Prefork pool: Fixed race conditions for when file descriptors are
removed from the event loop.

Fix contributed by Roger Hu.

	Prefork pool: Improved solution for dividing tasks between child
processes.

This change should improve performance when there are many child
processes, and also decrease the chance that two subsequent tasks are
written to the same child process.

	Worker: Now ignores unknown event types, instead of crashing.

Fix contributed by Illes Solt.

	Programs: celery worker --detach no longer closes open file
descriptors when C_FAKEFORK is used so that the workers output
can be seen.

	Programs: The default working directory for celery worker
--detach is now the current working directory, not /.

	Canvas: signature(s, app=app) did not upgrade serialized signatures
to their original class (subtask_type) when the app keyword argument
was used.

	Control: The duplicate nodename warning emitted by control commands
now shows the duplicate node name.

	Tasks: Can now call ResultSet.get() on a result set without members.

Fix contributed by Alexey Kotlyarov.

	App: Fixed strange traceback mangling issue for
app.connection_or_acquire.

	Programs: The celery multi stopwait command is now documented
in usage.

	Other: Fixed cleanup problem with PromiseProxy when an error is
raised while trying to evaluate the promise.

	Other: The utility used to censor configuration values now handles
non-string keys.

Fix contributed by Luke Pomfrey.

	Other: The inspect conf command did not handle non-string keys well.

Fix contributed by Jay Farrimond.

	Programs: Fixed argument handling problem in
celery worker --detach.

Fix contributed by Dmitry Malinovsky.

	Programs: celery worker --detach did not forward working
directory option (Issue #2003 [https://github.com/celery/celery/issues/2003]).

	Programs: celery inspect registered no longer includes
the list of built-in tasks.

	Worker: The requires attribute for boot steps were not being handled
correctly (Issue #2002 [https://github.com/celery/celery/issues/2002]).

	Eventlet: The eventlet pool now supports the pool_grow and
pool_shrink remote control commands.

Contributed by Mher Movsisyan.

	Eventlet: The eventlet pool now implements statistics for
:program:celery inspect stats.

Contributed by Mher Movsisyan.

	Documentation: Clarified Task.rate_limit behavior.

Contributed by Jonas Haag.

	Documentation: AbortableTask examples now updated to use the new
API (Issue #1993 [https://github.com/celery/celery/issues/1993]).

	Documentation: The security documentation examples used an out of date
import.

Fix contributed by Ian Dees.

	Init scripts: The CentOS init scripts did not quote
CELERY_CHDIR.

Fix contributed by ffeast.

3.1.11

	release-date:	2014-04-16 11:00 P.M UTC

	release-by:	Ask Solem

	Now compatible with RabbitMQ 3.3.0

You need to run Celery 3.1.11 or later when using RabbitMQ 3.3,
and if you use the librabbitmq module you also have to upgrade
to librabbitmq 1.5.0:

$ pip install -U librabbitmq

	Requirements:

	Now depends on Kombu 3.0.15 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-15].

	Now depends on billiard 3.3.0.17 [https://github.com/celery/billiard/blob/master/CHANGES.txt].

	Bundle celery[librabbitmq] now depends on librabbitmq 1.5.0.

	Tasks: The CELERY_DEFAULT_DELIVERY_MODE setting was being
ignored (Issue #1953 [https://github.com/celery/celery/issues/1953]).

	Worker: New --heartbeat-interval can be used to change the
time (in seconds) between sending event heartbeats.

Contributed by Matthew Duggan and Craig Northway.

	App: Fixed memory leaks occurring when creating lots of temporary
app instances (Issue #1949 [https://github.com/celery/celery/issues/1949]).

	MongoDB: SSL configuration with non-MongoDB transport breaks MongoDB
results backend (Issue #1973 [https://github.com/celery/celery/issues/1973]).

Fix contributed by Brian Bouterse.

	Logging: The color formatter accidentally modified record.msg
(Issue #1939 [https://github.com/celery/celery/issues/1939]).

	Results: Fixed problem with task trails being stored multiple times,
causing result.collect() to hang (Issue #1936 [https://github.com/celery/celery/issues/1936], Issue #1943 [https://github.com/celery/celery/issues/1943]).

	Results: ResultSet now implements a .backend attribute for
compatibility with AsyncResult.

	Results: .forget() now also clears the local cache.

	Results: Fixed problem with multiple calls to result._set_cache
(Issue #1940 [https://github.com/celery/celery/issues/1940]).

	Results: join_native populated result cache even if disabled.

	Results: The YAML result serializer should now be able to handle storing
exceptions.

	Worker: No longer sends task error emails for expected errors (in
@task(throws=(...,))).

	Canvas: Fixed problem with exception deserialization when using
the JSON serializer (Issue #1987 [https://github.com/celery/celery/issues/1987]).

	Eventlet: Fixes crash when celery.contrib.batches attempted to
cancel a non-existing timer (Issue #1984 [https://github.com/celery/celery/issues/1984]).

	Can now import celery.version_info_t, and celery.five (Issue #1968 [https://github.com/celery/celery/issues/1968]).

3.1.10

	release-date:	2014-03-22 09:40 P.M UTC

	release-by:	Ask Solem

	Requirements:

	Now depends on Kombu 3.0.14 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-14].

	Results:

Reliability improvements to the SQLAlchemy database backend. Previously the
connection from the MainProcess was improperly shared with the workers.
(Issue #1786 [https://github.com/celery/celery/issues/1786])

	Redis: Important note about events (Issue #1882 [https://github.com/celery/celery/issues/1882]).

There is a new transport option for Redis that enables monitors
to filter out unwanted events. Enabling this option in the workers
will increase performance considerably:

BROKER_TRANSPORT_OPTIONS = {'fanout_patterns': True}

Enabling this option means that your workers will not be able to see
workers with the option disabled (or is running an older version of
Celery), so if you do enable it then make sure you do so on all
nodes.

See Caveats.

This will be the default in Celery 3.2.

	Results: The app.AsyncResult object now keeps a local cache
of the final state of the task.

This means that the global result cache can finally be disabled,
and you can do so by setting CELERY_MAX_CACHED_RESULTS to
-1. The lifetime of the cache will then be bound to the
lifetime of the result object, which will be the default behavior
in Celery 3.2.

	Events: The “Substantial drift” warning message is now logged once
per node name only (Issue #1802 [https://github.com/celery/celery/issues/1802]).

	Worker: Ability to use one log file per child process when using the
prefork pool.

This can be enabled by using the new %i and %I format specifiers
for the log file name. See Prefork pool process index.

	Redis: New experimental chord join implementation.

This is an optimization for chords when using the Redis result backend,
where the join operation is now considerably faster and using less
resources than the previous strategy.

The new option can be set in the result backend URL:

CELERY_RESULT_BACKEND = ‘redis://localhost?new_join=1’

This must be enabled manually as it’s incompatible
with workers and clients not using it, so be sure to enable
the option in all clients and workers if you decide to use it.

	Multi: With -opt:index (e.g. -c:1) the index now always refers
to the position of a node in the argument list.

This means that referring to a number will work when specifying a list
of node names and not just for a number range:

celery multi start A B C D -c:1 4 -c:2-4 8

In this example 1 refers to node A (as it’s the first node in the
list).

	Signals: The sender argument to Signal.connect can now be a proxy
object, which means that it can be used with the task decorator
(Issue #1873 [https://github.com/celery/celery/issues/1873]).

	Task: A regression caused the queue argument to Task.retry to be
ignored (Issue #1892 [https://github.com/celery/celery/issues/1892]).

	App: Fixed error message for config_from_envvar().

Fix contributed by Dmitry Malinovsky.

	Canvas: Chords can now contain a group of other chords (Issue #1921 [https://github.com/celery/celery/issues/1921]).

	Canvas: Chords can now be combined when using the amqp result backend
(a chord where the callback is also a chord).

	Canvas: Calling result.get() for a chain task will now complete
even if one of the tasks in the chain is ignore_result=True
(Issue #1905 [https://github.com/celery/celery/issues/1905]).

	Canvas: Worker now also logs chord errors.

	Canvas: A chord task raising an exception will now result in
any errbacks (link_error) to the chord callback to also be called.

	Results: Reliability improvements to the SQLAlchemy database backend
(Issue #1786 [https://github.com/celery/celery/issues/1786]).

Previously the connection from the MainProcess was improperly
inherited by child processes.

Fix contributed by Ionel Cristian Mărieș.

	Task: Task callbacks and errbacks are now called using the group
primitive.

	Task: Task.apply now properly sets request.headers
(Issue #1874 [https://github.com/celery/celery/issues/1874]).

	Worker: Fixed UnicodeEncodeError occuring when worker is started
by supervisord.

Fix contributed by Codeb Fan.

	Beat: No longer attempts to upgrade a newly created database file
(Issue #1923 [https://github.com/celery/celery/issues/1923]).

	Beat: New setting :setting:CELERYBEAT_SYNC_EVERY can be be used
to control file sync by specifying the number of tasks to send between
each sync.

Contributed by Chris Clark.

	Commands: celery inspect memdump no longer crashes
if the psutil module is not installed (Issue #1914 [https://github.com/celery/celery/issues/1914]).

	Worker: Remote control commands now always accepts json serialized
messages (Issue #1870 [https://github.com/celery/celery/issues/1870]).

	Worker: Gossip will now drop any task related events it receives
by mistake (Issue #1882 [https://github.com/celery/celery/issues/1882]).

3.1.9

	release-date:	2014-02-10 06:43 P.M UTC

	release-by:	Ask Solem

	Requirements:

	Now depends on Kombu 3.0.12 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-12].

	Prefork pool: Better handling of exiting child processes.

Fix contributed by Ionel Cristian Mărieș.

	Prefork pool: Now makes sure all file descriptors are removed
from the hub when a process is cleaned up.

Fix contributed by Ionel Cristian Mărieș.

	New Sphinx extension: for autodoc documentation of tasks:
celery.contrib.spinx (Issue #1833 [https://github.com/celery/celery/issues/1833]).

	Django: Now works with Django 1.7a1.

	Task: Task.backend is now a property that forwards to app.backend
if no custom backend has been specified for the task (Issue #1821 [https://github.com/celery/celery/issues/1821]).

	Generic init scripts: Fixed bug in stop command.

Fix contributed by Rinat Shigapov.

	Generic init scripts: Fixed compatibility with GNU stat.

Fix contributed by Paul Kilgo.

	Generic init scripts: Fixed compatibility with the minimal
dash shell (Issue #1815 [https://github.com/celery/celery/issues/1815]).

	Commands: The celery amqp basic.publish command was not
working properly.

Fix contributed by Andrey Voronov.

	Commands: Did no longer emit an error message if the pidfile exists
and the process is still alive (Issue #1855 [https://github.com/celery/celery/issues/1855]).

	Commands: Better error message for missing arguments to preload
options (Issue #1860 [https://github.com/celery/celery/issues/1860]).

	Commands: celery -h did not work because of a bug in the
argument parser (Issue #1849 [https://github.com/celery/celery/issues/1849]).

	Worker: Improved error message for message decoding errors.

	Time: Now properly parses the Z timezone specifier in ISO 8601 date
strings.

Fix contributed by Martin Davidsson.

	Worker: Now uses the negotiated heartbeat value to calculate
how often to run the heartbeat checks.

	Beat: Fixed problem with beat hanging after the first schedule
iteration (Issue #1822 [https://github.com/celery/celery/issues/1822]).

Fix contributed by Roger Hu.

	Signals: The header argument to before_task_publish is now
always a dictionary instance so that signal handlers can add headers.

	Worker: A list of message headers is now included in message related
errors.

3.1.8

	release-date:	2014-01-17 10:45 P.M UTC

	release-by:	Ask Solem

	Requirements:

	Now depends on Kombu 3.0.10 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-10].

	Now depends on billiard 3.3.0.14 [https://github.com/celery/billiard/blob/master/CHANGES.txt].

	Worker: The event loop was not properly reinitialized at consumer restart
which would force the worker to continue with a closed epoll instance on
Linux, resulting in a crash.

	Events: Fixed issue with both heartbeats and task events that could
result in the data not being kept in sorted order.

As a result this would force the worker to log “heartbeat missed”
events even though the remote node was sending heartbeats in a timely manner.

	Results: The pickle serializer no longer converts group results to tuples,
and will keep the original type (Issue #1750 [https://github.com/celery/celery/issues/1750]).

	Results: ResultSet.iterate is now pending deprecation.

The method will be deprecated in version 3.2 and removed in version 3.3.

Use result.get(callback=) (or result.iter_native() where available)
instead.

	Worker|eventlet/gevent: A regression caused Ctrl+C to be ineffective
for shutdown.

	Redis result backend: Now using a pipeline to store state changes
for improved performance.

Contributed by Pepijn de Vos.

	Redis result backend: Will now retry storing the result if disconnected.

	Worker|gossip: Fixed attribute error occurring when another node leaves.

Fix contributed by Brodie Rao.

	Generic init scripts: Now runs a check at startup to verify
that any configuration scripts are owned by root and that they
are not world/group writeable.

The init script configuration is a shell script executed by root,
so this is a preventive measure to ensure that users do not
leave this file vulnerable to changes by unprivileged users.

Note

Note that upgrading celery will not update the init scripts,
instead you need to manually copy the improved versions from the
source distribution:
https://github.com/celery/celery/tree/3.1/extra/generic-init.d

	Commands: The celery purge command now warns that the operation
will delete all tasks and prompts the user for confirmation.

A new -f was added that can be used to disable
interactive mode.

	Task: .retry() did not raise the value provided in the exc argument
when called outside of an error context (Issue #1755 [https://github.com/celery/celery/issues/1755]).

	Commands: The celery multi command did not forward command
line configuration to the target workers.

The change means that multi will forward the special -- argument and
configuration content at the end of the arguments line to the specified
workers.

Example using command-line configuration to set a broker heartbeat
from celery multi:

$ celery multi start 1 -c3 -- broker.heartbeat=30

Fix contributed by Antoine Legrand.

	Canvas: chain.apply_async() now properly forwards execution options.

Fix contributed by Konstantin Podshumok.

	Redis result backend: Now takes connection_pool argument that can be
used to change the connection pool class/constructor.

	Worker: Now truncates very long arguments and keyword arguments logged by
the pool at debug severity.

	Worker: The worker now closes all open files on SIGHUP (regression)
(Issue #1768 [https://github.com/celery/celery/issues/1768]).

Fix contributed by Brodie Rao

	Worker: Will no longer accept remote control commands while the
worker startup phase is incomplete (Issue #1741 [https://github.com/celery/celery/issues/1741]).

	Commands: The output of the event dump utility
(celery events -d) can now be piped into other commands.

	Documentation: The RabbitMQ installation instructions for OS X was
updated to use modern homebrew practices.

Contributed by Jon Chen.

	Commands: The celery inspect conf utility now works.

	Commands: The -no-color argument was not respected by
all commands (Issue #1799 [https://github.com/celery/celery/issues/1799]).

	App: Fixed rare bug with autodiscover_tasks() (Issue #1797 [https://github.com/celery/celery/issues/1797]).

	Distribution: The sphinx docs will now always add the parent directory
to path so that the current celery source code is used as a basis for
API documentation (Issue #1782 [https://github.com/celery/celery/issues/1782]).

	Documentation: Supervisord examples contained an extraneous ‘-‘ in a
–logfile argument example.

Fix contributed by Mohammad Almeer.

3.1.7

	release-date:	2013-12-17 06:00 P.M UTC

	release-by:	Ask Solem

Important Notes

Init script security improvements

Where the generic init scripts (for celeryd, and celerybeat) before
delegated the responsibility of dropping privileges to the target application,
it will now use su instead, so that the Python program is not trusted
with superuser privileges.

This is not in reaction to any known exploit, but it will
limit the possibility of a privilege escalation bug being abused in the
future.

You have to upgrade the init scripts manually from this directory:
https://github.com/celery/celery/tree/3.1/extra/generic-init.d

AMQP result backend

The 3.1 release accidentally left the amqp backend configured to be
non-persistent by default.

Upgrading from 3.0 would give a “not equivalent” error when attempting to
set or retrieve results for a task. That is unless you manually set the
persistence setting:

CELERY_RESULT_PERSISTENT = True

This version restores the previous value so if you already forced
the upgrade by removing the existing exchange you must either
keep the configuration by setting CELERY_RESULT_PERSISTENT = False
or delete the celeryresults exchange again.

Synchronous subtasks

Tasks waiting for the result of a subtask will now emit
a RuntimeWarning [https://docs.python.org/dev/library/exceptions.html#RuntimeWarning] warning when using the prefork pool,
and in 3.2 this will result in an exception being raised.

It’s not legal for tasks to block by waiting for subtasks
as this is likely to lead to resource starvation and eventually
deadlock when using the prefork pool (see also Avoid launching synchronous subtasks).

If you really know what you are doing you can avoid the warning (and
the future exception being raised) by moving the operation in a whitelist
block:

from celery.result import allow_join_result

@app.task
def misbehaving():
 result = other_task.delay()
 with allow_join_result():
 result.get()

Note also that if you wait for the result of a subtask in any form
when using the prefork pool you must also disable the pool prefetching
behavior with the worker -Ofair option.

Fixes

	Now depends on Kombu 3.0.8 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-8].

	Now depends on billiard 3.3.0.13

	Events: Fixed compatibility with non-standard json libraries
that sends float as decimal.Decimal [https://docs.python.org/dev/library/decimal.html#decimal.Decimal] (Issue #1731 [https://github.com/celery/celery/issues/1731])

	Events: State worker objects now always defines attributes:
active, processed, loadavg, sw_ident, sw_ver
and sw_sys.

	Worker: Now keeps count of the total number of tasks processed,
not just by type (all_active_count).

	Init scripts: Fixed problem with reading configuration file
when the init script is symlinked to a runlevel (e.g. S02celeryd).
(Issue #1740 [https://github.com/celery/celery/issues/1740]).

This also removed a rarely used feature where you can symlink the script
to provide alternative configurations. You instead copy the script
and give it a new name, but perhaps a better solution is to provide
arguments to CELERYD_OPTS to separate them:

CELERYD_NODES="X1 X2 Y1 Y2"
CELERYD_OPTS="-A:X1 x -A:X2 x -A:Y1 y -A:Y2 y"

	Fallback chord unlock task is now always called after the chord header
(Issue #1700 [https://github.com/celery/celery/issues/1700]).

This means that the unlock task will not be started if there’s
an error sending the header.

	Celery command: Fixed problem with arguments for some control commands.

Fix contributed by Konstantin Podshumok.

	Fixed bug in utcoffset where the offset when in DST would be
completely wrong (Issue #1743 [https://github.com/celery/celery/issues/1743]).

	Worker: Errors occurring while attempting to serialize the result of a
task will now cause the task to be marked with failure and a
kombu.exceptions.EncodingError error.

Fix contributed by Ionel Cristian Mărieș.

	Worker with -B argument did not properly shut down the beat instance.

	Worker: The %n and %h formats are now also supported by the
--logfile, --pidfile and --statedb arguments.

Example:

$ celery -A proj worker -n foo@%h --logfile=%n.log --statedb=%n.db

	Redis/Cache result backends: Will now timeout if keys evicted while trying
to join a chord.

	The fallbock unlock chord task now raises Retry so that the
retry even is properly logged by the worker.

	Multi: Will no longer apply Eventlet/gevent monkey patches (Issue #1717 [https://github.com/celery/celery/issues/1717]).

	Redis result backend: Now supports UNIX sockets.

Like the Redis broker transport the result backend now also supports
using redis+socket:///tmp/redis.sock URLs.

Contributed by Alcides Viamontes Esquivel.

	Events: Events sent by clients was mistaken for worker related events
(Issue #1714 [https://github.com/celery/celery/issues/1714]).

For events.State the tasks now have a Task.client attribute
that is set when a task-sent event is being received.

Also, a clients logical clock is not in sync with the cluster so
they live in a “time bubble”. So for this reason monitors will no
longer attempt to merge with the clock of an event sent by a client,
instead it will fake the value by using the current clock with
a skew of -1.

	Prefork pool: The method used to find terminated processes was flawed
in that it did not also take into account missing popen objects.

	Canvas: group and chord now works with anon signatures as long
as the group/chord object is associated with an app instance (Issue #1744 [https://github.com/celery/celery/issues/1744]).

You can pass the app by using group(..., app=app).

3.1.6

	release-date:	2013-12-02 06:00 P.M UTC

	release-by:	Ask Solem

	Now depends on billiard 3.3.0.10.

	Now depends on Kombu 3.0.7 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-7].

	Fixed problem where Mingle caused the worker to hang at startup
(Issue #1686 [https://github.com/celery/celery/issues/1686]).

	Beat: Would attempt to drop privileges twice (Issue #1708 [https://github.com/celery/celery/issues/1708]).

	Windows: Fixed error with geteuid not being available (Issue #1676 [https://github.com/celery/celery/issues/1676]).

	Tasks can now provide a list of expected error classes (Issue #1682 [https://github.com/celery/celery/issues/1682]).

The list should only include errors that the task is expected to raise
during normal operation:

@task(throws=(KeyError, HttpNotFound))

What happens when an exceptions is raised depends on the type of error:

	Expected errors (included in Task.throws)

Will be logged using severity INFO, and traceback is excluded.

	Unexpected errors

Will be logged using severity ERROR, with traceback included.

	Cache result backend now compatible with Python 3 (Issue #1697 [https://github.com/celery/celery/issues/1697]).

	CentOS init script: Now compatible with sys-v style init symlinks.

Fix contributed by Jonathan Jordan.

	Events: Fixed problem when task name is not defined (Issue #1710 [https://github.com/celery/celery/issues/1710]).

Fix contributed by Mher Movsisyan.

	Task: Fixed unbound local errors (Issue #1684 [https://github.com/celery/celery/issues/1684]).

Fix contributed by Markus Ullmann.

	Canvas: Now unrolls groups with only one task (optimization) (Issue #1656 [https://github.com/celery/celery/issues/1656]).

	Task: Fixed problem with eta and timezones.

Fix contributed by Alexander Koval.

	Django: Worker now performs model validation (Issue #1681 [https://github.com/celery/celery/issues/1681]).

	Task decorator now emits less confusing errors when used with
incorrect arguments (Issue #1692 [https://github.com/celery/celery/issues/1692]).

	Task: New method Task.send_event can be used to send custom events
to Flower and other monitors.

	Fixed a compatibility issue with non-abstract task classes

	Events from clients now uses new node name format (gen<pid>@<hostname>).

	Fixed rare bug with Callable not being defined at interpreter shutdown
(Issue #1678 [https://github.com/celery/celery/issues/1678]).

Fix contributed by Nick Johnson.

	Fixed Python 2.6 compatibility (Issue #1679 [https://github.com/celery/celery/issues/1679]).

3.1.5

	release-date:	2013-11-21 06:20 P.M UTC

	release-by:	Ask Solem

	Now depends on Kombu 3.0.6 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-6].

	Now depends on billiard 3.3.0.8

	App: config_from_object is now lazy (Issue #1665 [https://github.com/celery/celery/issues/1665]).

	App: autodiscover_tasks is now lazy.

Django users should now wrap access to the settings object
in a lambda:

app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

this ensures that the settings object is not prepared
prematurely.

	Fixed regression for --app argument experienced by
some users (Issue #1653 [https://github.com/celery/celery/issues/1653]).

	Worker: Now respects the --uid and --gid arguments
even if --detach is not enabled.

	Beat: Now respects the --uid and --gid arguments
even if --detach is not enabled.

	Python 3: Fixed unorderable error occuring with the worker -B
argument enabled.

	celery.VERSION is now a named tuple.

	maybe_signature(list) is now applied recursively (Issue #1645 [https://github.com/celery/celery/issues/1645]).

	celery shell command: Fixed IPython.frontend deprecation warning.

	The default app no longer includes the builtin fixups.

This fixes a bug where celery multi would attempt
to load the Django settings module before entering
the target working directory.

	The Django daemonization tutorial was changed.

Users no longer have to explicitly export DJANGO_SETTINGS_MODULE
in /etc/default/celeryd when the new project layout is used.

	Redis result backend: expiry value can now be 0 (Issue #1661 [https://github.com/celery/celery/issues/1661]).

	Censoring settings now accounts for non-string keys (Issue #1663 [https://github.com/celery/celery/issues/1663]).

	App: New autofinalize option.

Apps are automatically finalized when the task registry is accessed.
You can now disable this behavior so that an exception is raised
instead.

Example:

app = Celery(autofinalize=False)

raises RuntimeError
tasks = app.tasks

@app.task
def add(x, y):
 return x + y

raises RuntimeError
add.delay(2, 2)

app.finalize()
no longer raises:
tasks = app.tasks
add.delay(2, 2)

	The worker did not send monitoring events during shutdown.

	Worker: Mingle and gossip is now automatically disabled when
used with an unsupported transport (Issue #1664 [https://github.com/celery/celery/issues/1664]).

	celery command: Preload options now supports
the rare --opt value format (Issue #1668 [https://github.com/celery/celery/issues/1668]).

	celery command: Accidentally removed options
appearing before the subcommand, these are now moved to the end
instead.

	Worker now properly responds to inspect stats commands
even if received before startup is complete (Issue #1659 [https://github.com/celery/celery/issues/1659]).

	task_postrun is now sent within a finally block, to make
sure the signal is always sent.

	Beat: Fixed syntax error in string formatting.

Contributed by nadad.

	Fixed typos in the documentation.

Fixes contributed by Loic Bistuer, sunfinite.

	Nested chains now works properly when constructed using the
chain type instead of the | operator (Issue #1656 [https://github.com/celery/celery/issues/1656]).

3.1.4

	release-date:	2013-11-15 11:40 P.M UTC

	release-by:	Ask Solem

	Now depends on Kombu 3.0.5 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-5].

	Now depends on billiard 3.3.0.7

	Worker accidentally set a default socket timeout of 5 seconds.

	Django: Fixup now sets the default app so that threads will use
the same app instance (e.g. for manage.py runserver).

	Worker: Fixed Unicode error crash at startup experienced by some users.

	Calling .apply_async on an empty chain now works again (Issue #1650 [https://github.com/celery/celery/issues/1650]).

	The celery multi show command now generates the same arguments
as the start command does.

	The --app argument could end up using a module object instead
of an app instance (with a resulting crash).

	Fixed a syntax error problem in the celerybeat init script.

Fix contributed by Vsevolod.

	Tests now passing on PyPy 2.1 and 2.2.

3.1.3

	release-date:	2013-11-13 00:55 A.M UTC

	release-by:	Ask Solem

	Fixed compatibility problem with Python 2.7.0 - 2.7.5 (Issue #1637 [https://github.com/celery/celery/issues/1637])

unpack_from started supporting memoryview arguments
in Python 2.7.6.

	Worker: -B [https://docs.python.org/dev/using/cmdline.html#id1] argument accidentally closed files used
for logging.

	Task decorated tasks now keep their docstring (Issue #1636 [https://github.com/celery/celery/issues/1636])

3.1.2

	release-date:	2013-11-12 08:00 P.M UTC

	release-by:	Ask Solem

	Now depends on billiard 3.3.0.6

	No longer needs the billiard C extension to be installed.

	The worker silently ignored task errors.

	Django: Fixed ImproperlyConfigured error raised
when no database backend specified.

Fix contributed by j0hnsmith

	Prefork pool: Now using _multiprocessing.read with memoryview
if available.

	close_open_fds now uses os.closerange if available.

	get_fdmax now takes value from sysconfig if possible.

3.1.1

	release-date:	2013-11-11 06:30 P.M UTC

	release-by:	Ask Solem

	Now depends on billiard 3.3.0.4.

	Python 3: Fixed compatibility issues.

	Windows: Accidentally showed warning that the billiard C extension
was not installed (Issue #1630 [https://github.com/celery/celery/issues/1630]).

	Django: Tutorial updated with a solution that sets a default
DJANGO_SETTINGS_MODULE so that it doesn’t have to be typed
in with the celery command.

Also fixed typos in the tutorial, and added the settings
required to use the Django database backend.

Thanks to Chris Ward, orarbel.

	Django: Fixed a problem when using the Django settings in Django 1.6.

	Django: Fixup should not be applied if the django loader is active.

	Worker: Fixed attribute error for human_write_stats when using the
compatibility prefork pool implementation.

	Worker: Fixed compatibility with billiard without C extension.

	Inspect.conf: Now supports a with_defaults argument.

	Group.restore: The backend argument was not respected.

3.1.0

	release-date:	2013-11-09 11:00 P.M UTC

	release-by:	Ask Solem

See What’s new in Celery 3.1 (Cipater).

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

What’s new in Celery 3.1 (Cipater)

	Author:	Ask Solem (ask at celeryproject.org)

Change history

What’s new documents describe the changes in major versions,
we also have a Change history that lists the changes in bugfix
releases (0.0.x), while older series are archived under the History
section.

Celery is a simple, flexible and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

This version is officially supported on CPython 2.6, 2.7 and 3.3,
and also supported on PyPy.

Table of Contents

Make sure you read the important notes before upgrading to this version.

	Preface

	Important Notes
	Dropped support for Python 2.5

	Last version to enable Pickle by default

	Old command-line programs removed and deprecated

	News
	Prefork Pool Improvements

	Django supported out of the box

	Events are now ordered using logical time

	New worker node name format (name@host)

	Bound tasks

	Mingle: Worker synchronization

	Gossip: Worker <-> Worker communication

	Bootsteps: Extending the worker

	New RPC result backend

	Time limits can now be set by the client

	Redis: Broadcast messages and virtual hosts

	pytz replaces python-dateutil dependency

	Support for Setuptools extra requirements

	subtask.__call__() now executes the task directly

	In Other News

	Scheduled Removals

	Deprecations

	Fixes

	Internal changes

Preface

Deadlocks have long plagued our workers, and while uncommon they are
not acceptable. They are also infamous for being extremely hard to diagnose
and reproduce, so to make this job easier I wrote a stress test suite that
bombards the worker with different tasks in an attempt to break it.

What happens if thousands of worker child processes are killed every
second? what if we also kill the broker connection every 10
seconds? These are examples of what the stress test suite will do to the
worker, and it reruns these tests using different configuration combinations
to find edge case bugs.

The end result was that I had to rewrite the prefork pool to avoid the use
of the POSIX semaphore. This was extremely challenging, but after
months of hard work the worker now finally passes the stress test suite.

There’s probably more bugs to find, but the good news is
that we now have a tool to reproduce them, so should you be so unlucky to
experience a bug then we’ll write a test for it and squash it!

Note that I have also moved many broker transports into experimental status:
the only transports recommended for production use today is RabbitMQ and
Redis.

I don’t have the resources to maintain all of them, so bugs are left
unresolved. I wish that someone will step up and take responsibility for
these transports or donate resources to improve them, but as the situation
is now I don’t think the quality is up to date with the rest of the code-base
so I cannot recommend them for production use.

The next version of Celery 3.2 will focus on performance and removing
rarely used parts of the library. Work has also started on a new message
protocol, supporting multiple languages and more. The initial draft can
be found here.

This has probably been the hardest release I’ve worked on, so no
introduction to this changelog would be complete without a massive
thank you to everyone who contributed and helped me test it!

Thank you for your support!

— Ask Solem

Important Notes

Dropped support for Python 2.5

Celery now requires Python 2.6 or later.

The new dual code base runs on both Python 2 and 3, without
requiring the 2to3 porting tool.

Note

This is also the last version to support Python 2.6! From Celery 3.2 and
onwards Python 2.7 or later will be required.

Last version to enable Pickle by default

Starting from Celery 3.2 the default serializer will be json.

If you depend on pickle being accepted you should be prepared
for this change by explicitly allowing your worker
to consume pickled messages using the CELERY_ACCEPT_CONTENT
setting:

CELERY_ACCEPT_CONTENT = ['pickle', 'json', 'msgpack', 'yaml']

Make sure you only select the serialization formats you’ll actually be using,
and make sure you have properly secured your broker from unwanted access
(see the Security Guide).

The worker will emit a deprecation warning if you don’t define this setting.

for Kombu users

Kombu 3.0 no longer accepts pickled messages by default, so if you
use Kombu directly then you have to configure your consumers:
see the Kombu 3.0 Changelog [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-0] for more
information.

Old command-line programs removed and deprecated

Everyone should move to the new celery umbrella
command, so we are incrementally deprecating the old command names.

In this version we’ve removed all commands that are not used
in init scripts. The rest will be removed in 3.2.

	Program
	New Status
	Replacement

	celeryd
	DEPRECATED
	celery worker

	celerybeat
	DEPRECATED
	celery beat

	celeryd-multi
	DEPRECATED
	celery multi

	celeryctl
	REMOVED
	celery inspect|control

	celeryev
	REMOVED
	celery events

	camqadm
	REMOVED
	celery amqp

If this is not a new installation then you may want to remove the old
commands:

$ pip uninstall celery
$ # repeat until it fails
...
$ pip uninstall celery
$ pip install celery

Please run celery --help for help using the umbrella command.

News

Prefork Pool Improvements

These improvements are only active if you use an async capable
transport. This means only RabbitMQ (AMQP) and Redis are supported
at this point and other transports will still use the thread-based fallback
implementation.

	Pool is now using one IPC queue per child process.

Previously the pool shared one queue between all child processes,
using a POSIX semaphore as a mutex to achieve exclusive read and write
access.

The POSIX semaphore has now been removed and each child process
gets a dedicated queue. This means that the worker will require more
file descriptors (two descriptors per process), but it also means
that performance is improved and we can send work to individual child
processes.

POSIX semaphores are not released when a process is killed, so killing
processes could lead to a deadlock if it happened while the semaphore was
acquired. There is no good solution to fix this, so the best option
was to remove the semaphore.

	Asynchronous write operations

The pool now uses async I/O to send work to the child processes.

	Lost process detection is now immediate.

If a child process is killed or exits mysteriously the pool previously
had to wait for 30 seconds before marking the task with a
WorkerLostError. It had to do this because
the outqueue was shared between all processes, and the pool could not
be certain whether the process completed the task or not. So an arbitrary
timeout of 30 seconds was chosen, as it was believed that the outqueue
would have been drained by this point.

This timeout is no longer necessary, and so the task can be marked as
failed as soon as the pool gets the notification that the process exited.

	Rare race conditions fixed

Most of these bugs were never reported to us, but were discovered while
running the new stress test suite.

Caveats

Long running tasks

The new pool will send tasks to a child process as long as the process
inqueue is writable, and since the socket is buffered this means
that the processes are, in effect, prefetching tasks.

This benefits performance but it also means that other tasks may be stuck
waiting for a long running task to complete:

-> send T1 to Process A
A executes T1
-> send T2 to Process B
B executes T2
<- T2 complete

-> send T3 to Process A
A still executing T1, T3 stuck in local buffer and
will not start until T1 returns

The buffer size varies based on the operating system: some may
have a buffer as small as 64kb but on recent Linux versions the buffer
size is 1MB (can only be changed system wide).

You can disable this prefetching behavior by enabling the -Ofair
worker option:

$ celery -A proj worker -l info -Ofair

With this option enabled the worker will only write to workers that are
available for work, disabling the prefetch behavior.

Max tasks per child

If a process exits and pool prefetch is enabled the worker may have
already written many tasks to the process inqueue, and these tasks
must then be moved back and rewritten to a new process.

This is very expensive if you have --maxtasksperchild set to a low
value (e.g. less than 10), so if you need to enable this option
you should also enable -Ofair to turn off the prefetching behavior.

Django supported out of the box

Celery 3.0 introduced a shiny new API, but unfortunately did not
have a solution for Django users.

The situation changes with this version as Django is now supported
in core and new Django users coming to Celery are now expected
to use the new API directly.

The Django community has a convention where there’s a separate
django-x package for every library, acting like a bridge between
Django and the library.

Having a separate project for Django users has been a pain for Celery,
with multiple issue trackers and multiple documentation
sources, and then lastly since 3.0 we even had different APIs.

With this version we challenge that convention and Django users will
use the same library, the same API and the same documentation as
everyone else.

There is no rush to port your existing code to use the new API,
but if you would like to experiment with it you should know that:

	You need to use a Celery application instance.

The new Celery API introduced in 3.0 requires users to instantiate the
library by creating an application:

from celery import Celery

app = Celery()

	You need to explicitly integrate Celery with Django

Celery will not automatically use the Django settings, so you can
either configure Celery separately or you can tell it to use the Django
settings with:

app.config_from_object('django.conf:settings')

Neither will it automatically traverse your installed apps to find task
modules. If you want this behavior, you must explictly pass a list of Django instances to the Celery app:

from django.conf import settings
app.autodiscover_tasks(settings.INSTALLED_APPS)

	You no longer use manage.py

Instead you use the celery command directly:

celery -A proj worker -l info

For this to work your app module must store the DJANGO_SETTINGS_MODULE
environment variable, see the example in the Django
guide.

To get started with the new API you should first read the First Steps with Celery
tutorial, and then you should read the Django-specific instructions in
First steps with Django.

The fixes and improvements applied by the django-celery library are now
automatically applied by core Celery when it detects that
the DJANGO_SETTINGS_MODULE environment variable is set.

The distribution ships with a new example project using Django
in examples/django:

http://github.com/celery/celery/tree/3.1/examples/django

Some features still require the django-celery library:

	Celery does not implement the Django database or cache result backends.

	
	Celery does not ship with the database-based periodic task

	scheduler.

Note

If you’re still using the old API when you upgrade to Celery 3.1
then you must make sure that your settings module contains
the djcelery.setup_loader() line, since this will
no longer happen as a side-effect of importing the djcelery
module.

New users (or if you have ported to the new API) don’t need the setup_loader
line anymore, and must make sure to remove it.

Events are now ordered using logical time

Keeping physical clocks in perfect sync is impossible, so using
timestamps to order events in a distributed system is not reliable.

Celery event messages have included a logical clock value for some time,
but starting with this version that field is also used to order them.

Also, events now record timezone information
by including a new utcoffset field in the event message.
This is a signed integer telling the difference from UTC time in hours,
so e.g. an event sent from the Europe/London timezone in daylight savings
time will have an offset of 1.

app.events.Receiver will automatically convert the timestamps
to the local timezone.

Note

The logical clock is synchronized with other nodes
in the same cluster (neighbors), so this means that the logical
epoch will start at the point when the first worker in the cluster
starts.

If all of the workers are shutdown the clock value will be lost
and reset to 0. To protect against this, you should specify
--statedb so that the worker can persist the clock
value at shutdown.

You may notice that the logical clock is an integer value and
increases very rapidly. Do not worry about the value overflowing
though, as even in the most busy clusters it may take several
millennia before the clock exceeds a 64 bits value.

New worker node name format (name@host)

Node names are now constructed by two elements: name and hostname separated by ‘@’.

This change was made to more easily identify multiple instances running
on the same machine.

If a custom name is not specified then the
worker will use the name ‘celery’ by default, resulting in a
fully qualified node name of 'celery@hostname‘:

$ celery worker -n example.com
celery@example.com

To also set the name you must include the @:

$ celery worker -n worker1@example.com
worker1@example.com

The worker will identify itself using the fully qualified
node name in events and broadcast messages, so where before
a worker would identify itself as ‘worker1.example.com’, it will now
use 'celery@worker1.example.com‘.

Remember that the -n argument also supports simple variable
substitutions, so if the current hostname is george.example.com
then the %h macro will expand into that:

$ celery worker -n worker1@%h
worker1@george.example.com

The available substitutions are as follows:

	Variable
	Substitution

	%h
	Full hostname (including domain name)

	%d
	Domain name only

	%n
	Hostname only (without domain name)

	%%
	The character %

Bound tasks

The task decorator can now create “bound tasks”, which means that the
task will receive the self argument.

@app.task(bind=True)
def send_twitter_status(self, oauth, tweet):
 try:
 twitter = Twitter(oauth)
 twitter.update_status(tweet)
 except (Twitter.FailWhaleError, Twitter.LoginError) as exc:
 raise self.retry(exc=exc)

Using bound tasks is now the recommended approach whenever
you need access to the task instance or request context.
Previously one would have to refer to the name of the task
instead (send_twitter_status.retry), but this could lead to problems
in some configurations.

Mingle: Worker synchronization

The worker will now attempt to synchronize with other workers in
the same cluster.

Synchronized data currently includes revoked tasks and logical clock.

This only happens at startup and causes a one second startup delay
to collect broadcast responses from other workers.

You can disable this bootstep using the --without-mingle argument.

Gossip: Worker <-> Worker communication

Workers are now passively subscribing to worker related events like
heartbeats.

This means that a worker knows what other workers are doing and
can detect if they go offline. Currently this is only used for clock
synchronization, but there are many possibilities for future additions
and you can write extensions that take advantage of this already.

Some ideas include consensus protocols, reroute task to best worker (based on
resource usage or data locality) or restarting workers when they crash.

We believe that although this is a small addition, it opens
amazing possibilities.

You can disable this bootstep using the --without-gossip argument.

Bootsteps: Extending the worker

By writing bootsteps you can now easily extend the consumer part
of the worker to add additional features, like custom message consumers.

The worker has been using bootsteps for some time, but these were never
documented. In this version the consumer part of the worker
has also been rewritten to use bootsteps and the new Extensions and Bootsteps
guide documents examples extending the worker, including adding
custom message consumers.

See the Extensions and Bootsteps guide for more information.

Note

Bootsteps written for older versions will not be compatible
with this version, as the API has changed significantly.

The old API was experimental and internal but should you be so unlucky
to use it then please contact the mailing-list and we will help you port
the bootstep to the new API.

New RPC result backend

This new experimental version of the amqp result backend is a good
alternative to use in classical RPC scenarios, where the process that initiates
the task is always the process to retrieve the result.

It uses Kombu to send and retrieve results, and each client
uses a unique queue for replies to be sent to. This avoids
the significant overhead of the original amqp result backend which creates
one queue per task.

By default results sent using this backend will not persist, so they won’t
survive a broker restart. You can enable
the CELERY_RESULT_PERSISTENT setting to change that.

CELERY_RESULT_BACKEND = 'rpc'
CELERY_RESULT_PERSISTENT = True

Note that chords are currently not supported by the RPC backend.

Time limits can now be set by the client

Two new options have been added to the Calling API: time_limit and
soft_time_limit:

>>> res = add.apply_async((2, 2), time_limit=10, soft_time_limit=8)

>>> res = add.subtask((2, 2), time_limit=10, soft_time_limit=8).delay()

>>> res = add.s(2, 2).set(time_limit=10, soft_time_limit=8).delay()

Contributed by Mher Movsisyan.

Redis: Broadcast messages and virtual hosts

Broadcast messages are currently seen by all virtual hosts when
using the Redis transport. You can now fix this by enabling a prefix to all channels
so that the messages are separated:

BROKER_TRANSPORT_OPTIONS = {'fanout_prefix': True}

Note that you’ll not be able to communicate with workers running older
versions or workers that does not have this setting enabled.

This setting will be the default in a future version.

Related to Issue #1490 [https://github.com/celery/celery/issues/1490].

pytz replaces python-dateutil dependency

Celery no longer depends on the python-dateutil library,
but instead a new dependency on the pytz library was added.

The pytz library was already recommended for accurate timezone support.

This also means that dependencies are the same for both Python 2 and
Python 3, and that the requirements/default-py3k.txt file has
been removed.

Support for Setuptools extra requirements

Pip now supports the setuptools extra requirements format,
so we have removed the old bundles concept, and instead specify
setuptools extras.

You install extras by specifying them inside brackets:

$ pip install celery[redis,mongodb]

The above will install the dependencies for Redis and MongoDB. You can list
as many extras as you want.

Warning

You can’t use the celery-with-* packages anymore, as these will not be
updated to use Celery 3.1.

	Extension
	Requirement entry
	Type

	Redis
	celery[redis]
	transport, result backend

	MongoDB
	celery[mongodb]
	transport, result backend

	CouchDB
	celery[couchdb]
	transport

	Beanstalk
	celery[beanstalk]
	transport

	ZeroMQ
	celery[zeromq]
	transport

	Zookeeper
	celery[zookeeper]
	transport

	SQLAlchemy
	celery[sqlalchemy]
	transport, result backend

	librabbitmq
	celery[librabbitmq]
	transport (C amqp client)

The complete list with examples is found in the Bundles section.

subtask.__call__() now executes the task directly

A misunderstanding led to Signature.__call__ being an alias of
.delay but this does not conform to the calling API of Task which
calls the underlying task method.

This means that:

@app.task
def add(x, y):
 return x + y

add.s(2, 2)()

now does the same as calling the task directly:

add(2, 2)

In Other News

	Now depends on Kombu 3.0 [http://kombu.readthedocs.io/en/latest/changelog.html#version-3-0-0].

	Now depends on billiard version 3.3.

	Worker will now crash if running as the root user with pickle enabled.

	Canvas: group.apply_async and chain.apply_async no longer starts
separate task.

That the group and chord primitives supported the “calling API” like other
subtasks was a nice idea, but it was useless in practice and often
confused users. If you still want this behavior you can define a
task to do it for you.

	New method Signature.freeze() can be used to “finalize”
signatures/subtask.

Regular signature:

>>> s = add.s(2, 2)
>>> result = s.freeze()
>>> result
<AsyncResult: ffacf44b-f8a1-44e9-80a3-703150151ef2>
>>> s.delay()
<AsyncResult: ffacf44b-f8a1-44e9-80a3-703150151ef2>

Group:

>>> g = group(add.s(2, 2), add.s(4, 4))
>>> result = g.freeze()
<GroupResult: e1094b1d-08fc-4e14-838e-6d601b99da6d [
 70c0fb3d-b60e-4b22-8df7-aa25b9abc86d,
 58fcd260-2e32-4308-a2ea-f5be4a24f7f4]>
>>> g()
<GroupResult: e1094b1d-08fc-4e14-838e-6d601b99da6d [70c0fb3d-b60e-4b22-8df7-aa25b9abc86d, 58fcd260-2e32-4308-a2ea-f5be4a24f7f4]>

	Chord exception behavior defined (Issue #1172 [https://github.com/celery/celery/issues/1172]).

From this version the chord callback will change state to FAILURE
when a task part of a chord raises an exception.

See more at Error handling.

	New ability to specify additional command line options
to the worker and beat programs.

The app.user_options attribute can be used
to add additional command-line arguments, and expects
optparse-style options:

from celery import Celery
from celery.bin import Option

app = Celery()
app.user_options['worker'].add(
 Option('--my-argument'),
)

See the Extensions and Bootsteps guide for more information.

	All events now include a pid field, which is the process id of the
process that sent the event.

	Event heartbeats are now calculated based on the time when the event
was received by the monitor, and not the time reported by the worker.

This means that a worker with an out-of-sync clock will no longer
show as ‘Offline’ in monitors.

A warning is now emitted if the difference between the senders
time and the internal time is greater than 15 seconds, suggesting
that the clocks are out of sync.

	Monotonic clock support.

A monotonic clock is now used for timeouts and scheduling.

The monotonic clock function is built-in starting from Python 3.4,
but we also have fallback implementations for Linux and OS X.

	celery worker now supports a --detach argument to start
the worker as a daemon in the background.

	app.events.Receiver now sets a local_received field for incoming
events, which is set to the time of when the event was received.

	app.events.Dispatcher now accepts a groups argument
which decides a white-list of event groups that will be sent.

The type of an event is a string separated by ‘-‘, where the part
before the first ‘-‘ is the group. Currently there are only
two groups: worker and task.

A dispatcher instantiated as follows:

app.events.Dispatcher(connection, groups=['worker'])

will only send worker related events and silently drop any attempts
to send events related to any other group.

	New BROKER_FAILOVER_STRATEGY setting.

This setting can be used to change the transport failover strategy,
can either be a callable returning an iterable or the name of a
Kombu built-in failover strategy. Default is “round-robin”.

Contributed by Matt Wise.

	Result.revoke will no longer wait for replies.

You can add the reply=True argument if you really want to wait for
responses from the workers.

	Better support for link and link_error tasks for chords.

Contributed by Steeve Morin.

	Worker: Now emits warning if the CELERYD_POOL setting is set
to enable the eventlet/gevent pools.

The -P option should always be used to select the eventlet/gevent pool
to ensure that the patches are applied as early as possible.

If you start the worker in a wrapper (like Django’s manage.py)
then you must apply the patches manually, e.g. by creating an alternative
wrapper that monkey patches at the start of the program before importing
any other modules.

	There’s a now an ‘inspect clock’ command which will collect the current
logical clock value from workers.

	celery inspect stats now contains the process id of the worker’s main
process.

Contributed by Mher Movsisyan.

	New remote control command to dump a workers configuration.

Example:

$ celery inspect conf

Configuration values will be converted to values supported by JSON
where possible.

Contributed by Mher Movisyan.

	New settings CELERY_EVENT_QUEUE_TTL and
CELERY_EVENT_QUEUE_EXPIRES.

These control when a monitors event queue is deleted, and for how long
events published to that queue will be visible. Only supported on
RabbitMQ.

	New Couchbase result backend.

This result backend enables you to store and retrieve task results
using Couchbase [http://www.couchbase.com].

See Couchbase backend settings for more information
about configuring this result backend.

Contributed by Alain Masiero.

	CentOS init script now supports starting multiple worker instances.

See the script header for details.

Contributed by Jonathan Jordan.

	AsyncResult.iter_native now sets default interval parameter to 0.5

Fix contributed by Idan Kamara

	New setting BROKER_LOGIN_METHOD.

This setting can be used to specify an alternate login method
for the AMQP transports.

Contributed by Adrien Guinet

	The dump_conf remote control command will now give the string
representation for types that are not JSON compatible.

	Function celery.security.setup_security is now app.setup_security().

	Task retry now propagates the message expiry value (Issue #980 [https://github.com/celery/celery/issues/980]).

The value is forwarded at is, so the expiry time will not change.
To update the expiry time you would have to pass a new expires
argument to retry().

	Worker now crashes if a channel error occurs.

Channel errors are transport specific and is the list of exceptions
returned by Connection.channel_errors.
For RabbitMQ this means that Celery will crash if the equivalence
checks for one of the queues in CELERY_QUEUES mismatches, which
makes sense since this is a scenario where manual intervention is
required.

	Calling AsyncResult.get() on a chain now propagates errors for previous
tasks (Issue #1014 [https://github.com/celery/celery/issues/1014]).

	The parent attribute of AsyncResult is now reconstructed when using JSON
serialization (Issue #1014 [https://github.com/celery/celery/issues/1014]).

	Worker disconnection logs are now logged with severity warning instead of
error.

Contributed by Chris Adams.

	events.State no longer crashes when it receives unknown event types.

	SQLAlchemy Result Backend: New CELERY_RESULT_DB_TABLENAMES
setting can be used to change the name of the database tables used.

Contributed by Ryan Petrello.

	
	SQLAlchemy Result Backend: Now calls enginge.dispose after fork

	(Issue #1564 [https://github.com/celery/celery/issues/1564]).

If you create your own sqlalchemy engines then you must also
make sure that these are closed after fork in the worker:

from multiprocessing.util import register_after_fork

engine = create_engine(…)
register_after_fork(engine, engine.dispose)

	A stress test suite for the Celery worker has been written.

This is located in the funtests/stress directory in the git
repository. There’s a README file there to get you started.

	The logger named celery.concurrency has been renamed to celery.pool.

	New command line utility celery graph.

This utility creates graphs in GraphViz dot format.

You can create graphs from the currently installed bootsteps:

Create graph of currently installed bootsteps in both the worker
and consumer namespaces.
$ celery graph bootsteps | dot -T png -o steps.png

Graph of the consumer namespace only.
$ celery graph bootsteps consumer | dot -T png -o consumer_only.png

Graph of the worker namespace only.
$ celery graph bootsteps worker | dot -T png -o worker_only.png

Or graphs of workers in a cluster:

Create graph from the current cluster
$ celery graph workers | dot -T png -o workers.png

Create graph from a specified list of workers
$ celery graph workers nodes:w1,w2,w3 | dot -T png workers.png

also specify the number of threads in each worker
$ celery graph workers nodes:w1,w2,w3 threads:2,4,6

…also specify the broker and backend URLs shown in the graph
$ celery graph workers broker:amqp:// backend:redis://

…also specify the max number of workers/threads shown (wmax/tmax),
enumerating anything that exceeds that number.
$ celery graph workers wmax:10 tmax:3

	Changed the way that app instances are pickled.

Apps can now define a __reduce_keys__ method that is used instead
of the old AppPickler attribute. E.g. if your app defines a custom
‘foo’ attribute that needs to be preserved when pickling you can define
a __reduce_keys__ as such:

import celery

class Celery(celery.Celery):

 def __init__(self, *args, **kwargs):
 super(Celery, self).__init__(*args, **kwargs)
 self.foo = kwargs.get('foo')

 def __reduce_keys__(self):
 return super(Celery, self).__reduce_keys__().update(
 foo=self.foo,
)

This is a much more convenient way to add support for pickling custom
attributes. The old AppPickler is still supported but its use is
discouraged and we would like to remove it in a future version.

	Ability to trace imports for debugging purposes.

The C_IMPDEBUG can be set to trace imports as they
occur:

$ C_IMDEBUG=1 celery worker -l info

$ C_IMPDEBUG=1 celery shell

	Message headers now available as part of the task request.

Example adding and retrieving a header value:

@app.task(bind=True)
def t(self):
 return self.request.headers.get('sender')

>>> t.apply_async(headers={'sender': 'George Costanza'})

	New before_task_publish signal dispatched before a task message
is sent and can be used to modify the final message fields (Issue #1281 [https://github.com/celery/celery/issues/1281]).

	New after_task_publish signal replaces the old task_sent
signal.

The task_sent signal is now deprecated and should not be used.

	New worker_process_shutdown signal is dispatched in the
prefork pool child processes as they exit.

Contributed by Daniel M Taub.

	celery.platforms.PIDFile renamed to celery.platforms.Pidfile.

	MongoDB Backend: Can now be configured using an URL:

See Example configuration.

	MongoDB Backend: No longer using deprecated pymongo.Connection.

	MongoDB Backend: Now disables auto_start_request.

	MongoDB Backend: Now enables use_greenlets when eventlet/gevent is used.

	subtask() / maybe_subtask() renamed to
signature()/maybe_signature().

Aliases still available for backwards compatibility.

	The correlation_id message property is now automatically set to the
id of the task.

	The task message eta and expires fields now includes timezone
information.

	All result backends store_result/mark_as_* methods must now accept
a request keyword argument.

	Events now emit warning if the broken yajl library is used.

	The celeryd_init signal now takes an extra keyword argument:
option.

This is the mapping of parsed command line arguments, and can be used to
prepare new preload arguments (app.user_options['preload']).

	New callback: app.on_configure().

This callback is called when an app is about to be configured (a
configuration key is required).

	Worker: No longer forks on HUP.

This means that the worker will reuse the same pid for better
support with external process supervisors.

Contributed by Jameel Al-Aziz.

	Worker: The log message Got task from broker … was changed to
Received task ….

	Worker: The log message Skipping revoked task … was changed
to Discarding revoked task ….

	Optimization: Improved performance of ResultSet.join_native().

Contributed by Stas Rudakou.

	The task_revoked signal now accepts new request argument
(Issue #1555 [https://github.com/celery/celery/issues/1555]).

The revoked signal is dispatched after the task request is removed from
the stack, so it must instead use the Request
object to get information about the task.

	Worker: New -X [https://docs.python.org/dev/using/cmdline.html#id5] command line argument to exclude queues
(Issue #1399 [https://github.com/celery/celery/issues/1399]).

The -X [https://docs.python.org/dev/using/cmdline.html#id5] argument is the inverse of the -Q argument
and accepts a list of queues to exclude (not consume from):

Consume from all queues in CELERY_QUEUES, but not the 'foo' queue.
$ celery worker -A proj -l info -X foo

	Adds C_FAKEFORK envvar for simple init script/multi debugging.

This means that you can now do:

$ C_FAKEFORK=1 celery multi start 10

or:

$ C_FAKEFORK=1 /etc/init.d/celeryd start

to avoid the daemonization step to see errors that are not visible
due to missing stdout/stderr.

A dryrun command has been added to the generic init script that
enables this option.

	New public API to push and pop from the current task stack:

celery.app.push_current_task() and
celery.app.pop_current_task`().

	RetryTaskError has been renamed to Retry.

The old name is still available for backwards compatibility.

	New semi-predicate exception Reject.

This exception can be raised to reject/requeue the task message,
see Reject for examples.

	Semipredicates documented: (Retry/Ignore/Reject).

Scheduled Removals

	The BROKER_INSIST setting and the insist argument
to ~@connection is no longer supported.

	The CELERY_AMQP_TASK_RESULT_CONNECTION_MAX setting is no longer
supported.

Use BROKER_POOL_LIMIT instead.

	The CELERY_TASK_ERROR_WHITELIST setting is no longer supported.

You should set the ErrorMail attribute
of the task class instead. You can also do this using
CELERY_ANNOTATIONS:

from celery import Celery
from celery.utils.mail import ErrorMail

class MyErrorMail(ErrorMail):
 whitelist = (KeyError, ImportError)

 def should_send(self, context, exc):
 return isinstance(exc, self.whitelist)

app = Celery()
app.conf.CELERY_ANNOTATIONS = {
 '*': {
 'ErrorMail': MyErrorMails,
 }
}

	Functions that creates a broker connections no longer
supports the connect_timeout argument.

This can now only be set using the BROKER_CONNECTION_TIMEOUT
setting. This is because functions no longer create connections
directly, but instead get them from the connection pool.

	The CELERY_AMQP_TASK_RESULT_EXPIRES setting is no longer supported.

Use CELERY_TASK_RESULT_EXPIRES instead.

Deprecations

See the Celery Deprecation Timeline.

Fixes

	AMQP Backend: join did not convert exceptions when using the json
serializer.

	Non-abstract task classes are now shared between apps (Issue #1150 [https://github.com/celery/celery/issues/1150]).

Note that non-abstract task classes should not be used in the
new API. You should only create custom task classes when you
use them as a base class in the @task decorator.

This fix ensure backwards compatibility with older Celery versions
so that non-abstract task classes works even if a module is imported
multiple times so that the app is also instantiated multiple times.

	Worker: Workaround for Unicode errors in logs (Issue #427 [https://github.com/celery/celery/issues/427]).

	Task methods: .apply_async now works properly if args list is None
(Issue #1459 [https://github.com/celery/celery/issues/1459]).

	Eventlet/gevent/solo/threads pools now properly handles BaseException [https://docs.python.org/dev/library/exceptions.html#BaseException]
errors raised by tasks.

	autoscale and pool_grow/pool_shrink remote
control commands will now also automatically increase and decrease the
consumer prefetch count.

Fix contributed by Daniel M. Taub.

	celery control pool_ commands did not coerce string arguments to int.

	Redis/Cache chords: Callback result is now set to failure if the group
disappeared from the database (Issue #1094 [https://github.com/celery/celery/issues/1094]).

	Worker: Now makes sure that the shutdown process is not initiated multiple
times.

	Multi: Now properly handles both -f and --logfile options
(Issue #1541 [https://github.com/celery/celery/issues/1541]).

Internal changes

	Module celery.task.trace has been renamed to celery.app.trace.

	Module celery.concurrency.processes has been renamed to
celery.concurrency.prefork.

	Classes that no longer fall back to using the default app:

	Result backends (celery.backends.base.BaseBackend)

	celery.worker.WorkController

	celery.worker.Consumer

	celery.worker.job.Request

This means that you have to pass a specific app when instantiating
these classes.

	EventDispatcher.copy_buffer renamed to
app.events.Dispatcher.extend_buffer().

	Removed unused and never documented global instance
celery.events.state.state.

	app.events.Receiver is now a kombu.mixins.ConsumerMixin [http://kombu.readthedocs.io/en/latest/reference/kombu.mixins.html#kombu.mixins.ConsumerMixin]
subclass.

	celery.apps.worker.Worker has been refactored as a subclass of
celery.worker.WorkController.

This removes a lot of duplicate functionality.

	The Celery.with_default_connection method has been removed in favor
of with app.connection_or_acquire (app.connection_or_acquire())

	The celery.results.BaseDictBackend class has been removed and is replaced by
celery.results.BaseBackend.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

What’s new in Celery 3.0 (Chiastic Slide)

Celery is a simple, flexible and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

If you use Celery in combination with Django you must also
read the django-celery changelog [http://github.com/celery/django-celery/tree/master/Changelog] and upgrade to django-celery 3.0 [http://pypi.python.org/pypi/django-celery/].

This version is officially supported on CPython 2.5, 2.6, 2.7, 3.2 and 3.3,
as well as PyPy and Jython.

Highlights

Overview

	A new and improved API, that is both simpler and more powerful.

Everyone must read the new First Steps with Celery tutorial,
and the new Next Steps tutorial. Oh, and
why not reread the user guide while you’re at it :)

There are no current plans to deprecate the old API,
so you don’t have to be in a hurry to port your applications.

	The worker is now thread-less, giving great performance improvements.

	The new “Canvas” makes it easy to define complex workflows.

Ever wanted to chain tasks together? This is possible, but
not just that, now you can even chain together groups and chords,
or even combine multiple chains.

Read more in the Canvas user guide.

	All of Celery’s command-line programs are now available from a single
celery umbrella command.

	This is the last version to support Python 2.5.

Starting with Celery 3.1, Python 2.6 or later is required.

	Support for the new librabbitmq C client.

Celery will automatically use the librabbitmq module
if installed, which is a very fast and memory-optimized
replacement for the py-amqp module.

	Redis support is more reliable with improved ack emulation.

	Celery now always uses UTC

	Over 600 commits, 30k additions/36k deletions.

In comparison 1.0➝ 2.0 had 18k additions/8k deletions.

Important Notes

Broadcast exchanges renamed

The workers remote control command exchanges has been renamed
(a new pidbox name), this is because the auto_delete flag on the exchanges
has been removed, and that makes it incompatible with earlier versions.

You can manually delete the old exchanges if you want,
using the celery amqp command (previously called camqadm):

$ celery amqp exchange.delete celeryd.pidbox
$ celery amqp exchange.delete reply.celeryd.pidbox

Eventloop

The worker is now running without threads when used with RabbitMQ (AMQP),
or Redis as a broker, resulting in:

	Much better overall performance.

	Fixes several edge case race conditions.

	Sub-millisecond timer precision.

	Faster shutdown times.

The transports supported are: py-amqp librabbitmq, redis,
and amqplib.
Hopefully this can be extended to include additional broker transports
in the future.

For increased reliability the CELERYD_FORCE_EXECV setting is enabled
by default if the eventloop is not used.

New celery umbrella command

All Celery’s command-line programs are now available from a single
celery umbrella command.

You can see a list of subcommands and options by running:

$ celery help

Commands include:

	celery worker (previously celeryd).

	celery beat (previously celerybeat).

	celery amqp (previously camqadm).

The old programs are still available (celeryd, celerybeat, etc),
but you are discouraged from using them.

Now depends on billiard.

Billiard is a fork of the multiprocessing containing
the no-execv patch by sbt (http://bugs.python.org/issue8713),
and also contains the pool improvements previously located in Celery.

This fork was necessary as changes to the C extension code was required
for the no-execv patch to work.

	Issue #625 [https://github.com/celery/celery/issues/625]

	Issue #627 [https://github.com/celery/celery/issues/627]

	Issue #640 [https://github.com/celery/celery/issues/640]

	django-celery #122 <http://github.com/celery/django-celery/issues/122

	django-celery #124 <http://github.com/celery/django-celery/issues/122

celery.app.task no longer a package

The celery.app.task module is now a module instead of a package.

The setup.py install script will try to remove the old package,
but if that doesn’t work for some reason you have to remove
it manually. This command helps:

$ rm -r $(dirname $(python -c '
 import celery;print(celery.__file__)'))/app/task/

If you experience an error like ImportError: cannot import name _unpickle_task,
you just have to remove the old package and everything is fine.

Last version to support Python 2.5

The 3.0 series will be last version to support Python 2.5,
and starting from 3.1 Python 2.6 and later will be required.

With several other distributions taking the step to discontinue
Python 2.5 support, we feel that it is time too.

Python 2.6 should be widely available at this point, and we urge
you to upgrade, but if that is not possible you still have the option
to continue using the Celery 3.0, and important bug fixes
introduced in Celery 3.1 will be back-ported to Celery 3.0 upon request.

UTC timezone is now used

This means that ETA/countdown in messages are not compatible with Celery
versions prior to 2.5.

You can disable UTC and revert back to old local time by setting
the CELERY_ENABLE_UTC setting.

Redis: Ack emulation improvements

Reducing the possibility of data loss.

Acks are now implemented by storing a copy of the message when the message
is consumed. The copy is not removed until the consumer acknowledges
or rejects it.

This means that unacknowledged messages will be redelivered either
when the connection is closed, or when the visibility timeout is exceeded.

	Visibility timeout

This is a timeout for acks, so that if the consumer
does not ack the message within this time limit, the message
is redelivered to another consumer.

The timeout is set to one hour by default, but
can be changed by configuring a transport option:

BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 18000} # 5 hours

Note

Messages that have not been acked will be redelivered
if the visibility timeout is exceeded, for Celery users
this means that ETA/countdown tasks that are scheduled to execute
with a time that exceeds the visibility timeout will be executed
twice (or more). If you plan on using long ETA/countdowns you
should tweak the visibility timeout accordingly.

Setting a long timeout means that it will take a long time
for messages to be redelivered in the event of a power failure,
but if so happens you could temporarily set the visibility timeout lower
to flush out messages when you start up the systems again.

News

Chaining Tasks

Tasks can now have callbacks and errbacks, and dependencies are recorded

	The task message format have been updated with two new extension keys

Both keys can be empty/undefined or a list of subtasks.

	callbacks

Applied if the task exits successfully, with the result
of the task as an argument.

	errbacks

Applied if an error occurred while executing the task,
with the uuid of the task as an argument. Since it may not be possible
to serialize the exception instance, it passes the uuid of the task
instead. The uuid can then be used to retrieve the exception and
traceback of the task from the result backend.

	link and link_error keyword arguments has been added
to apply_async.

These add callbacks and errbacks to the task, and
you can read more about them at Linking (callbacks/errbacks).

	We now track what subtasks a task sends, and some result backends
supports retrieving this information.

	task.request.children

Contains the result instances of the subtasks
the currently executing task has applied.

	AsyncResult.children

Returns the tasks dependencies, as a list of
AsyncResult/ResultSet instances.

	AsyncResult.iterdeps

Recursively iterates over the tasks dependencies,
yielding (parent, node) tuples.

Raises IncompleteStream if any of the dependencies
has not returned yet.

	AsyncResult.graph

A DependencyGraph of the tasks dependencies.
This can also be used to convert to dot format:

with open('graph.dot') as fh:
 result.graph.to_dot(fh)

which can than be used to produce an image:

$ dot -Tpng graph.dot -o graph.png

	A new special subtask called chain is also included:

>>> from celery import chain

(2 + 2) * 8 / 2
>>> res = chain(add.subtask((2, 2)),
 mul.subtask((8,)),
 div.subtask((2,))).apply_async()
>>> res.get() == 16

>>> res.parent.get() == 32

>>> res.parent.parent.get() == 4

	Adds AsyncResult.get_leaf()

Waits and returns the result of the leaf subtask.
That is the last node found when traversing the graph,
but this means that the graph can be 1-dimensional only (in effect
a list).

	Adds subtask.link(subtask) + subtask.link_error(subtask)

Shortcut to s.options.setdefault('link', []).append(subtask)

	Adds subtask.flatten_links()

Returns a flattened list of all dependencies (recursively)

Redis: Priority support.

The message’s priority field is now respected by the Redis
transport by having multiple lists for each named queue.
The queues are then consumed by in order of priority.

The priority field is a number in the range of 0 - 9, where
0 is the default and highest priority.

The priority range is collapsed into four steps by default, since it is
unlikely that nine steps will yield more benefit than using four steps.
The number of steps can be configured by setting the priority_steps
transport option, which must be a list of numbers in sorted order:

>>> BROKER_TRANSPORT_OPTIONS = {
... 'priority_steps': [0, 2, 4, 6, 8, 9],
... }

Priorities implemented in this way is not as reliable as
priorities on the server side, which is why
the feature is nicknamed “quasi-priorities”;
Using routing is still the suggested way of ensuring
quality of service, as client implemented priorities
fall short in a number of ways, e.g. if the worker
is busy with long running tasks, has prefetched many messages,
or the queues are congested.

Still, it is possible that using priorities in combination
with routing can be more beneficial than using routing
or priorities alone. Experimentation and monitoring
should be used to prove this.

Contributed by Germán M. Bravo.

Redis: Now cycles queues so that consuming is fair.

This ensures that a very busy queue won’t block messages
from other queues, and ensures that all queues have
an equal chance of being consumed from.

This used to be the case before, but the behavior was
accidentally changed while switching to using blocking pop.

group/chord/chain are now subtasks

	group is no longer an alias to TaskSet, but new alltogether,
since it was very difficult to migrate the TaskSet class to become
a subtask.

	A new shortcut has been added to tasks:

>>> task.s(arg1, arg2, kw=1)

as a shortcut to:

>>> task.subtask((arg1, arg2), {'kw': 1})

	Tasks can be chained by using the | operator:

>>> (add.s(2, 2), pow.s(2)).apply_async()

	Subtasks can be “evaluated” using the ~ operator:

>>> ~add.s(2, 2)
4

>>> ~(add.s(2, 2) | pow.s(2))

is the same as:

>>> chain(add.s(2, 2), pow.s(2)).apply_async().get()

	A new subtask_type key has been added to the subtask dicts

This can be the string “chord”, “group”, “chain”, “chunks”,
“xmap”, or “xstarmap”.

	maybe_subtask now uses subtask_type to reconstruct
the object, to be used when using non-pickle serializers.

	The logic for these operations have been moved to dedicated
tasks celery.chord, celery.chain and celery.group.

	subtask no longer inherits from AttributeDict.

It’s now a pure dict subclass with properties for attribute
access to the relevant keys.

	The repr’s now outputs how the sequence would like imperatively:

>>> from celery import chord

>>> (chord([add.s(i, i) for i in xrange(10)], xsum.s())
 | pow.s(2))
tasks.xsum([tasks.add(0, 0),
 tasks.add(1, 1),
 tasks.add(2, 2),
 tasks.add(3, 3),
 tasks.add(4, 4),
 tasks.add(5, 5),
 tasks.add(6, 6),
 tasks.add(7, 7),
 tasks.add(8, 8),
 tasks.add(9, 9)]) | tasks.pow(2)

New remote control commands

These commands were previously experimental, but they have proven
stable and is now documented as part of the offical API.

	add_consumer/cancel_consumer

Tells workers to consume from a new queue, or cancel consuming from a
queue. This command has also been changed so that the worker remembers
the queues added, so that the change will persist even if
the connection is re-connected.

These commands are available programmatically as
app.control.add_consumer() / app.control.cancel_consumer():

>>> celery.control.add_consumer(queue_name,
... destination=['w1.example.com'])
>>> celery.control.cancel_consumer(queue_name,
... destination=['w1.example.com'])

or using the celery control command:

$ celery control -d w1.example.com add_consumer queue
$ celery control -d w1.example.com cancel_consumer queue

Note

Remember that a control command without destination will be
sent to all workers.

	autoscale

Tells workers with –autoscale enabled to change autoscale
max/min concurrency settings.

This command is available programmatically as app.control.autoscale():

>>> celery.control.autoscale(max=10, min=5,
... destination=['w1.example.com'])

or using the celery control command:

$ celery control -d w1.example.com autoscale 10 5

	pool_grow/pool_shrink

Tells workers to add or remove pool processes.

These commands are available programmatically as
app.control.pool_grow() / app.control.pool_shrink():

>>> celery.control.pool_grow(2, destination=['w1.example.com'])
>>> celery.contorl.pool_shrink(2, destination=['w1.example.com'])

or using the celery control command:

$ celery control -d w1.example.com pool_grow 2
$ celery control -d w1.example.com pool_shrink 2

	celery control now supports rate_limit and
time_limit commands.

See celery control --help for details.

Crontab now supports Day of Month, and Month of Year arguments

See the updated list of examples at Crontab schedules.

Immutable subtasks

subtask‘s can now be immutable, which means that the arguments
will not be modified when calling callbacks:

>>> chain(add.s(2, 2), clear_static_electricity.si())

means it will not receive the argument of the parent task,
and .si() is a shortcut to:

>>> clear_static_electricity.subtask(immutable=True)

Logging Improvements

Logging support now conforms better with best practices.

	Classes used by the worker no longer uses app.get_default_logger, but uses
celery.utils.log.get_logger which simply gets the logger not setting the
level, and adds a NullHandler.

	Loggers are no longer passed around, instead every module using logging
defines a module global logger that is used throughout.

	All loggers inherit from a common logger called “celery”.

	Before task.get_logger would setup a new logger for every task,
and even set the loglevel. This is no longer the case.

	Instead all task loggers now inherit from a common “celery.task” logger
that is set up when programs call setup_logging_subsystem.

	Instead of using LoggerAdapter to augment the formatter with
the task_id and task_name field, the task base logger now use
a special formatter adding these values at runtime from the
currently executing task.

	In fact, task.get_logger is no longer recommended, it is better
to add a module-level logger to your tasks module.

For example, like this:

from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)

@celery.task
def add(x, y):
 logger.debug('Adding %r + %r' % (x, y))
 return x + y

The resulting logger will then inherit from the "celery.task" logger
so that the current task name and id is included in logging output.

	Redirected output from stdout/stderr is now logged to a “celery.redirected”
logger.

	In addition a few warnings.warn have been replaced with logger.warn.

	Now avoids the ‘no handlers for logger multiprocessing’ warning

Task registry no longer global

Every Celery instance now has its own task registry.

You can make apps share registries by specifying it:

>>> app1 = Celery()
>>> app2 = Celery(tasks=app1.tasks)

Note that tasks are shared between registries by default, so that
tasks will be added to every subsequently created task registry.
As an alternative tasks can be private to specific task registries
by setting the shared argument to the @task decorator:

@celery.task(shared=False)
def add(x, y):
 return x + y

Abstract tasks are now lazily bound.

The Task class is no longer bound to an app
by default, it will first be bound (and configured) when
a concrete subclass is created.

This means that you can safely import and make task base classes,
without also initializing the app environment:

from celery.task import Task

class DebugTask(Task):
 abstract = True

 def __call__(self, *args, **kwargs):
 print('CALLING %r' % (self,))
 return self.run(*args, **kwargs)

>>> DebugTask
<unbound DebugTask>

>>> @celery1.task(base=DebugTask)
... def add(x, y):
... return x + y
>>> add.__class__
<class add of <Celery default:0x101510d10>>

Lazy task decorators

The @task decorator is now lazy when used with custom apps.

That is, if accept_magic_kwargs is enabled (herby called “compat mode”), the task
decorator executes inline like before, however for custom apps the @task
decorator now returns a special PromiseProxy object that is only evaluated
on access.

All promises will be evaluated when app.finalize() is called, or implicitly
when the task registry is first used.

Smart –app option

The --app option now ‘auto-detects’

	If the provided path is a module it tries to get an
attribute named ‘celery’.

	If the provided path is a package it tries
to import a submodule named ‘celery’,
and get the celery attribute from that module.

E.g. if you have a project named ‘proj’ where the
celery app is located in ‘from proj.celery import app’,
then the following will be equivalent:

$ celery worker --app=proj
$ celery worker --app=proj.celery:
$ celery worker --app=proj.celery:app

In Other News

	New CELERYD_WORKER_LOST_WAIT to control the timeout in
seconds before billiard.WorkerLostError is raised
when a worker can not be signalled (Issue #595 [https://github.com/celery/celery/issues/595]).

Contributed by Brendon Crawford.

	Redis event monitor queues are now automatically deleted (Issue #436 [https://github.com/celery/celery/issues/436]).

	App instance factory methods have been converted to be cached
descriptors that creates a new subclass on access.

This means that e.g. app.Worker is an actual class
and will work as expected when:

class Worker(app.Worker):
 ...

	New signal: task_success.

	Multiprocessing logs are now only emitted if the MP_LOG
environment variable is set.

	The Celery instance can now be created with a broker URL

app = Celery(broker='redis://')

	Result backends can now be set using an URL

Currently only supported by redis. Example use:

CELERY_RESULT_BACKEND = 'redis://localhost/1'

	Heartbeat frequency now every 5s, and frequency sent with event

The heartbeat frequency is now available in the worker event messages,
so that clients can decide when to consider workers offline based on
this value.

	Module celery.actors has been removed, and will be part of cl instead.

	Introduces new celery command, which is an entrypoint for all other
commands.

The main for this command can be run by calling celery.start().

	Annotations now supports decorators if the key startswith ‘@’.

E.g.:

def debug_args(fun):

 @wraps(fun)
 def _inner(*args, **kwargs):
 print('ARGS: %r' % (args,))
 return _inner

CELERY_ANNOTATIONS = {
 'tasks.add': {'@__call__': debug_args},
}

Also tasks are now always bound by class so that
annotated methods end up being bound.

	Bugreport now available as a command and broadcast command

	Get it from a Python repl:

>>> import celery
>>> print(celery.bugreport())

	Using the celery command line program:

$ celery report

	Get it from remote workers:

$ celery inspect report

	Module celery.log moved to celery.app.log.

	Module celery.task.control moved to celery.app.control.

	New signal: task_revoked

Sent in the main process when the task is revoked or terminated.

	AsyncResult.task_id renamed to AsyncResult.id

	TasksetResult.taskset_id renamed to .id

	xmap(task, sequence) and xstarmap(task, sequence)

Returns a list of the results applying the task function to every item
in the sequence.

Example:

>>> from celery import xstarmap

>>> xstarmap(add, zip(range(10), range(10)).apply_async()
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

	chunks(task, sequence, chunksize)

	group.skew(start=, stop=, step=)

Skew will skew the countdown for the individual tasks in a group,
e.g. with a group:

>>> g = group(add.s(i, i) for i in xrange(10))

Skewing the tasks from 0 seconds to 10 seconds:

>>> g.skew(stop=10)

Will have the first task execute in 0 seconds, the second in 1 second,
the third in 2 seconds and so on.

	99% test Coverage

	CELERY_QUEUES can now be a list/tuple of Queue [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Queue]
instances.

Internally app.amqp.queues is now a mapping of name/Queue instances,
instead of converting on the fly.

	Can now specify connection for app.control.inspect.

from kombu import Connection

i = celery.control.inspect(connection=Connection('redis://'))
i.active_queues()

	CELERYD_FORCE_EXECV is now enabled by default.

If the old behavior is wanted the setting can be set to False,
or the new --no-execv to celery worker.

	Deprecated module celery.conf has been removed.

	The CELERY_TIMEZONE now always require the pytz
library to be installed (exept if the timezone is set to UTC).

	The Tokyo Tyrant backend has been removed and is no longer supported.

	Now uses maybe_declare() [http://kombu.readthedocs.io/en/latest/reference/kombu.common.html#kombu.common.maybe_declare] to cache queue declarations.

	There is no longer a global default for the
CELERYBEAT_MAX_LOOP_INTERVAL setting, it is instead
set by individual schedulers.

	Worker: now truncates very long message bodies in error reports.

	No longer deepcopies exceptions when trying to serialize errors.

	CELERY_BENCH environment variable, will now also list
memory usage statistics at worker shutdown.

	Worker: now only ever use a single timer for all timing needs,
and instead set different priorities.

	An exceptions arguments are now safely pickled

Contributed by Matt Long.

	Worker/Celerybeat no longer logs the startup banner.

Previously it would be logged with severity warning,
now it’s only written to stdout.

	The contrib/ directory in the distribution has been renamed to
extra/.

	New signal: task_revoked

	celery.contrib.migrate: Many improvements including
filtering, queue migration, and support for acking messages on the broker
migrating from.

Contributed by John Watson.

	Worker: Prefetch count increments are now optimized and grouped together.

	Worker: No longer calls consume on the remote control command queue
twice.

Probably didn’t cause any problems, but was unecessary.

Internals

	app.broker_connection is now app.connection

Both names still work.

	Compat modules are now generated dynamically upon use.

These modules are celery.messaging, celery.log,
celery.decorators and celery.registry.

	celery.utils refactored into multiple modules:

celery.utils.text
celery.utils.imports
celery.utils.functional

	Now using kombu.utils.encoding [http://kombu.readthedocs.io/en/latest/reference/kombu.utils.encoding.html#module-kombu.utils.encoding] instead of
celery.utils.encoding.

	Renamed module celery.routes -> celery.app.routes.

	Renamed package celery.db -> celery.backends.database.

	Renamed module celery.abstract -> celery.worker.bootsteps.

	Command line docs are now parsed from the module docstrings.

	Test suite directory has been reorganized.

	setup.py now reads docs from the requirements/ directory.

	Celery commands no longer wraps output (Issue #700 [https://github.com/celery/celery/issues/700]).

Contributed by Thomas Johansson.

Experimental

celery.contrib.methods: Task decorator for methods

This is an experimental module containing a task
decorator, and a task decorator filter, that can be used
to create tasks out of methods:

from celery.contrib.methods import task_method

class Counter(object):

 def __init__(self):
 self.value = 1

 @celery.task(name='Counter.increment', filter=task_method)
 def increment(self, n=1):
 self.value += 1
 return self.value

See celery.contrib.methods for more information.

Unscheduled Removals

Usually we don’t make backward incompatible removals,
but these removals should have no major effect.

	The following settings have been renamed:

	CELERYD_ETA_SCHEDULER -> CELERYD_TIMER

	CELERYD_ETA_SCHEDULER_PRECISION -> CELERYD_TIMER_PRECISION

Deprecations

See the Celery Deprecation Timeline.

	The celery.backends.pyredis compat module has been removed.

Use celery.backends.redis instead!

	The following undocumented API’s has been moved:

	control.inspect.add_consumer -> app.control.add_consumer().

	control.inspect.cancel_consumer -> app.control.cancel_consumer().

	control.inspect.enable_events -> app.control.enable_events().

	control.inspect.disable_events -> app.control.disable_events().

This way inspect() is only used for commands that do not
modify anything, while idempotent control commands that make changes
are on the control objects.

Fixes

	Retry sqlalchemy backend operations on DatabaseError/OperationalError
(Issue #634 [https://github.com/celery/celery/issues/634])

	Tasks that called retry was not acknowledged if acks late was enabled

Fix contributed by David Markey.

	The message priority argument was not properly propagated to Kombu
(Issue #708 [https://github.com/celery/celery/issues/708]).

Fix contributed by Eran Rundstein

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

What’s new in Celery 2.5

Celery aims to be a flexible and reliable, best-of-breed solution
to process vast amounts of messages in a distributed fashion, while
providing operations with the tools to maintain such a system.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should visit our website [http://celeryproject.org/].

While this version is backward compatible with previous versions
it is important that you read the following section.

If you use Celery in combination with Django you must also
read the django-celery changelog <djcelery:version-2.5.0> and upgrade to django-celery 2.5 [http://pypi.python.org/pypi/django-celery/].

This version is officially supported on CPython 2.5, 2.6, 2.7, 3.2 and 3.3,
as well as PyPy and Jython.

	Important Notes
	Broker connection pool now enabled by default

	Rabbit Result Backend: Exchange is no longer auto delete

	Solution for hanging workers (but must be manually enabled)

	Optimizations

	Deprecations
	Removals

	Deprecations

	News
	Timezone support

	New security serializer using cryptographic signing

	Experimental support for automatic module reloading

	New CELERY_ANNOTATIONS setting

	current provides the currently executing task

	In Other News

	Fixes

Important Notes

Broker connection pool now enabled by default

The default limit is 10 connections, if you have many threads/green-threads
using connections at the same time you may want to tweak this limit
to avoid contention.

See the BROKER_POOL_LIMIT setting for more information.

Also note that publishing tasks will be retried by default, to change
this default or the default retry policy see
CELERY_TASK_PUBLISH_RETRY and
CELERY_TASK_PUBLISH_RETRY_POLICY.

Rabbit Result Backend: Exchange is no longer auto delete

The exchange used for results in the Rabbit (AMQP) result backend
used to have the auto_delete flag set, which could result in a
race condition leading to an annoying warning.

For RabbitMQ users

Old exchanges created with the auto_delete flag enabled has
to be removed.

The camqadm command can be used to delete the
previous exchange:

$ camqadm exchange.delete celeryresults

As an alternative to deleting the old exchange you can
configure a new name for the exchange:

CELERY_RESULT_EXCHANGE = 'celeryresults2'

But you have to make sure that all clients and workers
use this new setting, so they are updated to use the same
exchange name.

Solution for hanging workers (but must be manually enabled)

The CELERYD_FORCE_EXECV setting has been added to solve
a problem with deadlocks that originate when threads and fork is mixed
together:

CELERYD_FORCE_EXECV = True

This setting is recommended for all users using the prefork pool,
but especially users also using time limits or a max tasks per child
setting.

	See Python Issue 6721 [http://bugs.python.org/issue6721#msg140215] to read more about this issue, and why
resorting to execv`() is the only safe solution.

Enabling this option will result in a slight performance penalty
when new child worker processes are started, and it will also increase
memory usage (but many platforms are optimized, so the impact may be
minimal). Considering that it ensures reliability when replacing
lost worker processes, it should be worth it.

	It’s already the default behavior on Windows.

	It will be the default behavior for all platforms in a future version.

Optimizations

	The code path used when the worker executes a task has been heavily
optimized, meaning the worker is able to process a great deal
more tasks/second compared to previous versions. As an example the solo
pool can now process up to 15000 tasks/second on a 4 core MacBook Pro
when using the pylibrabbitmq [http://pypi.python.org/pylibrabbitmq/] transport, where it previously
could only do 5000 tasks/second.

	The task error tracebacks are now much shorter.

	Fixed a noticeable delay in task processing when rate limits are enabled.

Deprecations

Removals

	The old TaskSet signature of (task_name, list_of_tasks)
can no longer be used (originally scheduled for removal in 2.4).
The deprecated .task_name and .task attributes has also been
removed.

	The functions celery.execute.delay_task, celery.execute.apply,
and celery.execute.apply_async has been removed (originally)
scheduled for removal in 2.3).

	The built-in ping task has been removed (originally scheduled
for removal in 2.3). Please use the ping broadcast command
instead.

	It is no longer possible to import subtask and TaskSet
from celery.task.base, please import them from celery.task
instead (originally scheduled for removal in 2.4).

Deprecations

	The celery.decorators module has changed status
from pending deprecation to deprecated, and is scheduled for removal
in version 4.0. The celery.task module must be used instead.

News

Timezone support

Celery can now be configured to treat all incoming and outgoing dates
as UTC, and the local timezone can be configured.

This is not yet enabled by default, since enabling
time zone support means workers running versions pre 2.5
will be out of sync with upgraded workers.

To enable UTC you have to set CELERY_ENABLE_UTC:

CELERY_ENABLE_UTC = True

When UTC is enabled, dates and times in task messages will be
converted to UTC, and then converted back to the local timezone
when received by a worker.

You can change the local timezone using the CELERY_TIMEZONE
setting. Installing the pytz library is recommended when
using a custom timezone, to keep timezone definition up-to-date,
but it will fallback to a system definition of the timezone if available.

UTC will enabled by default in version 3.0.

Note

django-celery will use the local timezone as specified by the
TIME_ZONE setting, it will also honor the new USE_TZ [https://docs.djangoproject.com/en/dev/topics/i18n/timezones/] setting
introuced in Django 1.4.

New security serializer using cryptographic signing

A new serializer has been added that signs and verifies the signature
of messages.

The name of the new serializer is auth, and needs additional
configuration to work (see Security).

See also

Security

Contributed by Mher Movsisyan.

Experimental support for automatic module reloading

Starting celeryd with the --autoreload option will
enable the worker to watch for file system changes to all imported task
modules imported (and also any non-task modules added to the
CELERY_IMPORTS setting or the -I|--include option).

This is an experimental feature intended for use in development only,
using auto-reload in production is discouraged as the behavior of reloading
a module in Python is undefined, and may cause hard to diagnose bugs and
crashes. Celery uses the same approach as the auto-reloader found in e.g.
the Django runserver command.

When auto-reload is enabled the worker starts an additional thread
that watches for changes in the file system. New modules are imported,
and already imported modules are reloaded whenever a change is detected,
and if the prefork pool is used the child processes will finish the work
they are doing and exit, so that they can be replaced by fresh processes
effectively reloading the code.

File system notification backends are pluggable, and Celery comes with three
implementations:

	inotify (Linux)

Used if the pyinotify library is installed.
If you are running on Linux this is the recommended implementation,
to install the pyinotify library you have to run the following
command:

$ pip install pyinotify

	kqueue (OS X/BSD)

	stat

The fallback implementation simply polls the files using stat and is very
expensive.

You can force an implementation by setting the CELERYD_FSNOTIFY
environment variable:

$ env CELERYD_FSNOTIFY=stat celeryd -l info --autoreload

Contributed by Mher Movsisyan.

New CELERY_ANNOTATIONS setting

This new setting enables the configuration to modify task classes
and their attributes.

The setting can be a dict, or a list of annotation objects that filter
for tasks and return a map of attributes to change.

As an example, this is an annotation to change the rate_limit attribute
for the tasks.add task:

CELERY_ANNOTATIONS = {'tasks.add': {'rate_limit': '10/s'}}

or change the same for all tasks:

CELERY_ANNOTATIONS = {'*': {'rate_limit': '10/s'}}

You can change methods too, for example the on_failure handler:

def my_on_failure(self, exc, task_id, args, kwargs, einfo):
 print('Oh no! Task failed: %r' % (exc,))

CELERY_ANNOTATIONS = {'*': {'on_failure': my_on_failure}}

If you need more flexibility then you can also create objects
that filter for tasks to annotate:

class MyAnnotate(object):

 def annotate(self, task):
 if task.name.startswith('tasks.'):
 return {'rate_limit': '10/s'}

CELERY_ANNOTATIONS = (MyAnnotate(), {…})

current provides the currently executing task

The new celery.task.current proxy will always give the currently
executing task.

Example:

from celery.task import current, task

@task
def update_twitter_status(auth, message):
 twitter = Twitter(auth)
 try:
 twitter.update_status(message)
 except twitter.FailWhale, exc:
 # retry in 10 seconds.
 current.retry(countdown=10, exc=exc)

Previously you would have to type update_twitter_status.retry(…)
here, which can be annoying for long task names.

Note

This will not work if the task function is called directly, i.e:
update_twitter_status(a, b). For that to work apply must
be used: update_twitter_status.apply((a, b)).

In Other News

	Now depends on Kombu 2.1.0.

	Efficient Chord support for the memcached backend (Issue #533 [https://github.com/celery/celery/issues/533])

This means memcached joins Redis in the ability to do non-polling
chords.

Contributed by Dan McGee.

	Adds Chord support for the Rabbit result backend (amqp)

The Rabbit result backend can now use the fallback chord solution.

	Sending QUIT to celeryd will now cause it cold terminate.

That is, it will not finish executing the tasks it is currently
working on.

Contributed by Alec Clowes.

	New “detailed” mode for the Cassandra backend.

Allows to have a “detailed” mode for the Cassandra backend.
Basically the idea is to keep all states using Cassandra wide columns.
New states are then appended to the row as new columns, the last state
being the last column.

See the CASSANDRA_DETAILED_MODE setting.

Contributed by Steeve Morin.

	The crontab parser now matches Vixie Cron behavior when parsing ranges
with steps (e.g. 1-59/2).

Contributed by Daniel Hepper.

	celerybeat can now be configured on the command-line like celeryd.

Additional configuration must be added at the end of the argument list
followed by --, for example:

$ celerybeat -l info -- celerybeat.max_loop_interval=10.0

	Now limits the number of frames in a traceback so that celeryd does not
crash on maximum recursion limit exceeded exceptions (Issue #615 [https://github.com/celery/celery/issues/615]).

The limit is set to the current recursion limit divided by 8 (which
is 125 by default).

To get or set the current recursion limit use
sys.getrecursionlimit() [https://docs.python.org/dev/library/sys.html#sys.getrecursionlimit] and sys.setrecursionlimit() [https://docs.python.org/dev/library/sys.html#sys.setrecursionlimit].

	More information is now preserved in the pickleable traceback.

This has been added so that Sentry can show more details.

Contributed by Sean O’Connor.

	CentOS init script has been updated and should be more flexible.

Contributed by Andrew McFague.

	MongoDB result backend now supports forget().

Contributed by Andrew McFague

	task.retry() now re-raises the original exception keeping
the original stack trace.

Suggested by ojii.

	The –uid argument to daemons now uses initgroups() to set
groups to all the groups the user is a member of.

Contributed by Łukasz Oleś.

	celeryctl: Added shell command.

The shell will have the current_app (celery) and all tasks
automatically added to locals.

	celeryctl: Added migrate command.

The migrate command moves all tasks from one broker to another.
Note that this is experimental and you should have a backup
of the data before proceeding.

Examples:

$ celeryctl migrate redis://localhost amqp://localhost
$ celeryctl migrate amqp://localhost//v1 amqp://localhost//v2
$ python manage.py celeryctl migrate django:// redis://

	Routers can now override the exchange and routing_key used
to create missing queues (Issue #577 [https://github.com/celery/celery/issues/577]).

By default this will always use the name of the queue,
but you can now have a router return exchange and routing_key keys
to set them.

This is useful when using routing classes which decides a destination
at runtime.

Contributed by Akira Matsuzaki.

	Redis result backend: Adds support for a max_connections parameter.

It is now possible to configure the maximum number of
simultaneous connections in the Redis connection pool used for
results.

The default max connections setting can be configured using the
CELERY_REDIS_MAX_CONNECTIONS setting,
or it can be changed individually by RedisBackend(max_connections=int).

Contributed by Steeve Morin.

	Redis result backend: Adds the ability to wait for results without polling.

Contributed by Steeve Morin.

	MongoDB result backend: Now supports save and restore taskset.

Contributed by Julien Poissonnier.

	There’s a new Security guide in the documentation.

	The init scripts has been updated, and many bugs fixed.

Contributed by Chris Streeter.

	User (tilde) is now expanded in command-line arguments.

	Can now configure CELERYCTL envvar in /etc/default/celeryd.

While not necessary for operation, celeryctl is used for the
celeryd status command, and the path to celeryctl must be
configured for that to work.

The daemonization cookbook contains examples.

Contributed by Jude Nagurney.

	The MongoDB result backend can now use Replica Sets.

Contributed by Ivan Metzlar.

	gevent: Now supports autoscaling (Issue #599 [https://github.com/celery/celery/issues/599]).

Contributed by Mark Lavin.

	multiprocessing: Mediator thread is now always enabled,
even though rate limits are disabled, as the pool semaphore
is known to block the main thread, causing broadcast commands and
shutdown to depend on the semaphore being released.

Fixes

	Exceptions that are re-raised with a new exception object now keeps
the original stack trace.

	Windows: Fixed the no handlers found for multiprocessing warning.

	Windows: The celeryd program can now be used.

Previously Windows users had to launch celeryd using
python -m celery.bin.celeryd.

	Redis result backend: Now uses SETEX command to set result key,
and expiry atomically.

Suggested by yaniv-aknin.

	celeryd: Fixed a problem where shutdown hanged when Ctrl+C was used to
terminate.

	celeryd: No longer crashes when channel errors occur.

Fix contributed by Roger Hu.

	Fixed memory leak in the eventlet pool, caused by the
use of greenlet.getcurrent.

Fix contributed by Ignas Mikalajūnas.

	Cassandra backend: No longer uses pycassa.connect() which is
deprecated since pycassa 1.4.

Fix contributed by Jeff Terrace.

	Fixed unicode decode errors that could occur while sending error emails.

Fix contributed by Seong Wun Mun.

	celery.bin programs now always defines __package__ as recommended
by PEP-366.

	send_task now emits a warning when used in combination with
CELERY_ALWAYS_EAGER (Issue #581 [https://github.com/celery/celery/issues/581]).

Contributed by Mher Movsisyan.

	apply_async now forwards the original keyword arguments to apply
when CELERY_ALWAYS_EAGER is enabled.

	celeryev now tries to re-establish the connection if the connection
to the broker is lost (Issue #574 [https://github.com/celery/celery/issues/574]).

	celeryev: Fixed a crash occurring if a task has no associated worker
information.

Fix contributed by Matt Williamson.

	The current date and time is now consistently taken from the current loaders
now method.

	Now shows helpful error message when given a config module ending in
.py that can’t be imported.

	celeryctl: The --expires and -eta arguments to the apply command
can now be an ISO-8601 formatted string.

	celeryctl now exits with exit status EX_UNAVAILABLE (69) if no replies
have been received.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

API Reference

	Release:	3.1

	Date:	Nov 12, 2017

	celery — Distributed processing

	celery.app

	celery.app.task

	celery.app.amqp

	celery.app.defaults

	celery.app.control

	celery.app.registry

	celery.app.builtins

	celery.app.log

	celery.app.utils

	celery.bootsteps

	celery.result

	celery.task.http

	celery.schedules

	celery.signals

	celery.security

	celery.utils.debug

	celery.utils.mail

	celery.exceptions

	celery.loaders

	celery.loaders.app

	celery.loaders.default

	celery.loaders.base

	celery.states

	celery.contrib.abortable

	celery.contrib.batches

	celery.contrib.migrate

	celery.contrib.sphinx

	celery.contrib.rdb

	celery.contrib.methods

	celery.events

	celery.events.state

	celery.beat

	celery.apps.worker

	celery.apps.beat

	celery.worker

	celery.worker.consumer

	celery.worker.job

	celery.worker.state

	celery.worker.strategy

	celery.bin.base

	celery.bin.celery

	celery.bin.worker

	celery.bin.beat

	celery.bin.events

	celery.bin.amqp

	celery.bin.multi

	celery.bin.graph

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery — Distributed processing

This module is the main entry-point for the Celery API.
It includes commonly needed things for calling tasks,
and creating Celery applications.

	Celery
	celery application instance

	group
	group tasks together

	chain
	chain tasks together

	chord
	chords enable callbacks for groups

	signature
	object describing a task invocation

	current_app
	proxy to the current application instance

	current_task
	proxy to the currently executing task

Celery application objects

New in version 2.5.

	
class celery.Celery(main='__main__', broker='amqp://localhost//', …)

	

	Parameters:	
	main – Name of the main module if running as __main__.
This is used as a prefix for task names.

	broker – URL of the default broker used.

	loader – The loader class, or the name of the loader class to use.
Default is celery.loaders.app.AppLoader.

	backend – The result store backend class, or the name of the
backend class to use. Default is the value of the
CELERY_RESULT_BACKEND setting.

	amqp – AMQP object or class name.

	events – Events object or class name.

	log – Log object or class name.

	control – Control object or class name.

	set_as_current – Make this the global current app.

	tasks – A task registry or the name of a registry class.

	include – List of modules every worker should import.

	fixups – List of fixup plug-ins (see e.g.
celery.fixups.django).

	autofinalize – If set to False a RuntimeError [https://docs.python.org/dev/library/exceptions.html#RuntimeError]
will be raised if the task registry or tasks are used before
the app is finalized.

	
main

	Name of the __main__ module. Required for standalone scripts.

If set this will be used instead of __main__ when automatically
generating task names.

	
conf

	Current configuration.

	
user_options

	Custom options for command-line programs.
See Adding new command-line options

	
steps

	Custom bootsteps to extend and modify the worker.
See Installing Bootsteps.

	
current_task

	The instance of the task that is being executed, or None.

	
amqp

	AMQP related functionality: amqp.

	
backend

	Current backend instance.

	
loader

	Current loader instance.

	
control

	Remote control: control.

	
events

	Consuming and sending events: events.

	
log

	Logging: log.

	
tasks

	Task registry.

Accessing this attribute will also finalize the app.

	
pool

	Broker connection pool: pool.
This attribute is not related to the workers concurrency pool.

	
Task

	Base task class for this app.

	
timezone

	Current timezone for this app.
This is a cached property taking the time zone from the
CELERY_TIMEZONE setting.

	
close()

	Close any open pool connections and do any other steps necessary
to clean up after the application.

Only necessary for dynamically created apps for which you can
use the with statement instead:

with Celery(set_as_current=False) as app:
 with app.connection() as conn:
 pass

	
signature()

	Return a new Signature bound to this app.
See signature()

	
bugreport()

	Return a string with information useful for the Celery core
developers when reporting a bug.

	
config_from_object(obj, silent=False, force=False)

	Reads configuration from object, where object is either
an object or the name of a module to import.

	Parameters:	
	silent – If true then import errors will be ignored.

	force – Force reading configuration immediately.
By default the configuration will be read only when required.

>>> celery.config_from_object("myapp.celeryconfig")

>>> from myapp import celeryconfig
>>> celery.config_from_object(celeryconfig)

	
Celery.config_from_envvar(variable_name,

	
silent=False, force=False)

	Read configuration from environment variable.

The value of the environment variable must be the name
of a module to import.

>>> os.environ["CELERY_CONFIG_MODULE"] = "myapp.celeryconfig"
>>> celery.config_from_envvar("CELERY_CONFIG_MODULE")

	
autodiscover_tasks(packages, related_name="tasks")

	With a list of packages, try to import modules of a specific name (by
default ‘tasks’).

For example if you have an (imagined) directory tree like this:

foo/__init__.py
 tasks.py
 models.py

bar/__init__.py
 tasks.py
 models.py

baz/__init__.py
 models.py

Then calling app.autodiscover_tasks(['foo', bar', 'baz']) will
result in the modules foo.tasks and bar.tasks being imported.

	Parameters:	
	packages – List of packages to search.
This argument may also be a callable, in which case the
value returned is used (for lazy evaluation).

	related_name – The name of the module to find. Defaults
to “tasks”, which means it look for “module.tasks” for every
module in packages.

	force – By default this call is lazy so that the actual
autodiscovery will not happen until an application imports the
default modules. Forcing will cause the autodiscovery to happen
immediately.

	
add_defaults(d)

	Add default configuration from dict d.

If the argument is a callable function then it will be regarded
as a promise, and it won’t be loaded until the configuration is
actually needed.

This method can be compared to:

>>> celery.conf.update(d)

with a difference that 1) no copy will be made and 2) the dict will
not be transferred when the worker spawns child processes, so
it’s important that the same configuration happens at import time
when pickle restores the object on the other side.

	
setup_security(…)

	Setup the message-signing serializer.
This will affect all application instances (a global operation).

Disables untrusted serializers and if configured to use the auth
serializer will register the auth serializer with the provided settings
into the Kombu serializer registry.

	Parameters:	
	allowed_serializers – List of serializer names, or content_types
that should be exempt from being disabled.

	key – Name of private key file to use.
Defaults to the CELERY_SECURITY_KEY setting.

	cert – Name of certificate file to use.
Defaults to the CELERY_SECURITY_CERTIFICATE setting.

	store – Directory containing certificates.
Defaults to the CELERY_SECURITY_CERT_STORE setting.

	digest – Digest algorithm used when signing messages.
Default is sha1.

	serializer – Serializer used to encode messages after
they have been signed. See CELERY_TASK_SERIALIZER for
the serializers supported.
Default is json.

	
start(argv=None)

	Run celery using argv.

Uses sys.argv [https://docs.python.org/dev/library/sys.html#sys.argv] if argv is not specified.

	
task(fun, …)

	Decorator to create a task class out of any callable.

Examples:

@app.task
def refresh_feed(url):
 return …

with setting extra options:

@app.task(exchange="feeds")
def refresh_feed(url):
 return …

App Binding

For custom apps the task decorator will return a proxy
object, so that the act of creating the task is not performed
until the task is used or the task registry is accessed.

If you are depending on binding to be deferred, then you must
not access any attributes on the returned object until the
application is fully set up (finalized).

	
send_task(name[, args[, kwargs[, …]]])

	Send task by name.

	Parameters:	
	name – Name of task to call (e.g. “tasks.add”).

	result_cls – Specify custom result class. Default is
using AsyncResult().

Otherwise supports the same arguments as Task.apply_async().

	
AsyncResult

	Create new result instance. See AsyncResult.

	
GroupResult

	Create new group result instance.
See GroupResult.

	
worker_main(argv=None)

	Run celery worker using argv.

Uses sys.argv [https://docs.python.org/dev/library/sys.html#sys.argv] if argv is not specified.

	
Worker

	Worker application. See Worker.

	
WorkController

	Embeddable worker. See WorkController.

	
Beat

	Celerybeat scheduler application.
See Beat.

	
connection(url=default[, ssl[, transport_options={}]])

	Establish a connection to the message broker.

	Parameters:	
	url – Either the URL or the hostname of the broker to use.

	hostname – URL, Hostname/IP-address of the broker.
If an URL is used, then the other argument below will
be taken from the URL instead.

	userid – Username to authenticate as.

	password – Password to authenticate with

	virtual_host – Virtual host to use (domain).

	port – Port to connect to.

	ssl – Defaults to the BROKER_USE_SSL setting.

	transport – defaults to the BROKER_TRANSPORT
setting.

:returns kombu.Connection [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Connection]:

	
connection_or_acquire(connection=None)

	For use within a with-statement to get a connection from the pool
if one is not already provided.

	Parameters:	connection – If not provided, then a connection will be
acquired from the connection pool.

	
producer_or_acquire(producer=None)

	For use within a with-statement to get a producer from the pool
if one is not already provided

	Parameters:	producer – If not provided, then a producer will be
acquired from the producer pool.

	
mail_admins(subject, body, fail_silently=False)

	Sends an email to the admins in the ADMINS setting.

	
select_queues(queues=[])

	Select a subset of queues, where queues must be a list of queue
names to keep.

	
now()

	Return the current time and date as a datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]
object.

	
set_current()

	Makes this the current app for this thread.

	
finalize()

	Finalizes the app by loading built-in tasks,
and evaluating pending task decorators

	
on_configure()

	Optional callback for when the first time the configured is required.

	
Pickler

	Helper class used to pickle this application.

Canvas primitives

See Canvas: Designing Workflows for more about creating task workflows.

	
class celery.group(task1[, task2[, task3[, … taskN]]])

	Creates a group of tasks to be executed in parallel.

Example:

>>> res = group([add.s(2, 2), add.s(4, 4)])()
>>> res.get()
[4, 8]

A group is lazy so you must call it to take action and evaluate
the group.

Will return a group task that when called will then call all of the
tasks in the group (and return a GroupResult instance
that can be used to inspect the state of the group).

	
class celery.chain(task1[, task2[, task3[, … taskN]]])

	Chains tasks together, so that each tasks follows each other
by being applied as a callback of the previous task.

If called with only one argument, then that argument must
be an iterable of tasks to chain.

Example:

>>> res = chain(add.s(2, 2), add.s(4))()

is effectively [image: (2 + 2) + 4)]:

>>> res.get()
8

Calling a chain will return the result of the last task in the chain.
You can get to the other tasks by following the result.parent‘s:

>>> res.parent.get()
4

	
class celery.chord(header[, body])

	A chord consists of a header and a body.
The header is a group of tasks that must complete before the callback is
called. A chord is essentially a callback for a group of tasks.

Example:

>>> res = chord([add.s(2, 2), add.s(4, 4)])(sum_task.s())

is effectively [image: \Sigma ((2 + 2) + (4 + 4))]:

>>> res.get()
12

The body is applied with the return values of all the header
tasks as a list.

	
class celery.signature(task=None, args=(), kwargs={}, options={})

	Describes the arguments and execution options for a single task invocation.

Used as the parts in a group or to safely pass
tasks around as callbacks.

Signatures can also be created from tasks:

>>> add.subtask(args=(), kwargs={}, options={})

or the .s() shortcut:

>>> add.s(*args, **kwargs)

	Parameters:	
	task – Either a task class/instance, or the name of a task.

	args – Positional arguments to apply.

	kwargs – Keyword arguments to apply.

	options – Additional options to Task.apply_async().

Note that if the first argument is a dict [https://docs.python.org/dev/library/stdtypes.html#dict], the other
arguments will be ignored and the values in the dict will be used
instead.

>>> s = signature("tasks.add", args=(2, 2))
>>> signature(s)
{"task": "tasks.add", args=(2, 2), kwargs={}, options={}}

	
__call__(*args **kwargs)

	Call the task directly (in the current process).

	
delay(*args, **kwargs)

	Shortcut to apply_async().

	
apply_async(args=(), kwargs={}, …)

	Apply this task asynchronously.

	Parameters:	
	args – Partial args to be prepended to the existing args.

	kwargs – Partial kwargs to be merged with the existing kwargs.

	options – Partial options to be merged with the existing
options.

See apply_async().

	
apply(args=(), kwargs={}, …)

	Same as apply_async() but executed the task inline instead
of sending a task message.

	
freeze(_id=None)

	Finalize the signature by adding a concrete task id.
The task will not be called and you should not call the signature
twice after freezing it as that will result in two task messages
using the same task id.

	Returns:	app.AsyncResult instance.

	
clone(args=(), kwargs={}, …)

	Return a copy of this signature.

	Parameters:	
	args – Partial args to be prepended to the existing args.

	kwargs – Partial kwargs to be merged with the existing kwargs.

	options – Partial options to be merged with the existing
options.

	
replace(args=None, kwargs=None, options=None)

	Replace the args, kwargs or options set for this signature.
These are only replaced if the selected is not None.

	
link(other_signature)

	Add a callback task to be applied if this task
executes successfully.

	Returns:	other_signature (to work with reduce() [https://docs.python.org/dev/library/functools.html#functools.reduce]).

	
link_error(other_signature)

	Add a callback task to be applied if an error occurs
while executing this task.

	Returns:	other_signature (to work with reduce() [https://docs.python.org/dev/library/functools.html#functools.reduce])

	
set(…)

	Set arbitrary options (same as .options.update(…)).

This is a chaining method call (i.e. it will return self).

	
flatten_links()

	Gives a recursive list of dependencies (unchain if you will,
but with links intact).

Proxies

	
celery.current_app

	The currently set app for this thread.

	
celery.current_task

	The task currently being executed
(only set in the worker, or when eager/apply is used).

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app

Celery Application.

	Proxies

	Functions

	Data

Proxies

	
celery.app.default_app = <Celery default:0x7fdf28e5ff90>

	

Functions

	
celery.app.app_or_default(app=None)

	Function returning the app provided or the default app if none.

The environment variable CELERY_TRACE_APP is used to
trace app leaks. When enabled an exception is raised if there
is no active app.

	
celery.app.enable_trace()

	

	
celery.app.disable_trace()

	

Data

	
celery.app.default_loader = 'default'

	The ‘default’ loader is the default loader used by old applications.
This is deprecated and should no longer be used as it’s set too early
to be affected by –loader argument.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.task

	celery.app.task

celery.app.task

Task Implementation: Task request context, and the base task class.

	
class celery.app.task.Task

	Task base class.

When called tasks apply the run() method. This method must
be defined by all tasks (that is unless the __call__() method
is overridden).

	
AsyncResult(task_id, **kwargs)

	Get AsyncResult instance for this kind of task.

	Parameters:	task_id – Task id to get result for.

	
class ErrorMail(task, **kwargs)

	Defines how and when task error e-mails should be sent.

	Parameters:	task – The task instance that raised the error.

subject and body are format strings which
are passed a context containing the following keys:

	name

Name of the task.

	id

UUID of the task.

	exc

String representation of the exception.

	args

Positional arguments.

	kwargs

Keyword arguments.

	traceback

String representation of the traceback.

	hostname

Worker nodename.

	
should_send(context, exc)

	Return true or false depending on if a task error mail
should be sent for this type of error.

	
exception MaxRetriesExceededError

	The tasks max restart limit has been exceeded.

	
Strategy = 'celery.worker.strategy:default'

	Execution strategy used, or the qualified name of one.

	
abstract = None

	If True the task is an abstract base class.

	
accept_magic_kwargs = False

	If disabled the worker will not forward magic keyword arguments.
Deprecated and scheduled for removal in v4.0.

	
acks_late = False

	When enabled messages for this task will be acknowledged after
the task has been executed, and not just before which is the
default behavior.

Please note that this means the task may be executed twice if the
worker crashes mid execution (which may be acceptable for some
applications).

The application default can be overridden with the
CELERY_ACKS_LATE setting.

	
after_return(status, retval, task_id, args, kwargs, einfo)

	Handler called after the task returns.

	Parameters:	
	status – Current task state.

	retval – Task return value/exception.

	task_id – Unique id of the task.

	args – Original arguments for the task.

	kwargs – Original keyword arguments for the task.

	einfo – ExceptionInfo
instance, containing the traceback (if any).

The return value of this handler is ignored.

	
apply(args=None, kwargs=None, link=None, link_error=None, **options)

	Execute this task locally, by blocking until the task returns.

	Parameters:	
	args – positional arguments passed on to the task.

	kwargs – keyword arguments passed on to the task.

	throw – Re-raise task exceptions. Defaults to
the CELERY_EAGER_PROPAGATES_EXCEPTIONS
setting.

:rtype celery.result.EagerResult:

	
apply_async(args=None, kwargs=None, task_id=None, producer=None, link=None, link_error=None, **options)

	Apply tasks asynchronously by sending a message.

	Parameters:	
	args – The positional arguments to pass on to the
task (a list [https://docs.python.org/dev/library/stdtypes.html#list] or tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]).

	kwargs – The keyword arguments to pass on to the
task (a dict [https://docs.python.org/dev/library/stdtypes.html#dict])

	countdown – Number of seconds into the future that the
task should execute. Defaults to immediate
execution.

	eta – A datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] object describing
the absolute time and date of when the task should
be executed. May not be specified if countdown
is also supplied.

	expires – Either a int [https://docs.python.org/dev/library/functions.html#int], describing the number of
seconds, or a datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] object
that describes the absolute time and date of when
the task should expire. The task will not be
executed after the expiration time.

	connection – Re-use existing broker connection instead
of establishing a new one.

	retry – If enabled sending of the task message will be retried
in the event of connection loss or failure. Default
is taken from the CELERY_TASK_PUBLISH_RETRY
setting. Note that you need to handle the
producer/connection manually for this to work.

	retry_policy – Override the retry policy used. See the
CELERY_TASK_PUBLISH_RETRY_POLICY
setting.

	routing_key – Custom routing key used to route the task to a
worker server. If in combination with a
queue argument only used to specify custom
routing keys to topic exchanges.

	queue – The queue to route the task to. This must be a key
present in CELERY_QUEUES, or
CELERY_CREATE_MISSING_QUEUES must be
enabled. See Routing Tasks for more
information.

	exchange – Named custom exchange to send the task to.
Usually not used in combination with the queue
argument.

	priority – The task priority, a number between 0 and 9.
Defaults to the priority attribute.

	serializer – A string identifying the default
serialization method to use. Can be pickle,
json, yaml, msgpack or any custom
serialization method that has been registered
with kombu.serialization.registry.
Defaults to the serializer attribute.

	compression – A string identifying the compression method
to use. Can be one of zlib, bzip2,
or any custom compression methods registered with
kombu.compression.register() [http://kombu.readthedocs.io/en/latest/reference/kombu.compression.html#kombu.compression.register]. Defaults to
the CELERY_MESSAGE_COMPRESSION
setting.

	link – A single, or a list of tasks to apply if the
task exits successfully.

	link_error – A single, or a list of tasks to apply
if an error occurs while executing the task.

	producer – :class:~@amqp.TaskProducer` instance to use.

	add_to_parent – If set to True (default) and the task
is applied while executing another task, then the result
will be appended to the parent tasks request.children
attribute. Trailing can also be disabled by default using the
trail attribute

	publisher – Deprecated alias to producer.

	headers – Message headers to be sent in the
task (a dict [https://docs.python.org/dev/library/stdtypes.html#dict])

	:rtype celery.result.AsyncResult: if

	CELERY_ALWAYS_EAGER is not set, otherwise
celery.result.EagerResult.

Also supports all keyword arguments supported by
kombu.Producer.publish() [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Producer.publish].

Note

If the CELERY_ALWAYS_EAGER setting is set, it will
be replaced by a local apply() call instead.

	
autoregister = True

	If disabled this task won’t be registered automatically.

	
backend

	The result store backend used for this task.

	
chunks(it, n)

	Creates a chunks task for this task.

	
default_retry_delay = 180

	Default time in seconds before a retry of the task should be
executed. 3 minutes by default.

	
delay(*args, **kwargs)

	Star argument version of apply_async().

Does not support the extra options enabled by apply_async().

	Parameters:	
	*args – positional arguments passed on to the task.

	**kwargs – keyword arguments passed on to the task.

:returns celery.result.AsyncResult:

	
expires = None

	Default task expiry time.

	
ignore_result = False

	If enabled the worker will not store task state and return values
for this task. Defaults to the CELERY_IGNORE_RESULT
setting.

	
map(it)

	Creates a xmap task from it.

	
max_retries = 3

	Maximum number of retries before giving up. If set to None,
it will never stop retrying.

	
name = None

	Name of the task.

	
classmethod on_bound(app)

	This method can be defined to do additional actions when the
task class is bound to an app.

	
on_failure(exc, task_id, args, kwargs, einfo)

	Error handler.

This is run by the worker when the task fails.

	Parameters:	
	exc – The exception raised by the task.

	task_id – Unique id of the failed task.

	args – Original arguments for the task that failed.

	kwargs – Original keyword arguments for the task
that failed.

	einfo – ExceptionInfo
instance, containing the traceback.

The return value of this handler is ignored.

	
on_retry(exc, task_id, args, kwargs, einfo)

	Retry handler.

This is run by the worker when the task is to be retried.

	Parameters:	
	exc – The exception sent to retry().

	task_id – Unique id of the retried task.

	args – Original arguments for the retried task.

	kwargs – Original keyword arguments for the retried task.

	einfo – ExceptionInfo
instance, containing the traceback.

The return value of this handler is ignored.

	
on_success(retval, task_id, args, kwargs)

	Success handler.

Run by the worker if the task executes successfully.

	Parameters:	
	retval – The return value of the task.

	task_id – Unique id of the executed task.

	args – Original arguments for the executed task.

	kwargs – Original keyword arguments for the executed task.

The return value of this handler is ignored.

	
rate_limit = None

	Rate limit for this task type. Examples: None (no rate
limit), ‘100/s’ (hundred tasks a second), ‘100/m’ (hundred tasks
a minute),`‘100/h’` (hundred tasks an hour)

	
request

	Get current request object.

	
retry(args=None, kwargs=None, exc=None, throw=True, eta=None, countdown=None, max_retries=None, **options)

	Retry the task.

	Parameters:	
	args – Positional arguments to retry with.

	kwargs – Keyword arguments to retry with.

	exc – Custom exception to report when the max restart
limit has been exceeded (default:
MaxRetriesExceededError).

If this argument is set and retry is called while
an exception was raised (sys.exc_info() is set)
it will attempt to reraise the current exception.

If no exception was raised it will raise the exc
argument provided.

	countdown – Time in seconds to delay the retry for.

	eta – Explicit time and date to run the retry at
(must be a datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime] instance).

	max_retries – If set, overrides the default retry limit for
this execution. Changes to this parameter do not propagate to
subsequent task retry attempts. A value of None, means
“use the default”, so if you want infinite retries you would
have to set the max_retries attribute of the task to
None first.

	time_limit – If set, overrides the default time limit.

	soft_time_limit – If set, overrides the default soft
time limit.

	**options – Any extra options to pass on to
meth:apply_async.

	throw – If this is False, do not raise the
Retry exception,
that tells the worker to mark the task as being
retried. Note that this means the task will be
marked as failed if the task raises an exception,
or successful if it returns.

	Raises:	celery.exceptions.Retry – To tell the worker that
the task has been re-sent for retry. This always happens,
unless the throw keyword argument has been explicitly set
to False, and is considered normal operation.

Example

>>> from imaginary_twitter_lib import Twitter
>>> from proj.celery import app

>>> @app.task(bind=True)
... def tweet(self, auth, message):
... twitter = Twitter(oauth=auth)
... try:
... twitter.post_status_update(message)
... except twitter.FailWhale as exc:
... # Retry in 5 minutes.
... raise self.retry(countdown=60 * 5, exc=exc)

Although the task will never return above as retry raises an
exception to notify the worker, we use raise in front of the retry
to convey that the rest of the block will not be executed.

	
run(*args, **kwargs)

	The body of the task executed by workers.

	
s(*args, **kwargs)

	.s(*a, **k) -> .subtask(a, k)

	
send_error_emails = False

	If enabled an email will be sent to ADMINS whenever a task
of this type fails.

	
send_events = True

	If enabled the worker will send monitoring events related to
this task (but only if the worker is configured to send
task related events).
Note that this has no effect on the task-failure event case
where a task is not registered (as it will have no task class
to check this flag).

	
serializer = 'pickle'

	The name of a serializer that are registered with
kombu.serialization.registry. Default is ‘pickle’.

	
si(*args, **kwargs)

	.si(*a, **k) -> .subtask(a, k, immutable=True)

	
soft_time_limit = None

	Soft time limit.
Defaults to the CELERYD_TASK_SOFT_TIME_LIMIT setting.

	
starmap(it)

	Creates a xstarmap task from it.

	
store_errors_even_if_ignored = False

	When enabled errors will be stored even if the task is otherwise
configured to ignore results.

	
subtask(args=None, *starargs, **starkwargs)

	Return signature object for
this task, wrapping arguments and execution options
for a single task invocation.

	
throws = ()

	Tuple of expected exceptions.

These are errors that are expected in normal operation
and that should not be regarded as a real error by the worker.
Currently this means that the state will be updated to an error
state, but the worker will not log the event as an error.

	
time_limit = None

	Hard time limit.
Defaults to the CELERYD_TASK_TIME_LIMIT setting.

	
track_started = False

	If enabled the task will report its status as ‘started’ when the task
is executed by a worker. Disabled by default as the normal behaviour
is to not report that level of granularity. Tasks are either pending,
finished, or waiting to be retried.

Having a ‘started’ status can be useful for when there are long
running tasks and there is a need to report which task is currently
running.

The application default can be overridden using the
CELERY_TRACK_STARTED setting.

	
trail = True

	If enabled the request will keep track of subtasks started by
this task, and this information will be sent with the result
(result.children).

	
update_state(task_id=None, state=None, meta=None)

	Update task state.

	Parameters:	
	task_id – Id of the task to update, defaults to the
id of the current task

	state – New state (str [https://docs.python.org/dev/library/stdtypes.html#str]).

	meta – State metadata (dict [https://docs.python.org/dev/library/stdtypes.html#dict]).

	
class celery.app.task.TaskType

	Meta class for tasks.

Automatically registers the task in the task registry (except
if the Task.abstract` attribute is set).

If no Task.name attribute is provided, then the name is generated
from the module and class name.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.amqp

Sending and receiving messages using Kombu.

	AMQP

	Queues

	TaskPublisher

AMQP

	
class celery.app.amqp.AMQP(app)

	
	
Connection

	Broker connection class used. Default is
kombu.Connection [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Connection].

	
Consumer

	Base Consumer class used. Default is kombu.compat.Consumer [http://kombu.readthedocs.io/en/latest/reference/kombu.compat.html#kombu.compat.Consumer].

	
queues

	All currently defined task queues. (A Queues instance).

	
Queues(queues, create_missing=None, ha_policy=None, autoexchange=None)

	Create new Queues instance, using queue defaults
from the current configuration.

	
Router(queues=None, create_missing=None)

	Return the current task router.

	
TaskConsumer

	Return consumer configured to consume from the queues
we are configured for (app.amqp.queues.consume_from).

	
TaskProducer

	Return publisher used to send tasks.

You should use app.send_task instead.

	
flush_routes()

	

	
default_queue

	

	
default_exchange

	

	
publisher_pool

	

	
router

	

	
routes

	

Queues

	
class celery.app.amqp.Queues(queues=None, default_exchange=None, create_missing=True, ha_policy=None, autoexchange=None)

	Queue name⇒ declaration mapping.

	Parameters:	
	queues – Initial list/tuple or dict of queues.

	create_missing – By default any unknown queues will be
added automatically, but if disabled
the occurrence of unknown queues
in wanted will raise KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError].

	ha_policy – Default HA policy for queues with none set.

	
add(queue, **kwargs)

	Add new queue.

The first argument can either be a kombu.Queue [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Queue] instance,
or the name of a queue. If the former the rest of the keyword
arguments are ignored, and options are simply taken from the queue
instance.

	Parameters:	
	queue – kombu.Queue [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Queue] instance or name of the queue.

	exchange – (if named) specifies exchange name.

	routing_key – (if named) specifies binding key.

	exchange_type – (if named) specifies type of exchange.

	**options – (if named) Additional declaration options.

	
add_compat(name, **options)

	

	
consume_from

	

	
deselect(exclude)

	Deselect queues so that they will not be consumed from.

	Parameters:	exclude – Names of queues to avoid consuming from.
Can be iterable or string.

	
format(indent=0, indent_first=True)

	Format routing table into string for log dumps.

	
new_missing(name)

	

	
select(include)

	Sets consume_from by selecting a subset of the
currently defined queues.

	Parameters:	include – Names of queues to consume from.
Can be iterable or string.

	
select_add(queue, **kwargs)

	Add new task queue that will be consumed from even when
a subset has been selected using the -Q option.

	
select_remove(exclude)

	Deselect queues so that they will not be consumed from.

	Parameters:	exclude – Names of queues to avoid consuming from.
Can be iterable or string.

	
select_subset(include)

	Sets consume_from by selecting a subset of the
currently defined queues.

	Parameters:	include – Names of queues to consume from.
Can be iterable or string.

TaskPublisher

	
class celery.app.amqp.TaskPublisher(channel=None, exchange=None, *args, **kwargs)

	Deprecated version of TaskProducer.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.defaults

	celery.app.defaults

celery.app.defaults

Configuration introspection and defaults.

	
class celery.app.defaults.Option(default=None, *args, **kwargs)

	
	
alt = None

	

	
deprecate_by = None

	

	
remove_by = None

	

	
to_python(value)

	

	
typemap = {'bool': <function strtobool>, 'string': <type 'str'>, 'tuple': <type 'tuple'>, 'int': <type 'int'>, 'dict': <type 'dict'>, 'float': <type 'float'>, 'any': <function <lambda>>}

	

	
celery.app.defaults.flatten(d, ns='')

	

	
celery.app.defaults.find(*args, **kwargs)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.control

	celery.app.control

celery.app.control

Client for worker remote control commands.
Server implementation is in celery.worker.control.

	
class celery.app.control.Inspect(destination=None, timeout=1, callback=None, connection=None, app=None, limit=None)

	
	
active(safe=False)

	

	
active_queues()

	

	
app = None

	

	
clock()

	

	
conf(with_defaults=False)

	

	
hello(from_node, revoked=None)

	

	
memdump(samples=10)

	

	
memsample()

	

	
objgraph(type='Request', n=200, max_depth=10)

	

	
ping()

	

	
query_task(ids)

	

	
registered(*taskinfoitems)

	

	
registered_tasks(*taskinfoitems)

	

	
report()

	

	
reserved(safe=False)

	

	
revoked()

	

	
scheduled(safe=False)

	

	
stats()

	

	
class celery.app.control.Control(app=None)

	
	
class Mailbox(namespace, type='direct', connection=None, clock=None, accept=None, serializer=None)

	
	
Node(hostname=None, state=None, channel=None, handlers=None)

	

	
abcast(command, kwargs={})

	

	
accept = ['json']

	

	
call(destination, command, kwargs={}, timeout=None, callback=None, channel=None)

	

	
cast(destination, command, kwargs={})

	

	
connection = None

	

	
exchange = None

	

	
exchange_fmt = '%s.pidbox'

	

	
get_queue(hostname)

	

	
get_reply_queue()

	

	
multi_call(command, kwargs={}, timeout=1, limit=None, callback=None, channel=None)

	

	
namespace = None

	

	
node_cls

	alias of Node

	
oid

	

	
reply_exchange = None

	

	
reply_exchange_fmt = 'reply.%s.pidbox'

	

	
reply_queue

	

	
serializer = None

	

	
type = 'direct'

	

	
add_consumer(queue, exchange=None, exchange_type='direct', routing_key=None, options=None, **kwargs)

	Tell all (or specific) workers to start consuming from a new queue.

Only the queue name is required as if only the queue is specified
then the exchange/routing key will be set to the same name (
like automatic queues do).

Note

This command does not respect the default queue/exchange
options in the configuration.

	Parameters:	
	queue – Name of queue to start consuming from.

	exchange – Optional name of exchange.

	exchange_type – Type of exchange (defaults to ‘direct’)
command to, when empty broadcast to all workers.

	routing_key – Optional routing key.

	options – Additional options as supported
by kombu.entitiy.Queue.from_dict().

See broadcast() for supported keyword arguments.

	
autoscale(max, min, destination=None, **kwargs)

	Change worker(s) autoscale setting.

Supports the same arguments as broadcast().

	
broadcast(command, arguments=None, destination=None, connection=None, reply=False, timeout=1, limit=None, callback=None, channel=None, **extra_kwargs)

	Broadcast a control command to the celery workers.

	Parameters:	
	command – Name of command to send.

	arguments – Keyword arguments for the command.

	destination – If set, a list of the hosts to send the
command to, when empty broadcast to all workers.

	connection – Custom broker connection to use, if not set,
a connection will be established automatically.

	reply – Wait for and return the reply.

	timeout – Timeout in seconds to wait for the reply.

	limit – Limit number of replies.

	callback – Callback called immediately for each reply
received.

	
cancel_consumer(queue, **kwargs)

	Tell all (or specific) workers to stop consuming from queue.

Supports the same keyword arguments as broadcast().

	
disable_events(destination=None, **kwargs)

	Tell all (or specific) workers to disable events.

	
discard_all(connection=None)

	Discard all waiting tasks.

This will ignore all tasks waiting for execution, and they will
be deleted from the messaging server.

	Returns:	the number of tasks discarded.

	
election(id, topic, action=None, connection=None)

	

	
enable_events(destination=None, **kwargs)

	Tell all (or specific) workers to enable events.

	
inspect

	

	
ping(destination=None, timeout=1, **kwargs)

	Ping all (or specific) workers.

Will return the list of answers.

See broadcast() for supported keyword arguments.

	
pool_grow(n=1, destination=None, **kwargs)

	Tell all (or specific) workers to grow the pool by n.

Supports the same arguments as broadcast().

	
pool_shrink(n=1, destination=None, **kwargs)

	Tell all (or specific) workers to shrink the pool by n.

Supports the same arguments as broadcast().

	
purge(connection=None)

	Discard all waiting tasks.

This will ignore all tasks waiting for execution, and they will
be deleted from the messaging server.

	Returns:	the number of tasks discarded.

	
rate_limit(task_name, rate_limit, destination=None, **kwargs)

	Tell all (or specific) workers to set a new rate limit
for task by type.

	Parameters:	
	task_name – Name of task to change rate limit for.

	rate_limit – The rate limit as tasks per second, or a rate limit
string (‘100/m’, etc.
see celery.task.base.Task.rate_limit for
more information).

See broadcast() for supported keyword arguments.

	
revoke(task_id, destination=None, terminate=False, signal='SIGTERM', **kwargs)

	Tell all (or specific) workers to revoke a task by id.

If a task is revoked, the workers will ignore the task and
not execute it after all.

	Parameters:	
	task_id – Id of the task to revoke.

	terminate – Also terminate the process currently working
on the task (if any).

	signal – Name of signal to send to process if terminate.
Default is TERM.

See broadcast() for supported keyword arguments.

	
time_limit(task_name, soft=None, hard=None, **kwargs)

	Tell all (or specific) workers to set time limits for
a task by type.

	Parameters:	
	task_name – Name of task to change time limits for.

	soft – New soft time limit (in seconds).

	hard – New hard time limit (in seconds).

Any additional keyword arguments are passed on to broadcast().

	
celery.app.control.flatten_reply(reply)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.registry

	celery.app.registry

celery.app.registry

Registry of available tasks.

	
class celery.app.registry.TaskRegistry

	
	
exception NotRegistered

	The task is not registered.

	
filter_types(type)

	

	
periodic()

	

	
register(task)

	Register a task in the task registry.

The task will be automatically instantiated if not already an
instance.

	
regular()

	

	
unregister(name)

	Unregister task by name.

	Parameters:	name – name of the task to unregister, or a
celery.task.base.Task with a valid name attribute.

	Raises:	celery.exceptions.NotRegistered – if the task has not
been registered.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.builtins

	celery.app.builtins

celery.app.builtins

Built-in tasks that are always available in all
app instances. E.g. chord, group and xmap.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.log

	celery.app.log

celery.app.log

The Celery instances logging section: Celery.log.

Sets up logging for the worker and other programs,
redirects stdouts, colors log output, patches logging
related compatibility fixes, and so on.

	
class celery.app.log.TaskFormatter(fmt=None, use_color=True)

	
	
format(record)

	

	
class celery.app.log.Logging(app)

	
	
already_setup = False

	

	
colored(logfile=None, enabled=None)

	

	
get_default_logger(name='celery', **kwargs)

	

	
redirect_stdouts(loglevel=None, name='celery.redirected')

	

	
redirect_stdouts_to_logger(logger, loglevel=None, stdout=True, stderr=True)

	Redirect sys.stdout and sys.stderr to a
logging instance.

	Parameters:	
	logger – The logging.Logger [https://docs.python.org/dev/library/logging.html#logging.Logger] instance to redirect to.

	loglevel – The loglevel redirected messages will be logged as.

	
setup(loglevel=None, logfile=None, redirect_stdouts=False, redirect_level='WARNING', colorize=None, hostname=None)

	

	
setup_handlers(logger, logfile, format, colorize, formatter=<class 'celery.utils.log.ColorFormatter'>, **kwargs)

	

	
setup_logger(name='celery', *args, **kwargs)

	Deprecated: No longer used.

	
setup_logging_subsystem(loglevel=None, logfile=None, format=None, colorize=None, hostname=None, **kwargs)

	

	
setup_task_loggers(loglevel=None, logfile=None, format=None, colorize=None, propagate=False, **kwargs)

	Setup the task logger.

If logfile is not specified, then sys.stderr is used.

Will return the base task logger object.

	
supports_color(colorize=None, logfile=None)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.utils

	celery.app.utils

celery.app.utils

App utilities: Compat settings, bugreport tool, pickling apps.

	
class celery.app.utils.Settings(changes, defaults)

	Celery settings object.

	
BROKER_BACKEND

	Deprecated compat alias to BROKER_TRANSPORT.

	
BROKER_TRANSPORT

	

	
BROKER_URL

	

	
CELERY_RESULT_BACKEND

	

	
CELERY_TIMEZONE

	

	
find_option(name, namespace='celery')

	Search for option by name.

Will return (namespace, key, type) tuple, e.g.:

>>> from proj.celery import app
>>> app.conf.find_option('disable_rate_limits')
('CELERY', 'DISABLE_RATE_LIMITS',
 <Option: type->bool default->False>))

	Parameters:	
	name – Name of option, cannot be partial.

	namespace – Preferred namespace (CELERY by default).

	
find_value_for_key(name, namespace='celery')

	Shortcut to get_by_parts(*find_option(name)[:-1])

	
get_by_parts(*parts)

	Return the current value for setting specified as a path.

Example:

>>> from proj.celery import app
>>> app.conf.get_by_parts('CELERY', 'DISABLE_RATE_LIMITS')
False

	
humanize(with_defaults=False, censored=True)

	Return a human readable string showing changes to the
configuration.

	
table(with_defaults=False, censored=True)

	

	
value_set_for(key)

	

	
without_defaults()

	Return the current configuration, but without defaults.

	
celery.app.utils.appstr(app)

	String used in __repr__ etc, to id app instances.

	
celery.app.utils.bugreport(app)

	Return a string containing information useful in bug reports.

	
celery.app.utils.filter_hidden_settings(conf)

	

	
celery.app.utils.find_app(app, symbol_by_name=<function symbol_by_name>, imp=<function import_from_cwd>)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.bootsteps

	celery.bootsteps

celery.bootsteps

A directed acyclic graph of reusable components.

	
class celery.bootsteps.Blueprint(steps=None, name=None, app=None, on_start=None, on_close=None, on_stopped=None)

	Blueprint containing bootsteps that can be applied to objects.

	Parameters:	
	steps – List of steps.

	name – Set explicit name for this blueprint.

	app – Set the Celery app for this blueprint.

	on_start – Optional callback applied after blueprint start.

	on_close – Optional callback applied before blueprint close.

	on_stopped – Optional callback applied after blueprint stopped.

	
GraphFormatter

	alias of StepFormatter

	
alias

	

	
apply(parent, **kwargs)

	Apply the steps in this blueprint to an object.

This will apply the __init__ and include methods
of each step, with the object as argument:

step = Step(obj)
...
step.include(obj)

For StartStopStep the services created
will also be added to the objects steps attribute.

	
claim_steps()

	

	
close(parent)

	

	
connect_with(other)

	

	
default_steps = set([])

	

	
human_state()

	

	
info(parent)

	

	
join(timeout=None)

	

	
load_step(step)

	

	
name = None

	

	
restart(parent, method=u'stop', description=u'restarting', propagate=False)

	

	
send_all(parent, method, description=None, reverse=True, propagate=True, args=())

	

	
start(parent)

	

	
started = 0

	

	
state = None

	

	
state_to_name = {0: u'initializing', 1: u'running', 2: u'closing', 3: u'terminating'}

	

	
stop(parent, close=True, terminate=False)

	

	
class celery.bootsteps.Step(parent, **kwargs)

	A Bootstep.

The __init__() method is called when the step
is bound to a parent object, and can as such be used
to initialize attributes in the parent object at
parent instantiation-time.

	
alias

	

	
conditional = False

	Set this to true if the step is enabled based on some condition.

	
create(parent)

	Create the step.

	
enabled = True

	This provides the default for include_if().

	
include(parent)

	

	
include_if(parent)

	An optional predicate that decides whether this
step should be created.

	
info(obj)

	

	
instantiate(name, *args, **kwargs)

	

	
label = None

	Optional short name used for graph outputs and in logs.

	
last = False

	This flag is reserved for the workers Consumer,
since it is required to always be started last.
There can only be one object marked last
in every blueprint.

	
name = u'celery.bootsteps.Step'

	Optional step name, will use qualname if not specified.

	
requires = ()

	List of other steps that that must be started before this step.
Note that all dependencies must be in the same blueprint.

	
class celery.bootsteps.StartStopStep(parent, **kwargs)

	
	
close(parent)

	

	
include(parent)

	

	
name = u'celery.bootsteps.StartStopStep'

	

	
obj = None

	Optional obj created by the create() method.
This is used by StartStopStep to keep the
original service object.

	
start(parent)

	

	
stop(parent)

	

	
terminate(parent)

	

	
class celery.bootsteps.ConsumerStep(parent, **kwargs)

	
	
consumers = None

	

	
get_consumers(channel)

	

	
name = u'celery.bootsteps.ConsumerStep'

	

	
requires = (u'celery.worker.consumer:Connection',)

	

	
shutdown(c)

	

	
start(c)

	

	
stop(c)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.result

	celery.result

celery.result

Task results/state and groups of results.

	
class celery.result.ResultBase

	Base class for all results

	
parent = None

	Parent result (if part of a chain)

	
class celery.result.AsyncResult(id, backend=None, task_name=None, app=None, parent=None)

	Query task state.

	Parameters:	
	id – see id.

	backend – see backend.

	
exception TimeoutError

	Error raised for timeouts.

	
app = None

	

	
as_tuple()

	

	
backend = None

	The task result backend to use.

	
build_graph(intermediate=False, formatter=None)

	

	
children

	

	
collect(intermediate=False, **kwargs)

	Iterator, like get() will wait for the task to complete,
but will also follow AsyncResult and ResultSet
returned by the task, yielding (result, value) tuples for each
result in the tree.

An example would be having the following tasks:

from celery import group
from proj.celery import app

@app.task(trail=True)
def A(how_many):
 return group(B.s(i) for i in range(how_many))()

@app.task(trail=True)
def B(i):
 return pow2.delay(i)

@app.task(trail=True)
def pow2(i):
 return i ** 2

Note that the trail option must be enabled
so that the list of children is stored in result.children.
This is the default but enabled explicitly for illustration.

Calling collect() would return:

>>> from celery.result import ResultBase
>>> from proj.tasks import A

>>> result = A.delay(10)
>>> [v for v in result.collect()
... if not isinstance(v, (ResultBase, tuple))]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

	
failed()

	Returns True if the task failed.

	
forget()

	Forget about (and possibly remove the result of) this task.

	
get(timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True, EXCEPTION_STATES=frozenset(['FAILURE', 'RETRY', 'REVOKED']), PROPAGATE_STATES=frozenset(['FAILURE', 'REVOKED']))

	Wait until task is ready, and return its result.

Warning

Waiting for tasks within a task may lead to deadlocks.
Please read Avoid launching synchronous subtasks.

	Parameters:	
	timeout – How long to wait, in seconds, before the
operation times out.

	propagate – Re-raise exception if the task failed.

	interval – Time to wait (in seconds) before retrying to
retrieve the result. Note that this does not have any effect
when using the amqp result store backend, as it does not
use polling.

	no_ack – Enable amqp no ack (automatically acknowledge
message). If this is False then the message will
not be acked.

	follow_parents – Reraise any exception raised by parent task.

	Raises:	celery.exceptions.TimeoutError – if timeout is not
None and the result does not arrive within timeout
seconds.

If the remote call raised an exception then that exception will
be re-raised.

	
get_leaf()

	

	
graph

	

	
id = None

	The task’s UUID.

	
info

	When the task has been executed, this contains the return value.
If the task raised an exception, this will be the exception
instance.

	
iterdeps(intermediate=False)

	

	
maybe_reraise()

	

	
ready()

	Returns True if the task has been executed.

If the task is still running, pending, or is waiting
for retry then False is returned.

	
result

	When the task has been executed, this contains the return value.
If the task raised an exception, this will be the exception
instance.

	
revoke(connection=None, terminate=False, signal=None, wait=False, timeout=None)

	Send revoke signal to all workers.

Any worker receiving the task, or having reserved the
task, must ignore it.

	Parameters:	
	terminate – Also terminate the process currently working
on the task (if any).

	signal – Name of signal to send to process if terminate.
Default is TERM.

	wait – Wait for replies from workers. Will wait for 1 second
by default or you can specify a custom timeout.

	timeout – Time in seconds to wait for replies if wait
enabled.

	
serializable()

	

	
state

	The tasks current state.

Possible values includes:

PENDING

The task is waiting for execution.

STARTED

The task has been started.

RETRY

The task is to be retried, possibly because of failure.

FAILURE

The task raised an exception, or has exceeded the retry limit.
The result attribute then contains the
exception raised by the task.

SUCCESS

The task executed successfully. The result attribute
then contains the tasks return value.

	
status

	The tasks current state.

Possible values includes:

PENDING

The task is waiting for execution.

STARTED

The task has been started.

RETRY

The task is to be retried, possibly because of failure.

FAILURE

The task raised an exception, or has exceeded the retry limit.
The result attribute then contains the
exception raised by the task.

SUCCESS

The task executed successfully. The result attribute
then contains the tasks return value.

	
successful()

	Returns True if the task executed successfully.

	
supports_native_join

	

	
task_id

	compat alias to id

	
traceback

	Get the traceback of a failed task.

	
wait(timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True, EXCEPTION_STATES=frozenset(['FAILURE', 'RETRY', 'REVOKED']), PROPAGATE_STATES=frozenset(['FAILURE', 'REVOKED']))

	Wait until task is ready, and return its result.

Warning

Waiting for tasks within a task may lead to deadlocks.
Please read Avoid launching synchronous subtasks.

	Parameters:	
	timeout – How long to wait, in seconds, before the
operation times out.

	propagate – Re-raise exception if the task failed.

	interval – Time to wait (in seconds) before retrying to
retrieve the result. Note that this does not have any effect
when using the amqp result store backend, as it does not
use polling.

	no_ack – Enable amqp no ack (automatically acknowledge
message). If this is False then the message will
not be acked.

	follow_parents – Reraise any exception raised by parent task.

	Raises:	celery.exceptions.TimeoutError – if timeout is not
None and the result does not arrive within timeout
seconds.

If the remote call raised an exception then that exception will
be re-raised.

	
class celery.result.ResultSet(results, app=None, **kwargs)

	Working with more than one result.

	Parameters:	results – List of result instances.

	
add(result)

	Add AsyncResult as a new member of the set.

Does nothing if the result is already a member.

	
app = None

	

	
backend

	

	
clear()

	Remove all results from this set.

	
completed_count()

	Task completion count.

	Returns:	the number of tasks completed.

	
discard(result)

	Remove result from the set if it is a member.

If it is not a member, do nothing.

	
failed()

	Did any of the tasks fail?

	Returns:	True if one of the tasks failed.
(i.e., raised an exception)

	
forget()

	Forget about (and possible remove the result of) all the tasks.

	
get(timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True)

	See join()

This is here for API compatibility with AsyncResult,
in addition it uses join_native() if available for the
current result backend.

	
iter_native(timeout=None, interval=0.5, no_ack=True)

	Backend optimized version of iterate().

New in version 2.2.

Note that this does not support collecting the results
for different task types using different backends.

This is currently only supported by the amqp, Redis and cache
result backends.

	
iterate(*args, **kwargs)

	Deprecated method, use get() with a callback argument.

	
join(timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True)

	Gathers the results of all tasks as a list in order.

Note

This can be an expensive operation for result store
backends that must resort to polling (e.g. database).

You should consider using join_native() if your backend
supports it.

Warning

Waiting for tasks within a task may lead to deadlocks.
Please see Avoid launching synchronous subtasks.

	Parameters:	
	timeout – The number of seconds to wait for results before
the operation times out.

	propagate – If any of the tasks raises an exception, the
exception will be re-raised.

	interval – Time to wait (in seconds) before retrying to
retrieve a result from the set. Note that this
does not have any effect when using the amqp
result store backend, as it does not use polling.

	callback – Optional callback to be called for every result
received. Must have signature (task_id, value)
No results will be returned by this function if
a callback is specified. The order of results
is also arbitrary when a callback is used.
To get access to the result object for a particular
id you will have to generate an index first:
index = {r.id: r for r in gres.results.values()}
Or you can create new result objects on the fly:
result = app.AsyncResult(task_id) (both will
take advantage of the backend cache anyway).

	no_ack – Automatic message acknowledgement (Note that if this
is set to False then the messages will not be
acknowledged).

	Raises:	celery.exceptions.TimeoutError – if timeout is not
None and the operation takes longer than timeout
seconds.

	
join_native(timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True)

	Backend optimized version of join().

New in version 2.2.

Note that this does not support collecting the results
for different task types using different backends.

This is currently only supported by the amqp, Redis and cache
result backends.

	
maybe_reraise()

	

	
ready()

	Did all of the tasks complete? (either by success of failure).

	Returns:	True if all of the tasks has been
executed.

	
remove(result)

	Remove result from the set; it must be a member.

	Raises:	KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] – if the result is not a member.

	
results = None

	List of results in in the set.

	
revoke(connection=None, terminate=False, signal=None, wait=False, timeout=None)

	Send revoke signal to all workers for all tasks in the set.

	Parameters:	
	terminate – Also terminate the process currently working
on the task (if any).

	signal – Name of signal to send to process if terminate.
Default is TERM.

	wait – Wait for replies from worker. Will wait for 1 second
by default or you can specify a custom timeout.

	timeout – Time in seconds to wait for replies if wait
enabled.

	
subtasks

	Deprecated alias to results.

	
successful()

	Was all of the tasks successful?

	Returns:	True if all of the tasks finished
successfully (i.e. did not raise an exception).

	
supports_native_join

	

	
update(results)

	Update set with the union of itself and an iterable with
results.

	
waiting()

	Are any of the tasks incomplete?

	Returns:	True if one of the tasks are still
waiting for execution.

	
class celery.result.GroupResult(id=None, results=None, **kwargs)

	Like ResultSet, but with an associated id.

This type is returned by group, and the
deprecated TaskSet, meth:~celery.task.TaskSet.apply_async method.

It enables inspection of the tasks state and return values as
a single entity.

	Parameters:	
	id – The id of the group.

	results – List of result instances.

	
as_tuple()

	

	
children

	

	
delete(backend=None)

	Remove this result if it was previously saved.

	
id = None

	The UUID of the group.

	
classmethod restore(id, backend=None)

	Restore previously saved group result.

	
results = None

	List/iterator of results in the group

	
save(backend=None)

	Save group-result for later retrieval using restore().

Example:

>>> def save_and_restore(result):
... result.save()
... result = GroupResult.restore(result.id)

	
serializable()

	

	
class celery.result.EagerResult(id, ret_value, state, traceback=None)

	Result that we know has already been executed.

	
forget()

	

	
get(timeout=None, propagate=True, **kwargs)

	

	
ready()

	

	
result

	The tasks return value

	
revoke(*args, **kwargs)

	

	
state

	The tasks state.

	
status

	The tasks state.

	
supports_native_join

	

	
task_name = None

	

	
traceback

	The traceback if the task failed.

	
wait(timeout=None, propagate=True, **kwargs)

	

	
celery.result.result_from_tuple(r, app=None)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.task.http

	celery.task.http

celery.task.http

Webhook task implementation.

	
exception celery.task.http.InvalidResponseError

	The remote server gave an invalid response.

	
exception celery.task.http.RemoteExecuteError

	The remote task gave a custom error.

	
exception celery.task.http.UnknownStatusError

	The remote server gave an unknown status.

	
class celery.task.http.HttpDispatch(url, method, task_kwargs, **kwargs)

	Make task HTTP request and collect the task result.

	Parameters:	
	url – The URL to request.

	method – HTTP method used. Currently supported methods are GET
and POST.

	task_kwargs – Task keyword arguments.

	logger – Logger used for user/system feedback.

	
dispatch()

	Dispatch callback and return result.

	
http_headers

	

	
make_request(url, method, params)

	Perform HTTP request and return the response.

	
timeout = 5

	

	
user_agent = 'celery/3.1.25'

	

	
(task)celery.task.http.dispatch(self, url=None, method='GET', **kwargs)

	Task dispatching to an URL.

	Parameters:	
	url – The URL location of the HTTP callback task.

	method – Method to use when dispatching the callback. Usually
GET or POST.

	**kwargs – Keyword arguments to pass on to the HTTP callback.

	
celery.task.http.url

	If this is set, this is used as the default URL for requests.
Default is to require the user of the task to supply the url as an
argument, as this attribute is intended for subclasses.

	
celery.task.http.method

	If this is set, this is the default method used for requests.
Default is to require the user of the task to supply the method as an
argument, as this attribute is intended for subclasses.

	
class celery.task.http.URL(url, dispatcher=None, app=None)

	HTTP Callback URL

Supports requesting an URL asynchronously.

	Parameters:	
	url – URL to request.

	dispatcher – Class used to dispatch the request.
By default this is dispatch().

	
dispatcher = None

	

	
get_async(**kwargs)

	

	
post_async(**kwargs)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.schedules

	celery.schedules

celery.schedules

Schedules define the intervals at which periodic tasks
should run.

	
exception celery.schedules.ParseException

	Raised by crontab_parser when the input can’t be parsed.

	
class celery.schedules.schedule(run_every=None, relative=False, nowfun=None, app=None)

	Schedule for periodic task.

	Parameters:	
	run_every – Interval in seconds (or a timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta]).

	relative – If set to True the run time will be rounded to the
resolution of the interval.

	nowfun – Function returning the current date and time
(class:~datetime.datetime).

	app – Celery app instance.

	
app

	

	
human_seconds

	

	
is_due(last_run_at)

	Returns tuple of two items (is_due, next_time_to_check),
where next time to check is in seconds.

e.g.

	
	(True, 20), means the task should be run now, and the next

	time to check is in 20 seconds.

	(False, 12.3), means the task is not due, but that the scheduler
should check again in 12.3 seconds.

The next time to check is used to save energy/cpu cycles,
it does not need to be accurate but will influence the precision
of your schedule. You must also keep in mind
the value of CELERYBEAT_MAX_LOOP_INTERVAL,
which decides the maximum number of seconds the scheduler can
sleep between re-checking the periodic task intervals. So if you
have a task that changes schedule at runtime then your next_run_at
check will decide how long it will take before a change to the
schedule takes effect. The max loop interval takes precendence
over the next check at value returned.

Scheduler max interval variance

The default max loop interval may vary for different schedulers.
For the default scheduler the value is 5 minutes, but for e.g.
the django-celery database scheduler the value is 5 seconds.

	
maybe_make_aware(dt)

	

	
now()

	

	
relative = False

	

	
remaining_estimate(last_run_at)

	

	
seconds

	

	
to_local(dt)

	

	
tz

	

	
utc_enabled

	

	
class celery.schedules.crontab(minute='*', hour='*', day_of_week='*', day_of_month='*', month_of_year='*', nowfun=None, app=None)

	A crontab can be used as the run_every value of a
PeriodicTask to add cron-like scheduling.

Like a cron job, you can specify units of time of when
you would like the task to execute. It is a reasonably complete
implementation of cron’s features, so it should provide a fair
degree of scheduling needs.

You can specify a minute, an hour, a day of the week, a day of the
month, and/or a month in the year in any of the following formats:

	
minute

	
	A (list of) integers from 0-59 that represent the minutes of
an hour of when execution should occur; or

	A string representing a crontab pattern. This may get pretty
advanced, like minute=’*/15’ (for every quarter) or
minute=‘1,13,30-45,50-59/2’.

	
hour

	
	A (list of) integers from 0-23 that represent the hours of
a day of when execution should occur; or

	A string representing a crontab pattern. This may get pretty
advanced, like hour=’*/3’ (for every three hours) or
hour=‘0,8-17/2’ (at midnight, and every two hours during
office hours).

	
day_of_week

	
	A (list of) integers from 0-6, where Sunday = 0 and Saturday =
6, that represent the days of a week that execution should
occur.

	A string representing a crontab pattern. This may get pretty
advanced, like day_of_week=’mon-fri’ (for weekdays only).
(Beware that day_of_week=’*/2’ does not literally mean
‘every two days’, but ‘every day that is divisible by two’!)

	
day_of_month

	
	A (list of) integers from 1-31 that represents the days of the
month that execution should occur.

	A string representing a crontab pattern. This may get pretty
advanced, such as day_of_month=‘2-30/3’ (for every even
numbered day) or day_of_month=‘1-7,15-21’ (for the first and
third weeks of the month).

	
month_of_year

	
	A (list of) integers from 1-12 that represents the months of
the year during which execution can occur.

	A string representing a crontab pattern. This may get pretty
advanced, such as month_of_year=’*/3’ (for the first month
of every quarter) or month_of_year=‘2-12/2’ (for every even
numbered month).

	
nowfun

	Function returning the current date and time
(datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]).

	
app

	The Celery app instance.

It is important to realize that any day on which execution should
occur must be represented by entries in all three of the day and
month attributes. For example, if day_of_week is 0 and day_of_month
is every seventh day, only months that begin on Sunday and are also
in the month_of_year attribute will have execution events. Or,
day_of_week is 1 and day_of_month is ‘1-7,15-21’ means every
first and third monday of every month present in month_of_year.

	
is_due(last_run_at)

	Returns tuple of two items (is_due, next_time_to_run),
where next time to run is in seconds.

See celery.schedules.schedule.is_due() for more information.

	
now()

	

	
remaining_delta(last_run_at, tz=None, ffwd=<class 'celery.utils.timeutils.ffwd'>)

	

	
remaining_estimate(last_run_at, ffwd=<class 'celery.utils.timeutils.ffwd'>)

	Returns when the periodic task should run next as a timedelta.

	
class celery.schedules.crontab_parser(max_=60, min_=0)

	Parser for crontab expressions. Any expression of the form ‘groups’
(see BNF grammar below) is accepted and expanded to a set of numbers.
These numbers represent the units of time that the crontab needs to
run on:

digit :: '0'..'9'
dow :: 'a'..'z'
number :: digit+ | dow+
steps :: number
range :: number ('-' number) ?
numspec :: '*' | range
expr :: numspec ('/' steps) ?
groups :: expr (',' expr) *

The parser is a general purpose one, useful for parsing hours, minutes and
day_of_week expressions. Example usage:

>>> minutes = crontab_parser(60).parse('*/15')
[0, 15, 30, 45]
>>> hours = crontab_parser(24).parse('*/4')
[0, 4, 8, 12, 16, 20]
>>> day_of_week = crontab_parser(7).parse('*')
[0, 1, 2, 3, 4, 5, 6]

It can also parse day_of_month and month_of_year expressions if initialized
with an minimum of 1. Example usage:

>>> days_of_month = crontab_parser(31, 1).parse('*/3')
[1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31]
>>> months_of_year = crontab_parser(12, 1).parse('*/2')
[1, 3, 5, 7, 9, 11]
>>> months_of_year = crontab_parser(12, 1).parse('2-12/2')
[2, 4, 6, 8, 10, 12]

The maximum possible expanded value returned is found by the formula:

max_ + min_ - 1

	
exception ParseException

	Raised by crontab_parser when the input can’t be parsed.

	
parse(spec)

	

	
celery.schedules.maybe_schedule(s, relative=False, app=None)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.signals

	celery.signals

celery.signals

This module defines the signals (Observer pattern) sent by
both workers and clients.

Functions can be connected to these signals, and connected
functions are called whenever a signal is called.

See Signals for more information.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.security

	celery.security

celery.security

Module implementing the signing message serializer.

	
celery.security.setup_security(allowed_serializers=None, key=None, cert=None, store=None, digest='sha1', serializer='json', app=None)

	See Celery.setup_security().

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.debug

	Sampling Memory Usage

	API Reference
	celery.utils.debug

Sampling Memory Usage

This module can be used to diagnose and sample the memory usage
used by parts of your application.

E.g to sample the memory usage of calling tasks you can do this:

from celery.utils.debug import sample_mem, memdump

from tasks import add

try:
 for i in range(100):
 for j in range(100):
 add.delay(i, j)
 sample_mem()
finally:
 memdump()

API Reference

celery.utils.debug

Utilities for debugging memory usage.

	
celery.utils.debug.sample_mem()

	Sample RSS memory usage.

Statistics can then be output by calling memdump().

	
celery.utils.debug.memdump(samples=10, file=None)

	Dump memory statistics.

Will print a sample of all RSS memory samples added by
calling sample_mem(), and in addition print
used RSS memory after gc.collect() [https://docs.python.org/dev/library/gc.html#gc.collect].

	
celery.utils.debug.sample(x, n, k=0)

	Given a list x a sample of length n of that list is returned.

E.g. if n is 10, and x has 100 items, a list of every 10th
item is returned.

k can be used as offset.

	
celery.utils.debug.mem_rss()

	Return RSS memory usage as a humanized string.

	
celery.utils.debug.ps()

	Return the global psutil.Process instance,
or None if psutil is not installed.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.mail

	celery.utils.mail

celery.utils.mail

How task error emails are formatted and sent.

	
exception celery.utils.mail.SendmailWarning

	Problem happened while sending the email message.

	
class celery.utils.mail.Message(to=None, sender=None, subject=None, body=None, charset='us-ascii')

	

	
class celery.utils.mail.Mailer(host='localhost', port=0, user=None, password=None, timeout=2, use_ssl=False, use_tls=False)

	
	
send(message, fail_silently=False, **kwargs)

	

	
class celery.utils.mail.ErrorMail(task, **kwargs)

	Defines how and when task error e-mails should be sent.

	Parameters:	task – The task instance that raised the error.

subject and body are format strings which
are passed a context containing the following keys:

	name

Name of the task.

	id

UUID of the task.

	exc

String representation of the exception.

	args

Positional arguments.

	kwargs

Keyword arguments.

	traceback

String representation of the traceback.

	hostname

Worker nodename.

	
EMAIL_SIGNATURE_SEP = '-- '

	

	
body = '\nTask {name} with id {id} raised exception:\n{exc!r}\n\n\nTask was called with args: {args} kwargs: {kwargs}.\n\nThe contents of the full traceback was:\n\n{traceback}\n\n-- \nJust to let you know,\npy-celery at {hostname}.\n'

	Format string used to generate error email content.

	
format_body(context)

	

	
format_subject(context)

	

	
send(context, exc, fail_silently=True)

	

	
should_send(context, exc)

	Return true or false depending on if a task error mail
should be sent for this type of error.

	
subject = ' [{hostname}] Error: Task {name} ({id}): {exc!r}\n '

	Format string used to generate error email subjects.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.exceptions

	celery.exceptions

celery.exceptions

This module contains all exceptions used by the Celery API.

	
exception celery.exceptions.SecurityError

	Security related exceptions.

Handle with care.

	
exception celery.exceptions.Ignore

	A task can raise this to ignore doing state updates.

	
exception celery.exceptions.QueueNotFound

	Task routed to a queue not in CELERY_QUEUES.

	
exception celery.exceptions.WorkerShutdown

	Signals that the worker should perform a warm shutdown.

	
exception celery.exceptions.WorkerTerminate

	Signals that the worker should terminate immediately.

	
exception celery.exceptions.ImproperlyConfigured

	Celery is somehow improperly configured.

	
exception celery.exceptions.NotRegistered

	The task is not registered.

	
exception celery.exceptions.AlreadyRegistered

	The task is already registered.

	
exception celery.exceptions.TimeoutError

	The operation timed out.

	
exception celery.exceptions.MaxRetriesExceededError

	The tasks max restart limit has been exceeded.

	
exception celery.exceptions.Retry(message=None, exc=None, when=None, **kwargs)

	The task is to be retried later.

	
exc = None

	Exception (if any) that caused the retry to happen.

	
humanize()

	

	
message = None

	Optional message describing context of retry.

	
when = None

	Time of retry (ETA), either numbers.Real [https://docs.python.org/dev/library/numbers.html#numbers.Real] or
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime].

	
exception celery.exceptions.TaskRevokedError

	The task has been revoked, so no result available.

	
exception celery.exceptions.NotConfigured

	Celery has not been configured, as no config module has been found.

	
exception celery.exceptions.AlwaysEagerIgnored

	send_task ignores CELERY_ALWAYS_EAGER option

	
exception celery.exceptions.InvalidTaskError

	The task has invalid data or is not properly constructed.

	
exception celery.exceptions.ChordError

	A task part of the chord raised an exception.

	
exception celery.exceptions.CPendingDeprecationWarning

	

	
exception celery.exceptions.CDeprecationWarning

	

	
exception celery.exceptions.FixupWarning

	

	
exception celery.exceptions.DuplicateNodenameWarning

	Multiple workers are using the same nodename.

	
exception celery.exceptions.SoftTimeLimitExceeded

	The soft time limit has been exceeded. This exception is raised
to give the task a chance to clean up.

	
exception celery.exceptions.TimeLimitExceeded

	The time limit has been exceeded and the job has been terminated.

	
exception celery.exceptions.WorkerLostError

	The worker processing a job has exited prematurely.

	
exception celery.exceptions.Terminated

	The worker processing a job has been terminated by user request.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.loaders

	celery.loaders

celery.loaders

Loaders define how configuration is read, what happens
when workers start, when tasks are executed and so on.

	
celery.loaders.get_loader_cls(loader)

	Get loader class by name/alias

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.loaders.app

	celery.loaders.app

celery.loaders.app

The default loader used with custom app instances.

	
class celery.loaders.app.AppLoader(app, **kwargs)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.loaders.default

	celery.loaders.default

celery.loaders.default

The default loader used when no custom app has been initialized.

	
class celery.loaders.default.Loader(app, **kwargs)

	The loader used by the default app.

	
read_configuration(fail_silently=True)

	Read configuration from celeryconfig.py and configure
celery and Django so it can be used by regular Python.

	
setup_settings(settingsdict)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.loaders.base

	celery.loaders.base

celery.loaders.base

Loader base class.

	
class celery.loaders.base.BaseLoader(app, **kwargs)

	The base class for loaders.

Loaders handles,

	Reading celery client/worker configurations.

	
	What happens when a task starts?

	See on_task_init().

	
	What happens when the worker starts?

	See on_worker_init().

	
	What happens when the worker shuts down?

	See on_worker_shutdown().

	What modules are imported to find tasks?

	
autodiscover_tasks(packages, related_name='tasks')

	

	
builtin_modules = frozenset([])

	

	
cmdline_config_parser(args, namespace='celery', re_type=<_sre.SRE_Pattern object>, extra_types={'json': <function loads>}, override_types={'dict': 'json', 'list': 'json', 'tuple': 'json'})

	

	
conf

	Loader configuration.

	
config_from_object(obj, silent=False)

	

	
configured = False

	

	
find_module(module)

	

	
import_default_modules()

	

	
import_from_cwd(module, imp=None, package=None)

	

	
import_module(module, package=None)

	

	
import_task_module(module)

	

	
init_worker()

	

	
init_worker_process()

	

	
mail

	

	
mail_admins(subject, body, fail_silently=False, sender=None, to=None, host=None, port=None, user=None, password=None, timeout=None, use_ssl=False, use_tls=False, charset='utf-8')

	

	
now(utc=True)

	

	
on_process_cleanup()

	This method is called after a task is executed.

	
on_task_init(task_id, task)

	This method is called before a task is executed.

	
on_worker_init()

	This method is called when the worker (celery worker)
starts.

	
on_worker_process_init()

	This method is called when a child process starts.

	
on_worker_shutdown()

	This method is called when the worker (celery worker)
shuts down.

	
override_backends = {}

	

	
read_configuration(env='CELERY_CONFIG_MODULE')

	

	
shutdown_worker()

	

	
worker_initialized = False

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

	celery.states
	States

	Sets
	READY_STATES

	UNREADY_STATES

	EXCEPTION_STATES

	PROPAGATE_STATES

	ALL_STATES

	Misc.

celery.states

Built-in task states.

States

See States.

Sets

READY_STATES

Set of states meaning the task result is ready (has been executed).

UNREADY_STATES

Set of states meaning the task result is not ready (has not been executed).

EXCEPTION_STATES

Set of states meaning the task returned an exception.

PROPAGATE_STATES

Set of exception states that should propagate exceptions to the user.

ALL_STATES

Set of all possible states.

Misc.

	
celery.states.PENDING = 'PENDING'

	Task state is unknown (assumed pending since you know the id).

	
celery.states.RECEIVED = 'RECEIVED'

	Task was received by a worker.

	
celery.states.STARTED = 'STARTED'

	Task was started by a worker (CELERY_TRACK_STARTED).

	
celery.states.SUCCESS = 'SUCCESS'

	Task succeeded

	
celery.states.FAILURE = 'FAILURE'

	Task failed

	
celery.states.REVOKED = 'REVOKED'

	Task was revoked.

	
celery.states.RETRY = 'RETRY'

	Task is waiting for retry.

	
celery.states.precedence(state)

	Get the precedence index for state.

Lower index means higher precedence.

	
class celery.states.state

	State is a subclass of str [https://docs.python.org/dev/library/stdtypes.html#str], implementing comparison
methods adhering to state precedence rules:

>>> from celery.states import state, PENDING, SUCCESS

>>> state(PENDING) < state(SUCCESS)
True

Any custom state is considered to be lower than FAILURE and
SUCCESS, but higher than any of the other built-in states:

>>> state('PROGRESS') > state(STARTED)
True

>>> state('PROGRESS') > state('SUCCESS')
False

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.contrib.abortable

	Abortable tasks overview
	Usage example

Abortable tasks overview

For long-running Task‘s, it can be desirable to support
aborting during execution. Of course, these tasks should be built to
support abortion specifically.

The AbortableTask serves as a base class for all Task
objects that should support abortion by producers.

	Producers may invoke the abort() method on
AbortableAsyncResult instances, to request abortion.

	Consumers (workers) should periodically check (and honor!) the
is_aborted() method at controlled points in their task’s
run() method. The more often, the better.

The necessary intermediate communication is dealt with by the
AbortableTask implementation.

Usage example

In the consumer:

from __future__ import absolute_import

from celery.contrib.abortable import AbortableTask
from celery.utils.log import get_task_logger

from proj.celery import app

logger = get_logger(__name__)

@app.task(bind=True, base=AbortableTask)
def long_running_task(self):
 results = []
 for i in range(100):
 # check after every 5 iterations...
 # (or alternatively, check when some timer is due)
 if not i % 5:
 if self.is_aborted():
 # respect aborted state, and terminate gracefully.
 logger.warning('Task aborted')
 return
 value = do_something_expensive(i)
 results.append(y)
 logger.info('Task complete')
 return results

In the producer:

from __future__ import absolute_import

import time

from proj.tasks import MyLongRunningTask

def myview(request):
 # result is of type AbortableAsyncResult
 result = long_running_task.delay()

 # abort the task after 10 seconds
 time.sleep(10)
 result.abort()

After the result.abort() call, the task execution is not
aborted immediately. In fact, it is not guaranteed to abort at all. Keep
checking result.state status, or call result.get(timeout=) to
have it block until the task is finished.

Note

In order to abort tasks, there needs to be communication between the
producer and the consumer. This is currently implemented through the
database backend. Therefore, this class will only work with the
database backends.

	
class celery.contrib.abortable.AbortableAsyncResult(id, backend=None, task_name=None, app=None, parent=None)

	Represents a abortable result.

Specifically, this gives the AsyncResult a abort() method,
which sets the state of the underlying Task to ‘ABORTED’.

	
abort()

	Set the state of the task to ABORTED.

Abortable tasks monitor their state at regular intervals and
terminate execution if so.

Be aware that invoking this method does not guarantee when the
task will be aborted (or even if the task will be aborted at
all).

	
is_aborted()

	Return True if the task is (being) aborted.

	
class celery.contrib.abortable.AbortableTask

	A celery task that serves as a base class for all Task‘s
that support aborting during execution.

All subclasses of AbortableTask must call the
is_aborted() method periodically and act accordingly when
the call evaluates to True.

	
AsyncResult(task_id)

	Return the accompanying AbortableAsyncResult instance.

	
is_aborted(**kwargs)

	Checks against the backend whether this
AbortableAsyncResult is ABORTED.

Always return False in case the task_id parameter
refers to a regular (non-abortable) Task.

Be aware that invoking this method will cause a hit in the
backend (for example a database query), so find a good balance
between calling it regularly (for responsiveness), but not too
often (for performance).

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.contrib.batches

Experimental task class that buffers messages and processes them as a list.

Warning

For this to work you have to set
CELERYD_PREFETCH_MULTIPLIER to zero, or some value where
the final multiplied value is higher than flush_every.

In the future we hope to add the ability to direct batching tasks
to a channel with different QoS requirements than the task channel.

Simple Example

A click counter that flushes the buffer every 100 messages, and every
10 seconds. Does not do anything with the data, but can easily be modified
to store it in a database.

Flush after 100 messages, or 10 seconds.
@app.task(base=Batches, flush_every=100, flush_interval=10)
def count_click(requests):
 from collections import Counter
 count = Counter(request.kwargs['url'] for request in requests)
 for url, count in count.items():
 print('>>> Clicks: {0} -> {1}'.format(url, count))

Then you can ask for a click to be counted by doing:

>>> count_click.delay(url='http://example.com')

Example returning results

An interface to the Web of Trust API that flushes the buffer every 100
messages, and every 10 seconds.

import requests
from urlparse import urlparse

from celery.contrib.batches import Batches

wot_api_target = 'https://api.mywot.com/0.4/public_link_json'

@app.task(base=Batches, flush_every=100, flush_interval=10)
def wot_api(requests):
 sig = lambda url: url
 reponses = wot_api_real(
 (sig(*request.args, **request.kwargs) for request in requests)
)
 # use mark_as_done to manually return response data
 for response, request in zip(reponses, requests):
 app.backend.mark_as_done(request.id, response)

def wot_api_real(urls):
 domains = [urlparse(url).netloc for url in urls]
 response = requests.get(
 wot_api_target,
 params={'hosts': ('/').join(set(domains)) + '/'}
)
 return [response.json()[domain] for domain in domains]

Using the API is done as follows:

>>> wot_api.delay('http://example.com')

Note

If you don’t have an app instance then use the current app proxy
instead:

from celery import current_app
app.backend.mark_as_done(request.id, response)

API

	
class celery.contrib.batches.Batches

	
	
Strategy(task, app, consumer)

	

	
apply_buffer(requests, args=(), kwargs={})

	

	
flush(requests)

	

	
flush_every = 10

	Maximum number of message in buffer.

	
flush_interval = 30

	Timeout in seconds before buffer is flushed anyway.

	
run(requests)

	

	
class celery.contrib.batches.SimpleRequest(id, name, args, kwargs, delivery_info, hostname)

	Pickleable request.

	
args = ()

	positional arguments

	
delivery_info = None

	message delivery information.

	
classmethod from_request(request)

	

	
hostname = None

	worker node name

	
id = None

	task id

	
kwargs = {}

	keyword arguments

	
name = None

	task name

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.contrib.migrate

	celery.contrib.migrate

celery.contrib.migrate

Migration tools.

	
exception celery.contrib.migrate.StopFiltering

	

	
class celery.contrib.migrate.State

	
	
count = 0

	

	
filtered = 0

	

	
strtotal

	

	
total_apx = 0

	

	
celery.contrib.migrate.republish(producer, message, exchange=None, routing_key=None, remove_props=[u'application_headers', u'content_type', u'content_encoding', u'headers'])

	

	
celery.contrib.migrate.migrate_task(producer, body_, message, queues=None)

	

	
celery.contrib.migrate.migrate_tasks(source, dest, migrate=<function migrate_task>, app=None, queues=None, **kwargs)

	

	
celery.contrib.migrate.move(predicate, connection=None, exchange=None, routing_key=None, source=None, app=None, callback=None, limit=None, transform=None, **kwargs)

	Find tasks by filtering them and move the tasks to a new queue.

	Parameters:	
	predicate – Filter function used to decide which messages
to move. Must accept the standard signature of (body, message)
used by Kombu consumer callbacks. If the predicate wants the message
to be moved it must return either:

	a tuple of (exchange, routing_key), or

	a Queue instance, or

	any other true value which means the specified
exchange and routing_key arguments will be used.

	connection – Custom connection to use.

	source – Optional list of source queues to use instead of the
default (which is the queues in CELERY_QUEUES).
This list can also contain new Queue instances.

	exchange – Default destination exchange.

	routing_key – Default destination routing key.

	limit – Limit number of messages to filter.

	callback – Callback called after message moved,
with signature (state, body, message).

	transform – Optional function to transform the return
value (destination) of the filter function.

Also supports the same keyword arguments as start_filter().

To demonstrate, the move_task_by_id() operation can be implemented
like this:

def is_wanted_task(body, message):
 if body['id'] == wanted_id:
 return Queue('foo', exchange=Exchange('foo'),
 routing_key='foo')

move(is_wanted_task)

or with a transform:

def transform(value):
 if isinstance(value, string_t):
 return Queue(value, Exchange(value), value)
 return value

move(is_wanted_task, transform=transform)

The predicate may also return a tuple of (exchange, routing_key)
to specify the destination to where the task should be moved,
or a Queue instance.
Any other true value means that the task will be moved to the
default exchange/routing_key.

	
celery.contrib.migrate.task_id_eq(task_id, body, message)

	

	
celery.contrib.migrate.task_id_in(ids, body, message)

	

	
celery.contrib.migrate.start_filter(app, conn, filter, limit=None, timeout=1.0, ack_messages=False, tasks=None, queues=None, callback=None, forever=False, on_declare_queue=None, consume_from=None, state=None, accept=None, **kwargs)

	

	
celery.contrib.migrate.move_task_by_id(task_id, dest, **kwargs)

	Find a task by id and move it to another queue.

	Parameters:	
	task_id – Id of task to move.

	dest – Destination queue.

Also supports the same keyword arguments as move().

	
celery.contrib.migrate.move_by_idmap(map, **kwargs)

	Moves tasks by matching from a task_id: queue mapping,
where queue is a queue to move the task to.

Example:

>>> move_by_idmap({
... '5bee6e82-f4ac-468e-bd3d-13e8600250bc': Queue('name'),
... 'ada8652d-aef3-466b-abd2-becdaf1b82b3': Queue('name'),
... '3a2b140d-7db1-41ba-ac90-c36a0ef4ab1f': Queue('name')},
... queues=['hipri'])

	
celery.contrib.migrate.move_by_taskmap(map, **kwargs)

	Moves tasks by matching from a task_name: queue mapping,
where queue is the queue to move the task to.

Example:

>>> move_by_taskmap({
... 'tasks.add': Queue('name'),
... 'tasks.mul': Queue('name'),
... })

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.contrib.sphinx

Sphinx documentation plugin

Usage

Add the extension to your docs/conf.py configuration module:

extensions = (...,
 'celery.contrib.sphinx')

If you would like to change the prefix for tasks in reference documentation
then you can change the celery_task_prefix configuration value:

celery_task_prefix = '(task)' # < default

With the extension installed autodoc will automatically find
task decorated objects and generate the correct (as well as
add a (task) prefix), and you can also refer to the tasks
using :task:proj.tasks.add syntax.

Use .. autotask:: to manually document a task.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.contrib.rdb

Remote debugger for Celery tasks running in multiprocessing pool workers.
Inspired by http://snippets.dzone.com/posts/show/7248

Usage

from celery.contrib import rdb
from celery import task

@task()
def add(x, y):
 result = x + y
 rdb.set_trace()
 return result

Environment Variables

	
CELERY_RDB_HOST

	Hostname to bind to. Default is ‘127.0.01’, which means the socket
will only be accessible from the local host.

	
CELERY_RDB_PORT

	Base port to bind to. Default is 6899.
The debugger will try to find an available port starting from the
base port. The selected port will be logged by the worker.

	
celery.contrib.rdb.set_trace(frame=None)

	Set breakpoint at current location, or a specified frame

	
celery.contrib.rdb.debugger()

	Return the current debugger instance (if any),
or creates a new one.

	
class celery.contrib.rdb.Rdb(host='127.0.0.1', port=6899, port_search_limit=100, port_skew=0, out=<open file '<stdout>', mode 'w'>)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.contrib.methods

Task decorator that supports creating tasks out of methods.

Examples

from celery.contrib.methods import task

class X(object):

 @task()
 def add(self, x, y):
 return x + y

or with any task decorator:

from celery.contrib.methods import task_method

class X(object):

 @app.task(filter=task_method)
 def add(self, x, y):
 return x + y

Note

The task must use the new Task base class (celery.Task),
and the old base class using classmethods (celery.task.Task,
celery.task.base.Task).

This means that you have to use the task decorator from a Celery app
instance, and not the old-API:

from celery import task # BAD
from celery.task import task # ALSO BAD

GOOD:
app = Celery(...)

@app.task(filter=task_method)
def foo(self): pass

ALSO GOOD:
from celery import current_app

@current_app.task(filter=task_method)
def foo(self): pass

ALSO GOOD:
from celery import shared_task

@shared_task(filter=task_method)
def foo(self): pass

Caveats

	Automatic naming won’t be able to know what the class name is.

The name will still be module_name + task_name,
so two methods with the same name in the same module will collide
so that only one task can run:

class A(object):

 @task()
 def add(self, x, y):
 return x + y

class B(object):

 @task()
 def add(self, x, y):
 return x + y

would have to be written as:

class A(object):
 @task(name='A.add')
 def add(self, x, y):
 return x + y

class B(object):
 @task(name='B.add')
 def add(self, x, y):
 return x + y

	
class celery.contrib.methods.task_method(task, *args, **kwargs)

	

	
celery.contrib.methods.task(*args, **kwargs)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.events

	celery.events

celery.events

Events is a stream of messages sent for certain actions occurring
in the worker (and clients if CELERY_SEND_TASK_SENT_EVENT
is enabled), used for monitoring purposes.

	
class celery.events.Events(app=None)

	
	
Dispatcher

	

	
Receiver

	

	
State

	

	
default_dispatcher(*args, **kwds)

	

	
celery.events.Event(type, _fields=None, __dict__=<type 'dict'>, __now__=<built-in function time>, **fields)

	Create an event.

An event is a dictionary, the only required field is type.
A timestamp field will be set to the current time if not provided.

	
class celery.events.EventDispatcher(connection=None, hostname=None, enabled=True, channel=None, buffer_while_offline=True, app=None, serializer=None, groups=None)

	Dispatches event messages.

	Parameters:	
	connection – Connection to the broker.

	hostname – Hostname to identify ourselves as,
by default uses the hostname returned by
anon_nodename().

	groups – List of groups to send events for. send() will
ignore send requests to groups not in this list.
If this is None, all events will be sent. Example groups
include "task" and "worker".

	enabled – Set to False to not actually publish any events,
making send() a noop operation.

	channel – Can be used instead of connection to specify
an exact channel to use when sending events.

	buffer_while_offline – If enabled events will be buffered
while the connection is down. flush() must be called
as soon as the connection is re-established.

You need to close() this after use.

	
DISABLED_TRANSPORTS = set(['sql'])

	

	
app = None

	

	
close()

	Close the event dispatcher.

	
disable()

	

	
enable()

	

	
extend_buffer(other)

	Copies the outbound buffer of another instance.

	
flush()

	Flushes the outbound buffer.

	
on_disabled = None

	

	
on_enabled = None

	

	
publish(type, fields, producer, retry=False, retry_policy=None, blind=False, utcoffset=<function utcoffset>, Event=<function Event>)

	Publish event using a custom Producer [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Producer]
instance.

	Parameters:	
	type – Event type name, with group separated by dash (-).

	fields – Dictionary of event fields, must be json serializable.

	producer – Producer [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Producer] instance to use,
only the publish method will be called.

	retry – Retry in the event of connection failure.

	retry_policy – Dict of custom retry policy, see
ensure() [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Connection.ensure].

	blind – Don’t set logical clock value (also do not forward
the internal logical clock).

	Event – Event type used to create event,
defaults to Event().

	utcoffset – Function returning the current utcoffset in hours.

	
publisher

	

	
send(type, blind=False, **fields)

	Send event.

	Parameters:	
	type – Event type name, with group separated by dash (-).

	retry – Retry in the event of connection failure.

	retry_policy – Dict of custom retry policy, see
ensure() [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Connection.ensure].

	blind – Don’t set logical clock value (also do not forward
the internal logical clock).

	Event – Event type used to create event,
defaults to Event().

	utcoffset – Function returning the current utcoffset in hours.

	**fields – Event fields, must be json serializable.

	
warn_if_yajl()

	

	
class celery.events.EventReceiver(channel, handlers=None, routing_key='#', node_id=None, app=None, queue_prefix='celeryev', accept=None)

	Capture events.

	Parameters:	
	connection – Connection to the broker.

	handlers – Event handlers.

handlers is a dict of event types and their handlers,
the special handler “*” captures all events that doesn’t have a
handler.

	
app = None

	

	
capture(limit=None, timeout=None, wakeup=True)

	Open up a consumer capturing events.

This has to run in the main process, and it will never stop
unless EventDispatcher.should_stop is set to True, or
forced via KeyboardInterrupt [https://docs.python.org/dev/library/exceptions.html#KeyboardInterrupt] or SystemExit [https://docs.python.org/dev/library/exceptions.html#SystemExit].

	
connection

	

	
event_from_message(body, localize=True, now=<built-in function time>, tzfields=<operator.itemgetter object>, adjust_timestamp=<function adjust_timestamp>, CLIENT_CLOCK_SKEW=-1)

	

	
get_consumers(Consumer, channel)

	

	
itercapture(limit=None, timeout=None, wakeup=True)

	

	
on_consume_ready(connection, channel, consumers, wakeup=True, **kwargs)

	

	
process(type, event)

	Process the received event by dispatching it to the appropriate
handler.

	
wakeup_workers(channel=None)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.events.state

	celery.events.state

celery.events.state

This module implements a datastructure used to keep
track of the state of a cluster of workers and the tasks
it is working on (by consuming events).

For every event consumed the state is updated,
so the state represents the state of the cluster
at the time of the last event.

Snapshots (celery.events.snapshot) can be used to
take “pictures” of this state at regular intervals
to e.g. store that in a database.

	
class celery.events.state.Worker(hostname=None, pid=None, freq=60, heartbeats=None, clock=0, active=None, processed=None, loadavg=None, sw_ident=None, sw_ver=None, sw_sys=None)

	Worker State.

	
active

	

	
alive

	

	
clock

	

	
event

	

	
expire_window = 200

	

	
freq

	

	
heartbeat_expires

	

	
heartbeat_max = 4

	

	
heartbeats

	

	
hostname

	

	
id

	

	
loadavg

	

	
on_heartbeat(*args, **kwargs)

	

	
on_offline(*args, **kwargs)

	

	
on_online(*args, **kwargs)

	

	
pid

	

	
processed

	

	
status_string

	

	
sw_ident

	

	
sw_sys

	

	
sw_ver

	

	
update(f, **kw)

	

	
update_heartbeat(*args, **kwargs)

	

	
class celery.events.state.Task(uuid=None, **kwargs)

	Task State.

	
args = None

	

	
as_dict()

	

	
client = None

	

	
clock = 0

	

	
eta = None

	

	
event(type_, timestamp=None, local_received=None, fields=None, precedence=<function precedence>, items=<function items>, dict=<type 'dict'>, PENDING='PENDING', RECEIVED='RECEIVED', STARTED='STARTED', FAILURE='FAILURE', RETRY='RETRY', SUCCESS='SUCCESS', REVOKED='REVOKED')

	

	
exception = None

	

	
exchange = None

	

	
expires = None

	

	
failed = None

	

	
info(fields=None, extra=[])

	Information about this task suitable for on-screen display.

	
kwargs = None

	

	
merge(*args, **kwargs)

	

	
merge_rules = {'RECEIVED': ('name', 'args', 'kwargs', 'retries', 'eta', 'expires')}

	How to merge out of order events.
Disorder is detected by logical ordering (e.g. task-received
must have happened before a task-failed event).

A merge rule consists of a state and a list of fields to keep from
that state. (RECEIVED, ('name', 'args'), means the name and args
fields are always taken from the RECEIVED state, and any values for
these fields received before or after is simply ignored.

	
name = None

	

	
on_failed(*args, **kwargs)

	

	
on_received(*args, **kwargs)

	

	
on_retried(*args, **kwargs)

	

	
on_revoked(*args, **kwargs)

	

	
on_sent(*args, **kwargs)

	

	
on_started(*args, **kwargs)

	

	
on_succeeded(*args, **kwargs)

	

	
on_unknown_event(*args, **kwargs)

	

	
origin

	

	
ready

	

	
received = None

	

	
result = None

	

	
retried = None

	

	
retries = None

	

	
revoked = None

	

	
routing_key = None

	

	
runtime = None

	

	
sent = None

	

	
started = None

	

	
state = 'PENDING'

	

	
succeeded = None

	

	
timestamp = None

	

	
traceback = None

	

	
update(*args, **kwargs)

	

	
worker = None

	

	
class celery.events.state.State(callback=None, workers=None, tasks=None, taskheap=None, max_workers_in_memory=5000, max_tasks_in_memory=10000, on_node_join=None, on_node_leave=None)

	Records clusters state.

	
class Task(uuid=None, **kwargs)

	Task State.

	
args = None

	

	
as_dict()

	

	
client = None

	

	
clock = 0

	

	
eta = None

	

	
event(type_, timestamp=None, local_received=None, fields=None, precedence=<function precedence>, items=<function items>, dict=<type 'dict'>, PENDING='PENDING', RECEIVED='RECEIVED', STARTED='STARTED', FAILURE='FAILURE', RETRY='RETRY', SUCCESS='SUCCESS', REVOKED='REVOKED')

	

	
exception = None

	

	
exchange = None

	

	
expires = None

	

	
failed = None

	

	
info(fields=None, extra=[])

	Information about this task suitable for on-screen display.

	
kwargs = None

	

	
merge(*args, **kwargs)

	

	
merge_rules = {'RECEIVED': ('name', 'args', 'kwargs', 'retries', 'eta', 'expires')}

	

	
name = None

	

	
on_failed(*args, **kwargs)

	

	
on_received(*args, **kwargs)

	

	
on_retried(*args, **kwargs)

	

	
on_revoked(*args, **kwargs)

	

	
on_sent(*args, **kwargs)

	

	
on_started(*args, **kwargs)

	

	
on_succeeded(*args, **kwargs)

	

	
on_unknown_event(*args, **kwargs)

	

	
origin

	

	
ready

	

	
received = None

	

	
result = None

	

	
retried = None

	

	
retries = None

	

	
revoked = None

	

	
routing_key = None

	

	
runtime = None

	

	
sent = None

	

	
started = None

	

	
state = 'PENDING'

	

	
succeeded = None

	

	
timestamp = None

	

	
traceback = None

	

	
update(*args, **kwargs)

	

	
worker = None

	

	
class Worker(hostname=None, pid=None, freq=60, heartbeats=None, clock=0, active=None, processed=None, loadavg=None, sw_ident=None, sw_ver=None, sw_sys=None)

	Worker State.

	
active

	

	
alive

	

	
clock

	

	
event

	

	
expire_window = 200

	

	
freq

	

	
heartbeat_expires

	

	
heartbeat_max = 4

	

	
heartbeats

	

	
hostname

	

	
id

	

	
loadavg

	

	
on_heartbeat(*args, **kwargs)

	

	
on_offline(*args, **kwargs)

	

	
on_online(*args, **kwargs)

	

	
pid

	

	
processed

	

	
status_string

	

	
sw_ident

	

	
sw_sys

	

	
sw_ver

	

	
update(f, **kw)

	

	
update_heartbeat(*args, **kwargs)

	

	
alive_workers()

	Return a list of (seemingly) alive workers.

	
clear(ready=True)

	

	
clear_tasks(ready=True)

	

	
event(event)

	

	
event_count = 0

	

	
freeze_while(fun, *args, **kwargs)

	

	
get_or_create_task(uuid)

	Get or create task by uuid.

	
get_or_create_worker(hostname, **kwargs)

	Get or create worker by hostname.

Return tuple of (worker, was_created).

	
heap_multiplier = 4

	

	
itertasks(limit=None)

	

	
rebuild_taskheap(timetuple=<class 'kombu.clocks.timetuple'>)

	

	
task_count = 0

	

	
task_event(type_, fields)

	Deprecated, use event().

	
task_types()

	Return a list of all seen task types.

	
tasks_by_time(limit=None)

	Generator giving tasks ordered by time,
in (uuid, Task) tuples.

	
tasks_by_timestamp(limit=None)

	Generator giving tasks ordered by time,
in (uuid, Task) tuples.

	
tasks_by_type(name, limit=None)

	Get all tasks by type.

Return a list of (uuid, Task) tuples.

	
tasks_by_worker(hostname, limit=None)

	Get all tasks by worker.

	
worker_event(type_, fields)

	Deprecated, use event().

	
celery.events.state.heartbeat_expires(timestamp, freq=60, expire_window=200, Decimal=<class 'decimal.Decimal'>, float=<type 'float'>, isinstance=<built-in function isinstance>)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.beat

	celery.beat

celery.beat

The periodic task scheduler.

	
exception celery.beat.SchedulingError

	An error occured while scheduling a task.

	
class celery.beat.ScheduleEntry(name=None, task=None, last_run_at=None, total_run_count=None, schedule=None, args=(), kwargs={}, options={}, relative=False, app=None)

	An entry in the scheduler.

	Parameters:	
	name – see name.

	schedule – see schedule.

	args – see args.

	kwargs – see kwargs.

	options – see options.

	last_run_at – see last_run_at.

	total_run_count – see total_run_count.

	relative – Is the time relative to when the server starts?

	
args = None

	Positional arguments to apply.

	
is_due()

	See is_due().

	
kwargs = None

	Keyword arguments to apply.

	
last_run_at = None

	The time and date of when this task was last scheduled.

	
name = None

	The task name

	
next(last_run_at=None)

	Return a new instance of the same class, but with
its date and count fields updated.

	
options = None

	Task execution options.

	
schedule = None

	The schedule (run_every/crontab)

	
total_run_count = 0

	Total number of times this task has been scheduled.

	
update(other)

	Update values from another entry.

Does only update “editable” fields (task, schedule, args, kwargs,
options).

	
class celery.beat.Scheduler(app, schedule=None, max_interval=None, Publisher=None, lazy=False, sync_every_tasks=None, **kwargs)

	Scheduler for periodic tasks.

The celery beat program may instantiate this class
multiple times for introspection purposes, but then with the
lazy argument set. It is important for subclasses to
be idempotent when this argument is set.

	Parameters:	
	schedule – see schedule.

	max_interval – see max_interval.

	lazy – Do not set up the schedule.

	
Entry

	alias of ScheduleEntry

	
add(**kwargs)

	

	
apply_async(entry, publisher=None, **kwargs)

	

	
close()

	

	
connection

	

	
get_schedule()

	

	
info

	

	
install_default_entries(data)

	

	
logger = <celery.utils.log.ProcessAwareLogger object>

	

	
max_interval = 300

	Maximum time to sleep between re-checking the schedule.

	
maybe_due(entry, publisher=None)

	

	
merge_inplace(b)

	

	
publisher

	

	
reserve(entry)

	

	
schedule

	The schedule dict/shelve.

	
send_task(*args, **kwargs)

	

	
set_schedule(schedule)

	

	
setup_schedule()

	

	
should_sync()

	

	
sync()

	

	
sync_every = 180

	How often to sync the schedule (3 minutes by default)

	
sync_every_tasks = None

	How many tasks can be called before a sync is forced.

	
tick()

	Run a tick, that is one iteration of the scheduler.

Executes all due tasks.

	
update_from_dict(dict_)

	

	
class celery.beat.PersistentScheduler(*args, **kwargs)

	
	
close()

	

	
get_schedule()

	

	
info

	

	
known_suffixes = ('', '.db', '.dat', '.bak', '.dir')

	

	
persistence = <module 'shelve' from '/usr/lib/python2.7/shelve.pyc'>

	

	
schedule

	

	
set_schedule(schedule)

	

	
setup_schedule()

	

	
sync()

	

	
class celery.beat.Service(app, max_interval=None, schedule_filename=None, scheduler_cls=None)

	
	
get_scheduler(lazy=False)

	

	
scheduler

	

	
scheduler_cls

	alias of PersistentScheduler

	
start(embedded_process=False, drift=-0.01)

	

	
stop(wait=False)

	

	
sync()

	

	
celery.beat.EmbeddedService(app, max_interval=None, **kwargs)

	Return embedded clock service.

	Parameters:	thread – Run threaded instead of as a separate process.
Uses multiprocessing [https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing] by default, if available.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.apps.worker

	celery.apps.worker

celery.apps.worker

This module is the ‘program-version’ of celery.worker.

It does everything necessary to run that module
as an actual application, like installing signal handlers,
platform tweaks, and so on.

	
class celery.apps.worker.Worker(app=None, hostname=None, **kwargs)

	
	
extra_info()

	

	
install_platform_tweaks(worker)

	Install platform specific tweaks and workarounds.

	
on_after_init(purge=False, no_color=None, redirect_stdouts=None, redirect_stdouts_level=None, **kwargs)

	

	
on_before_init(**kwargs)

	

	
on_consumer_ready(consumer)

	

	
on_init_blueprint()

	

	
on_start()

	

	
osx_proxy_detection_workaround()

	See http://github.com/celery/celery/issues#issue/161

	
purge_messages()

	

	
set_process_status(info)

	

	
setup_logging(colorize=None)

	

	
startup_info()

	

	
tasklist(include_builtins=True, sep=u'\n', int_=u'celery.')

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.apps.beat

	celery.apps.beat

celery.apps.beat

This module is the ‘program-version’ of celery.beat.

It does everything necessary to run that module
as an actual application, like installing signal handlers
and so on.

	
class celery.apps.beat.Beat(max_interval=None, app=None, socket_timeout=30, pidfile=None, no_color=None, loglevel=None, logfile=None, schedule=None, scheduler_cls=None, redirect_stdouts=None, redirect_stdouts_level=None, **kwargs)

	
	
class Service(app, max_interval=None, schedule_filename=None, scheduler_cls=None)

	
	
get_scheduler(lazy=False)

	

	
scheduler

	

	
scheduler_cls

	alias of PersistentScheduler

	
start(embedded_process=False, drift=-0.01)

	

	
stop(wait=False)

	

	
sync()

	

	
app = None

	

	
init_loader()

	

	
install_sync_handler(beat)

	Install a SIGTERM + SIGINT handler that saves
the beat schedule.

	
run()

	

	
set_process_title()

	

	
setup_logging(colorize=None)

	

	
start_scheduler()

	

	
startup_info(beat)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker

	celery.worker

celery.worker

WorkController can be used to instantiate in-process workers.

The worker consists of several components, all managed by bootsteps
(mod:celery.bootsteps).

	
class celery.worker.WorkController(app=None, hostname=None, **kwargs)

	Unmanaged worker instance.

	
class Blueprint(steps=None, name=None, app=None, on_start=None, on_close=None, on_stopped=None)

	Worker bootstep blueprint.

	
default_steps = set(['celery.worker.components:Consumer', 'celery.worker.components:Timer', 'celery.worker.components:Queues', 'celery.worker.autoreload:WorkerComponent', 'celery.worker.components:Hub', 'celery.worker.components:Beat', 'celery.worker.components:Pool', 'celery.worker.autoscale:WorkerComponent', 'celery.worker.components:StateDB'])

	

	
name = 'Worker'

	

	
app = None

	

	
blueprint = None

	

	
info()

	

	
on_after_init(**kwargs)

	

	
on_before_init(**kwargs)

	

	
on_close()

	

	
on_consumer_ready(consumer)

	

	
on_init_blueprint()

	

	
on_start()

	

	
on_stopped()

	

	
pidlock = None

	

	
pool = None

	

	
prepare_args(**kwargs)

	

	
register_with_event_loop(hub)

	

	
reload(modules=None, reload=False, reloader=None)

	

	
rusage()

	

	
semaphore = None

	

	
setup_defaults(concurrency=None, loglevel=None, logfile=None, send_events=None, pool_cls=None, consumer_cls=None, timer_cls=None, timer_precision=None, autoscaler_cls=None, autoreloader_cls=None, pool_putlocks=None, pool_restarts=None, force_execv=None, state_db=None, schedule_filename=None, scheduler_cls=None, task_time_limit=None, task_soft_time_limit=None, max_tasks_per_child=None, prefetch_multiplier=None, disable_rate_limits=None, worker_lost_wait=None, **_kw)

	

	
setup_includes(includes)

	

	
setup_instance(queues=None, ready_callback=None, pidfile=None, include=None, use_eventloop=None, exclude_queues=None, **kwargs)

	

	
setup_queues(include, exclude=None)

	

	
should_use_eventloop()

	

	
signal_consumer_close()

	

	
start()

	Starts the workers main loop.

	
state

	

	
stats()

	

	
stop(in_sighandler=False)

	Graceful shutdown of the worker server.

	
terminate(in_sighandler=False)

	Not so graceful shutdown of the worker server.

	
celery.worker.default_nodename(hostname)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.consumer

	celery.worker.consumer

celery.worker.consumer

This module contains the components responsible for consuming messages
from the broker, processing the messages and keeping the broker connections
up and running.

	
class celery.worker.consumer.Consumer(on_task_request, init_callback=<function noop>, hostname=None, pool=None, app=None, timer=None, controller=None, hub=None, amqheartbeat=None, worker_options=None, disable_rate_limits=False, initial_prefetch_count=2, prefetch_multiplier=1, **kwargs)

	
	
class Blueprint(steps=None, name=None, app=None, on_start=None, on_close=None, on_stopped=None)

	
	
default_steps = ['celery.worker.consumer:Connection', 'celery.worker.consumer:Mingle', 'celery.worker.consumer:Events', 'celery.worker.consumer:Gossip', 'celery.worker.consumer:Heart', 'celery.worker.consumer:Control', 'celery.worker.consumer:Tasks', 'celery.worker.consumer:Evloop', 'celery.worker.consumer:Agent']

	

	
name = 'Consumer'

	

	
shutdown(parent)

	

	
Strategies

	alias of dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
add_task_queue(queue, exchange=None, exchange_type=None, routing_key=None, **options)

	

	
apply_eta_task(task)

	Method called by the timer to apply a task with an
ETA/countdown.

	
bucket_for_task(type)

	

	
cancel_task_queue(queue)

	

	
connect()

	Establish the broker connection.

Will retry establishing the connection if the
BROKER_CONNECTION_RETRY setting is enabled

	
create_task_handler()

	

	
in_shutdown = False

	set when consumer is shutting down.

	
init_callback = None

	Optional callback called the first time the worker
is ready to receive tasks.

	
loop_args()

	

	
on_close()

	

	
on_decode_error(message, exc)

	Callback called if an error occurs while decoding
a message received.

Simply logs the error and acknowledges the message so it
doesn’t enter a loop.

	Parameters:	
	message – The message with errors.

	exc – The original exception instance.

	
on_invalid_task(body, message, exc)

	

	
on_ready()

	

	
on_unknown_message(body, message)

	

	
on_unknown_task(body, message, exc)

	

	
pool = None

	The current worker pool instance.

	
register_with_event_loop(hub)

	

	
reset_rate_limits()

	

	
restart_count = -1

	

	
shutdown()

	

	
start()

	

	
stop()

	

	
timer = None

	A timer used for high-priority internal tasks, such
as sending heartbeats.

	
update_strategies()

	

	
class celery.worker.consumer.Connection(c, **kwargs)

	
	
info(c, params='N/A')

	

	
name = u'celery.worker.consumer.Connection'

	

	
shutdown(c)

	

	
start(c)

	

	
class celery.worker.consumer.Events(c, send_events=None, **kwargs)

	
	
name = u'celery.worker.consumer.Events'

	

	
requires = (step:celery.worker.consumer.Connection{()},)

	

	
shutdown(c)

	

	
start(c)

	

	
stop(c)

	

	
class celery.worker.consumer.Heart(c, without_heartbeat=False, heartbeat_interval=None, **kwargs)

	
	
name = u'celery.worker.consumer.Heart'

	

	
requires = (step:celery.worker.consumer.Events{(step:celery.worker.consumer.Connection{()},)},)

	

	
shutdown(c)

	

	
start(c)

	

	
stop(c)

	

	
class celery.worker.consumer.Control(c, **kwargs)

	
	
include_if(c)

	

	
name = u'celery.worker.consumer.Control'

	

	
requires = (step:celery.worker.consumer.Tasks{(step:celery.worker.consumer.Mingle{(step:celery.worker.consumer.Events{(step:celery.worker.consumer.Connection{()},)},)},)},)

	

	
class celery.worker.consumer.Tasks(c, **kwargs)

	
	
info(c)

	

	
name = u'celery.worker.consumer.Tasks'

	

	
requires = (step:celery.worker.consumer.Mingle{(step:celery.worker.consumer.Events{(step:celery.worker.consumer.Connection{()},)},)},)

	

	
shutdown(c)

	

	
start(c)

	

	
stop(c)

	

	
class celery.worker.consumer.Evloop(parent, **kwargs)

	
	
label = 'event loop'

	

	
last = True

	

	
name = u'celery.worker.consumer.Evloop'

	

	
patch_all(c)

	

	
start(c)

	

	
class celery.worker.consumer.Agent(c, **kwargs)

	
	
conditional = True

	

	
create(c)

	

	
name = u'celery.worker.consumer.Agent'

	

	
requires = (step:celery.worker.consumer.Connection{()},)

	

	
class celery.worker.consumer.Mingle(c, without_mingle=False, **kwargs)

	
	
compatible_transport(app)

	

	
compatible_transports = set(['redis', 'amqp'])

	

	
label = 'Mingle'

	

	
name = u'celery.worker.consumer.Mingle'

	

	
requires = (step:celery.worker.consumer.Events{(step:celery.worker.consumer.Connection{()},)},)

	

	
start(c)

	

	
class celery.worker.consumer.Gossip(c, without_gossip=False, interval=5.0, **kwargs)

	
	
call_task(task)

	

	
compatible_transport(app)

	

	
compatible_transports = set(['redis', 'amqp'])

	

	
election(id, topic, action=None)

	

	
get_consumers(channel)

	

	
label = 'Gossip'

	

	
name = u'celery.worker.consumer.Gossip'

	

	
on_elect(event)

	

	
on_elect_ack(event)

	

	
on_message(prepare, message)

	

	
on_node_join(worker)

	

	
on_node_leave(worker)

	

	
on_node_lost(worker)

	

	
periodic()

	

	
register_timer()

	

	
requires = (step:celery.worker.consumer.Mingle{(step:celery.worker.consumer.Events{(step:celery.worker.consumer.Connection{()},)},)},)

	

	
start(c)

	

	
celery.worker.consumer.dump_body(m, body)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.job

	celery.worker.job

celery.worker.job

This module defines the Request class,
which specifies how tasks are executed.

	
class celery.worker.job.Request(body, on_ack=<function noop>, hostname=None, eventer=None, app=None, connection_errors=None, request_dict=None, message=None, task=None, on_reject=<function noop>, **opts)

	A request for task execution.

	
acknowledge()

	Acknowledge task.

	
acknowledged

	

	
app

	

	
args

	

	
connection_errors

	

	
correlation_id

	

	
delivery_info

	

	
error_msg = u' Task %(name)s[%(id)s] %(description)s: %(exc)s\n '

	Format string used to log task failure.

	
eta

	

	
eventer

	

	
execute(loglevel=None, logfile=None)

	Execute the task in a trace_task().

	Parameters:	
	loglevel – The loglevel used by the task.

	logfile – The logfile used by the task.

	
execute_using_pool(pool, **kwargs)

	Used by the worker to send this task to the pool.

	Parameters:	pool – A celery.concurrency.base.TaskPool instance.

	Raises:	celery.exceptions.TaskRevokedError – if the task was revoked
and ignored.

	
expires

	

	
extend_with_default_kwargs()

	Extend the tasks keyword arguments with standard task arguments.

Currently these are logfile, loglevel, task_id,
task_name, task_retries, and delivery_info.

See celery.task.base.Task.run() for more information.

Magic keyword arguments are deprecated and will be removed
in version 4.0.

	
hostname

	

	
id

	

	
ignored_msg = u' Task %(name)s[%(id)s] %(description)s\n '

	

	
info(safe=False)

	

	
internal_error_msg = u' Task %(name)s[%(id)s] %(description)s: %(exc)s\n '

	Format string used to log internal error.

	
kwargs

	

	
maybe_expire()

	If expired, mark the task as revoked.

	
name

	

	
on_accepted(pid, time_accepted)

	Handler called when task is accepted by worker pool.

	
on_ack

	

	
on_failure(exc_info)

	Handler called if the task raised an exception.

	
on_reject

	

	
on_retry(exc_info)

	Handler called if the task should be retried.

	
on_success(ret_value, now=None, nowfun=<function _monotonic>)

	Handler called if the task was successfully processed.

	
on_timeout(soft, timeout)

	Handler called if the task times out.

	
reject(requeue=False)

	

	
rejected_msg = u' Task %(name)s[%(id)s] %(exc)s\n '

	

	
reply_to

	

	
repr_result(result, maxlen=128)

	

	
request_dict

	

	
retry_msg = u'Task %(name)s[%(id)s] retry: %(exc)s'

	Format string used to log task retry.

	
revoked()

	If revoked, skip task and mark state.

	
send_event(type, **fields)

	

	
shortinfo()

	

	
store_errors

	

	
success_msg = u' Task %(name)s[%(id)s] succeeded in %(runtime)ss: %(return_value)s\n '

	Format string used to log task success.

	
task

	

	
task_id

	

	
task_name

	

	
terminate(pool, signal=None)

	

	
time_start

	

	
tzlocal

	

	
utc

	

	
worker_pid

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.state

	celery.worker.state

celery.worker.state

Internal worker state (global)

This includes the currently active and reserved tasks,
statistics, and revoked tasks.

	
celery.worker.state.SOFTWARE_INFO = {'sw_sys': 'Linux', 'sw_ident': 'py-celery', 'sw_ver': '3.1.25'}

	Worker software/platform information.

	
celery.worker.state.reserved_requests = set([])

	set of all reserved Request‘s.

	
celery.worker.state.active_requests = set([])

	set of currently active Request‘s.

	
celery.worker.state.total_count = Counter()

	count of tasks accepted by the worker, sorted by type.

	
celery.worker.state.revoked = LimitedSet(0)

	the list of currently revoked tasks. Persistent if statedb set.

	
celery.worker.state.task_reserved()

	Update global state when a task has been reserved.

	
celery.worker.state.maybe_shutdown()

	

	
celery.worker.state.task_accepted(request, _all_total_count=[0])

	Updates global state when a task has been accepted.

	
celery.worker.state.task_ready(request)

	Updates global state when a task is ready.

	
celery.worker.state.task_reserved()

	Update global state when a task has been reserved.

	
celery.worker.state.task_ready(request)

	Updates global state when a task is ready.

	
class celery.worker.state.Persistent(state, filename, clock=None)

	This is the persistent data stored by the worker when
--statedb is enabled.

It currently only stores revoked task id’s.

	
close()

	

	
compress()

	compress(string[, level]) – Returned compressed string.

Optional arg level is the compression level, in 0-9.

	
db

	

	
decompress()

	decompress(string[, wbits[, bufsize]]) – Return decompressed string.

Optional arg wbits indicates the window buffer size and container format.
Optional arg bufsize is the initial output buffer size.

	
merge()

	

	
open()

	

	
protocol = 2

	

	
save()

	

	
storage = <module 'shelve' from '/usr/lib/python2.7/shelve.pyc'>

	

	
sync()

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.strategy

	celery.worker.strategy

celery.worker.strategy

Task execution strategy (optimization).

	
celery.worker.strategy.default(task, app, consumer, info=<bound method ProcessAwareLogger.info of <celery.utils.log.ProcessAwareLogger object>>, error=<bound method ProcessAwareLogger.error of <celery.utils.log.ProcessAwareLogger object>>, task_reserved=<built-in method add of set object>, to_system_tz=<bound method _Zone.to_system of <celery.utils.timeutils._Zone object>>)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.bin.base

	Preload Options

	Daemon Options

Preload Options

These options are supported by all commands,
and usually parsed before command-specific arguments.

	
-A, --app

	app instance to use (e.g. module.attr_name)

	
-b, --broker

	url to broker. default is ‘amqp://guest@localhost//’

	
--loader

	name of custom loader class to use.

	
--config

	Name of the configuration module

Daemon Options

These options are supported by commands that can detach
into the background (daemon). They will be present
in any command that also has a –detach option.

	
-f, --logfile

	Path to log file. If no logfile is specified, stderr is used.

	
--pidfile

	Optional file used to store the process pid.

The program will not start if this file already exists
and the pid is still alive.

	
--uid

	User id, or user name of the user to run as after detaching.

	
--gid

	Group id, or group name of the main group to change to after
detaching.

	
--umask

	Effective umask (in octal) of the process after detaching. Inherits
the umask of the parent process by default.

	
--workdir

	Optional directory to change to after detaching.

	
--executable

	Executable to use for the detached process.

	
exception celery.bin.base.Error(reason, status=None)

	
	
status = 1

	

	
exception celery.bin.base.UsageError(reason, status=None)

	
	
status = 64

	

	
class celery.bin.base.Extensions(namespace, register)

	
	
add(cls, name)

	

	
load()

	

	
class celery.bin.base.HelpFormatter(indent_increment=2, max_help_position=24, width=None, short_first=1)

	
	
format_description(description)

	

	
format_epilog(epilog)

	

	
class celery.bin.base.Command(app=None, get_app=None, no_color=False, stdout=None, stderr=None, quiet=False, on_error=None, on_usage_error=None)

	Base class for command-line applications.

	Parameters:	
	app – The current app.

	get_app – Callable returning the current app if no app provided.

	
exception Error(reason, status=None)

	
	
status = 1

	

	
Parser

	alias of OptionParser

	
exception UsageError(reason, status=None)

	
	
status = 64

	

	
add_append_opt(acc, opt, value)

	

	
args = u''

	

	
ask(q, choices, default=None)

	Prompt user to choose from a tuple of string values.

	Parameters:	
	q – the question to ask (do not include questionark)

	choice – tuple of possible choices, must be lowercase.

	default – Default value if any.

If a default is not specified the question will be repeated
until the user gives a valid choice.

Matching is done case insensitively.

	
check_args(args)

	

	
colored

	

	
create_parser(prog_name, command=None)

	

	
description = u''

	

	
die(msg, status=1)

	

	
doc = None

	

	
early_version(argv)

	

	
enable_config_from_cmdline = False

	

	
epilog = None

	

	
error(s)

	

	
execute_from_commandline(argv=None)

	Execute application from command-line.

	Parameters:	argv – The list of command-line arguments.
Defaults to sys.argv.

	
expanduser(value)

	

	
find_app(app)

	

	
get_cls_by_name(name, imp=<function import_from_cwd>)

	

	
get_options()

	Get supported command-line options.

	
handle_argv(prog_name, argv, command=None)

	Parse command-line arguments from argv and dispatch
to run().

	Parameters:	
	prog_name – The program name (argv[0]).

	argv – Command arguments.

Exits with an error message if supports_args is disabled
and argv contains positional arguments.

	
host_format(s, **extra)

	

	
leaf = True

	

	
maybe_patch_concurrency(argv=None)

	

	
namespace = u'celery'

	

	
no_color

	

	
node_format(s, nodename, **extra)

	

	
on_concurrency_setup()

	

	
on_error(exc)

	

	
on_usage_error(exc)

	

	
option_list = ()

	

	
out(s, fh=None)

	

	
parse_doc(doc)

	

	
parse_options(prog_name, arguments, command=None)

	Parse the available options.

	
parse_preload_options(args)

	

	
preload_options = (<Option at 0x7fdf25a8d3b0: -A/--app>, <Option at 0x7fdf25a8d5a8: -b/--broker>, <Option at 0x7fdf25a8dea8: --loader>, <Option at 0x7fdf25a8d758: --config>, <Option at 0x7fdf25a783f8: --workdir>, <Option at 0x7fdf25a78998: -C/--no-color>, <Option at 0x7fdf25a786c8: -q/--quiet>)

	

	
prepare_args(options, args)

	

	
prepare_parser(parser)

	

	
preparse_options(args, options)

	

	
pretty(n)

	

	
pretty_dict_ok_error(n)

	

	
pretty_list(n)

	

	
process_cmdline_config(argv)

	

	
prog_name = u'celery'

	

	
respects_app_option = True

	

	
run(*args, **options)

	This is the body of the command called by handle_argv().

	
run_from_argv(prog_name, argv=None, command=None)

	

	
say_chat(direction, title, body=u'')

	

	
say_remote_command_reply(replies)

	

	
setup_app_from_commandline(argv)

	

	
show_body = True

	

	
show_reply = True

	

	
supports_args = True

	

	
symbol_by_name(name, imp=<function import_from_cwd>)

	

	
usage(command)

	

	
verify_args(given, _index=0)

	

	
version = '3.1.25 (Cipater)'

	

	
with_pool_option(argv)

	Return tuple of (short_opts, long_opts) if the command
supports a pool argument, and used to monkey patch eventlet/gevent
environments as early as possible.

	E.g::

	has_pool_option = ([‘-P’], [‘–pool’])

	
class celery.bin.base.Option(*opts, **attrs)

	
	Instance attributes:

	_short_opts : [string]
_long_opts : [string]

action : string
type : string
dest : string
default : any
nargs : int
const : any
choices : [string]
callback : function
callback_args : (any*)
callback_kwargs : { string : any }
help : string
metavar : string

	
ACTIONS = ('store', 'store_const', 'store_true', 'store_false', 'append', 'append_const', 'count', 'callback', 'help', 'version')

	

	
ALWAYS_TYPED_ACTIONS = ('store', 'append')

	

	
ATTRS = ['action', 'type', 'dest', 'default', 'nargs', 'const', 'choices', 'callback', 'callback_args', 'callback_kwargs', 'help', 'metavar']

	

	
CHECK_METHODS = [<function _check_action>, <function _check_type>, <function _check_choice>, <function _check_dest>, <function _check_const>, <function _check_nargs>, <function _check_callback>]

	

	
CONST_ACTIONS = ('store_const', 'append_const')

	

	
STORE_ACTIONS = ('store', 'store_const', 'store_true', 'store_false', 'append', 'append_const', 'count')

	

	
TYPED_ACTIONS = ('store', 'append', 'callback')

	

	
TYPES = ('string', 'int', 'long', 'float', 'complex', 'choice')

	

	
TYPE_CHECKER = {'int': <function check_builtin>, 'float': <function check_builtin>, 'complex': <function check_builtin>, 'long': <function check_builtin>, 'choice': <function check_choice>}

	

	
check_value(opt, value)

	

	
convert_value(opt, value)

	

	
get_opt_string()

	

	
process(opt, value, values, parser)

	

	
take_action(action, dest, opt, value, values, parser)

	

	
takes_value()

	

	
celery.bin.base.daemon_options(default_pidfile=None, default_logfile=None)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.bin.celery

The celery umbrella command.

	
class celery.bin.celery.CeleryCommand(app=None, get_app=None, no_color=False, stdout=None, stderr=None, quiet=False, on_error=None, on_usage_error=None)

	
	
commands = {u'control': <class 'celery.bin.celery.control'>, u'status': <class 'celery.bin.celery.status'>, u'multi': <class 'celery.bin.celery.multi'>, u'shell': <class 'celery.bin.celery.shell'>, u'amqp': <class 'celery.bin.amqp.amqp'>, u'beat': <class 'celery.bin.beat.beat'>, u'graph': <class 'celery.bin.graph.graph'>, u'inspect': <class 'celery.bin.celery.inspect'>, u'list': <class 'celery.bin.celery.list_'>, u'purge': <class 'celery.bin.celery.purge'>, u'migrate': <class 'celery.bin.celery.migrate'>, u'call': <class 'celery.bin.celery.call'>, u'result': <class 'celery.bin.celery.result'>, u'report': <class 'celery.bin.celery.report'>, u'worker': <class 'celery.bin.worker.worker'>, u'events': <class 'celery.bin.events.events'>, u'help': <class 'celery.bin.celery.help'>}

	

	
enable_config_from_cmdline = True

	

	
execute(command, argv=None)

	

	
execute_from_commandline(argv=None)

	

	
ext_fmt = u'{self.namespace}.commands'

	

	
classmethod get_command_info(command, indent=0, color=None, colored=None)

	

	
handle_argv(prog_name, argv)

	

	
classmethod list_commands(indent=0, colored=None)

	

	
load_extension_commands()

	

	
namespace = u'celery'

	

	
on_concurrency_setup()

	

	
on_usage_error(exc, command=None)

	

	
prepare_prog_name(name)

	

	
prog_name = u'celery'

	

	
classmethod register_command(fun, name=None)

	

	
with_pool_option(argv)

	

	
celery.bin.celery.main(argv=None)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.bin.worker

The celery worker command (previously known as celeryd)

See also

See Preload Options.

	
-c, --concurrency

	Number of child processes processing the queue. The default
is the number of CPUs available on your system.

	
-P, --pool

	Pool implementation:

prefork (default), eventlet, gevent, solo or threads.

	
-f, --logfile

	Path to log file. If no logfile is specified, stderr is used.

	
-l, --loglevel

	Logging level, choose between DEBUG, INFO, WARNING,
ERROR, CRITICAL, or FATAL.

	
-n, --hostname

	Set custom hostname, e.g. ‘w1.%h’. Expands: %h (hostname),
%n (name) and %d, (domain).

	
-B, --beat

	Also run the celery beat periodic task scheduler. Please note that
there must only be one instance of this service.

	
-Q, --queues

	List of queues to enable for this worker, separated by comma.
By default all configured queues are enabled.
Example: -Q video,image

	
-I, --include

	Comma separated list of additional modules to import.
Example: -I foo.tasks,bar.tasks

	
-s, --schedule

	Path to the schedule database if running with the -B option.
Defaults to celerybeat-schedule. The extension ”.db” may be
appended to the filename.

	
-O

	Apply optimization profile. Supported: default, fair

	
--scheduler

	Scheduler class to use. Default is celery.beat.PersistentScheduler

	
-S, --statedb

	Path to the state database. The extension ‘.db’ may
be appended to the filename. Default: {default}

	
-E, --events

	Send events that can be captured by monitors like celery events,
celerymon, and others.

	
--without-gossip

	Do not subscribe to other workers events.

	
--without-mingle

	Do not synchronize with other workers at startup.

	
--without-heartbeat

	Do not send event heartbeats.

	
--heartbeat-interval

	Interval in seconds at which to send worker heartbeat

	
--purge

	Purges all waiting tasks before the daemon is started.
WARNING: This is unrecoverable, and the tasks will be
deleted from the messaging server.

	
--time-limit

	Enables a hard time limit (in seconds int/float) for tasks.

	
--soft-time-limit

	Enables a soft time limit (in seconds int/float) for tasks.

	
--maxtasksperchild

	Maximum number of tasks a pool worker can execute before it’s
terminated and replaced by a new worker.

	
--pidfile

	Optional file used to store the workers pid.

The worker will not start if this file already exists
and the pid is still alive.

	
--autoscale

	Enable autoscaling by providing
max_concurrency, min_concurrency. Example:

--autoscale=10,3

(always keep 3 processes, but grow to 10 if necessary)

	
--autoreload

	Enable autoreloading.

	
--no-execv

	Don’t do execv after multiprocessing child fork.

	
class celery.bin.worker.worker(app=None, get_app=None, no_color=False, stdout=None, stderr=None, quiet=False, on_error=None, on_usage_error=None)

	Start worker instance.

Examples:

celery worker --app=proj -l info
celery worker -A proj -l info -Q hipri,lopri

celery worker -A proj --concurrency=4
celery worker -A proj --concurrency=1000 -P eventlet

celery worker --autoscale=10,0

	
doc = u'\n\nThe :program:`celery worker` command (previously known as ``celeryd``)\n\n.. program:: celery worker\n\n.. seealso::\n\n See :ref:`preload-options`.\n\n.. cmdoption:: -c, --concurrency\n\n Number of child processes processing the queue. The default\n is the number of CPUs available on your system.\n\n.. cmdoption:: -P, --pool\n\n Pool implementation:\n\n prefork (default), eventlet, gevent, solo or threads.\n\n.. cmdoption:: -f, --logfile\n\n Path to log file. If no logfile is specified, `stderr` is used.\n\n.. cmdoption:: -l, --loglevel\n\n Logging level, choose between `DEBUG`, `INFO`, `WARNING`,\n `ERROR`, `CRITICAL`, or `FATAL`.\n\n.. cmdoption:: -n, --hostname\n\n Set custom hostname, e.g. \'w1.%h\'. Expands: %h (hostname),\n %n (name) and %d, (domain).\n\n.. cmdoption:: -B, --beat\n\n Also run the `celery beat` periodic task scheduler. Please note that\n there must only be one instance of this service.\n\n.. cmdoption:: -Q, --queues\n\n List of queues to enable for this worker, separated by comma.\n By default all configured queues are enabled.\n Example: `-Q video,image`\n\n.. cmdoption:: -I, --include\n\n Comma separated list of additional modules to import.\n Example: -I foo.tasks,bar.tasks\n\n.. cmdoption:: -s, --schedule\n\n Path to the schedule database if running with the `-B` option.\n Defaults to `celerybeat-schedule`. The extension ".db" may be\n appended to the filename.\n\n.. cmdoption:: -O\n\n Apply optimization profile. Supported: default, fair\n\n.. cmdoption:: --scheduler\n\n Scheduler class to use. Default is celery.beat.PersistentScheduler\n\n.. cmdoption:: -S, --statedb\n\n Path to the state database. The extension \'.db\' may\n be appended to the filename. Default: {default}\n\n.. cmdoption:: -E, --events\n\n Send events that can be captured by monitors like :program:`celery events`,\n `celerymon`, and others.\n\n.. cmdoption:: --without-gossip\n\n Do not subscribe to other workers events.\n\n.. cmdoption:: --without-mingle\n\n Do not synchronize with other workers at startup.\n\n.. cmdoption:: --without-heartbeat\n\n Do not send event heartbeats.\n\n.. cmdoption:: --heartbeat-interval\n\n Interval in seconds at which to send worker heartbeat\n\n.. cmdoption:: --purge\n\n Purges all waiting tasks before the daemon is started.\n **WARNING**: This is unrecoverable, and the tasks will be\n deleted from the messaging server.\n\n.. cmdoption:: --time-limit\n\n Enables a hard time limit (in seconds int/float) for tasks.\n\n.. cmdoption:: --soft-time-limit\n\n Enables a soft time limit (in seconds int/float) for tasks.\n\n.. cmdoption:: --maxtasksperchild\n\n Maximum number of tasks a pool worker can execute before it\'s\n terminated and replaced by a new worker.\n\n.. cmdoption:: --pidfile\n\n Optional file used to store the workers pid.\n\n The worker will not start if this file already exists\n and the pid is still alive.\n\n.. cmdoption:: --autoscale\n\n Enable autoscaling by providing\n max_concurrency, min_concurrency. Example::\n\n --autoscale=10,3\n\n (always keep 3 processes, but grow to 10 if necessary)\n\n.. cmdoption:: --autoreload\n\n Enable autoreloading.\n\n.. cmdoption:: --no-execv\n\n Don\'t do execv after multiprocessing child fork.\n\n'

	

	
enable_config_from_cmdline = True

	

	
get_options()

	

	
maybe_detach(argv, dopts=[u'-D', u'--detach'])

	

	
namespace = u'celeryd'

	

	
run(hostname=None, pool_cls=None, app=None, uid=None, gid=None, loglevel=None, logfile=None, pidfile=None, state_db=None, **kwargs)

	

	
run_from_argv(prog_name, argv=None, command=None)

	

	
supports_args = False

	

	
with_pool_option(argv)

	

	
celery.bin.worker.main(app=None)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.bin.beat

The celery beat command.

See also

See Preload Options and Daemon Options.

	
--detach

	Detach and run in the background as a daemon.

	
-s, --schedule

	Path to the schedule database. Defaults to celerybeat-schedule.
The extension ‘.db’ may be appended to the filename.
Default is {default}.

	
-S, --scheduler

	Scheduler class to use.
Default is celery.beat.PersistentScheduler.

	
--max-interval

	Max seconds to sleep between schedule iterations.

	
-f, --logfile

	Path to log file. If no logfile is specified, stderr is used.

	
-l, --loglevel

	Logging level, choose between DEBUG, INFO, WARNING,
ERROR, CRITICAL, or FATAL.

	
class celery.bin.beat.beat(app=None, get_app=None, no_color=False, stdout=None, stderr=None, quiet=False, on_error=None, on_usage_error=None)

	Start the beat periodic task scheduler.

Examples:

celery beat -l info
celery beat -s /var/run/celery/beat-schedule --detach
celery beat -S djcelery.schedulers.DatabaseScheduler

	
doc = 'Start the beat periodic task scheduler.\n\n Examples::\n\n celery beat -l info\n celery beat -s /var/run/celery/beat-schedule --detach\n celery beat -S djcelery.schedulers.DatabaseScheduler\n\n '

	

	
enable_config_from_cmdline = True

	

	
get_options()

	

	
run(detach=False, logfile=None, pidfile=None, uid=None, gid=None, umask=None, working_directory=None, **kwargs)

	

	
supports_args = False

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.bin.events

The celery events command.

See also

See Preload Options and Daemon Options.

	
-d, --dump

	Dump events to stdout.

	
-c, --camera

	Take snapshots of events using this camera.

	
--detach

	Camera: Detach and run in the background as a daemon.

	
-F, --freq, --frequency

	Camera: Shutter frequency. Default is every 1.0 seconds.

	
-r, --maxrate

	Camera: Optional shutter rate limit (e.g. 10/m).

	
-l, --loglevel

	Logging level, choose between DEBUG, INFO, WARNING,
ERROR, CRITICAL, or FATAL. Default is INFO.

	
class celery.bin.events.events(app=None, get_app=None, no_color=False, stdout=None, stderr=None, quiet=False, on_error=None, on_usage_error=None)

	Event-stream utilities.

Commands:

celery events --app=proj
 start graphical monitor (requires curses)
celery events -d --app=proj
 dump events to screen.
celery events -b amqp://
celery events -c <camera> [options]
 run snapshot camera.

Examples:

celery events
celery events -d
celery events -c mod.attr -F 1.0 --detach --maxrate=100/m -l info

	
doc = u'Event-stream utilities.\n\n Commands::\n\n celery events --app=proj\n start graphical monitor (requires curses)\n celery events -d --app=proj\n dump events to screen.\n celery events -b amqp://\n celery events -c <camera> [options]\n run snapshot camera.\n\n Examples::\n\n celery events\n celery events -d\n celery events -c mod.attr -F 1.0 --detach --maxrate=100/m -l info\n '

	

	
get_options()

	

	
run(dump=False, camera=None, frequency=1.0, maxrate=None, loglevel=u'INFO', logfile=None, prog_name=u'celery events', pidfile=None, uid=None, gid=None, umask=None, working_directory=None, detach=False, **kwargs)

	

	
run_evcam(camera, logfile=None, pidfile=None, uid=None, gid=None, umask=None, working_directory=None, detach=False, **kwargs)

	

	
run_evdump()

	

	
run_evtop()

	

	
set_process_status(prog, info=u'')

	

	
supports_args = False

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.bin.amqp

The celery amqp command.

	
class celery.bin.amqp.AMQPAdmin(*args, **kwargs)

	The celery celery amqp utility.

	
Shell

	alias of AMQShell

	
connect(conn=None)

	

	
note(m)

	

	
run()

	

	
class celery.bin.amqp.AMQShell(*args, **kwargs)

	AMQP API Shell.

	Parameters:	
	connect – Function used to connect to the server, must return
connection object.

	silent – If True, the commands won’t have annoying
output not relevant when running in non-shell mode.

	
amqp

	Mapping of AMQP API commands and their Spec.

	
amqp = {u'queue.declare': <celery.bin.amqp.Spec object>, u'queue.purge': <celery.bin.amqp.Spec object>, u'exchange.delete': <celery.bin.amqp.Spec object>, u'basic.publish': <celery.bin.amqp.Spec object>, u'basic.ack': <celery.bin.amqp.Spec object>, u'exchange.declare': <celery.bin.amqp.Spec object>, u'queue.delete': <celery.bin.amqp.Spec object>, u'queue.bind': <celery.bin.amqp.Spec object>, u'basic.get': <celery.bin.amqp.Spec object>}

	

	
builtins = {u'exit': u'do_exit', u'EOF': u'do_exit', u'help': u'do_help'}

	

	
chan = None

	

	
completenames(text, *ignored)

	Return all commands starting with text, for tab-completion.

	
conn = None

	

	
counter = 1

	

	
default(line)

	

	
dispatch(cmd, argline)

	Dispatch and execute the command.

Lookup order is: builtins -> amqp.

	
display_command_help(cmd, short=False)

	

	
do_exit(*args)

	The ‘exit’ command.

	
do_help(*args)

	

	
get_amqp_api_command(cmd, arglist)

	With a command name and a list of arguments, convert the arguments
to Python values and find the corresponding method on the AMQP channel
object.

	Returns:	tuple of (method, processed_args).

	
get_names()

	

	
identchars = u'.'

	

	
inc_counter = count(2)

	

	
needs_reconnect = False

	

	
note(m)

	Say something to the user. Disabled if silent.

	
onecmd(line)

	Parse line and execute command.

	
parseline(line)

	Parse input line.

	Returns:	tuple of three items:
(command_name, arglist, original_line)

	
prompt

	

	
prompt_fmt = u'{self.counter}> '

	

	
respond(retval)

	What to do with the return value of a command.

	
say(m)

	

	
class celery.bin.amqp.Spec(*args, **kwargs)

	AMQP Command specification.

Used to convert arguments to Python values and display various help
and tooltips.

	Parameters:	
	args – see args.

	returns – see returns.

	
coerce(index, value)

	Coerce value for argument at index.

	
format_arg(name, type, default_value=None)

	

	
format_response(response)

	Format the return value of this command in a human-friendly way.

	
format_signature()

	

	
str_args_to_python(arglist)

	Process list of string arguments to values according to spec.

e.g:

>>> spec = Spec([('queue', str), ('if_unused', bool)])
>>> spec.str_args_to_python('pobox', 'true')
('pobox', True)

	
class celery.bin.amqp.amqp(app=None, get_app=None, no_color=False, stdout=None, stderr=None, quiet=False, on_error=None, on_usage_error=None)

	AMQP Administration Shell.

Also works for non-amqp transports (but not ones that
store declarations in memory).

Examples:

celery amqp
 start shell mode
celery amqp help
 show list of commands

celery amqp exchange.delete name
celery amqp queue.delete queue
celery amqp queue.delete queue yes yes

	
run(*args, **options)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.bin.multi

	Examples

Examples

Single worker with explicit name and events enabled.
$ celery multi start Leslie -E

Pidfiles and logfiles are stored in the current directory
by default. Use --pidfile and --logfile argument to change
this. The abbreviation %N will be expanded to the current
node name.
$ celery multi start Leslie -E --pidfile=/var/run/celery/%N.pid
 --logfile=/var/log/celery/%N.log

You need to add the same arguments when you restart,
as these are not persisted anywhere.
$ celery multi restart Leslie -E --pidfile=/var/run/celery/%N.pid
 --logfile=/var/run/celery/%N.log

To stop the node, you need to specify the same pidfile.
$ celery multi stop Leslie --pidfile=/var/run/celery/%N.pid

3 workers, with 3 processes each
$ celery multi start 3 -c 3
celery worker -n celery1@myhost -c 3
celery worker -n celery2@myhost -c 3
celery worker -n celery3@myhost -c 3

start 3 named workers
$ celery multi start image video data -c 3
celery worker -n image@myhost -c 3
celery worker -n video@myhost -c 3
celery worker -n data@myhost -c 3

specify custom hostname
$ celery multi start 2 --hostname=worker.example.com -c 3
celery worker -n celery1@worker.example.com -c 3
celery worker -n celery2@worker.example.com -c 3

specify fully qualified nodenames
$ celery multi start foo@worker.example.com bar@worker.example.com -c 3

Advanced example starting 10 workers in the background:
* Three of the workers processes the images and video queue
* Two of the workers processes the data queue with loglevel DEBUG
* the rest processes the default' queue.
$ celery multi start 10 -l INFO -Q:1-3 images,video -Q:4,5 data
 -Q default -L:4,5 DEBUG

You can show the commands necessary to start the workers with
the 'show' command:
$ celery multi show 10 -l INFO -Q:1-3 images,video -Q:4,5 data
 -Q default -L:4,5 DEBUG

Additional options are added to each celery worker' comamnd,
but you can also modify the options for ranges of, or specific workers

3 workers: Two with 3 processes, and one with 10 processes.
$ celery multi start 3 -c 3 -c:1 10
celery worker -n celery1@myhost -c 10
celery worker -n celery2@myhost -c 3
celery worker -n celery3@myhost -c 3

can also specify options for named workers
$ celery multi start image video data -c 3 -c:image 10
celery worker -n image@myhost -c 10
celery worker -n video@myhost -c 3
celery worker -n data@myhost -c 3

ranges and lists of workers in options is also allowed:
(-c:1-3 can also be written as -c:1,2,3)
$ celery multi start 5 -c 3 -c:1-3 10
celery worker -n celery1@myhost -c 10
celery worker -n celery2@myhost -c 10
celery worker -n celery3@myhost -c 10
celery worker -n celery4@myhost -c 3
celery worker -n celery5@myhost -c 3

lists also works with named workers
$ celery multi start foo bar baz xuzzy -c 3 -c:foo,bar,baz 10
celery worker -n foo@myhost -c 10
celery worker -n bar@myhost -c 10
celery worker -n baz@myhost -c 10
celery worker -n xuzzy@myhost -c 3

	
class celery.bin.multi.MultiTool(env=None, fh=None, quiet=False, verbose=False, no_color=False, nosplash=False, stdout=None, stderr=None)

	
	
DOWN

	

	
FAILED

	

	
OK

	

	
carp(m, newline=True, file=None)

	

	
colored

	

	
error(msg=None)

	

	
execute_from_commandline(argv, cmd=u'celery worker')

	

	
expand(argv, cmd=None)

	

	
get(argv, cmd)

	

	
getpids(p, cmd, callback=None)

	

	
help(argv, cmd=None)

	

	
info(msg, newline=True)

	

	
kill(argv, cmd)

	

	
names(argv, cmd)

	

	
node_alive(pid)

	

	
note(msg, newline=True)

	

	
restart(argv, cmd)

	

	
retcode = 0

	

	
say(m, newline=True, file=None)

	

	
show(argv, cmd)

	

	
shutdown_nodes(nodes, sig=15, retry=None, callback=None)

	

	
signal_node(nodename, pid, sig)

	

	
splash()

	

	
start(argv, cmd)

	

	
stop(argv, cmd, retry=None, callback=None)

	

	
stop_verify(argv, cmd)

	

	
stopwait(argv, cmd)

	

	
usage()

	

	
waitexec(argv, path='/home/docs/checkouts/readthedocs.org/user_builds/celery/envs/3.1/bin/python')

	

	
with_detacher_default_options(p)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.bin.graph

The celery graph command.

	
class celery.bin.graph.graph(app=None, get_app=None, no_color=False, stdout=None, stderr=None, quiet=False, on_error=None, on_usage_error=None)

	
	
args = u'<TYPE> [arguments]\n bootsteps [worker] [consumer]\n workers [enumerate]\n '

	

	
bootsteps(*args, **kwargs)

	

	
run(what=None, *args, **kwargs)

	

	
workers(*args, **kwargs)

	

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Internals

	Release:	3.1

	Date:	Nov 12, 2017

	Contributors Guide to the Code
	Philosophy

	Conventions and Idioms Used

	Applications vs. “single mode”

	Module Overview

	Celery Deprecation Timeline
	Removals for version 3.2

	Removals for version 4.0

	Removals for version 2.0

	Internals: The worker
	Introduction

	Data structures

	Components

	Task Messages
	Message format

	Extensions

	Example message

	Serialization

	Task Message Protocol v2 (Draft Spec.)
	Notes

	Definition

	Example

	“The Big Instance” Refactor
	Examples

	Deprecations

	Removed deprecations

	Aliases (Pending deprecation)

	Default App Usage

	Internal Module Reference
	celery.worker.components

	celery.worker.loops

	celery.worker.heartbeat

	celery.worker.control

	celery.worker.pidbox

	celery.worker.autoreload

	celery.worker.autoscale

	celery.concurrency

	celery.concurrency.solo

	celery.concurrency.prefork

	celery.concurrency.eventlet

	celery.concurrency.gevent† (experimental)

	celery.concurrency.base

	celery.concurrency.threads‡ (minefield)

	celery.backends

	celery.backends.base

	celery.backends.rpc

	celery.backends.database

	celery.backends.cache

	celery.backends.amqp

	celery.backends.mongodb

	celery.backends.redis

	celery.backends.cassandra

	celery.backends.couchbase

	celery.app.trace

	celery.app.annotations

	celery.app.routes

	celery.datastructures

	celery.security.certificate

	celery.security.key

	celery.security.serialization

	celery.security.utils

	celery.events.snapshot

	celery.events.cursesmon

	celery.events.dumper

	celery.backends.database.models

	celery.backends.database.session

	celery.utils

	celery.utils.functional

	celery.utils.objects

	celery.utils.term

	celery.utils.timeutils

	celery.utils.iso8601

	celery.utils.compat

	celery.utils.serialization

	celery.utils.sysinfo

	celery.utils.threads

	celery.utils.timer2

	celery.utils.imports

	celery.utils.log

	celery.utils.text

	celery.utils.dispatch

	celery.utils.dispatch.signal

	celery.utils.dispatch.saferef

	celery.platforms

	celery._state

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Contributors Guide to the Code

	Philosophy
	The API>RCP Precedence Rule

	Conventions and Idioms Used
	Classes
	Naming

	Default values

	Exceptions

	Composites

	Applications vs. “single mode”

	Module Overview

Philosophy

The API>RCP Precedence Rule

	The API is more important than Readability

	Readability is more important than Convention

	
	Convention is more important than Performance

	
	…unless the code is a proven hotspot.

More important than anything else is the end-user API.
Conventions must step aside, and any suffering is always alleviated
if the end result is a better API.

Conventions and Idioms Used

Classes

Naming

	Follows PEP 8 [https://www.python.org/dev/peps/pep-0008].

	Class names must be CamelCase.

	but not if they are verbs, verbs shall be lower_case:

- test case for a class
class TestMyClass(Case): # BAD
 pass

class test_MyClass(Case): # GOOD
 pass

- test case for a function
class TestMyFunction(Case): # BAD
 pass

class test_my_function(Case): # GOOD
 pass

- "action" class (verb)
class UpdateTwitterStatus(object): # BAD
 pass

class update_twitter_status(object): # GOOD
 pass

Note

Sometimes it makes sense to have a class mask as a function,
and there is precedence for this in the stdlib (e.g.
contextmanager). Celery examples include
subtask, chord,
inspect, promise and more..

	Factory functions and methods must be CamelCase (excluding verbs):

class Celery(object):

 def consumer_factory(self): # BAD
 ...

 def Consumer(self): # GOOD
 ...

Default values

Class attributes serve as default values for the instance,
as this means that they can be set by either instantiation or inheritance.

Example:

class Producer(object):
 active = True
 serializer = 'json'

 def __init__(self, serializer=None):
 self.serializer = serializer or self.serializer

 # must check for None when value can be false-y
 self.active = active if active is not None else self.active

A subclass can change the default value:

TaskProducer(Producer):
 serializer = 'pickle'

and the value can be set at instantiation:

>>> producer = TaskProducer(serializer='msgpack')

Exceptions

Custom exceptions raised by an objects methods and properties
should be available as an attribute and documented in the
method/property that throw.

This way a user doesn’t have to find out where to import the
exception from, but rather use help(obj) and access
the exception class from the instance directly.

Example:

class Empty(Exception):
 pass

class Queue(object):
 Empty = Empty

 def get(self):
 """Get the next item from the queue.

 :raises Queue.Empty: if there are no more items left.

 """
 try:
 return self.queue.popleft()
 except IndexError:
 raise self.Empty()

Composites

Similarly to exceptions, composite classes should be override-able by
inheritance and/or instantiation. Common sense can be used when
selecting what classes to include, but often it’s better to add one
too many: predicting what users need to override is hard (this has
saved us from many a monkey patch).

Example:

class Worker(object):
 Consumer = Consumer

 def __init__(self, connection, consumer_cls=None):
 self.Consumer = consumer_cls or self.Consumer

 def do_work(self):
 with self.Consumer(self.connection) as consumer:
 self.connection.drain_events()

Applications vs. “single mode”

In the beginning Celery was developed for Django, simply because
this enabled us get the project started quickly, while also having
a large potential user base.

In Django there is a global settings object, so multiple Django projects
can’t co-exist in the same process space, this later posed a problem
for using Celery with frameworks that doesn’t have this limitation.

Therefore the app concept was introduced. When using apps you use ‘celery’
objects instead of importing things from celery submodules, this
(unfortunately) also means that Celery essentially has two API’s.

Here’s an example using Celery in single-mode:

from celery import task
from celery.task.control import inspect

from .models import CeleryStats

@task
def write_stats_to_db():
 stats = inspect().stats(timeout=1)
 for node_name, reply in stats:
 CeleryStats.objects.update_stat(node_name, stats)

and here’s the same using Celery app objects:

from .celery import celery
from .models import CeleryStats

@app.task
def write_stats_to_db():
 stats = celery.control.inspect().stats(timeout=1)
 for node_name, reply in stats:
 CeleryStats.objects.update_stat(node_name, stats)

In the example above the actual application instance is imported
from a module in the project, this module could look something like this:

from celery import Celery

app = Celery(broker='amqp://')

Module Overview

	celery.app

This is the core of Celery: the entry-point for all functionality.

	celery.loaders

Every app must have a loader. The loader decides how configuration
is read, what happens when the worker starts, when a task starts and ends,
and so on.

The loaders included are:

	app

Custom celery app instances uses this loader by default.

	default

“single-mode” uses this loader by default.

Extension loaders also exist, like django-celery, celery-pylons
and so on.

	celery.worker

This is the worker implementation.

	celery.backends

Task result backends live here.

	celery.apps

Major user applications: worker and beat.
The command-line wrappers for these are in celery.bin (see below)

	celery.bin

Command-line applications.
setup.py creates setuptools entrypoints for these.

	celery.concurrency

Execution pool implementations (prefork, eventlet, gevent, threads).

	celery.db

Database models for the SQLAlchemy database result backend.
(should be moved into celery.backends.database)

	celery.events

Sending and consuming monitoring events, also includes curses monitor,
event dumper and utilities to work with in-memory cluster state.

	celery.execute.trace

How tasks are executed and traced by the worker, and in eager mode.

	celery.security

Security related functionality, currently a serializer using
cryptographic digests.

	celery.task

single-mode interface to creating tasks, and controlling workers.

	celery.tests

The unittest suite.

	celery.utils

Utility functions used by the celery code base.
Much of it is there to be compatible across Python versions.

	celery.contrib

Additional public code that doesn’t fit into any other namespace.

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Celery Deprecation Timeline

	Removals for version 3.2

	Removals for version 4.0
	Old Task API
	Compat Task Modules

	TaskSet

	Magic keyword arguments

	Task attributes

	celery.result

	celery.loader

	Task_sent signal

	Modules to Remove

	Settings
	BROKER Settings

	REDIS Result Backend Settings

	Logging Settings

	Other Settings

	Removals for version 2.0

Removals for version 3.2

	Module celery.task.trace has been renamed to celery.app.trace
as the celery.task package is being phased out. The compat module
will be removed in version 3.2 so please change any import from:

from celery.task.trace import …

to:

from celery.app.trace import …

	AsyncResult.serializable() and celery.result.from_serializable
will be removed.

Use instead:

>>> tup = result.as_tuple()
>>> from celery.result import result_from_tuple
>>> result = result_from_tuple(tup)

Removals for version 4.0

Old Task API

Compat Task Modules

	Module celery.decorators will be removed:

Which means you need to change:

from celery.decorators import task

Into:

from celery import task

	Module celery.task may be removed (not decided)

This means you should change:

from celery.task import task

into:

from celery import task

 Internals: The worker

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Internals: The worker

	Introduction

	Data structures
	timer

	Components
	Consumer

	Timer

	TaskPool

Introduction

The worker consists of 4 main components: the consumer, the scheduler,
the mediator and the task pool. All these components runs in parallel working
with two data structures: the ready queue and the ETA schedule.

Data structures

timer

The timer uses heapq [https://docs.python.org/dev/library/heapq.html#module-heapq] to schedule internal functions.
It’s very efficient and can handle hundred of thousands of entries.

Components

Consumer

Receives messages from the broker using Kombu [http://pypi.python.org/pypi/kombu].

When a message is received it’s converted into a
celery.worker.job.TaskRequest object.

Tasks with an ETA, or rate-limit are entered into the timer,
messages that can be immediately processed are sent to the execution pool.

Timer

The timer schedules internal functions, like cleanup and internal monitoring,
but also it schedules ETA tasks and rate limited tasks.
If the scheduled tasks eta has passed it is moved to the execution pool.

TaskPool

This is a slightly modified multiprocessing.Pool.
It mostly works the same way, except it makes sure all of the workers
are running at all times. If a worker is missing, it replaces
it with a new one.

 Task Messages

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Task Messages

	Message format

	Extensions

	Example message

	Serialization

Message format

	
	task

	

	string:	

Name of the task. required

	
	id

	

	string:	

Unique id of the task (UUID). required

	
	args

	

	list:	

List of arguments. Will be an empty list if not provided.

	
	kwargs

	

	dictionary:	

Dictionary of keyword arguments. Will be an empty dictionary if not
provided.

	
	retries

	

	int:	

Current number of times this task has been retried.
Defaults to 0 if not specified.

	
	eta

	

	string (ISO 8601):

	 	

Estimated time of arrival. This is the date and time in ISO 8601
format. If not provided the message is not scheduled, but will be
executed asap.

	
	expires

	

	string (ISO 8601):

	 	

New in version 2.0.2.

Expiration date. This is the date and time in ISO 8601 format.
If not provided the message will never expire. The message
will be expired when the message is received and the expiration date
has been exceeded.

Extensions

Extensions are additional keys in the message body that the worker may or
may not support. If the worker finds an extension key it doesn’t support
it should optimally reject the message so another worker gets a chance
to process it.

	
	taskset

	

	string:	

The taskset this task is part of (if any).

	
	chord

	

	subtask:	

New in version 2.3.

Signifies that this task is one of the header parts of a chord. The value
of this key is the body of the cord that should be executed when all of
the tasks in the header has returned.

	
	utc

	

	bool:	

New in version 2.5.

If true time uses the UTC timezone, if not the current local timezone
should be used.

	
	callbacks

	

	<list>subtask:	

New in version 3.0.

A list of subtasks to apply if the task exited successfully.

	
	errbacks

	

	<list>subtask:	

New in version 3.0.

A list of subtasks to apply if an error occurs while executing the task.

	
	timelimit

	

	<tuple>(float, float):

	 	

New in version 3.1.

Task execution time limit settings. This is a tuple of hard and soft time
limit value (int/float or None for no limit).

Example value specifying a soft time limit of 3 seconds, and a hard time
limt of 10 seconds:

{'timelimit': (3.0, 10.0)}

Example message

This is an example invocation of the celery.task.PingTask task in JSON
format:

{"id": "4cc7438e-afd4-4f8f-a2f3-f46567e7ca77",
 "task": "celery.task.PingTask",
 "args": [],
 "kwargs": {},
 "retries": 0,
 "eta": "2009-11-17T12:30:56.527191"}

Serialization

Several types of serialization formats are supported using the
content_type message header.

The MIME-types supported by default are shown in the following table.

	Scheme
	MIME Type

	json
	application/json

	yaml
	application/x-yaml

	pickle
	application/x-python-serialize

	msgpack
	application/x-msgpack

 Task Message Protocol v2 (Draft Spec.)

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Task Message Protocol v2 (Draft Spec.)

Notes

	Support for multiple languages via the lang header.

Worker may redirect the message to a worker that supports
the language.

	Metadata moved to headers.

This means that workers/intermediates can inspect the message
and make decisions based on the headers without decoding
the payload (which may be language specific, e.g. serialized by the
Python specific pickle serializer).

	Body is only for language specific data.

	Python stores args/kwargs in body.

	If a message uses raw encoding then the raw data
will be passed as a single argument to the function.

	Java/C, etc. can use a thrift/protobuf document as the body

	Dispatches to actor based on c_type, c_meth headers

c_meth is unused by python, but may be used in the future
to specify class+method pairs.

	Chain gains a dedicated field.

Reducing the chain into a recursive callbacks argument
causes problems when the recursion limit is exceeded.

This is fixed in the new message protocol by specifying
a list of signatures, each task will then pop a task off the list
when sending the next message:

execute_task(message)
chain = message.headers['chain']
if chain:
 sig = maybe_signature(chain.pop())
 sig.apply_async(chain=chain)

	correlation_id replaces task_id field.

	c_shadow lets you specify a different name for logs, monitors
can be used for e.g. meta tasks that calls any function:

from celery.utils.imports import qualname

class PickleTask(Task):
 abstract = True

 def unpack_args(self, fun, args=()):
 return fun, args

 def apply_async(self, args, kwargs, **options):
 fun, real_args = self.unpack_args(*args)
 return super(PickleTask, self).apply_async(
 (fun, real_args, kwargs), shadow=qualname(fun), **options
)

@app.task(base=PickleTask)
def call(fun, args, kwargs):
 return fun(*args, **kwargs)

Undecided

	May consider moving callbacks/errbacks/chain into body.

Will huge lists in headers cause overhead?
The downside of keeping them in the body is that intermediates
won’t be able to introspect these values.

Definition

protocol v2 implies UTC=True
'class' header existing means protocol is v2

properties = {
 'correlation_id': (uuid)task_id,
 'content_type': (string)mime,
 'content_encoding': (string)encoding,

 # optional
 'reply_to': (string)queue_or_url,
}
headers = {
 'lang': (string)'py'
 'c_type': (string)task,

 # optional
 'c_meth': (string)unused,
 'c_shadow': (string)replace_name,
 'eta': (iso8601)eta,
 'expires'; (iso8601)expires,
 'callbacks': (list)Signature,
 'errbacks': (list)Signature,
 'chain': (list)Signature, # non-recursive, reversed list of signatures
 'group': (uuid)group_id,
 'chord': (uuid)chord_id,
 'retries': (int)retries,
 'timelimit': (tuple)(soft, hard),
}

body = (args, kwargs)

Example

chain: add(add(add(2, 2), 4), 8) == 2 + 2 + 4 + 8

task_id = uuid()
basic_publish(
 message=json.dumps([[2, 2], {}]),
 application_headers={
 'lang': 'py',
 'c_type': 'proj.tasks.add',
 'chain': [
 # reversed chain list
 {'task': 'proj.tasks.add', 'args': (8,)},
 {'task': 'proj.tasks.add', 'args': (4,)},
]
 }
 properties={
 'correlation_id': task_id,
 'content_type': 'application/json',
 'content_encoding': 'utf-8',
 }
)

 “The Big Instance” Refactor

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

“The Big Instance” Refactor

The app branch is a work-in-progress to remove
the use of a global configuration in Celery.

Celery can now be instantiated, which means several
instances of Celery may exist in the same process space.
Also, large parts can be customized without resorting to monkey
patching.

Examples

Creating a Celery instance:

>>> from celery import Celery
>>> app = Celery()
>>> app.config_from_object("celeryconfig")
>>> #app.config_from_envvar("CELERY_CONFIG_MODULE")

Creating tasks:

@app.task
def add(x, y):
 return x + y

Creating custom Task subclasses:

Task = celery.create_task_cls()

class DebugTask(Task):
 abstract = True

 def on_failure(self, *args, **kwargs):
 import pdb
 pdb.set_trace()

@app.task(base=DebugTask)
def add(x, y):
 return x + y

Starting a worker:

worker = celery.Worker(loglevel="INFO")

Getting access to the configuration:

celery.conf.CELERY_ALWAYS_EAGER = True
celery.conf["CELERY_ALWAYS_EAGER"] = True

Controlling workers:

>>> celery.control.inspect().active()
>>> celery.control.rate_limit(add.name, "100/m")
>>> celery.control.broadcast("shutdown")
>>> celery.control.discard_all()

Other interesting attributes:

Establish broker connection.
>>> celery.broker_connection()

AMQP Specific features.
>>> celery.amqp
>>> celery.amqp.Router
>>> celery.amqp.get_queues()
>>> celery.amqp.get_task_consumer()

Loader
>>> celery.loader

Default backend
>>> celery.backend

As you can probably see, this really opens up another
dimension of customization abilities.

Deprecations

	celery.task.ping
celery.task.PingTask

Inferior to the ping remote control command.
Will be removed in Celery 2.3.

Removed deprecations

	
	celery.utils.timedelta_seconds

	Use: celery.utils.timeutils.timedelta_seconds()

	
	celery.utils.defaultdict

	Use: celery.utils.compat.defaultdict()

	
	celery.utils.all

	Use: celery.utils.compat.all()

	
	celery.task.apply_async

	Use app.send_task

	
	celery.task.tasks

	Use celery.registry.tasks

Aliases (Pending deprecation)

	
	celery.task.base

	
	.Task -> {app.create_task_cls}

	
	celery.task.sets

	
	.TaskSet -> {app.TaskSet}

	
	celery.decorators / celery.task

	
	.task -> {app.task}

	
	celery.execute

	
	.apply_async -> {task.apply_async}

	.apply -> {task.apply}

	.send_task -> {app.send_task}

	.delay_task -> no alternative

	
	celery.log

	
	.get_default_logger -> {app.log.get_default_logger}

	.setup_logger -> {app.log.setup_logger}

	.get_task_logger -> {app.log.get_task_logger}

	.setup_task_logger -> {app.log.setup_task_logger}

	.setup_logging_subsystem -> {app.log.setup_logging_subsystem}

	.redirect_stdouts_to_logger -> {app.log.redirect_stdouts_to_logger}

	
	celery.messaging

	
	.establish_connection -> {app.broker_connection}

	.with_connection -> {app.with_connection}

	.get_consumer_set -> {app.amqp.get_task_consumer}

	.TaskPublisher -> {app.amqp.TaskPublisher}

	.TaskConsumer -> {app.amqp.TaskConsumer}

	.ConsumerSet -> {app.amqp.ConsumerSet}

	celery.conf.* -> {app.conf}

NOTE: All configuration keys are now named the same
as in the configuration. So the key “CELERY_ALWAYS_EAGER”
is accessed as:

>>> app.conf.CELERY_ALWAYS_EAGER

instead of:

>>> from celery import conf
>>> conf.ALWAYS_EAGER

	.get_queues -> {app.amqp.get_queues}

	
	celery.task.control

	
	.broadcast -> {app.control.broadcast}

	.rate_limit -> {app.control.rate_limit}

	.ping -> {app.control.ping}

	.revoke -> {app.control.revoke}

	.discard_all -> {app.control.discard_all}

	.inspect -> {app.control.inspect}

	
	celery.utils.info

	
	.humanize_seconds -> celery.utils.timeutils.humanize_seconds

	.textindent -> celery.utils.textindent

	.get_broker_info -> {app.amqp.get_broker_info}

	.format_broker_info -> {app.amqp.format_broker_info}

	.format_queues -> {app.amqp.format_queues}

Default App Usage

To be backward compatible, it must be possible
to use all the classes/functions without passing
an explicit app instance.

This is achieved by having all app-dependent objects
use default_app if the app instance
is missing.

from celery.app import app_or_default

class SomeClass(object):

 def __init__(self, app=None):
 self.app = app_or_default(app)

The problem with this approach is that there is a chance
that the app instance is lost along the way, and everything
seems to be working normally. Testing app instance leaks
is hard. The environment variable CELERY_TRACE_APP
can be used, when this is enabled celery.app.app_or_default()
will raise an exception whenever it has to go back to the default app
instance.

App Dependency Tree

	
	{app}

	
	celery.loaders.base.BaseLoader

	celery.backends.base.BaseBackend

	
	{app.TaskSet}

	
	celery.task.sets.TaskSet (app.TaskSet)

	
	[app.TaskSetResult]

	
	celery.result.TaskSetResult (app.TaskSetResult)

	
	{app.AsyncResult}

	
	celery.result.BaseAsyncResult / celery.result.AsyncResult

	
	celery.bin.worker.WorkerCommand

	
	
	celery.apps.worker.Worker

	
	
	celery.worker.WorkerController

	
	
	celery.worker.consumer.Consumer

	
	celery.worker.job.TaskRequest

	celery.events.EventDispatcher

	
	celery.worker.control.ControlDispatch

	
	celery.woker.control.registry.Panel

	celery.pidbox.BroadcastPublisher

	celery.pidbox.BroadcastConsumer

	celery.worker.controllers.Mediator

	celery.beat.EmbeddedService

	
	celery.bin.events.EvCommand

	
	
	celery.events.snapshot.evcam

	
	celery.events.snapshot.Polaroid

	celery.events.EventReceiver

	
	celery.events.cursesmon.evtop

	
	celery.events.EventReceiver

	celery.events.cursesmon.CursesMonitor

	
	celery.events.dumper

	
	celery.events.EventReceiver

	celery.bin.amqp.AMQPAdmin

	
	celery.bin.beat.BeatCommand

	
	
	celery.apps.beat.Beat

	
	
	celery.beat.Service

	
	celery.beat.Scheduler

 Internal Module Reference

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Internal Module Reference

	Release:	3.1

	Date:	Nov 12, 2017

	celery.worker.components

	celery.worker.loops

	celery.worker.heartbeat

	celery.worker.control

	celery.worker.pidbox

	celery.worker.autoreload

	celery.worker.autoscale

	celery.concurrency

	celery.concurrency.solo

	celery.concurrency.prefork

	celery.concurrency.eventlet

	celery.concurrency.gevent† (experimental)

	celery.concurrency.base

	celery.concurrency.threads‡ (minefield)

	celery.backends

	celery.backends.base

	celery.backends.rpc

	celery.backends.database

	celery.backends.cache

	celery.backends.amqp

	celery.backends.mongodb

	celery.backends.redis

	celery.backends.cassandra

	celery.backends.couchbase

	celery.app.trace

	celery.app.annotations

	celery.app.routes

	celery.datastructures

	celery.security.certificate

	celery.security.key

	celery.security.serialization

	celery.security.utils

	celery.events.snapshot

	celery.events.cursesmon

	celery.events.dumper

	celery.backends.database.models

	celery.backends.database.session

	celery.utils

	celery.utils.functional

	celery.utils.objects

	celery.utils.term

	celery.utils.timeutils

	celery.utils.iso8601

	celery.utils.compat

	celery.utils.serialization

	celery.utils.sysinfo

	celery.utils.threads

	celery.utils.timer2

	celery.utils.imports

	celery.utils.log

	celery.utils.text

	celery.utils.dispatch

	celery.utils.dispatch.signal

	celery.utils.dispatch.saferef

	celery.platforms

	celery._state

 celery.worker.components

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.components

	celery.worker.components

celery.worker.components

Default worker bootsteps.

	
class celery.worker.components.Timer(parent, **kwargs)

	This step initializes the internal timer used by the worker.

	
create(w)

	

	
name = u'celery.worker.components.Timer'

	

	
on_timer_error(exc)

	

	
on_timer_tick(delay)

	

	
class celery.worker.components.Hub(w, **kwargs)

	
	
create(w)

	

	
include_if(w)

	

	
name = u'celery.worker.components.Hub'

	

	
requires = (step:celery.worker.components.Timer{()},)

	

	
start(w)

	

	
stop(w)

	

	
terminate(w)

	

	
class celery.worker.components.Queues(parent, **kwargs)

	This bootstep initializes the internal queues
used by the worker.

	
create(w)

	

	
label = 'Queues (intra)'

	

	
name = u'celery.worker.components.Queues'

	

	
requires = (step:celery.worker.components.Hub{(step:celery.worker.components.Timer{()},)},)

	

	
class celery.worker.components.Pool(w, autoscale=None, autoreload=None, no_execv=False, optimization=None, **kwargs)

	Bootstep managing the worker pool.

Describes how to initialize the worker pool, and starts and stops
the pool during worker startup/shutdown.

Adds attributes:

	autoscale

	pool

	max_concurrency

	min_concurrency

	
close(w)

	

	
create(w, semaphore=None, max_restarts=None)

	

	
info(w)

	

	
name = u'celery.worker.components.Pool'

	

	
register_with_event_loop(w, hub)

	

	
requires = (step:celery.worker.components.Queues{(step:celery.worker.components.Hub{(step:celery.worker.components.Timer{()},)},)},)

	

	
terminate(w)

	

	
class celery.worker.components.Beat(w, beat=False, **kwargs)

	Step used to embed a beat process.

This will only be enabled if the beat
argument is set.

	
conditional = True

	

	
create(w)

	

	
label = 'Beat'

	

	
name = u'celery.worker.components.Beat'

	

	
class celery.worker.components.StateDB(w, **kwargs)

	This bootstep sets up the workers state db if enabled.

	
create(w)

	

	
name = u'celery.worker.components.StateDB'

	

	
class celery.worker.components.Consumer(parent, **kwargs)

	
	
create(w)

	

	
last = True

	

	
name = u'celery.worker.components.Consumer'

	

 celery.worker.loops

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.loops

	celery.worker.loop

celery.worker.loop

The consumers highly-optimized inner loop.

	
celery.worker.loops.asynloop(obj, connection, consumer, blueprint, hub, qos, heartbeat, clock, hbrate=2.0, RUN=1)

	Non-blocking event loop consuming messages until connection is lost,
or shutdown is requested.

	
celery.worker.loops.synloop(obj, connection, consumer, blueprint, hub, qos, heartbeat, clock, hbrate=2.0, **kwargs)

	Fallback blocking event loop for transports that doesn’t support AIO.

 celery.worker.heartbeat

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.heartbeat

	celery.worker.heartbeat

celery.worker.heartbeat

This is the internal thread that sends heartbeat events
at regular intervals.

	
class celery.worker.heartbeat.Heart(timer, eventer, interval=None)

	Timer sending heartbeats at regular intervals.

	Parameters:	
	timer – Timer instance.

	eventer – Event dispatcher used to send the event.

	interval – Time in seconds between heartbeats.
Default is 2 seconds.

	
start()

	

	
stop()

	

 celery.worker.control

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.control

	celery.worker.control

celery.worker.control

Remote control commands.

	
class celery.worker.control.Panel(*args, **kwargs)

	
	
data = {'time_limit': <function time_limit>, 'revoke': <function revoke>, 'objgraph': <function objgraph>, 'dump_active': <function dump_active>, 'active_queues': <function active_queues>, 'cancel_consumer': <function cancel_consumer>, 'dump_reserved': <function dump_reserved>, 'election': <function election>, 'shutdown': <function shutdown>, 'stats': <function stats>, 'clock': <function clock>, 'ping': <function ping>, 'disable_events': <function disable_events>, 'memdump': <function memdump>, 'pool_shrink': <function pool_shrink>, 'pool_restart': <function pool_restart>, 'dump_schedule': <function dump_schedule>, 'report': <function report>, 'autoscale': <function autoscale>, 'query_task': <function query_task>, 'dump_tasks': <function dump_tasks>, 'add_consumer': <function add_consumer>, 'enable_events': <function enable_events>, 'dump_revoked': <function dump_revoked>, 'rate_limit': <function rate_limit>, 'dump_conf': <function dump_conf>, 'memsample': <function memsample>, 'pool_grow': <function pool_grow>, 'heartbeat': <function heartbeat>, 'hello': <function hello>}

	

	
classmethod register(method, name=None)

	

 celery.worker.pidbox

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.pidbox

	
class celery.worker.pidbox.Pidbox(c)

	
	
consumer = None

	

	
on_message(body, message)

	

	
on_stop()

	

	
reset()

	Sets up the process mailbox.

	
shutdown(c)

	

	
start(c)

	

	
stop(c)

	

	
class celery.worker.pidbox.gPidbox(c)

	
	
loop(c)

	

	
on_stop()

	

	
reset()

	

	
start(c)

	

 celery.worker.autoreload

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.autoreload

	celery.worker.autoreload

celery.worker.autoreload

This module implements automatic module reloading

	
class celery.worker.autoreload.WorkerComponent(w, autoreload=None, **kwargs)

	
	
conditional = True

	

	
create(w)

	

	
label = 'Autoreloader'

	

	
name = u'celery.worker.autoreload.WorkerComponent'

	

	
register_with_event_loop(w, hub)

	

	
requires = (step:celery.worker.components.Pool{(step:celery.worker.components.Queues{(step:celery.worker.components.Hub{(step:celery.worker.components.Timer{()},)},)},)},)

	

	
class celery.worker.autoreload.Autoreloader(controller, modules=None, monitor_cls=None, **options)

	Tracks changes in modules and fires reload commands

	
Monitor

	alias of StatMonitor

	
body()

	

	
on_change(files)

	

	
on_event_loop_close(hub)

	

	
on_init()

	

	
register_with_event_loop(hub)

	

	
stop()

	

	
celery.worker.autoreload.Monitor

	alias of StatMonitor

	
class celery.worker.autoreload.BaseMonitor(files, on_change=None, shutdown_event=None, interval=0.5)

	
	
on_change(modified)

	

	
on_event_loop_close(hub)

	

	
start()

	

	
stop()

	

	
class celery.worker.autoreload.StatMonitor(files, on_change=None, shutdown_event=None, interval=0.5)

	File change monitor based on the stat system call.

	
find_changes()

	

	
register_with_event_loop(hub)

	

	
start()

	

	
class celery.worker.autoreload.KQueueMonitor(*args, **kwargs)

	File change monitor based on BSD kernel event notifications

	
add_events(poller)

	

	
close(poller)

	

	
handle_event(events)

	

	
on_event_loop_close(hub)

	

	
register_with_event_loop(hub)

	

	
start()

	

	
stop()

	

	
class celery.worker.autoreload.InotifyMonitor(modules, on_change=None, **kwargs)

	File change monitor based on Linux kernel inotify subsystem

	
create_notifier()

	

	
on_change(modified)

	

	
on_event_loop_close(hub)

	

	
on_readable()

	

	
process_(event)

	

	
process_IN_ATTRIB(event)

	

	
process_IN_MODIFY(event)

	

	
register_with_event_loop(hub)

	

	
start()

	

	
stop()

	

	
celery.worker.autoreload.file_hash(filename, algorithm='md5')

	

 celery.worker.autoscale

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.worker.autoscale

	celery.worker.autoscale

celery.worker.autoscale

This module implements the internal thread responsible
for growing and shrinking the pool according to the
current autoscale settings.

The autoscale thread is only enabled if --autoscale
has been enabled on the command-line.

	
class celery.worker.autoscale.Autoscaler(pool, max_concurrency, min_concurrency=0, worker=None, keepalive=30.0, mutex=None)

	
	
body()

	

	
force_scale_down(n)

	

	
force_scale_up(n)

	

	
info()

	

	
maybe_scale(req=None)

	

	
processes

	

	
qty

	

	
scale_down(n)

	

	
scale_up(n)

	

	
update(max=None, min=None)

	

	
class celery.worker.autoscale.WorkerComponent(w, **kwargs)

	
	
conditional = True

	

	
create(w)

	

	
label = 'Autoscaler'

	

	
name = u'celery.worker.autoscale.WorkerComponent'

	

	
register_with_event_loop(w, hub)

	

	
requires = (step:celery.worker.components.Pool{(step:celery.worker.components.Queues{(step:celery.worker.components.Hub{(step:celery.worker.components.Timer{()},)},)},)},)

	

 celery.concurrency

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.concurrency

	celery.concurrency

celery.concurrency

Pool implementation abstract factory, and alias definitions.

	
celery.concurrency.get_implementation(cls)

	

 celery.concurrency.solo

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.concurrency.solo

	celery.concurrency.solo

celery.concurrency.solo

Single-threaded pool implementation.

	
class celery.concurrency.solo.TaskPool(*args, **kwargs)

	Solo task pool (blocking, inline, fast).

 celery.concurrency.prefork

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.concurrency.prefork

	celery.concurrency.prefork

celery.concurrency.prefork

Pool implementation using multiprocessing [https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing].

	
class celery.concurrency.prefork.TaskPool(limit=None, putlocks=True, forking_enable=True, callbacks_propagate=(), **options)

	Multiprocessing Pool implementation.

	
BlockingPool

	alias of Pool

	
Pool

	alias of AsynPool

	
did_start_ok()

	

	
num_processes

	

	
on_close()

	

	
on_start()

	Run the task pool.

Will pre-fork all workers so they’re ready to accept tasks.

	
on_stop()

	Gracefully stop the pool.

	
on_terminate()

	Force terminate the pool.

	
register_with_event_loop(loop)

	

	
restart()

	

	
uses_semaphore = True

	

	
write_stats = None

	

	
celery.concurrency.prefork.process_initializer(app, hostname)

	Pool child process initializer.

This will initialize a child pool process to ensure the correct
app instance is used and things like
logging works.

	
celery.concurrency.prefork.process_destructor(pid, exitcode)

	Pool child process destructor

Dispatch the worker_process_shutdown signal.

 celery.concurrency.eventlet

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.concurrency.eventlet

	celery.concurrency.eventlet

celery.concurrency.eventlet

Eventlet pool implementation.

	
class celery.concurrency.eventlet.TaskPool(*args, **kwargs)

	
	
class Timer(schedule=None, on_error=None, on_tick=None, on_start=None, max_interval=None, **kwargs)

	
	
class Schedule(*args, **kwargs)

	
	
clear()

	

	
queue

	

	
cancel(tref)

	

	
ensure_started()

	

	
start()

	

	
stop()

	

	
grow(n=1)

	

	
is_green = True

	

	
on_apply(target, args=None, kwargs=None, callback=None, accept_callback=None, **_)

	

	
on_start()

	

	
on_stop()

	

	
shrink(n=1)

	

	
signal_safe = False

	

	
task_join_will_block = False

	

 celery.concurrency.gevent† (experimental)

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.concurrency.gevent† (experimental)

	celery.concurrency.gevent

celery.concurrency.gevent

gevent pool implementation.

	
class celery.concurrency.gevent.TaskPool(*args, **kwargs)

	
	
class Timer(schedule=None, on_error=None, on_tick=None, on_start=None, max_interval=None, **kwargs)

	
	
class Schedule(*args, **kwargs)

	
	
clear()

	

	
queue

	

	
ensure_started()

	

	
start()

	

	
stop()

	

	
grow(n=1)

	

	
is_green = True

	

	
num_processes

	

	
on_apply(target, args=None, kwargs=None, callback=None, accept_callback=None, timeout=None, timeout_callback=None, **_)

	

	
on_start()

	

	
on_stop()

	

	
shrink(n=1)

	

	
signal_safe = False

	

	
task_join_will_block = False

	

 celery.concurrency.base

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.concurrency.base

	celery.concurrency.base

celery.concurrency.base

TaskPool interface.

	
class celery.concurrency.base.BasePool(limit=None, putlocks=True, forking_enable=True, callbacks_propagate=(), **options)

	
	
CLOSE = 2

	

	
RUN = 1

	

	
TERMINATE = 3

	

	
class Timer(schedule=None, on_error=None, on_tick=None, on_start=None, max_interval=None, **kwargs)

	
	
class Entry(fun, args=None, kwargs=None)

	
	
args

	

	
cancel()

	

	
cancelled

	

	
fun

	

	
kwargs

	

	
tref

	

	
Schedule

	alias of Timer

	
call_after(*args, **kwargs)

	

	
call_at(*args, **kwargs)

	

	
call_repeatedly(*args, **kwargs)

	

	
cancel(tref)

	

	
clear()

	

	
empty()

	

	
ensure_started()

	

	
enter(entry, eta, priority=None)

	

	
enter_after(*args, **kwargs)

	

	
exit_after(secs, priority=10)

	

	
next()

	

	
on_tick = None

	

	
queue

	

	
run()

	

	
running = False

	

	
stop()

	

	
active

	

	
apply_async(target, args=[], kwargs={}, **options)

	Equivalent of the apply() built-in function.

Callbacks should optimally return as soon as possible since
otherwise the thread which handles the result will get blocked.

	
close()

	

	
did_start_ok()

	

	
flush()

	

	
info

	

	
is_green = False

	set to true if pool uses greenlets.

	
maintain_pool(*args, **kwargs)

	

	
num_processes

	

	
on_apply(*args, **kwargs)

	

	
on_close()

	

	
on_hard_timeout(job)

	

	
on_soft_timeout(job)

	

	
on_start()

	

	
on_stop()

	

	
on_terminate()

	

	
register_with_event_loop(loop)

	

	
restart()

	

	
signal_safe = True

	set to true if the pool can be shutdown from within
a signal handler.

	
start()

	

	
stop()

	

	
task_join_will_block = True

	

	
terminate()

	

	
terminate_job(pid, signal=None)

	

	
uses_semaphore = False

	only used by multiprocessing pool

	
celery.concurrency.base.apply_target(target, args=(), kwargs={}, callback=None, accept_callback=None, pid=None, getpid=<built-in function getpid>, propagate=(), monotonic=<function _monotonic>, **_)

	

 celery.concurrency.threads‡ (minefield)

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.concurrency.threads‡ (minefield)

	celery.concurrency.threads

celery.concurrency.threads

Pool implementation using threads.

	
class celery.concurrency.threads.TaskPool(*args, **kwargs)

	
	
on_apply(target, args=None, kwargs=None, callback=None, accept_callback=None, **_)

	

	
on_start()

	

	
on_stop()

	

 celery.backends

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends

	celery.backends

celery.backends

Backend abstract factory (...did I just say that?) and alias definitions.

	
celery.backends.get_backend_cls(backend=None, loader=None)

	Get backend class by name/alias

	
celery.backends.get_backend_by_url(backend=None, loader=None)

	

 celery.backends.base

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.base

	celery.backends.base

celery.backends.base

Result backend base classes.

	BaseBackend defines the interface.

	KeyValueStoreBackend is a common base class
using K/V semantics like _get and _put.

	
class celery.backends.base.BaseBackend(app, serializer=None, max_cached_results=None, accept=None, url=None, **kwargs)

	
	
EXCEPTION_STATES = frozenset(['FAILURE', 'RETRY', 'REVOKED'])

	

	
READY_STATES = frozenset(['FAILURE', 'REVOKED', 'SUCCESS'])

	

	
exception TimeoutError

	The operation timed out.

	
UNREADY_STATES = frozenset(['STARTED', 'RECEIVED', 'RETRY', 'PENDING'])

	

	
apply_chord(header, partial_args, group_id, body, **options)

	

	
as_uri(include_password=False)

	Return the backend as an URI, sanitizing the password or not

	
chord_error_from_stack(callback, exc=None)

	

	
cleanup()

	Backend cleanup. Is run by
celery.task.DeleteExpiredTaskMetaTask.

	
current_task_children(request=None)

	

	
decode(payload)

	

	
decode_result(payload)

	

	
delete_group(group_id)

	

	
encode(data)

	

	
encode_result(result, status)

	

	
exception_to_python(exc)

	Convert serialized exception to Python exception.

	
fail_from_current_stack(task_id, exc=None)

	

	
fallback_chord_unlock(group_id, body, result=None, countdown=1, **kwargs)

	

	
forget(task_id)

	

	
get_children(task_id)

	Get the list of subtasks sent by a task.

	
get_group_meta(group_id, cache=True)

	

	
get_result(task_id)

	Get the result of a task.

	
get_status(task_id)

	Get the status of a task.

	
get_task_meta(task_id, cache=True)

	

	
get_traceback(task_id)

	Get the traceback for a failed task.

	
is_cached(task_id)

	

	
mark_as_done(task_id, result, request=None)

	Mark task as successfully executed.

	
mark_as_failure(task_id, exc, traceback=None, request=None)

	Mark task as executed with failure. Stores the exception.

	
mark_as_retry(task_id, exc, traceback=None, request=None)

	Mark task as being retries. Stores the current
exception (if any).

	
mark_as_revoked(task_id, reason='', request=None)

	

	
mark_as_started(task_id, **meta)

	Mark a task as started

	
meta_from_decoded(meta)

	

	
on_chord_part_return(task, state, result, propagate=False)

	

	
on_task_call(producer, task_id)

	

	
persistent = True

	Set to true if the backend is peristent by default.

	
prepare_exception(exc, serializer=None)

	Prepare exception for serialization.

	
prepare_expires(value, type=None)

	

	
prepare_persistent(enabled=None)

	

	
prepare_value(result)

	Prepare value for storage.

	
process_cleanup()

	Cleanup actions to do at the end of a task worker process.

	
reload_group_result(group_id)

	Reload group result, even if it has been previously fetched.

	
reload_task_result(task_id)

	Reload task result, even if it has been previously fetched.

	
restore_group(group_id, cache=True)

	Get the result for a group.

	
retry_policy = {'interval_start': 0, 'interval_max': 1, 'max_retries': 20, 'interval_step': 1}

	

	
save_group(group_id, result)

	Store the result of an executed group.

	
store_result(task_id, result, status, traceback=None, request=None, **kwargs)

	Update task state and result.

	
subpolling_interval = None

	Time to sleep between polling each individual item
in ResultSet.iterate. as opposed to the interval
argument which is for each pass.

	
supports_autoexpire = False

	If true the backend must automatically expire results.
The daily backend_cleanup periodic task will not be triggered
in this case.

	
supports_native_join = False

	If true the backend must implement get_many().

	
wait_for(task_id, timeout=None, interval=0.5, no_ack=True, on_interval=None)

	Wait for task and return its result.

If the task raises an exception, this exception
will be re-raised by wait_for().

If timeout is not None, this raises the
celery.exceptions.TimeoutError exception if the operation
takes longer than timeout seconds.

	
class celery.backends.base.KeyValueStoreBackend(*args, **kwargs)

	
	
chord_keyprefix = 'chord-unlock-'

	

	
delete(key)

	

	
expire(key, value)

	

	
get(key)

	

	
get_key_for_chord(group_id, key='')

	Get the cache key for the chord waiting on group with given id.

	
get_key_for_group(group_id, key='')

	Get the cache key for a group by id.

	
get_key_for_task(task_id, key='')

	Get the cache key for a task by id.

	
get_many(task_ids, timeout=None, interval=0.5, no_ack=True, READY_STATES=frozenset(['FAILURE', 'REVOKED', 'SUCCESS']))

	

	
group_keyprefix = 'celery-taskset-meta-'

	

	
implements_incr = False

	

	
incr(key)

	

	
key_t(s)

	

	
mget(keys)

	

	
on_chord_part_return(task, state, result, propagate=None)

	

	
set(key, value)

	

	
task_keyprefix = 'celery-task-meta-'

	

	
class celery.backends.base.DisabledBackend(app, serializer=None, max_cached_results=None, accept=None, url=None, **kwargs)

	
	
as_uri(*args, **kwargs)

	

	
get_many(*args, **kwargs)

	

	
get_result(*args, **kwargs)

	

	
get_state(*args, **kwargs)

	

	
get_status(*args, **kwargs)

	

	
get_traceback(*args, **kwargs)

	

	
store_result(*args, **kwargs)

	

	
wait_for(*args, **kwargs)

	

 celery.backends.rpc

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.rpc

	celery.backends.rpc

celery.backends.rpc

RPC-style result backend, using reply-to and one queue per client.

	
class celery.backends.rpc.RPCBackend(app, connection=None, exchange=None, exchange_type=None, persistent=None, serializer=None, auto_delete=True, **kwargs)

	
	
class Consumer(channel, queues=None, no_ack=None, auto_declare=None, callbacks=None, on_decode_error=None, on_message=None, accept=None, tag_prefix=None)

	
	
auto_declare = False

	

	
as_uri(include_password=True)

	

	
binding

	

	
destination_for(task_id, request)

	

	
oid

	

	
on_reply_declare(task_id)

	

	
on_task_call(producer, task_id)

	

	
persistent = False

	

	
rkey(task_id)

	

 celery.backends.database

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.database

	celery.backends.database

celery.backends.database

SQLAlchemy result store backend.

	
class celery.backends.database.DatabaseBackend(dburi=None, expires=None, engine_options=None, url=None, **kwargs)

	The database result backend.

	
ResultSession(session_manager=<celery.backends.database.session.SessionManager object>)

	

	
cleanup()

	Delete expired metadata.

	
subpolling_interval = 0.5

	

 celery.backends.cache

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.cache

	celery.backends.cache

celery.backends.cache

Memcache and in-memory cache result backend.

	
class celery.backends.cache.CacheBackend(app, expires=None, backend=None, options={}, url=None, **kwargs)

	
	
as_uri(*args, **kwargs)

	Return the backend as an URI.

This properly handles the case of multiple servers.

	
client

	

	
delete(key)

	

	
get(key)

	

	
implements_incr = True

	

	
incr(key)

	

	
mget(keys)

	

	
servers = None

	

	
set(key, value)

	

	
supports_autoexpire = True

	

	
supports_native_join = True

	

 celery.backends.amqp

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.amqp

	celery.backends.amqp

celery.backends.amqp

The AMQP result backend.

This backend publishes results as messages.

	
exception celery.backends.amqp.BacklogLimitExceeded

	Too much state history to fast-forward.

	
class celery.backends.amqp.AMQPBackend(app, connection=None, exchange=None, exchange_type=None, persistent=None, serializer=None, auto_delete=True, **kwargs)

	Publishes results by sending messages.

	
exception BacklogLimitExceeded

	Too much state history to fast-forward.

	
class Consumer(channel, queues=None, no_ack=None, auto_declare=None, callbacks=None, on_decode_error=None, on_message=None, accept=None, tag_prefix=None)

	Message consumer.

	Parameters:	
	channel – see channel.

	queues – see queues.

	no_ack – see no_ack.

	auto_declare – see auto_declare

	callbacks – see callbacks.

	on_message – See on_message

	on_decode_error – see on_decode_error.

	
exception ContentDisallowed

	Consumer does not allow this content-type.

	
accept = None

	

	
add_queue(queue)

	Add a queue to the list of queues to consume from.

This will not start consuming from the queue,
for that you will have to call consume() after.

	
add_queue_from_dict(queue, **options)

	This method is deprecated.

Instead please use:

consumer.add_queue(Queue.from_dict(d))

	
auto_declare = True

	

	
callbacks = None

	

	
cancel()

	End all active queue consumers.

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
cancel_by_queue(queue)

	Cancel consumer by queue name.

	
channel = None

	

	
close()

	End all active queue consumers.

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
connection

	

	
consume(no_ack=None)

	Start consuming messages.

Can be called multiple times, but note that while it
will consume from new queues added since the last call,
it will not cancel consuming from removed queues (
use cancel_by_queue()).

	Parameters:	no_ack – See no_ack.

	
consuming_from(queue)

	Return True if the consumer is currently
consuming from queue’.

	
declare()

	Declare queues, exchanges and bindings.

This is done automatically at instantiation if auto_declare
is set.

	
flow(active)

	Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use
to avoid overflowing its queues or otherwise finding itself
receiving more messages than it can process.

The peer that receives a request to stop sending content
will finish sending the current content (if any), and then wait
until flow is reactivated.

	
no_ack = None

	

	
on_decode_error = None

	

	
on_message = None

	

	
purge()

	Purge messages from all queues.

Warning

This will delete all ready messages, there is no
undo operation.

	
qos(prefetch_size=0, prefetch_count=0, apply_global=False)

	Specify quality of service.

The client can request that messages should be sent in
advance so that when the client finishes processing a message,
the following message is already held locally, rather than needing
to be sent down the channel. Prefetching gives a performance
improvement.

The prefetch window is Ignored if the no_ack option is set.

	Parameters:	
	prefetch_size – Specify the prefetch window in octets.
The server will send a message in advance if it is equal to
or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero,
meaning “no specific limit”, although other prefetch limits
may still apply.

	prefetch_count – Specify the prefetch window in terms of
whole messages.

	apply_global – Apply new settings globally on all channels.

	
queues = None

	

	
receive(body, message)

	Method called when a message is received.

This dispatches to the registered callbacks.

	Parameters:	
	body – The decoded message body.

	message – The Message instance.

	Raises:	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] – If no consumer callbacks have been
registered.

	
recover(requeue=False)

	Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages
on the specified channel.

	Parameters:	requeue – By default the messages will be redelivered
to the original recipient. With requeue set to true, the
server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	
register_callback(callback)

	Register a new callback to be called when a message
is received.

The signature of the callback needs to accept two arguments:
(body, message), which is the decoded message body
and the Message instance (a subclass of
Message [http://kombu.readthedocs.io/en/latest/reference/kombu.transport.base.html#kombu.transport.base.Message].

	
revive(channel)

	Revive consumer after connection loss.

	
class Exchange(name='', type='', channel=None, **kwargs)

	An Exchange declaration.

	Parameters:	
	name – See name.

	type – See type.

	channel – See channel.

	durable – See durable.

	auto_delete – See auto_delete.

	delivery_mode – See delivery_mode.

	arguments – See arguments.

	
name

	Name of the exchange. Default is no name (the default exchange).

	
type

	This description of AMQP exchange types was shamelessly stolen
from the blog post `AMQP in 10 minutes: Part 4`_ by
Rajith Attapattu. Reading this article is recommended if you’re
new to amqp.

“AMQP defines four default exchange types (routing algorithms) that
covers most of the common messaging use cases. An AMQP broker can
also define additional exchange types, so see your broker
manual for more information about available exchange types.

	direct (default)

Direct match between the routing key in the message, and the
routing criteria used when a queue is bound to this exchange.

	topic

Wildcard match between the routing key and the routing pattern
specified in the exchange/queue binding. The routing key is
treated as zero or more words delimited by ”.” and
supports special wildcard characters. “*” matches a
single word and “#” matches zero or more words.

	fanout

Queues are bound to this exchange with no arguments. Hence any
message sent to this exchange will be forwarded to all queues
bound to this exchange.

	headers

Queues are bound to this exchange with a table of arguments
containing headers and values (optional). A special argument
named “x-match” determines the matching algorithm, where
“all” implies an AND (all pairs must match) and
“any” implies OR (at least one pair must match).

arguments is used to specify the arguments.

	
channel

	The channel the exchange is bound to (if bound).

	
durable

	Durable exchanges remain active when a server restarts. Non-durable
exchanges (transient exchanges) are purged when a server restarts.
Default is True.

	
auto_delete

	If set, the exchange is deleted when all queues have finished
using it. Default is False.

	
delivery_mode

	The default delivery mode used for messages. The value is an integer,
or alias string.

	1 or “transient”

The message is transient. Which means it is stored in
memory only, and is lost if the server dies or restarts.

	
	2 or “persistent” (default)

	The message is persistent. Which means the message is
stored both in-memory, and on disk, and therefore
preserved if the server dies or restarts.

The default value is 2 (persistent).

	
arguments

	Additional arguments to specify when the exchange is declared.

	
Message(body, delivery_mode=None, priority=None, content_type=None, content_encoding=None, properties=None, headers=None)

	Create message instance to be sent with publish().

	Parameters:	
	body – Message body.

	delivery_mode – Set custom delivery mode. Defaults
to delivery_mode.

	priority – Message priority, 0 to 9. (currently not
supported by RabbitMQ).

	content_type – The messages content_type. If content_type
is set, no serialization occurs as it is assumed this is either
a binary object, or you’ve done your own serialization.
Leave blank if using built-in serialization as our library
properly sets content_type.

	content_encoding – The character set in which this object
is encoded. Use “binary” if sending in raw binary objects.
Leave blank if using built-in serialization as our library
properly sets content_encoding.

	properties – Message properties.

	headers – Message headers.

	
PERSISTENT_DELIVERY_MODE = 2

	

	
TRANSIENT_DELIVERY_MODE = 1

	

	
attrs = (('name', None), ('type', None), ('arguments', None), ('durable', <type 'bool'>), ('passive', <type 'bool'>), ('auto_delete', <type 'bool'>), ('delivery_mode', <function <lambda>>))

	

	
auto_delete = False

	

	
bind_to(exchange='', routing_key='', arguments=None, nowait=False, **kwargs)

	Binds the exchange to another exchange.

	Parameters:	nowait – If set the server will not respond, and the call
will not block waiting for a response. Default is False.

	
binding(routing_key='', arguments=None, unbind_arguments=None)

	

	
can_cache_declaration

	

	
declare(nowait=False, passive=None)

	Declare the exchange.

Creates the exchange on the broker.

	Parameters:	nowait – If set the server will not respond, and a
response will not be waited for. Default is False.

	
delete(if_unused=False, nowait=False)

	Delete the exchange declaration on server.

	Parameters:	
	if_unused – Delete only if the exchange has no bindings.
Default is False.

	nowait – If set the server will not respond, and a
response will not be waited for. Default is False.

	
delivery_mode = 2

	

	
durable = True

	

	
name = ''

	

	
passive = False

	

	
publish(message, routing_key=None, mandatory=False, immediate=False, exchange=None)

	Publish message.

	Parameters:	
	message – Message() instance to publish.

	routing_key – Routing key.

	mandatory – Currently not supported.

	immediate – Currently not supported.

	
type = 'direct'

	

	
unbind_from(source='', routing_key='', nowait=False, arguments=None)

	Delete previously created exchange binding from the server.

	
class Producer(channel, exchange=None, routing_key=None, serializer=None, auto_declare=None, compression=None, on_return=None)

	Message Producer.

	Parameters:	
	channel – Connection or channel.

	exchange – Optional default exchange.

	routing_key – Optional default routing key.

	serializer – Default serializer. Default is “json”.

	compression – Default compression method. Default is no
compression.

	auto_declare – Automatically declare the default exchange
at instantiation. Default is True.

	on_return – Callback to call for undeliverable messages,
when the mandatory or immediate arguments to
publish() is used. This callback needs the following
signature: (exception, exchange, routing_key, message).
Note that the producer needs to drain events to use this feature.

	
auto_declare = True

	

	
channel

	

	
close()

	

	
compression = None

	

	
connection

	

	
declare()

	Declare the exchange.

This happens automatically at instantiation if
auto_declare is enabled.

	
exchange = None

	

	
maybe_declare(entity, retry=False, **retry_policy)

	Declare the exchange if it hasn’t already been declared
during this session.

	
on_return = None

	

	
publish(body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, priority=0, content_type=None, content_encoding=None, serializer=None, headers=None, compression=None, exchange=None, retry=False, retry_policy=None, declare=[], expiration=None, **properties)

	Publish message to the specified exchange.

	Parameters:	
	body – Message body.

	routing_key – Message routing key.

	delivery_mode – See delivery_mode.

	mandatory – Currently not supported.

	immediate – Currently not supported.

	priority – Message priority. A number between 0 and 9.

	content_type – Content type. Default is auto-detect.

	content_encoding – Content encoding. Default is auto-detect.

	serializer – Serializer to use. Default is auto-detect.

	compression – Compression method to use. Default is none.

	headers – Mapping of arbitrary headers to pass along
with the message body.

	exchange – Override the exchange. Note that this exchange
must have been declared.

	declare – Optional list of required entities that must
have been declared before publishing the message. The entities
will be declared using maybe_declare() [http://kombu.readthedocs.io/en/latest/reference/kombu.common.html#kombu.common.maybe_declare].

	retry – Retry publishing, or declaring entities if the
connection is lost.

	retry_policy – Retry configuration, this is the keywords
supported by ensure() [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Connection.ensure].

	expiration – A TTL in seconds can be specified per message.
Default is no expiration.

	**properties – Additional message properties, see AMQP spec.

	
release()

	

	
revive(channel)

	Revive the producer after connection loss.

	
routing_key = ''

	

	
serializer = None

	

	
Queue

	alias of NoCacheQueue

	
as_uri(include_password=True)

	

	
consume(task_id, timeout=None, no_ack=True, on_interval=None)

	

	
delete_group(group_id)

	

	
destination_for(task_id, request)

	

	
drain_events(connection, consumer, timeout=None, on_interval=None, now=<function _monotonic>, wait=None)

	

	
get_many(task_ids, timeout=None, no_ack=True, now=<function _monotonic>, getfields=<operator.itemgetter object>, READY_STATES=frozenset(['FAILURE', 'REVOKED', 'SUCCESS']), PROPAGATE_STATES=frozenset(['FAILURE', 'REVOKED']), **kwargs)

	

	
get_task_meta(task_id, backlog_limit=1000)

	

	
on_reply_declare(task_id)

	

	
persistent = True

	

	
poll(task_id, backlog_limit=1000)

	

	
reload_group_result(task_id)

	Reload group result, even if it has been previously fetched.

	
reload_task_result(task_id)

	

	
restore_group(group_id, cache=True)

	

	
retry_policy = {'interval_start': 0, 'interval_max': 1, 'max_retries': 20, 'interval_step': 1}

	

	
revive(channel)

	

	
rkey(task_id)

	

	
save_group(group_id, result)

	

	
store_result(task_id, result, status, traceback=None, request=None, **kwargs)

	Send task return value and status.

	
supports_autoexpire = True

	

	
supports_native_join = True

	

	
wait_for(task_id, timeout=None, cache=True, no_ack=True, on_interval=None, READY_STATES=frozenset(['FAILURE', 'REVOKED', 'SUCCESS']), PROPAGATE_STATES=frozenset(['FAILURE', 'REVOKED']), **kwargs)

	

 celery.backends.mongodb

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.mongodb

	celery.backends.mongodb

celery.backends.mongodb

MongoDB result store backend.

	
class celery.backends.mongodb.MongoBackend(app=None, url=None, **kwargs)

	MongoDB result backend.

	Raises:	celery.exceptions.ImproperlyConfigured – if
module pymongo is not available.

	
as_uri(include_password=False)

	Return the backend as an URI.

	Parameters:	include_password – Censor passwords.

	
cleanup()

	Delete expired metadata.

	
collection

	Get the metadata task collection.

	
database

	Get database from MongoDB connection and perform authentication
if necessary.

	
database_name = 'celery'

	

	
host = 'localhost'

	

	
max_pool_size = 10

	

	
options = None

	

	
password = None

	

	
port = 27017

	

	
process_cleanup()

	

	
supports_autoexpire = False

	

	
taskmeta_collection = 'celery_taskmeta'

	

	
user = None

	

 celery.backends.redis

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.redis

	celery.backends.redis

celery.backends.redis

Redis result store backend.

	
class celery.backends.redis.RedisBackend(host=None, port=None, db=None, password=None, expires=None, max_connections=None, url=None, connection_pool=None, new_join=False, **kwargs)

	Redis task result store.

	
ConnectionPool

	

	
client

	

	
db

	

	
delete(key)

	

	
ensure(fun, args, **policy)

	

	
expire(key, value)

	

	
get(key)

	

	
host

	

	
implements_incr = True

	

	
incr(key)

	

	
max_connections = None

	Maximium number of connections in the pool.

	
mget(keys)

	

	
on_connection_error(max_retries, exc, intervals, retries)

	

	
password

	

	
port

	

	
redis = None

	redis-py client module.

	
set(key, value, **retry_policy)

	

	
supports_autoexpire = True

	

	
supports_native_join = True

	

 celery.backends.cassandra

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.cassandra

	celery.backends.cassandra

celery.backends.cassandra

Apache Cassandra result store backend.

	
class celery.backends.cassandra.CassandraBackend(servers=None, keyspace=None, column_family=None, cassandra_options=None, detailed_mode=False, **kwargs)

	Highly fault tolerant Cassandra backend.

	
servers

	List of Cassandra servers with format: hostname:port.

	Raises:	celery.exceptions.ImproperlyConfigured – if
module pycassa is not available.

	
as_uri(include_password=True)

	

	
column_family = None

	

	
detailed_mode = False

	

	
keyspace = None

	

	
process_cleanup()

	

	
servers = []

	

	
supports_autoexpire = True

	

 celery.backends.couchbase

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.couchbase

	celery.backends.couchbase

celery.backends.couchbase

CouchBase result store backend.

	
class celery.backends.couchbase.CouchBaseBackend(url=None, *args, **kwargs)

	CouchBase backend.

	Raises:	celery.exceptions.ImproperlyConfigured – if
module couchbase is not available.

	
bucket = 'default'

	

	
conncache = None

	

	
connection

	

	
delete(key)

	

	
get(key)

	

	
host = 'localhost'

	

	
mget(keys)

	

	
password = None

	

	
port = 8091

	

	
quiet = False

	

	
set(key, value)

	

	
timeout = 2.5

	

	
transcoder = None

	

	
unlock_gil = True

	

	
username = None

	

 celery.app.trace

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.trace

	celery.app.trace

celery.app.trace

This module defines how the task execution is traced:
errors are recorded, handlers are applied and so on.

	
class celery.app.trace.TraceInfo(state, retval=None)

	
	
handle_error_state(task, eager=False)

	

	
handle_failure(task, store_errors=True)

	Handle exception.

	
handle_retry(task, store_errors=True)

	Handle retry exception.

	
retval

	

	
state

	

	
celery.app.trace.build_tracer(name, task, loader=None, hostname=None, store_errors=True, Info=<class 'celery.app.trace.TraceInfo'>, eager=False, propagate=False, app=None, IGNORE_STATES=frozenset(['IGNORED', 'RETRY', 'REJECTED']))

	Return a function that traces task execution; catches all
exceptions and updates result backend with the state and result

If the call was successful, it saves the result to the task result
backend, and sets the task status to “SUCCESS”.

If the call raises Retry, it extracts
the original exception, uses that as the result and sets the task state
to “RETRY”.

If the call results in an exception, it saves the exception as the task
result, and sets the task state to “FAILURE”.

Return a function that takes the following arguments:

	param uuid:	The id of the task.

	param args:	List of positional args to pass on to the function.

	param kwargs:	Keyword arguments mapping to pass on to the function.

	keyword request:

	 	Request dict.

	
celery.app.trace.trace_task(task, uuid, args, kwargs, request={}, **opts)

	

	
celery.app.trace.eager_trace_task(task, uuid, args, kwargs, request=None, **opts)

	

	
celery.app.trace.setup_worker_optimizations(app)

	

	
celery.app.trace.reset_worker_optimizations()

	

 celery.app.annotations

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.annotations

	celery.app.annotations

celery.app.annotations

Annotations is a nice term for monkey patching
task classes in the configuration.

This prepares and performs the annotations in the
CELERY_ANNOTATIONS setting.

	
class celery.app.annotations.MapAnnotation

	
	
annotate(task)

	

	
annotate_any()

	

	
celery.app.annotations.prepare(annotations)

	Expands the CELERY_ANNOTATIONS setting.

	
celery.app.annotations.resolve_all(anno, task)

	

 celery.app.routes

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.app.routes

	celery.routes

celery.routes

Contains utilities for working with task routers,
(CELERY_ROUTES).

	
class celery.app.routes.MapRoute(map)

	Creates a router out of a dict [https://docs.python.org/dev/library/stdtypes.html#dict].

	
route_for_task(task, *args, **kwargs)

	

	
class celery.app.routes.Router(routes=None, queues=None, create_missing=False, app=None)

	
	
expand_destination(route)

	

	
lookup_route(task, args=None, kwargs=None)

	

	
route(options, task, args=(), kwargs={})

	

	
celery.app.routes.prepare(routes)

	Expands the CELERY_ROUTES setting.

 celery.datastructures

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.datastructures

Custom types and data structures.

	AttributeDict

	DictAttribute

	ConfigurationView

	ExceptionInfo

	LimitedSet

	LRUCache

AttributeDict

	
class celery.datastructures.AttributeDict

	Dict subclass with attribute access.

	
class celery.datastructures.AttributeDictMixin

	Augment classes with a Mapping interface by adding attribute access.

I.e. d.key -> d[key].

DictAttribute

	
class celery.datastructures.DictAttribute(obj)

	Dict interface to attributes.

obj[k] -> obj.k
obj[k] = val -> obj.k = val

	
get(key, default=None)

	

	
items()

	

	
iteritems()

	

	
iterkeys()

	

	
itervalues()

	

	
keys()

	

	
obj = None

	

	
setdefault(key, default)

	

	
values()

	

ConfigurationView

	
class celery.datastructures.ConfigurationView(changes, defaults)

	A view over an applications configuration dicts.

Custom (but older) version of collections.ChainMap [https://docs.python.org/dev/library/collections.html#collections.ChainMap].

If the key does not exist in changes, the defaults dicts
are consulted.

	Parameters:	
	changes – Dict containing changes to the configuration.

	defaults – List of dicts containing the default configuration.

	
add_defaults(d)

	

	
changes = None

	

	
clear()

	Remove all changes, but keep defaults.

	
defaults = None

	

	
first(*keys)

	

	
get(key, default=None)

	

	
items()

	

	
iteritems()

	

	
iterkeys()

	

	
itervalues()

	

	
keys()

	

	
setdefault(key, default)

	

	
update(*args, **kwargs)

	

	
values()

	

ExceptionInfo

	
class celery.datastructures.ExceptionInfo(exc_info=None, internal=False)

	Exception wrapping an exception and its traceback.

	Parameters:	exc_info – The exception info tuple as returned by
sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info].

	
exception = None

	Exception instance.

	
internal = False

	Set to true if this is an internal error.

	
tb = None

	Pickleable traceback instance for use with traceback [https://docs.python.org/dev/library/traceback.html#module-traceback]

	
traceback = None

	String representation of the traceback.

	
type = None

	Exception type.

LimitedSet

	
class celery.datastructures.LimitedSet(maxlen=None, expires=None, data=None, heap=None)

	Kind-of Set with limitations.

Good for when you need to test for membership (a in set),
but the set should not grow unbounded.

	Parameters:	
	maxlen – Maximum number of members before we start
evicting expired members.

	expires – Time in seconds, before a membership expires.

	
add(key, now=<built-in function time>, heappush=<built-in function heappush>)

	Add a new member.

	
as_dict()

	

	
clear()

	Remove all members

	
discard(value)

	Remove membership by finding value.

	
pop_value(value)

	Remove membership by finding value.

	
purge(limit=None, offset=0, now=<built-in function time>)

	Purge expired items.

	
update(other)

	

LRUCache

	
class celery.datastructures.LRUCache(limit=None)

	LRU Cache implementation using a doubly linked list to track access.

	Parameters:	limit – The maximum number of keys to keep in the cache.
When a new key is inserted and the limit has been exceeded,
the Least Recently Used key will be discarded from the
cache.

	
incr(key, delta=1)

	

	
items()

	

	
iteritems(_need_lock=False)

	

	
iterkeys()

	

	
itervalues(_need_lock=False)

	

	
keys()

	

	
popitem(last=True)

	

	
update(*args, **kwargs)

	

	
values()

	

 celery.security.certificate

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.security.certificate

	celery.security.certificate

celery.security.certificate

X.509 certificates.

	
class celery.security.certificate.Certificate(cert)

	X.509 certificate.

	
get_id()

	Serial number/issuer pair uniquely identifies a certificate

	
get_issuer()

	Return issuer (CA) as a string

	
get_serial_number()

	Return the serial number in the certificate.

	
has_expired()

	Check if the certificate has expired.

	
verify(data, signature, digest)

	Verifies the signature for string containing data.

	
class celery.security.certificate.CertStore

	Base class for certificate stores

	
add_cert(cert)

	

	
itercerts()

	an iterator over the certificates

	
class celery.security.certificate.FSCertStore(path)

	File system certificate store

 celery.security.key

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.security.key

	celery.security.key

celery.security.key

Private key for the security serializer.

	
class celery.security.key.PrivateKey(key)

	
	
sign(data, digest)

	sign string containing data.

 celery.security.serialization

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.security.serialization

	celery.security.serialization

celery.security.serialization

Secure serializer.

	
class celery.security.serialization.SecureSerializer(key=None, cert=None, cert_store=None, digest='sha1', serializer='json')

	
	
deserialize(data)

	deserialize data structure from string

	
serialize(data)

	serialize data structure into string

	
celery.security.serialization.register_auth(key=None, cert=None, store=None, digest='sha1', serializer='json')

	register security serializer

 celery.security.utils

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.security.utils

	celery.security.utils

celery.security.utils

Utilities used by the message signing serializer.

	
celery.security.utils.reraise_errors(*args, **kwds)

	

 celery.events.snapshot

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.events.snapshot

	celery.events.snapshot

celery.events.snapshot

Consuming the events as a stream is not always suitable
so this module implements a system to take snapshots of the
state of a cluster at regular intervals. There is a full
implementation of this writing the snapshots to a database
in djcelery.snapshots in the django-celery distribution.

	
class celery.events.snapshot.Polaroid(state, freq=1.0, maxrate=None, cleanup_freq=3600.0, timer=None, app=None)

	
	
cancel()

	

	
capture()

	

	
cleanup()

	

	
cleanup_signal = <Signal: Signal>

	

	
clear_after = False

	

	
install()

	

	
on_cleanup()

	

	
on_shutter(state)

	

	
shutter()

	

	
shutter_signal = <Signal: Signal>

	

	
timer = None

	

	
celery.events.snapshot.evcam(camera, freq=1.0, maxrate=None, loglevel=0, logfile=None, pidfile=None, timer=None, app=None)

	

 celery.events.cursesmon

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.events.cursesmon

	celery.events.cursesmon

celery.events.cursesmon

Graphical monitor of Celery events using curses.

	
class celery.events.cursesmon.CursesMonitor(state, app, keymap=None)

	
	
alert(callback, title=None)

	

	
alert_remote_control_reply(reply)

	

	
background = 7

	

	
display_height

	

	
display_task_row(lineno, task)

	

	
display_width

	

	
draw()

	

	
find_position()

	

	
foreground = 0

	

	
format_row(uuid, task, worker, timestamp, state)

	

	
greet = 'celery events 3.1.25 (Cipater)'

	

	
handle_keypress()

	

	
help = 'j:down k:up i:info t:traceback r:result c:revoke ^c: quit'

	

	
help_title = 'Keys: '

	

	
info_str = 'Info: '

	

	
init_screen()

	

	
keyalias = {258: 'J', 259: 'K', 343: 'I'}

	

	
keymap = {}

	

	
limit

	

	
move_selection(direction=1)

	

	
move_selection_down()

	

	
move_selection_up()

	

	
nap()

	

	
online_str = 'Workers online: '

	

	
readline(x, y)

	

	
resetscreen()

	

	
revoke_selection()

	

	
safe_add_str(y, x, string, *args, **kwargs)

	

	
screen_delay = 10

	

	
screen_height

	

	
screen_width

	

	
selected_position = 0

	

	
selected_str = 'Selected: '

	

	
selected_task = None

	

	
selection_info()

	

	
selection_rate_limit()

	

	
selection_result()

	

	
selection_traceback()

	

	
tasks

	

	
win = None

	

	
workers

	

	
celery.events.cursesmon.evtop(app=None)

	

 celery.events.dumper

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.events.dumper

	celery.events.dumper

celery.events.dumper

This is a simple program that dumps events to the console
as they happen. Think of it like a tcpdump for Celery events.

	
class celery.events.dumper.Dumper(out=<open file '<stdout>', mode 'w'>)

	
	
format_task_event(hostname, timestamp, type, task, event)

	

	
on_event(ev)

	

	
say(msg)

	

	
celery.events.dumper.evdump(app=None, out=<open file '<stdout>', mode 'w'>)

	

 celery.backends.database.models

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.database.models

	celery.backends.database.models

celery.backends.database.models

Database tables for the SQLAlchemy result store backend.

	
class celery.backends.database.models.Task(task_id)

	Task result/status.

	
date_done

	

	
id

	

	
result

	

	
status

	

	
task_id

	

	
to_dict()

	

	
traceback

	

	
class celery.backends.database.models.TaskSet(taskset_id, result)

	TaskSet result

	
date_done

	

	
id

	

	
result

	

	
taskset_id

	

	
to_dict()

	

 celery.backends.database.session

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.backends.database.session

	celery.backends.database.session

celery.backends.database.session

SQLAlchemy sessions.

	
class celery.backends.database.session.SessionManager

	
	
create_session(dburi, short_lived_sessions=False, **kwargs)

	

	
get_engine(dburi, **kwargs)

	

	
prepare_models(engine)

	

	
session_factory(dburi, **kwargs)

	

 celery.utils

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils

	celery.utils

celery.utils

Utility functions.

	
celery.utils.worker_direct(hostname)

	Return kombu.Queue [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Queue] that is a direct route to
a worker by hostname.

	Parameters:	hostname – The fully qualified node name of a worker
(e.g. w1@example.com). If passed a
kombu.Queue [http://kombu.readthedocs.io/en/latest/reference/kombu.html#kombu.Queue] instance it will simply return
that instead.

	
celery.utils.warn_deprecated(description=None, deprecation=None, removal=None, alternative=None, stacklevel=2)

	

	
celery.utils.deprecated(deprecation=None, removal=None, alternative=None, description=None)

	Decorator for deprecated functions.

A deprecation warning will be emitted when the function is called.

	Parameters:	
	deprecation – Version that marks first deprecation, if this
argument is not set a PendingDeprecationWarning will be emitted
instead.

	removal – Future version when this feature will be removed.

	alternative – Instructions for an alternative solution (if any).

	description – Description of what is being deprecated.

	
celery.utils.lpmerge(L, R)

	In place left precedent dictionary merge.

Keeps values from L, if the value in R is None.

	
celery.utils.is_iterable(obj)

	

	
celery.utils.isatty(fh)

	

	
celery.utils.cry(out=None, sepchr='=', seplen=49)

	Return stacktrace of all active threads,
taken from https://gist.github.com/737056.

	
celery.utils.maybe_reraise()

	Re-raise if an exception is currently being handled, or return
otherwise.

	
celery.utils.strtobool(term, table={'1': True, '0': False, 'false': False, 'no': False, 'off': False, 'yes': True, 'on': True, 'true': True})

	Convert common terms for true/false to bool
(true/false/yes/no/on/off/1/0).

	
celery.utils.jsonify(obj, builtin_types=(<class 'numbers.Real'>, <type 'basestring'>), key=None, keyfilter=None, unknown_type_filter=None)

	Transforms object making it suitable for json serialization

	
celery.utils.gen_task_name(app, name, module_name)

	Generate task name from name/module pair.

	
celery.utils.nodename(name, hostname)

	Create node name from name/hostname pair.

	
celery.utils.nodesplit(nodename)

	Split node name into tuple of name/hostname.

	
class celery.utils.cached_property(fget=None, fset=None, fdel=None, doc=None)

	Property descriptor that caches the return value
of the get function.

Examples

@cached_property
def connection(self):
 return Connection()

@connection.setter # Prepares stored value
def connection(self, value):
 if value is None:
 raise TypeError('Connection must be a connection')
 return value

@connection.deleter
def connection(self, value):
 # Additional action to do at del(self.attr)
 if value is not None:
 print('Connection {0!r} deleted'.format(value)

	
deleter(fdel)

	

	
setter(fset)

	

 celery.utils.functional

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.functional

	celery.utils.functional

celery.utils.functional

Utilities for functions.

	
class celery.utils.functional.LRUCache(limit=None)

	LRU Cache implementation using a doubly linked list to track access.

	Parameters:	limit – The maximum number of keys to keep in the cache.
When a new key is inserted and the limit has been exceeded,
the Least Recently Used key will be discarded from the
cache.

	
incr(key, delta=1)

	

	
items()

	

	
iteritems(_need_lock=False)

	

	
iterkeys()

	

	
itervalues(_need_lock=False)

	

	
keys()

	

	
popitem(last=True)

	

	
update(*args, **kwargs)

	

	
values()

	

	
celery.utils.functional.is_list(l, scalars=(<class '_abcoll.Mapping'>, <type 'basestring'>), iters=(<class '_abcoll.Iterable'>,))

	Return true if the object is iterable (but not
if object is a mapping or string).

	
celery.utils.functional.maybe_list(l, scalars=(<class '_abcoll.Mapping'>, <type 'basestring'>))

	Return list of one element if l is a scalar.

	
celery.utils.functional.memoize(maxsize=None, keyfun=None, Cache=<class celery.utils.functional.LRUCache>)

	

	
class celery.utils.functional.mlazy(fun, *args, **kwargs)

	Memoized lazy evaluation.

The function is only evaluated once, every subsequent access
will return the same value.

	
evaluated

	Set to to True after the object has been evaluated.

	
evaluate()

	

	
evaluated = False

	

	
celery.utils.functional.noop(*args, **kwargs)

	No operation.

Takes any arguments/keyword arguments and does nothing.

	
celery.utils.functional.first(predicate, it)

	Return the first element in iterable that predicate Gives a
True value for.

If predicate is None it will return the first item that is not None.

	
celery.utils.functional.firstmethod(method)

	Return a function that with a list of instances,
finds the first instance that gives a value for the given method.

The list can also contain lazy instances
(lazy [http://kombu.readthedocs.io/en/latest/reference/kombu.utils.functional.html#kombu.utils.functional.lazy].)

	
celery.utils.functional.chunks(it, n)

	Split an iterator into chunks with n elements each.

Examples

n == 2
>>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 2)
>>> list(x)
[[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10]]

n == 3
>>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 3)
>>> list(x)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

	
celery.utils.functional.padlist(container, size, default=None)

	Pad list with default elements.

Examples:

>>> first, last, city = padlist(['George', 'Costanza', 'NYC'], 3)
('George', 'Costanza', 'NYC')
>>> first, last, city = padlist(['George', 'Costanza'], 3)
('George', 'Costanza', None)
>>> first, last, city, planet = padlist(
... ['George', 'Costanza', 'NYC'], 4, default='Earth',
...)
('George', 'Costanza', 'NYC', 'Earth')

	
celery.utils.functional.mattrgetter(*attrs)

	Like operator.itemgetter() [https://docs.python.org/dev/library/operator.html#operator.itemgetter] but return None on missing
attributes instead of raising AttributeError [https://docs.python.org/dev/library/exceptions.html#AttributeError].

	
celery.utils.functional.uniq(it)

	Return all unique elements in it, preserving order.

	
celery.utils.functional.regen(it)

	Regen takes any iterable, and if the object is an
generator it will cache the evaluated list on first access,
so that the generator can be “consumed” multiple times.

	
celery.utils.functional.dictfilter(d=None, **kw)

	Remove all keys from dict d whose value is None

	
class celery.utils.functional.lazy(fun, *args, **kwargs)

	Holds lazy evaluation.

Evaluated when called or if the evaluate() method is called.
The function is re-evaluated on every call.

	Overloaded operations that will evaluate the promise:

	__str__(), __repr__(), __cmp__().

	
evaluate()

	

	
celery.utils.functional.maybe_evaluate(value)

	Evaluates if the value is a lazy instance.

 celery.utils.objects

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.objects

	celery.utils.objects

celery.utils.objects

Object related utilities including introspection, etc.

	
celery.utils.objects.mro_lookup(cls, attr, stop=(), monkey_patched=[])

	Return the first node by MRO order that defines an attribute.

	Parameters:	
	stop – A list of types that if reached will stop the search.

	monkey_patched – Use one of the stop classes if the attr’s
module origin is not in this list, this to detect monkey patched
attributes.

	Returns None:	if the attribute was not found.

 celery.utils.term

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.term

	celery.utils.term

celery.utils.term

Terminals and colors.

	
class celery.utils.term.colored(*s, **kwargs)

	Terminal colored text.

	Example::

	>>> c = colored(enabled=True)
>>> print(str(c.red('the quick '), c.blue('brown ', c.bold('fox ')),
... c.magenta(c.underline('jumps over')),
... c.yellow(' the lazy '),
... c.green('dog ')))

	
black(*s)

	

	
blink(*s)

	

	
blue(*s)

	

	
bold(*s)

	

	
bright(*s)

	

	
cyan(*s)

	

	
embed()

	

	
green(*s)

	

	
iblue(*s)

	

	
icyan(*s)

	

	
igreen(*s)

	

	
imagenta(*s)

	

	
ired(*s)

	

	
iwhite(*s)

	

	
iyellow(*s)

	

	
magenta(*s)

	

	
no_color()

	

	
node(s, op)

	

	
red(*s)

	

	
reset(*s)

	

	
reverse(*s)

	

	
underline(*s)

	

	
white(*s)

	

	
yellow(*s)

	

 celery.utils.timeutils

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.timeutils

	celery.utils.timeutils

celery.utils.timeutils

This module contains various utilities related to dates and times.

	
class celery.utils.timeutils.LocalTimezone

	Local time implementation taken from Python’s docs.

Used only when UTC is not enabled.

	
dst(dt)

	

	
tzname(dt)

	

	
utcoffset(dt)

	

	
celery.utils.timeutils.maybe_timedelta(delta)

	Coerces integer to timedelta if delta is an integer.

	
celery.utils.timeutils.timedelta_seconds(delta)

	Convert datetime.timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] to seconds.

Doesn’t account for negative values.

	
celery.utils.timeutils.delta_resolution(dt, delta)

	Round a datetime to the resolution of a timedelta.

If the timedelta is in days, the datetime will be rounded
to the nearest days, if the timedelta is in hours the datetime
will be rounded to the nearest hour, and so on until seconds
which will just return the original datetime.

	
celery.utils.timeutils.remaining(start, ends_in, now=None, relative=False)

	Calculate the remaining time for a start date and a timedelta.

e.g. “how many seconds left for 30 seconds after start?”

	Parameters:	
	start – Start datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime].

	ends_in – The end delta as a timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta].

	relative – If enabled the end time will be
calculated using delta_resolution() (i.e. rounded to the
resolution of ends_in).

	now – Function returning the current time and date,
defaults to datetime.utcnow().

	
celery.utils.timeutils.rate(rate)

	Parse rate strings, such as “100/m”, “2/h” or “0.5/s”
and convert them to seconds.

	
celery.utils.timeutils.weekday(name)

	Return the position of a weekday (0 - 7, where 0 is Sunday).

Example:

>>> weekday('sunday'), weekday('sun'), weekday('mon')
(0, 0, 1)

	
celery.utils.timeutils.humanize_seconds(secs, prefix='', sep='', now='now')

	Show seconds in human form, e.g. 60 is “1 minute”, 7200 is “2
hours”.

	Parameters:	prefix – Can be used to add a preposition to the output,
e.g. ‘in’ will give ‘in 1 second’, but add nothing to ‘now’.

	
celery.utils.timeutils.maybe_iso8601(dt)

	Either datetime | str -> datetime or None -> None

	
celery.utils.timeutils.is_naive(dt)

	Return True if the datetime is naive
(does not have timezone information).

	
celery.utils.timeutils.make_aware(dt, tz)

	Sets the timezone for a datetime object.

	
celery.utils.timeutils.localize(dt, tz)

	Convert aware datetime to another timezone.

	
celery.utils.timeutils.to_utc(dt)

	Converts naive datetime to UTC

	
celery.utils.timeutils.maybe_make_aware(dt, tz=None)

	

	
class celery.utils.timeutils.ffwd(year=None, month=None, weeks=0, weekday=None, day=None, hour=None, minute=None, second=None, microsecond=None, **kwargs)

	Version of relativedelta that only supports addition.

	
celery.utils.timeutils.utcoffset(time=<module 'time' (built-in)>, localtime=<built-in function localtime>)

	

	
celery.utils.timeutils.adjust_timestamp(ts, offset, here=<function utcoffset>)

	

	
celery.utils.timeutils.maybe_s_to_ms(v)

	

 celery.utils.iso8601

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.iso8601

Originally taken from pyiso8601 (http://code.google.com/p/pyiso8601/)

Modified to match the behavior of dateutil.parser:

	raise ValueError instead of ParseError

	return naive datetimes by default

	uses pytz.FixedOffset

This is the original License:

Copyright (c) 2007 Michael Twomey

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

	
celery.utils.iso8601.parse_iso8601(datestring)

	Parse and convert ISO 8601 string into a datetime object

 celery.utils.compat

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.compat

 celery.utils.serialization

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.serialization

	celery.utils.serialization

celery.utils.serialization

Utilities for safely pickling exceptions.

	
exception celery.utils.serialization.UnpickleableExceptionWrapper(exc_module, exc_cls_name, exc_args, text=None)

	Wraps unpickleable exceptions.

	Parameters:	
	exc_module – see exc_module.

	exc_cls_name – see exc_cls_name.

	exc_args – see exc_args

Example

>>> def pickle_it(raising_function):
... try:
... raising_function()
... except Exception as e:
... exc = UnpickleableExceptionWrapper(
... e.__class__.__module__,
... e.__class__.__name__,
... e.args,
...)
... pickle.dumps(exc) # Works fine.

	
exc_args = None

	The arguments for the original exception.

	
exc_cls_name = None

	The name of the original exception class.

	
exc_module = None

	The module of the original exception.

	
classmethod from_exception(exc)

	

	
restore()

	

	
celery.utils.serialization.subclass_exception(name, parent, module)

	

	
celery.utils.serialization.find_pickleable_exception(exc, loads=<built-in function loads>, dumps=<built-in function dumps>)

	With an exception instance, iterate over its super classes (by mro)
and find the first super exception that is pickleable. It does
not go below Exception [https://docs.python.org/dev/library/exceptions.html#Exception] (i.e. it skips Exception [https://docs.python.org/dev/library/exceptions.html#Exception],
BaseException [https://docs.python.org/dev/library/exceptions.html#BaseException] and object [https://docs.python.org/dev/library/functions.html#object]). If that happens
you should use UnpickleableException instead.

	Parameters:	exc – An exception instance.

Will return the nearest pickleable parent exception class
(except Exception [https://docs.python.org/dev/library/exceptions.html#Exception] and parents), or if the exception is
pickleable it will return None.

:rtype Exception [https://docs.python.org/dev/library/exceptions.html#Exception]:

	
celery.utils.serialization.create_exception_cls(name, module, parent=None)

	Dynamically create an exception class.

	
celery.utils.serialization.get_pickleable_exception(exc)

	Make sure exception is pickleable.

	
celery.utils.serialization.get_pickleable_etype(cls, loads=<built-in function loads>, dumps=<built-in function dumps>)

	

	
celery.utils.serialization.get_pickled_exception(exc)

	Get original exception from exception pickled using
get_pickleable_exception().

 celery.utils.sysinfo

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.sysinfo

	
celery.utils.sysinfo.load_average()

	

	
class celery.utils.sysinfo.df(path)

	
	
available

	

	
capacity

	

	
stat

	

	
total_blocks

	

 celery.utils.threads

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.threads

	celery.utils.threads

celery.utils.threads

Threading utilities.

	
class celery.utils.threads.bgThread(name=None, **kwargs)

	
	
body()

	

	
on_crash(msg, *fmt, **kwargs)

	

	
run()

	

	
stop()

	Graceful shutdown.

	
class celery.utils.threads.Local

	

	
celery.utils.threads.LocalStack

	alias of _LocalStack

	
class celery.utils.threads.LocalManager(locals=None, ident_func=None)

	Local objects cannot manage themselves. For that you need a local
manager. You can pass a local manager multiple locals or add them
later by appending them to manager.locals. Everytime the manager
cleans up it, will clean up all the data left in the locals for this
context.

The ident_func parameter can be added to override the default ident
function for the wrapped locals.

	
cleanup()

	Manually clean up the data in the locals for this context.

Call this at the end of the request or use make_middleware().

	
get_ident()

	Return the context identifier the local objects use internally
for this context. You cannot override this method to change the
behavior but use it to link other context local objects (such as
SQLAlchemy’s scoped sessions) to the Werkzeug locals.

	
celery.utils.threads.get_ident() → integer

	Return a non-zero integer that uniquely identifies the current thread
amongst other threads that exist simultaneously.
This may be used to identify per-thread resources.
Even though on some platforms threads identities may appear to be
allocated consecutive numbers starting at 1, this behavior should not
be relied upon, and the number should be seen purely as a magic cookie.
A thread’s identity may be reused for another thread after it exits.

	
celery.utils.threads.default_socket_timeout(*args, **kwds)

	

 celery.utils.timer2

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.timer2

	timer2

timer2

Scheduler for Python functions.

	
class celery.utils.timer2.Entry(fun, args=None, kwargs=None)

	
	
args

	

	
cancel()

	

	
cancelled

	

	
fun

	

	
kwargs

	

	
tref

	

	
celery.utils.timer2.Schedule

	alias of Timer

	
class celery.utils.timer2.Timer(schedule=None, on_error=None, on_tick=None, on_start=None, max_interval=None, **kwargs)

	
	
class Entry(fun, args=None, kwargs=None)

	
	
args

	

	
cancel()

	

	
cancelled

	

	
fun

	

	
kwargs

	

	
tref

	

	
Schedule

	alias of Timer

	
call_after(*args, **kwargs)

	

	
call_at(*args, **kwargs)

	

	
call_repeatedly(*args, **kwargs)

	

	
cancel(tref)

	

	
clear()

	

	
empty()

	

	
ensure_started()

	

	
enter(entry, eta, priority=None)

	

	
enter_after(*args, **kwargs)

	

	
exit_after(secs, priority=10)

	

	
next()

	

	
on_tick = None

	

	
queue

	

	
run()

	

	
running = False

	

	
stop()

	

	
celery.utils.timer2.to_timestamp(d, default_timezone=<UTC>)

	

 celery.utils.imports

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.imports

	celery.utils.import

celery.utils.import

Utilities related to importing modules and symbols by name.

	
exception celery.utils.imports.NotAPackage

	

	
celery.utils.imports.qualname(obj)

	

	
celery.utils.imports.instantiate(name, *args, **kwargs)

	Instantiate class by name.

See symbol_by_name().

	
celery.utils.imports.symbol_by_name(name, aliases={}, imp=None, package=None, sep='.', default=None, **kwargs)

	Get symbol by qualified name.

The name should be the full dot-separated path to the class:

modulename.ClassName

Example:

celery.concurrency.processes.TaskPool
 ^- class name

or using ‘:’ to separate module and symbol:

celery.concurrency.processes:TaskPool

If aliases is provided, a dict containing short name/long name
mappings, the name is looked up in the aliases first.

Examples:

>>> symbol_by_name('celery.concurrency.processes.TaskPool')
<class 'celery.concurrency.processes.TaskPool'>

>>> symbol_by_name('default', {
... 'default': 'celery.concurrency.processes.TaskPool'})
<class 'celery.concurrency.processes.TaskPool'>

Does not try to look up non-string names.
>>> from celery.concurrency.processes import TaskPool
>>> symbol_by_name(TaskPool) is TaskPool
True

	
celery.utils.imports.cwd_in_path(*args, **kwds)

	

	
celery.utils.imports.find_module(module, path=None, imp=None)

	Version of imp.find_module() [https://docs.python.org/dev/library/imp.html#imp.find_module] supporting dots.

	
celery.utils.imports.import_from_cwd(module, imp=None, package=None)

	Import module, but make sure it finds modules
located in the current directory.

Modules located in the current directory has
precedence over modules located in sys.path.

	
celery.utils.imports.reload_from_cwd(module, reloader=None)

	

	
celery.utils.imports.module_file(module)

	Return the correct original file name of a module.

 celery.utils.log

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.log

	celery.utils.log

celery.utils.log

Logging utilities.

	
class celery.utils.log.ColorFormatter(fmt=None, use_color=True)

	
	
COLORS = {u'blue': <bound method colored.blue of u''>, u'black': <bound method colored.black of u''>, u'yellow': <bound method colored.yellow of u''>, u'cyan': <bound method colored.cyan of u''>, u'green': <bound method colored.green of u''>, u'magenta': <bound method colored.magenta of u''>, u'white': <bound method colored.white of u''>, u'red': <bound method colored.red of u''>}

	

	
colors = {'DEBUG': <bound method colored.blue of u''>, 'CRITICAL': <bound method colored.magenta of u''>, 'WARNING': <bound method colored.yellow of u''>, 'ERROR': <bound method colored.red of u''>}

	

	
format(record)

	

	
formatException(ei)

	

	
class celery.utils.log.LoggingProxy(logger, loglevel=None)

	Forward file object to logging.Logger [https://docs.python.org/dev/library/logging.html#logging.Logger] instance.

	Parameters:	
	logger – The logging.Logger [https://docs.python.org/dev/library/logging.html#logging.Logger] instance to forward to.

	loglevel – Loglevel to use when writing messages.

	
close()

	When the object is closed, no write requests are forwarded to
the logging object anymore.

	
closed = False

	

	
flush()

	This object is not buffered so any flush() requests
are ignored.

	
isatty()

	Always return False. Just here for file support.

	
loglevel = 40

	

	
mode = 'w'

	

	
name = None

	

	
write(data)

	Write message to logging object.

	
writelines(sequence)

	writelines(sequence_of_strings) -> None.

Write the strings to the file.

The sequence can be any iterable object producing strings.
This is equivalent to calling write() for each string.

	
celery.utils.log.set_in_sighandler(value)

	

	
celery.utils.log.in_sighandler(*args, **kwds)

	

	
celery.utils.log.get_logger(name)

	

	
celery.utils.log.get_task_logger(name)

	

	
celery.utils.log.mlevel(level)

	

	
celery.utils.log.ensure_process_aware_logger(force=False)

	Make sure process name is recorded when loggers are used.

	
celery.utils.log.get_multiprocessing_logger()

	

	
celery.utils.log.reset_multiprocessing_logger()

	

 celery.utils.text

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.text

	celery.utils.text

celery.utils.text

Text formatting utilities

	
celery.utils.text.dedent_initial(s, n=4)

	

	
celery.utils.text.dedent(s, n=4, sep='\n')

	

	
celery.utils.text.fill_paragraphs(s, width, sep='\n')

	

	
celery.utils.text.join(l, sep='\n')

	

	
celery.utils.text.ensure_2lines(s, sep='\n')

	

	
celery.utils.text.abbr(S, max, ellipsis='...')

	

	
celery.utils.text.abbrtask(S, max)

	

	
celery.utils.text.indent(t, indent=0, sep='\n')

	Indent text.

	
celery.utils.text.truncate(text, maxlen=128, suffix='...')

	Truncates text to a maximum number of characters.

	
celery.utils.text.pluralize(n, text, suffix='s')

	

	
celery.utils.text.pretty(value, width=80, nl_width=80, sep='\n', **kw)

	

 celery.utils.dispatch

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.dispatch

	
class celery.utils.dispatch.Signal(providing_args=None)

	Base class for all signals

	
receivers

	
Internal attribute, holds a dictionary of

	
`{receiverkey (id): weakref(receiver)}` mappings.

	

	
connect(*args, **kwargs)

	Connect receiver to sender for signal.

	Parameters:	
	receiver – A function or an instance method which is to
receive signals. Receivers must be hashable objects.

if weak is True, then receiver must be weak-referencable
(more precisely saferef.safe_ref() must be able to create a
reference to the receiver).

Receivers must be able to accept keyword arguments.

If receivers have a dispatch_uid attribute, the receiver will
not be added if another receiver already exists with that
dispatch_uid.

	sender – The sender to which the receiver should respond.
Must either be of type Signal, or None to receive
events from any sender.

	weak – Whether to use weak references to the receiver.
By default, the module will attempt to use weak references to the
receiver objects. If this parameter is false, then strong
references will be used.

	dispatch_uid – An identifier used to uniquely identify a
particular instance of a receiver. This will usually be a
string, though it may be anything hashable.

	
disconnect(receiver=None, sender=None, weak=True, dispatch_uid=None)

	Disconnect receiver from sender for signal.

If weak references are used, disconnect need not be called. The
receiver will be removed from dispatch automatically.

	Parameters:	
	receiver – The registered receiver to disconnect. May be
none if dispatch_uid is specified.

	sender – The registered sender to disconnect.

	weak – The weakref state to disconnect.

	dispatch_uid – the unique identifier of the receiver
to disconnect

	
send(sender, **named)

	Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through
send, terminating the dispatch loop, so it is quite possible to not
have all receivers called if a raises an error.

	Parameters:	
	sender – The sender of the signal. Either a specific
object or None.

	**named – Named arguments which will be passed to receivers.

	Returns:	a list of tuple pairs: [(receiver, response), …].

	
send_robust(sender, **named)

	Send signal from sender to all connected receivers catching errors.

	Parameters:	
	sender – The sender of the signal. Can be any python object
(normally one registered with a connect if you actually want
something to occur).

	**named – Named arguments which will be passed to receivers.
These arguments must be a subset of the argument names defined in
providing_args.

	Returns:	a list of tuple pairs: [(receiver, response), …].

	Raises:	DispatcherKeyError –

if any receiver raises an error (specifically any subclass of
Exception [https://docs.python.org/dev/library/exceptions.html#Exception]), the error instance is returned as the result
for that receiver.

 celery.utils.dispatch.signal

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.dispatch.signal

Signal class.

	
class celery.utils.dispatch.signal.Signal(providing_args=None)

	Base class for all signals

	
receivers

	
Internal attribute, holds a dictionary of

	
`{receiverkey (id): weakref(receiver)}` mappings.

	

	
connect(*args, **kwargs)

	Connect receiver to sender for signal.

	Parameters:	
	receiver – A function or an instance method which is to
receive signals. Receivers must be hashable objects.

if weak is True, then receiver must be weak-referencable
(more precisely saferef.safe_ref() must be able to create a
reference to the receiver).

Receivers must be able to accept keyword arguments.

If receivers have a dispatch_uid attribute, the receiver will
not be added if another receiver already exists with that
dispatch_uid.

	sender – The sender to which the receiver should respond.
Must either be of type Signal, or None to receive
events from any sender.

	weak – Whether to use weak references to the receiver.
By default, the module will attempt to use weak references to the
receiver objects. If this parameter is false, then strong
references will be used.

	dispatch_uid – An identifier used to uniquely identify a
particular instance of a receiver. This will usually be a
string, though it may be anything hashable.

	
disconnect(receiver=None, sender=None, weak=True, dispatch_uid=None)

	Disconnect receiver from sender for signal.

If weak references are used, disconnect need not be called. The
receiver will be removed from dispatch automatically.

	Parameters:	
	receiver – The registered receiver to disconnect. May be
none if dispatch_uid is specified.

	sender – The registered sender to disconnect.

	weak – The weakref state to disconnect.

	dispatch_uid – the unique identifier of the receiver
to disconnect

	
send(sender, **named)

	Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through
send, terminating the dispatch loop, so it is quite possible to not
have all receivers called if a raises an error.

	Parameters:	
	sender – The sender of the signal. Either a specific
object or None.

	**named – Named arguments which will be passed to receivers.

	Returns:	a list of tuple pairs: [(receiver, response), …].

	
send_robust(sender, **named)

	Send signal from sender to all connected receivers catching errors.

	Parameters:	
	sender – The sender of the signal. Can be any python object
(normally one registered with a connect if you actually want
something to occur).

	**named – Named arguments which will be passed to receivers.
These arguments must be a subset of the argument names defined in
providing_args.

	Returns:	a list of tuple pairs: [(receiver, response), …].

	Raises:	DispatcherKeyError –

if any receiver raises an error (specifically any subclass of
Exception [https://docs.python.org/dev/library/exceptions.html#Exception]), the error instance is returned as the result
for that receiver.

 celery.utils.dispatch.saferef

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.utils.dispatch.saferef

“Safe weakrefs”, originally from pyDispatcher.

Provides a way to safely weakref any function, including bound methods (which
aren’t handled by the core weakref module).

	
celery.utils.dispatch.saferef.safe_ref(target, on_delete=None)

	Return a safe weak reference to a callable target

	Parameters:	
	target – the object to be weakly referenced, if it’s a
bound method reference, will create a BoundMethodWeakref,
otherwise creates a simple weakref.ref [https://docs.python.org/dev/library/weakref.html#weakref.ref].

	on_delete – if provided, will have a hard reference stored
to the callable to be called after the safe reference
goes out of scope with the reference object, (either a
weakref.ref [https://docs.python.org/dev/library/weakref.html#weakref.ref] or a BoundMethodWeakref) as argument.

 celery.platforms

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery.platforms

	celery.platforms

celery.platforms

Utilities dealing with platform specifics: signals, daemonization,
users, groups, and so on.

	
celery.platforms.pyimplementation()

	Return string identifying the current Python implementation.

	
exception celery.platforms.LockFailed

	Raised if a pidlock can’t be acquired.

	
celery.platforms.get_fdmax(default=None)

	Return the maximum number of open file descriptors
on this system.

	Parameters:	default – Value returned if there’s no file
descriptor limit.

	
class celery.platforms.Pidfile(path)

	This is the type returned by create_pidlock().

TIP: Use the create_pidlock() function instead,
which is more convenient and also removes stale pidfiles (when
the process holding the lock is no longer running).

	
acquire()

	Acquire lock.

	
is_locked()

	Return true if the pid lock exists.

	
path = None

	

	
read_pid()

	Read and return the current pid.

	
release(*args)

	Release lock.

	
remove()

	Remove the lock.

	
remove_if_stale()

	Remove the lock if the process is not running.
(does not respond to signals).

	
write_pid()

	

	
celery.platforms.create_pidlock(pidfile)

	Create and verify pidfile.

If the pidfile already exists the program exits with an error message,
however if the process it refers to is not running anymore, the pidfile
is deleted and the program continues.

This function will automatically install an atexit [https://docs.python.org/dev/library/atexit.html#module-atexit] handler
to release the lock at exit, you can skip this by calling
_create_pidlock() instead.

	Returns:	Pidfile.

Example:

pidlock = create_pidlock('/var/run/app.pid')

	
celery.platforms.close_open_fds(keep=None)

	

	
class celery.platforms.DaemonContext(pidfile=None, workdir=None, umask=None, fake=False, after_chdir=None, after_forkers=True, **kwargs)

	
	
close(*args)

	

	
open()

	

	
redirect_to_null(fd)

	

	
celery.platforms.detached(logfile=None, pidfile=None, uid=None, gid=None, umask=0, workdir=None, fake=False, **opts)

	Detach the current process in the background (daemonize).

	Parameters:	
	logfile – Optional log file. The ability to write to this file
will be verified before the process is detached.

	pidfile – Optional pidfile. The pidfile will not be created,
as this is the responsibility of the child. But the process will
exit if the pid lock exists and the pid written is still running.

	uid – Optional user id or user name to change
effective privileges to.

	gid – Optional group id or group name to change effective
privileges to.

	umask – Optional umask that will be effective in the child process.

	workdir – Optional new working directory.

	fake – Don’t actually detach, intented for debugging purposes.

	**opts – Ignored.

Example:

from celery.platforms import detached, create_pidlock

with detached(logfile='/var/log/app.log', pidfile='/var/run/app.pid',
 uid='nobody'):
 # Now in detached child process with effective user set to nobody,
 # and we know that our logfile can be written to, and that
 # the pidfile is not locked.
 pidlock = create_pidlock('/var/run/app.pid')

 # Run the program
 program.run(logfile='/var/log/app.log')

	
celery.platforms.parse_uid(uid)

	Parse user id.

uid can be an integer (uid) or a string (user name), if a user name
the uid is taken from the system user registry.

	
celery.platforms.parse_gid(gid)

	Parse group id.

gid can be an integer (gid) or a string (group name), if a group name
the gid is taken from the system group registry.

	
celery.platforms.setgroups(groups)

	Set active groups from a list of group ids.

	
celery.platforms.initgroups(uid, gid)

	Compat version of os.initgroups() [https://docs.python.org/dev/library/os.html#os.initgroups] which was first
added to Python 2.7.

	
celery.platforms.setgid(gid)

	Version of os.setgid() [https://docs.python.org/dev/library/os.html#os.setgid] supporting group names.

	
celery.platforms.setuid(uid)

	Version of os.setuid() [https://docs.python.org/dev/library/os.html#os.setuid] supporting usernames.

	
celery.platforms.maybe_drop_privileges(uid=None, gid=None)

	Change process privileges to new user/group.

If UID and GID is specified, the real user/group is changed.

If only UID is specified, the real user is changed, and the group is
changed to the users primary group.

If only GID is specified, only the group is changed.

	
celery.platforms.set_process_title(progname, info=None)

	Set the ps name for the currently running process.

Only works if setproctitle is installed.

	
celery.platforms.set_mp_process_title(progname, info=None, hostname=None)

	Set the ps name using the multiprocessing process name.

Only works if setproctitle is installed.

	
celery.platforms.get_errno_name(n)

	Get errno for string, e.g. ENOENT.

	
celery.platforms.ignore_errno(*args, **kwds)

	Context manager to ignore specific POSIX error codes.

Takes a list of error codes to ignore, which can be either
the name of the code, or the code integer itself:

>>> with ignore_errno('ENOENT'):
... with open('foo', 'r') as fh:
... return fh.read()

>>> with ignore_errno(errno.ENOENT, errno.EPERM):
... pass

	Parameters:	types – A tuple of exceptions to ignore (when the errno matches),
defaults to Exception [https://docs.python.org/dev/library/exceptions.html#Exception].

	
celery.platforms.fd_by_path(paths)

	Return a list of fds.

This method returns list of fds corresponding to
file paths passed in paths variable.

	Parameters:	paths – List of file paths go get fd for.

	Returns:	:list:.

Example:

keep = fd_by_path(['/dev/urandom',
 '/my/precious/'])

 celery._state

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

celery._state

	celery._state

celery._state

This is an internal module containing thread state
like the current_app, and current_task.

This module shouldn’t be used directly.

	
celery._state.set_default_app(app)

	

	
celery._state.get_current_app()

	

	
celery._state.get_current_task()

	Currently executing task.

	
celery._state.get_current_worker_task()

	Currently executing task, that was applied by the worker.

This is used to differentiate between the actual task
executed by the worker and any task that was called within
a task (using task.__call__ or task.apply)

	
celery._state.connect_on_app_finalize(callback)

	

 History

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

History

This section contains historical change histories, for the latest
version please visit Change history.

	Release:	3.1

	Date:	Nov 12, 2017

	Change history for Celery 3.0
	3.0.24

	3.0.23

	3.0.22

	3.0.21

	3.0.20

	3.0.19

	3.0.18

	3.0.17

	3.0.16

	3.0.15

	3.0.14

	3.0.13

	3.0.12

	3.0.11

	3.0.10

	3.0.9

	3.0.8

	3.0.7

	3.0.6

	3.0.5

	3.0.4

	3.0.3

	3.0.2

	3.0.1

	3.0.0 (Chiastic Slide)

	Change history for Celery 2.5
	2.5.5

	2.5.3

	2.5.2

	2.5.1

	2.5.0

	Change history for Celery 2.4
	2.4.5

	2.4.4

	2.4.3

	2.4.2

	2.4.1

	2.4.0

	Change history for Celery 2.3
	2.3.4

	2.3.3

	2.3.2

	2.3.1

	2.3.0

	Change history for Celery 2.2
	2.2.8

	2.2.7

	2.2.6

	2.2.5

	2.2.4

	2.2.3

	2.2.2

	2.2.1

	2.2.0

	Change history for Celery 2.1
	2.1.4

	2.1.3

	2.1.2

	2.1.1

	2.1.0

	Change history for Celery 2.0
	2.0.3

	2.0.2

	2.0.1

	2.0.0

	Change history for Celery 1.0
	1.0.6

	1.0.5

	1.0.4

	1.0.3

	1.0.2

	1.0.1

	1.0.0

	0.8.4

	0.8.3

	0.8.2

	0.8.1

	0.8.0

	0.6.0

	0.4.1

	0.4.0

	0.3.20

	0.3.7

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	0.2.0

	0.2.0-pre3

	0.2.0-pre2

	0.2.0-pre1

	0.1.15

	0.1.14

	0.1.13

	0.1.12

	0.1.11

	0.1.10

	0.1.8

	0.1.7

	0.1.6

	0.1.0

 Change history for Celery 3.0

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Change history for Celery 3.0

	3.0.24

	3.0.23

	3.0.22

	3.0.21

	3.0.20

	3.0.19

	3.0.18

	3.0.17

	3.0.16

	3.0.15

	3.0.14

	3.0.13

	3.0.12

	3.0.11

	3.0.10

	3.0.9

	3.0.8

	3.0.7

	3.0.6

	3.0.5

	3.0.4

	3.0.3

	3.0.2

	3.0.1

	3.0.0 (Chiastic Slide)

If you’re looking for versions prior to 3.0.x you should go to History.

3.0.24

	release-date:	2013-10-11 04:40 P.M BST

	release-by:	Ask Solem

	Now depends on Kombu 2.5.15 [http://kombu.readthedocs.io/en/latest/changelog.html#version-2-5-15].

	Now depends on billiard version 2.7.3.34.

	AMQP Result backend: No longer caches queue declarations.

The queues created by the AMQP result backend are always unique,
so caching the declarations caused a slow memory leak.

	Worker: Fixed crash when hostname contained Unicode characters.

Contributed by Daodao.

	The worker would no longer start if the -P solo pool was selected
(Issue #1548 [https://github.com/celery/celery/issues/1548]).

	Redis/Cache result backends would not complete chords
if any of the tasks were retried (Issue #1401 [https://github.com/celery/celery/issues/1401]).

	Task decorator is no longer lazy if app is finalized.

	AsyncResult: Fixed bug with copy(AsyncResult) when no
current_app available.

	ResultSet: Now properly propagates app when passed string id’s.

	Loader now ignores CELERY_CONFIG_MODULE if value is empty string.

	Fixed race condition in Proxy object where it tried to
delete an attribute twice, resulting in AttributeError [https://docs.python.org/dev/library/exceptions.html#AttributeError].

	Task methods now works with the CELERY_ALWAYS_EAGER setting
(Issue #1478 [https://github.com/celery/celery/issues/1478]).

	Broadcast [http://kombu.readthedocs.io/en/latest/reference/kombu.common.html#kombu.common.Broadcast] queues were accidentally declared
when publishing tasks (Issue #1540 [https://github.com/celery/celery/issues/1540]).

	New C_FAKEFORK environment variable can be used to
debug the init scripts.

Setting this will skip the daemonization step so that errors
printed to stderr after standard outs are closed can be seen:

$ C_FAKEFORK /etc/init.d/celeryd start

This works with the celery multi command in general.

	get_pickleable_etype did not always return a value (Issue #1556 [https://github.com/celery/celery/issues/1556]).

	Fixed bug where app.GroupResult.restore would fall back to the default
app.

	Fixed rare bug where built-in tasks would use the current_app.

	maybe_fileno() now handles ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError].

3.0.23

	release-date:	2013-09-02 01:00 P.M BST

	release-by:	Ask Solem

	Now depends on Kombu 2.5.14 [http://kombu.readthedocs.io/en/latest/changelog.html#version-2-5-14].

	send_task did not honor link and link_error arguments.

This had the side effect of chains not calling unregistered tasks,
silently discarding them.

Fix contributed by Taylor Nelson.

	celery.state: Optimized precedence lookup.

Contributed by Matt Robenolt.

	Posix: Daemonization did not redirect sys.stdin to /dev/null.

Fix contributed by Alexander Smirnov.

	Canvas: group bug caused fallback to default app when .apply_async used
(Issue #1516 [https://github.com/celery/celery/issues/1516])

	Canvas: generator arguments was not always pickleable.

3.0.22

	release-date:	2013-08-16 04:30 P.M BST

	release-by:	Ask Solem

	Now depends on Kombu 2.5.13 [http://kombu.readthedocs.io/en/latest/changelog.html#version-2-5-13].

	Now depends on billiard 2.7.3.32

	Fixed bug with monthly and yearly crontabs (Issue #1465 [https://github.com/celery/celery/issues/1465]).

Fix contributed by Guillaume Gauvrit.

	Fixed memory leak caused by time limits (Issue #1129 [https://github.com/celery/celery/issues/1129], Issue #1427 [https://github.com/celery/celery/issues/1427])

	Worker will now sleep if being restarted more than 5 times
in one second to avoid spamming with worker-online events.

	Includes documentation fixes

Contributed by: Ken Fromm, Andreas Savvides, Alex Kiriukha,
Michael Fladischer.

3.0.21

	release-date:	2013-07-05 04:30 P.M BST

	release-by:	Ask Solem

	Now depends on billiard 2.7.3.31.

This version fixed a bug when running without the billiard C extension.

	3.0.20 broke eventlet/gevent support (worker not starting).

	Fixed memory leak problem when MongoDB result backend was used with the
gevent pool.

Fix contributed by Ross Lawley.

3.0.20

	release-date:	2013-06-28 04:00 P.M BST

	release-by:	Ask Solem

	Contains workaround for deadlock problems.

A better solution will be part of Celery 3.1.

	Now depends on Kombu 2.5.12 [http://kombu.readthedocs.io/en/latest/changelog.html#version-2-5-12].

	Now depends on billiard 2.7.3.30.

	--loader argument no longer supported importing loaders from the
current directory.

	[Worker] Fixed memory leak when restarting after connection lost
(Issue #1325 [https://github.com/celery/celery/issues/1325]).

	[Worker] Fixed UnicodeDecodeError at startup (Issue #1373 [https://github.com/celery/celery/issues/1373]).

Fix contributed by Jessica Tallon.

	[Worker] Now properly rewrites unpickleable exceptions again.

	Fixed possible race condition when evicting items from the revoked task set.

	[generic-init.d] Fixed compatibility with Ubuntu’s minimal Dash
shell (Issue #1387 [https://github.com/celery/celery/issues/1387]).

Fix contributed by monkut.

	Task.apply/ALWAYS_EAGER now also executes callbacks and errbacks
(Issue #1336 [https://github.com/celery/celery/issues/1336]).

	[Worker] The worker-shutdown signal was no longer being dispatched
(Issue #1339 [https://github.com/celery/celery/issues/1339])j

	[Python 3] Fixed problem with threading.Event.

Fix contributed by Xavier Ordoquy.

	[Python 3] Now handles io.UnsupportedOperation that may be raised
by file.fileno() in Python 3.

	[Python 3] Fixed problem with qualname.

	[events.State] Now ignores unknown event-groups.

	[MongoDB backend] No longer uses deprecated safe parameter.

Fix contributed by rfkrocktk

	The eventlet pool now imports on Windows.

	[Canvas] Fixed regression where immutable chord members may receive
arguments (Issue #1340 [https://github.com/celery/celery/issues/1340]).

Fix contributed by Peter Brook.

	[Canvas] chain now accepts generator argument again (Issue #1319 [https://github.com/celery/celery/issues/1319]).

	celery.migrate command now consumes from all queues if no queues
specified.

Fix contributed by John Watson.

3.0.19

	release-date:	2013-04-17 04:30:00 P.M BST

	release-by:	Ask Solem

	Now depends on billiard 2.7.3.28

	A Python 3 related fix managed to disable the deadlock fix
announced in 3.0.18.

Tests have been added to make sure this does not happen again.

	Task retry policy: Default max_retries is now 3.

This ensures clients will not be hanging while the broker is down.

Note

You can set a longer retry for the worker by
using the celeryd_after_setup signal:

from celery.signals import celeryd_after_setup

@celeryd_after_setup.connect
def configure_worker(instance, conf, **kwargs):
 conf.CELERY_TASK_PUBLISH_RETRY_POLICY = {
 'max_retries': 100,
 'interval_start': 0,
 'interval_max': 1,
 'interval_step': 0.2,
 }

	Worker: Will now properly display message body in error messages
even if the body is a buffer instance.

	3.0.18 broke the MongoDB result backend (Issue #1303 [https://github.com/celery/celery/issues/1303]).

3.0.18

	release-date:	2013-04-12 05:00:00 P.M BST

	release-by:	Ask Solem

	Now depends on kombu [http://kombu.readthedocs.io/en/latest/reference/kombu.html#module-kombu] 2.5.10.

See the kombu changelog [http://kombu.readthedocs.io/en/latest/changelog.html#version-2-5-10].

	Now depends on billiard 2.7.3.27.

	Can now specify a whitelist of accepted serializers using
the new CELERY_ACCEPT_CONTENT setting.

This means that you can force the worker to discard messages
serialized with pickle and other untrusted serializers.
For example to only allow JSON serialized messages use:

CELERY_ACCEPT_CONTENT = ['json']

you can also specify MIME types in the whitelist:

CELERY_ACCEPT_CONTENT = ['application/json']

	Fixed deadlock in multiprocessing’s pool caused by the
semaphore not being released when terminated by signal.

	Processes Pool: It’s now possible to debug pool processes using GDB.

	celery report now censors possibly secret settings, like passwords
and secret tokens.

You should still check the output before pasting anything
on the internet.

	Connection URLs now ignore multiple ‘+’ tokens.

	Worker/statedb: Now uses pickle protocol 2 (Py2.5+)

	Fixed Python 3 compatibility issues.

	Worker: A warning is now given if a worker is started with the
same node name as an existing worker.

	Worker: Fixed a deadlock that could occur while revoking tasks (Issue #1297 [https://github.com/celery/celery/issues/1297]).

	Worker: The HUP handler now closes all open file descriptors
before restarting to ensure file descriptors does not leak (Issue #1270 [https://github.com/celery/celery/issues/1270]).

	Worker: Optimized storing/loading the revoked tasks list (Issue #1289 [https://github.com/celery/celery/issues/1289]).

After this change the --statedb file will take up more disk space,
but loading from and storing the revoked tasks will be considerably
faster (what before took 5 minutes will now take less than a second).

	Celery will now suggest alternatives if there’s a typo in the
broker transport name (e.g. ampq -> amqp).

	Worker: The auto-reloader would cause a crash if a monitored file
was unlinked.

Fix contributed by Agris Ameriks.

	Fixed AsyncResult pickling error.

Fix contributed by Thomas Minor.

	Fixed handling of Unicode in logging output when using log colors
(Issue #427 [https://github.com/celery/celery/issues/427]).

	ConfigurationView is now a MutableMapping.

Contributed by Aaron Harnly.

	Fixed memory leak in LRU cache implementation.

Fix contributed by Romuald Brunet.

	celery.contrib.rdb: Now works when sockets are in non-blocking mode.

Fix contributed by Theo Spears.

	The inspect reserved remote control command included active (started) tasks
with the reserved tasks (Issue #1030 [https://github.com/celery/celery/issues/1030]).

	The task_failure signal received a modified traceback object
meant for pickling purposes, this has been fixed so that it now
receives the real traceback instead.

	The @task decorator silently ignored positional arguments,
it now raises the expected TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] instead (Issue #1125 [https://github.com/celery/celery/issues/1125]).

	The worker will now properly handle messages with invalid
eta/expires fields (Issue #1232 [https://github.com/celery/celery/issues/1232]).

	The pool_restart remote control command now reports
an error if the CELERYD_POOL_RESTARTS setting is not set.

	add_defaults`() can now be used with non-dict objects.

	Fixed compatibility problems in the Proxy class (Issue #1087 [https://github.com/celery/celery/issues/1087]).

The class attributes __module__, __name__ and __doc__
are now meaningful string objects.

Thanks to Marius Gedminas.

	MongoDB Backend: The MONGODB_BACKEND_SETTINGS setting
now accepts a option key that lets you forward arbitrary kwargs
to the underlying pymongo.Connection object (Issue #1015 [https://github.com/celery/celery/issues/1015]).

	Beat: The daily backend cleanup task is no longer enabled
for result backends that support automatic result expiration (Issue #1031 [https://github.com/celery/celery/issues/1031]).

	Canvas list operations now takes application instance from the first
task in the list, instead of depending on the current_app (Issue #1249 [https://github.com/celery/celery/issues/1249]).

	Worker: Message decoding error log message now includes traceback
information.

	Worker: The startup banner now includes system platform.

	celery inspect|status|control now gives an error if used
with an SQL based broker transport.

3.0.17

	release-date:	2013-03-22 04:00:00 P.M UTC

	release-by:	Ask Solem

	Now depends on kombu 2.5.8

	Now depends on billiard 2.7.3.23

	RabbitMQ/Redis: thread-less and lock-free rate-limit implementation.

This means that rate limits pose minimal overhead when used with
RabbitMQ/Redis or future transports using the eventloop,
and that the rate-limit implementation is now thread-less and lock-free.

The thread-based transports will still use the old implementation for
now, but the plan is to use the timer also for other
broker transports in Celery 3.1.

	Rate limits now works with eventlet/gevent if using RabbitMQ/Redis as the
broker.

	A regression caused task.retry to ignore additional keyword arguments.

Extra keyword arguments are now used as execution options again.
Fix contributed by Simon Engledew.

	Windows: Fixed problem with the worker trying to pickle the Django settings
module at worker startup.

	generic-init.d: No longer double quotes $CELERYD_CHDIR (Issue #1235 [https://github.com/celery/celery/issues/1235]).

	generic-init.d: Removes bash-specific syntax.

Fix contributed by Pär Wieslander.

	Cassandra Result Backend: Now handles the
AllServersUnavailable error (Issue #1010 [https://github.com/celery/celery/issues/1010]).

Fix contributed by Jared Biel.

	Result: Now properly forwards apps to GroupResults when deserializing
(Issue #1249 [https://github.com/celery/celery/issues/1249]).

Fix contributed by Charles-Axel Dein.

	GroupResult.revoke now supports the terminate and signal
keyword arguments.

	Worker: Multiprocessing pool workers now import task modules/configuration
before setting up the logging system so that logging signals can be
connected before they’re dispatched.

	chord: The AsyncResult instance returned now has its parent
attribute set to the header GroupResult.

This is consistent with how chain works.

3.0.16

	release-date:	2013-03-07 04:00:00 P.M UTC

	release-by:	Ask Solem

	Happy International Women’s Day!

We have a long way to go, so this is a chance for you to get involved in one
of the organizations working for making our communities more
diverse.

	PyLadies — http://pyladies.com

	Girls Who Code — http://www.girlswhocode.com

	Women Who Code — http://www.meetup.com/Women-Who-Code-SF/

	Now depends on kombu [http://kombu.readthedocs.io/en/latest/reference/kombu.html#module-kombu] version 2.5.7

	Now depends on billiard version 2.7.3.22

	AMQP heartbeats are now disabled by default.

Some users experiences issues with heartbeats enabled,
and it’s not strictly necessary to use them.

If you’re experiencing problems detecting connection failures,
you can re-enable heartbeats by configuring the BROKER_HEARTBEAT
setting.

	Worker: Now propagates connection errors occurring in multiprocessing
callbacks, so that the connection can be reset (Issue #1226 [https://github.com/celery/celery/issues/1226]).

	Worker: Now propagates connection errors occurring in timer callbacks,
so that the connection can be reset.

	The modules in CELERY_IMPORTS and CELERY_INCLUDE
are now imported in the original order (Issue #1161 [https://github.com/celery/celery/issues/1161]).

The modules in CELERY_IMPORTS will be imported first,
then continued by CELERY_INCLUDE.

Thanks to Joey Wilhelm.

	New bash completion for celery available in the git repository:

https://github.com/celery/celery/tree/3.0/extra/bash-completion

You can source this file or put it in bash_completion.d to
get auto-completion for the celery command-line utility.

	The node name of a worker can now include unicode characters (Issue #1186 [https://github.com/celery/celery/issues/1186]).

	The repr of a crontab object now displays correctly (Issue #972 [https://github.com/celery/celery/issues/972]).

	events.State no longer modifies the original event dictionary.

	No longer uses Logger.warn deprecated in Python 3.

	Cache Backend: Now works with chords again (Issue #1094 [https://github.com/celery/celery/issues/1094]).

	Chord unlock now handles errors occurring while calling the callback.

	Generic worker init.d script: Status check is now performed by
querying the pid of the instance instead of sending messages.

Contributed by Milen Pavlov.

	Improved init scripts for CentOS.

	Updated to support celery 3.x conventions.

	Now uses CentOS built-in status and killproc

	Support for multi-node / multi-pid worker services.

	Standard color-coded CentOS service-init output.

	A test suite.

Contributed by Milen Pavlov.

	ResultSet.join now always works with empty result set (Issue #1219 [https://github.com/celery/celery/issues/1219]).

	A group consisting of a single task is now supported (Issue #1219 [https://github.com/celery/celery/issues/1219]).

	Now supports the pycallgraph program (Issue #1051 [https://github.com/celery/celery/issues/1051]).

	Fixed Jython compatibility problems.

	Django tutorial: Now mentions that the example app must be added to
INSTALLED_APPS (Issue #1192 [https://github.com/celery/celery/issues/1192]).

3.0.15

	release-date:	2013-02-11 04:30:00 P.M UTC

	release-by:	Ask Solem

	Now depends on billiard 2.7.3.21 which fixed a syntax error crash.

	Fixed bug with CELERY_SEND_TASK_SENT_EVENT.

3.0.14

	release-date:	2013-02-08 05:00:00 P.M UTC

	release-by:	Ask Solem

	Now depends on Kombu 2.5.6

	Now depends on billiard 2.7.3.20

	execv is now disabled by default.

It was causing too many problems for users, you can still enable
it using the CELERYD_FORCE_EXECV setting.

execv was only enabled when transports other than amqp/redis was used,
and it’s there to prevent deadlocks caused by mutexes not being released
before the process forks. Unfortunately it also changes the environment
introducing many corner case bugs that is hard to fix without adding
horrible hacks. Deadlock issues are reported far less often than the
bugs that execv are causing, so we now disable it by default.

Work is in motion to create non-blocking versions of these transports
so that execv is not necessary (which is the situation with the amqp
and redis broker transports)

	Chord exception behavior defined (Issue #1172 [https://github.com/celery/celery/issues/1172]).

From Celery 3.1 the chord callback will change state to FAILURE
when a task part of a chord raises an exception.

It was never documented what happens in this case,
and the actual behavior was very unsatisfactory, indeed
it will just forward the exception value to the chord callback.

For backward compatibility reasons we do not change to the new
behavior in a bugfix release, even if the current behavior was
never documented. Instead you can enable the
CELERY_CHORD_PROPAGATES setting to get the new behavior
that will be default from Celery 3.1.

See more at Error handling.

	worker: Fixes bug with ignored and retried tasks.

The on_chord_part_return and Task.after_return callbacks,
nor the task_postrun signal should be called when the task was
retried/ignored.

Fix contributed by Vlad.

	GroupResult.join_native now respects the propagate argument.

	subtask.id added as an alias to subtask['options'].id

>>> s = add.s(2, 2)
>>> s.id = 'my-id'
>>> s['options']
{'task_id': 'my-id'}

>>> s.id
'my-id'

	worker: Fixed error Could not start worker processes occurring
when restarting after connection failure (Issue #1118 [https://github.com/celery/celery/issues/1118]).

	Adds new signal task-retried (Issue #1169 [https://github.com/celery/celery/issues/1169]).

	celery events –dumper now handles connection loss.

	Will now retry sending the task-sent event in case of connection failure.

	amqp backend: Now uses Message.requeue instead of republishing
the message after poll.

	New BROKER_HEARTBEAT_CHECKRATE setting introduced to modify the
rate at which broker connection heartbeats are monitored.

The default value was also changed from 3.0 to 2.0.

	celery.events.state.State is now pickleable.

Fix contributed by Mher Movsisyan.

	celery.datastructures.LRUCache is now pickleable.

Fix contributed by Mher Movsisyan.

	The stats broadcast command now includes the workers pid.

Contributed by Mher Movsisyan.

	New conf remote control command to get a workers current configuration.

Contributed by Mher Movsisyan.

	Adds the ability to modify the chord unlock task’s countdown
argument (Issue #1146 [https://github.com/celery/celery/issues/1146]).

Contributed by Jun Sakai

	beat: The scheduler now uses the now()` method of the schedule,
so that schedules can provide a custom way to get the current date and time.

Contributed by Raphaël Slinckx

	Fixed pickling of configuration modules on Windows or when execv is used
(Issue #1126 [https://github.com/celery/celery/issues/1126]).

	Multiprocessing logger is now configured with loglevel ERROR
by default.

Since 3.0 the multiprocessing loggers were disabled by default
(only configured when the MP_LOG environment variable was set).

3.0.13

	release-date:	2013-01-07 04:00:00 P.M UTC

	release-by:	Ask Solem

	Now depends on Kombu 2.5

	py-amqp has replaced amqplib as the default transport,
gaining support for AMQP 0.9, and the RabbitMQ extensions
including Consumer Cancel Notifications and heartbeats.

	support for multiple connection URLs for failover.

	Read more in the Kombu 2.5 changelog [http://kombu.readthedocs.io/en/latest/changelog.html#version-2-5-0].

	Now depends on billiard 2.7.3.19

	Fixed a deadlock issue that could occur when the producer pool
inherited the connection pool instance of the parent process.

	The --loader option now works again (Issue #1066 [https://github.com/celery/celery/issues/1066]).

	celery umbrella command: All subcommands now supports
the --workdir option (Issue #1063 [https://github.com/celery/celery/issues/1063]).

	Groups included in chains now give GroupResults (Issue #1057 [https://github.com/celery/celery/issues/1057])

Previously it would incorrectly add a regular result instead of a group
result, but now this works:

[4 + 4, 4 + 8, 16 + 8]
>>> res = (add.s(2, 2) | group(add.s(4), add.s(8), add.s(16)))()
>>> res
<GroupResult: a0acf905-c704-499e-b03a-8d445e6398f7 [
 4346501c-cb99-4ad8-8577-12256c7a22b1,
 b12ead10-a622-4d44-86e9-3193a778f345,
 26c7a420-11f3-4b33-8fac-66cd3b62abfd]>

	Chains can now chain other chains and use partial arguments (Issue #1057 [https://github.com/celery/celery/issues/1057]).

Example:

>>> c1 = (add.s(2) | add.s(4))
>>> c2 = (add.s(8) | add.s(16))

>>> c3 = (c1 | c2)

8 + 2 + 4 + 8 + 16
>>> assert c3(8).get() == 38

	Subtasks can now be used with unregistered tasks.

You can specify subtasks even if you just have the name:

>>> s = subtask(task_name, args=(), kwargs=())
>>> s.delay()

	The celery shell command now always adds the current
directory to the module path.

	The worker will now properly handle the pytz.AmbiguousTimeError
exception raised when an ETA/countdown is prepared while being in DST
transition (Issue #1061 [https://github.com/celery/celery/issues/1061]).

	force_execv: Now makes sure that task symbols in the original
task modules will always use the correct app instance (Issue #1072 [https://github.com/celery/celery/issues/1072]).

	AMQP Backend: Now republishes result messages that have been polled
(using result.ready() and friends, result.get() will not do this
in this version).

	Crontab schedule values can now “wrap around”

This means that values like 11-1 translates to [11, 12, 1].

Contributed by Loren Abrams.

	multi stopwait command now shows the pid of processes.

Contributed by Loren Abrams.

	
	Handling of ETA/countdown fixed when the CELERY_ENABLE_UTC

	setting is disabled (Issue #1065 [https://github.com/celery/celery/issues/1065]).

	A number of uneeded properties were included in messages,
caused by accidentally passing Queue.as_dict as message properties.

	Rate limit values can now be float

This also extends the string format so that values like "0.5/s" works.

Contributed by Christoph Krybus

	Fixed a typo in the broadcast routing documentation (Issue #1026 [https://github.com/celery/celery/issues/1026]).

	Rewrote confusing section about idempotence in the task user guide.

	Fixed typo in the daemonization tutorial (Issue #1055 [https://github.com/celery/celery/issues/1055]).

	Fixed several typos in the documentation.

Contributed by Marius Gedminas.

	Batches: Now works when using the eventlet pool.

Fix contributed by Thomas Grainger.

	Batches: Added example sending results to celery.contrib.batches.

Contributed by Thomas Grainger.

	Mongodb backend: Connection max_pool_size can now be set in
CELERY_MONGODB_BACKEND_SETTINGS.

Contributed by Craig Younkins.

	Fixed problem when using earlier versions of pytz.

Fix contributed by Vlad.

	Docs updated to include the default value for the
CELERY_TASK_RESULT_EXPIRES setting.

	Improvements to the django-celery tutorial.

Contributed by Locker537.

	The add_consumer control command did not properly persist
the addition of new queues so that they survived connection failure
(Issue #1079 [https://github.com/celery/celery/issues/1079]).

3.0.12

	release-date:	2012-11-06 02:00 P.M UTC

	release-by:	Ask Solem

	Now depends on kombu 2.4.8

	[Redis] New and improved fair queue cycle algorithm (Kevin McCarthy).

	[Redis] Now uses a Redis-based mutex when restoring messages.

	
	[Redis] Number of messages that can be restored in one interval is no

	longer limited (but can be set using the
unacked_restore_limit
transport option.)

	Heartbeat value can be specified in broker URLs (Mher Movsisyan).

	Fixed problem with msgpack on Python 3 (Jasper Bryant-Greene).

	Now depends on billiard 2.7.3.18

	Celery can now be used with static analysis tools like PyDev/PyCharm/pylint
etc.

	Development documentation has moved to Read The Docs.

The new URL is: http://docs.celeryproject.org/en/master

	New CELERY_QUEUE_HA_POLICY setting used to set the default
HA policy for queues when using RabbitMQ.

	New method Task.subtask_from_request returns a subtask using the current
request.

	Results get_many method did not respect timeout argument.

Fix contributed by Remigiusz Modrzejewski

	generic_init.d scripts now support setting CELERY_CREATE_DIRS to
always create log and pid directories (Issue #1045 [https://github.com/celery/celery/issues/1045]).

This can be set in your /etc/default/celeryd.

	Fixed strange kombu import problem on Python 3.2 (Issue #1034 [https://github.com/celery/celery/issues/1034]).

	Worker: ETA scheduler now uses millisecond precision (Issue #1040 [https://github.com/celery/celery/issues/1040]).

	The --config argument to programs is now supported by all loaders.

	The CASSANDRA_OPTIONS setting has now been documented.

Contributed by Jared Biel.

	Task methods (celery.contrib.methods) cannot be used with the old
task base class, the task decorator in that module now inherits from the new.

	An optimization was too eager and caused some logging messages to never emit.

	celery.contrib.batches now works again.

	Fixed missing whitespace in bdist_rpm requirements (Issue #1046 [https://github.com/celery/celery/issues/1046]).

	Event state’s tasks_by_name applied limit before filtering by name.

Fix contributed by Alexander A. Sosnovskiy.

3.0.11

	release-date:	2012-09-26 04:00 P.M UTC

	release-by:	Ask Solem

	[security:low] generic-init.d scripts changed permissions of /var/log & /var/run

In the daemonization tutorial the recommended directories were as follows:

CELERYD_LOG_FILE="/var/log/celery/%n.log"
CELERYD_PID_FILE="/var/run/celery/%n.pid"

But in the scripts themselves the default files were /var/log/celery%n.log
and /var/run/celery%n.pid, so if the user did not change the location
by configuration, the directories /var/log and /var/run would be
created - and worse have their permissions and owners changed.

This change means that:

	Default pid file is /var/run/celery/%n.pid

	Default log file is /var/log/celery/%n.log

	The directories are only created and have their permissions
changed if no custom locations are set.

Users can force paths to be created by calling the create-paths
subcommand:

$ sudo /etc/init.d/celeryd create-paths

Upgrading Celery will not update init scripts

To update the init scripts you have to re-download
the files from source control and update them manually.
You can find the init scripts for version 3.0.x at:

http://github.com/celery/celery/tree/3.0/extra/generic-init.d

	Now depends on billiard 2.7.3.17

	Fixes request stack protection when app is initialized more than
once (Issue #1003 [https://github.com/celery/celery/issues/1003]).

	ETA tasks now properly works when system timezone is not the same
as the configured timezone (Issue #1004 [https://github.com/celery/celery/issues/1004]).

	Terminating a task now works if the task has been sent to the
pool but not yet acknowledged by a pool process (Issue #1007 [https://github.com/celery/celery/issues/1007]).

Fix contributed by Alexey Zatelepin

	Terminating a task now properly updates the state of the task to revoked,
and sends a task-revoked event.

	Generic worker init script now waits for workers to shutdown by default.

	Multi: No longer parses –app option (Issue #1008 [https://github.com/celery/celery/issues/1008]).

	Multi: stop_verify command renamed to stopwait.

	Daemonization: Now delays trying to create pidfile/logfile until after
the working directory has been changed into.

	celery worker and celery beat commands now respects
the --no-color option (Issue #999 [https://github.com/celery/celery/issues/999]).

	Fixed typos in eventlet examples (Issue #1000 [https://github.com/celery/celery/issues/1000])

Fix contributed by Bryan Bishop.
Congratulations on opening bug #1000!

	Tasks that raise Ignore are now acknowledged.

	Beat: Now shows the name of the entry in sending due task logs.

3.0.10

	release-date:	2012-09-20 05:30 P.M BST

	release-by:	Ask Solem

	Now depends on kombu 2.4.7

	Now depends on billiard 2.7.3.14

	Fixes crash at startup when using Django and pre-1.4 projects
(setup_environ).

	Hard time limits now sends the KILL signal shortly after TERM,
to terminate processes that have signal handlers blocked by C extensions.

	Billiard now installs even if the C extension cannot be built.

It’s still recommended to build the C extension if you are using
a transport other than rabbitmq/redis (or use forced execv for some
other reason).

	Pool now sets a current_process().index attribute that can be used to create
as many log files as there are processes in the pool.

	Canvas: chord/group/chain no longer modifies the state when called

Previously calling a chord/group/chain would modify the ids of subtasks
so that:

>>> c = chord([add.s(2, 2), add.s(4, 4)], xsum.s())
>>> c()
>>> c() <-- call again

at the second time the ids for the tasks would be the same as in the
previous invocation. This is now fixed, so that calling a subtask
won’t mutate any options.

	Canvas: Chaining a chord to another task now works (Issue #965 [https://github.com/celery/celery/issues/965]).

	Worker: Fixed a bug where the request stack could be corrupted if
relative imports are used.

Problem usually manifested itself as an exception while trying to
send a failed task result (NoneType does not have id attribute).

Fix contributed by Sam Cooke.

	Tasks can now raise Ignore to skip updating states
or events after return.

Example:

from celery.exceptions import Ignore

@task
def custom_revokes():
 if redis.sismember('tasks.revoked', custom_revokes.request.id):
 raise Ignore()

	The worker now makes sure the request/task stacks are not modified
by the initial Task.__call__.

This would previously be a problem if a custom task class defined
__call__ and also called super().

	Because of problems the fast local optimization has been disabled,
and can only be enabled by setting the USE_FAST_LOCALS attribute.

	Worker: Now sets a default socket timeout of 5 seconds at shutdown
so that broken socket reads do not hinder proper shutdown (Issue #975 [https://github.com/celery/celery/issues/975]).

	More fixes related to late eventlet/gevent patching.

	Documentation for settings out of sync with reality:

	CELERY_TASK_PUBLISH_RETRY

Documented as disabled by default, but it was enabled by default
since 2.5 as stated by the 2.5 changelog.

	CELERY_TASK_PUBLISH_RETRY_POLICY

The default max_retries had been set to 100, but documented as being
3, and the interval_max was set to 1 but documented as 0.2.
The default setting are now set to 3 and 0.2 as it was originally
documented.

Fix contributed by Matt Long.

	Worker: Log messages when connection established and lost have been improved.

	The repr of a crontab schedule value of ‘0’ should be ‘*’ (Issue #972 [https://github.com/celery/celery/issues/972]).

	Revoked tasks are now removed from reserved/active state in the worker
(Issue #969 [https://github.com/celery/celery/issues/969])

Fix contributed by Alexey Zatelepin.

	gevent: Now supports hard time limits using gevent.Timeout.

	Documentation: Links to init scripts now point to the 3.0 branch instead
of the development branch (master).

	Documentation: Fixed typo in signals user guide (Issue #986 [https://github.com/celery/celery/issues/986]).

instance.app.queues -> instance.app.amqp.queues.

	Eventlet/gevent: The worker did not properly set the custom app
for new greenlets.

	Eventlet/gevent: Fixed a bug where the worker could not recover
from connection loss (Issue #959 [https://github.com/celery/celery/issues/959]).

Also, because of a suspected bug in gevent the
BROKER_CONNECTION_TIMEOUT setting has been disabled
when using gevent

3.0.9

	release-date:	2012-08-31 06:00 P.M BST

	release-by:	Ask Solem

	Important note for users of Django and the database scheduler!

Recently a timezone issue has been fixed for periodic tasks,
but erroneous timezones could have already been stored in the
database, so for the fix to work you need to reset
the last_run_at fields.

You can do this by executing the following command:

$ python manage.py shell
>>> from djcelery.models import PeriodicTask
>>> PeriodicTask.objects.update(last_run_at=None)

You also have to do this if you change the timezone or
CELERY_ENABLE_UTC setting.

	Note about the CELERY_ENABLE_UTC setting.

If you previously disabled this just to force periodic tasks to work with
your timezone, then you are now encouraged to re-enable it.

	Now depends on Kombu 2.4.5 which fixes PyPy + Jython installation.

	Fixed bug with timezones when CELERY_ENABLE_UTC is disabled
(Issue #952 [https://github.com/celery/celery/issues/952]).

	Fixed a typo in the celerybeat upgrade mechanism (Issue #951 [https://github.com/celery/celery/issues/951]).

	Make sure the exc_info argument to logging is resolved (Issue #899 [https://github.com/celery/celery/issues/899]).

	Fixed problem with Python 3.2 and thread join timeout overflow (Issue #796 [https://github.com/celery/celery/issues/796]).

	A test case was occasionally broken for Python 2.5.

	Unit test suite now passes for PyPy 1.9.

	App instances now supports the with statement.

This calls the new app.close() method at exit, which
cleans up after the app like closing pool connections.

Note that this is only necessary when dynamically creating apps,
e.g. for “temporary” apps.

	Support for piping a subtask to a chain.

For example:

pipe = sometask.s() | othertask.s()
new_pipe = mytask.s() | pipe

Contributed by Steve Morin.

	Fixed problem with group results on non-pickle serializers.

Fix contributed by Steeve Morin.

3.0.8

	release-date:	2012-08-29 05:00 P.M BST

	release-by:	Ask Solem

	Now depends on Kombu 2.4.4

	Fixed problem with amqplib and receiving larger message payloads
(Issue #922 [https://github.com/celery/celery/issues/922]).

The problem would manifest itself as either the worker hanging,
or occasionally a Framing error exception appearing.

Users of the new pyamqp:// transport must upgrade to
amqp 0.9.3.

	Beat: Fixed another timezone bug with interval and crontab schedules
(Issue #943 [https://github.com/celery/celery/issues/943]).

	Beat: The schedule file is now automatically cleared if the timezone
is changed.

The schedule is also cleared when you upgrade to 3.0.8 from an earlier
version, this to register the initial timezone info.

	Events: The worker-heartbeat event now include processed and active
count fields.

Contributed by Mher Movsisyan.

	Fixed error with error email and new task classes (Issue #931 [https://github.com/celery/celery/issues/931]).

	BaseTask.__call__ is no longer optimized away if it has been monkey
patched.

	Fixed shutdown issue when using gevent (Issue #911 [https://github.com/celery/celery/issues/911] & Issue #936 [https://github.com/celery/celery/issues/936]).

Fix contributed by Thomas Meson.

3.0.7

	release-date:	2012-08-24 05:00 P.M BST

	release-by:	Ask Solem

	Fixes several problems with periodic tasks and timezones (Issue #937 [https://github.com/celery/celery/issues/937]).

	Now depends on kombu 2.4.2

	Redis: Fixes a race condition crash

	Fixes an infinite loop that could happen when retrying establishing
the broker connection.

	Daemons now redirect standard file descriptors to /dev/null

Though by default the standard outs are also redirected
to the logger instead, but you can disable this by changing
the CELERY_REDIRECT_STDOUTS setting.

	Fixes possible problems when eventlet/gevent is patched too late.

	LoggingProxy no longer defines fileno() (Issue #928 [https://github.com/celery/celery/issues/928]).

	Results are now ignored for the chord unlock task.

Fix contributed by Steeve Morin.

	Cassandra backend now works if result expiry is disabled.

Fix contributed by Steeve Morin.

	The traceback object is now passed to signal handlers instead
of the string representation.

Fix contributed by Adam DePue.

	Celery command: Extensions are now sorted by name.

	A regression caused the task-failed event to be sent
with the exception object instead of its string representation.

	The worker daemon would try to create the pid file before daemonizing
to catch errors, but this file was not immediately released (Issue #923 [https://github.com/celery/celery/issues/923]).

	Fixes Jython compatibility.

	billiard.forking_enable was called by all pools not just the
processes pool, which would result in a useless warning if the billiard
C extensions were not installed.

3.0.6

	release-date:	2012-08-17 11:00 P.M BST

	release-by:	Ask Solem

	Now depends on kombu 2.4.0

	Now depends on billiard 2.7.3.12

	Redis: Celery now tries to restore messages whenever there are no messages
in the queue.

	Crontab schedules now properly respects CELERY_TIMEZONE setting.

It’s important to note that crontab schedules uses UTC time by default
unless this setting is set.

Issue #904 [https://github.com/celery/celery/issues/904] and django-celery #150.

	billiard.enable_forking is now only set by the processes pool.

	The transport is now properly shown by celery report
(Issue #913 [https://github.com/celery/celery/issues/913]).

	The –app argument now works if the last part is a module name
(Issue #921 [https://github.com/celery/celery/issues/921]).

	Fixed problem with unpickleable exceptions (billiard #12).

	Adds task_name attribute to EagerResult which is always
None (Issue #907 [https://github.com/celery/celery/issues/907]).

	Old Task class in celery.task no longer accepts magic kwargs by
default (Issue #918 [https://github.com/celery/celery/issues/918]).

A regression long ago disabled magic kwargs for these, and since
no one has complained about it we don’t have any incentive to fix it now.

	The inspect reserved control command did not work properly.

	Should now play better with static analyzation tools by explicitly
specifying dynamically created attributes in the celery and
celery.task modules.

	Terminating a task now results in
RevokedTaskError instead of a WorkerLostError.

	AsyncResult.revoke now accepts terminate and signal arguments.

	The task-revoked event now includes new fields: terminated,
signum, and expired.

	The argument to TaskRevokedError is now one
of the reasons revoked, expired or terminated.

	Old Task class does no longer use classmethods for push_request and
pop_request (Issue #912 [https://github.com/celery/celery/issues/912]).

	GroupResult now supports the children attribute (Issue #916 [https://github.com/celery/celery/issues/916]).

	AsyncResult.collect now respects the intermediate argument
(Issue #917 [https://github.com/celery/celery/issues/917]).

	Fixes example task in documentation (Issue #902 [https://github.com/celery/celery/issues/902]).

	Eventlet fixed so that the environment is patched as soon as possible.

	eventlet: Now warns if celery related modules that depends on threads
are imported before eventlet is patched.

	Improved event and camera examples in the monitoring guide.

	Disables celery command setuptools entrypoints if the command can’t be
loaded.

	Fixed broken dump_request example in the tasks guide.

3.0.5

	release-date:	2012-08-01 04:00 P.M BST

	release-by:	Ask Solem

	Now depends on kombu 2.3.1 + billiard 2.7.3.11

	Fixed a bug with the -B option (cannot pickle thread.lock objects)
(Issue #894 [https://github.com/celery/celery/issues/894] + Issue #892 [https://github.com/celery/celery/issues/892], + django-celery #154).

	The restart_pool control command now requires the
CELERYD_POOL_RESTARTS setting to be enabled

This change was necessary as the multiprocessing event that the restart
command depends on is responsible for creating many semaphores/file
descriptors, resulting in problems in some environments.

	chain.apply now passes args to the first task (Issue #889 [https://github.com/celery/celery/issues/889]).

	Documented previously secret options to the Django-Celery monitor
in the monitoring userguide (Issue #396 [https://github.com/celery/celery/issues/396]).

	Old changelog are now organized in separate documents for each series,
see History.

3.0.4

	release-date:	2012-07-26 07:00 P.M BST

	release-by:	Ask Solem

	Now depends on Kombu 2.3

	New experimental standalone Celery monitor: Flower

See Flower: Real-time Celery web-monitor to read more about it!

Contributed by Mher Movsisyan.

	Now supports AMQP heartbeats if using the new pyamqp:// transport.

	The py-amqp transport requires the amqp library to be installed:

$ pip install amqp

	Then you need to set the transport URL prefix to pyamqp://.

	The default heartbeat value is 10 seconds, but this can be changed using
the BROKER_HEARTBEAT setting:

BROKER_HEARTBEAT = 5.0

	If the broker heartbeat is set to 10 seconds, the heartbeats will be
monitored every 5 seconds (double the hertbeat rate).

See the Kombu 2.3 changelog [http://kombu.readthedocs.io/en/latest/changelog.html#version-2-3-0] for more information.

	Now supports RabbitMQ Consumer Cancel Notifications, using the pyamqp://
transport.

This is essential when running RabbitMQ in a cluster.

See the Kombu 2.3 changelog [http://kombu.readthedocs.io/en/latest/changelog.html#version-2-3-0] for more information.

	Delivery info is no longer passed directly through.

It was discovered that the SQS transport adds objects that can’t
be pickled to the delivery info mapping, so we had to go back
to using the whitelist again.

Fixing this bug also means that the SQS transport is now working again.

	The semaphore was not properly released when a task was revoked (Issue #877 [https://github.com/celery/celery/issues/877]).

This could lead to tasks being swallowed and not released until a worker
restart.

Thanks to Hynek Schlawack for debugging the issue.

	Retrying a task now also forwards any linked tasks.

This means that if a task is part of a chain (or linked in some other
way) and that even if the task is retried, then the next task in the chain
will be executed when the retry succeeds.

	Chords: Now supports setting the interval and other keyword arguments
to the chord unlock task.

	The interval can now be set as part of the chord subtasks kwargs:

chord(header)(body, interval=10.0)

	In addition the chord unlock task now honors the Task.default_retry_delay
option, used when none is specified, which also means that the default
interval can also be changed using annotations:

CELERY_ANNOTATIONS = {
 'celery.chord_unlock': {
 'default_retry_delay': 10.0,
 }
}

	New app.add_defaults() method can add new default configuration
dicts to the applications configuration.

For example:

config = {'FOO': 10}

app.add_defaults(config)

is the same as app.conf.update(config) except that data will not be
copied, and that it will not be pickled when the worker spawns child
processes.

In addition the method accepts a callable:

def initialize_config():
 # insert heavy stuff that can't be done at import time here.

app.add_defaults(initialize_config)

which means the same as the above except that it will not happen
until the celery configuration is actually used.

As an example, Celery can lazily use the configuration of a Flask app:

flask_app = Flask()
app = Celery()
app.add_defaults(lambda: flask_app.config)

	Revoked tasks were not marked as revoked in the result backend (Issue #871 [https://github.com/celery/celery/issues/871]).

Fix contributed by Hynek Schlawack.

	Eventloop now properly handles the case when the epoll poller object
has been closed (Issue #882 [https://github.com/celery/celery/issues/882]).

	Fixed syntax error in funtests/test_leak.py

Fix contributed by Catalin Iacob.

	group/chunks: Now accepts empty task list (Issue #873 [https://github.com/celery/celery/issues/873]).

	New method names:

	Celery.default_connection() ➠ connection_or_acquire().

	Celery.default_producer() ➠ producer_or_acquire().

The old names still work for backward compatibility.

3.0.3

	release-date:	2012-07-20 09:17 P.M BST

	release-by:	Ask Solem

	amqplib passes the channel object as part of the delivery_info
and it’s not pickleable, so we now remove it.

3.0.2

	release-date:	2012-07-20 04:00 P.M BST

	release-by:	Ask Solem

	
	A bug caused the following task options to not take defaults from the

	configuration (Issue #867 [https://github.com/celery/celery/issues/867] + Issue #858 [https://github.com/celery/celery/issues/858])

The following settings were affected:

	CELERY_IGNORE_RESULT

	CELERYD_SEND_TASK_ERROR_EMAILS

	CELERY_TRACK_STARTED

	CElERY_STORE_ERRORS_EVEN_IF_IGNORED

Fix contributed by John Watson.

	Task Request: delivery_info is now passed through as-is (Issue #807 [https://github.com/celery/celery/issues/807]).

	The eta argument now supports datetime’s with a timezone set (Issue #855 [https://github.com/celery/celery/issues/855]).

	The worker’s banner displayed the autoscale settings in the wrong order
(Issue #859 [https://github.com/celery/celery/issues/859]).

	Extension commands are now loaded after concurrency is set up
so that they don’t interfere with e.g. eventlet patching.

	Fixed bug in the threaded pool (Issue #863 [https://github.com/celery/celery/issues/863])

	The task failure handler mixed up the fields in sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info].

Fix contributed by Rinat Shigapov.

	Fixed typos and wording in the docs.

Fix contributed by Paul McMillan

	New setting: CELERY_WORKER_DIRECT

If enabled each worker will consume from their own dedicated queue
which can be used to route tasks to specific workers.

	Fixed several edge case bugs in the add consumer remote control command.

	migrate: Can now filter and move tasks to specific
workers if CELERY_WORKER_DIRECT is enabled.

Among other improvements, the following functions have been added:

	move_direct(filterfun, **opts)

	move_direct_by_id(task_id, worker_hostname, **opts)

	move_direct_by_idmap({task_id: worker_hostname, ...}, **opts)

	move_direct_by_taskmap({task_name: worker_hostname, ...}, **opts)

	default_connection() now accepts a pool argument that
if set to false causes a new connection to be created instead of acquiring
one from the pool.

	New signal: celeryd_after_setup.

	Default loader now keeps lowercase attributes from the configuration module.

3.0.1

	release-date:	2012-07-10 06:00 P.M BST

	release-by:	Ask Solem

	Now depends on kombu 2.2.5

	inspect now supports limit argument:

myapp.control.inspect(limit=1).ping()

	Beat: now works with timezone aware datetime’s.

	Task classes inheriting from celery import Task
mistakingly enabled accept_magic_kwargs.

	Fixed bug in inspect scheduled (Issue #829 [https://github.com/celery/celery/issues/829]).

	Beat: Now resets the schedule to upgrade to UTC.

	The celery worker command now works with eventlet/gevent.

Previously it would not patch the environment early enough.

	The celery command now supports extension commands
using setuptools entry-points.

Libraries can add additional commands to the celery
command by adding an entry-point like:

setup(
 entry_points=[
 'celery.commands': [
 'foo = my.module:Command',
],
],
...)

The command must then support the interface of
celery.bin.base.Command.

	contrib.migrate: New utilities to move tasks from one queue to another.

	move_tasks()

	move_task_by_id()

	The task-sent event now contains exchange and routing_key
fields.

	Fixes bug with installing on Python 3.

Fix contributed by Jed Smith.

3.0.0 (Chiastic Slide)

	release-date:	2012-07-07 01:30 P.M BST

	release-by:	Ask Solem

See What’s new in Celery 3.0 (Chiastic Slide).

 Change history for Celery 2.5

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Change history for Celery 2.5

This document contains change notes for bugfix releases in the 2.5.x series,
please see What’s new in Celery 2.5 for an overview of what’s
new in Celery 2.5.

If you’re looking for versions prior to 2.5 you should visit our
History of releases.

	2.5.5

	2.5.3

	2.5.2
	News

	Fixes

	2.5.1
	Fixes

	2.5.0

2.5.5

	release-date:	2012-06-06 04:00 P.M BST

	release-by:	Ask Solem

This is a dummy release performed for the following goals:

	Protect against force upgrading to Kombu 2.2.0

	Version parity with django-celery

2.5.3

	release-date:	2012-04-16 07:00 P.M BST

	release-by:	Ask Solem

	A bug causes messages to be sent with UTC timestamps even though
CELERY_ENABLE_UTC was not enabled (Issue #636 [https://github.com/celery/celery/issues/636]).

	celerybeat: No longer crashes if an entry’s args is set to None
(Issue #657 [https://github.com/celery/celery/issues/657]).

	Autoreload did not work if a module’s __file__ attribute
was set to the modules ‘.pyc’ file. (Issue #647 [https://github.com/celery/celery/issues/647]).

	Fixes early 2.5 compatibility where __package__ does not exist
(Issue #638 [https://github.com/celery/celery/issues/638]).

2.5.2

	release-date:	2012-04-13 04:30 P.M GMT

	release-by:	Ask Solem

News

	Now depends on Kombu 2.1.5.

	Django documentation has been moved to the main Celery docs.

See Django.

	New celeryd_init signal can be used to configure workers
by hostname.

	Signal.connect can now be used as a decorator.

Example:

from celery.signals import task_sent

@task_sent.connect
def on_task_sent(**kwargs):
 print("sent task: %r" % (kwargs,))

	Invalid task messages are now rejected instead of acked.

This means that they will be moved to the dead-letter queue
introduced in the latest RabbitMQ version (but must be enabled
manually, consult the RabbitMQ documentation).

	Internal logging calls has been cleaned up to work
better with tools like Sentry.

Contributed by David Cramer.

	New method subtask.clone() can be used to clone an existing
subtask with augmented arguments/options.

Example:

>>> s = add.subtask((5,))
>>> new = s.clone(args=(10,), countdown=5})
>>> new.args
(10, 5)

>>> new.options
{"countdown": 5}

	Chord callbacks are now triggered in eager mode.

Fixes

	Programs now verifies that the pidfile is actually written correctly
(Issue #641 [https://github.com/celery/celery/issues/641]).

Hopefully this will crash the worker immediately if the system
is out of space to store the complete pidfile.

In addition, we now verify that existing pidfiles contain
a new line so that a partially written pidfile is detected as broken,
as before doing:

echo -n “1” > celeryd.pid

would cause the worker to think that an existing instance was already
running (init has pid 1 after all).

	Fixed 2.5 compatibility issue with use of print_exception.

Fix contributed by Martin Melin.

	Fixed 2.5 compatibility issue with imports.

Fix contributed by Iurii Kriachko.

	All programs now fix up __package__ when called as main.

This fixes compatibility with Python 2.5.

Fix contributed by Martin Melin.

	[celery control|inspect] can now be configured on the command-line.

Like with the worker it is now possible to configure celery settings
on the command-line for celery control|inspect

$ celery inspect -- broker.pool_limit=30

	Version dependency for python-dateutil fixed to be strict.

Fix contributed by Thomas Meson.

	Task.__call__ is now optimized away in the task tracer
rather than when the task class is created.

This fixes a bug where a custom __call__ may mysteriously disappear.

	Autoreload’s inotify support has been improved.

Contributed by Mher Movsisyan.

	The Django broker documentation has been improved.

	Removed confusing warning at top of routing user guide.

2.5.1

	release-date:	2012-03-01 01:00 P.M GMT

	release-by:	Ask Solem

Fixes

	Eventlet/Gevent: A small typo caused the worker to hang when eventlet/gevent
was used, this was because the environment was not monkey patched
early enough.

	Eventlet/Gevent: Another small typo caused the mediator to be started
with eventlet/gevent, which would make the worker sometimes hang at shutdown.

	Mulitprocessing: Fixed an error occurring if the pool was stopped
before it was properly started.

	Proxy objects now redirects __doc__ and __name__ so help(obj)
works.

	Internal timer (timer2) now logs exceptions instead of swallowing them
(Issue #626 [https://github.com/celery/celery/issues/626]).

	celery shell: can now be started with --eventlet or
--gevent options to apply their monkey patches.

2.5.0

	release-date:	2012-02-24 04:00 P.M GMT

	release-by:	Ask Solem

See What’s new in Celery 2.5.

Since the changelog has gained considerable size, we decided to
do things differently this time: by having separate “what’s new”
documents for major version changes.

Bugfix releases will still be found in the changelog.

 Change history for Celery 2.4

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Change history for Celery 2.4

	2.4.5

	2.4.4
	Security Fixes

	Fixes

	2.4.3

	2.4.2

	2.4.1

	2.4.0
	Important Notes

	News

2.4.5

	release-date:	2011-12-02 05:00 P.M GMT

	release-by:	Ask Solem

	Periodic task interval schedules were accidentally rounded down,
resulting in some periodic tasks being executed early.

	Logging of humanized times in the beat log is now more detailed.

	New Brokers section in the Getting Started part of the Documentation

This replaces the old “Other queues” tutorial, and adds
documentation for MongoDB, Beanstalk and CouchDB.

2.4.4

	release-date:	2011-11-25 04:00 P.M GMT

	release-by:	Ask Solem

Security Fixes

	[Security: CELERYSA-0001 [http://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0001.txt]] Daemons would set effective id’s rather than
real id’s when the --uid/--gid arguments to
celery multi, celeryd_detach,
celery beat and celery events were used.

This means privileges weren’t properly dropped, and that it would
be possible to regain supervisor privileges later.

Fixes

	Processes pool: Fixed rare deadlock at shutdown (Issue #523 [https://github.com/celery/celery/issues/523]).

Fix contributed by Ionel Maries Christian.

	Webhook tasks issued the wrong HTTP POST headers (Issue #515 [https://github.com/celery/celery/issues/515]).

The Content-Type header has been changed from
application/json ⇒ application/x-www-form-urlencoded,
and adds a proper Content-Length header.

Fix contributed by Mitar.

	Daemonization tutorial: Adds a configuration example using Django and
virtualenv together (Issue #505 [https://github.com/celery/celery/issues/505]).

Contributed by Juan Ignacio Catalano.

	generic init scripts now automatically creates log and pid file
directories (Issue #545 [https://github.com/celery/celery/issues/545]).

Contributed by Chris Streeter.

2.4.3

	release-date:	2011-11-22 06:00 P.M GMT

	release-by:	Ask Solem

	Fixes module import typo in celeryctl (Issue #538 [https://github.com/celery/celery/issues/538]).

Fix contributed by Chris Streeter.

2.4.2

	release-date:	2011-11-14 12:00 P.M GMT

	release-by:	Ask Solem

	Program module no longer uses relative imports so that it is
possible to do python -m celery.bin.name.

2.4.1

	release-date:	2011-11-07 06:00 P.M GMT

	release-by:	Ask Solem

	celeryctl inspect commands was missing output.

	processes pool: Decrease polling interval for less idle CPU usage.

	processes pool: MaybeEncodingError was not wrapped in ExceptionInfo
(Issue #524 [https://github.com/celery/celery/issues/524]).

	worker: would silence errors occuring after task consumer started.

	logging: Fixed a bug where unicode in stdout redirected log messages
couldn’t be written (Issue #522 [https://github.com/celery/celery/issues/522]).

2.4.0

	release-date:	2011-11-04 04:00 P.M GMT

	release-by:	Ask Solem

Important Notes

	Now supports Python 3.

	Fixed deadlock in worker process handling (Issue #496 [https://github.com/celery/celery/issues/496]).

A deadlock could occur after spawning new child processes because
the logging library’s mutex was not properly reset after fork.

The symptoms of this bug affecting would be that the worker simply
stops processing tasks, as none of the workers child processes
are functioning. There was a greater chance of this bug occurring
with maxtasksperchild or a time-limit enabled.

This is a workaround for http://bugs.python.org/issue6721#msg140215.

Be aware that while this fixes the logging library lock,
there could still be other locks initialized in the parent
process, introduced by custom code.

Fix contributed by Harm Verhagen.

	AMQP Result backend: Now expires results by default.

The default expiration value is now taken from the
CELERY_TASK_RESULT_EXPIRES setting.

The old CELERY_AMQP_TASK_RESULT_EXPIRES setting has been
deprecated and will be removed in version 4.0.

Note that this means that the result backend requires RabbitMQ 2.1.0 or
higher, and that you have to disable expiration if you are running
with an older version. You can do so by disabling the
CELERY_TASK_RESULT_EXPIRES setting:

CELERY_TASK_RESULT_EXPIRES = None

	Eventlet: Fixed problem with shutdown (Issue #457 [https://github.com/celery/celery/issues/457]).

	Broker transports can be now be specified using URLs

The broker can now be specified as an URL instead.
This URL must have the format:

transport://user:password@hostname:port/virtual_host

for example the default broker is written as:

amqp://guest:guest@localhost:5672//

The scheme is required, so that the host is identified
as an URL and not just a host name.
User, password, port and virtual_host are optional and
defaults to the particular transports default value.

Note

Note that the path component (virtual_host) always starts with a
forward-slash. This is necessary to distinguish between the virtual
host '' (empty) and '/', which are both acceptable virtual
host names.

A virtual host of '/' becomes:

amqp://guest:guest@localhost:5672//

and a virtual host of '' (empty) becomes:

amqp://guest:guest@localhost:5672/

So the leading slash in the path component is always required.

In addition the BROKER_URL setting has been added as an alias
to BROKER_HOST. Any broker setting specified in both the URL and in
the configuration will be ignored, if a setting is not provided in the URL
then the value from the configuration will be used as default.

Also, programs now support the -b|--broker option to specify
a broker URL on the command-line:

$ celery worker -b redis://localhost

$ celery inspect -b amqp://guest:guest@localhost//e

The environment variable CELERY_BROKER_URL can also be used to
easily override the default broker used.

	The deprecated celery.loaders.setup_loader() function has been removed.

	The CELERY_TASK_ERROR_WHITELIST setting has been replaced
by a more flexible approach (Issue #447 [https://github.com/celery/celery/issues/447]).

The error mail sending logic is now available as Task.ErrorMail,
with the implementation (for reference) in celery.utils.mail.

The error mail class can be sub-classed to gain complete control
of when error messages are sent, thus removing the need for a separate
white-list setting.

The CELERY_TASK_ERROR_WHITELIST setting has been deprecated,
and will be removed completely in version 4.0.

	Additional Deprecations

The following functions has been deprecated and is scheduled for removal in
version 4.0:

	Old function
	Alternative

	celery.loaders.current_loader
	celery.current_app.loader

	celery.loaders.load_settings
	celery.current_app.conf

	celery.execute.apply
	Task.apply

	celery.execute.apply_async
	Task.apply_async

	celery.execute.delay_task
	celery.execute.send_task

The following settings has been deprecated and is scheduled for removal
in version 4.0:

	Old setting
	Alternative

	CELERYD_LOG_LEVEL
	celery worker --loglevel=

	CELERYD_LOG_FILE
	celery worker --logfile=

	CELERYBEAT_LOG_LEVEL
	celery beat --loglevel=

	CELERYBEAT_LOG_FILE
	celery beat --logfile=

	CELERYMON_LOG_LEVEL
	celerymon --loglevel=

	CELERYMON_LOG_FILE
	celerymon --logfile=

News

	No longer depends on pyparsing.

	Now depends on Kombu 1.4.3.

	CELERY_IMPORTS can now be a scalar value (Issue #485 [https://github.com/celery/celery/issues/485]).

It is too easy to forget to add the comma after the sole element of a
tuple, and this is something that often affects newcomers.

The docs should probably use a list in examples, as using a tuple
for this doesn’t even make sense. Nonetheless, there are many
tutorials out there using a tuple, and this change should be a help
to new users.

Suggested by jsaxon-cars.

	Fixed a memory leak when using the thread pool (Issue #486 [https://github.com/celery/celery/issues/486]).

Contributed by Kornelijus Survila.

	The statedb was not saved at exit.

This has now been fixed and it should again remember previously
revoked tasks when a --statedb is enabled.

	Adds EMAIL_USE_TLS to enable secure SMTP connections
(Issue #418 [https://github.com/celery/celery/issues/418]).

Contributed by Stefan Kjartansson.

	Now handles missing fields in task messages as documented in the message
format documentation.

	Missing required field throws InvalidTaskError

	Missing args/kwargs is assumed empty.

Contributed by Chris Chamberlin.

	Fixed race condition in celery.events.state (celerymon/celeryev)
where task info would be removed while iterating over it (Issue #501 [https://github.com/celery/celery/issues/501]).

	The Cache, Cassandra, MongoDB, Redis and Tyrant backends now respects
the CELERY_RESULT_SERIALIZER setting (Issue #435 [https://github.com/celery/celery/issues/435]).

This means that only the database (django/sqlalchemy) backends
currently does not support using custom serializers.

Contributed by Steeve Morin

	Logging calls no longer manually formats messages, but delegates
that to the logging system, so tools like Sentry can easier
work with the messages (Issue #445 [https://github.com/celery/celery/issues/445]).

Contributed by Chris Adams.

	multi now supports a stop_verify command to wait for
processes to shutdown.

	Cache backend did not work if the cache key was unicode (Issue #504 [https://github.com/celery/celery/issues/504]).

Fix contributed by Neil Chintomby.

	New setting CELERY_RESULT_DB_SHORT_LIVED_SESSIONS added,
which if enabled will disable the caching of SQLAlchemy sessions
(Issue #449 [https://github.com/celery/celery/issues/449]).

Contributed by Leo Dirac.

	All result backends now implements __reduce__ so that they can
be pickled (Issue #441 [https://github.com/celery/celery/issues/441]).

Fix contributed by Remy Noel

	multi did not work on Windows (Issue #472 [https://github.com/celery/celery/issues/472]).

	New-style CELERY_REDIS_* settings now takes precedence over
the old REDIS_* configuration keys (Issue #508 [https://github.com/celery/celery/issues/508]).

Fix contributed by Joshua Ginsberg

	Generic beat init script no longer sets bash -e (Issue #510 [https://github.com/celery/celery/issues/510]).

Fix contributed by Roger Hu.

	Documented that Chords do not work well with redis-server versions
before 2.2.

Contributed by Dan McGee.

	The CELERYBEAT_MAX_LOOP_INTERVAL setting was not respected.

	inspect.registered_tasks renamed to inspect.registered for naming
consistency.

The previous name is still available as an alias.

Contributed by Mher Movsisyan

	Worker logged the string representation of args and kwargs
without safe guards (Issue #480 [https://github.com/celery/celery/issues/480]).

	RHEL init script: Changed worker startup priority.

The default start / stop priorities for MySQL on RHEL are

chkconfig: - 64 36

Therefore, if Celery is using a database as a broker / message store, it
should be started after the database is up and running, otherwise errors
will ensue. This commit changes the priority in the init script to

chkconfig: - 85 15

which are the default recommended settings for 3-rd party applications
and assure that Celery will be started after the database service & shut
down before it terminates.

Contributed by Yury V. Zaytsev.

	KeyValueStoreBackend.get_many did not respect the timeout argument
(Issue #512 [https://github.com/celery/celery/issues/512]).

	beat/events’s –workdir option did not chdir before after
configuration was attempted (Issue #506 [https://github.com/celery/celery/issues/506]).

	After deprecating 2.4 support we can now name modules correctly, since we
can take use of absolute imports.

Therefore the following internal modules have been renamed:

celery.concurrency.evlet -> celery.concurrency.eventlet
celery.concurrency.evg -> celery.concurrency.gevent

	AUTHORS file is now sorted alphabetically.

Also, as you may have noticed the contributors of new features/fixes are
now mentioned in the Changelog.

 Change history for Celery 2.3

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Change history for Celery 2.3

	2.3.4
	Security Fixes

	Fixes

	2.3.3

	2.3.2
	News

	Fixes

	2.3.1
	Fixes

	2.3.0
	Important Notes

	News

	Fixes

2.3.4

	release-date:	2011-11-25 04:00 P.M GMT

	release-by:	Ask Solem

Security Fixes

	[Security: CELERYSA-0001 [http://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0001.txt]] Daemons would set effective id’s rather than
real id’s when the --uid/--gid arguments to
celery multi, celeryd_detach,
celery beat and celery events were used.

This means privileges weren’t properly dropped, and that it would
be possible to regain supervisor privileges later.

Fixes

	Backported fix for #455 from 2.4 to 2.3.

	Statedb was not saved at shutdown.

	Fixes worker sometimes hanging when hard time limit exceeded.

2.3.3

	release-date:	2011-16-09 05:00 P.M BST

	release-by:	Mher Movsisyan

	Monkey patching sys.stdout could result in the worker
crashing if the replacing object did not define isatty()
(Issue #477 [https://github.com/celery/celery/issues/477]).

	CELERYD option in /etc/default/celeryd should not
be used with generic init scripts.

2.3.2

	release-date:	2011-10-07 05:00 P.M BST

	release-by:	Ask Solem

News

	Improved Contributing guide.

If you’d like to contribute to Celery you should read the
Contributing Gudie.

We are looking for contributors at all skill levels, so don’t
hesitate!

	Now depends on Kombu 1.3.1

	Task.request now contains the current worker host name (Issue #460 [https://github.com/celery/celery/issues/460]).

Available as task.request.hostname.

	
	It is now easier for app subclasses to extend how they are pickled.

	(see celery.app.AppPickler).

Fixes

	purge/discard_all was not working correctly (Issue #455 [https://github.com/celery/celery/issues/455]).

	The coloring of log messages didn’t handle non-ASCII data well
(Issue #427 [https://github.com/celery/celery/issues/427]).

	[Windows] the multiprocessing pool tried to import os.kill
even though this is not available there (Issue #450 [https://github.com/celery/celery/issues/450]).

	Fixes case where the worker could become unresponsive because of tasks
exceeding the hard time limit.

	The task-sent event was missing from the event reference.

	ResultSet.iterate now returns results as they finish (Issue #459 [https://github.com/celery/celery/issues/459]).

This was not the case previously, even though the documentation
states this was the expected behavior.

	Retries will no longer be performed when tasks are called directly
(using __call__).

Instead the exception passed to retry will be re-raised.

	Eventlet no longer crashes if autoscale is enabled.

growing and shrinking eventlet pools is still not supported.

	py24 target removed from tox.ini.

2.3.1

	release-date:	2011-08-07 08:00 P.M BST

	release-by:	Ask Solem

Fixes

	The CELERY_AMQP_TASK_RESULT_EXPIRES setting did not work,
resulting in an AMQP related error about not being able to serialize
floats while trying to publish task states (Issue #446 [https://github.com/celery/celery/issues/446]).

2.3.0

	release-date:	2011-08-05 12:00 P.M BST

	tested:	cPython: 2.5, 2.6, 2.7; PyPy: 1.5; Jython: 2.5.2

	release-by:	Ask Solem

Important Notes

	Now requires Kombu 1.2.1

	Results are now disabled by default.

The AMQP backend was not a good default because often the users were
not consuming the results, resulting in thousands of queues.

While the queues can be configured to expire if left unused, it was not
possible to enable this by default because this was only available in
recent RabbitMQ versions (2.1.1+)

With this change enabling a result backend will be a conscious choice,
which will hopefully lead the user to read the documentation and be aware
of any common pitfalls with the particular backend.

The default backend is now a dummy backend
(celery.backends.base.DisabledBackend). Saving state is simply an
noop operation, and AsyncResult.wait(), .result, .state, etc. will raise
a NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] telling the user to configure the result backend.

For help choosing a backend please see Result Backends.

If you depend on the previous default which was the AMQP backend, then
you have to set this explicitly before upgrading:

CELERY_RESULT_BACKEND = "amqp"

Note

For django-celery users the default backend is still database,
and results are not disabled by default.

	The Debian init scripts have been deprecated in favor of the generic-init.d
init scripts.

In addition generic init scripts for celerybeat and celeryev has been
added.

News

	Automatic connection pool support.

The pool is used by everything that requires a broker connection. For
example calling tasks, sending broadcast commands, retrieving results
with the AMQP result backend, and so on.

The pool is disabled by default, but you can enable it by configuring the
BROKER_POOL_LIMIT setting:

BROKER_POOL_LIMIT = 10

A limit of 10 means a maximum of 10 simultaneous connections can co-exist.
Only a single connection will ever be used in a single-thread
environment, but in a concurrent environment (threads, greenlets, etc., but
not processes) when the limit has been exceeded, any try to acquire a
connection will block the thread and wait for a connection to be released.
This is something to take into consideration when choosing a limit.

A limit of None or 0 means no limit, and connections will be
established and closed every time.

	Introducing Chords (taskset callbacks).

A chord is a task that only executes after all of the tasks in a taskset
has finished executing. It’s a fancy term for “taskset callbacks”
adopted from
Cω [http://research.microsoft.com/en-us/um/cambridge/projects/comega/]).

It works with all result backends, but the best implementation is
currently provided by the Redis result backend.

Here’s an example chord:

>>> chord(add.subtask((i, i))
... for i in xrange(100))(tsum.subtask()).get()
9900

Please read the Chords section in the user guide, if you
want to know more.

	Time limits can now be set for individual tasks.

To set the soft and hard time limits for a task use the time_limit
and soft_time_limit attributes:

import time

@task(time_limit=60, soft_time_limit=30)
def sleeptask(seconds):
 time.sleep(seconds)

If the attributes are not set, then the workers default time limits
will be used.

New in this version you can also change the time limits for a task
at runtime using the time_limit() remote control command:

>>> from celery.task import control
>>> control.time_limit("tasks.sleeptask",
... soft=60, hard=120, reply=True)
[{'worker1.example.com': {'ok': 'time limits set successfully'}}]

Only tasks that starts executing after the time limit change will be affected.

Note

Soft time limits will still not work on Windows or other platforms
that do not have the SIGUSR1 signal.

	
	Redis backend configuration directive names changed to include the

	CELERY_ prefix.

	Old setting name
	Replace with

	REDIS_HOST
	CELERY_REDIS_HOST

	REDIS_PORT
	CELERY_REDIS_PORT

	REDIS_DB
	CELERY_REDIS_DB

	REDIS_PASSWORD
	CELERY_REDIS_PASSWORD

The old names are still supported but pending deprecation.

	PyPy: The default pool implementation used is now multiprocessing
if running on PyPy 1.5.

	multi: now supports “pass through” options.

Pass through options makes it easier to use celery without a
configuration file, or just add last-minute options on the command
line.

Example use:

$ celery multi start 4 -c 2 -- broker.host=amqp.example.com \
 broker.vhost=/ \
 celery.disable_rate_limits=yes

	celerybeat: Now retries establishing the connection (Issue #419 [https://github.com/celery/celery/issues/419]).

	celeryctl: New list bindings command.

Lists the current or all available bindings, depending on the
broker transport used.

	Heartbeat is now sent every 30 seconds (previously every 2 minutes).

	ResultSet.join_native() and iter_native() is now supported by
the Redis and Cache result backends.

This is an optimized version of join() using the underlying
backends ability to fetch multiple results at once.

	Can now use SSL when sending error e-mails by enabling the
EMAIL_USE_SSL setting.

	events.default_dispatcher(): Context manager to easily obtain
an event dispatcher instance using the connection pool.

	Import errors in the configuration module will not be silenced anymore.

	ResultSet.iterate: Now supports the timeout, propagate and
interval arguments.

	with_default_connection -> with default_connection

	TaskPool.apply_async: Keyword arguments callbacks and errbacks
has been renamed to callback and errback and take a single scalar
value instead of a list.

	No longer propagates errors occurring during process cleanup (Issue #365 [https://github.com/celery/celery/issues/365])

	Added TaskSetResult.delete(), which will delete a previously
saved taskset result.

	Celerybeat now syncs every 3 minutes instead of only at
shutdown (Issue #382 [https://github.com/celery/celery/issues/382]).

	Monitors now properly handles unknown events, so user-defined events
are displayed.

	Terminating a task on Windows now also terminates all of the tasks child
processes (Issue #384 [https://github.com/celery/celery/issues/384]).

	worker: -I|--include option now always searches the current directory
to import the specified modules.

	Cassandra backend: Now expires results by using TTLs.

	Functional test suite in funtests is now actually working properly, and
passing tests.

Fixes

	celeryev was trying to create the pidfile twice.

	celery.contrib.batches: Fixed problem where tasks failed
silently (Issue #393 [https://github.com/celery/celery/issues/393]).

	Fixed an issue where logging objects would give “<Unrepresentable”,
even though the objects were.

	CELERY_TASK_ERROR_WHITE_LIST is now properly initialized
in all loaders.

	celeryd_detach now passes through command line configuration.

	Remote control command add_consumer now does nothing if the
queue is already being consumed from.

 Change history for Celery 2.2

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Change history for Celery 2.2

	2.2.8
	Security Fixes

	2.2.7

	2.2.6
	Important Notes

	Fixes

	2.2.5
	Important Notes

	News

	Fixes

	2.2.4
	Fixes

	2.2.3
	Fixes

	2.2.2
	Fixes

	2.2.1
	Fixes

	2.2.0
	Important Notes

	News

	Fixes

	Experimental

2.2.8

	release-date:	2011-11-25 04:00 P.M GMT

	release-by:	Ask Solem

Security Fixes

	[Security: CELERYSA-0001 [http://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0001.txt]] Daemons would set effective id’s rather than
real id’s when the --uid/--gid arguments to
celery multi, celeryd_detach,
celery beat and celery events were used.

This means privileges weren’t properly dropped, and that it would
be possible to regain supervisor privileges later.

2.2.7

	release-date:	2011-06-13 04:00 P.M BST

	release-by:	Ask Solem

	New signals: after_setup_logger and
after_setup_task_logger

These signals can be used to augment logging configuration
after Celery has set up logging.

	Redis result backend now works with Redis 2.4.4.

	multi: The --gid option now works correctly.

	worker: Retry wrongfully used the repr of the traceback instead
of the string representation.

	App.config_from_object: Now loads module, not attribute of module.

	Fixed issue where logging of objects would give “<Unrepresentable: ...>”

2.2.6

	release-date:	2011-04-15 04:00 P.M CEST

	release-by:	Ask Solem

Important Notes

	Now depends on Kombu 1.1.2.

	Dependency lists now explicitly specifies that we don’t want python-dateutil
2.x, as this version only supports py3k.

If you have installed dateutil 2.0 by accident you should downgrade
to the 1.5.0 version:

pip install -U python-dateutil==1.5.0

or by easy_install:

easy_install -U python-dateutil==1.5.0

Fixes

	The new WatchedFileHandler broke Python 2.5 support (Issue #367 [https://github.com/celery/celery/issues/367]).

	Task: Don’t use app.main if the task name is set explicitly.

	Sending emails did not work on Python 2.5, due to a bug in
the version detection code (Issue #378 [https://github.com/celery/celery/issues/378]).

	Beat: Adds method ScheduleEntry._default_now

This method can be overridden to change the default value
of last_run_at.

	An error occurring in process cleanup could mask task errors.

We no longer propagate errors happening at process cleanup,
but log them instead. This way they will not interfere with publishing
the task result (Issue #365 [https://github.com/celery/celery/issues/365]).

	Defining tasks did not work properly when using the Django
shell_plus utility (Issue #366 [https://github.com/celery/celery/issues/366]).

	
	AsyncResult.get did not accept the interval and propagate

	arguments.

	
	worker: Fixed a bug where the worker would not shutdown if a

	socket.error [https://docs.python.org/dev/library/socket.html#socket.error] was raised.

2.2.5

	release-date:	2011-03-28 06:00 P.M CEST

	release-by:	Ask Solem

Important Notes

	Now depends on Kombu 1.0.7

News

	Our documentation is now hosted by Read The Docs
(http://docs.celeryproject.org), and all links have been changed to point to
the new URL.

	Logging: Now supports log rotation using external tools like logrotate.d [http://www.ducea.com/2006/06/06/rotating-linux-log-files-part-2-logrotate/]
(Issue #321 [https://github.com/celery/celery/issues/321])

This is accomplished by using the WatchedFileHandler, which re-opens
the file if it is renamed or deleted.

	
	otherqueues tutorial now documents how to configure Redis/Database result

	backends.

	gevent: Now supports ETA tasks.

But gevent still needs CELERY_DISABLE_RATE_LIMITS=True to work.

	TaskSet User Guide: now contains TaskSet callback recipes.

	Eventlet: New signals:

	eventlet_pool_started

	eventlet_pool_preshutdown

	eventlet_pool_postshutdown

	eventlet_pool_apply

See celery.signals for more information.

	New BROKER_TRANSPORT_OPTIONS setting can be used to pass
additional arguments to a particular broker transport.

	worker: worker_pid is now part of the request info as returned by
broadcast commands.

	TaskSet.apply/Taskset.apply_async now accepts an optional taskset_id
argument.

	The taskset_id (if any) is now available in the Task request context.

	SQLAlchemy result backend: taskset_id and taskset_id columns now have a
unique constraint. (Tables need to recreated for this to take affect).

	Task Userguide: Added section about choosing a result backend.

	Removed unused attribute AsyncResult.uuid.

Fixes

	multiprocessing.Pool: Fixes race condition when marking job with
WorkerLostError (Issue #268 [https://github.com/celery/celery/issues/268]).

The process may have published a result before it was terminated,
but we have no reliable way to detect that this is the case.

So we have to wait for 10 seconds before marking the result with
WorkerLostError. This gives the result handler a chance to retrieve the
result.

	multiprocessing.Pool: Shutdown could hang if rate limits disabled.

There was a race condition when the MainThread was waiting for the pool
semaphore to be released. The ResultHandler now terminates after 5
seconds if there are unacked jobs, but no worker processes left to start
them (it needs to timeout because there could still be an ack+result
that we haven’t consumed from the result queue. It
is unlikely we will receive any after 5 seconds with no worker processes).

	celerybeat: Now creates pidfile even if the --detach option is not set.

	eventlet/gevent: The broadcast command consumer is now running in a separate
greenthread.

This ensures broadcast commands will take priority even if there are many
active tasks.

	Internal module celery.worker.controllers renamed to
celery.worker.mediator.

	worker: Threads now terminates the program by calling os._exit, as it
is the only way to ensure exit in the case of syntax errors, or other
unrecoverable errors.

	Fixed typo in maybe_timedelta (Issue #352 [https://github.com/celery/celery/issues/352]).

	worker: Broadcast commands now logs with loglevel debug instead of warning.

	AMQP Result Backend: Now resets cached channel if the connection is lost.

	Polling results with the AMQP result backend was not working properly.

	Rate limits: No longer sleeps if there are no tasks, but rather waits for
the task received condition (Performance improvement).

	ConfigurationView: iter(dict) should return keys, not items (Issue #362 [https://github.com/celery/celery/issues/362]).

	celerybeat: PersistentScheduler now automatically removes a corrupted
schedule file (Issue #346 [https://github.com/celery/celery/issues/346]).

	Programs that doesn’t support positional command-line arguments now provides
a user friendly error message.

	Programs no longer tries to load the configuration file when showing
--version (Issue #347 [https://github.com/celery/celery/issues/347]).

	Autoscaler: The “all processes busy” log message is now severity debug
instead of error.

	worker: If the message body can’t be decoded, it is now passed through
safe_str when logging.

This to ensure we don’t get additional decoding errors when trying to log
the failure.

	app.config_from_object/app.config_from_envvar now works for all
loaders.

	Now emits a user-friendly error message if the result backend name is
unknown (Issue #349 [https://github.com/celery/celery/issues/349]).

	celery.contrib.batches: Now sets loglevel and logfile in the task
request so task.get_logger works with batch tasks (Issue #357 [https://github.com/celery/celery/issues/357]).

	worker: An exception was raised if using the amqp transport and the prefetch
count value exceeded 65535 (Issue #359 [https://github.com/celery/celery/issues/359]).

The prefetch count is incremented for every received task with an
ETA/countdown defined. The prefetch count is a short, so can only support
a maximum value of 65535. If the value exceeds the maximum value we now
disable the prefetch count, it is re-enabled as soon as the value is below
the limit again.

	cursesmon: Fixed unbound local error (Issue #303 [https://github.com/celery/celery/issues/303]).

	eventlet/gevent is now imported on demand so autodoc can import the modules
without having eventlet/gevent installed.

	worker: Ack callback now properly handles AttributeError.

	Task.after_return is now always called after the result has been
written.

	Cassandra Result Backend: Should now work with the latest pycassa
version.

	multiprocessing.Pool: No longer cares if the putlock semaphore is released
too many times. (this can happen if one or more worker processes are
killed).

	SQLAlchemy Result Backend: Now returns accidentally removed date_done again
(Issue #325 [https://github.com/celery/celery/issues/325]).

	Task.request contex is now always initialized to ensure calling the task
function directly works even if it actively uses the request context.

	Exception occuring when iterating over the result from TaskSet.apply
fixed.

	eventlet: Now properly schedules tasks with an ETA in the past.

2.2.4

	release-date:	2011-02-19 00:00 AM CET

	release-by:	Ask Solem

Fixes

	worker: 2.2.3 broke error logging, resulting in tracebacks not being logged.

	AMQP result backend: Polling task states did not work properly if there were
more than one result message in the queue.

	TaskSet.apply_async() and TaskSet.apply() now supports an optional
taskset_id keyword argument (Issue #331 [https://github.com/celery/celery/issues/331]).

	The current taskset id (if any) is now available in the task context as
request.taskset (Issue #329 [https://github.com/celery/celery/issues/329]).

	SQLAlchemy result backend: date_done was no longer part of the results as it had
been accidentally removed. It is now available again (Issue #325 [https://github.com/celery/celery/issues/325]).

	SQLAlchemy result backend: Added unique constraint on Task.id and
TaskSet.taskset_id. Tables needs to be recreated for this to take effect.

	Fixed exception raised when iterating on the result of TaskSet.apply().

	Tasks Userguide: Added section on choosing a result backend.

2.2.3

	release-date:	2011-02-12 04:00 P.M CET

	release-by:	Ask Solem

Fixes

	Now depends on Kombu 1.0.3

	Task.retry now supports a max_retries argument, used to change the
default value.

	multiprocessing.cpu_count may raise NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] on
platforms where this is not supported (Issue #320 [https://github.com/celery/celery/issues/320]).

	Coloring of log messages broke if the logged object was not a string.

	Fixed several typos in the init script documentation.

	A regression caused Task.exchange and Task.routing_key to no longer
have any effect. This is now fixed.

	Routing Userguide: Fixes typo, routers in CELERY_ROUTES must be
instances, not classes.

	celeryev did not create pidfile even though the
--pidfile argument was set.

	Task logger format was no longer used. (Issue #317 [https://github.com/celery/celery/issues/317]).

The id and name of the task is now part of the log message again.

	A safe version of repr() is now used in strategic places to ensure
objects with a broken __repr__ does not crash the worker, or otherwise
make errors hard to understand (Issue #298 [https://github.com/celery/celery/issues/298]).

	Remote control command active_queues: did not account for queues added
at runtime.

In addition the dictionary replied by this command now has a different
structure: the exchange key is now a dictionary containing the
exchange declaration in full.

	The -Q option to celery worker removed unused queue
declarations, so routing of tasks could fail.

Queues are no longer removed, but rather app.amqp.queues.consume_from()
is used as the list of queues to consume from.

This ensures all queues are available for routing purposes.

	celeryctl: Now supports the inspect active_queues command.

2.2.2

	release-date:	2011-02-03 04:00 P.M CET

	release-by:	Ask Solem

Fixes

	Celerybeat could not read the schedule properly, so entries in
CELERYBEAT_SCHEDULE would not be scheduled.

	Task error log message now includes exc_info again.

	The eta argument can now be used with task.retry.

Previously it was overwritten by the countdown argument.

	celery multi/celeryd_detach: Now logs errors occuring when executing
the celery worker command.

	daemonizing tutorial: Fixed typo --time-limit 300 ->
--time-limit=300

	Colors in logging broke non-string objects in log messages.

	setup_task_logger no longer makes assumptions about magic task kwargs.

2.2.1

	release-date:	2011-02-02 04:00 P.M CET

	release-by:	Ask Solem

Fixes

	Eventlet pool was leaking memory (Issue #308 [https://github.com/celery/celery/issues/308]).

	Deprecated function celery.execute.delay_task was accidentally removed,
now available again.

	BasePool.on_terminate stub did not exist

	
	celeryd_detach: Adds readable error messages if user/group name does not

	exist.

	Smarter handling of unicode decod errors when logging errors.

2.2.0

	release-date:	2011-02-01 10:00 AM CET

	release-by:	Ask Solem

Important Notes

	Carrot has been replaced with Kombu [http://pypi.python.org/pypi/kombu]

Kombu is the next generation messaging library for Python,
fixing several flaws present in Carrot that was hard to fix
without breaking backwards compatibility.

Also it adds:

	First-class support for virtual transports; Redis, Django ORM,
SQLAlchemy, Beanstalk, MongoDB, CouchDB and in-memory.

	Consistent error handling with introspection,

	The ability to ensure that an operation is performed by gracefully
handling connection and channel errors,

	Message compression (zlib, bzip2, or custom compression schemes).

This means that ghettoq is no longer needed as the
functionality it provided is already available in Celery by default.
The virtual transports are also more feature complete with support
for exchanges (direct and topic). The Redis transport even supports
fanout exchanges so it is able to perform worker remote control
commands.

	Magic keyword arguments pending deprecation.

The magic keyword arguments were responsibile for many problems
and quirks: notably issues with tasks and decorators, and name
collisions in keyword arguments for the unaware.

It wasn’t easy to find a way to deprecate the magic keyword arguments,
but we think this is a solution that makes sense and it will not
have any adverse effects for existing code.

The path to a magic keyword argument free world is:

	the celery.decorators module is deprecated and the decorators
can now be found in celery.task.

	The decorators in celery.task disables keyword arguments by
default

	All examples in the documentation have been changed to use
celery.task.

This means that the following will have magic keyword arguments
enabled (old style):

from celery.decorators import task

@task()
def add(x, y, **kwargs):
 print("In task %s" % kwargs["task_id"])
 return x + y

And this will not use magic keyword arguments (new style):

from celery.task import task

@task()
def add(x, y):
 print("In task %s" % add.request.id)
 return x + y

In addition, tasks can choose not to accept magic keyword arguments by
setting the task.accept_magic_kwargs attribute.

Deprecation

Using the decorators in celery.decorators emits a
PendingDeprecationWarning [https://docs.python.org/dev/library/exceptions.html#PendingDeprecationWarning] with a helpful message urging
you to change your code, in version 2.4 this will be replaced with
a DeprecationWarning [https://docs.python.org/dev/library/exceptions.html#DeprecationWarning], and in version 4.0 the
celery.decorators module will be removed and no longer exist.

Similarly, the task.accept_magic_kwargs attribute will no
longer have any effect starting from version 4.0.

	The magic keyword arguments are now available as task.request

This is called the context. Using thread-local storage the
context contains state that is related to the current request.

It is mutable and you can add custom attributes that will only be seen
by the current task request.

The following context attributes are always available:

	Magic Keyword Argument
	Replace with

	kwargs[“task_id”]
	self.request.id

	kwargs[“delivery_info”]
	self.request.delivery_info

	kwargs[“task_retries”]
	self.request.retries

	kwargs[“logfile”]
	self.request.logfile

	kwargs[“loglevel”]
	self.request.loglevel

	kwargs[“task_is_eager
	self.request.is_eager

	NEW
	self.request.args

	NEW
	self.request.kwargs

In addition, the following methods now automatically uses the current
context, so you don’t have to pass kwargs manually anymore:

	task.retry

	task.get_logger

	task.update_state

	Eventlet [http://eventlet.net] support.

This is great news for I/O-bound tasks!

To change pool implementations you use the -P|--pool argument
to celery worker, or globally using the
CELERYD_POOL setting. This can be the full name of a class,
or one of the following aliases: processes, eventlet, gevent.

For more information please see the Concurrency with Eventlet section
in the User Guide.

Why not gevent?

For our first alternative concurrency implementation we have focused
on Eventlet [http://eventlet.net], but there is also an experimental gevent [http://gevent.org] pool
available. This is missing some features, notably the ability to
schedule ETA tasks.

Hopefully the gevent [http://gevent.org] support will be feature complete by
version 2.3, but this depends on user demand (and contributions).

	Python 2.4 support deprecated!

We’re happy^H^H^H^H^Hsad to announce that this is the last version
to support Python 2.4.

You are urged to make some noise if you’re currently stuck with
Python 2.4. Complain to your package maintainers, sysadmins and bosses:
tell them it’s time to move on!

Apart from wanting to take advantage of with-statements, coroutines,
conditional expressions and enhanced try blocks, the code base
now contains so many 2.4 related hacks and workarounds it’s no longer
just a compromise, but a sacrifice.

If it really isn’t your choice, and you don’t have the option to upgrade
to a newer version of Python, you can just continue to use Celery 2.2.
Important fixes can be backported for as long as there is interest.

	worker: Now supports Autoscaling of child worker processes.

The --autoscale option can be used to configure the minimum
and maximum number of child worker processes:

--autoscale=AUTOSCALE
 Enable autoscaling by providing
 max_concurrency,min_concurrency. Example:
 --autoscale=10,3 (always keep 3 processes, but grow to
 10 if necessary).

	Remote Debugging of Tasks

celery.contrib.rdb is an extended version of pdb [https://docs.python.org/dev/library/pdb.html#module-pdb] that
enables remote debugging of processes that does not have terminal
access.

Example usage:

 from celery.contrib import rdb
 from celery.task import task

 @task()
 def add(x, y):
 result = x + y
 rdb.set_trace() # <- set breakpoint
 return result

:func:`~celery.contrib.rdb.set_trace` sets a breakpoint at the current
location and creates a socket you can telnet into to remotely debug
your task.

The debugger may be started by multiple processes at the same time,
so rather than using a fixed port the debugger will search for an
available port, starting from the base port (6900 by default).
The base port can be changed using the environment variable
:envvar:`CELERY_RDB_PORT`.

By default the debugger will only be available from the local host,
to enable access from the outside you have to set the environment
variable :envvar:`CELERY_RDB_HOST`.

When the worker encounters your breakpoint it will log the following
information::

 [INFO/MainProcess] Received task:
 tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8]
 [WARNING/PoolWorker-1] Remote Debugger:6900:
 Please telnet 127.0.0.1 6900. Type `exit` in session to continue.
 [2011-01-18 14:25:44,119: WARNING/PoolWorker-1] Remote Debugger:6900:
 Waiting for client...

If you telnet the port specified you will be presented
with a ``pdb`` shell:

.. code-block:: bash

 $ telnet localhost 6900
 Connected to localhost.
 Escape character is '^]'.
 > /opt/devel/demoapp/tasks.py(128)add()
 -> return result
 (Pdb)

Enter ``help`` to get a list of available commands,
It may be a good idea to read the `Python Debugger Manual`_ if
you have never used `pdb` before.

	Events are now transient and is using a topic exchange (instead of direct).

The CELERYD_EVENT_EXCHANGE, CELERYD_EVENT_ROUTING_KEY,
CELERYD_EVENT_EXCHANGE_TYPE settings are no longer in use.

This means events will not be stored until there is a consumer, and the
events will be gone as soon as the consumer stops. Also it means there
can be multiple monitors running at the same time.

The routing key of an event is the type of event (e.g. worker.started,
worker.heartbeat, task.succeeded, etc. This means a consumer can
filter on specific types, to only be alerted of the events it cares about.

Each consumer will create a unique queue, meaning it is in effect a
broadcast exchange.

This opens up a lot of possibilities, for example the workers could listen
for worker events to know what workers are in the neighborhood, and even
restart workers when they go down (or use this information to optimize
tasks/autoscaling).

Note

The event exchange has been renamed from “celeryevent” to “celeryev”
so it does not collide with older versions.

If you would like to remove the old exchange you can do so
by executing the following command:

$ camqadm exchange.delete celeryevent

	The worker now starts without configuration, and configuration can be
specified directly on the command-line.

Configuration options must appear after the last argument, separated
by two dashes:

$ celery worker -l info -I tasks -- broker.host=localhost broker.vhost=/app

	Configuration is now an alias to the original configuration, so changes
to the original will reflect Celery at runtime.

	celery.conf has been deprecated, and modifying celery.conf.ALWAYS_EAGER
will no longer have any effect.

The default configuration is now available in the
celery.app.defaults module. The available configuration options
and their types can now be introspected.

	Remote control commands are now provided by kombu.pidbox, the generic
process mailbox.

	Internal module celery.worker.listener has been renamed to
celery.worker.consumer, and .CarrotListener is now .Consumer.

	Previously deprecated modules celery.models and
celery.management.commands have now been removed as per the deprecation
timeline.

	
	[Security: Low severity] Removed celery.task.RemoteExecuteTask and

	accompanying functions: dmap, dmap_async, and execute_remote.

Executing arbitrary code using pickle is a potential security issue if
someone gains unrestricted access to the message broker.

If you really need this functionality, then you would have to add
this to your own project.

	[Security: Low severity] The stats command no longer transmits the
broker password.

One would have needed an authenticated broker connection to receive
this password in the first place, but sniffing the password at the
wire level would have been possible if using unencrypted communication.

News

	The internal module celery.task.builtins has been removed.

	The module celery.task.schedules is deprecated, and
celery.schedules should be used instead.

For example if you have:

from celery.task.schedules import crontab

You should replace that with:

from celery.schedules import crontab

The module needs to be renamed because it must be possible
to import schedules without importing the celery.task module.

	The following functions have been deprecated and is scheduled for
removal in version 2.3:

	celery.execute.apply_async

Use task.apply_async() instead.

	celery.execute.apply

Use task.apply() instead.

	celery.execute.delay_task

Use registry.tasks[name].delay() instead.

	Importing TaskSet from celery.task.base is now deprecated.

You should use:

>>> from celery.task import TaskSet

instead.

	New remote control commands:

	active_queues

Returns the queue declarations a worker is currently consuming from.

	Added the ability to retry publishing the task message in
the event of connection loss or failure.

This is disabled by default but can be enabled using the
CELERY_TASK_PUBLISH_RETRY setting, and tweaked by
the CELERY_TASK_PUBLISH_RETRY_POLICY setting.

In addition retry, and retry_policy keyword arguments have
been added to Task.apply_async.

Note

Using the retry argument to apply_async requires you to
handle the publisher/connection manually.

	Periodic Task classes (@periodic_task/PeriodicTask) will not be
deprecated as previously indicated in the source code.

But you are encouraged to use the more flexible
CELERYBEAT_SCHEDULE setting.

	Built-in daemonization support of the worker using celery multi
is no longer experimental and is considered production quality.

See Generic init scripts if you want to use the new generic init
scripts.

	Added support for message compression using the
CELERY_MESSAGE_COMPRESSION setting, or the compression argument
to apply_async. This can also be set using routers.

	
	worker: Now logs stacktrace of all threads when receiving the

	SIGUSR1 signal. (Does not work on cPython 2.4, Windows or Jython).

Inspired by https://gist.github.com/737056

	Can now remotely terminate/kill the worker process currently processing
a task.

The revoke remote control command now supports a terminate argument
Default signal is TERM, but can be specified using the signal
argument. Signal can be the uppercase name of any signal defined
in the signal [https://docs.python.org/dev/library/signal.html#module-signal] module in the Python Standard Library.

Terminating a task also revokes it.

Example:

>>> from celery.task.control import revoke

>>> revoke(task_id, terminate=True)
>>> revoke(task_id, terminate=True, signal="KILL")
>>> revoke(task_id, terminate=True, signal="SIGKILL")

	TaskSetResult.join_native: Backend-optimized version of join().

If available, this version uses the backends ability to retrieve
multiple results at once, unlike join() which fetches the results
one by one.

So far only supported by the AMQP result backend. Support for memcached
and Redis may be added later.

	Improved implementations of TaskSetResult.join and AsyncResult.wait.

An interval keyword argument have been added to both so the
polling interval can be specified (default interval is 0.5 seconds).

A propagate keyword argument have been added to result.wait(),
errors will be returned instead of raised if this is set to False.

Warning

You should decrease the polling interval when using the database
result backend, as frequent polling can result in high database load.

	The PID of the child worker process accepting a task is now sent as a field
with the task-started event.

	The following fields have been added to all events in the worker class:

	sw_ident: Name of worker software (e.g. py-celery).

	sw_ver: Software version (e.g. 2.2.0).

	sw_sys: Operating System (e.g. Linux, Windows, Darwin).

	For better accuracy the start time reported by the multiprocessing worker
process is used when calculating task duration.

Previously the time reported by the accept callback was used.

	
	celerybeat: New built-in daemonization support using the –detach

	option.

	
	celeryev: New built-in daemonization support using the –detach

	option.

	TaskSet.apply_async: Now supports custom publishers by using the
publisher argument.

	Added CELERY_SEND_TASK_SENT_EVENT setting.

If enabled an event will be sent with every task, so monitors can
track tasks before the workers receive them.

	
	celerybeat: Now reuses the broker connection when calling

	scheduled tasks.

	The configuration module and loader to use can now be specified on
the command-line.

For example:

$ celery worker --config=celeryconfig.py --loader=myloader.Loader

	Added signals: beat_init and beat_embedded_init

	celery.signals.beat_init

Dispatched when celerybeat starts (either standalone or
embedded). Sender is the celery.beat.Service instance.

	celery.signals.beat_embedded_init

Dispatched in addition to the beat_init signal when
celerybeat is started as an embedded process. Sender
is the celery.beat.Service instance.

	Redis result backend: Removed deprecated settings REDIS_TIMEOUT and
REDIS_CONNECT_RETRY.

	CentOS init script for celery worker now available in extra/centos.

	Now depends on pyparsing version 1.5.0 or higher.

There have been reported issues using Celery with pyparsing 1.4.x,
so please upgrade to the latest version.

	Lots of new unit tests written, now with a total coverage of 95%.

Fixes

	celeryev Curses Monitor: Improved resize handling and UI layout
(Issue #274 [https://github.com/celery/celery/issues/274] + Issue #276 [https://github.com/celery/celery/issues/276])

	AMQP Backend: Exceptions occurring while sending task results are now
propagated instead of silenced.

the worker will then show the full traceback of these errors in the log.

	AMQP Backend: No longer deletes the result queue after successful
poll, as this should be handled by the
CELERY_AMQP_TASK_RESULT_EXPIRES setting instead.

	AMQP Backend: Now ensures queues are declared before polling results.

	Windows: worker: Show error if running with -B option.

Running celerybeat embedded is known not to work on Windows, so
users are encouraged to run celerybeat as a separate service instead.

	Windows: Utilities no longer output ANSI color codes on Windows

	camqadm: Now properly handles Ctrl+C by simply exiting instead of showing
confusing traceback.

	Windows: All tests are now passing on Windows.

	Remove bin/ directory, and scripts section from setup.py.

This means we now rely completely on setuptools entrypoints.

Experimental

	Jython: worker now runs on Jython using the threaded pool.

All tests pass, but there may still be bugs lurking around the corners.

	PyPy: worker now runs on PyPy.

It runs without any pool, so to get parallel execution you must start
multiple instances (e.g. using multi).

Sadly an initial benchmark seems to show a 30% performance decrease on
pypy-1.4.1 + JIT. We would like to find out why this is, so stay tuned.

	PublisherPool: Experimental pool of task publishers and
connections to be used with the retry argument to apply_async.

The example code below will re-use connections and channels, and
retry sending of the task message if the connection is lost.

from celery import current_app

Global pool
pool = current_app().amqp.PublisherPool(limit=10)

def my_view(request):
 with pool.acquire() as publisher:
 add.apply_async((2, 2), publisher=publisher, retry=True)

 Change history for Celery 2.1

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Change history for Celery 2.1

	2.1.4
	Fixes

	Documentation

	2.1.3

	2.1.2
	Fixes

	2.1.1
	Fixes

	News

	2.1.0
	Important Notes

	News

	Fixes

	Experimental

	Documentation

2.1.4

	release-date:	2010-12-03 12:00 P.M CEST

	release-by:	Ask Solem

Fixes

	Execution options to apply_async now takes precedence over options
returned by active routers. This was a regression introduced recently
(Issue #244 [https://github.com/celery/celery/issues/244]).

	curses monitor: Long arguments are now truncated so curses
doesn’t crash with out of bounds errors. (Issue #235 [https://github.com/celery/celery/issues/235]).

	multi: Channel errors occurring while handling control commands no
longer crash the worker but are instead logged with severity error.

	SQLAlchemy database backend: Fixed a race condition occurring when
the client wrote the pending state. Just like the Django database backend,
it does no longer save the pending state (Issue #261 [https://github.com/celery/celery/issues/261] + Issue #262 [https://github.com/celery/celery/issues/262]).

	Error email body now uses repr(exception) instead of str(exception),
as the latter could result in Unicode decode errors (Issue #245 [https://github.com/celery/celery/issues/245]).

	Error email timeout value is now configurable by using the
EMAIL_TIMEOUT setting.

	celeryev: Now works on Windows (but the curses monitor won’t work without
having curses).

	Unit test output no longer emits non-standard characters.

	worker: The broadcast consumer is now closed if the connection is reset.

	worker: Now properly handles errors occurring while trying to acknowledge
the message.

	
	TaskRequest.on_failure now encodes traceback using the current filesystem

	encoding. (Issue #286 [https://github.com/celery/celery/issues/286]).

	EagerResult can now be pickled (Issue #288 [https://github.com/celery/celery/issues/288]).

Documentation

	Adding Contributing.

	Added Optimizing.

	Added Security section to the FAQ.

2.1.3

	release-date:	2010-11-09 05:00 P.M CEST

	release-by:	Ask Solem

	Fixed deadlocks in timer2 which could lead to djcelerymon/celeryev -c
hanging.

	EventReceiver: now sends heartbeat request to find workers.

This means celeryev and friends finds workers immediately
at startup.

	celeryev cursesmon: Set screen_delay to 10ms, so the screen refreshes more
often.

	Fixed pickling errors when pickling AsyncResult on older Python
versions.

	worker: prefetch count was decremented by eta tasks even if there
were no active prefetch limits.

2.1.2

	release-data:	TBA

Fixes

	worker: Now sends the task-retried event for retried tasks.

	worker: Now honors ignore result for
WorkerLostError and timeout errors.

	celerybeat: Fixed UnboundLocalError [https://docs.python.org/dev/library/exceptions.html#UnboundLocalError] in celerybeat logging
when using logging setup signals.

	worker: All log messages now includes exc_info.

2.1.1

	release-date:	2010-10-14 02:00 P.M CEST

	release-by:	Ask Solem

Fixes

	Now working on Windows again.

Removed dependency on the pwd/grp modules.

	snapshots: Fixed race condition leading to loss of events.

	worker: Reject tasks with an eta that cannot be converted to a time stamp.

See issue #209 [https://github.com/celery/celery/issues/209]

	concurrency.processes.pool: The semaphore was released twice for each task
(both at ACK and result ready).

This has been fixed, and it is now released only once per task.

	docs/configuration: Fixed typo CELERYD_TASK_SOFT_TIME_LIMIT ->
CELERYD_TASK_SOFT_TIME_LIMIT.

See issue #214 [https://github.com/celery/celery/issues/214]

	control command dump_scheduled: was using old .info attribute

	
	multi: Fixed set changed size during iteration bug

	occurring in the restart command.

	worker: Accidentally tried to use additional command-line arguments.

This would lead to an error like:

got multiple values for keyword argument ‘concurrency’.

Additional command-line arguments are now ignored, and does not
produce this error. However – we do reserve the right to use
positional arguments in the future, so please do not depend on this
behavior.

	celerybeat: Now respects routers and task execution options again.

	celerybeat: Now reuses the publisher instead of the connection.

	Cache result backend: Using float [https://docs.python.org/dev/library/functions.html#float] as the expires argument
to cache.set is deprecated by the memcached libraries,
so we now automatically cast to int [https://docs.python.org/dev/library/functions.html#int].

	unit tests: No longer emits logging and warnings in test output.

News

	Now depends on carrot version 0.10.7.

	Added CELERY_REDIRECT_STDOUTS, and
CELERYD_REDIRECT_STDOUTS_LEVEL settings.

CELERY_REDIRECT_STDOUTS is used by the worker and
beat. All output to stdout and stderr will be
redirected to the current logger if enabled.

CELERY_REDIRECT_STDOUTS_LEVEL decides the log level used and is
WARNING by default.

	Added CELERYBEAT_SCHEDULER setting.

This setting is used to define the default for the -S option to
celerybeat.

Example:

CELERYBEAT_SCHEDULER = "djcelery.schedulers.DatabaseScheduler"

	Added Task.expires: Used to set default expiry time for tasks.

	New remote control commands: add_consumer and cancel_consumer.

	
add_consumer(queue, exchange, exchange_type, routing_key,

	
**options)

	Tells the worker to declare and consume from the specified
declaration.

	
cancel_consumer(queue_name)

	Tells the worker to stop consuming from queue (by queue name).

Commands also added to celeryctl and
inspect.

Example using celeryctl to start consuming from queue “queue”, in
exchange “exchange”, of type “direct” using binding key “key”:

$ celeryctl inspect add_consumer queue exchange direct key
$ celeryctl inspect cancel_consumer queue

See Management Command-line Utilities (inspect/control) for more information about the
celeryctl program.

Another example using inspect:

>>> from celery.task.control import inspect
>>> inspect.add_consumer(queue="queue", exchange="exchange",
... exchange_type="direct",
... routing_key="key",
... durable=False,
... auto_delete=True)

>>> inspect.cancel_consumer("queue")

	celerybeat: Now logs the traceback if a message can’t be sent.

	celerybeat: Now enables a default socket timeout of 30 seconds.

	README/introduction/homepage: Added link to Flask-Celery [http://github.com/ask/flask-celery].

2.1.0

	release-date:	2010-10-08 12:00 P.M CEST

	release-by:	Ask Solem

Important Notes

	Celery is now following the versioning semantics defined by semver [http://semver.org].

This means we are no longer allowed to use odd/even versioning semantics
By our previous versioning scheme this stable release should have
been version 2.2.

	Now depends on Carrot 0.10.7.

	No longer depends on SQLAlchemy, this needs to be installed separately
if the database result backend is used.

	django-celery now comes with a monitor for the Django Admin interface.
This can also be used if you’re not a Django user.
(Update: Django-Admin monitor has been replaced with Flower, see the
Monitoring guide).

	If you get an error after upgrading saying:
AttributeError: ‘module’ object has no attribute ‘system’,

Then this is because the celery.platform module has been
renamed to celery.platforms to not collide with the built-in
platform [https://docs.python.org/dev/library/platform.html#module-platform] module.

You have to remove the old platform.py (and maybe
platform.pyc) file from your previous Celery installation.

To do this use python to find the location
of this module:

$ python
>>> import celery.platform
>>> celery.platform
<module 'celery.platform' from '/opt/devel/celery/celery/platform.pyc'>

Here the compiled module is in /opt/devel/celery/celery/,
to remove the offending files do:

$ rm -f /opt/devel/celery/celery/platform.py*

News

	Added support for expiration of AMQP results (requires RabbitMQ 2.1.0)

The new configuration option CELERY_AMQP_TASK_RESULT_EXPIRES
sets the expiry time in seconds (can be int or float):

CELERY_AMQP_TASK_RESULT_EXPIRES = 30 * 60 # 30 minutes.
CELERY_AMQP_TASK_RESULT_EXPIRES = 0.80 # 800 ms.

	celeryev: Event Snapshots

If enabled, the worker sends messages about what the worker is doing.
These messages are called “events”.
The events are used by real-time monitors to show what the
cluster is doing, but they are not very useful for monitoring
over a longer period of time. Snapshots
lets you take “pictures” of the clusters state at regular intervals.
This can then be stored in a database to generate statistics
with, or even monitoring over longer time periods.

django-celery now comes with a Celery monitor for the Django
Admin interface. To use this you need to run the django-celery
snapshot camera, which stores snapshots to the database at configurable
intervals.

To use the Django admin monitor you need to do the following:

	Create the new database tables:

$ python manage.py syncdb

	Start the django-celery snapshot camera:

$ python manage.py celerycam

	Open up the django admin to monitor your cluster.

The admin interface shows tasks, worker nodes, and even
lets you perform some actions, like revoking and rate limiting tasks,
and shutting down worker nodes.

There’s also a Debian init.d script for events available,
see Running the worker as a daemon for more information.

New command-line arguments to celeryev:

	-c|--camera: Snapshot camera class to use.

	--logfile|-f: Log file

	--loglevel|-l: Log level

	--maxrate|-r: Shutter rate limit.

	--freq|-F: Shutter frequency

The --camera argument is the name of a class used to take
snapshots with. It must support the interface defined by
celery.events.snapshot.Polaroid.

Shutter frequency controls how often the camera thread wakes up,
while the rate limit controls how often it will actually take
a snapshot.
The rate limit can be an integer (snapshots/s), or a rate limit string
which has the same syntax as the task rate limit strings (“200/m”,
“10/s”, “1/h”, etc).

For the Django camera case, this rate limit can be used to control
how often the snapshots are written to the database, and the frequency
used to control how often the thread wakes up to check if there’s
anything new.

The rate limit is off by default, which means it will take a snapshot
for every --frequency seconds.

	broadcast(): Added callback argument, this can be
used to process replies immediately as they arrive.

	celeryctl: New command line utility to manage and inspect worker nodes,
apply tasks and inspect the results of tasks.

See also

The Management Command-line Utilities (inspect/control) section in the User Guide.

Some examples:

$ celeryctl apply tasks.add -a '[2, 2]' --countdown=10

$ celeryctl inspect active
$ celeryctl inspect registered_tasks
$ celeryctl inspect scheduled
$ celeryctl inspect --help
$ celeryctl apply --help

	Added the ability to set an expiry date and time for tasks.

Example:

>>> # Task expires after one minute from now.
>>> task.apply_async(args, kwargs, expires=60)
>>> # Also supports datetime
>>> task.apply_async(args, kwargs,
... expires=datetime.now() + timedelta(days=1)

When a worker receives a task that has been expired it will be
marked as revoked (TaskRevokedError).

	Changed the way logging is configured.

We now configure the root logger instead of only configuring
our custom logger. In addition we don’t hijack
the multiprocessing logger anymore, but instead use a custom logger name
for different applications:

	Application
	Logger Name

	celeryd
	“celery”

	celerybeat
	“celery.beat”

	celeryev
	“celery.ev”

This means that the loglevel and logfile arguments will
affect all registered loggers (even those from 3rd party libraries).
Unless you configure the loggers manually as shown below, that is.

Users can choose to configure logging by subscribing to the
:signal:`~celery.signals.setup_logging` signal:

from logging.config import fileConfig
from celery import signals

@signals.setup_logging.connect
def setup_logging(**kwargs):
 fileConfig("logging.conf")

If there are no receivers for this signal, the logging subsystem
will be configured using the --loglevel/--logfile
argument, this will be used for all defined loggers.

Remember that the worker also redirects stdout and stderr
to the celery logger, if manually configure logging
you also need to redirect the stdouts manually:

 from logging.config import fileConfig
 from celery import log

def setup_logging(**kwargs):
 import logging
 fileConfig("logging.conf")
 stdouts = logging.getLogger("mystdoutslogger")
 log.redirect_stdouts_to_logger(stdouts, loglevel=logging.WARNING)

	worker Added command line option -I [https://docs.python.org/dev/using/cmdline.html#id2]/--include:

A comma separated list of (task) modules to be imported.

Example:

$ celeryd -I app1.tasks,app2.tasks

	worker: now emits a warning if running as the root user (euid is 0).

	celery.messaging.establish_connection(): Ability to override defaults
used using keyword argument “defaults”.

	worker: Now uses multiprocessing.freeze_support() so that it should work
with py2exe, PyInstaller, cx_Freeze, etc.

	worker: Now includes more metadata for the STARTED state: PID and
host name of the worker that started the task.

See issue #181 [https://github.com/celery/celery/issues/181]

	subtask: Merge additional keyword arguments to subtask() into task keyword
arguments.

e.g.:

>>> s = subtask((1, 2), {"foo": "bar"}, baz=1)
>>> s.args
(1, 2)
>>> s.kwargs
{"foo": "bar", "baz": 1}

See issue #182 [https://github.com/celery/celery/issues/182].

	worker: Now emits a warning if there is already a worker node using the same
name running on the same virtual host.

	AMQP result backend: Sending of results are now retried if the connection
is down.

	
	AMQP result backend: result.get(): Wait for next state if state is not

	in READY_STATES.

	TaskSetResult now supports subscription.

>>> res = TaskSet(tasks).apply_async()
>>> res[0].get()

	Added Task.send_error_emails + Task.error_whitelist, so these can
be configured per task instead of just by the global setting.

	Added Task.store_errors_even_if_ignored, so it can be changed per Task,
not just by the global setting.

	The crontab scheduler no longer wakes up every second, but implements
remaining_estimate (Optimization).

	
	worker: Store FAILURE result if the

	WorkerLostError exception occurs (worker process
disappeared).

	worker: Store FAILURE result if one of the *TimeLimitExceeded
exceptions occurs.

	Refactored the periodic task responsible for cleaning up results.

	
	The backend cleanup task is now only added to the schedule if

	CELERY_TASK_RESULT_EXPIRES is set.

	If the schedule already contains a periodic task named
“celery.backend_cleanup” it won’t change it, so the behavior of the
backend cleanup task can be easily changed.

	The task is now run every day at 4:00 AM, rather than every day since
the first time it was run (using crontab schedule instead of
run_every)

	
	Renamed celery.task.builtins.DeleteExpiredTaskMetaTask

	-> celery.task.builtins.backend_cleanup

	The task itself has been renamed from “celery.delete_expired_task_meta”
to “celery.backend_cleanup”

See issue #134 [https://github.com/celery/celery/issues/134].

	Implemented AsyncResult.forget for sqla/cache/redis/tyrant backends.
(Forget and remove task result).

See issue #184 [https://github.com/celery/celery/issues/184].

	TaskSetResult.join:
Added ‘propagate=True’ argument.

When set to False exceptions occurring in subtasks will
not be re-raised.

	Added Task.update_state(task_id, state, meta)
as a shortcut to task.backend.store_result(task_id, meta, state).

The backend interface is “private” and the terminology outdated,
so better to move this to Task so it can be
used.

	timer2: Set self.running=False in
stop() so it won’t try to join again on
subsequent calls to stop().

	Log colors are now disabled by default on Windows.

	celery.platform renamed to celery.platforms, so it doesn’t
collide with the built-in platform [https://docs.python.org/dev/library/platform.html#module-platform] module.

	Exceptions occurring in Mediator+Pool callbacks are now caught and logged
instead of taking down the worker.

	Redis result backend: Now supports result expiration using the Redis
EXPIRE command.

	unit tests: Don’t leave threads running at tear down.

	worker: Task results shown in logs are now truncated to 46 chars.

	
	Task.__name__ is now an alias to self.__class__.__name__.

	This way tasks introspects more like regular functions.

	Task.retry: Now raises TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] if kwargs argument is empty.

See issue #164 [https://github.com/celery/celery/issues/164].

	timedelta_seconds: Use timedelta.total_seconds if running on Python 2.7

	TokenBucket: Generic Token Bucket algorithm

	celery.events.state: Recording of cluster state can now
be paused and resumed, including support for buffering.

	
State.freeze(buffer=True)

	Pauses recording of the stream.

If buffer is true, events received while being frozen will be
buffered, and may be replayed later.

	
State.thaw(replay=True)

	Resumes recording of the stream.

If replay is true, then the recorded buffer will be applied.

	
State.freeze_while(fun)

	With a function to apply, freezes the stream before,
and replays the buffer after the function returns.

	EventReceiver.capture
Now supports a timeout keyword argument.

	worker: The mediator thread is now disabled if
CELERY_RATE_LIMITS is enabled, and tasks are directly sent to the
pool without going through the ready queue (Optimization).

Fixes

	Pool: Process timed out by TimeoutHandler must be joined by the Supervisor,
so don’t remove it from the internal process list.

See issue #192 [https://github.com/celery/celery/issues/192].

	TaskPublisher.delay_task now supports exchange argument, so exchange can be
overridden when sending tasks in bulk using the same publisher

See issue #187 [https://github.com/celery/celery/issues/187].

	the worker no longer marks tasks as revoked if CELERY_IGNORE_RESULT
is enabled.

See issue #207 [https://github.com/celery/celery/issues/207].

	AMQP Result backend: Fixed bug with result.get() if
CELERY_TRACK_STARTED enabled.

result.get() would stop consuming after receiving the
STARTED state.

	Fixed bug where new processes created by the pool supervisor becomes stuck
while reading from the task Queue.

See http://bugs.python.org/issue10037

	Fixed timing issue when declaring the remote control command reply queue

This issue could result in replies being lost, but have now been fixed.

	Backward compatible LoggerAdapter implementation: Now works for Python 2.4.

Also added support for several new methods:
fatal, makeRecord, _log, log, isEnabledFor,
addHandler, removeHandler.

Experimental

	multi: Added daemonization support.

multi can now be used to start, stop and restart worker nodes:

$ celeryd-multi start jerry elaine george kramer

This also creates PID files and log files (celeryd@jerry.pid,
..., celeryd@jerry.log. To specify a location for these files
use the –pidfile and –logfile arguments with the %n
format:

$ celeryd-multi start jerry elaine george kramer \
 --logfile=/var/log/celeryd@%n.log \
 --pidfile=/var/run/celeryd@%n.pid

Stopping:

$ celeryd-multi stop jerry elaine george kramer

Restarting. The nodes will be restarted one by one as the old ones
are shutdown:

$ celeryd-multi restart jerry elaine george kramer

Killing the nodes (WARNING: Will discard currently executing tasks):

$ celeryd-multi kill jerry elaine george kramer

See celeryd-multi help for help.

	multi: start command renamed to show.

celeryd-multi start will now actually start and detach worker nodes.
To just generate the commands you have to use celeryd-multi show.

	worker: Added –pidfile argument.

The worker will write its pid when it starts. The worker will
not be started if this file exists and the pid contained is still alive.

	Added generic init.d script using celeryd-multi

http://github.com/celery/celery/tree/master/extra/generic-init.d/celeryd

Documentation

	Added User guide section: Monitoring

	Added user guide section: Periodic Tasks

Moved from getting-started/periodic-tasks and updated.

	tutorials/external moved to new section: “community”.

	References has been added to all sections in the documentation.

This makes it easier to link between documents.

 Change history for Celery 2.0

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Change history for Celery 2.0

	2.0.3
	Fixes

	Documentation

	2.0.2

	2.0.1

	2.0.0
	Foreword

	Upgrading for Django-users

	Upgrading for others
	Database result backend

	Cache result backend

	Backward incompatible changes

	News

2.0.3

	release-date:	2010-08-27 12:00 P.M CEST

	release-by:	Ask Solem

Fixes

	Worker: Properly handle connection errors happening while
closing consumers.

	Worker: Events are now buffered if the connection is down,
then sent when the connection is re-established.

	No longer depends on the mailer package.

This package had a name space collision with django-mailer,
so its functionality was replaced.

	Redis result backend: Documentation typos: Redis doesn’t have
database names, but database numbers. The default database is now 0.

	inspect:
registered_tasks was requesting an invalid command because of a typo.

See issue #170 [https://github.com/celery/celery/issues/170].

	CELERY_ROUTES: Values defined in the route should now have
precedence over values defined in CELERY_QUEUES when merging
the two.

With the follow settings:

CELERY_QUEUES = {"cpubound": {"exchange": "cpubound",
 "routing_key": "cpubound"}}

CELERY_ROUTES = {"tasks.add": {"queue": "cpubound",
 "routing_key": "tasks.add",
 "serializer": "json"}}

The final routing options for tasks.add will become:

{"exchange": "cpubound",
 "routing_key": "tasks.add",
 "serializer": "json"}

This was not the case before: the values
in CELERY_QUEUES would take precedence.

	Worker crashed if the value of CELERY_TASK_ERROR_WHITELIST was
not an iterable

	apply(): Make sure kwargs[“task_id”] is
always set.

	AsyncResult.traceback: Now returns None, instead of raising
KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] if traceback is missing.

	inspect: Replies did not work correctly
if no destination was specified.

	Can now store result/metadata for custom states.

	Worker: A warning is now emitted if the sending of task error
emails fails.

	celeryev: Curses monitor no longer crashes if the terminal window
is resized.

See issue #160 [https://github.com/celery/celery/issues/160].

	Worker: On OS X it is not possible to run os.exec* in a process
that is threaded.

This breaks the SIGHUP restart handler,
and is now disabled on OS X, emitting a warning instead.

See issue #152 [https://github.com/celery/celery/issues/152].

	celery.execute.trace: Properly handle raise(str),
which is still allowed in Python 2.4.

See issue #175 [https://github.com/celery/celery/issues/175].

	Using urllib2 in a periodic task on OS X crashed because
of the proxy auto detection used in OS X.

This is now fixed by using a workaround.
See issue #143 [https://github.com/celery/celery/issues/143].

	Debian init scripts: Commands should not run in a sub shell

See issue #163 [https://github.com/celery/celery/issues/163].

	Debian init scripts: Use the absolute path of celeryd program to allow stat

See issue #162 [https://github.com/celery/celery/issues/162].

Documentation

	getting-started/broker-installation: Fixed typo

set_permissions “” -> set_permissions ”.*”.

	Tasks User Guide: Added section on database transactions.

See issue #169 [https://github.com/celery/celery/issues/169].

	Routing User Guide: Fixed typo “feed”: -> {“queue”: “feeds”}.

See issue #169 [https://github.com/celery/celery/issues/169].

	Documented the default values for the CELERYD_CONCURRENCY
and CELERYD_PREFETCH_MULTIPLIER settings.

	Tasks User Guide: Fixed typos in the subtask example

	celery.signals: Documented worker_process_init.

	Daemonization cookbook: Need to export DJANGO_SETTINGS_MODULE in
/etc/default/celeryd.

	Added some more FAQs from stack overflow

	Daemonization cookbook: Fixed typo CELERYD_LOGFILE/CELERYD_PIDFILE

to CELERYD_LOG_FILE / CELERYD_PID_FILE

Also added troubleshooting section for the init scripts.

2.0.2

	release-date:	2010-07-22 11:31 A.M CEST

	release-by:	Ask Solem

	Routes: When using the dict route syntax, the exchange for a task
could disappear making the task unroutable.

See issue #158 [https://github.com/celery/celery/issues/158].

	Test suite now passing on Python 2.4

	No longer have to type PYTHONPATH=. to use celeryconfig in the current
directory.

This is accomplished by the default loader ensuring that the current
directory is in sys.path when loading the config module.
sys.path is reset to its original state after loading.

Adding the current working directory to sys.path without the user
knowing may be a security issue, as this means someone can drop a Python module in the users
directory that executes arbitrary commands. This was the original reason
not to do this, but if done only when loading the config module, this
means that the behavior will only apply to the modules imported in the
config module, which I think is a good compromise (certainly better than
just explicitly setting PYTHONPATH=. anyway)

	Experimental Cassandra backend added.

	Worker: SIGHUP handler accidentally propagated to worker pool processes.

In combination with 7a7c44e39344789f11b5346e9cc8340f5fe4846c
this would make each child process start a new worker instance when
the terminal window was closed :/

	Worker: Do not install SIGHUP handler if running from a terminal.

This fixes the problem where the worker is launched in the background
when closing the terminal.

	Worker: Now joins threads at shutdown.

See issue #152 [https://github.com/celery/celery/issues/152].

	Test tear down: Don’t use atexit but nose’s teardown() functionality
instead.

See issue #154 [https://github.com/celery/celery/issues/154].

	Debian worker init script: Stop now works correctly.

	Task logger: warn method added (synonym for warning)

	Can now define a white list of errors to send error emails for.

Example:

CELERY_TASK_ERROR_WHITELIST = ('myapp.MalformedInputError')

See issue #153 [https://github.com/celery/celery/issues/153].

	Worker: Now handles overflow exceptions in time.mktime while parsing
the ETA field.

	LoggerWrapper: Try to detect loggers logging back to stderr/stdout making
an infinite loop.

	Added celery.task.control.inspect: Inspects a running worker.

Examples:

Inspect a single worker
>>> i = inspect("myworker.example.com")

Inspect several workers
>>> i = inspect(["myworker.example.com", "myworker2.example.com"])

Inspect all workers consuming on this vhost.
>>> i = inspect()

Methods

Get currently executing tasks
>>> i.active()

Get currently reserved tasks
>>> i.reserved()

Get the current eta schedule
>>> i.scheduled()

Worker statistics and info
>>> i.stats()

List of currently revoked tasks
>>> i.revoked()

List of registered tasks
>>> i.registered_tasks()

	Remote control commands dump_active/dump_reserved/dump_schedule
now replies with detailed task requests.

Containing the original arguments and fields of the task requested.

In addition the remote control command set_loglevel has been added,
this only changes the log level for the main process.

	Worker control command execution now catches errors and returns their
string representation in the reply.

	Functional test suite added

celery.tests.functional.case contains utilities to start
and stop an embedded worker process, for use in functional testing.

2.0.1

	release-date:	2010-07-09 03:02 P.M CEST

	release-by:	Ask Solem

	multiprocessing.pool: Now handles encoding errors, so that pickling errors
doesn’t crash the worker processes.

	The remote control command replies was not working with RabbitMQ 1.8.0’s
stricter equivalence checks.

If you’ve already hit this problem you may have to delete the
declaration:

$ camqadm exchange.delete celerycrq

or:

$ python manage.py camqadm exchange.delete celerycrq

	A bug sneaked in the ETA scheduler that made it only able to execute
one task per second(!)

The scheduler sleeps between iterations so it doesn’t consume too much CPU.
It keeps a list of the scheduled items sorted by time, at each iteration
it sleeps for the remaining time of the item with the nearest deadline.
If there are no eta tasks it will sleep for a minimum amount of time, one
second by default.

A bug sneaked in here, making it sleep for one second for every task
that was scheduled. This has been fixed, so now it should move
tasks like hot knife through butter.

In addition a new setting has been added to control the minimum sleep
interval; CELERYD_ETA_SCHEDULER_PRECISION. A good
value for this would be a float between 0 and 1, depending
on the needed precision. A value of 0.8 means that when the ETA of a task
is met, it will take at most 0.8 seconds for the task to be moved to the
ready queue.

	Pool: Supervisor did not release the semaphore.

This would lead to a deadlock if all workers terminated prematurely.

	Added Python version trove classifiers: 2.4, 2.5, 2.6 and 2.7

	Tests now passing on Python 2.7.

	Task.__reduce__: Tasks created using the task decorator can now be pickled.

	setup.py: nose added to tests_require.

	Pickle should now work with SQLAlchemy 0.5.x

	New homepage design by Jan Henrik Helmers: http://celeryproject.org

	New Sphinx theme by Armin Ronacher: http://docs.celeryproject.org/

	Fixed “pending_xref” errors shown in the HTML rendering of the
documentation. Apparently this was caused by new changes in Sphinx 1.0b2.

	Router classes in CELERY_ROUTES are now imported lazily.

Importing a router class in a module that also loads the Celery
environment would cause a circular dependency. This is solved
by importing it when needed after the environment is set up.

	CELERY_ROUTES was broken if set to a single dict.

This example in the docs should now work again:

CELERY_ROUTES = {"feed.tasks.import_feed": "feeds"}

	CREATE_MISSING_QUEUES was not honored by apply_async.

	New remote control command: stats

Dumps information about the worker, like pool process ids, and
total number of tasks executed by type.

Example reply:

[{'worker.local':
 'total': {'tasks.sleeptask': 6},
 'pool': {'timeouts': [None, None],
 'processes': [60376, 60377],
 'max-concurrency': 2,
 'max-tasks-per-child': None,
 'put-guarded-by-semaphore': True}}]

	New remote control command: dump_active

Gives a list of tasks currently being executed by the worker.
By default arguments are passed through repr in case there
are arguments that is not JSON encodable. If you know
the arguments are JSON safe, you can pass the argument safe=True.

Example reply:

>>> broadcast("dump_active", arguments={"safe": False}, reply=True)
[{'worker.local': [
 {'args': '(1,)',
 'time_start': 1278580542.6300001,
 'name': 'tasks.sleeptask',
 'delivery_info': {
 'consumer_tag': '30',
 'routing_key': 'celery',
 'exchange': 'celery'},
 'hostname': 'casper.local',
 'acknowledged': True,
 'kwargs': '{}',
 'id': '802e93e9-e470-47ed-b913-06de8510aca2',
 }
]}]

	Added experimental support for persistent revokes.

Use the -S|–statedb argument to the worker to enable it:

$ celeryd --statedb=/var/run/celeryd

This will use the file: /var/run/celeryd.db,
as the shelve module automatically adds the .db suffix.

2.0.0

	release-date:	2010-07-02 02:30 P.M CEST

	release-by:	Ask Solem

Foreword

Celery 2.0 contains backward incompatible changes, the most important
being that the Django dependency has been removed so Celery no longer
supports Django out of the box, but instead as an add-on package
called django-celery [http://pypi.python.org/pypi/django-celery].

We’re very sorry for breaking backwards compatibility, but there’s
also many new and exciting features to make up for the time you lose
upgrading, so be sure to read the News section.

Quite a lot of potential users have been upset about the Django dependency,
so maybe this is a chance to get wider adoption by the Python community as
well.

Big thanks to all contributors, testers and users!

Upgrading for Django-users

Django integration has been moved to a separate package: django-celery [http://pypi.python.org/pypi/django-celery].

	To upgrade you need to install the django-celery [http://pypi.python.org/pypi/django-celery] module and change:

INSTALLED_APPS = "celery"

to:

INSTALLED_APPS = "djcelery"

	If you use mod_wsgi you need to add the following line to your .wsgi
file:

import os
os.environ["CELERY_LOADER"] = "django"

	The following modules has been moved to django-celery [http://pypi.python.org/pypi/django-celery]:

	Module name
	Replace with

	celery.models
	djcelery.models

	celery.managers
	djcelery.managers

	celery.views
	djcelery.views

	celery.urls
	djcelery.urls

	celery.management
	djcelery.management

	celery.loaders.djangoapp
	djcelery.loaders

	celery.backends.database
	djcelery.backends.database

	celery.backends.cache
	djcelery.backends.cache

Importing djcelery will automatically setup Celery to use Django loader.
loader. It does this by setting the CELERY_LOADER environment variable to
“django” (it won’t change it if a loader is already set.)

When the Django loader is used, the “database” and “cache” result backend
aliases will point to the djcelery backends instead of the built-in backends,
and configuration will be read from the Django settings.

Upgrading for others

Database result backend

The database result backend is now using SQLAlchemy [http://www.sqlalchemy.org] instead of the
Django ORM, see Supported Databases [http://www.sqlalchemy.org/docs/core/engines.html#supported-databases] for a table of supported databases.

The DATABASE_* settings has been replaced by a single setting:
CELERY_RESULT_DBURI. The value here should be an
SQLAlchemy Connection String [http://www.sqlalchemy.org/docs/core/engines.html#database-urls], some examples include:

sqlite (filename)
CELERY_RESULT_DBURI = "sqlite:///celerydb.sqlite"

mysql
CELERY_RESULT_DBURI = "mysql://scott:tiger@localhost/foo"

postgresql
CELERY_RESULT_DBURI = "postgresql://scott:tiger@localhost/mydatabase"

oracle
CELERY_RESULT_DBURI = "oracle://scott:tiger@127.0.0.1:1521/sidname"

See SQLAlchemy Connection Strings [http://www.sqlalchemy.org/docs/core/engines.html#database-urls] for more information about connection
strings.

To specify additional SQLAlchemy database engine options you can use
the CELERY_RESULT_ENGINE_OPTIONS setting:

echo enables verbose logging from SQLAlchemy.
CELERY_RESULT_ENGINE_OPTIONS = {"echo": True}

Cache result backend

The cache result backend is no longer using the Django cache framework,
but it supports mostly the same configuration syntax:

CELERY_CACHE_BACKEND = "memcached://A.example.com:11211;B.example.com"

To use the cache backend you must either have the pylibmc [http://pypi.python.org/pypi/pylibmc] or
python-memcached [http://pypi.python.org/pypi/python-memcached] library installed, of which the former is regarded
as the best choice.

The support backend types are memcached:// and memory://,
we haven’t felt the need to support any of the other backends
provided by Django.

Backward incompatible changes

	Default (python) loader now prints warning on missing celeryconfig.py
instead of raising ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError].

The worker raises ImproperlyConfigured if the configuration
is not set up. This makes it possible to use –help etc., without having a
working configuration.

Also this makes it possible to use the client side of celery without being
configured:

>>> from carrot.connection import BrokerConnection
>>> conn = BrokerConnection("localhost", "guest", "guest", "/")
>>> from celery.execute import send_task
>>> r = send_task("celery.ping", args=(), kwargs={}, connection=conn)
>>> from celery.backends.amqp import AMQPBackend
>>> r.backend = AMQPBackend(connection=conn)
>>> r.get()
'pong'

	The following deprecated settings has been removed (as scheduled by
the Celery Deprecation Timeline):

	Setting name
	Replace with

	CELERY_AMQP_CONSUMER_QUEUES
	CELERY_QUEUES

	CELERY_AMQP_EXCHANGE
	CELERY_DEFAULT_EXCHANGE

	CELERY_AMQP_EXCHANGE_TYPE
	CELERY_DEFAULT_EXCHANGE_TYPE

	CELERY_AMQP_CONSUMER_ROUTING_KEY
	CELERY_QUEUES

	CELERY_AMQP_PUBLISHER_ROUTING_KEY
	CELERY_DEFAULT_ROUTING_KEY

	The celery.task.rest module has been removed, use celery.task.http
instead (as scheduled by the Celery Deprecation Timeline).

	It’s no longer allowed to skip the class name in loader names.
(as scheduled by the Celery Deprecation Timeline):

Assuming the implicit Loader class name is no longer supported,
if you use e.g.:

CELERY_LOADER = "myapp.loaders"

You need to include the loader class name, like this:

CELERY_LOADER = "myapp.loaders.Loader"

	CELERY_TASK_RESULT_EXPIRES now defaults to 1 day.

Previous default setting was to expire in 5 days.

	AMQP backend: Don’t use different values for auto_delete.

This bug became visible with RabbitMQ 1.8.0, which no longer
allows conflicting declarations for the auto_delete and durable settings.

If you’ve already used celery with this backend chances are you
have to delete the previous declaration:

$ camqadm exchange.delete celeryresults

	Now uses pickle instead of cPickle on Python versions <= 2.5

cPickle is broken in Python <= 2.5.

It unsafely and incorrectly uses relative instead of absolute imports,
so e.g.:

exceptions.KeyError

becomes:

celery.exceptions.KeyError

Your best choice is to upgrade to Python 2.6,
as while the pure pickle version has worse performance,
it is the only safe option for older Python versions.

News

	celeryev: Curses Celery Monitor and Event Viewer.

This is a simple monitor allowing you to see what tasks are
executing in real-time and investigate tracebacks and results of ready
tasks. It also enables you to set new rate limits and revoke tasks.

Screenshot:

[image: ../_images/celeryevshotsm.jpg]

If you run celeryev with the -d switch it will act as an event
dumper, simply dumping the events it receives to standard out:

$ celeryev -d
-> celeryev: starting capture...
casper.local [2010-06-04 10:42:07.020000] heartbeat
casper.local [2010-06-04 10:42:14.750000] task received:
 tasks.add(61a68756-27f4-4879-b816-3cf815672b0e) args=[2, 2] kwargs={}
 eta=2010-06-04T10:42:16.669290, retries=0
casper.local [2010-06-04 10:42:17.230000] task started
 tasks.add(61a68756-27f4-4879-b816-3cf815672b0e) args=[2, 2] kwargs={}
casper.local [2010-06-04 10:42:17.960000] task succeeded:
 tasks.add(61a68756-27f4-4879-b816-3cf815672b0e)
 args=[2, 2] kwargs={} result=4, runtime=0.782663106918

The fields here are, in order: *sender hostname*, *timestamp*, *event type* and
additional event fields.

	AMQP result backend: Now supports .ready(), .successful(),
.result, .status, and even responds to changes in task state

	New user guides:

	Workers Guide

	Canvas: Designing Workflows

	Routing Tasks

	Worker: Standard out/error is now being redirected to the log file.

	billiard has been moved back to the celery repository.

	Module name
	celery equivalent

	billiard.pool
	celery.concurrency.processes.pool

	billiard.serialization
	celery.serialization

	billiard.utils.functional
	celery.utils.functional

The billiard distribution may be maintained, depending on interest.

	now depends on carrot >= 0.10.5

	now depends on pyparsing

	Worker: Added –purge as an alias to –discard.

	Worker: Ctrl+C (SIGINT) once does warm shutdown, hitting Ctrl+C twice
forces termination.

	Added support for using complex crontab-expressions in periodic tasks. For
example, you can now use:

>>> crontab(minute="*/15")

or even:

>>> crontab(minute="*/30", hour="8-17,1-2", day_of_week="thu-fri")

See Periodic Tasks.

	Worker: Now waits for available pool processes before applying new
tasks to the pool.

This means it doesn’t have to wait for dozens of tasks to finish at shutdown
because it has applied prefetched tasks without having any pool
processes available to immediately accept them.

See issue #122 [https://github.com/celery/celery/issues/122].

	New built-in way to do task callbacks using
subtask.

See Canvas: Designing Workflows for more information.

	TaskSets can now contain several types of tasks.

TaskSet has been refactored to use
a new syntax, please see Canvas: Designing Workflows for more information.

The previous syntax is still supported, but will be deprecated in
version 1.4.

	TaskSet failed() result was incorrect.

See issue #132 [https://github.com/celery/celery/issues/132].

	Now creates different loggers per task class.

See issue #129 [https://github.com/celery/celery/issues/129].

	Missing queue definitions are now created automatically.

You can disable this using the CELERY_CREATE_MISSING_QUEUES
setting.

The missing queues are created with the following options:

CELERY_QUEUES[name] = {"exchange": name,
 "exchange_type": "direct",
 "routing_key": "name}

This feature is added for easily setting up routing using the -Q
option to the worker:

$ celeryd -Q video, image

See the new routing section of the User Guide for more information:
Routing Tasks.

	New Task option: Task.queue

If set, message options will be taken from the corresponding entry
in CELERY_QUEUES. exchange, exchange_type and routing_key
will be ignored

	Added support for task soft and hard time limits.

New settings added:

	CELERYD_TASK_TIME_LIMIT

Hard time limit. The worker processing the task will be killed and
replaced with a new one when this is exceeded.

	CELERYD_TASK_SOFT_TIME_LIMIT

Soft time limit. The SoftTimeLimitExceeded
exception will be raised when this is exceeded. The task can catch
this to e.g. clean up before the hard time limit comes.

New command-line arguments to celeryd added:
–time-limit and –soft-time-limit.

What’s left?

This won’t work on platforms not supporting signals (and specifically
the SIGUSR1 signal) yet. So an alternative the ability to disable
the feature all together on nonconforming platforms must be implemented.

Also when the hard time limit is exceeded, the task result should
be a TimeLimitExceeded exception.

	Test suite is now passing without a running broker, using the carrot
in-memory backend.

	Log output is now available in colors.

	Log level
	Color

	DEBUG
	Blue

	WARNING
	Yellow

	CRITICAL
	Magenta

	ERROR
	Red

This is only enabled when the log output is a tty.
You can explicitly enable/disable this feature using the
CELERYD_LOG_COLOR setting.

	Added support for task router classes (like the django multi-db routers)

	New setting: CELERY_ROUTES

This is a single, or a list of routers to traverse when
sending tasks. Dictionaries in this list converts to a
celery.routes.MapRoute instance.

Examples:

>>> CELERY_ROUTES = {"celery.ping": "default",
 "mytasks.add": "cpu-bound",
 "video.encode": {
 "queue": "video",
 "exchange": "media"
 "routing_key": "media.video.encode"}}

>>> CELERY_ROUTES = ("myapp.tasks.Router",
 {"celery.ping": "default})

Where myapp.tasks.Router could be:

class Router(object):

 def route_for_task(self, task, args=None, kwargs=None):
 if task == "celery.ping":
 return "default"

route_for_task may return a string or a dict. A string then means
it’s a queue name in CELERY_QUEUES, a dict means it’s a custom route.

When sending tasks, the routers are consulted in order. The first
router that doesn’t return None is the route to use. The message options
is then merged with the found route settings, where the routers settings
have priority.

Example if apply_async() has these arguments:

>>> Task.apply_async(immediate=False, exchange="video",
... routing_key="video.compress")

and a router returns:

{"immediate": True,
 "exchange": "urgent"}

the final message options will be:

immediate=True, exchange="urgent", routing_key="video.compress"

(and any default message options defined in the
Task class)

	New Task handler called after the task returns:
after_return().

	
	ExceptionInfo now passed to

	on_retry()/
on_failure() as einfo keyword argument.

	Worker: Added CELERYD_MAX_TASKS_PER_CHILD /
--maxtasksperchild

Defines the maximum number of tasks a pool worker can process before
the process is terminated and replaced by a new one.

	Revoked tasks now marked with state REVOKED, and result.get()
will now raise TaskRevokedError.

	celery.task.control.ping() now works as expected.

	apply(throw=True) / CELERY_EAGER_PROPAGATES_EXCEPTIONS:
Makes eager execution re-raise task errors.

	New signal: ~celery.signals.worker_process_init: Sent inside the
pool worker process at init.

	Worker: -Q option: Ability to specify list of queues to use,
disabling other configured queues.

For example, if CELERY_QUEUES defines four
queues: image, video, data and default, the following
command would make the worker only consume from the image and video
queues:

$ celeryd -Q image,video

	Worker: New return value for the revoke control command:

Now returns:

{"ok": "task $id revoked"}

instead of True.

	Worker: Can now enable/disable events using remote control

Example usage:

>>> from celery.task.control import broadcast
>>> broadcast("enable_events")
>>> broadcast("disable_events")

	Removed top-level tests directory. Test config now in celery.tests.config

This means running the unit tests doesn’t require any special setup.
celery/tests/__init__ now configures the CELERY_CONFIG_MODULE
and CELERY_LOADER environment variables, so when nosetests
imports that, the unit test environment is all set up.

Before you run the tests you need to install the test requirements:

$ pip install -r requirements/test.txt

Running all tests:

$ nosetests

Specifying the tests to run:

$ nosetests celery.tests.test_task

Producing HTML coverage:

$ nosetests --with-coverage3

The coverage output is then located in celery/tests/cover/index.html.

	Worker: New option –version: Dump version info and exit.

	celeryd-multi: Tool for shell scripts
to start multiple workers.

Some examples:

Advanced example with 10 workers:
* Three of the workers processes the images and video queue
* Two of the workers processes the data queue with loglevel DEBUG
* the rest processes the default' queue.
$ celeryd-multi start 10 -l INFO -Q:1-3 images,video -Q:4,5:data
 -Q default -L:4,5 DEBUG

get commands to start 10 workers, with 3 processes each
$ celeryd-multi start 3 -c 3
celeryd -n celeryd1.myhost -c 3
celeryd -n celeryd2.myhost -c 3
celeryd -n celeryd3.myhost -c 3

start 3 named workers
$ celeryd-multi start image video data -c 3
celeryd -n image.myhost -c 3
celeryd -n video.myhost -c 3
celeryd -n data.myhost -c 3

specify custom hostname
$ celeryd-multi start 2 -n worker.example.com -c 3
celeryd -n celeryd1.worker.example.com -c 3
celeryd -n celeryd2.worker.example.com -c 3

Additionl options are added to each celeryd',
but you can also modify the options for ranges of or single workers

3 workers: Two with 3 processes, and one with 10 processes.
$ celeryd-multi start 3 -c 3 -c:1 10
celeryd -n celeryd1.myhost -c 10
celeryd -n celeryd2.myhost -c 3
celeryd -n celeryd3.myhost -c 3

can also specify options for named workers
$ celeryd-multi start image video data -c 3 -c:image 10
celeryd -n image.myhost -c 10
celeryd -n video.myhost -c 3
celeryd -n data.myhost -c 3

ranges and lists of workers in options is also allowed:
(-c:1-3 can also be written as -c:1,2,3)
$ celeryd-multi start 5 -c 3 -c:1-3 10
celeryd-multi -n celeryd1.myhost -c 10
celeryd-multi -n celeryd2.myhost -c 10
celeryd-multi -n celeryd3.myhost -c 10
celeryd-multi -n celeryd4.myhost -c 3
celeryd-multi -n celeryd5.myhost -c 3

lists also works with named workers
$ celeryd-multi start foo bar baz xuzzy -c 3 -c:foo,bar,baz 10
celeryd-multi -n foo.myhost -c 10
celeryd-multi -n bar.myhost -c 10
celeryd-multi -n baz.myhost -c 10
celeryd-multi -n xuzzy.myhost -c 3

	The worker now calls the result backends process_cleanup method
after task execution instead of before.

	AMQP result backend now supports Pika.

 Change history for Celery 1.0

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Change history for Celery 1.0

	1.0.6

	1.0.5
	Critical

	Changes

	1.0.4

	1.0.3
	Important notes

	News

	Remote control commands

	Fixes

	1.0.2

	1.0.1

	1.0.0
	Backward incompatible changes

	Deprecations

	News

	Changes

	Bugs

	Documentation

	0.8.4

	0.8.3

	0.8.2

	0.8.1
	Very important note

	Important changes

	Changes

	0.8.0
	Backward incompatible changes

	Important changes

	News

	0.6.0
	Important changes

	News

	0.4.1

	0.4.0

	0.3.20

	0.3.7

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	0.2.0

	0.2.0-pre3

	0.2.0-pre2

	0.2.0-pre1

	0.1.15

	0.1.14

	0.1.13

	0.1.12

	0.1.11

	0.1.10

	0.1.8

	0.1.7

	0.1.6

	0.1.0

1.0.6

	release-date:	2010-06-30 09:57 A.M CEST

	release-by:	Ask Solem

	RabbitMQ 1.8.0 has extended their exchange equivalence tests to
include auto_delete and durable. This broke the AMQP backend.

If you’ve already used the AMQP backend this means you have to
delete the previous definitions:

$ camqadm exchange.delete celeryresults

or:

$ python manage.py camqadm exchange.delete celeryresults

1.0.5

	release-date:	2010-06-01 02:36 P.M CEST

	release-by:	Ask Solem

Critical

	SIGINT/Ctrl+C killed the pool, abruptly terminating the currently executing
tasks.

Fixed by making the pool worker processes ignore SIGINT.

	Should not close the consumers before the pool is terminated, just cancel
the consumers.

See issue #122 [https://github.com/celery/celery/issues/122].

	Now depends on billiard >= 0.3.1

	worker: Previously exceptions raised by worker components could stall startup,
now it correctly logs the exceptions and shuts down.

	worker: Prefetch counts was set too late. QoS is now set as early as possible,
so the worker: can’t slurp in all the messages at start-up.

Changes

	celery.contrib.abortable: Abortable tasks.

Tasks that defines steps of execution, the task can then
be aborted after each step has completed.

	EventDispatcher: No longer creates AMQP channel
if events are disabled

	Added required RPM package names under [bdist_rpm] section, to support building RPMs
from the sources using setup.py

	Running unit tests: NOSE_VERBOSE environment var now enables verbose output from Nose.

	celery.execute.apply(): Pass log file/log level arguments as task kwargs.

See issue #110 [https://github.com/celery/celery/issues/110].

	celery.execute.apply: Should return exception, not ExceptionInfo
on error.

See issue #111 [https://github.com/celery/celery/issues/111].

	Added new entries to the FAQs:

	Should I use retry or acks_late?

	Can I call a task by name?

1.0.4

	release-date:	2010-05-31 09:54 A.M CEST

	release-by:	Ask Solem

	Changelog merged with 1.0.5 as the release was never announced.

1.0.3

	release-date:	2010-05-15 03:00 P.M CEST

	release-by:	Ask Solem

Important notes

	Messages are now acknowledged just before the task function is executed.

This is the behavior we’ve wanted all along, but couldn’t have because of
limitations in the multiprocessing module.
The previous behavior was not good, and the situation worsened with the
release of 1.0.1, so this change will definitely improve
reliability, performance and operations in general.

For more information please see http://bit.ly/9hom6T

	Database result backend: result now explicitly sets null=True as
django-picklefield version 0.1.5 changed the default behavior
right under our noses :(

See: http://bit.ly/d5OwMr

This means those who created their celery tables (via syncdb or
celeryinit) with picklefield versions >= 0.1.5 has to alter their tables to
allow the result field to be NULL manually.

MySQL:

ALTER TABLE celery_taskmeta MODIFY result TEXT NULL

PostgreSQL:

ALTER TABLE celery_taskmeta ALTER COLUMN result DROP NOT NULL

	Removed Task.rate_limit_queue_type, as it was not really useful
and made it harder to refactor some parts.

	Now depends on carrot >= 0.10.4

	Now depends on billiard >= 0.3.0

News

	AMQP backend: Added timeout support for result.get() /
result.wait().

	New task option: Task.acks_late (default: CELERY_ACKS_LATE)

Late ack means the task messages will be acknowledged after the task
has been executed, not just before, which is the default behavior.

Note

This means the tasks may be executed twice if the worker
crashes in mid-execution. Not acceptable for most
applications, but desirable for others.

	Added crontab-like scheduling to periodic tasks.

Like a cron job, you can specify units of time of when
you would like the task to execute. While not a full implementation
of cron’s features, it should provide a fair degree of common scheduling
needs.

You can specify a minute (0-59), an hour (0-23), and/or a day of the
week (0-6 where 0 is Sunday, or by names: sun, mon, tue, wed, thu, fri,
sat).

Examples:

from celery.schedules import crontab
from celery.decorators import periodic_task

@periodic_task(run_every=crontab(hour=7, minute=30))
def every_morning():
 print("Runs every morning at 7:30a.m")

@periodic_task(run_every=crontab(hour=7, minute=30, day_of_week="mon"))
def every_monday_morning():
 print("Run every monday morning at 7:30a.m")

@periodic_task(run_every=crontab(minutes=30))
def every_hour():
 print("Runs every hour on the clock. e.g. 1:30, 2:30, 3:30 etc.")

Note

This a late addition. While we have unittests, due to the
nature of this feature we haven’t been able to completely test this
in practice, so consider this experimental.

	TaskPool.apply_async: Now supports the accept_callback argument.

	apply_async: Now raises ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError] if task args is not a list,
or kwargs is not a tuple (Issue #95 [https://github.com/celery/celery/issues/95]).

	Task.max_retries can now be None, which means it will retry forever.

	Celerybeat: Now reuses the same connection when publishing large
sets of tasks.

	Modified the task locking example in the documentation to use
cache.add for atomic locking.

	Added experimental support for a started status on tasks.

If Task.track_started is enabled the task will report its status
as “started” when the task is executed by a worker.

The default value is False as the normal behaviour is to not
report that level of granularity. Tasks are either pending, finished,
or waiting to be retried. Having a “started” status can be useful for
when there are long running tasks and there is a need to report which
task is currently running.

The global default can be overridden by the CELERY_TRACK_STARTED
setting.

	User Guide: New section Tips and Best Practices.

Contributions welcome!

Remote control commands

	Remote control commands can now send replies back to the caller.

Existing commands has been improved to send replies, and the client
interface in celery.task.control has new keyword arguments: reply,
timeout and limit. Where reply means it will wait for replies,
timeout is the time in seconds to stop waiting for replies, and limit
is the maximum number of replies to get.

By default, it will wait for as many replies as possible for one second.

	rate_limit(task_name, destination=all, reply=False, timeout=1, limit=0)

Worker returns {“ok”: message} on success,
or {“failure”: message} on failure.

>>> from celery.task.control import rate_limit
>>> rate_limit("tasks.add", "10/s", reply=True)
[{'worker1': {'ok': 'new rate limit set successfully'}},
 {'worker2': {'ok': 'new rate limit set successfully'}}]

	ping(destination=all, reply=False, timeout=1, limit=0)

Worker returns the simple message “pong”.

>>> from celery.task.control import ping
>>> ping(reply=True)
[{'worker1': 'pong'},
 {'worker2': 'pong'},

	revoke(destination=all, reply=False, timeout=1, limit=0)

Worker simply returns True.

>>> from celery.task.control import revoke
>>> revoke("419e46eb-cf6a-4271-86a8-442b7124132c", reply=True)
[{'worker1': True},
 {'worker2'; True}]

	You can now add your own remote control commands!

Remote control commands are functions registered in the command
registry. Registering a command is done using
celery.worker.control.Panel.register():

from celery.task.control import Panel

@Panel.register
def reset_broker_connection(state, **kwargs):
 state.consumer.reset_connection()
 return {"ok": "connection re-established"}

With this module imported in the worker, you can launch the command
using celery.task.control.broadcast:

>>> from celery.task.control import broadcast
>>> broadcast("reset_broker_connection", reply=True)
[{'worker1': {'ok': 'connection re-established'},
 {'worker2': {'ok': 'connection re-established'}}]

TIP You can choose the worker(s) to receive the command
by using the destination argument:

>>> broadcast("reset_broker_connection", destination=["worker1"])
[{'worker1': {'ok': 'connection re-established'}]

	New remote control command: dump_reserved

Dumps tasks reserved by the worker, waiting to be executed:

>>> from celery.task.control import broadcast
>>> broadcast("dump_reserved", reply=True)
[{'myworker1': [<TaskRequest>]}]

	New remote control command: dump_schedule

Dumps the workers currently registered ETA schedule.
These are tasks with an eta (or countdown) argument
waiting to be executed by the worker.

>>> from celery.task.control import broadcast
>>> broadcast("dump_schedule", reply=True)
[{'w1': []},
 {'w3': []},
 {'w2': ['0. 2010-05-12 11:06:00 pri0 <TaskRequest
 {name:"opalfeeds.tasks.refresh_feed_slice",
 id:"95b45760-4e73-4ce8-8eac-f100aa80273a",
 args:"(<Feeds freq_max:3600 freq_min:60
 start:2184.0 stop:3276.0>,)",
 kwargs:"{'page': 2}"}>']},
 {'w4': ['0. 2010-05-12 11:00:00 pri0 <TaskRequest
 {name:"opalfeeds.tasks.refresh_feed_slice",
 id:"c053480b-58fb-422f-ae68-8d30a464edfe",
 args:"(<Feeds freq_max:3600 freq_min:60
 start:1092.0 stop:2184.0>,)",
 kwargs:"{\'page\': 1}"}>',
 '1. 2010-05-12 11:12:00 pri0 <TaskRequest
 {name:"opalfeeds.tasks.refresh_feed_slice",
 id:"ab8bc59e-6cf8-44b8-88d0-f1af57789758",
 args:"(<Feeds freq_max:3600 freq_min:60
 start:3276.0 stop:4365>,)",
 kwargs:"{\'page\': 3}"}>']}]

Fixes

	Mediator thread no longer blocks for more than 1 second.

With rate limits enabled and when there was a lot of remaining time,
the mediator thread could block shutdown (and potentially block other
jobs from coming in).

	Remote rate limits was not properly applied (Issue #98 [https://github.com/celery/celery/issues/98]).

	Now handles exceptions with Unicode messages correctly in
TaskRequest.on_failure.

	Database backend: TaskMeta.result: default value should be None
not empty string.

1.0.2

	release-date:	2010-03-31 12:50 P.M CET

	release-by:	Ask Solem

	Deprecated: CELERY_BACKEND, please use
CELERY_RESULT_BACKEND instead.

	We now use a custom logger in tasks. This logger supports task magic
keyword arguments in formats.

The default format for tasks (CELERYD_TASK_LOG_FORMAT) now
includes the id and the name of tasks so the origin of task log messages
can easily be traced.

	Example output::

	
	[2010-03-25 13:11:20,317: INFO/PoolWorker-1]

	[tasks.add(a6e1c5ad-60d9-42a0-8b24-9e39363125a4)] Hello from add

To revert to the previous behavior you can set:

CELERYD_TASK_LOG_FORMAT = """
 [%(asctime)s: %(levelname)s/%(processName)s] %(message)s
""".strip()

	Unit tests: Don’t disable the django test database tear down,
instead fixed the underlying issue which was caused by modifications
to the DATABASE_NAME setting (Issue #82 [https://github.com/celery/celery/issues/82]).

	Django Loader: New config CELERY_DB_REUSE_MAX (max number of
tasks to reuse the same database connection)

The default is to use a new connection for every task.
We would very much like to reuse the connection, but a safe number of
reuses is not known, and we don’t have any way to handle the errors
that might happen, which may even be database dependent.

See: http://bit.ly/94fwdd

	worker: The worker components are now configurable: CELERYD_POOL,
CELERYD_CONSUMER, CELERYD_MEDIATOR, and
CELERYD_ETA_SCHEDULER.

The default configuration is as follows:

CELERYD_POOL = "celery.concurrency.processes.TaskPool"
CELERYD_MEDIATOR = "celery.worker.controllers.Mediator"
CELERYD_ETA_SCHEDULER = "celery.worker.controllers.ScheduleController"
CELERYD_CONSUMER = "celery.worker.consumer.Consumer"

The CELERYD_POOL setting makes it easy to swap out the
multiprocessing pool with a threaded pool, or how about a
twisted/eventlet pool?

Consider the competition for the first pool plug-in started!

	Debian init scripts: Use -a not && (Issue #82 [https://github.com/celery/celery/issues/82]).

	Debian init scripts: Now always preserves $CELERYD_OPTS from the
/etc/default/celeryd and /etc/default/celerybeat.

	celery.beat.Scheduler: Fixed a bug where the schedule was not properly
flushed to disk if the schedule had not been properly initialized.

	celerybeat: Now syncs the schedule to disk when receiving the SIGTERM
and SIGINT signals.

	Control commands: Make sure keywords arguments are not in Unicode.

	ETA scheduler: Was missing a logger object, so the scheduler crashed
when trying to log that a task had been revoked.

	management.commands.camqadm: Fixed typo camqpadm -> camqadm
(Issue #83 [https://github.com/celery/celery/issues/83]).

	PeriodicTask.delta_resolution: Was not working for days and hours, now fixed
by rounding to the nearest day/hour.

	Fixed a potential infinite loop in BaseAsyncResult.__eq__, although
there is no evidence that it has ever been triggered.

	worker: Now handles messages with encoding problems by acking them and
emitting an error message.

1.0.1

	release-date:	2010-02-24 07:05 P.M CET

	release-by:	Ask Solem

	Tasks are now acknowledged early instead of late.

This is done because messages can only be acknowledged within the same
connection channel, so if the connection is lost we would have to refetch
the message again to acknowledge it.

This might or might not affect you, but mostly those running tasks with a
really long execution time are affected, as all tasks that has made it
all the way into the pool needs to be executed before the worker can
safely terminate (this is at most the number of pool workers, multiplied
by the CELERYD_PREFETCH_MULTIPLIER setting.)

We multiply the prefetch count by default to increase the performance at
times with bursts of tasks with a short execution time. If this doesn’t
apply to your use case, you should be able to set the prefetch multiplier
to zero, without sacrificing performance.

Note

A patch to multiprocessing [https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing] is currently being
worked on, this patch would enable us to use a better solution, and is
scheduled for inclusion in the 2.0.0 release.

	The worker now shutdowns cleanly when receiving the SIGTERM signal.

	The worker now does a cold shutdown if the SIGINT signal
is received (Ctrl+C),
this means it tries to terminate as soon as possible.

	Caching of results now moved to the base backend classes, so no need
to implement this functionality in the base classes.

	Caches are now also limited in size, so their memory usage doesn’t grow
out of control.

You can set the maximum number of results the cache
can hold using the CELERY_MAX_CACHED_RESULTS setting (the
default is five thousand results). In addition, you can refetch already
retrieved results using backend.reload_task_result +
backend.reload_taskset_result (that’s for those who want to send
results incrementally).

	The worker now works on Windows again.

Warning

If you’re using Celery with Django, you can’t use project.settings
as the settings module name, but the following should work:

$ python manage.py celeryd --settings=settings

	Execution: .messaging.TaskPublisher.send_task now
incorporates all the functionality apply_async previously did.

Like converting countdowns to eta, so celery.execute.apply_async() is
now simply a convenient front-end to
celery.messaging.TaskPublisher.send_task(), using
the task classes default options.

Also celery.execute.send_task() has been
introduced, which can apply tasks using just the task name (useful
if the client does not have the destination task in its task registry).

Example:

>>> from celery.execute import send_task
>>> result = send_task("celery.ping", args=[], kwargs={})
>>> result.get()
'pong'

	camqadm: This is a new utility for command-line access to the AMQP API.

Excellent for deleting queues/bindings/exchanges, experimentation and
testing:

$ camqadm
1> help

Gives an interactive shell, type help for a list of commands.

When using Django, use the management command instead:

$ python manage.py camqadm
1> help

	Redis result backend: To conform to recent Redis API changes, the following
settings has been deprecated:

	REDIS_TIMEOUT

	REDIS_CONNECT_RETRY

These will emit a DeprecationWarning if used.

A REDIS_PASSWORD setting has been added, so you can use the new
simple authentication mechanism in Redis.

	The redis result backend no longer calls SAVE when disconnecting,
as this is apparently better handled by Redis itself.

	If settings.DEBUG is on, the worker now warns about the possible
memory leak it can result in.

	The ETA scheduler now sleeps at most two seconds between iterations.

	The ETA scheduler now deletes any revoked tasks it might encounter.

As revokes are not yet persistent, this is done to make sure the task
is revoked even though it’s currently being hold because its eta is e.g.
a week into the future.

	The task_id argument is now respected even if the task is executed
eagerly (either using apply, or CELERY_ALWAYS_EAGER).

	The internal queues are now cleared if the connection is reset.

	New magic keyword argument: delivery_info.

Used by retry() to resend the task to its original destination using the same
exchange/routing_key.

	Events: Fields was not passed by .send() (fixes the UUID key errors
in celerymon)

	Added –schedule/-s option to the worker, so it is possible to
specify a custom schedule filename when using an embedded celerybeat
server (the -B/–beat) option.

	Better Python 2.4 compatibility. The test suite now passes.

	task decorators: Now preserve docstring as cls.__doc__, (was previously
copied to cls.run.__doc__)

	The testproj directory has been renamed to tests and we’re now using
nose + django-nose for test discovery, and unittest2 for test
cases.

	New pip requirements files available in requirements.

	TaskPublisher: Declarations are now done once (per process).

	Added Task.delivery_mode and the CELERY_DEFAULT_DELIVERY_MODE
setting.

These can be used to mark messages non-persistent (i.e. so they are
lost if the broker is restarted).

	Now have our own ImproperlyConfigured exception, instead of using the
Django one.

	Improvements to the Debian init scripts: Shows an error if the program is
not executable. Does not modify CELERYD when using django with
virtualenv.

1.0.0

	release-date:	2010-02-10 04:00 P.M CET

	release-by:	Ask Solem

Backward incompatible changes

	Celery does not support detaching anymore, so you have to use the tools
available on your platform, or something like Supervisord to make
celeryd/celerybeat/celerymon into background processes.

We’ve had too many problems with the worker daemonizing itself, so it was
decided it has to be removed. Example startup scripts has been added to
the extra/ directory:

	Debian, Ubuntu, (start-stop-daemon)

extra/debian/init.d/celeryd
extra/debian/init.d/celerybeat

	Mac OS X launchd

extra/mac/org.celeryq.celeryd.plist
extra/mac/org.celeryq.celerybeat.plist
extra/mac/org.celeryq.celerymon.plist

	Supervisord (http://supervisord.org)

extra/supervisord/supervisord.conf

In addition to –detach, the following program arguments has been
removed: –uid, –gid, –workdir, –chroot, –pidfile,
–umask. All good daemonization tools should support equivalent
functionality, so don’t worry.

Also the following configuration keys has been removed:
CELERYD_PID_FILE, CELERYBEAT_PID_FILE, CELERYMON_PID_FILE.

	Default worker loglevel is now WARN, to enable the previous log level
start the worker with –loglevel=INFO.

	Tasks are automatically registered.

This means you no longer have to register your tasks manually.
You don’t have to change your old code right away, as it doesn’t matter if
a task is registered twice.

If you don’t want your task to be automatically registered you can set
the abstract attribute

class MyTask(Task):
 abstract = True

By using abstract only tasks subclassing this task will be automatically
registered (this works like the Django ORM).

If you don’t want subclasses to be registered either, you can set the
autoregister attribute to False.

Incidentally, this change also fixes the problems with automatic name
assignment and relative imports. So you also don’t have to specify a task name
anymore if you use relative imports.

	You can no longer use regular functions as tasks.

This change was added
because it makes the internals a lot more clean and simple. However, you can
now turn functions into tasks by using the @task decorator:

from celery.decorators import task

@task()
def add(x, y):
 return x + y

See also

Tasks for more information about the task decorators.

	The periodic task system has been rewritten to a centralized solution.

This means the worker no longer schedules periodic tasks by default,
but a new daemon has been introduced: celerybeat.

To launch the periodic task scheduler you have to run celerybeat:

$ celerybeat

Make sure this is running on one server only, if you run it twice, all
periodic tasks will also be executed twice.

If you only have one worker server you can embed it into the worker like this:

$ celeryd --beat # Embed celerybeat in celeryd.

	The supervisor has been removed.

This means the -S and –supervised options to celeryd is
no longer supported. Please use something like http://supervisord.org
instead.

	TaskSet.join has been removed, use TaskSetResult.join instead.

	The task status “DONE” has been renamed to “SUCCESS”.

	AsyncResult.is_done has been removed, use AsyncResult.successful
instead.

	The worker no longer stores errors if Task.ignore_result is set, to
revert to the previous behaviour set
CELERY_STORE_ERRORS_EVEN_IF_IGNORED to True.

	The statistics functionality has been removed in favor of events,
so the -S and –statistics` switches has been removed.

	The module celery.task.strategy has been removed.

	celery.discovery has been removed, and it’s autodiscover function is
now in celery.loaders.djangoapp. Reason: Internal API.

	The CELERY_LOADER environment variable now needs loader class name
in addition to module name,

E.g. where you previously had: “celery.loaders.default”, you now need
“celery.loaders.default.Loader”, using the previous syntax will result
in a DeprecationWarning.

	Detecting the loader is now lazy, and so is not done when importing
celery.loaders.

To make this happen celery.loaders.settings has
been renamed to load_settings and is now a function returning the
settings object. celery.loaders.current_loader is now also
a function, returning the current loader.

So:

loader = current_loader

needs to be changed to:

loader = current_loader()

Deprecations

	The following configuration variables has been renamed and will be
deprecated in v2.0:

	CELERYD_DAEMON_LOG_FORMAT -> CELERYD_LOG_FORMAT

	CELERYD_DAEMON_LOG_LEVEL -> CELERYD_LOG_LEVEL

	CELERY_AMQP_CONNECTION_TIMEOUT -> CELERY_BROKER_CONNECTION_TIMEOUT

	CELERY_AMQP_CONNECTION_RETRY -> CELERY_BROKER_CONNECTION_RETRY

	CELERY_AMQP_CONNECTION_MAX_RETRIES -> CELERY_BROKER_CONNECTION_MAX_RETRIES

	SEND_CELERY_TASK_ERROR_EMAILS -> CELERY_SEND_TASK_ERROR_EMAILS

	The public API names in celery.conf has also changed to a consistent naming
scheme.

	We now support consuming from an arbitrary number of queues.

To do this we had to rename the configuration syntax. If you use any of
the custom AMQP routing options (queue/exchange/routing_key, etc.), you
should read the new FAQ entry: Can I send some tasks to only some servers?.

The previous syntax is deprecated and scheduled for removal in v2.0.

	TaskSet.run has been renamed to TaskSet.apply_async.

TaskSet.run has now been deprecated, and is scheduled for
removal in v2.0.

News

	Rate limiting support (per task type, or globally).

	New periodic task system.

	Automatic registration.

	New cool task decorator syntax.

	worker: now sends events if enabled with the -E argument.

Excellent for monitoring tools, one is already in the making
(http://github.com/celery/celerymon).

Current events include: worker-heartbeat,
task-[received/succeeded/failed/retried],
worker-online, worker-offline.

	You can now delete (revoke) tasks that has already been applied.

	You can now set the hostname the worker identifies as using the –hostname
argument.

	Cache backend now respects the CELERY_TASK_RESULT_EXPIRES setting.

	Message format has been standardized and now uses ISO-8601 format
for dates instead of datetime.

	worker now responds to the SIGHUP signal by restarting itself.

	Periodic tasks are now scheduled on the clock.

I.e. timedelta(hours=1) means every hour at :00 minutes, not every
hour from the server starts. To revert to the previous behaviour you
can set PeriodicTask.relative = True.

	Now supports passing execute options to a TaskSets list of args, e.g.:

>>> ts = TaskSet(add, [([2, 2], {}, {"countdown": 1}),
... ([4, 4], {}, {"countdown": 2}),
... ([8, 8], {}, {"countdown": 3})])
>>> ts.run()

	Got a 3x performance gain by setting the prefetch count to four times the
concurrency, (from an average task round-trip of 0.1s to 0.03s!).

A new setting has been added: CELERYD_PREFETCH_MULTIPLIER, which
is set to 4 by default.

	Improved support for webhook tasks.

celery.task.rest is now deprecated, replaced with the new and shiny
celery.task.http. With more reflective names, sensible interface,
and it’s possible to override the methods used to perform HTTP requests.

	The results of task sets are now cached by storing it in the result
backend.

Changes

	Now depends on carrot >= 0.8.1

	New dependencies: billiard, python-dateutil, django-picklefield

	No longer depends on python-daemon

	The uuid distribution is added as a dependency when running Python 2.4.

	Now remembers the previously detected loader by keeping it in
the CELERY_LOADER environment variable.

This may help on windows where fork emulation is used.

	ETA no longer sends datetime objects, but uses ISO 8601 date format in a
string for better compatibility with other platforms.

	No longer sends error mails for retried tasks.

	Task can now override the backend used to store results.

	Refactored the ExecuteWrapper, apply and CELERY_ALWAYS_EAGER
now also executes the task callbacks and signals.

	Now using a proper scheduler for the tasks with an ETA.

This means waiting eta tasks are sorted by time, so we don’t have
to poll the whole list all the time.

	Now also imports modules listed in CELERY_IMPORTS when running
with django (as documented).

	Log level for stdout/stderr changed from INFO to ERROR

	ImportErrors are now properly propagated when autodiscovering tasks.

	You can now use celery.messaging.establish_connection to establish a
connection to the broker.

	When running as a separate service the periodic task scheduler does some
smart moves to not poll too regularly.

If you need faster poll times you can lower the value
of CELERYBEAT_MAX_LOOP_INTERVAL.

	You can now change periodic task intervals at runtime, by making
run_every a property, or subclassing PeriodicTask.is_due.

	The worker now supports control commands enabled through the use of a
broadcast queue, you can remotely revoke tasks or set the rate limit for
a task type. See celery.task.control.

	The services now sets informative process names (as shown in ps
listings) if the setproctitle module is installed.

	NotRegistered now inherits from KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError],
and TaskRegistry.__getitem__`+`pop raises NotRegistered instead

	You can set the loader via the CELERY_LOADER environment variable.

	You can now set CELERY_IGNORE_RESULT to ignore task results by
default (if enabled, tasks doesn’t save results or errors to the backend used).

	The worker now correctly handles malformed messages by throwing away and
acknowledging the message, instead of crashing.

Bugs

	Fixed a race condition that could happen while storing task results in the
database.

Documentation

	Reference now split into two sections; API reference and internal module
reference.

0.8.4

	release-date:	2010-02-05 01:52 P.M CEST

	release-by:	Ask Solem

	Now emits a warning if the –detach argument is used.
–detach should not be used anymore, as it has several not easily fixed
bugs related to it. Instead, use something like start-stop-daemon,
Supervisord or launchd (os x).

	Make sure logger class is process aware, even if running Python >= 2.6.

	Error emails are not sent anymore when the task is retried.

0.8.3

	release-date:	2009-12-22 09:43 A.M CEST

	release-by:	Ask Solem

	Fixed a possible race condition that could happen when storing/querying
task results using the database backend.

	Now has console script entry points in the setup.py file, so tools like
Buildout will correctly install the programs celeryd and celeryinit.

0.8.2

	release-date:	2009-11-20 03:40 P.M CEST

	release-by:	Ask Solem

	QOS Prefetch count was not applied properly, as it was set for every message
received (which apparently behaves like, “receive one more”), instead of only
set when our wanted value changed.

0.8.1

	release-date:	2009-11-16 05:21 P.M CEST

	release-by:	Ask Solem

Very important note

This release (with carrot 0.8.0) enables AMQP QoS (quality of service), which
means the workers will only receive as many messages as it can handle at a
time. As with any release, you should test this version upgrade on your
development servers before rolling it out to production!

Important changes

	If you’re using Python < 2.6 and you use the multiprocessing backport, then
multiprocessing version 2.6.2.1 is required.

	All AMQP_* settings has been renamed to BROKER_*, and in addition
AMQP_SERVER has been renamed to BROKER_HOST, so before where you had:

AMQP_SERVER = "localhost"
AMQP_PORT = 5678
AMQP_USER = "myuser"
AMQP_PASSWORD = "mypassword"
AMQP_VHOST = "celery"

You need to change that to:

BROKER_HOST = "localhost"
BROKER_PORT = 5678
BROKER_USER = "myuser"
BROKER_PASSWORD = "mypassword"
BROKER_VHOST = "celery"

	Custom carrot backends now need to include the backend class name, so before
where you had:

CARROT_BACKEND = "mycustom.backend.module"

you need to change it to:

CARROT_BACKEND = "mycustom.backend.module.Backend"

where Backend is the class name. This is probably “Backend”, as
that was the previously implied name.

	New version requirement for carrot: 0.8.0

Changes

	Incorporated the multiprocessing backport patch that fixes the
processName error.

	Ignore the result of PeriodicTask’s by default.

	Added a Redis result store backend

	Allow /etc/default/celeryd to define additional options for the celeryd init
script.

	MongoDB periodic tasks issue when using different time than UTC fixed.

	Windows specific: Negate test for available os.fork (thanks miracle2k)

	Now tried to handle broken PID files.

	Added a Django test runner to contrib that sets
CELERY_ALWAYS_EAGER = True for testing with the database backend.

	Added a CELERY_CACHE_BACKEND setting for using something other
than the django-global cache backend.

	Use custom implementation of functools.partial (curry) for Python 2.4 support
(Probably still problems with running on 2.4, but it will eventually be
supported)

	Prepare exception to pickle when saving RETRY status for all backends.

	SQLite no concurrency limit should only be effective if the database backend
is used.

0.8.0

	release-date:	2009-09-22 03:06 P.M CEST

	release-by:	Ask Solem

Backward incompatible changes

	Add traceback to result value on failure.

Note

If you use the database backend you have to re-create the
database table celery_taskmeta.

Contact the Mailing list or IRC channel
for help doing this.

	Database tables are now only created if the database backend is used,
so if you change back to the database backend at some point,
be sure to initialize tables (django: syncdb, python: celeryinit).

Note

This is only applies if using Django version 1.1 or higher.

	Now depends on carrot version 0.6.0.

	Now depends on python-daemon 1.4.8

Important changes

	Celery can now be used in pure Python (outside of a Django project).

This means celery is no longer Django specific.

For more information see the FAQ entry
Is Celery for Django only?.

	Celery now supports task retries.

See Retrying for more information.

	We now have an AMQP result store backend.

It uses messages to publish task return value and status. And it’s
incredibly fast!

See issue #6 [https://github.com/celery/celery/issues/6] for more info!

	AMQP QoS (prefetch count) implemented:

This to not receive more messages than we can handle.

	Now redirects stdout/stderr to the workers log file when detached

	
	Now uses inspect.getargspec to only pass default arguments

	the task supports.

	
	Add Task.on_success, .on_retry, .on_failure handlers

	
	See celery.task.base.Task.on_success(),

	celery.task.base.Task.on_retry(),
celery.task.base.Task.on_failure(),

	
	celery.utils.gen_unique_id: Workaround for

	http://bugs.python.org/issue4607

	
	You can now customize what happens at worker start, at process init, etc.,

	by creating your own loaders. (see celery.loaders.default,
celery.loaders.djangoapp, celery.loaders.)

	Support for multiple AMQP exchanges and queues.

This feature misses documentation and tests, so anyone interested
is encouraged to improve this situation.

	The worker now survives a restart of the AMQP server!

Automatically re-establish AMQP broker connection if it’s lost.

New settings:

	
	AMQP_CONNECTION_RETRY

	Set to True to enable connection retries.

	
	AMQP_CONNECTION_MAX_RETRIES.

	Maximum number of restarts before we give up. Default: 100.

News

	
	Fix an incompatibility between python-daemon and multiprocessing,

	which resulted in the [Errno 10] No child processes problem when
detaching.

	
	Fixed a possible DjangoUnicodeDecodeError being raised when saving pickled

	data to Django`s memcached cache backend.

	Better Windows compatibility.

	
	New version of the pickled field (taken from

	http://www.djangosnippets.org/snippets/513/)

	
	New signals introduced: task_sent, task_prerun and

	task_postrun, see celery.signals for more information.

	
	TaskSetResult.join caused TypeError when timeout=None.

	Thanks Jerzy Kozera. Closes #31

	
	views.apply should return HttpResponse instance.

	Thanks to Jerzy Kozera. Closes #32

	
	PeriodicTask: Save conversion of run_every from int

	to timedelta to the class attribute instead of on the instance.

	
	Exceptions has been moved to celery.exceptions, but are still

	available in the previous module.

	
	Try to rollback transaction and retry saving result if an error happens

	while setting task status with the database backend.

	jail() refactored into celery.execute.ExecuteWrapper.

	views.apply now correctly sets mime-type to “application/json”

	views.task_status now returns exception if state is RETRY

	
	views.task_status now returns traceback if state is FAILURE

	or RETRY

	Documented default task arguments.

	Add a sensible __repr__ to ExceptionInfo for easier debugging

	
	Fix documentation typo .. import map -> .. import dmap.

	Thanks to mikedizon

0.6.0

	release-date:	2009-08-07 06:54 A.M CET

	release-by:	Ask Solem

Important changes

	
	Fixed a bug where tasks raising unpickleable exceptions crashed pool

	workers. So if you’ve had pool workers mysteriously disappearing, or
problems with the worker stopping working, this has been fixed in this
version.

	Fixed a race condition with periodic tasks.

	
	The task pool is now supervised, so if a pool worker crashes,

	goes away or stops responding, it is automatically replaced with
a new one.

	
	Task.name is now automatically generated out of class module+name, e.g.

	“djangotwitter.tasks.UpdateStatusesTask”. Very convenient. No idea why
we didn’t do this before. Some documentation is updated to not manually
specify a task name.

News

	Tested with Django 1.1

	New Tutorial: Creating a click counter using carrot and celery

	
	Database entries for periodic tasks are now created at the workers

	startup instead of for each check (which has been a forgotten TODO/XXX
in the code for a long time)

	
	New settings variable: CELERY_TASK_RESULT_EXPIRES

	Time (in seconds, or a datetime.timedelta object) for when after
stored task results are deleted. For the moment this only works for the
database backend.

	
	The worker now emits a debug log message for which periodic tasks

	has been launched.

	
	The periodic task table is now locked for reading while getting

	periodic task status. (MySQL only so far, seeking patches for other
engines)

	
	A lot more debugging information is now available by turning on the

	DEBUG log level (–loglevel=DEBUG).

	Functions/methods with a timeout argument now works correctly.

	
	New: celery.strategy.even_time_distribution:

	With an iterator yielding task args, kwargs tuples, evenly distribute
the processing of its tasks throughout the time window available.

	Log message Unknown task ignored... now has log level ERROR

	
	Log message when task is received is now emitted for all tasks, even if

	the task has an ETA (estimated time of arrival). Also the log message now
includes the ETA for the task (if any).

	
	Acknowledgement now happens in the pool callback. Can’t do ack in the job

	target, as it’s not pickleable (can’t share AMQP connection, etc.)).

	Added note about .delay hanging in README

	Tests now passing in Django 1.1

	Fixed discovery to make sure app is in INSTALLED_APPS

	
	Previously overridden pool behavior (process reap, wait until pool worker

	available, etc.) is now handled by multiprocessing.Pool itself.

	Convert statistics data to Unicode for use as kwargs. Thanks Lucy!

0.4.1

	release-date:	2009-07-02 01:42 P.M CET

	release-by:	Ask Solem

	Fixed a bug with parsing the message options (mandatory,
routing_key, priority, immediate)

0.4.0

	release-date:	2009-07-01 07:29 P.M CET

	release-by:	Ask Solem

	Adds eager execution. celery.execute.apply`|`Task.apply executes the
function blocking until the task is done, for API compatibility it
returns an celery.result.EagerResult instance. You can configure
celery to always run tasks locally by setting the
CELERY_ALWAYS_EAGER setting to True.

	Now depends on anyjson.

	99% coverage using python coverage 3.0.

0.3.20

	release-date:	2009-06-25 08:42 P.M CET

	release-by:	Ask Solem

	New arguments to apply_async (the advanced version of
delay_task), countdown and eta;

>>> # Run 10 seconds into the future.
>>> res = apply_async(MyTask, countdown=10);

>>> # Run 1 day from now
>>> res = apply_async(MyTask,
... eta=datetime.now() + timedelta(days=1))

	Now unlinks stale PID files

	Lots of more tests.

	Now compatible with carrot >= 0.5.0.

	IMPORTANT The subtask_ids attribute on the TaskSetResult
instance has been removed. To get this information instead use:

>>> subtask_ids = [subtask.id for subtask in ts_res.subtasks]

	Taskset.run() now respects extra message options from the task class.

	Task: Add attribute ignore_result: Don’t store the status and
return value. This means you can’t use the
celery.result.AsyncResult to check if the task is
done, or get its return value. Only use if you need the performance
and is able live without these features. Any exceptions raised will
store the return value/status as usual.

	Task: Add attribute disable_error_emails to disable sending error
emails for that task.

	Should now work on Windows (although running in the background won’t
work, so using the –detach argument results in an exception
being raised.)

	Added support for statistics for profiling and monitoring.
To start sending statistics start the worker with the
–statistics option. Then after a while you can dump the results
by running `python manage.py celerystats. See
celery.monitoring for more information.

	The celery daemon can now be supervised (i.e. it is automatically
restarted if it crashes). To use this start the worker with the
–supervised` option (or alternatively -S).

	views.apply: View calling a task. Example

http://e.com/celery/apply/task_name/arg1/arg2//?kwarg1=a&kwarg2=b

Warning

Use with caution! Do not expose this URL to the public
without first ensuring that your code is safe!

	Refactored celery.task. It’s now split into three modules:

	celery.task

Contains apply_async, delay_task, discard_all, and task
shortcuts, plus imports objects from celery.task.base and
celery.task.builtins

	celery.task.base

Contains task base classes: Task, PeriodicTask,
TaskSet, AsynchronousMapTask, ExecuteRemoteTask.

	celery.task.builtins

Built-in tasks: PingTask, DeleteExpiredTaskMetaTask.

0.3.7

	release-date:	2008-06-16 11:41 P.M CET

	release-by:	Ask Solem

	IMPORTANT Now uses AMQP`s basic.consume instead of
basic.get. This means we’re no longer polling the broker for
new messages.

	IMPORTANT Default concurrency limit is now set to the number of CPUs
available on the system.

	IMPORTANT tasks.register: Renamed task_name argument to
name, so

>>> tasks.register(func, task_name="mytask")

has to be replaced with:

>>> tasks.register(func, name="mytask")

	The daemon now correctly runs if the pidlock is stale.

	Now compatible with carrot 0.4.5

	Default AMQP connection timeout is now 4 seconds.

	AsyncResult.read() was always returning True.

	Only use README as long_description if the file exists so easy_install
doesn’t break.

	celery.view: JSON responses now properly set its mime-type.

	apply_async now has a connection keyword argument so you
can re-use the same AMQP connection if you want to execute
more than one task.

	Handle failures in task_status view such that it won’t throw 500s.

	Fixed typo AMQP_SERVER in documentation to AMQP_HOST.

	Worker exception emails sent to administrators now works properly.

	No longer depends on django, so installing celery won’t affect
the preferred Django version installed.

	Now works with PostgreSQL (psycopg2) again by registering the
PickledObject field.

	Worker: Added –detach option as an alias to –daemon, and
it’s the term used in the documentation from now on.

	Make sure the pool and periodic task worker thread is terminated
properly at exit. (So Ctrl-C works again).

	Now depends on python-daemon.

	Removed dependency to simplejson

	Cache Backend: Re-establishes connection for every task process
if the Django cache backend is memcached/libmemcached.

	Tyrant Backend: Now re-establishes the connection for every task
executed.

0.3.3

	release-date:	2009-06-08 01:07 P.M CET

	release-by:	Ask Solem

	The PeriodicWorkController now sleeps for 1 second between checking
for periodic tasks to execute.

0.3.2

	release-date:	2009-06-08 01:07 P.M CET

	release-by:	Ask Solem

	worker: Added option –discard: Discard (delete!) all waiting
messages in the queue.

	Worker: The –wakeup-after option was not handled as a float.

0.3.1

	release-date:	2009-06-08 01:07 P.M CET

	release-by:	Ask Solem

	The PeriodicTask worker is now running in its own thread instead
of blocking the TaskController loop.

	Default QUEUE_WAKEUP_AFTER has been lowered to 0.1 (was 0.3)

0.3.0

	release-date:	2009-06-08 12:41 P.M CET

	release-by:	Ask Solem

Warning

This is a development version, for the stable release, please
see versions 0.2.x.

VERY IMPORTANT: Pickle is now the encoder used for serializing task
arguments, so be sure to flush your task queue before you upgrade.

	IMPORTANT TaskSet.run() now returns a celery.result.TaskSetResult
instance, which lets you inspect the status and return values of a
taskset as it was a single entity.

	IMPORTANT Celery now depends on carrot >= 0.4.1.

	The celery daemon now sends task errors to the registered admin emails.
To turn off this feature, set SEND_CELERY_TASK_ERROR_EMAILS to
False in your settings.py. Thanks to Grégoire Cachet.

	You can now run the celery daemon by using manage.py:

$ python manage.py celeryd

Thanks to Grégoire Cachet.

	Added support for message priorities, topic exchanges, custom routing
keys for tasks. This means we have introduced
celery.task.apply_async, a new way of executing tasks.

You can use celery.task.delay and celery.Task.delay like usual, but
if you want greater control over the message sent, you want
celery.task.apply_async and celery.Task.apply_async.

This also means the AMQP configuration has changed. Some settings has
been renamed, while others are new:

CELERY_AMQP_EXCHANGE
CELERY_AMQP_PUBLISHER_ROUTING_KEY
CELERY_AMQP_CONSUMER_ROUTING_KEY
CELERY_AMQP_CONSUMER_QUEUE
CELERY_AMQP_EXCHANGE_TYPE

See the entry Can I send some tasks to only some servers? in the
FAQ for more information.

	Task errors are now logged using log level ERROR instead of INFO,
and stacktraces are dumped. Thanks to Grégoire Cachet.

	Make every new worker process re-establish it’s Django DB connection,
this solving the “MySQL connection died?” exceptions.
Thanks to Vitaly Babiy and Jirka Vejrazka.

	IMPORTANT Now using pickle to encode task arguments. This means you
now can pass complex python objects to tasks as arguments.

	Removed dependency to yadayada.

	Added a FAQ, see docs/faq.rst.

	Now converts any Unicode keys in task kwargs to regular strings.
Thanks Vitaly Babiy.

	Renamed the TaskDaemon to WorkController.

	celery.datastructures.TaskProcessQueue is now renamed to
celery.pool.TaskPool.

	The pool algorithm has been refactored for greater performance and
stability.

0.2.0

	release-date:	2009-05-20 05:14 P.M CET

	release-by:	Ask Solem

	Final release of 0.2.0

	Compatible with carrot version 0.4.0.

	Fixes some syntax errors related to fetching results
from the database backend.

0.2.0-pre3

	release-date:	2009-05-20 05:14 P.M CET

	release-by:	Ask Solem

	Internal release. Improved handling of unpickleable exceptions,
get_result now tries to recreate something looking like the
original exception.

0.2.0-pre2

	release-date:	2009-05-20 01:56 P.M CET

	release-by:	Ask Solem

	Now handles unpickleable exceptions (like the dynamically generated
subclasses of django.core.exception.MultipleObjectsReturned).

0.2.0-pre1

	release-date:	2009-05-20 12:33 P.M CET

	release-by:	Ask Solem

	It’s getting quite stable, with a lot of new features, so bump
version to 0.2. This is a pre-release.

	celery.task.mark_as_read() and celery.task.mark_as_failure() has
been removed. Use celery.backends.default_backend.mark_as_read(),
and celery.backends.default_backend.mark_as_failure() instead.

0.1.15

	release-date:	2009-05-19 04:13 P.M CET

	release-by:	Ask Solem

	The celery daemon was leaking AMQP connections, this should be fixed,
if you have any problems with too many files open (like emfile
errors in rabbit.log, please contact us!

0.1.14

	release-date:	2009-05-19 01:08 P.M CET

	release-by:	Ask Solem

	Fixed a syntax error in the TaskSet class. (No such variable
TimeOutError).

0.1.13

	release-date:	2009-05-19 12:36 P.M CET

	release-by:	Ask Solem

	Forgot to add yadayada to install requirements.

	Now deletes all expired task results, not just those marked as done.

	Able to load the Tokyo Tyrant backend class without django
configuration, can specify tyrant settings directly in the class
constructor.

	Improved API documentation

	Now using the Sphinx documentation system, you can build
the html documentation by doing:

$ cd docs
$ make html

and the result will be in docs/.build/html.

0.1.12

	release-date:	2009-05-18 04:38 P.M CET

	release-by:	Ask Solem

	delay_task() etc. now returns celery.task.AsyncResult object,
which lets you check the result and any failure that might have
happened. It kind of works like the multiprocessing.AsyncResult
class returned by multiprocessing.Pool.map_async.

	Added dmap() and dmap_async(). This works like the
multiprocessing.Pool versions except they are tasks
distributed to the celery server. Example:

>>> from celery.task import dmap
>>> import operator
>>> dmap(operator.add, [[2, 2], [4, 4], [8, 8]])
>>> [4, 8, 16]

>>> from celery.task import dmap_async
>>> import operator
>>> result = dmap_async(operator.add, [[2, 2], [4, 4], [8, 8]])
>>> result.ready()
False
>>> time.sleep(1)
>>> result.ready()
True
>>> result.result
[4, 8, 16]

	Refactored the task metadata cache and database backends, and added
a new backend for Tokyo Tyrant. You can set the backend in your django
settings file. E.g.:

CELERY_RESULT_BACKEND = "database"; # Uses the database
CELERY_RESULT_BACKEND = "cache"; # Uses the django cache framework
CELERY_RESULT_BACKEND = "tyrant"; # Uses Tokyo Tyrant
TT_HOST = "localhost"; # Hostname for the Tokyo Tyrant server.
TT_PORT = 6657; # Port of the Tokyo Tyrant server.

0.1.11

	release-date:	2009-05-12 02:08 P.M CET

	release-by:	Ask Solem

	The logging system was leaking file descriptors, resulting in
servers stopping with the EMFILES (too many open files) error. (fixed)

0.1.10

	release-date:	2009-05-11 12:46 P.M CET

	release-by:	Ask Solem

	Tasks now supports both positional arguments and keyword arguments.

	Requires carrot 0.3.8.

	The daemon now tries to reconnect if the connection is lost.

0.1.8

	release-date:	2009-05-07 12:27 P.M CET

	release-by:	Ask Solem

	Better test coverage

	More documentation

	The worker doesn’t emit Queue is empty message if
settings.CELERYD_EMPTY_MSG_EMIT_EVERY is 0.

0.1.7

	release-date:	2009-04-30 01:50 P.M CET

	release-by:	Ask Solem

	Added some unit tests

	Can now use the database for task metadata (like if the task has
been executed or not). Set settings.CELERY_TASK_META

	Can now run python setup.py test to run the unit tests from
within the tests project.

	Can set the AMQP exchange/routing key/queue using
settings.CELERY_AMQP_EXCHANGE, settings.CELERY_AMQP_ROUTING_KEY,
and settings.CELERY_AMQP_CONSUMER_QUEUE.

0.1.6

	release-date:	2009-04-28 02:13 P.M CET

	release-by:	Ask Solem

	Introducing TaskSet. A set of subtasks is executed and you can
find out how many, or if all them, are done (excellent for progress
bars and such)

	Now catches all exceptions when running Task.__call__, so the
daemon doesn’t die. This doesn’t happen for pure functions yet, only
Task classes.

	autodiscover() now works with zipped eggs.

	Worker: Now adds current working directory to sys.path for
convenience.

	The run_every attribute of PeriodicTask classes can now be a
datetime.timedelta() object.

	Worker: You can now set the DJANGO_PROJECT_DIR variable
for the worker and it will add that to sys.path for easy launching.

	Can now check if a task has been executed or not via HTTP.

	You can do this by including the celery urls.py into your project,

>>> url(r'^celery/$', include("celery.urls"))

then visiting the following url,:

http://mysite/celery/$task_id/done/

this will return a JSON dictionary like e.g:

>>> {"task": {"id": $task_id, "executed": true}}

	delay_task now returns string id, not uuid.UUID instance.

	Now has PeriodicTasks, to have cron like functionality.

	Project changed name from crunchy to celery. The details of
the name change request is in docs/name_change_request.txt.

0.1.0

	release-date:	2009-04-24 11:28 A.M CET

	release-by:	Ask Solem

	Initial release

 Glossary

 This document describes the current stable version of Celery (3.1). For development docs,
 go here.

Glossary

	ack

	Short for acknowledged.

	acknowledged

	Workers acknowledge messages to signify that a message has been
handled. Failing to acknowledge a message
will cause the message to be redelivered. Exactly when a
transaction is considered a failure varies by transport. In AMQP the
transaction fails when the connection/channel is closed (or lost),
but in Redis/SQS the transaction times out after a configurable amount
of time (the visibility_timeout).

	apply

	Originally a synonym to call but used to signify
that a function is executed by the current process.

	billiard

	Fork of the Python multiprocessing library containing improvements
required by Celery.

	calling

	Sends a task message so that the task function is
executed by a worker.

	cipater

	Celery release 3.1 named after song by Autechre
(http://www.youtube.com/watch?v=OHsaqUr_33Y)

	context

	The context of a task contains information like the id of the task,
it’s arguments and what queue it was delivered to.
It can be accessed as the tasks request attribute.
See Context

	executing

	Workers execute task requests.

	idempotent

	Idempotence is a mathematical property that describes a function that
can be called multiple times without changing the result.
Practically it means that a function can be repeated many times without
unintented effects, but not necessarily side-effect free in the pure
sense (compare to nullipotent).

	kombu

	Python messaging library used by Celery to send and receive messages.

	nullipotent

	describes a function that will have the same effect, and give the same
result, even if called zero or multiple times (side-effect free).
A stronger version of idempotent.

	prefetch count

	Maximum number of unacknowledged messages a consumer can hold and if
exceeded the transport should not deliver any more messages to that
consumer. See Prefetch Limits.

	prefetch multiplier

	The prefetch count is configured by using the
CELERYD_PREFETCH_MULTIPLIER setting, which is multiplied
by the number of pool slots (threads/processes/greenthreads).

	reentrant

	describes a function that can be interrupted in the middle of
execution (e.g. by hardware interrupt or signal) and then safely
called again later. Reentrancy is not the same as
idempotence as the return value does not have to
be the same given the same inputs, and a reentrant function may have
side effects as long as it can be interrupted; An idempotent function
is always reentrant, but the reverse may not be true.

	request

	Task messages are converted to requests within the worker.
The request information is also available as the task’s
context (the task.request attribute).

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 celery	
 Distributed processing

 	
 	
 celery._state	

 	
 	
 celery.app	

 	
 	
 celery.app.amqp	

 	
 	
 celery.app.annotations	

 	
 	
 celery.app.builtins	

 	
 	
 celery.app.control	

 	
 	
 celery.app.defaults	

 	
 	
 celery.app.log	

 	
 	
 celery.app.registry	

 	
 	
 celery.app.routes	

 	
 	
 celery.app.task	

 	
 	
 celery.app.trace	

 	
 	
 celery.app.utils	

 	
 	
 celery.apps.beat	

 	
 	
 celery.apps.worker	

 	
 	
 celery.backends	

 	
 	
 celery.backends.amqp	

 	
 	
 celery.backends.base	

 	
 	
 celery.backends.cache	

 	
 	
 celery.backends.cassandra	

 	
 	
 celery.backends.couchbase	

 	
 	
 celery.backends.database	

 	
 	
 celery.backends.database.models	

 	
 	
 celery.backends.database.session	

 	
 	
 celery.backends.mongodb	

 	
 	
 celery.backends.redis	

 	
 	
 celery.backends.rpc	

 	
 	
 celery.beat	

 	
 	
 celery.bin.amqp	

 	
 	
 celery.bin.base	

 	
 	
 celery.bin.beat	

 	
 	
 celery.bin.celery	

 	
 	
 celery.bin.events	

 	
 	
 celery.bin.graph	

 	
 	
 celery.bin.multi	

 	
 	
 celery.bin.worker	

 	
 	
 celery.bootsteps	

 	
 	
 celery.concurrency	

 	
 	
 celery.concurrency.base	

 	
 	
 celery.concurrency.eventlet	

 	
 	
 celery.concurrency.gevent	

 	
 	
 celery.concurrency.prefork	

 	
 	
 celery.concurrency.solo	

 	
 	
 celery.concurrency.threads	

 	
 	
 celery.contrib.abortable	

 	
 	
 celery.contrib.batches	

 	
 	
 celery.contrib.methods	

 	
 	
 celery.contrib.migrate	

 	
 	
 celery.contrib.rdb	

 	
 	
 celery.contrib.sphinx	

 	
 	
 celery.datastructures	

 	
 	
 celery.events	

 	
 	
 celery.events.cursesmon	

 	
 	
 celery.events.dumper	

 	
 	
 celery.events.snapshot	

 	
 	
 celery.events.state	

 	
 	
 celery.exceptions	

 	
 	
 celery.loaders	

 	
 	
 celery.loaders.app	

 	
 	
 celery.loaders.base	

 	
 	
 celery.loaders.default	

 	
 	
 celery.platforms	

 	
 	
 celery.result	

 	
 	
 celery.schedules	

 	
 	
 celery.security	

 	
 	
 celery.security.certificate	

 	
 	
 celery.security.key	

 	
 	
 celery.security.serialization	

 	
 	
 celery.security.utils	

 	
 	
 celery.signals	

 	
 	
 celery.states	

 	
 	
 celery.task.base	

 	
 	
 celery.task.http	

 	
 	
 celery.utils	

 	
 	
 celery.utils.compat	

 	
 	
 celery.utils.debug	

 	
 	
 celery.utils.dispatch	

 	
 	
 celery.utils.dispatch.saferef	

 	
 	
 celery.utils.dispatch.signal	

 	
 	
 celery.utils.functional	

 	
 	
 celery.utils.imports	

 	
 	
 celery.utils.iso8601	

 	
 	
 celery.utils.log	

 	
 	
 celery.utils.mail	

 	
 	
 celery.utils.objects	

 	
 	
 celery.utils.serialization	

 	
 	
 celery.utils.sysinfo	

 	
 	
 celery.utils.term	

 	
 	
 celery.utils.text	

 	
 	
 celery.utils.threads	

 	
 	
 celery.utils.timer2	

 	
 	
 celery.utils.timeutils	

 	
 	
 celery.worker	

 	
 	
 celery.worker.autoreload	

 	
 	
 celery.worker.autoscale	

 	
 	
 celery.worker.components	

 	
 	
 celery.worker.consumer	

 	
 	
 celery.worker.control	

 	
 	
 celery.worker.heartbeat	

 	
 	
 celery.worker.job	

 	
 	
 celery.worker.loops	

 	
 	
 celery.worker.pidbox	

 	
 	
 celery.worker.state	

 	
 	
 celery.worker.strategy	

 Index

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

Symbols

 	
 	
 --autoreload

 	celery-worker command line option

 	
 --autoscale

 	celery-worker command line option

 	
 --config

 	command line option

 	
 --detach

 	celery-beat command line option

 	celery-events command line option

 	
 --executable

 	command line option

 	
 --gid

 	command line option

 	
 --heartbeat-interval

 	celery-worker command line option

 	
 --loader

 	command line option

 	
 --max-interval

 	celery-beat command line option

 	
 --maxtasksperchild

 	celery-worker command line option

 	
 --no-execv

 	celery-worker command line option

 	
 --pidfile

 	celery-worker command line option

 	command line option

 	
 --purge

 	celery-worker command line option

 	
 --scheduler

 	celery-worker command line option

 	
 --soft-time-limit

 	celery-worker command line option

 	
 --time-limit

 	celery-worker command line option

 	
 --uid

 	command line option

 	
 --umask

 	command line option

 	
 --without-gossip

 	celery-worker command line option

 	
 --without-heartbeat

 	celery-worker command line option

 	
 --without-mingle

 	celery-worker command line option

 	
 	
 --workdir

 	command line option

 	
 -A, --app

 	command line option

 	
 -B, --beat

 	celery-worker command line option

 	
 -b, --broker

 	command line option

 	
 -c, --camera

 	celery-events command line option

 	
 -c, --concurrency

 	celery-worker command line option

 	
 -d, --dump

 	celery-events command line option

 	
 -E, --events

 	celery-worker command line option

 	
 -F, --freq, --frequency

 	celery-events command line option

 	
 -f, --logfile

 	celery-beat command line option

 	celery-worker command line option

 	command line option

 	
 -I, --include

 	celery-worker command line option

 	
 -l, --loglevel

 	celery-beat command line option

 	celery-events command line option

 	celery-worker command line option

 	
 -n, --hostname

 	celery-worker command line option

 	
 -O

 	celery-worker command line option

 	
 -P, --pool

 	celery-worker command line option

 	
 -Q, --queues

 	celery-worker command line option

 	
 -r, --maxrate

 	celery-events command line option

 	
 -s, --schedule

 	celery-beat command line option

 	celery-worker command line option

 	
 -S, --scheduler

 	celery-beat command line option

 	
 -S, --statedb

 	celery-worker command line option

_

 	
 	__call__() (celery.signature method)

A

 	
 	abbr() (in module celery.utils.text)

 	abbrtask() (in module celery.utils.text)

 	abcast() (celery.app.control.Control.Mailbox method)

 	abort() (celery.contrib.abortable.AbortableAsyncResult method)

 	AbortableAsyncResult (class in celery.contrib.abortable)

 	AbortableTask (class in celery.contrib.abortable)

 	abstract (celery.app.task.Task attribute)

 	(Task attribute)

 	accept (celery.app.control.Control.Mailbox attribute)

 	(celery.backends.amqp.AMQPBackend.Consumer attribute)

 	accept_magic_kwargs (celery.app.task.Task attribute)

 	ack

 	acknowledge() (celery.worker.job.Request method)

 	acknowledged

 	(celery.worker.job.Request attribute)

 	acks_late (celery.app.task.Task attribute)

 	(Task attribute)

 	acquire() (celery.platforms.Pidfile method)

 	ACTIONS (celery.bin.base.Option attribute)

 	active (celery.concurrency.base.BasePool attribute)

 	(celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	active() (celery.app.control.Inspect method)

 	
 active_queues

 	control

 	active_queues() (celery.app.control.Inspect method)

 	active_requests (in module celery.worker.state)

 	add() (celery.app.amqp.Queues method)

 	(celery.beat.Scheduler method)

 	(celery.bin.base.Extensions method)

 	(celery.datastructures.LimitedSet method)

 	(celery.result.ResultSet method)

 	(hub method)

 	add_append_opt() (celery.bin.base.Command method)

 	add_cert() (celery.security.certificate.CertStore method)

 	add_compat() (celery.app.amqp.Queues method)

 	
 add_consumer

 	control

 	add_consumer() (celery.app.control.Control method)

 	add_defaults() (celery.Celery method)

 	(celery.datastructures.ConfigurationView method)

 	add_events() (celery.worker.autoreload.KQueueMonitor method)

 	add_queue() (celery.backends.amqp.AMQPBackend.Consumer method)

 	add_queue_from_dict() (celery.backends.amqp.AMQPBackend.Consumer method)

 	add_reader() (hub method)

 	add_task_queue() (celery.worker.consumer.Consumer method)

 	add_writer() (hub method)

 	adjust_timestamp() (in module celery.utils.timeutils)

 	
 ADMINS

 	setting

 	after_return()

 	(celery.app.task.Task method)

 	
 after_setup_logger

 	signal

 	
 after_setup_task_logger

 	signal

 	
 after_task_publish

 	signal

 	Agent (class in celery.worker.consumer)

 	alert() (celery.events.cursesmon.CursesMonitor method)

 	alert_remote_control_reply() (celery.events.cursesmon.CursesMonitor method)

 	alias (celery.bootsteps.Blueprint attribute)

 	(celery.bootsteps.Step attribute)

 	alive (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	alive_workers() (celery.events.state.State method)

 	
 ALL_STATES

 	state

 	already_setup (celery.app.log.Logging attribute)

 	AlreadyRegistered

 	alt (celery.app.defaults.Option attribute)

 	ALWAYS_TYPED_ACTIONS (celery.bin.base.Option attribute)

 	AlwaysEagerIgnored

 	amqp (celery.bin.amqp.AMQShell attribute), [1]

 	(celery.Celery attribute)

 	AMQP (class in celery.app.amqp)

 	amqp (class in celery.bin.amqp)

 	AMQPAdmin (class in celery.bin.amqp)

 	AMQPBackend (class in celery.backends.amqp)

 	AMQPBackend.BacklogLimitExceeded

 	AMQPBackend.Consumer (class in celery.backends.amqp)

 	
 	AMQPBackend.Consumer.ContentDisallowed

 	AMQPBackend.Exchange (class in celery.backends.amqp)

 	AMQPBackend.Producer (class in celery.backends.amqp)

 	AMQShell (class in celery.bin.amqp)

 	annotate() (celery.app.annotations.MapAnnotation method)

 	annotate_any() (celery.app.annotations.MapAnnotation method)

 	app, [1]

 	(celery.app.control.Inspect attribute)

 	(celery.apps.beat.Beat attribute)

 	(celery.events.EventDispatcher attribute)

 	(celery.events.EventReceiver attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.result.ResultSet attribute)

 	(celery.schedules.crontab attribute)

 	(celery.schedules.schedule attribute)

 	(celery.worker.WorkController attribute)

 	(celery.worker.job.Request attribute)

 	app_or_default() (in module celery.app)

 	AppLoader (class in celery.loaders.app)

 	apply

 	apply() (celery.app.task.Task method)

 	(celery.bootsteps.Blueprint method)

 	(celery.signature method)

 	apply_async() (celery.app.task.Task method)

 	(celery.beat.Scheduler method)

 	(celery.concurrency.base.BasePool method)

 	(celery.signature method)

 	apply_buffer() (celery.contrib.batches.Batches method)

 	apply_chord() (celery.backends.base.BaseBackend method)

 	apply_eta_task()

 	(celery.worker.consumer.Consumer method)

 	apply_target() (in module celery.concurrency.base)

 	appstr() (in module celery.app.utils)

 	args (celery.beat.ScheduleEntry attribute)

 	(celery.bin.base.Command attribute)

 	(celery.bin.graph.graph attribute)

 	(celery.concurrency.base.BasePool.Timer.Entry attribute)

 	(celery.contrib.batches.SimpleRequest attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.utils.timer2.Entry attribute)

 	(celery.utils.timer2.Timer.Entry attribute)

 	(celery.worker.job.Request attribute)

 	arguments (celery.backends.amqp.AMQPBackend.Exchange attribute)

 	as_dict() (celery.datastructures.LimitedSet method)

 	(celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	as_tuple() (celery.result.AsyncResult method)

 	(celery.result.GroupResult method)

 	as_uri() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.base.BaseBackend method)

 	(celery.backends.base.DisabledBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.cassandra.CassandraBackend method)

 	(celery.backends.mongodb.MongoBackend method)

 	(celery.backends.rpc.RPCBackend method)

 	ask() (celery.bin.base.Command method)

 	AsyncResult (celery.Celery attribute)

 	(class in celery.result)

 	AsyncResult() (celery.app.task.Task method)

 	(celery.contrib.abortable.AbortableTask method)

 	AsyncResult.TimeoutError

 	asynloop() (in module celery.worker.loops)

 	AttributeDict (class in celery.datastructures)

 	AttributeDictMixin (class in celery.datastructures)

 	attrs (celery.backends.amqp.AMQPBackend.Exchange attribute)

 	ATTRS (celery.bin.base.Option attribute)

 	auto_declare (celery.backends.amqp.AMQPBackend.Consumer attribute)

 	(celery.backends.amqp.AMQPBackend.Producer attribute)

 	(celery.backends.rpc.RPCBackend.Consumer attribute)

 	auto_delete (celery.backends.amqp.AMQPBackend.Exchange attribute), [1]

 	autodiscover_tasks() (celery.Celery method)

 	(celery.loaders.base.BaseLoader method)

 	autoregister (celery.app.task.Task attribute)

 	autoreloader

 	Autoreloader (class in celery.worker.autoreload)

 	autoscale() (celery.app.control.Control method)

 	autoscaler

 	Autoscaler (class in celery.worker.autoscale)

 	available (celery.utils.sysinfo.df attribute)

 	AWS_ACCESS_KEY_ID

 	AWS_SECRET_ACCESS_KEY

B

 	
 	backend (celery.app.task.Task attribute)

 	(Task attribute)

 	(celery.Celery attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.result.ResultSet attribute)

 	background (celery.events.cursesmon.CursesMonitor attribute)

 	BacklogLimitExceeded

 	BaseBackend (class in celery.backends.base)

 	BaseBackend.TimeoutError

 	BaseLoader (class in celery.loaders.base)

 	BaseMonitor (class in celery.worker.autoreload)

 	BasePool (class in celery.concurrency.base)

 	BasePool.Timer (class in celery.concurrency.base)

 	BasePool.Timer.Entry (class in celery.concurrency.base)

 	Batches (class in celery.contrib.batches)

 	Beat (celery.Celery attribute)

 	(class in celery.apps.beat)

 	beat (class in celery.bin.beat)

 	Beat (class in celery.worker.components)

 	Beat.Service (class in celery.apps.beat)

 	
 beat_embedded_init

 	signal

 	
 beat_init

 	signal

 	
 before_task_publish

 	signal

 	bgThread (class in celery.utils.threads)

 	billiard

 	bind() (queue method)

 	bind_to() (celery.backends.amqp.AMQPBackend.Exchange method)

 	binding (celery.backends.rpc.RPCBackend attribute)

 	binding() (celery.backends.amqp.AMQPBackend.Exchange method)

 	black() (celery.utils.term.colored method)

 	blink() (celery.utils.term.colored method)

 	BlockingPool (celery.concurrency.prefork.TaskPool attribute)

 	blue() (celery.utils.term.colored method)

 	blueprint, [1]

 	(celery.worker.WorkController attribute)

 	Blueprint (class in celery.bootsteps)

 	body (celery.utils.mail.ErrorMail attribute)

 	body() (celery.utils.threads.bgThread method)

 	(celery.worker.autoreload.Autoreloader method)

 	(celery.worker.autoscale.Autoscaler method)

 	
 	bold() (celery.utils.term.colored method)

 	bootsteps() (celery.bin.graph.graph method)

 	bright() (celery.utils.term.colored method)

 	broadcast() (celery.app.control.Control method)

 	BROKER_BACKEND (celery.app.utils.Settings attribute)

 	
 BROKER_CONNECTION_MAX_RETRIES

 	setting

 	
 BROKER_CONNECTION_RETRY

 	setting

 	
 BROKER_CONNECTION_TIMEOUT

 	setting

 	
 BROKER_FAILOVER_STRATEGY

 	setting

 	
 BROKER_HEARTBEAT

 	setting

 	
 BROKER_HEARTBEAT_CHECKRATE

 	setting

 	
 BROKER_LOGIN_METHOD

 	setting

 	
 BROKER_POOL_LIMIT

 	setting

 	
 BROKER_TRANSPORT

 	setting

 	BROKER_TRANSPORT (celery.app.utils.Settings attribute)

 	
 BROKER_TRANSPORT_OPTIONS

 	setting

 	
 BROKER_URL

 	setting

 	BROKER_URL (celery.app.utils.Settings attribute)

 	
 BROKER_USE_SSL

 	setting

 	bucket (celery.backends.couchbase.CouchBaseBackend attribute)

 	bucket_for_task() (celery.worker.consumer.Consumer method)

 	(consumer method)

 	bugreport() (celery.Celery method)

 	(in module celery.app.utils)

 	build_graph() (celery.result.AsyncResult method)

 	build_tracer() (in module celery.app.trace)

 	builtin_modules (celery.loaders.base.BaseLoader attribute)

 	builtins (celery.bin.amqp.AMQShell attribute)

C

 	
 	C_FAKEFORK, [1], [2], [3]

 	C_IMPDEBUG

 	CacheBackend (class in celery.backends.cache)

 	cached_property (class in celery.utils)

 	call() (celery.app.control.Control.Mailbox method)

 	call_after() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	call_at() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	call_repeatedly() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	call_task() (celery.worker.consumer.Gossip method)

 	callbacks (celery.backends.amqp.AMQPBackend.Consumer attribute)

 	calling

 	can_cache_declaration (celery.backends.amqp.AMQPBackend.Exchange attribute)

 	cancel() (celery.backends.amqp.AMQPBackend.Consumer method)

 	(celery.concurrency.base.BasePool.Timer method)

 	(celery.concurrency.base.BasePool.Timer.Entry method)

 	(celery.concurrency.eventlet.TaskPool.Timer method)

 	(celery.events.snapshot.Polaroid method)

 	(celery.utils.timer2.Entry method)

 	(celery.utils.timer2.Timer method)

 	(celery.utils.timer2.Timer.Entry method)

 	cancel_by_queue() (celery.backends.amqp.AMQPBackend.Consumer method)

 	
 cancel_consumer

 	control

 	cancel_consumer()

 	(celery.app.control.Control method)

 	cancel_task_queue() (celery.worker.consumer.Consumer method)

 	(consumer method)

 	cancelled (celery.concurrency.base.BasePool.Timer.Entry attribute)

 	(celery.utils.timer2.Entry attribute)

 	(celery.utils.timer2.Timer.Entry attribute)

 	capacity (celery.utils.sysinfo.df attribute)

 	capture() (celery.events.EventReceiver method)

 	(celery.events.snapshot.Polaroid method)

 	carp() (celery.bin.multi.MultiTool method)

 	
 CASSANDRA_COLUMN_FAMILY

 	setting

 	
 CASSANDRA_DETAILED_MODE

 	setting

 	
 CASSANDRA_KEYSPACE

 	setting

 	
 CASSANDRA_READ_CONSISTENCY

 	setting

 	
 CASSANDRA_SERVERS

 	setting

 	
 CASSANDRA_WRITE_CONSISTENCY

 	setting

 	CassandraBackend (class in celery.backends.cassandra)

 	cast() (celery.app.control.Control.Mailbox method)

 	CDeprecationWarning

 	Celery (class in celery)

 	celery (module)

 	
 celery-beat command line option

 	--detach

 	--max-interval

 	-S, --scheduler

 	-f, --logfile

 	-l, --loglevel

 	-s, --schedule

 	
 celery-events command line option

 	--detach

 	-F, --freq, --frequency

 	-c, --camera

 	-d, --dump

 	-l, --loglevel

 	-r, --maxrate

 	
 celery-worker command line option

 	--autoreload

 	--autoscale

 	--heartbeat-interval

 	--maxtasksperchild

 	--no-execv

 	--pidfile

 	--purge

 	--scheduler

 	--soft-time-limit

 	--time-limit

 	--without-gossip

 	--without-heartbeat

 	--without-mingle

 	-B, --beat

 	-E, --events

 	-I, --include

 	-O

 	-P, --pool

 	-Q, --queues

 	-S, --statedb

 	-c, --concurrency

 	-f, --logfile

 	-l, --loglevel

 	-n, --hostname

 	-s, --schedule

 	celery._state (module)

 	celery.app (module)

 	celery.app.amqp (module)

 	celery.app.annotations (module)

 	celery.app.builtins (module)

 	celery.app.control (module)

 	celery.app.defaults (module)

 	celery.app.log (module)

 	celery.app.registry (module)

 	celery.app.routes (module)

 	celery.app.task (module)

 	celery.app.trace (module)

 	celery.app.utils (module)

 	celery.apps.beat (module)

 	celery.apps.worker (module)

 	celery.backends (module)

 	celery.backends.amqp (module)

 	celery.backends.base (module)

 	celery.backends.cache (module)

 	celery.backends.cassandra (module)

 	celery.backends.couchbase (module)

 	celery.backends.database (module)

 	celery.backends.database.models (module)

 	celery.backends.database.session (module)

 	celery.backends.mongodb (module)

 	celery.backends.redis (module)

 	celery.backends.rpc (module)

 	celery.beat (module)

 	celery.bin.amqp (module)

 	celery.bin.base (module)

 	celery.bin.beat (module)

 	celery.bin.celery (module)

 	celery.bin.events (module)

 	celery.bin.graph (module)

 	celery.bin.multi (module)

 	celery.bin.worker (module)

 	celery.bootsteps (module)

 	celery.concurrency (module)

 	celery.concurrency.base (module)

 	celery.concurrency.eventlet (module)

 	celery.concurrency.gevent (module)

 	celery.concurrency.prefork (module)

 	celery.concurrency.solo (module)

 	celery.concurrency.threads (module)

 	celery.contrib.abortable (module)

 	celery.contrib.batches (module)

 	celery.contrib.methods (module)

 	celery.contrib.migrate (module)

 	celery.contrib.rdb (module)

 	celery.contrib.sphinx (module)

 	celery.datastructures (module)

 	celery.events (module)

 	celery.events.cursesmon (module)

 	celery.events.dumper (module)

 	celery.events.snapshot (module)

 	celery.events.state (module)

 	celery.exceptions (module)

 	celery.loaders (module)

 	celery.loaders.app (module)

 	celery.loaders.base (module)

 	celery.loaders.default (module)

 	celery.platforms (module)

 	celery.result (module)

 	celery.schedules (module)

 	celery.security (module)

 	celery.security.certificate (module)

 	celery.security.key (module)

 	celery.security.serialization (module)

 	celery.security.utils (module)

 	celery.signals (module)

 	celery.states (module)

 	celery.task.base (module)

 	celery.task.http (module), [1]

 	celery.utils (module)

 	celery.utils.compat (module)

 	celery.utils.debug (module)

 	celery.utils.dispatch (module)

 	celery.utils.dispatch.saferef (module)

 	celery.utils.dispatch.signal (module)

 	celery.utils.functional (module)

 	celery.utils.imports (module)

 	celery.utils.iso8601 (module)

 	celery.utils.log (module)

 	celery.utils.mail (module)

 	celery.utils.objects (module)

 	celery.utils.serialization (module)

 	celery.utils.sysinfo (module)

 	celery.utils.term (module)

 	celery.utils.text (module)

 	celery.utils.threads (module)

 	celery.utils.timer2 (module)

 	celery.utils.timeutils (module)

 	celery.worker (module)

 	celery.worker.autoreload (module)

 	celery.worker.autoscale (module)

 	celery.worker.components (module)

 	celery.worker.consumer (module)

 	celery.worker.control (module)

 	celery.worker.heartbeat (module)

 	celery.worker.job (module)

 	celery.worker.loops (module)

 	celery.worker.pidbox (module)

 	celery.worker.state (module)

 	celery.worker.strategy (module)

 	
 CELERY_ACCEPT_CONTENT

 	setting

 	
 CELERY_ACKS_LATE

 	setting

 	
 CELERY_ALWAYS_EAGER

 	setting

 	
 CELERY_ANNOTATIONS

 	setting

 	CELERY_BENCH

 	
 CELERY_BROADCAST_EXCHANGE

 	setting

 	
 CELERY_BROADCAST_EXCHANGE_TYPE

 	setting

 	
 CELERY_BROADCAST_QUEUE

 	setting

 	CELERY_BROKER_URL

 	
 CELERY_CACHE_BACKEND

 	setting

 	
 CELERY_CACHE_BACKEND_OPTIONS

 	setting

 	CELERY_CHDIR

 	
 CELERY_CHORD_PROPAGATES

 	setting

 	CELERY_CONFIG_MODULE, [1], [2]

 	
 CELERY_COUCHBASE_BACKEND_SETTINGS

 	setting

 	CELERY_CREATE_DIRS

 	
 CELERY_CREATE_MISSING_QUEUES

 	setting

 	
 CELERY_DEFAULT_DELIVERY_MODE

 	setting

 	
 CELERY_DEFAULT_EXCHANGE

 	setting

 	
 CELERY_DEFAULT_EXCHANGE_TYPE

 	setting

 	
 CELERY_DEFAULT_QUEUE

 	setting

 	
 CELERY_DEFAULT_RATE_LIMIT

 	setting

 	
 CELERY_DEFAULT_ROUTING_KEY

 	setting

 	
 CELERY_DISABLE_RATE_LIMITS

 	setting

 	
 CELERY_EAGER_PROPAGATES_EXCEPTIONS

 	setting

 	
 CELERY_ENABLE_REMOTE_CONTROL

 	setting

 	
 CELERY_ENABLE_UTC

 	setting

 	
 CELERY_EVENT_QUEUE_EXPIRES

 	setting

 	
 CELERY_EVENT_QUEUE_TTL

 	setting

 	
 CELERY_EVENT_SERIALIZER

 	setting

 	
 CELERY_IGNORE_RESULT

 	setting

 	
 CELERY_IMPORTS

 	setting

 	
 CELERY_INCLUDE

 	setting

 	CELERY_LOADER, [1], [2], [3], [4], [5]

 	
 CELERY_MAX_CACHED_RESULTS

 	setting

 	
 CELERY_MESSAGE_COMPRESSION

 	setting

 	
 CELERY_MONGODB_BACKEND_SETTINGS

 	setting

 	
 CELERY_QUEUE_HA_POLICY

 	setting

 	
 CELERY_QUEUES

 	setting

 	CELERY_RDB_HOST

 	CELERY_RDB_PORT

 	CELERY_RDBSIG

 	
 CELERY_REDIRECT_STDOUTS

 	setting

 	
 CELERY_REDIRECT_STDOUTS_LEVEL

 	setting

 	
 CELERY_REDIS_MAX_CONNECTIONS

 	setting

 	
 CELERY_RESULT_BACKEND

 	setting

 	CELERY_RESULT_BACKEND (celery.app.utils.Settings attribute)

 	
 CELERY_RESULT_DB_SHORT_LIVED_SESSIONS

 	setting

 	
 CELERY_RESULT_DB_TABLENAMES

 	setting

 	
 CELERY_RESULT_DBURI

 	setting

 	
 CELERY_RESULT_ENGINE_OPTIONS

 	setting

 	
 	
 CELERY_RESULT_EXCHANGE

 	setting

 	
 CELERY_RESULT_EXCHANGE_TYPE

 	setting

 	
 CELERY_RESULT_PERSISTENT

 	setting

 	
 CELERY_RESULT_SERIALIZER

 	setting

 	
 CELERY_ROUTES

 	setting

 	
 CELERY_SECURITY_CERT_STORE

 	setting

 	
 CELERY_SECURITY_CERTIFICATE

 	setting

 	
 CELERY_SECURITY_KEY

 	setting

 	
 CELERY_SEND_EVENTS

 	setting

 	
 CELERY_SEND_TASK_ERROR_EMAILS

 	setting

 	
 CELERY_SEND_TASK_SENT_EVENT

 	setting

 	
 CELERY_STORE_ERRORS_EVEN_IF_IGNORED

 	setting

 	
 CELERY_TASK_PUBLISH_RETRY

 	setting

 	
 CELERY_TASK_PUBLISH_RETRY_POLICY

 	setting

 	
 CELERY_TASK_RESULT_EXPIRES

 	setting

 	
 CELERY_TASK_SERIALIZER

 	setting

 	
 CELERY_TIMEZONE

 	setting

 	CELERY_TIMEZONE (celery.app.utils.Settings attribute)

 	CELERY_TRACE_APP, [1], [2]

 	
 CELERY_TRACK_STARTED

 	setting

 	
 CELERY_WORKER_DIRECT

 	setting

 	
 CELERYBEAT_MAX_LOOP_INTERVAL

 	setting

 	
 CELERYBEAT_SCHEDULE

 	setting

 	
 CELERYBEAT_SCHEDULE_FILENAME

 	setting

 	
 CELERYBEAT_SCHEDULER

 	setting

 	
 CELERYBEAT_SYNC_EVERY

 	setting

 	CeleryCommand (class in celery.bin.celery)

 	
 celeryd_after_setup

 	signal

 	
 CELERYD_AUTORELOADER

 	setting

 	
 CELERYD_AUTOSCALER

 	setting

 	
 CELERYD_CONCURRENCY

 	setting

 	
 CELERYD_CONSUMER

 	setting

 	CELERYD_FSNOTIFY, [1]

 	
 CELERYD_HIJACK_ROOT_LOGGER

 	setting

 	
 celeryd_init

 	signal

 	
 CELERYD_LOG_COLOR

 	setting

 	
 CELERYD_LOG_FORMAT

 	setting

 	
 CELERYD_MAX_TASKS_PER_CHILD

 	setting

 	
 CELERYD_POOL

 	setting

 	
 CELERYD_POOL_RESTARTS

 	setting

 	
 CELERYD_PREFETCH_MULTIPLIER

 	setting

 	
 CELERYD_STATE_DB

 	setting

 	
 CELERYD_TASK_LOG_FORMAT

 	setting

 	
 CELERYD_TASK_SOFT_TIME_LIMIT

 	setting

 	
 CELERYD_TASK_TIME_LIMIT

 	setting

 	
 CELERYD_TIMER

 	setting

 	
 CELERYD_TIMER_PRECISION

 	setting

 	
 CELERYD_WORKER_LOST_WAIT

 	setting

 	
 CELERYMON_LOG_FORMAT

 	setting

 	Certificate (class in celery.security.certificate)

 	CertStore (class in celery.security.certificate)

 	chain (class in celery)

 	chan (celery.bin.amqp.AMQShell attribute)

 	changes (celery.datastructures.ConfigurationView attribute)

 	channel (celery.backends.amqp.AMQPBackend.Consumer attribute)

 	(celery.backends.amqp.AMQPBackend.Exchange attribute)

 	(celery.backends.amqp.AMQPBackend.Producer attribute)

 	check_args() (celery.bin.base.Command method)

 	CHECK_METHODS (celery.bin.base.Option attribute)

 	check_value() (celery.bin.base.Option method)

 	children (celery.result.AsyncResult attribute)

 	(celery.result.GroupResult attribute)

 	chord (class in celery)

 	chord_error_from_stack() (celery.backends.base.BaseBackend method)

 	chord_keyprefix (celery.backends.base.KeyValueStoreBackend attribute)

 	ChordError

 	chunks() (celery.app.task.Task method)

 	(in module celery.utils.functional)

 	cipater

 	claim_steps() (celery.bootsteps.Blueprint method)

 	cleanup() (celery.backends.base.BaseBackend method)

 	(celery.backends.database.DatabaseBackend method)

 	(celery.backends.mongodb.MongoBackend method)

 	(celery.events.snapshot.Polaroid method)

 	(celery.utils.threads.LocalManager method)

 	cleanup_signal (celery.events.snapshot.Polaroid attribute)

 	clear() (celery.concurrency.base.BasePool.Timer method)

 	(celery.concurrency.eventlet.TaskPool.Timer.Schedule method)

 	(celery.concurrency.gevent.TaskPool.Timer.Schedule method)

 	(celery.datastructures.ConfigurationView method)

 	(celery.datastructures.LimitedSet method)

 	(celery.events.state.State method)

 	(celery.result.ResultSet method)

 	(celery.utils.timer2.Timer method)

 	clear_after (celery.events.snapshot.Polaroid attribute)

 	clear_tasks() (celery.events.state.State method)

 	client (celery.backends.cache.CacheBackend attribute)

 	(celery.backends.redis.RedisBackend attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	clock (celery.events.state.State.Task attribute)

 	(celery.events.state.State.Worker attribute)

 	(celery.events.state.Task attribute)

 	(celery.events.state.Worker attribute)

 	clock() (celery.app.control.Inspect method)

 	clone() (celery.signature method)

 	CLOSE (celery.concurrency.base.BasePool attribute)

 	close() (celery.backends.amqp.AMQPBackend.Consumer method)

 	(celery.Celery method)

 	(celery.backends.amqp.AMQPBackend.Producer method)

 	(celery.beat.PersistentScheduler method)

 	(celery.beat.Scheduler method)

 	(celery.bootsteps.Blueprint method)

 	(celery.bootsteps.StartStopStep method)

 	(celery.concurrency.base.BasePool method)

 	(celery.events.EventDispatcher method)

 	(celery.platforms.DaemonContext method)

 	(celery.utils.log.LoggingProxy method)

 	(celery.worker.autoreload.KQueueMonitor method)

 	(celery.worker.components.Pool method)

 	(celery.worker.state.Persistent method)

 	close_open_fds() (in module celery.platforms)

 	closed (celery.utils.log.LoggingProxy attribute)

 	cmdline_config_parser() (celery.loaders.base.BaseLoader method)

 	coerce() (celery.bin.amqp.Spec method)

 	collect() (celery.result.AsyncResult method)

 	collection (celery.backends.mongodb.MongoBackend attribute)

 	colored (celery.bin.base.Command attribute)

 	(celery.bin.multi.MultiTool attribute)

 	(class in celery.utils.term)

 	colored() (celery.app.log.Logging method)

 	ColorFormatter (class in celery.utils.log)

 	COLORS (celery.utils.log.ColorFormatter attribute)

 	colors (celery.utils.log.ColorFormatter attribute)

 	column_family (celery.backends.cassandra.CassandraBackend attribute)

 	Command (class in celery.bin.base)

 	
 command line option

 	--config

 	--executable

 	--gid

 	--loader

 	--pidfile

 	--uid

 	--umask

 	--workdir

 	-A, --app

 	-b, --broker

 	-f, --logfile

 	Command.Error

 	Command.UsageError

 	commands (celery.bin.celery.CeleryCommand attribute)

 	compatible_transport() (celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.Mingle method)

 	compatible_transports (celery.worker.consumer.Gossip attribute)

 	(celery.worker.consumer.Mingle attribute)

 	completed_count() (celery.result.ResultSet method)

 	completenames() (celery.bin.amqp.AMQShell method)

 	compress() (celery.worker.state.Persistent method)

 	compression (celery.backends.amqp.AMQPBackend.Producer attribute)

 	(Task attribute)

 	conditional (celery.bootsteps.Step attribute)

 	(celery.worker.autoreload.WorkerComponent attribute)

 	(celery.worker.autoscale.WorkerComponent attribute)

 	(celery.worker.components.Beat attribute)

 	(celery.worker.consumer.Agent attribute)

 	conf (celery.Celery attribute)

 	(celery.loaders.base.BaseLoader attribute)

 	conf() (celery.app.control.Inspect method)

 	config_from_object() (celery.Celery method)

 	(celery.loaders.base.BaseLoader method)

 	ConfigurationView (class in celery.datastructures)

 	configured (celery.loaders.base.BaseLoader attribute)

 	conn (celery.bin.amqp.AMQShell attribute)

 	conncache (celery.backends.couchbase.CouchBaseBackend attribute)

 	connect() (celery.bin.amqp.AMQPAdmin method)

 	(celery.utils.dispatch.Signal method)

 	(celery.utils.dispatch.signal.Signal method)

 	(celery.worker.consumer.Consumer method)

 	connect_on_app_finalize() (in module celery._state)

 	connect_with() (celery.bootsteps.Blueprint method)

 	connection

 	Connection (celery.app.amqp.AMQP attribute)

 	connection (celery.app.control.Control.Mailbox attribute)

 	(celery.backends.amqp.AMQPBackend.Consumer attribute)

 	(celery.backends.amqp.AMQPBackend.Producer attribute)

 	(celery.backends.couchbase.CouchBaseBackend attribute)

 	(celery.beat.Scheduler attribute)

 	(celery.events.EventReceiver attribute)

 	Connection (class in celery.worker.consumer)

 	connection() (celery.Celery method)

 	connection_errors (celery.worker.job.Request attribute)

 	connection_or_acquire() (celery.Celery method)

 	ConnectionPool (celery.backends.redis.RedisBackend attribute)

 	CONST_ACTIONS (celery.bin.base.Option attribute)

 	consume() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.amqp.AMQPBackend.Consumer method)

 	consume_from (celery.app.amqp.Queues attribute)

 	Consumer (celery.app.amqp.AMQP attribute)

 	consumer (celery.worker.pidbox.Pidbox attribute)

 	Consumer (class in celery.worker.components)

 	(class in celery.worker.consumer)

 	Consumer.Blueprint (class in celery.worker.consumer)

 	consumers (celery.bootsteps.ConsumerStep attribute)

 	ConsumerStep (class in celery.bootsteps)

 	consuming_from() (celery.backends.amqp.AMQPBackend.Consumer method)

 	context

 	
 control

 	active_queues

 	add_consumer

 	cancel_consumer

 	disable_events

 	enable_events

 	ping

 	pool_restart

 	rate_limit

 	revoke

 	shutdown

 	control (celery.Celery attribute)

 	Control (class in celery.app.control)

 	(class in celery.worker.consumer)

 	Control.Mailbox (class in celery.app.control)

 	controller

 	convert_value() (celery.bin.base.Option method)

 	correlation_id (celery.worker.job.Request attribute)

 	CouchBaseBackend (class in celery.backends.couchbase)

 	count (celery.contrib.migrate.State attribute)

 	counter (celery.bin.amqp.AMQShell attribute)

 	CPendingDeprecationWarning

 	create() (celery.bootsteps.Step method)

 	(celery.worker.autoreload.WorkerComponent method)

 	(celery.worker.autoscale.WorkerComponent method)

 	(celery.worker.components.Beat method)

 	(celery.worker.components.Consumer method)

 	(celery.worker.components.Hub method)

 	(celery.worker.components.Pool method)

 	(celery.worker.components.Queues method)

 	(celery.worker.components.StateDB method)

 	(celery.worker.components.Timer method)

 	(celery.worker.consumer.Agent method)

 	create_exception_cls() (in module celery.utils.serialization)

 	create_notifier() (celery.worker.autoreload.InotifyMonitor method)

 	create_parser() (celery.bin.base.Command method)

 	create_pidlock() (in module celery.platforms)

 	create_session() (celery.backends.database.session.SessionManager method)

 	create_task_handler() (celery.worker.consumer.Consumer method)

 	crontab (class in celery.schedules)

 	crontab_parser (class in celery.schedules)

 	crontab_parser.ParseException

 	cry() (in module celery.utils)

 	current_app (in module celery)

 	current_task (celery.Celery attribute)

 	(in module celery)

 	current_task_children() (celery.backends.base.BaseBackend method)

 	CursesMonitor (class in celery.events.cursesmon)

 	cwd_in_path() (in module celery.utils.imports)

 	cyan() (celery.utils.term.colored method)

D

 	
 	daemon_options() (in module celery.bin.base)

 	DaemonContext (class in celery.platforms)

 	data (celery.worker.control.Panel attribute)

 	database (celery.backends.mongodb.MongoBackend attribute)

 	database_name (celery.backends.mongodb.MongoBackend attribute)

 	DatabaseBackend (class in celery.backends.database)

 	date_done (celery.backends.database.models.Task attribute)

 	(celery.backends.database.models.TaskSet attribute)

 	day_of_month (celery.schedules.crontab attribute)

 	day_of_week (celery.schedules.crontab attribute)

 	db (celery.backends.redis.RedisBackend attribute)

 	(celery.worker.state.Persistent attribute)

 	debugger() (in module celery.contrib.rdb)

 	declare() (celery.backends.amqp.AMQPBackend.Consumer method)

 	(celery.backends.amqp.AMQPBackend.Exchange method)

 	(celery.backends.amqp.AMQPBackend.Producer method)

 	(queue method)

 	decode() (celery.backends.base.BaseBackend method)

 	decode_result() (celery.backends.base.BaseBackend method)

 	decompress() (celery.worker.state.Persistent method)

 	dedent() (in module celery.utils.text)

 	dedent_initial() (in module celery.utils.text)

 	default() (celery.bin.amqp.AMQShell method)

 	(in module celery.worker.strategy)

 	default_app (in module celery.app)

 	default_dispatcher() (celery.events.Events method)

 	default_exchange (celery.app.amqp.AMQP attribute)

 	default_loader (in module celery.app)

 	default_nodename() (in module celery.worker)

 	default_queue (celery.app.amqp.AMQP attribute)

 	default_retry_delay (celery.app.task.Task attribute)

 	(Task attribute)

 	default_socket_timeout() (in module celery.utils.threads)

 	default_steps (celery.bootsteps.Blueprint attribute)

 	(celery.worker.WorkController.Blueprint attribute)

 	(celery.worker.consumer.Consumer.Blueprint attribute)

 	defaults (celery.datastructures.ConfigurationView attribute)

 	delay() (celery.app.task.Task method)

 	(celery.signature method)

 	delete() (celery.backends.amqp.AMQPBackend.Exchange method)

 	(celery.backends.base.KeyValueStoreBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.couchbase.CouchBaseBackend method)

 	(celery.backends.redis.RedisBackend method)

 	(celery.result.GroupResult method)

 	(exchange method)

 	(queue method)

 	delete_group() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.base.BaseBackend method)

 	deleter() (celery.utils.cached_property method)

 	delivery_info (celery.contrib.batches.SimpleRequest attribute)

 	(celery.worker.job.Request attribute)

 	
 	delivery_mode (celery.backends.amqp.AMQPBackend.Exchange attribute), [1]

 	delta_resolution() (in module celery.utils.timeutils)

 	deprecate_by (celery.app.defaults.Option attribute)

 	deprecated() (in module celery.utils)

 	description (celery.bin.base.Command attribute)

 	deselect() (celery.app.amqp.Queues method)

 	deserialize() (celery.security.serialization.SecureSerializer method)

 	destination_for() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.rpc.RPCBackend method)

 	detached() (in module celery.platforms)

 	detailed_mode (celery.backends.cassandra.CassandraBackend attribute)

 	df (class in celery.utils.sysinfo)

 	DictAttribute (class in celery.datastructures)

 	dictfilter() (in module celery.utils.functional)

 	did_start_ok() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.prefork.TaskPool method)

 	die() (celery.bin.base.Command method)

 	disable() (celery.events.EventDispatcher method)

 	
 disable_events

 	control

 	disable_events() (celery.app.control.Control method)

 	disable_trace() (in module celery.app)

 	DISABLED_TRANSPORTS (celery.events.EventDispatcher attribute)

 	DisabledBackend (class in celery.backends.base)

 	discard() (celery.datastructures.LimitedSet method)

 	(celery.result.ResultSet method)

 	discard_all() (celery.app.control.Control method)

 	disconnect() (celery.utils.dispatch.Signal method)

 	(celery.utils.dispatch.signal.Signal method)

 	dispatch() (celery.bin.amqp.AMQShell method)

 	(celery.task.http.HttpDispatch method)

 	Dispatcher (celery.events.Events attribute)

 	dispatcher (celery.task.http.URL attribute)

 	display_command_help() (celery.bin.amqp.AMQShell method)

 	display_height (celery.events.cursesmon.CursesMonitor attribute)

 	display_task_row() (celery.events.cursesmon.CursesMonitor method)

 	display_width (celery.events.cursesmon.CursesMonitor attribute)

 	DJANGO_SETTINGS_MODULE, [1], [2], [3], [4]

 	do_exit() (celery.bin.amqp.AMQShell method)

 	do_help() (celery.bin.amqp.AMQShell method)

 	doc (celery.bin.base.Command attribute)

 	(celery.bin.beat.beat attribute)

 	(celery.bin.events.events attribute)

 	(celery.bin.worker.worker attribute)

 	DOWN (celery.bin.multi.MultiTool attribute)

 	drain_events() (celery.backends.amqp.AMQPBackend method)

 	draw() (celery.events.cursesmon.CursesMonitor method)

 	dst() (celery.utils.timeutils.LocalTimezone method)

 	dump_body() (in module celery.worker.consumer)

 	Dumper (class in celery.events.dumper)

 	DuplicateNodenameWarning

 	durable (celery.backends.amqp.AMQPBackend.Exchange attribute), [1]

E

 	
 	eager_trace_task() (in module celery.app.trace)

 	EagerResult (class in celery.result)

 	early_version() (celery.bin.base.Command method)

 	election() (celery.app.control.Control method)

 	(celery.worker.consumer.Gossip method)

 	
 EMAIL_HOST

 	setting

 	
 EMAIL_HOST_PASSWORD

 	setting

 	
 EMAIL_HOST_USER

 	setting

 	
 EMAIL_PORT

 	setting

 	EMAIL_SIGNATURE_SEP (celery.utils.mail.ErrorMail attribute)

 	
 EMAIL_TIMEOUT

 	setting

 	
 EMAIL_USE_SSL

 	setting

 	
 EMAIL_USE_TLS

 	setting

 	embed() (celery.utils.term.colored method)

 	EmbeddedService() (in module celery.beat)

 	empty() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	enable() (celery.events.EventDispatcher method)

 	enable_config_from_cmdline (celery.bin.base.Command attribute)

 	(celery.bin.beat.beat attribute)

 	(celery.bin.celery.CeleryCommand attribute)

 	(celery.bin.worker.worker attribute)

 	
 enable_events

 	control

 	enable_events() (celery.app.control.Control method)

 	enable_trace() (in module celery.app)

 	enabled (celery.bootsteps.Step attribute)

 	encode() (celery.backends.base.BaseBackend method)

 	encode_result() (celery.backends.base.BaseBackend method)

 	ensure() (celery.backends.redis.RedisBackend method)

 	ensure_2lines() (in module celery.utils.text)

 	ensure_process_aware_logger() (in module celery.utils.log)

 	ensure_started() (celery.concurrency.base.BasePool.Timer method)

 	(celery.concurrency.eventlet.TaskPool.Timer method)

 	(celery.concurrency.gevent.TaskPool.Timer method)

 	(celery.utils.timer2.Timer method)

 	enter() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	enter_after() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	Entry (celery.beat.Scheduler attribute)

 	(class in celery.utils.timer2)

 	
 environment variable

 	AWS_ACCESS_KEY_ID

 	AWS_SECRET_ACCESS_KEY

 	CELERYD_FSNOTIFY, [1]

 	CELERY_BENCH

 	CELERY_BROKER_URL

 	CELERY_CHDIR

 	CELERY_CONFIG_MODULE, [1], [2]

 	CELERY_CREATE_DIRS

 	CELERY_LOADER, [1], [2], [3], [4], [5]

 	CELERY_RDBSIG

 	CELERY_RDB_HOST, [1]

 	CELERY_RDB_PORT, [1]

 	CELERY_TRACE_APP, [1], [2]

 	C_FAKEFORK, [1], [2], [3]

 	C_IMPDEBUG

 	DJANGO_SETTINGS_MODULE, [1], [2], [3], [4]

 	IRON_PROJECT_ID

 	IRON_TOKEN

 	MP_LOG, [1]

 	NOSE_VERBOSE

 	USE_FAST_LOCALS

 	epilog (celery.bin.base.Command attribute)

 	Error

 	error() (celery.bin.base.Command method)

 	(celery.bin.multi.MultiTool method)

 	error_msg (celery.worker.job.Request attribute)

 	ErrorMail (class in celery.utils.mail)

 	(Task attribute)

 	eta (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.worker.job.Request attribute)

 	evaluate() (celery.utils.functional.lazy method)

 	(celery.utils.functional.mlazy method)

 	
 	evaluated (celery.utils.functional.mlazy attribute), [1]

 	evcam() (in module celery.events.snapshot)

 	evdump() (in module celery.events.dumper)

 	
 event

 	task-failed

 	task-received

 	task-retried

 	task-revoked

 	task-sent

 	task-started

 	task-succeeded

 	worker-heartbeat

 	worker-offline

 	worker-online

 	event (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	event() (celery.events.state.State method)

 	(celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	Event() (in module celery.events)

 	event_count (celery.events.state.State attribute)

 	event_dispatcher

 	event_from_message() (celery.events.EventReceiver method)

 	EventDispatcher (class in celery.events)

 	eventer (celery.worker.job.Request attribute)

 	
 eventlet_pool_apply

 	signal

 	
 eventlet_pool_postshutdown

 	signal

 	
 eventlet_pool_preshutdown

 	signal

 	
 eventlet_pool_started

 	signal

 	EventReceiver (class in celery.events)

 	events (celery.Celery attribute)

 	(class in celery.bin.events)

 	Events (class in celery.events)

 	(class in celery.worker.consumer)

 	Evloop (class in celery.worker.consumer)

 	evtop() (in module celery.events.cursesmon)

 	exc (celery.exceptions.Retry attribute)

 	exc_args (celery.utils.serialization.UnpickleableExceptionWrapper attribute)

 	exc_cls_name (celery.utils.serialization.UnpickleableExceptionWrapper attribute)

 	exc_module (celery.utils.serialization.UnpickleableExceptionWrapper attribute)

 	exception (celery.datastructures.ExceptionInfo attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	
 EXCEPTION_STATES

 	state

 	EXCEPTION_STATES (celery.backends.base.BaseBackend attribute)

 	exception_to_python() (celery.backends.base.BaseBackend method)

 	ExceptionInfo (class in celery.datastructures)

 	exchange (celery.app.control.Control.Mailbox attribute)

 	(celery.backends.amqp.AMQPBackend.Producer attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	exchange_fmt (celery.app.control.Control.Mailbox attribute)

 	execute() (celery.bin.celery.CeleryCommand method)

 	(celery.worker.job.Request method)

 	execute_from_commandline() (celery.bin.base.Command method)

 	(celery.bin.celery.CeleryCommand method)

 	(celery.bin.multi.MultiTool method)

 	execute_using_pool() (celery.worker.job.Request method)

 	executing

 	exit_after() (celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	expand() (celery.bin.multi.MultiTool method)

 	expand_destination() (celery.app.routes.Router method)

 	expanduser() (celery.bin.base.Command method)

 	expire() (celery.backends.base.KeyValueStoreBackend method)

 	(celery.backends.redis.RedisBackend method)

 	expire_window (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	expires (celery.app.task.Task attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.worker.job.Request attribute)

 	ext_fmt (celery.bin.celery.CeleryCommand attribute)

 	extend_buffer() (celery.events.EventDispatcher method)

 	extend_with_default_kwargs() (celery.worker.job.Request method)

 	Extensions (class in celery.bin.base)

 	extra_info() (celery.apps.worker.Worker method)

F

 	
 	fail_from_current_stack() (celery.backends.base.BaseBackend method)

 	FAILED (celery.bin.multi.MultiTool attribute)

 	failed (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	failed() (celery.result.AsyncResult method)

 	(celery.result.ResultSet method)

 	
 FAILURE

 	state

 	FAILURE (in module celery.states)

 	fallback_chord_unlock() (celery.backends.base.BaseBackend method)

 	fd_by_path() (in module celery.platforms)

 	ffwd (class in celery.utils.timeutils)

 	file_hash() (in module celery.worker.autoreload)

 	fill_paragraphs() (in module celery.utils.text)

 	filter_hidden_settings() (in module celery.app.utils)

 	filter_types() (celery.app.registry.TaskRegistry method)

 	filtered (celery.contrib.migrate.State attribute)

 	finalize() (celery.Celery method)

 	find() (in module celery.app.defaults)

 	find_app() (celery.bin.base.Command method)

 	(in module celery.app.utils)

 	find_changes() (celery.worker.autoreload.StatMonitor method)

 	find_module() (celery.loaders.base.BaseLoader method)

 	(in module celery.utils.imports)

 	find_option() (celery.app.utils.Settings method)

 	find_pickleable_exception() (in module celery.utils.serialization)

 	find_position() (celery.events.cursesmon.CursesMonitor method)

 	find_value_for_key() (celery.app.utils.Settings method)

 	first() (celery.datastructures.ConfigurationView method)

 	(in module celery.utils.functional)

 	firstmethod() (in module celery.utils.functional)

 	FixupWarning

 	flatten() (in module celery.app.defaults)

 	flatten_links() (celery.signature method)

 	flatten_reply() (in module celery.app.control)

 	flow() (celery.backends.amqp.AMQPBackend.Consumer method)

 	flush() (celery.concurrency.base.BasePool method)

 	(celery.contrib.batches.Batches method)

 	(celery.events.EventDispatcher method)

 	(celery.utils.log.LoggingProxy method)

 	
 	flush_every (celery.contrib.batches.Batches attribute)

 	flush_interval (celery.contrib.batches.Batches attribute)

 	flush_routes() (celery.app.amqp.AMQP method)

 	force_scale_down() (celery.worker.autoscale.Autoscaler method)

 	force_scale_up() (celery.worker.autoscale.Autoscaler method)

 	foreground (celery.events.cursesmon.CursesMonitor attribute)

 	forget() (celery.backends.base.BaseBackend method)

 	(celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	(celery.result.ResultSet method)

 	format() (celery.app.amqp.Queues method)

 	(celery.app.log.TaskFormatter method)

 	(celery.utils.log.ColorFormatter method)

 	format_arg() (celery.bin.amqp.Spec method)

 	format_body() (celery.utils.mail.ErrorMail method)

 	format_description() (celery.bin.base.HelpFormatter method)

 	format_epilog() (celery.bin.base.HelpFormatter method)

 	format_response() (celery.bin.amqp.Spec method)

 	format_row() (celery.events.cursesmon.CursesMonitor method)

 	format_signature() (celery.bin.amqp.Spec method)

 	format_subject() (celery.utils.mail.ErrorMail method)

 	format_task_event() (celery.events.dumper.Dumper method)

 	formatException() (celery.utils.log.ColorFormatter method)

 	freeze() (celery.signature method)

 	(State method)

 	freeze_while() (celery.events.state.State method)

 	(State method)

 	freq (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	from_exception() (celery.utils.serialization.UnpickleableExceptionWrapper class method)

 	from_request() (celery.contrib.batches.SimpleRequest class method)

 	FSCertStore (class in celery.security.certificate)

 	fun (celery.concurrency.base.BasePool.Timer.Entry attribute)

 	(celery.utils.timer2.Entry attribute)

 	(celery.utils.timer2.Timer.Entry attribute)

G

 	
 	gen_task_name() (in module celery.utils)

 	get() (celery.backends.base.KeyValueStoreBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.couchbase.CouchBaseBackend method)

 	(celery.backends.redis.RedisBackend method)

 	(celery.bin.multi.MultiTool method)

 	(celery.datastructures.ConfigurationView method)

 	(celery.datastructures.DictAttribute method)

 	(celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	(celery.result.ResultSet method)

 	get_amqp_api_command() (celery.bin.amqp.AMQShell method)

 	get_async() (celery.task.http.URL method)

 	get_backend_by_url() (in module celery.backends)

 	get_backend_cls() (in module celery.backends)

 	get_by_parts() (celery.app.utils.Settings method)

 	get_children() (celery.backends.base.BaseBackend method)

 	get_cls_by_name() (celery.bin.base.Command method)

 	get_command_info() (celery.bin.celery.CeleryCommand class method)

 	get_consumers() (celery.bootsteps.ConsumerStep method)

 	(celery.events.EventReceiver method)

 	(celery.worker.consumer.Gossip method)

 	get_current_app() (in module celery._state)

 	get_current_task() (in module celery._state)

 	get_current_worker_task() (in module celery._state)

 	get_default_logger() (celery.app.log.Logging method)

 	get_engine() (celery.backends.database.session.SessionManager method)

 	get_errno_name() (in module celery.platforms)

 	get_fdmax() (in module celery.platforms)

 	get_group_meta() (celery.backends.base.BaseBackend method)

 	get_id() (celery.security.certificate.Certificate method)

 	get_ident() (celery.utils.threads.LocalManager method)

 	(in module celery.utils.threads)

 	get_implementation() (in module celery.concurrency)

 	get_issuer() (celery.security.certificate.Certificate method)

 	get_key_for_chord() (celery.backends.base.KeyValueStoreBackend method)

 	get_key_for_group() (celery.backends.base.KeyValueStoreBackend method)

 	get_key_for_task() (celery.backends.base.KeyValueStoreBackend method)

 	get_leaf() (celery.result.AsyncResult method)

 	get_loader_cls() (in module celery.loaders)

 	get_logger() (in module celery.utils.log)

 	get_many() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.base.DisabledBackend method)

 	(celery.backends.base.KeyValueStoreBackend method)

 	
 	get_multiprocessing_logger() (in module celery.utils.log)

 	get_names() (celery.bin.amqp.AMQShell method)

 	get_opt_string() (celery.bin.base.Option method)

 	get_options() (celery.bin.base.Command method)

 	(celery.bin.beat.beat method)

 	(celery.bin.events.events method)

 	(celery.bin.worker.worker method)

 	get_or_create_task() (celery.events.state.State method)

 	get_or_create_worker() (celery.events.state.State method)

 	get_pickleable_etype() (in module celery.utils.serialization)

 	get_pickleable_exception() (in module celery.utils.serialization)

 	get_pickled_exception() (in module celery.utils.serialization)

 	get_queue() (celery.app.control.Control.Mailbox method)

 	get_reply_queue() (celery.app.control.Control.Mailbox method)

 	get_result() (celery.backends.base.BaseBackend method)

 	(celery.backends.base.DisabledBackend method)

 	get_schedule() (celery.beat.PersistentScheduler method)

 	(celery.beat.Scheduler method)

 	get_scheduler() (celery.apps.beat.Beat.Service method)

 	(celery.beat.Service method)

 	get_serial_number() (celery.security.certificate.Certificate method)

 	get_state() (celery.backends.base.DisabledBackend method)

 	get_status() (celery.backends.base.BaseBackend method)

 	(celery.backends.base.DisabledBackend method)

 	get_task_logger() (in module celery.utils.log)

 	get_task_meta() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.base.BaseBackend method)

 	get_traceback() (celery.backends.base.BaseBackend method)

 	(celery.backends.base.DisabledBackend method)

 	getpids() (celery.bin.multi.MultiTool method)

 	gossip

 	Gossip (class in celery.worker.consumer)

 	gPidbox (class in celery.worker.pidbox)

 	graph (celery.result.AsyncResult attribute)

 	(class in celery.bin.graph)

 	GraphFormatter (celery.bootsteps.Blueprint attribute)

 	green() (celery.utils.term.colored method)

 	greet (celery.events.cursesmon.CursesMonitor attribute)

 	group (class in celery)

 	group_keyprefix (celery.backends.base.KeyValueStoreBackend attribute)

 	GroupResult (celery.Celery attribute)

 	(class in celery.result)

 	grow() (celery.concurrency.eventlet.TaskPool method)

 	(celery.concurrency.gevent.TaskPool method)

H

 	
 	handle_argv() (celery.bin.base.Command method)

 	(celery.bin.celery.CeleryCommand method)

 	handle_error_state() (celery.app.trace.TraceInfo method)

 	handle_event() (celery.worker.autoreload.KQueueMonitor method)

 	handle_failure() (celery.app.trace.TraceInfo method)

 	handle_keypress() (celery.events.cursesmon.CursesMonitor method)

 	handle_retry() (celery.app.trace.TraceInfo method)

 	has_expired() (celery.security.certificate.Certificate method)

 	heap_multiplier (celery.events.state.State attribute)

 	heart

 	Heart (class in celery.worker.consumer)

 	(class in celery.worker.heartbeat)

 	heartbeat_expires (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	heartbeat_expires() (in module celery.events.state)

 	heartbeat_max (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	heartbeats (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	hello() (celery.app.control.Inspect method)

 	help (celery.events.cursesmon.CursesMonitor attribute)

 	
 	help() (celery.bin.multi.MultiTool method)

 	help_title (celery.events.cursesmon.CursesMonitor attribute)

 	HelpFormatter (class in celery.bin.base)

 	host (celery.backends.couchbase.CouchBaseBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	(celery.backends.redis.RedisBackend attribute)

 	host_format() (celery.bin.base.Command method)

 	hostname, [1]

 	(celery.contrib.batches.SimpleRequest attribute)

 	(celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	(celery.worker.job.Request attribute)

 	hour (celery.schedules.crontab attribute)

 	http_headers (celery.task.http.HttpDispatch attribute)

 	HttpDispatch (class in celery.task.http)

 	hub, [1]

 	Hub (class in celery.worker.components)

 	human_seconds (celery.schedules.schedule attribute)

 	human_state() (celery.bootsteps.Blueprint method)

 	humanize() (celery.app.utils.Settings method)

 	(celery.exceptions.Retry method)

 	humanize_seconds() (in module celery.utils.timeutils)

I

 	
 	iblue() (celery.utils.term.colored method)

 	icyan() (celery.utils.term.colored method)

 	id (celery.backends.database.models.Task attribute)

 	(celery.backends.database.models.TaskSet attribute)

 	(celery.contrib.batches.SimpleRequest attribute)

 	(celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.result.GroupResult attribute)

 	(celery.worker.job.Request attribute)

 	idempotent

 	identchars (celery.bin.amqp.AMQShell attribute)

 	Ignore

 	ignore_errno() (in module celery.platforms)

 	ignore_result (celery.app.task.Task attribute)

 	(Task attribute)

 	ignored_msg (celery.worker.job.Request attribute)

 	igreen() (celery.utils.term.colored method)

 	imagenta() (celery.utils.term.colored method)

 	implements_incr (celery.backends.base.KeyValueStoreBackend attribute)

 	(celery.backends.cache.CacheBackend attribute)

 	(celery.backends.redis.RedisBackend attribute)

 	import_default_modules() (celery.loaders.base.BaseLoader method)

 	import_from_cwd() (celery.loaders.base.BaseLoader method)

 	(in module celery.utils.imports)

 	import_module() (celery.loaders.base.BaseLoader method)

 	
 import_modules

 	signal

 	import_task_module() (celery.loaders.base.BaseLoader method)

 	ImproperlyConfigured

 	in_shutdown (celery.worker.consumer.Consumer attribute)

 	in_sighandler() (in module celery.utils.log)

 	inc_counter (celery.bin.amqp.AMQShell attribute)

 	include() (celery.bootsteps.StartStopStep method)

 	(celery.bootsteps.Step method)

 	include_if() (celery.bootsteps.Step method)

 	(celery.worker.components.Hub method)

 	(celery.worker.consumer.Control method)

 	incr() (celery.backends.base.KeyValueStoreBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.redis.RedisBackend method)

 	(celery.datastructures.LRUCache method)

 	(celery.utils.functional.LRUCache method)

 	indent() (in module celery.utils.text)

 	info (celery.beat.PersistentScheduler attribute)

 	(celery.beat.Scheduler attribute)

 	(celery.concurrency.base.BasePool attribute)

 	(celery.result.AsyncResult attribute)

 	info() (celery.bin.multi.MultiTool method)

 	(celery.bootsteps.Blueprint method)

 	(celery.bootsteps.Step method)

 	(celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	(celery.worker.WorkController method)

 	(celery.worker.autoscale.Autoscaler method)

 	(celery.worker.components.Pool method)

 	(celery.worker.consumer.Connection method)

 	(celery.worker.consumer.Tasks method)

 	(celery.worker.job.Request method)

 	info_str (celery.events.cursesmon.CursesMonitor attribute)

 	
 	init_callback (celery.worker.consumer.Consumer attribute)

 	init_loader() (celery.apps.beat.Beat method)

 	init_screen() (celery.events.cursesmon.CursesMonitor method)

 	init_worker() (celery.loaders.base.BaseLoader method)

 	init_worker_process() (celery.loaders.base.BaseLoader method)

 	initgroups() (in module celery.platforms)

 	InotifyMonitor (class in celery.worker.autoreload)

 	inspect (celery.app.control.Control attribute)

 	Inspect (class in celery.app.control)

 	install() (celery.events.snapshot.Polaroid method)

 	install_default_entries() (celery.beat.Scheduler method)

 	install_platform_tweaks() (celery.apps.worker.Worker method)

 	install_sync_handler() (celery.apps.beat.Beat method)

 	instantiate() (celery.bootsteps.Step method)

 	(in module celery.utils.imports)

 	internal (celery.datastructures.ExceptionInfo attribute)

 	internal_error_msg (celery.worker.job.Request attribute)

 	InvalidResponseError

 	InvalidTaskError

 	ired() (celery.utils.term.colored method)

 	IRON_PROJECT_ID

 	IRON_TOKEN

 	is_aborted() (celery.contrib.abortable.AbortableAsyncResult method)

 	(celery.contrib.abortable.AbortableTask method)

 	is_cached() (celery.backends.base.BaseBackend method)

 	is_due() (celery.beat.ScheduleEntry method)

 	(celery.schedules.crontab method)

 	(celery.schedules.schedule method)

 	is_green (celery.concurrency.base.BasePool attribute)

 	(celery.concurrency.eventlet.TaskPool attribute)

 	(celery.concurrency.gevent.TaskPool attribute)

 	is_iterable() (in module celery.utils)

 	is_list() (in module celery.utils.functional)

 	is_locked() (celery.platforms.Pidfile method)

 	is_naive() (in module celery.utils.timeutils)

 	isatty() (celery.utils.log.LoggingProxy method)

 	(in module celery.utils)

 	items() (celery.datastructures.ConfigurationView method)

 	(celery.datastructures.DictAttribute method)

 	(celery.datastructures.LRUCache method)

 	(celery.utils.functional.LRUCache method)

 	iter_native() (celery.result.ResultSet method)

 	iterate() (celery.result.ResultSet method)

 	itercapture() (celery.events.EventReceiver method)

 	itercerts() (celery.security.certificate.CertStore method)

 	iterdeps() (celery.result.AsyncResult method)

 	iteritems() (celery.datastructures.ConfigurationView method)

 	(celery.datastructures.DictAttribute method)

 	(celery.datastructures.LRUCache method)

 	(celery.utils.functional.LRUCache method)

 	iterkeys() (celery.datastructures.ConfigurationView method)

 	(celery.datastructures.DictAttribute method)

 	(celery.datastructures.LRUCache method)

 	(celery.utils.functional.LRUCache method)

 	itertasks() (celery.events.state.State method)

 	itervalues() (celery.datastructures.ConfigurationView method)

 	(celery.datastructures.DictAttribute method)

 	(celery.datastructures.LRUCache method)

 	(celery.utils.functional.LRUCache method)

 	iwhite() (celery.utils.term.colored method)

 	iyellow() (celery.utils.term.colored method)

J

 	
 	join() (celery.bootsteps.Blueprint method)

 	(celery.result.ResultSet method)

 	(in module celery.utils.text)

 	
 	join_native() (celery.result.ResultSet method)

 	jsonify() (in module celery.utils)

K

 	
 	key_t() (celery.backends.base.KeyValueStoreBackend method)

 	keyalias (celery.events.cursesmon.CursesMonitor attribute)

 	keymap (celery.events.cursesmon.CursesMonitor attribute)

 	keys() (celery.datastructures.ConfigurationView method)

 	(celery.datastructures.DictAttribute method)

 	(celery.datastructures.LRUCache method)

 	(celery.utils.functional.LRUCache method)

 	keyspace (celery.backends.cassandra.CassandraBackend attribute)

 	KeyValueStoreBackend (class in celery.backends.base)

 	kill() (celery.bin.multi.MultiTool method)

 	
 	known_suffixes (celery.beat.PersistentScheduler attribute)

 	kombu

 	KQueueMonitor (class in celery.worker.autoreload)

 	kwargs (celery.beat.ScheduleEntry attribute)

 	(celery.concurrency.base.BasePool.Timer.Entry attribute)

 	(celery.contrib.batches.SimpleRequest attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.utils.timer2.Entry attribute)

 	(celery.utils.timer2.Timer.Entry attribute)

 	(celery.worker.job.Request attribute)

L

 	
 	label (celery.bootsteps.Step attribute)

 	(celery.worker.autoreload.WorkerComponent attribute)

 	(celery.worker.autoscale.WorkerComponent attribute)

 	(celery.worker.components.Beat attribute)

 	(celery.worker.components.Queues attribute)

 	(celery.worker.consumer.Evloop attribute)

 	(celery.worker.consumer.Gossip attribute)

 	(celery.worker.consumer.Mingle attribute)

 	last (celery.bootsteps.Step attribute)

 	(celery.worker.components.Consumer attribute)

 	(celery.worker.consumer.Evloop attribute)

 	last_run_at (celery.beat.ScheduleEntry attribute)

 	lazy (class in celery.utils.functional)

 	leaf (celery.bin.base.Command attribute)

 	limit (celery.events.cursesmon.CursesMonitor attribute)

 	LimitedSet (class in celery.datastructures)

 	link() (celery.signature method)

 	link_error() (celery.signature method)

 	list_commands() (celery.bin.celery.CeleryCommand class method)

 	load() (celery.bin.base.Extensions method)

 	load_average() (in module celery.utils.sysinfo)

 	load_extension_commands() (celery.bin.celery.CeleryCommand method)

 	
 	load_step() (celery.bootsteps.Blueprint method)

 	loadavg (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	loader (celery.Celery attribute)

 	Loader (class in celery.loaders.default)

 	Local (class in celery.utils.threads)

 	localize() (in module celery.utils.timeutils)

 	LocalManager (class in celery.utils.threads)

 	LocalStack (in module celery.utils.threads)

 	LocalTimezone (class in celery.utils.timeutils)

 	LockFailed

 	log (celery.Celery attribute)

 	logger (celery.beat.Scheduler attribute)

 	Logging (class in celery.app.log)

 	LoggingProxy (class in celery.utils.log)

 	loglevel (celery.utils.log.LoggingProxy attribute)

 	lookup_route() (celery.app.routes.Router method)

 	loop() (celery.worker.pidbox.gPidbox method)

 	loop_args() (celery.worker.consumer.Consumer method)

 	lpmerge() (in module celery.utils)

 	LRUCache (class in celery.datastructures)

 	(class in celery.utils.functional)

M

 	
 	magenta() (celery.utils.term.colored method)

 	mail (celery.loaders.base.BaseLoader attribute)

 	mail_admins() (celery.Celery method)

 	(celery.loaders.base.BaseLoader method)

 	Mailer (class in celery.utils.mail)

 	main (celery.Celery attribute)

 	main() (in module celery.bin.celery)

 	(in module celery.bin.worker)

 	maintain_pool() (celery.concurrency.base.BasePool method)

 	make_aware() (in module celery.utils.timeutils)

 	make_request() (celery.task.http.HttpDispatch method)

 	map() (celery.app.task.Task method)

 	MapAnnotation (class in celery.app.annotations)

 	MapRoute (class in celery.app.routes)

 	mark_as_done() (celery.backends.base.BaseBackend method)

 	mark_as_failure() (celery.backends.base.BaseBackend method)

 	mark_as_retry() (celery.backends.base.BaseBackend method)

 	mark_as_revoked() (celery.backends.base.BaseBackend method)

 	mark_as_started() (celery.backends.base.BaseBackend method)

 	mattrgetter() (in module celery.utils.functional)

 	max_connections (celery.backends.redis.RedisBackend attribute)

 	max_interval (celery.beat.Scheduler attribute)

 	max_pool_size (celery.backends.mongodb.MongoBackend attribute)

 	max_retries (celery.app.task.Task attribute)

 	(Task attribute)

 	MaxRetriesExceededError

 	maybe_declare() (celery.backends.amqp.AMQPBackend.Producer method)

 	maybe_detach() (celery.bin.worker.worker method)

 	maybe_drop_privileges() (in module celery.platforms)

 	maybe_due() (celery.beat.Scheduler method)

 	maybe_evaluate() (in module celery.utils.functional)

 	maybe_expire() (celery.worker.job.Request method)

 	maybe_iso8601() (in module celery.utils.timeutils)

 	maybe_list() (in module celery.utils.functional)

 	maybe_make_aware() (celery.schedules.schedule method)

 	(in module celery.utils.timeutils)

 	maybe_patch_concurrency() (celery.bin.base.Command method)

 	maybe_reraise() (celery.result.AsyncResult method)

 	(celery.result.ResultSet method)

 	(in module celery.utils)

 	maybe_s_to_ms() (in module celery.utils.timeutils)

 	maybe_scale() (celery.worker.autoscale.Autoscaler method)

 	maybe_schedule() (in module celery.schedules)

 	maybe_shutdown() (in module celery.worker.state)

 	
 	maybe_timedelta() (in module celery.utils.timeutils)

 	mem_rss() (in module celery.utils.debug)

 	memdump() (celery.app.control.Inspect method)

 	(in module celery.utils.debug)

 	memoize() (in module celery.utils.functional)

 	memsample() (celery.app.control.Inspect method)

 	merge() (celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	(celery.worker.state.Persistent method)

 	merge_inplace() (celery.beat.Scheduler method)

 	merge_rules (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	message (celery.exceptions.Retry attribute)

 	Message (class in celery.utils.mail)

 	Message() (celery.backends.amqp.AMQPBackend.Exchange method)

 	meta_from_decoded() (celery.backends.base.BaseBackend method)

 	method (in module celery.task.http)

 	mget() (celery.backends.base.KeyValueStoreBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.couchbase.CouchBaseBackend method)

 	(celery.backends.redis.RedisBackend method)

 	migrate_task() (in module celery.contrib.migrate)

 	migrate_tasks() (in module celery.contrib.migrate)

 	Mingle (class in celery.worker.consumer)

 	minute (celery.schedules.crontab attribute)

 	mlazy (class in celery.utils.functional)

 	mlevel() (in module celery.utils.log)

 	mode (celery.utils.log.LoggingProxy attribute)

 	module_file() (in module celery.utils.imports)

 	MongoBackend (class in celery.backends.mongodb)

 	Monitor (celery.worker.autoreload.Autoreloader attribute)

 	(in module celery.worker.autoreload)

 	month_of_year (celery.schedules.crontab attribute)

 	move() (in module celery.contrib.migrate)

 	move_by_idmap() (in module celery.contrib.migrate)

 	move_by_taskmap() (in module celery.contrib.migrate)

 	move_selection() (celery.events.cursesmon.CursesMonitor method)

 	move_selection_down() (celery.events.cursesmon.CursesMonitor method)

 	move_selection_up() (celery.events.cursesmon.CursesMonitor method)

 	move_task_by_id() (in module celery.contrib.migrate)

 	MP_LOG, [1]

 	mro_lookup() (in module celery.utils.objects)

 	multi_call() (celery.app.control.Control.Mailbox method)

 	MultiTool (class in celery.bin.multi)

N

 	
 	name (celery.app.task.Task attribute)

 	(Task attribute)

 	(celery.backends.amqp.AMQPBackend.Exchange attribute), [1]

 	(celery.beat.ScheduleEntry attribute)

 	(celery.bootsteps.Blueprint attribute)

 	(celery.bootsteps.ConsumerStep attribute)

 	(celery.bootsteps.StartStopStep attribute)

 	(celery.bootsteps.Step attribute)

 	(celery.contrib.batches.SimpleRequest attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.utils.log.LoggingProxy attribute)

 	(celery.worker.WorkController.Blueprint attribute)

 	(celery.worker.autoreload.WorkerComponent attribute)

 	(celery.worker.autoscale.WorkerComponent attribute)

 	(celery.worker.components.Beat attribute)

 	(celery.worker.components.Consumer attribute)

 	(celery.worker.components.Hub attribute)

 	(celery.worker.components.Pool attribute)

 	(celery.worker.components.Queues attribute)

 	(celery.worker.components.StateDB attribute)

 	(celery.worker.components.Timer attribute)

 	(celery.worker.consumer.Agent attribute)

 	(celery.worker.consumer.Connection attribute)

 	(celery.worker.consumer.Consumer.Blueprint attribute)

 	(celery.worker.consumer.Control attribute)

 	(celery.worker.consumer.Events attribute)

 	(celery.worker.consumer.Evloop attribute)

 	(celery.worker.consumer.Gossip attribute)

 	(celery.worker.consumer.Heart attribute)

 	(celery.worker.consumer.Mingle attribute)

 	(celery.worker.consumer.Tasks attribute)

 	(celery.worker.job.Request attribute)

 	names() (celery.bin.multi.MultiTool method)

 	namespace (celery.app.control.Control.Mailbox attribute)

 	(celery.bin.base.Command attribute)

 	(celery.bin.celery.CeleryCommand attribute)

 	(celery.bin.worker.worker attribute)

 	
 	nap() (celery.events.cursesmon.CursesMonitor method)

 	needs_reconnect (celery.bin.amqp.AMQShell attribute)

 	new_missing() (celery.app.amqp.Queues method)

 	next() (celery.beat.ScheduleEntry method)

 	(celery.concurrency.base.BasePool.Timer method)

 	(celery.utils.timer2.Timer method)

 	no_ack (celery.backends.amqp.AMQPBackend.Consumer attribute)

 	no_color (celery.bin.base.Command attribute)

 	no_color() (celery.utils.term.colored method)

 	Node() (celery.app.control.Control.Mailbox method)

 	node() (celery.utils.term.colored method)

 	node_alive() (celery.bin.multi.MultiTool method)

 	node_cls (celery.app.control.Control.Mailbox attribute)

 	node_format() (celery.bin.base.Command method)

 	nodename() (in module celery.utils)

 	nodesplit() (in module celery.utils)

 	noop() (in module celery.utils.functional)

 	NOSE_VERBOSE

 	NotAPackage

 	NotConfigured

 	note() (celery.bin.amqp.AMQPAdmin method)

 	(celery.bin.amqp.AMQShell method)

 	(celery.bin.multi.MultiTool method)

 	NotRegistered

 	now() (celery.Celery method)

 	(celery.loaders.base.BaseLoader method)

 	(celery.schedules.crontab method)

 	(celery.schedules.schedule method)

 	nowfun (celery.schedules.crontab attribute)

 	nullipotent

 	num_processes (celery.concurrency.base.BasePool attribute)

 	(celery.concurrency.gevent.TaskPool attribute)

 	(celery.concurrency.prefork.TaskPool attribute)

O

 	
 	obj (celery.bootsteps.StartStopStep attribute)

 	(celery.datastructures.DictAttribute attribute)

 	objgraph() (celery.app.control.Inspect method)

 	oid (celery.app.control.Control.Mailbox attribute)

 	(celery.backends.rpc.RPCBackend attribute)

 	OK (celery.bin.multi.MultiTool attribute)

 	on_accepted() (celery.worker.job.Request method)

 	on_ack (celery.worker.job.Request attribute)

 	on_after_init() (celery.apps.worker.Worker method)

 	(celery.worker.WorkController method)

 	on_apply() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.eventlet.TaskPool method)

 	(celery.concurrency.gevent.TaskPool method)

 	(celery.concurrency.threads.TaskPool method)

 	on_before_init() (celery.apps.worker.Worker method)

 	(celery.worker.WorkController method)

 	on_bound() (celery.app.task.Task class method)

 	on_change() (celery.worker.autoreload.Autoreloader method)

 	(celery.worker.autoreload.BaseMonitor method)

 	(celery.worker.autoreload.InotifyMonitor method)

 	on_chord_part_return() (celery.backends.base.BaseBackend method)

 	(celery.backends.base.KeyValueStoreBackend method)

 	on_cleanup() (celery.events.snapshot.Polaroid method)

 	on_close() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.prefork.TaskPool method)

 	(celery.worker.WorkController method)

 	(celery.worker.consumer.Consumer method)

 	on_concurrency_setup() (celery.bin.base.Command method)

 	(celery.bin.celery.CeleryCommand method)

 	on_configure() (celery.Celery method)

 	on_connection_error() (celery.backends.redis.RedisBackend method)

 	on_consume_ready() (celery.events.EventReceiver method)

 	on_consumer_ready() (celery.apps.worker.Worker method)

 	(celery.worker.WorkController method)

 	on_crash() (celery.utils.threads.bgThread method)

 	on_decode_error (celery.backends.amqp.AMQPBackend.Consumer attribute)

 	on_decode_error() (celery.worker.consumer.Consumer method)

 	on_disabled (celery.events.EventDispatcher attribute)

 	on_elect() (celery.worker.consumer.Gossip method)

 	on_elect_ack() (celery.worker.consumer.Gossip method)

 	on_enabled (celery.events.EventDispatcher attribute)

 	on_error() (celery.bin.base.Command method)

 	on_event() (celery.events.dumper.Dumper method)

 	on_event_loop_close() (celery.worker.autoreload.Autoreloader method)

 	(celery.worker.autoreload.BaseMonitor method)

 	(celery.worker.autoreload.InotifyMonitor method)

 	(celery.worker.autoreload.KQueueMonitor method)

 	on_failed() (celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	on_failure()

 	(celery.app.task.Task method)

 	(celery.worker.job.Request method)

 	on_hard_timeout() (celery.concurrency.base.BasePool method)

 	on_heartbeat() (celery.events.state.State.Worker method)

 	(celery.events.state.Worker method)

 	on_init() (celery.worker.autoreload.Autoreloader method)

 	on_init_blueprint() (celery.apps.worker.Worker method)

 	(celery.worker.WorkController method)

 	on_invalid_task() (celery.worker.consumer.Consumer method)

 	on_message (celery.backends.amqp.AMQPBackend.Consumer attribute)

 	on_message() (celery.worker.consumer.Gossip method)

 	(celery.worker.pidbox.Pidbox method)

 	on_node_join() (celery.worker.consumer.Gossip method)

 	on_node_leave() (celery.worker.consumer.Gossip method)

 	on_node_lost() (celery.worker.consumer.Gossip method)

 	on_offline() (celery.events.state.State.Worker method)

 	(celery.events.state.Worker method)

 	on_online() (celery.events.state.State.Worker method)

 	(celery.events.state.Worker method)

 	on_process_cleanup() (celery.loaders.base.BaseLoader method)

 	on_readable() (celery.worker.autoreload.InotifyMonitor method)

 	on_ready() (celery.worker.consumer.Consumer method)

 	
 	on_received() (celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	on_reject (celery.worker.job.Request attribute)

 	on_reply_declare() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.rpc.RPCBackend method)

 	on_retried() (celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	on_retry()

 	(celery.app.task.Task method)

 	(celery.worker.job.Request method)

 	on_return (celery.backends.amqp.AMQPBackend.Producer attribute)

 	on_revoked() (celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	on_sent() (celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	on_shutter() (celery.events.snapshot.Polaroid method)

 	on_soft_timeout() (celery.concurrency.base.BasePool method)

 	on_start() (celery.apps.worker.Worker method)

 	(celery.concurrency.base.BasePool method)

 	(celery.concurrency.eventlet.TaskPool method)

 	(celery.concurrency.gevent.TaskPool method)

 	(celery.concurrency.prefork.TaskPool method)

 	(celery.concurrency.threads.TaskPool method)

 	(celery.worker.WorkController method)

 	on_started() (celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	on_stop() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.eventlet.TaskPool method)

 	(celery.concurrency.gevent.TaskPool method)

 	(celery.concurrency.prefork.TaskPool method)

 	(celery.concurrency.threads.TaskPool method)

 	(celery.worker.pidbox.Pidbox method)

 	(celery.worker.pidbox.gPidbox method)

 	on_stopped() (celery.worker.WorkController method)

 	on_succeeded() (celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	on_success()

 	(celery.app.task.Task method)

 	(celery.worker.job.Request method)

 	on_task_call() (celery.backends.base.BaseBackend method)

 	(celery.backends.rpc.RPCBackend method)

 	on_task_init() (celery.loaders.base.BaseLoader method)

 	on_terminate() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.prefork.TaskPool method)

 	on_tick (celery.concurrency.base.BasePool.Timer attribute)

 	(celery.utils.timer2.Timer attribute)

 	on_timeout() (celery.worker.job.Request method)

 	on_timer_error() (celery.worker.components.Timer method)

 	on_timer_tick() (celery.worker.components.Timer method)

 	on_unknown_event() (celery.events.state.State.Task method)

 	(celery.events.state.Task method)

 	on_unknown_message() (celery.worker.consumer.Consumer method)

 	on_unknown_task() (celery.worker.consumer.Consumer method)

 	on_usage_error() (celery.bin.base.Command method)

 	(celery.bin.celery.CeleryCommand method)

 	on_worker_init() (celery.loaders.base.BaseLoader method)

 	on_worker_process_init() (celery.loaders.base.BaseLoader method)

 	on_worker_shutdown() (celery.loaders.base.BaseLoader method)

 	onecmd() (celery.bin.amqp.AMQShell method)

 	online_str (celery.events.cursesmon.CursesMonitor attribute)

 	open() (celery.platforms.DaemonContext method)

 	(celery.worker.state.Persistent method)

 	Option (class in celery.app.defaults)

 	(class in celery.bin.base)

 	option_list (celery.bin.base.Command attribute)

 	options (celery.backends.mongodb.MongoBackend attribute)

 	(celery.beat.ScheduleEntry attribute)

 	origin (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	osx_proxy_detection_workaround() (celery.apps.worker.Worker method)

 	out() (celery.bin.base.Command method)

 	override_backends (celery.loaders.base.BaseLoader attribute)

P

 	
 	padlist() (in module celery.utils.functional)

 	Panel (class in celery.worker.control)

 	parent (celery.result.ResultBase attribute)

 	parse() (celery.schedules.crontab_parser method)

 	parse_doc() (celery.bin.base.Command method)

 	parse_gid() (in module celery.platforms)

 	parse_iso8601() (in module celery.utils.iso8601)

 	parse_options() (celery.bin.base.Command method)

 	parse_preload_options() (celery.bin.base.Command method)

 	parse_uid() (in module celery.platforms)

 	ParseException

 	parseline() (celery.bin.amqp.AMQShell method)

 	Parser (celery.bin.base.Command attribute)

 	passive (celery.backends.amqp.AMQPBackend.Exchange attribute)

 	password (celery.backends.couchbase.CouchBaseBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	(celery.backends.redis.RedisBackend attribute)

 	patch_all() (celery.worker.consumer.Evloop method)

 	path (celery.platforms.Pidfile attribute)

 	
 PENDING

 	state

 	PENDING (in module celery.states)

 	periodic() (celery.app.registry.TaskRegistry method)

 	(celery.worker.consumer.Gossip method)

 	persistence (celery.beat.PersistentScheduler attribute)

 	persistent (celery.backends.amqp.AMQPBackend attribute)

 	(celery.backends.base.BaseBackend attribute)

 	(celery.backends.rpc.RPCBackend attribute)

 	Persistent (class in celery.worker.state)

 	PERSISTENT_DELIVERY_MODE (celery.backends.amqp.AMQPBackend.Exchange attribute)

 	PersistentScheduler (class in celery.beat)

 	Pickler (celery.Celery attribute)

 	pid (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	Pidbox (class in celery.worker.pidbox)

 	Pidfile (class in celery.platforms)

 	pidlock (celery.worker.WorkController attribute)

 	
 ping

 	control

 	ping() (celery.app.control.Control method)

 	(celery.app.control.Inspect method)

 	pluralize() (in module celery.utils.text)

 	Polaroid (class in celery.events.snapshot)

 	poll() (celery.backends.amqp.AMQPBackend method)

 	pool, [1]

 	(celery.Celery attribute)

 	Pool (celery.concurrency.prefork.TaskPool attribute)

 	pool (celery.worker.consumer.Consumer attribute)

 	(celery.worker.WorkController attribute)

 	Pool (class in celery.worker.components)

 	pool_grow() (celery.app.control.Control method)

 	
 pool_restart

 	control

 	pool_shrink() (celery.app.control.Control method)

 	pop_value() (celery.datastructures.LimitedSet method)

 	popitem() (celery.datastructures.LRUCache method)

 	(celery.utils.functional.LRUCache method)

 	port (celery.backends.couchbase.CouchBaseBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	(celery.backends.redis.RedisBackend attribute)

 	
 	post_async() (celery.task.http.URL method)

 	precedence() (in module celery.states)

 	prefetch count

 	prefetch multiplier

 	preload_options (celery.bin.base.Command attribute)

 	prepare() (in module celery.app.annotations)

 	(in module celery.app.routes)

 	prepare_args() (celery.bin.base.Command method)

 	(celery.worker.WorkController method)

 	prepare_exception() (celery.backends.base.BaseBackend method)

 	prepare_expires() (celery.backends.base.BaseBackend method)

 	prepare_models() (celery.backends.database.session.SessionManager method)

 	prepare_parser() (celery.bin.base.Command method)

 	prepare_persistent() (celery.backends.base.BaseBackend method)

 	prepare_prog_name() (celery.bin.celery.CeleryCommand method)

 	prepare_value() (celery.backends.base.BaseBackend method)

 	preparse_options() (celery.bin.base.Command method)

 	pretty() (celery.bin.base.Command method)

 	(in module celery.utils.text)

 	pretty_dict_ok_error() (celery.bin.base.Command method)

 	pretty_list() (celery.bin.base.Command method)

 	PrivateKey (class in celery.security.key)

 	process() (celery.bin.base.Option method)

 	(celery.events.EventReceiver method)

 	process_() (celery.worker.autoreload.InotifyMonitor method)

 	process_cleanup() (celery.backends.base.BaseBackend method)

 	(celery.backends.cassandra.CassandraBackend method)

 	(celery.backends.mongodb.MongoBackend method)

 	process_cmdline_config() (celery.bin.base.Command method)

 	process_destructor() (in module celery.concurrency.prefork)

 	process_IN_ATTRIB() (celery.worker.autoreload.InotifyMonitor method)

 	process_IN_MODIFY() (celery.worker.autoreload.InotifyMonitor method)

 	process_initializer() (in module celery.concurrency.prefork)

 	processed (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	processes (celery.worker.autoscale.Autoscaler attribute)

 	producer_or_acquire() (celery.Celery method)

 	prog_name (celery.bin.base.Command attribute)

 	(celery.bin.celery.CeleryCommand attribute)

 	prompt (celery.bin.amqp.AMQShell attribute)

 	prompt_fmt (celery.bin.amqp.AMQShell attribute)

 	
 PROPAGATE_STATES

 	state

 	protocol (celery.worker.state.Persistent attribute)

 	ps() (in module celery.utils.debug)

 	publish() (celery.backends.amqp.AMQPBackend.Exchange method)

 	(celery.backends.amqp.AMQPBackend.Producer method)

 	(celery.events.EventDispatcher method)

 	publisher (celery.beat.Scheduler attribute)

 	(celery.events.EventDispatcher attribute)

 	publisher_pool (celery.app.amqp.AMQP attribute)

 	purge() (celery.app.control.Control method)

 	(celery.backends.amqp.AMQPBackend.Consumer method)

 	(celery.datastructures.LimitedSet method)

 	purge_messages() (celery.apps.worker.Worker method)

 	pyimplementation() (in module celery.platforms)

 	
 Python Enhancement Proposals

 	PEP 8

Q

 	
 	qos

 	qos() (celery.backends.amqp.AMQPBackend.Consumer method)

 	qty (celery.worker.autoscale.Autoscaler attribute)

 	qualname() (in module celery.utils.imports)

 	query_task() (celery.app.control.Inspect method)

 	Queue (celery.backends.amqp.AMQPBackend attribute)

 	queue (celery.concurrency.base.BasePool.Timer attribute)

 	(celery.concurrency.eventlet.TaskPool.Timer.Schedule attribute)

 	(celery.concurrency.gevent.TaskPool.Timer.Schedule attribute)

 	(celery.utils.timer2.Timer attribute)

 	
 	QueueNotFound

 	queues (celery.app.amqp.AMQP attribute)

 	(celery.backends.amqp.AMQPBackend.Consumer attribute)

 	Queues (class in celery.app.amqp)

 	(class in celery.worker.components)

 	Queues() (celery.app.amqp.AMQP method)

 	quiet (celery.backends.couchbase.CouchBaseBackend attribute)

R

 	
 	rate() (in module celery.utils.timeutils)

 	
 rate_limit

 	control

 	rate_limit (celery.app.task.Task attribute)

 	(Task attribute)

 	rate_limit() (celery.app.control.Control method)

 	Rdb (class in celery.contrib.rdb)

 	read_configuration() (celery.loaders.base.BaseLoader method)

 	(celery.loaders.default.Loader method)

 	read_pid() (celery.platforms.Pidfile method)

 	readline() (celery.events.cursesmon.CursesMonitor method)

 	ready (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	ready() (celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	(celery.result.ResultSet method)

 	
 READY_STATES

 	state

 	READY_STATES (celery.backends.base.BaseBackend attribute)

 	rebuild_taskheap() (celery.events.state.State method)

 	receive() (celery.backends.amqp.AMQPBackend.Consumer method)

 	received (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	RECEIVED (in module celery.states)

 	Receiver (celery.events.Events attribute)

 	receivers (celery.utils.dispatch.Signal attribute)

 	(celery.utils.dispatch.signal.Signal attribute)

 	recover() (celery.backends.amqp.AMQPBackend.Consumer method)

 	red() (celery.utils.term.colored method)

 	redirect_stdouts() (celery.app.log.Logging method)

 	redirect_stdouts_to_logger() (celery.app.log.Logging method)

 	redirect_to_null() (celery.platforms.DaemonContext method)

 	redis (celery.backends.redis.RedisBackend attribute)

 	RedisBackend (class in celery.backends.redis)

 	reentrant

 	regen() (in module celery.utils.functional)

 	register() (celery.app.registry.TaskRegistry method)

 	(celery.worker.control.Panel class method)

 	register_auth() (in module celery.security.serialization)

 	register_callback() (celery.backends.amqp.AMQPBackend.Consumer method)

 	register_command() (celery.bin.celery.CeleryCommand class method)

 	register_timer() (celery.worker.consumer.Gossip method)

 	register_with_event_loop() (celery.concurrency.base.BasePool method)

 	(celery.concurrency.prefork.TaskPool method)

 	(celery.worker.WorkController method)

 	(celery.worker.autoreload.Autoreloader method)

 	(celery.worker.autoreload.InotifyMonitor method)

 	(celery.worker.autoreload.KQueueMonitor method)

 	(celery.worker.autoreload.StatMonitor method)

 	(celery.worker.autoreload.WorkerComponent method)

 	(celery.worker.autoscale.WorkerComponent method)

 	(celery.worker.components.Pool method)

 	(celery.worker.consumer.Consumer method)

 	registered() (celery.app.control.Inspect method)

 	registered_tasks() (celery.app.control.Inspect method)

 	regular() (celery.app.registry.TaskRegistry method)

 	reject() (celery.worker.job.Request method)

 	rejected_msg (celery.worker.job.Request attribute)

 	relative (celery.schedules.schedule attribute)

 	release() (celery.backends.amqp.AMQPBackend.Producer method)

 	(celery.platforms.Pidfile method)

 	reload() (celery.worker.WorkController method)

 	reload_from_cwd() (in module celery.utils.imports)

 	reload_group_result() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.base.BaseBackend method)

 	reload_task_result() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.base.BaseBackend method)

 	remaining() (in module celery.utils.timeutils)

 	remaining_delta() (celery.schedules.crontab method)

 	remaining_estimate() (celery.schedules.crontab method)

 	(celery.schedules.schedule method)

 	RemoteExecuteError

 	remove() (celery.platforms.Pidfile method)

 	(celery.result.ResultSet method)

 	(hub method)

 	remove_by (celery.app.defaults.Option attribute)

 	remove_if_stale() (celery.platforms.Pidfile method)

 	replace() (celery.signature method)

 	reply_exchange (celery.app.control.Control.Mailbox attribute)

 	reply_exchange_fmt (celery.app.control.Control.Mailbox attribute)

 	reply_queue (celery.app.control.Control.Mailbox attribute)

 	reply_to (celery.worker.job.Request attribute)

 	report() (celery.app.control.Inspect method)

 	repr_result() (celery.worker.job.Request method)

 	republish() (in module celery.contrib.migrate)

 	request

 	(celery.app.task.Task attribute)

 	Request (class in celery.worker.job)

 	request (Task attribute)

 	request_dict (celery.worker.job.Request attribute)

 	requires (celery.bootsteps.ConsumerStep attribute)

 	(celery.bootsteps.Step attribute)

 	(celery.worker.autoreload.WorkerComponent attribute)

 	(celery.worker.autoscale.WorkerComponent attribute)

 	(celery.worker.components.Hub attribute)

 	(celery.worker.components.Pool attribute)

 	(celery.worker.components.Queues attribute)

 	(celery.worker.consumer.Agent attribute)

 	(celery.worker.consumer.Control attribute)

 	(celery.worker.consumer.Events attribute)

 	(celery.worker.consumer.Gossip attribute)

 	(celery.worker.consumer.Heart attribute)

 	(celery.worker.consumer.Mingle attribute)

 	(celery.worker.consumer.Tasks attribute)

 	reraise_errors() (in module celery.security.utils)

 	
 	reserve() (celery.beat.Scheduler method)

 	reserved() (celery.app.control.Inspect method)

 	reserved_requests (in module celery.worker.state)

 	reset() (celery.utils.term.colored method)

 	(celery.worker.pidbox.Pidbox method)

 	(celery.worker.pidbox.gPidbox method)

 	reset_multiprocessing_logger() (in module celery.utils.log)

 	reset_rate_limits() (celery.worker.consumer.Consumer method)

 	(consumer method)

 	reset_worker_optimizations() (in module celery.app.trace)

 	resetscreen() (celery.events.cursesmon.CursesMonitor method)

 	resolve_all() (in module celery.app.annotations)

 	respects_app_option (celery.bin.base.Command attribute)

 	respond() (celery.bin.amqp.AMQShell method)

 	restart() (celery.bin.multi.MultiTool method)

 	(celery.bootsteps.Blueprint method)

 	(celery.concurrency.base.BasePool method)

 	(celery.concurrency.prefork.TaskPool method)

 	restart_count (celery.worker.consumer.Consumer attribute)

 	restore() (celery.result.GroupResult class method)

 	(celery.utils.serialization.UnpickleableExceptionWrapper method)

 	restore_group() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.base.BaseBackend method)

 	result (celery.backends.database.models.Task attribute)

 	(celery.backends.database.models.TaskSet attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.result.EagerResult attribute)

 	result_from_tuple() (in module celery.result)

 	ResultBase (class in celery.result)

 	results (celery.result.GroupResult attribute)

 	(celery.result.ResultSet attribute)

 	ResultSession() (celery.backends.database.DatabaseBackend method)

 	ResultSet (class in celery.result)

 	retcode (celery.bin.multi.MultiTool attribute)

 	retried (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	retries (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	
 RETRY

 	state

 	Retry

 	RETRY (in module celery.states)

 	retry() (celery.app.task.Task method)

 	retry_msg (celery.worker.job.Request attribute)

 	retry_policy (celery.backends.amqp.AMQPBackend attribute)

 	(celery.backends.base.BaseBackend attribute)

 	retval (celery.app.trace.TraceInfo attribute)

 	reverse() (celery.utils.term.colored method)

 	revive() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.amqp.AMQPBackend.Consumer method)

 	(celery.backends.amqp.AMQPBackend.Producer method)

 	
 revoke

 	control

 	revoke() (celery.app.control.Control method)

 	(celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	(celery.result.ResultSet method)

 	revoke_selection() (celery.events.cursesmon.CursesMonitor method)

 	
 REVOKED

 	state

 	revoked (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	REVOKED (in module celery.states)

 	revoked (in module celery.worker.state)

 	revoked() (celery.app.control.Inspect method)

 	(celery.worker.job.Request method)

 	rkey() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.rpc.RPCBackend method)

 	route() (celery.app.routes.Router method)

 	route_for_task() (celery.app.routes.MapRoute method)

 	router (celery.app.amqp.AMQP attribute)

 	Router (class in celery.app.routes)

 	Router() (celery.app.amqp.AMQP method)

 	routes (celery.app.amqp.AMQP attribute)

 	routing_key (celery.backends.amqp.AMQPBackend.Producer attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	RPCBackend (class in celery.backends.rpc)

 	RPCBackend.Consumer (class in celery.backends.rpc)

 	RUN (celery.concurrency.base.BasePool attribute)

 	run() (celery.app.task.Task method)

 	(celery.apps.beat.Beat method)

 	(celery.bin.amqp.AMQPAdmin method)

 	(celery.bin.amqp.amqp method)

 	(celery.bin.base.Command method)

 	(celery.bin.beat.beat method)

 	(celery.bin.events.events method)

 	(celery.bin.graph.graph method)

 	(celery.bin.worker.worker method)

 	(celery.concurrency.base.BasePool.Timer method)

 	(celery.contrib.batches.Batches method)

 	(celery.utils.threads.bgThread method)

 	(celery.utils.timer2.Timer method)

 	run_evcam() (celery.bin.events.events method)

 	run_evdump() (celery.bin.events.events method)

 	run_evtop() (celery.bin.events.events method)

 	run_from_argv() (celery.bin.base.Command method)

 	(celery.bin.worker.worker method)

 	running (celery.concurrency.base.BasePool.Timer attribute)

 	(celery.utils.timer2.Timer attribute)

 	runtime (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	rusage() (celery.worker.WorkController method)

S

 	
 	s() (celery.app.task.Task method)

 	safe_add_str() (celery.events.cursesmon.CursesMonitor method)

 	safe_ref() (in module celery.utils.dispatch.saferef)

 	sample() (in module celery.utils.debug)

 	sample_mem() (in module celery.utils.debug)

 	save() (celery.result.GroupResult method)

 	(celery.worker.state.Persistent method)

 	save_group() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.base.BaseBackend method)

 	say() (celery.bin.amqp.AMQShell method)

 	(celery.bin.multi.MultiTool method)

 	(celery.events.dumper.Dumper method)

 	say_chat() (celery.bin.base.Command method)

 	say_remote_command_reply() (celery.bin.base.Command method)

 	scale_down() (celery.worker.autoscale.Autoscaler method)

 	scale_up() (celery.worker.autoscale.Autoscaler method)

 	schedule (celery.beat.PersistentScheduler attribute)

 	(celery.beat.ScheduleEntry attribute)

 	(celery.beat.Scheduler attribute)

 	Schedule (celery.concurrency.base.BasePool.Timer attribute)

 	(celery.utils.timer2.Timer attribute)

 	schedule (class in celery.schedules)

 	Schedule (in module celery.utils.timer2)

 	scheduled() (celery.app.control.Inspect method)

 	ScheduleEntry (class in celery.beat)

 	scheduler (celery.apps.beat.Beat.Service attribute)

 	(celery.beat.Service attribute)

 	Scheduler (class in celery.beat)

 	scheduler_cls (celery.apps.beat.Beat.Service attribute)

 	(celery.beat.Service attribute)

 	SchedulingError

 	screen_delay (celery.events.cursesmon.CursesMonitor attribute)

 	screen_height (celery.events.cursesmon.CursesMonitor attribute)

 	screen_width (celery.events.cursesmon.CursesMonitor attribute)

 	seconds (celery.schedules.schedule attribute)

 	SecureSerializer (class in celery.security.serialization)

 	SecurityError

 	select() (celery.app.amqp.Queues method)

 	select_add() (celery.app.amqp.Queues method)

 	select_queues() (celery.Celery method)

 	select_remove() (celery.app.amqp.Queues method)

 	select_subset() (celery.app.amqp.Queues method)

 	selected_position (celery.events.cursesmon.CursesMonitor attribute)

 	selected_str (celery.events.cursesmon.CursesMonitor attribute)

 	selected_task (celery.events.cursesmon.CursesMonitor attribute)

 	selection_info() (celery.events.cursesmon.CursesMonitor method)

 	selection_rate_limit() (celery.events.cursesmon.CursesMonitor method)

 	selection_result() (celery.events.cursesmon.CursesMonitor method)

 	selection_traceback() (celery.events.cursesmon.CursesMonitor method)

 	semaphore (celery.worker.WorkController attribute)

 	send() (celery.events.EventDispatcher method)

 	(celery.utils.dispatch.Signal method)

 	(celery.utils.dispatch.signal.Signal method)

 	(celery.utils.mail.ErrorMail method)

 	(celery.utils.mail.Mailer method)

 	send_all() (celery.bootsteps.Blueprint method)

 	send_error_emails (celery.app.task.Task attribute)

 	(Task attribute)

 	send_event() (celery.worker.job.Request method)

 	send_events (celery.app.task.Task attribute)

 	send_robust() (celery.utils.dispatch.Signal method)

 	(celery.utils.dispatch.signal.Signal method)

 	send_task() (celery.beat.Scheduler method)

 	(celery.Celery method)

 	SendmailWarning

 	sent (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	serializable() (celery.result.AsyncResult method)

 	(celery.result.GroupResult method)

 	serialize() (celery.security.serialization.SecureSerializer method)

 	serializer (celery.app.control.Control.Mailbox attribute)

 	(Task attribute)

 	(celery.app.task.Task attribute)

 	(celery.backends.amqp.AMQPBackend.Producer attribute)

 	
 SERVER_EMAIL

 	setting

 	servers (celery.backends.cache.CacheBackend attribute)

 	(celery.backends.cassandra.CassandraBackend attribute), [1]

 	Service (class in celery.beat)

 	session_factory() (celery.backends.database.session.SessionManager method)

 	SessionManager (class in celery.backends.database.session)

 	set() (celery.backends.base.KeyValueStoreBackend method)

 	(celery.backends.cache.CacheBackend method)

 	(celery.backends.couchbase.CouchBaseBackend method)

 	(celery.backends.redis.RedisBackend method)

 	(celery.signature method)

 	set_current() (celery.Celery method)

 	set_default_app() (in module celery._state)

 	set_in_sighandler() (in module celery.utils.log)

 	set_mp_process_title() (in module celery.platforms)

 	set_process_status() (celery.apps.worker.Worker method)

 	(celery.bin.events.events method)

 	set_process_title() (celery.apps.beat.Beat method)

 	(in module celery.platforms)

 	set_schedule() (celery.beat.PersistentScheduler method)

 	(celery.beat.Scheduler method)

 	set_trace() (in module celery.contrib.rdb)

 	setdefault() (celery.datastructures.ConfigurationView method)

 	(celery.datastructures.DictAttribute method)

 	setgid() (in module celery.platforms)

 	setgroups() (in module celery.platforms)

 	setter() (celery.utils.cached_property method)

 	
 setting

 	ADMINS

 	BROKER_CONNECTION_MAX_RETRIES

 	BROKER_CONNECTION_RETRY

 	BROKER_CONNECTION_TIMEOUT

 	BROKER_FAILOVER_STRATEGY

 	BROKER_HEARTBEAT

 	BROKER_HEARTBEAT_CHECKRATE

 	BROKER_LOGIN_METHOD

 	BROKER_POOL_LIMIT

 	BROKER_TRANSPORT

 	BROKER_TRANSPORT_OPTIONS

 	BROKER_URL

 	BROKER_USE_SSL

 	CASSANDRA_COLUMN_FAMILY

 	CASSANDRA_DETAILED_MODE

 	CASSANDRA_KEYSPACE

 	CASSANDRA_READ_CONSISTENCY

 	CASSANDRA_SERVERS

 	CASSANDRA_WRITE_CONSISTENCY

 	CELERYBEAT_MAX_LOOP_INTERVAL

 	CELERYBEAT_SCHEDULE

 	CELERYBEAT_SCHEDULER

 	CELERYBEAT_SCHEDULE_FILENAME

 	CELERYBEAT_SYNC_EVERY

 	CELERYD_AUTORELOADER

 	CELERYD_AUTOSCALER

 	CELERYD_CONCURRENCY

 	CELERYD_CONSUMER

 	CELERYD_HIJACK_ROOT_LOGGER

 	CELERYD_LOG_COLOR

 	CELERYD_LOG_FORMAT

 	CELERYD_MAX_TASKS_PER_CHILD

 	CELERYD_POOL

 	CELERYD_POOL_RESTARTS

 	CELERYD_PREFETCH_MULTIPLIER

 	CELERYD_STATE_DB

 	CELERYD_TASK_LOG_FORMAT

 	CELERYD_TASK_SOFT_TIME_LIMIT

 	CELERYD_TASK_TIME_LIMIT

 	CELERYD_TIMER

 	CELERYD_TIMER_PRECISION

 	CELERYD_WORKER_LOST_WAIT

 	CELERYMON_LOG_FORMAT

 	CELERY_ACCEPT_CONTENT

 	CELERY_ACKS_LATE

 	CELERY_ALWAYS_EAGER

 	CELERY_ANNOTATIONS

 	CELERY_BROADCAST_EXCHANGE

 	CELERY_BROADCAST_EXCHANGE_TYPE

 	CELERY_BROADCAST_QUEUE

 	CELERY_CACHE_BACKEND

 	CELERY_CACHE_BACKEND_OPTIONS

 	CELERY_CHORD_PROPAGATES

 	CELERY_COUCHBASE_BACKEND_SETTINGS

 	CELERY_CREATE_MISSING_QUEUES

 	CELERY_DEFAULT_DELIVERY_MODE

 	CELERY_DEFAULT_EXCHANGE

 	CELERY_DEFAULT_EXCHANGE_TYPE

 	CELERY_DEFAULT_QUEUE

 	CELERY_DEFAULT_RATE_LIMIT

 	CELERY_DEFAULT_ROUTING_KEY

 	CELERY_DISABLE_RATE_LIMITS

 	CELERY_EAGER_PROPAGATES_EXCEPTIONS

 	CELERY_ENABLE_REMOTE_CONTROL

 	CELERY_ENABLE_UTC

 	CELERY_EVENT_QUEUE_EXPIRES

 	CELERY_EVENT_QUEUE_TTL

 	CELERY_EVENT_SERIALIZER

 	CELERY_IGNORE_RESULT

 	CELERY_IMPORTS

 	CELERY_INCLUDE

 	CELERY_MAX_CACHED_RESULTS

 	CELERY_MESSAGE_COMPRESSION

 	CELERY_MONGODB_BACKEND_SETTINGS

 	CELERY_QUEUES

 	CELERY_QUEUE_HA_POLICY

 	CELERY_REDIRECT_STDOUTS

 	CELERY_REDIRECT_STDOUTS_LEVEL

 	CELERY_REDIS_MAX_CONNECTIONS

 	CELERY_RESULT_BACKEND

 	CELERY_RESULT_DBURI

 	CELERY_RESULT_DB_SHORT_LIVED_SESSIONS

 	CELERY_RESULT_DB_TABLENAMES

 	CELERY_RESULT_ENGINE_OPTIONS

 	CELERY_RESULT_EXCHANGE

 	CELERY_RESULT_EXCHANGE_TYPE

 	CELERY_RESULT_PERSISTENT

 	CELERY_RESULT_SERIALIZER

 	CELERY_ROUTES

 	CELERY_SECURITY_CERTIFICATE

 	CELERY_SECURITY_CERT_STORE

 	CELERY_SECURITY_KEY

 	CELERY_SEND_EVENTS

 	CELERY_SEND_TASK_ERROR_EMAILS

 	CELERY_SEND_TASK_SENT_EVENT

 	CELERY_STORE_ERRORS_EVEN_IF_IGNORED

 	CELERY_TASK_PUBLISH_RETRY

 	CELERY_TASK_PUBLISH_RETRY_POLICY

 	CELERY_TASK_RESULT_EXPIRES

 	CELERY_TASK_SERIALIZER

 	CELERY_TIMEZONE

 	CELERY_TRACK_STARTED

 	CELERY_WORKER_DIRECT

 	EMAIL_HOST

 	EMAIL_HOST_PASSWORD

 	EMAIL_HOST_USER

 	EMAIL_PORT

 	EMAIL_TIMEOUT

 	EMAIL_USE_SSL

 	EMAIL_USE_TLS

 	SERVER_EMAIL

 	Settings (class in celery.app.utils)

 	setuid() (in module celery.platforms)

 	setup() (celery.app.log.Logging method)

 	setup_app_from_commandline() (celery.bin.base.Command method)

 	setup_defaults() (celery.worker.WorkController method)

 	setup_handlers() (celery.app.log.Logging method)

 	setup_includes() (celery.worker.WorkController method)

 	setup_instance() (celery.worker.WorkController method)

 	setup_logger() (celery.app.log.Logging method)

 	
 setup_logging

 	signal

 	setup_logging() (celery.apps.beat.Beat method)

 	(celery.apps.worker.Worker method)

 	setup_logging_subsystem() (celery.app.log.Logging method)

 	setup_queues() (celery.worker.WorkController method)

 	setup_schedule() (celery.beat.PersistentScheduler method)

 	(celery.beat.Scheduler method)

 	setup_security() (celery.Celery method)

 	(in module celery.security)

 	setup_settings() (celery.loaders.default.Loader method)

 	setup_task_loggers() (celery.app.log.Logging method)

 	setup_worker_optimizations() (in module celery.app.trace)

 	Shell (celery.bin.amqp.AMQPAdmin attribute)

 	shortinfo() (celery.worker.job.Request method)

 	should_send() (celery.app.task.Task.ErrorMail method)

 	(celery.utils.mail.ErrorMail method)

 	
 	should_sync() (celery.beat.Scheduler method)

 	should_use_eventloop() (celery.worker.WorkController method)

 	show() (celery.bin.multi.MultiTool method)

 	show_body (celery.bin.base.Command attribute)

 	show_reply (celery.bin.base.Command attribute)

 	shrink() (celery.concurrency.eventlet.TaskPool method)

 	(celery.concurrency.gevent.TaskPool method)

 	
 shutdown

 	control

 	shutdown() (celery.bootsteps.ConsumerStep method)

 	(celery.worker.consumer.Connection method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.Consumer.Blueprint method)

 	(celery.worker.consumer.Events method)

 	(celery.worker.consumer.Heart method)

 	(celery.worker.consumer.Tasks method)

 	(celery.worker.pidbox.Pidbox method)

 	shutdown_nodes() (celery.bin.multi.MultiTool method)

 	shutdown_worker() (celery.loaders.base.BaseLoader method)

 	shutter() (celery.events.snapshot.Polaroid method)

 	shutter_signal (celery.events.snapshot.Polaroid attribute)

 	si() (celery.app.task.Task method)

 	sign() (celery.security.key.PrivateKey method)

 	
 signal

 	after_setup_logger

 	after_setup_task_logger

 	after_task_publish

 	beat_embedded_init

 	beat_init

 	before_task_publish

 	celeryd_after_setup

 	celeryd_init

 	eventlet_pool_apply

 	eventlet_pool_postshutdown

 	eventlet_pool_preshutdown

 	eventlet_pool_started

 	import_modules

 	setup_logging

 	task_failure

 	task_postrun

 	task_prerun

 	task_retry

 	task_revoked

 	task_sent

 	task_success

 	user_preload_options

 	worker_init

 	worker_process_init

 	worker_process_shutdown

 	worker_ready

 	worker_shutdown

 	Signal (class in celery.utils.dispatch)

 	(class in celery.utils.dispatch.signal)

 	signal_consumer_close() (celery.worker.WorkController method)

 	signal_node() (celery.bin.multi.MultiTool method)

 	signal_safe (celery.concurrency.base.BasePool attribute)

 	(celery.concurrency.eventlet.TaskPool attribute)

 	(celery.concurrency.gevent.TaskPool attribute)

 	signature (class in celery)

 	signature() (celery.Celery method)

 	SimpleRequest (class in celery.contrib.batches)

 	soft_time_limit (celery.app.task.Task attribute)

 	(Task attribute)

 	SoftTimeLimitExceeded

 	SOFTWARE_INFO (in module celery.worker.state)

 	Spec (class in celery.bin.amqp)

 	splash() (celery.bin.multi.MultiTool method)

 	starmap() (celery.app.task.Task method)

 	start() (celery.apps.beat.Beat.Service method)

 	(celery.Celery method)

 	(celery.beat.Service method)

 	(celery.bin.multi.MultiTool method)

 	(celery.bootsteps.Blueprint method)

 	(celery.bootsteps.ConsumerStep method)

 	(celery.bootsteps.StartStopStep method)

 	(celery.concurrency.base.BasePool method)

 	(celery.concurrency.eventlet.TaskPool.Timer method)

 	(celery.concurrency.gevent.TaskPool.Timer method)

 	(celery.worker.WorkController method)

 	(celery.worker.autoreload.BaseMonitor method)

 	(celery.worker.autoreload.InotifyMonitor method)

 	(celery.worker.autoreload.KQueueMonitor method)

 	(celery.worker.autoreload.StatMonitor method)

 	(celery.worker.components.Hub method)

 	(celery.worker.consumer.Connection method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.Events method)

 	(celery.worker.consumer.Evloop method)

 	(celery.worker.consumer.Gossip method)

 	(celery.worker.consumer.Heart method)

 	(celery.worker.consumer.Mingle method)

 	(celery.worker.consumer.Tasks method)

 	(celery.worker.heartbeat.Heart method)

 	(celery.worker.pidbox.Pidbox method)

 	(celery.worker.pidbox.gPidbox method)

 	start_filter() (in module celery.contrib.migrate)

 	start_scheduler() (celery.apps.beat.Beat method)

 	
 STARTED

 	state

 	started (celery.bootsteps.Blueprint attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	STARTED (in module celery.states)

 	StartStopStep (class in celery.bootsteps)

 	startup_info() (celery.apps.beat.Beat method)

 	(celery.apps.worker.Worker method)

 	stat (celery.utils.sysinfo.df attribute)

 	
 state

 	ALL_STATES

 	EXCEPTION_STATES

 	FAILURE

 	PENDING

 	PROPAGATE_STATES

 	READY_STATES

 	RETRY

 	REVOKED

 	STARTED

 	SUCCESS

 	UNREADY_STATES

 	state (celery.app.trace.TraceInfo attribute)

 	(celery.bootsteps.Blueprint attribute)

 	State (celery.events.Events attribute)

 	state (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.result.EagerResult attribute)

 	(celery.worker.WorkController attribute)

 	State (class in celery.contrib.migrate)

 	(class in celery.events.state)

 	state (class in celery.states)

 	State.Task (class in celery.events.state)

 	State.Worker (class in celery.events.state)

 	state_to_name (celery.bootsteps.Blueprint attribute)

 	statedb

 	StateDB (class in celery.worker.components)

 	StatMonitor (class in celery.worker.autoreload)

 	stats() (celery.app.control.Inspect method)

 	(celery.worker.WorkController method)

 	status (celery.backends.database.models.Task attribute)

 	(celery.bin.base.Command.Error attribute)

 	(celery.bin.base.Command.UsageError attribute)

 	(celery.bin.base.Error attribute)

 	(celery.bin.base.UsageError attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.result.EagerResult attribute)

 	status_string (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	Step (class in celery.bootsteps)

 	steps (celery.Celery attribute)

 	stop() (celery.apps.beat.Beat.Service method)

 	(celery.beat.Service method)

 	(celery.bin.multi.MultiTool method)

 	(celery.bootsteps.Blueprint method)

 	(celery.bootsteps.ConsumerStep method)

 	(celery.bootsteps.StartStopStep method)

 	(celery.concurrency.base.BasePool method)

 	(celery.concurrency.base.BasePool.Timer method)

 	(celery.concurrency.eventlet.TaskPool.Timer method)

 	(celery.concurrency.gevent.TaskPool.Timer method)

 	(celery.utils.threads.bgThread method)

 	(celery.utils.timer2.Timer method)

 	(celery.worker.WorkController method)

 	(celery.worker.autoreload.Autoreloader method)

 	(celery.worker.autoreload.BaseMonitor method)

 	(celery.worker.autoreload.InotifyMonitor method)

 	(celery.worker.autoreload.KQueueMonitor method)

 	(celery.worker.components.Hub method)

 	(celery.worker.consumer.Consumer method)

 	(celery.worker.consumer.Events method)

 	(celery.worker.consumer.Heart method)

 	(celery.worker.consumer.Tasks method)

 	(celery.worker.heartbeat.Heart method)

 	(celery.worker.pidbox.Pidbox method)

 	stop_verify() (celery.bin.multi.MultiTool method)

 	StopFiltering

 	stopwait() (celery.bin.multi.MultiTool method)

 	storage (celery.worker.state.Persistent attribute)

 	STORE_ACTIONS (celery.bin.base.Option attribute)

 	store_errors (celery.worker.job.Request attribute)

 	store_errors_even_if_ignored (celery.app.task.Task attribute)

 	(Task attribute)

 	store_result() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.base.BaseBackend method)

 	(celery.backends.base.DisabledBackend method)

 	str_args_to_python() (celery.bin.amqp.Spec method)

 	strategies

 	Strategies (celery.worker.consumer.Consumer attribute)

 	Strategy (celery.app.task.Task attribute)

 	Strategy() (celery.contrib.batches.Batches method)

 	strtobool() (in module celery.utils)

 	strtotal (celery.contrib.migrate.State attribute)

 	subclass_exception() (in module celery.utils.serialization)

 	subject (celery.utils.mail.ErrorMail attribute)

 	subpolling_interval (celery.backends.base.BaseBackend attribute)

 	(celery.backends.database.DatabaseBackend attribute)

 	subtask() (celery.app.task.Task method)

 	subtasks (celery.result.ResultSet attribute)

 	succeeded (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	
 SUCCESS

 	state

 	SUCCESS (in module celery.states)

 	success_msg (celery.worker.job.Request attribute)

 	successful() (celery.result.AsyncResult method)

 	(celery.result.ResultSet method)

 	supports_args (celery.bin.base.Command attribute)

 	(celery.bin.beat.beat attribute)

 	(celery.bin.events.events attribute)

 	(celery.bin.worker.worker attribute)

 	supports_autoexpire (celery.backends.amqp.AMQPBackend attribute)

 	(celery.backends.base.BaseBackend attribute)

 	(celery.backends.cache.CacheBackend attribute)

 	(celery.backends.cassandra.CassandraBackend attribute)

 	(celery.backends.mongodb.MongoBackend attribute)

 	(celery.backends.redis.RedisBackend attribute)

 	supports_color() (celery.app.log.Logging method)

 	supports_native_join (celery.backends.amqp.AMQPBackend attribute)

 	(celery.backends.base.BaseBackend attribute)

 	(celery.backends.cache.CacheBackend attribute)

 	(celery.backends.redis.RedisBackend attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.result.EagerResult attribute)

 	(celery.result.ResultSet attribute)

 	sw_ident (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	sw_sys (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	sw_ver (celery.events.state.State.Worker attribute)

 	(celery.events.state.Worker attribute)

 	symbol_by_name() (celery.bin.base.Command method)

 	(in module celery.utils.imports)

 	sync() (celery.apps.beat.Beat.Service method)

 	(celery.beat.PersistentScheduler method)

 	(celery.beat.Scheduler method)

 	(celery.beat.Service method)

 	(celery.worker.state.Persistent method)

 	sync_every (celery.beat.Scheduler attribute)

 	sync_every_tasks (celery.beat.Scheduler attribute)

 	synloop() (in module celery.worker.loops)

T

 	
 	table() (celery.app.utils.Settings method)

 	take_action() (celery.bin.base.Option method)

 	takes_value() (celery.bin.base.Option method)

 	Task (celery.Celery attribute)

 	task (celery.worker.job.Request attribute)

 	Task (class in celery.app.task)

 	(class in celery.backends.database.models)

 	(class in celery.events.state)

 	task() (celery.Celery method)

 	(in module celery.contrib.methods)

 	
 task-failed

 	event

 	
 task-received

 	event

 	
 task-retried

 	event

 	
 task-revoked

 	event

 	
 task-sent

 	event

 	
 task-started

 	event

 	
 task-succeeded

 	event

 	Task.ErrorMail (class in celery.app.task)

 	Task.MaxRetriesExceededError

 	task_accepted() (in module celery.worker.state)

 	task_buckets

 	task_consumer

 	task_count (celery.events.state.State attribute)

 	task_event() (celery.events.state.State method)

 	
 task_failure

 	signal

 	task_id (celery.backends.database.models.Task attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.worker.job.Request attribute)

 	task_id_eq() (in module celery.contrib.migrate)

 	task_id_in() (in module celery.contrib.migrate)

 	task_join_will_block (celery.concurrency.base.BasePool attribute)

 	(celery.concurrency.eventlet.TaskPool attribute)

 	(celery.concurrency.gevent.TaskPool attribute)

 	task_keyprefix (celery.backends.base.KeyValueStoreBackend attribute)

 	task_method (class in celery.contrib.methods)

 	task_name (celery.result.EagerResult attribute)

 	(celery.worker.job.Request attribute)

 	
 task_postrun

 	signal

 	
 task_prerun

 	signal

 	task_ready() (in module celery.worker.state), [1]

 	task_reserved() (in module celery.worker.state), [1]

 	
 task_retry

 	signal

 	
 task_revoked

 	signal

 	
 task_sent

 	signal

 	
 task_success

 	signal

 	task_types() (celery.events.state.State method)

 	TaskConsumer (celery.app.amqp.AMQP attribute)

 	TaskFormatter (class in celery.app.log)

 	tasklist() (celery.apps.worker.Worker method)

 	taskmeta_collection (celery.backends.mongodb.MongoBackend attribute)

 	TaskPool (class in celery.concurrency.eventlet)

 	(class in celery.concurrency.gevent)

 	(class in celery.concurrency.prefork)

 	(class in celery.concurrency.solo)

 	(class in celery.concurrency.threads)

 	TaskPool.Timer (class in celery.concurrency.eventlet)

 	(class in celery.concurrency.gevent)

 	TaskPool.Timer.Schedule (class in celery.concurrency.eventlet)

 	(class in celery.concurrency.gevent)

 	TaskProducer (celery.app.amqp.AMQP attribute)

 	TaskPublisher (class in celery.app.amqp)

 	TaskRegistry (class in celery.app.registry)

 	TaskRegistry.NotRegistered

 	TaskRevokedError

 	tasks (celery.Celery attribute)

 	(celery.events.cursesmon.CursesMonitor attribute)

 	
 	Tasks (class in celery.worker.consumer)

 	tasks_by_time() (celery.events.state.State method)

 	tasks_by_timestamp() (celery.events.state.State method)

 	tasks_by_type() (celery.events.state.State method)

 	tasks_by_worker() (celery.events.state.State method)

 	TaskSet (class in celery.backends.database.models)

 	taskset_id (celery.backends.database.models.TaskSet attribute)

 	TaskType (class in celery.app.task)

 	tb (celery.datastructures.ExceptionInfo attribute)

 	TERMINATE (celery.concurrency.base.BasePool attribute)

 	terminate() (celery.bootsteps.StartStopStep method)

 	(celery.concurrency.base.BasePool method)

 	(celery.worker.WorkController method)

 	(celery.worker.components.Hub method)

 	(celery.worker.components.Pool method)

 	(celery.worker.job.Request method)

 	terminate_job() (celery.concurrency.base.BasePool method)

 	Terminated

 	thaw() (State method)

 	throws (celery.app.task.Task attribute)

 	(Task attribute)

 	tick() (celery.beat.Scheduler method)

 	time_limit (celery.app.task.Task attribute)

 	(Task attribute)

 	time_limit() (celery.app.control.Control method)

 	time_start (celery.worker.job.Request attribute)

 	timedelta_seconds() (in module celery.utils.timeutils)

 	TimeLimitExceeded

 	timeout (celery.backends.couchbase.CouchBaseBackend attribute)

 	(celery.task.http.HttpDispatch attribute)

 	TimeoutError

 	timer, [1]

 	(celery.events.snapshot.Polaroid attribute)

 	(celery.worker.consumer.Consumer attribute)

 	Timer (class in celery.utils.timer2)

 	(class in celery.worker.components)

 	Timer.Entry (class in celery.utils.timer2)

 	timestamp (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	timezone (celery.Celery attribute)

 	to_dict() (celery.backends.database.models.Task method)

 	(celery.backends.database.models.TaskSet method)

 	to_local() (celery.schedules.schedule method)

 	to_python() (celery.app.defaults.Option method)

 	to_timestamp() (in module celery.utils.timer2)

 	to_utc() (in module celery.utils.timeutils)

 	total_apx (celery.contrib.migrate.State attribute)

 	total_blocks (celery.utils.sysinfo.df attribute)

 	total_count (in module celery.worker.state)

 	total_run_count (celery.beat.ScheduleEntry attribute)

 	trace_task() (in module celery.app.trace)

 	traceback (celery.backends.database.models.Task attribute)

 	(celery.datastructures.ExceptionInfo attribute)

 	(celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	(celery.result.AsyncResult attribute)

 	(celery.result.EagerResult attribute)

 	TraceInfo (class in celery.app.trace)

 	track_started (celery.app.task.Task attribute)

 	(Task attribute)

 	trail (celery.app.task.Task attribute)

 	(Task attribute)

 	transcoder (celery.backends.couchbase.CouchBaseBackend attribute)

 	TRANSIENT_DELIVERY_MODE (celery.backends.amqp.AMQPBackend.Exchange attribute)

 	tref (celery.concurrency.base.BasePool.Timer.Entry attribute)

 	(celery.utils.timer2.Entry attribute)

 	(celery.utils.timer2.Timer.Entry attribute)

 	truncate() (in module celery.utils.text)

 	type (celery.app.control.Control.Mailbox attribute)

 	(celery.backends.amqp.AMQPBackend.Exchange attribute), [1]

 	(celery.datastructures.ExceptionInfo attribute)

 	TYPE_CHECKER (celery.bin.base.Option attribute)

 	TYPED_ACTIONS (celery.bin.base.Option attribute)

 	typemap (celery.app.defaults.Option attribute)

 	TYPES (celery.bin.base.Option attribute)

 	tz (celery.schedules.schedule attribute)

 	tzlocal (celery.worker.job.Request attribute)

 	tzname() (celery.utils.timeutils.LocalTimezone method)

U

 	
 	unbind_from() (celery.backends.amqp.AMQPBackend.Exchange method)

 	underline() (celery.utils.term.colored method)

 	uniq() (in module celery.utils.functional)

 	UnknownStatusError

 	unlock_gil (celery.backends.couchbase.CouchBaseBackend attribute)

 	UnpickleableExceptionWrapper

 	
 UNREADY_STATES

 	state

 	UNREADY_STATES (celery.backends.base.BaseBackend attribute)

 	unregister() (celery.app.registry.TaskRegistry method)

 	update() (celery.beat.ScheduleEntry method)

 	(celery.datastructures.ConfigurationView method)

 	(celery.datastructures.LRUCache method)

 	(celery.datastructures.LimitedSet method)

 	(celery.events.state.State.Task method)

 	(celery.events.state.State.Worker method)

 	(celery.events.state.Task method)

 	(celery.events.state.Worker method)

 	(celery.result.ResultSet method)

 	(celery.utils.functional.LRUCache method)

 	(celery.worker.autoscale.Autoscaler method)

 	update_from_dict() (celery.beat.Scheduler method)

 	
 	update_heartbeat() (celery.events.state.State.Worker method)

 	(celery.events.state.Worker method)

 	update_state() (celery.app.task.Task method)

 	update_strategies() (celery.worker.consumer.Consumer method)

 	URL (class in celery.task.http)

 	url (in module celery.task.http)

 	usage() (celery.bin.base.Command method)

 	(celery.bin.multi.MultiTool method)

 	UsageError

 	USE_FAST_LOCALS

 	user (celery.backends.mongodb.MongoBackend attribute)

 	user_agent (celery.task.http.HttpDispatch attribute)

 	user_options (celery.Celery attribute)

 	
 user_preload_options

 	signal

 	username (celery.backends.couchbase.CouchBaseBackend attribute)

 	uses_semaphore (celery.concurrency.base.BasePool attribute)

 	(celery.concurrency.prefork.TaskPool attribute)

 	utc (celery.worker.job.Request attribute)

 	utc_enabled (celery.schedules.schedule attribute)

 	utcoffset() (celery.utils.timeutils.LocalTimezone method)

 	(in module celery.utils.timeutils)

V

 	
 	value_set_for() (celery.app.utils.Settings method)

 	values() (celery.datastructures.ConfigurationView method)

 	(celery.datastructures.DictAttribute method)

 	(celery.datastructures.LRUCache method)

 	(celery.utils.functional.LRUCache method)

 	
 	verify() (celery.security.certificate.Certificate method)

 	verify_args() (celery.bin.base.Command method)

 	version (celery.bin.base.Command attribute)

W

 	
 	wait() (celery.result.AsyncResult method)

 	(celery.result.EagerResult method)

 	wait_for() (celery.backends.amqp.AMQPBackend method)

 	(celery.backends.base.BaseBackend method)

 	(celery.backends.base.DisabledBackend method)

 	waitexec() (celery.bin.multi.MultiTool method)

 	waiting() (celery.result.ResultSet method)

 	wakeup_workers() (celery.events.EventReceiver method)

 	warn_deprecated() (in module celery.utils)

 	warn_if_yajl() (celery.events.EventDispatcher method)

 	weekday() (in module celery.utils.timeutils)

 	when (celery.exceptions.Retry attribute)

 	white() (celery.utils.term.colored method)

 	win (celery.events.cursesmon.CursesMonitor attribute)

 	with_detacher_default_options() (celery.bin.multi.MultiTool method)

 	with_pool_option() (celery.bin.base.Command method)

 	(celery.bin.celery.CeleryCommand method)

 	(celery.bin.worker.worker method)

 	without_defaults() (celery.app.utils.Settings method)

 	WorkController (celery.Celery attribute)

 	(class in celery.worker)

 	WorkController.Blueprint (class in celery.worker)

 	Worker (celery.Celery attribute)

 	worker (celery.events.state.State.Task attribute)

 	(celery.events.state.Task attribute)

 	Worker (class in celery.apps.worker)

 	worker (class in celery.bin.worker)

 	Worker (class in celery.events.state)

 	
 worker-heartbeat

 	event

 	
 	
 worker-offline

 	event

 	
 worker-online

 	event

 	worker_direct() (in module celery.utils)

 	worker_event() (celery.events.state.State method)

 	
 worker_init

 	signal

 	worker_initialized (celery.loaders.base.BaseLoader attribute)

 	worker_main() (celery.Celery method)

 	worker_pid (celery.worker.job.Request attribute)

 	
 worker_process_init

 	signal

 	
 worker_process_shutdown

 	signal

 	
 worker_ready

 	signal

 	
 worker_shutdown

 	signal

 	WorkerComponent (class in celery.worker.autoreload)

 	(class in celery.worker.autoscale)

 	WorkerLostError

 	workers (celery.events.cursesmon.CursesMonitor attribute)

 	workers() (celery.bin.graph.graph method)

 	WorkerShutdown

 	WorkerTerminate

 	write() (celery.utils.log.LoggingProxy method)

 	write_pid() (celery.platforms.Pidfile method)

 	write_stats (celery.concurrency.prefork.TaskPool attribute)

 	writelines() (celery.utils.log.LoggingProxy method)

Y

 	
 	yellow() (celery.utils.term.colored method)

_static/comment-close.png

_static/comment.png

_static/down.png

_static/file.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/plus.png

_static/up-pressed.png

_static/minus.png

_static/up.png

_static/down-pressed.png

_images/dashboard.png
oo

Celery Flower | W

O [celery Flower
€ € | [1 localhost:5555 /workers

x

Workers

O 00O o0 o0 o0 0 0O

H

Offine

Concurrency

N

n

Monitor Docs About

Completed Tasks

13902
13900
13826
1989
1983

2245

Running Tasks

0

0

Queues
images, data, video
images, data, video
images, data, video
data

data

celery, data

celery

_images/celeryevshotsm.jpg
celeryev 1.1.1

wn TASK oRKER T sTATE
322721-173e-4ca6-8382-GFFFTc2c030E tasks. sleeptask casper Tocal 10:02:38 Uiciis
<leeptask _caspe

Sleeptask casper.
2500b117-3c10-4533-8544-20630284c96¢ tasks. sleeptask casper. local
7807fcc1-7a13-4878-8226-738673e4c3d9 tasks. sleeptask casper. local
75486d0d-aae4-4120-be5-Febadazabed tasks. sleeptask casper. local
£4762069-32bf-4af3-393d-cIer967fd12c tasks.sleeptask casper. local
30726759-7a8-48ec-9¢89-b222acdIbASF tasks.sleeptask casper. local
91Fec1b6-6996-41£9-2337-009adecs183d tasks. sleeptask casper. local
Fda21903-c24b-492¢-b948-9F0Sb1945e8d tasks. sleeptask casper. local
62742826 -a9ed-4c3b-ad64-a869b582e068 tasks. sleeptask casper. local
8720520-71b6-4287-324d-d0f dadedebe tasks. slesptask casper.local
cBdbazle-aac2-473a-00d6-Feedbddcasca tasks. sleeptask casper. local
1cOd67d8-0b8f-47dd-8d30-€72694526d73 tasks. sleeptask casper. local
66179786-dbes-4bde-a1b-e25525¢3a020 tasks. sleeptask casper. local
€027d1d-36a8-4bc4-aa1-Saedfchabeeb tasks. sleeptask casper. local
3795b272-bSed-429e-84e3-58340002261b tasks. sleeptask casper. local
5410ea05-Gea7-47FB-b40d-4ca023038Fe1 tasks. sleeptask casper. local
614daF2-5025-48ea-b4d45cadb9fccal6d tasks. sleeptask casper. local

123 SUCCESS
21 success
18 RECEIVED

18 RECEIVED

18 RECEIVED

+18 RECEIVED
18 RECEIVED

118 RECEIVED
18 RECEIVED

18 RECEIVED

18 RECEIVED

18 RECEIVED

18 RECEIVED

18 RECEIVED

18
1

118 Success

Selected: runtine-3.01s eta
Workers online: casper. local
Info: avents:43 tasks:20 workers:1/1
3iup kidown i:info t:traceback riresult c:revoke c: uit

010-06-

AT10:02:21.513155 arg:

3 result=3 kwarg:

_images/worker_graph_full.png

_images/math/0cbdbeced7e18aac1f0c66d746b94f54d958ee68.png
Y(2+2)+(4+4))

_images/math/ee41faa7eeac56a3636041bf57be94bccc2d88e5.png
2+ 2

_images/math/5422147a7407aee11c76c637849b314c39b3c48e.png

_images/math/b8026451166b64d5c9ee6557023207258f7d4a8d.png
2+ 2)+4)

_images/math/9411e7a0068d73cdd71b785c7ca80595afaa7c02.png
(2+2)+ 16 = 20

_images/math/9f200be1a6d107c2a8bf94334ba4ed69695922d6.png
44+ 5

_images/celeryevshotsm1.jpg
celeryev 1.1.1

wn TASK oRKER T sTATE
322721-173e-4ca6-8382-GFFFTc2c030E tasks. sleeptask casper Tocal 10:02:38 Uiciis
<leeptask _caspe

Sleeptask casper.
2500b117-3c10-4533-8544-20630284c96¢ tasks. sleeptask casper. local
7807fcc1-7a13-4878-8226-738673e4c3d9 tasks. sleeptask casper. local
75486d0d-aae4-4120-be5-Febadazabed tasks. sleeptask casper. local
£4762069-32bf-4af3-393d-cIer967fd12c tasks.sleeptask casper. local
30726759-7a8-48ec-9¢89-b222acdIbASF tasks.sleeptask casper. local
91Fec1b6-6996-41£9-2337-009adecs183d tasks. sleeptask casper. local
Fda21903-c24b-492¢-b948-9F0Sb1945e8d tasks. sleeptask casper. local
62742826 -a9ed-4c3b-ad64-a869b582e068 tasks. sleeptask casper. local
8720520-71b6-4287-324d-d0f dadedebe tasks. slesptask casper.local
cBdbazle-aac2-473a-00d6-Feedbddcasca tasks. sleeptask casper. local
1cOd67d8-0b8f-47dd-8d30-€72694526d73 tasks. sleeptask casper. local
66179786-dbes-4bde-a1b-e25525¢3a020 tasks. sleeptask casper. local
€027d1d-36a8-4bc4-aa1-Saedfchabeeb tasks. sleeptask casper. local
3795b272-bSed-429e-84e3-58340002261b tasks. sleeptask casper. local
5410ea05-Gea7-47FB-b40d-4ca023038Fe1 tasks. sleeptask casper. local
614daF2-5025-48ea-b4d45cadb9fccal6d tasks. sleeptask casper. local

123 SUCCESS
21 success
18 RECEIVED

18 RECEIVED

18 RECEIVED

+18 RECEIVED
18 RECEIVED

118 RECEIVED
18 RECEIVED

18 RECEIVED

18 RECEIVED

18 RECEIVED

18 RECEIVED

18 RECEIVED

18
1

118 Success

Selected: runtine-3.01s eta
Workers online: casper. local
Info: avents:43 tasks:20 workers:1/1
3iup kidown i:info t:traceback riresult c:revoke c: uit

010-06-

AT10:02:21.513155 arg:

3 result=3 kwarg:

_images/monitor.png
€ - C [J localhost:5555/monitor

Celery Flower

Succeeded tasks
600

V'8 coleryd.pliocal
celoryt.pliocal
'8 coleryzpliocal
v B colery7.pliocal
celory8.plocal
celorys.pliocal
V'8 colery3.pliocal
'8 coleryd.pliocal
'8 coleryt.pliocal

_images/result_graph.png
272981c1-a480-4a09-b247-a7¢8d1506d50

_ 6dB7alc2-4bfe-47af-939a-ea01a5b3666¢ 7,,

Y
69c1a41b-391c-4605-96ee-d700c0a7b532

nav.xhtml

 Table of Contents

 		Celery - Distributed Task Queue

 		Copyright

 		Getting Started

 		Introduction to Celery

 		What is a Task Queue?

 		What do I need?

 		Get Started

 		Celery is…

 		Features

 		Framework Integration

 		Quickjump

 		Installation

 		Brokers

 		Broker Instructions

 		Experimental Transports

 		Broker Overview

 		First Steps with Celery

 		Choosing a Broker

 		Installing Celery

 		Application

 		Running the celery worker server

 		Calling the task

 		Keeping Results

 		Configuration

 		Where to go from here

 		Troubleshooting

 		Next Steps

 		Using Celery in your Application

 		Calling Tasks

 		Canvas: Designing Workflows

 		Routing

 		Remote Control

 		Timezone

 		Optimization

 		What to do now?

 		Resources

 		Getting Help

 		Bug tracker

 		Wiki

 		Contributing

 		License

 		User Guide

 		Application

 		Main Name

 		Configuration

 		Laziness

 		Breaking the chain

 		Abstract Tasks

 		Tasks

 		Basics

 		Names

 		Context

 		Logging

 		Retrying

 		List of Options

 		States

 		Semipredicates

 		Custom task classes

 		How it works

 		Tips and Best Practices

 		Performance and Strategies

 		Example

 		Calling Tasks

 		Basics

 		Linking (callbacks/errbacks)

 		ETA and countdown

 		Expiration

 		Message Sending Retry

 		Serializers

 		Compression

 		Connections

 		Routing options

 		Canvas: Designing Workflows

 		Signatures

 		The Primitives

 		Workers Guide

 		Starting the worker

 		Stopping the worker

 		Restarting the worker

 		Process Signals

 		Variables in file paths

 		Concurrency

 		Remote control

 		Commands

 		Time Limits

 		Rate Limits

 		Max tasks per child setting

 		Autoscaling

 		Queues

 		Autoreloading

 		Inspecting workers

 		Additional Commands

 		Writing your own remote control commands

 		Periodic Tasks

 		Introduction

 		Time Zones

 		Entries

 		Crontab schedules

 		Starting the Scheduler

 		HTTP Callback Tasks (Webhooks)

 		Basics

 		Django webhook example

 		Ruby on Rails webhook example

 		Calling webhook tasks

 		Routing Tasks

 		Basics

 		AMQP Primer

 		Routing Tasks

 		Monitoring and Management Guide

 		Introduction

 		Workers

 		RabbitMQ

 		Redis

 		Munin

 		Events

 		Event Reference

 		Security

 		Introduction

 		Areas of Concern

 		Serializers

 		Message Signing

 		Intrusion Detection

 		Optimizing

 		Introduction

 		Ensuring Operations

 		General Settings

 		Worker Settings

 		Concurrency

 		Concurrency with Eventlet

 		Signals

 		Basics

 		Signals

 		Extensions and Bootsteps

 		Custom Message Consumers

 		Blueprints

 		Worker

 		Consumer

 		Installing Bootsteps

 		Command-line programs

 		Worker API

 		Configuration and defaults

 		Example configuration file

 		Configuration Directives

 		Time and date settings

 		Task settings

 		Concurrency settings

 		Task result backend settings

 		Database backend settings

 		RPC backend settings

 		Cache backend settings

 		Redis backend settings

 		MongoDB backend settings

 		Cassandra backend settings

 		IronCache backend settings

 		Couchbase backend settings

 		AMQP backend settings

 		Message Routing

 		Broker Settings

 		Task execution settings

 		Worker

 		Error E-Mails

 		Events

 		Broadcast Commands

 		Logging

 		Security

 		Custom Component Classes (advanced)

 		Periodic Task Server: celery beat

 		Monitor Server: celerymon

 		Django

 		First steps with Django

 		Using Celery with Django

 		Starting the worker process

 		Where to go from here

 		Contributing

 		Community Code of Conduct

 		Be considerate.

 		Be respectful.

 		Be collaborative.

 		When you disagree, consult others.

 		When you are unsure, ask for help.

 		Step down considerately.

 		Reporting Bugs

 		Security

 		Other bugs

 		Issue Trackers

 		Contributors guide to the codebase

 		Versions

 		Branches

 		master branch

 		Maintenance branches

 		Archived branches

 		Feature branches

 		Tags

 		Working on Features & Patches

 		Forking and setting up the repository

 		Running the unit test suite

 		Creating pull requests

 		Building the documentation

 		Verifying your contribution

 		Coding Style

 		Contributing features requiring additional libraries

 		Contacts

 		Committers

 		Website

 		Packages

 		celery

 		kombu

 		amqp

 		billiard

 		librabbitmq

 		celerymon

 		django-celery

 		cl

 		cyme

 		Deprecated

 		Release Procedure

 		Updating the version number

 		Releasing

 		Community Resources

 		Resources

 		Who's using Celery

 		Wiki

 		Celery questions on Stack Overflow

 		Mailing-list Archive: celery-users

 		News

 		Tutorials

 		Running the worker as a daemon

 		Generic init scripts

 		Usage systemd

 		supervisord

 		launchd (OS X)

 		Windows

 		CentOS

 		Debugging Tasks Remotely (using pdb)

 		Basics

 		Tips

 		Task Cookbook

 		Ensuring a task is only executed one at a time

 		Frequently Asked Questions

 		General

 		What kinds of things should I use Celery for?

 		Misconceptions

 		Does Celery really consist of 50.000 lines of code?

 		Does Celery have many dependencies?

 		Is Celery heavy-weight?

 		Is Celery dependent on pickle?

 		Is Celery for Django only?

 		Do I have to use AMQP/RabbitMQ?

 		Is Celery multilingual?

 		Troubleshooting

 		MySQL is throwing deadlock errors, what can I do?

 		The worker is not doing anything, just hanging

 		Task results aren't reliably returning

 		Why is Task.delay/apply*/the worker just hanging?

 		Does it work on FreeBSD?

 		I'm having IntegrityError: Duplicate Key errors. Why?

 		Why aren't my tasks processed?

 		Why won't my Task run?

 		Why won't my periodic task run?

 		How do I purge all waiting tasks?

 		I've purged messages, but there are still messages left in the queue?

 		Results

 		How do I get the result of a task if I have the ID that points there?

 		Security

 		Isn't using pickle a security concern?

 		Can messages be encrypted?

 		Is it safe to run celery worker as root?

 		Brokers

 		Why is RabbitMQ crashing?

 		Can I use Celery with ActiveMQ/STOMP?

 		What features are not supported when not using an AMQP broker?

 		Tasks

 		How can I reuse the same connection when calling tasks?

 		Sudo in a subprocess returns None

 		Why do workers delete tasks from the queue if they are unable to process them?

 		Can I call a task by name?

 		How can I get the task id of the current task?

 		Can I specify a custom task_id?

 		Can I use decorators with tasks?

 		Can I use natural task ids?

 		How can I run a task once another task has finished?

 		Can I cancel the execution of a task?

 		Why aren't my remote control commands received by all workers?

 		Can I send some tasks to only some servers?

 		Can I change the interval of a periodic task at runtime?

 		Does celery support task priorities?

 		Should I use retry or acks_late?

 		Can I schedule tasks to execute at a specific time?

 		How can I safely shut down the worker?

 		How do I run the worker in the background on [platform]?

 		Django

 		What purpose does the database tables created by django-celery have?

 		Windows

 		The -B / –beat option to worker doesn't work?

 		Change history

 		3.1.25

 		3.1.24

 		3.1.23

 		3.1.22

 		3.1.21

 		3.1.20

 		3.1.19

 		3.1.18

 		3.1.17

 		3.1.16

 		3.1.15

 		3.1.14

 		3.1.13

 		Security Fixes

 		News

 		3.1.12

 		3.1.11

 		3.1.10

 		3.1.9

 		3.1.8

 		3.1.7

 		Important Notes

 		Init script security improvements

 		Fixes

 		3.1.6

 		3.1.5

 		3.1.4

 		3.1.3

 		3.1.2

 		3.1.1

 		3.1.0

 		What's new in Celery 3.1 (Cipater)

 		Preface

 		Important Notes

 		Dropped support for Python 2.5

 		Last version to enable Pickle by default

 		Old command-line programs removed and deprecated

 		News

 		Prefork Pool Improvements

 		Django supported out of the box

 		Events are now ordered using logical time

 		New worker node name format (name@host)

 		Bound tasks

 		Mingle: Worker synchronization

 		Gossip: Worker <-> Worker communication

 		Bootsteps: Extending the worker

 		New RPC result backend

 		Time limits can now be set by the client

 		Redis: Broadcast messages and virtual hosts

 		pytz replaces python-dateutil dependency

 		Support for Setuptools extra requirements

 		subtask.__call__() now executes the task directly

 		In Other News

 		Scheduled Removals

 		Deprecations

 		Fixes

 		Internal changes

 		What's new in Celery 3.0 (Chiastic Slide)

 		Highlights

 		Important Notes

 		Broadcast exchanges renamed

 		Eventloop

 		New celery umbrella command

 		Now depends on billiard.

 		celery.app.task no longer a package

 		Last version to support Python 2.5

 		UTC timezone is now used

 		Redis: Ack emulation improvements

 		News

 		Chaining Tasks

 		Redis: Priority support.

 		Redis: Now cycles queues so that consuming is fair.

 		group/chord/chain are now subtasks

 		New remote control commands

 		Crontab now supports Day of Month, and Month of Year arguments

 		Immutable subtasks

 		Logging Improvements

 		Task registry no longer global

 		Abstract tasks are now lazily bound.

 		Lazy task decorators

 		Smart –app option

 		In Other News

 		Internals

 		Experimental

 		celery.contrib.methods: Task decorator for methods

 		Unscheduled Removals

 		Deprecations

 		Fixes

 		What's new in Celery 2.5

 		Important Notes

 		Broker connection pool now enabled by default

 		Rabbit Result Backend: Exchange is no longer auto delete

 		Solution for hanging workers (but must be manually enabled)

 		Optimizations

 		Deprecations

 		Removals

 		Deprecations

 		News

 		Timezone support

 		New security serializer using cryptographic signing

 		Experimental support for automatic module reloading

 		New CELERY_ANNOTATIONS setting

 		current provides the currently executing task

 		In Other News

 		Fixes

 		API Reference

 		celery — Distributed processing

 		Celery application objects

 		Canvas primitives

 		Proxies

 		celery.app

 		Proxies

 		Functions

 		Data

 		celery.app.task

 		celery.app.task

 		celery.app.amqp

 		AMQP

 		Queues

 		TaskPublisher

 		celery.app.defaults

 		celery.app.defaults

 		celery.app.control

 		celery.app.control

 		celery.app.registry

 		celery.app.registry

 		celery.app.builtins

 		celery.app.builtins

 		celery.app.log

 		celery.app.log

 		celery.app.utils

 		celery.app.utils

 		celery.bootsteps

 		celery.bootsteps

 		celery.result

 		celery.result

 		celery.task.http

 		celery.task.http

 		celery.schedules

 		celery.schedules

 		celery.signals

 		celery.signals

 		celery.security

 		celery.security

 		celery.utils.debug

 		Sampling Memory Usage

 		API Reference

 		celery.utils.mail

 		celery.utils.mail

 		celery.exceptions

 		celery.exceptions

 		celery.loaders

 		celery.loaders

 		celery.loaders.app

 		celery.loaders.app

 		celery.loaders.default

 		celery.loaders.default

 		celery.loaders.base

 		celery.loaders.base

 		celery.states

 		States

 		Sets

 		Misc.

 		celery.contrib.abortable

 		Abortable tasks overview

 		celery.contrib.batches

 		celery.contrib.migrate

 		celery.contrib.migrate

 		celery.contrib.sphinx

 		celery.contrib.rdb

 		celery.contrib.methods

 		Examples

 		Caveats

 		celery.events

 		celery.events

 		celery.events.state

 		celery.events.state

 		celery.beat

 		celery.beat

 		celery.apps.worker

 		celery.apps.worker

 		celery.apps.beat

 		celery.apps.beat

 		celery.worker

 		celery.worker

 		celery.worker.consumer

 		celery.worker.consumer

 		celery.worker.job

 		celery.worker.job

 		celery.worker.state

 		celery.worker.state

 		celery.worker.strategy

 		celery.worker.strategy

 		celery.bin.base

 		Preload Options

 		Daemon Options

 		celery.bin.celery

 		celery.bin.worker

 		celery.bin.beat

 		celery.bin.events

 		celery.bin.amqp

 		celery.bin.multi

 		Examples

 		celery.bin.graph

 		Internals

 		Contributors Guide to the Code

 		Philosophy

 		Conventions and Idioms Used

 		Applications vs. “single mode”

 		Module Overview

 		Celery Deprecation Timeline

 		Removals for version 3.2

 		Removals for version 4.0

 		Removals for version 2.0

 		Internals: The worker

 		Introduction

 		Data structures

 		Components

 		Task Messages
