Celery Documentation
Release 4.4.2

Ask Solem
contributors

Mar 17, 2020

Contents

1 Donations 3
2 Getting Started 5
3 Contents 7
4 Indices and tables 733
Bibliography 735
Python Module Index 737

Index 739

Celery Documentation, Release 4.4.2

Celery is a simple, flexible, and reliable distributed system to process vast amounts of messages, while providing
operations with the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also supporting task scheduling.

Celery has a large and diverse community of users and contributors, you should come join us on IRC or our mailing-
list.

Celery is Open Source and licensed under the BSD License.

Contents 1

http://www.opensource.org/licenses/BSD-3-Clause

Celery Documentation, Release 4.4.2

2 Contents

CHAPTER 1

Donations

This project relies on your generous donations.

If you are using Celery to create a commercial product, please consider becoming our backer or our sponsor to ensure
Celery’s future.

https://opencollective.com/celery#backer
https://opencollective.com/celery#sponsor

Celery Documentation, Release 4.4.2

4 Chapter 1. Donations

CHAPTER 2

Getting Started

* If you’re new to Celery you can get started by following the First Steps with Celery tutorial.

¢ You can also check out the FAQ.

Celery Documentation, Release 4.4.2

6 Chapter 2. Getting Started

CHAPTER 3

Contents

3.1 Copyright

Celery User Manual
by Ask Solem
Copyright © 2009-2016, Ask Solem.

All rights reserved. This material may be copied or distributed only subject to the terms and conditions set forth
in the Creative Commons Attribution-ShareAlike 4.0 International <https://creativecommons.org/licenses/by-sa/4.0/
legalcode>*_ license.

You may share and adapt the material, even for commercial purposes, but you must give the original author credit. If
you alter, transform, or build upon this work, you may distribute the resulting work only under the same license or a
license compatible to this one.

Note: While the Celery documentation is offered under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional license the Celery software is offered under the BSD License (3 Clause)

3.2 Getting Started

Release 4.4
Date Mar 17, 2020

3.2.1 Introduction to Celery

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
http://www.opensource.org/licenses/BSD-3-Clause

Celery Documentation, Release 4.4.2

e What’s a Task Queue?
e What do I need?

* Get Started

e Celeryis...

» Features

* Framework Integration

* Quick Jump

e [nstallation

What'’s a Task Queue?

Task queues are used as a mechanism to distribute work across threads or machines.

A task queue’s input is a unit of work called a task. Dedicated worker processes constantly monitor task queues for
new work to perform.

Celery communicates via messages, usually using a broker to mediate between clients and workers. To initiate a task
the client adds a message to the queue, the broker then delivers that message to a worker.

A Celery system can consist of multiple workers and brokers, giving way to high availability and horizontal scaling.

Celery is written in Python, but the protocol can be implemented in any language. In addition to Python there’s
node-celery and node-celery-ts for Node.js, and a PHP client.

Language interoperability can also be achieved exposing an HTTP endpoint and having a task that requests it (web-
hooks).

What do | need?

Version Requirements

Celery version 4.0 runs on

* Python 2.7,3.4, 3.5

* PyPy54,5.5
This is the last version to support Python 2.7, and from the next version (Celery 5.x) Python 3.5 or newer is required.
If you’re running an older version of Python, you need to be running an older version of Celery:

* Python 2.6: Celery series 3.1 or earlier.

* Python 2.5: Celery series 3.0 or earlier.

» Python 2.4 was Celery series 2.2 or earlier.

Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues
related to that platform.

8 Chapter 3. Contents

https://github.com/mher/node-celery
https://github.com/IBM/node-celery-ts
https://github.com/gjedeer/celery-php

Celery Documentation, Release 4.4.2

Celery requires a message transport to send and receive messages. The RabbitMQ and Redis broker transports are
feature complete, but there’s also support for a myriad of other experimental solutions, including using SQLite for
local development.

Celery can run on a single machine, on multiple machines, or even across data centers.

Get Started

If this is the first time you’re trying to use Celery, or if you haven’t kept up with development in the 3.1 version and
are coming from previous versions, then you should read our getting started tutorials:

 First Steps with Celery

* Next Steps

Celery is...

» Simple
Celery is easy to use and maintain, and it doesn’t need configuration files.

It has an active, friendly community you can talk to for support, including a mailing-list and an
IRC channel.

Here’s one of the simplest applications you can make:

from celery import Celery
app = Celery('hello', broker='amgp://guest@localhost//"')
Qapp.task

def hello():
return 'hello world'

* Highly Available

Workers and clients will automatically retry in the event of connection loss or failure, and some
brokers support HA in way of Primary/Primary or Primary/Replica replication.

* Fast

A single Celery process can process millions of tasks a minute, with sub-millisecond round-trip
latency (using RabbitMQ, librabbitmq, and optimized settings).

¢ Flexible

Almost every part of Celery can be extended or used on its own, Custom pool implementations,
serializers, compression schemes, logging, schedulers, consumers, producers, broker transports,
and much more.

It supports

¢ Brokers
* RabbitMQ, Redis,
* Amazon SQOS, and more. . .

3.2. Getting Started 9

https://groups.google.com/group/celery-users

Celery Documentation, Release 4.4.2

Concurrency

prefork (multiprocessing),

Eventlet, gevent

thread (multithreaded)

solo (single threaded)

Result Stores

AMQP, Redis

Memcached,

SQLAIchemy, Django ORM

Apache Cassandra, Elasticsearch, Riak
MongoDB, CouchDB, Couchbase, ArangoDB
Amazon DynamoDB, Amazon S3

Microsoft Azure Block Blob, Microsoft Azure Cosmos DB
File system

Serialization

pickle, json, yaml, msgpack.

zlib, bzip2 compression.

Cryptographic message signing.

Features

Monitoring
A stream of monitoring events is emitted by workers and is used by built-in and external tools to
tell you what your cluster is doing — in real-time.
Read more. . . .

Work-flows
Simple and complex work-flows can be composed using a set of powerful primitives we call the
“canvas”, including grouping, chaining, chunking, and more.
Read more. .. .

Time & Rate Limits
You can control how many tasks can be executed per second/minute/hour, or how long a task can
be allowed to run, and this can be set as a default, for a specific worker or individually for each
task type.
Read more. .. .

Scheduling
You can specify the time to run a task in seconds or a datet ime, or you can use periodic tasks
for recurring events based on a simple interval, or Crontab expressions supporting minute, hour,
day of week, day of month, and month of year.
Read more. .. .

Resource Leak Protection
The ——max—-tasks—per—child option is used for user tasks leaking resources, like memory
or file descriptors, that are simply out of your control.
Read more. ...

User Components
Each worker component can be customized, and additional components can be defined by the user.
The worker is built up using “bootsteps” — a dependency graph enabling fine grained control of
the worker’s internals.

10

Chapter 3. Contents

http://eventlet.net/
http://gevent.org/
https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.4.2

Framework Integration

Celery is easy to integrate with web frameworks, some of them even have integration packages:

Pyramid | pyramid_celery
Pylons celery-pylons
Flask not needed
web2py | web2py-celery
Tornado | tornado-celery
Tryton celery_tryton

For Django see First steps with Django.

The integration packages aren’t strictly necessary, but they can make development easier, and sometimes they add
important hooks like closing database connections at fork (2).

Quick Jump

I want to

e get the return value of a task

* use logging from my task

* learn about best practices

* create a custom task base class

* add a callback to a group of tasks

* split a task into several chunks

* optimize the worker

* see a list of built-in task states

* create custom task states

* set a custom task name

* track when a task starts

* retry a task when it fails

* get the id of the current task

* know what queue a task was delivered to
* see a list of running workers

* purge all messages

* inspect what the workers are doing

* see what tasks a worker has registered

* migrate tasks to a new broker

* see a list of event message types

* contribute to Celery

* learn about available configuration settings
* get a list of people and companies using Celery
* write my own remote control command

* change worker queues at runtime

Jump to

* Brokers
* Applications

3.2. Getting Started 11

http://docs.pylonsproject.org/en/latest/docs/pyramid.html
https://pypi.python.org/pypi/pyramid_celery/
http://pylonshq.com/
https://pypi.python.org/pypi/celery-pylons/
http://flask.pocoo.org/
http://web2py.com/
https://pypi.python.org/pypi/web2py-celery/
http://www.tornadoweb.org/
https://pypi.python.org/pypi/tornado-celery/
http://www.tryton.org/
https://pypi.python.org/pypi/celery_tryton/
https://djangoproject.com/

Celery Documentation, Release 4.4.2

* Tasks
Calling

» Workers
Daemonizing
Monitoring

* Optimizing
Security
Routing

* Configuration
Django
Contributing
Signals

* FAQ

* API Reference

Installation

You can install Celery either via the Python Package Index (PyPI) or from source.

To install using pip:

$ pip install -U Celery

Bundles

Celery also defines a group of bundles that can be used to install Celery and the dependencies for a given feature.

You can specify these in your requirements or on the pip command-line by using brackets. Multiple bundles can be
specified by separating them by commas.

$ pip install "celery[librabbitmg]"

$ pip install "celery[librabbitmqg, redis,auth, msgpack]"

The following bundles are available:

Serializers

celery[auth] for using the auth security serializer.
celery[msgpack] for using the msgpack serializer.

celery|[yaml] for using the yaml serializer.

Concurrency

celery[eventlet] for using the eventlet pool.

celery[gevent] for using the gevent pool.

12 Chapter 3. Contents

https://pypi.python.org/pypi/eventlet/
https://pypi.python.org/pypi/gevent/

Celery Documentation, Release 4.4.2

Transports and Backends

celery[librabbitmqg] for using the librabbitmq C library.

celery[redis] for using Redis as a message transport or as a result backend.
celery([sqgs] for using Amazon SQS as a message transport (experimental).
celery|[tblib] for using the task_remote_ tracebacks feature.
celery[memcache] for using Memcached as a result backend (using pylibmc)
celery[pymemcache] for using Memcached as a result backend (pure-Python implementation).
celery|[cassandra] for using Apache Cassandra as a result backend with DataStax driver.
celery[couchbase] for using Couchbase as a result backend.

celery[arangodb] for using ArangoDB as a result backend.
celery[elasticsearch] for using Elasticsearch as a result backend.

celery([riak] for using Riak as a result backend.

celery[dynamodb] for using AWS DynamoDB as a result backend.
celery[zookeeper] for using Zookeeper as a message transport.
celery|[sglalchemy] for using SQLAlchemy as a result backend (supported).
celery[pyro] for using the Pyro4 message transport (experimental).

celery[slmq] for using the SoftLayer Message Queue transport (experimental).

celery|[consul] for using the Consul.io Key/Value store as a message transport or result backend
(experimental).

celery[django] specifies the lowest version possible for Django support.

You should probably not use this in your requirements, it’s here for informational purposes only.

Downloading and installing from source

Download the latest version of Celery from PyPI:
https://pypi.org/project/celery/

You can install it by doing the following,:

$ tar xvfz celery-0.0.0.tar.gz
$ cd celery-0.0.0

$ python setup.py build

python setup.py install

The last command must be executed as a privileged user if you aren’t currently using a virtualenv.

Using the development version
With pip

The Celery development version also requires the development versions of kombu, amqp, billiard, and vine.

3.2. Getting Started

13

https://pypi.python.org/pypi/pylibmc/
https://pypi.org/project/celery/
https://pypi.python.org/pypi/kombu/
https://pypi.python.org/pypi/amqp/
https://pypi.python.org/pypi/billiard/
https://pypi.python.org/pypi/vine/

Celery Documentation, Release 4.4.2

You can install the latest snapshot of these using the following pip commands:

pip install https://github.com/celery/celery/zipball/masterfegg=celery
pip install https://github.com/celery/billiard/zipball/master#egg=billiard
pip install https://github.com/celery/py—amgp/zipball/master#egg=amgp

pip install https://github.com/celery/kombu/zipball/master#egg=kombu

pip install https://github.com/celery/vine/zipball/master#egg=vine

«w v v n

With git

Please see the Contributing section.

3.2.2 Brokers

Release 4.4
Date Mar 17, 2020

Celery supports several message transport alternatives.

Broker Instructions

Using RabbitMQ

* Installation & Configuration
* Installing the RabbitMQ Server
— Setting up RabbitMQ
— Installing RabbitMQ on macOS

x Configuring the system host name

* Starting/Stopping the RabbitMQ server

Installation & Configuration

RabbitMQ is the default broker so it doesn’t require any additional dependencies or initial configuration, other than
the URL location of the broker instance you want to use:

broker_url = 'amgp://myuser:mypassword@localhost:5672/myvhost’'

For a description of broker URLs and a full list of the various broker configuration options available to Celery, see
Broker Settings, and see below for setting up the username, password and vhost.

Installing the RabbitMQ Server

See Installing RabbitMQ over at RabbitMQ’s website. For macOS see Installing RabbitMQ on macOS.

14 Chapter 3. Contents

http://www.rabbitmq.com/install.html

Celery Documentation, Release 4.4.2

Note: If you're getting nodedown errors after installing and using rabbitmgctl then this blog post can help you
identify the source of the problem:

http://www.somic.org/2009/02/19/on-rabbitmqctl-and-badrpcnodedown/

Setting up RabbitMQ

To use Celery we need to create a RabbitMQ user, a virtual host and allow that user access to that virtual host:

’$ sudo rabbitmgctl add_user myuser mypassword

’$ sudo rabbitmgctl add_vhost myvhost

’$ sudo rabbitmgctl set_user_tags myuser mytag

’$ sudo rabbitmgctl set_permissions —-p myvhost myuser ".x" "._x" " _x"

Substitute in appropriate values for myuser, mypassword and myvhost above.

See the RabbitMQ Admin Guide for more information about access control.

Installing RabbitMQ on macOS

The easiest way to install RabbitMQ on macOS is using Homebrew the new and shiny package management system
for macOS.

First, install Homebrew using the one-line command provided by the Homebrew documentation:

ruby —-e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Finally, we can install RabbitMQ using brew:

’$ brew install rabbitmg

After you’ve installed RabbitMQ with brew you need to add the following to your path to be able to start and stop
the broker: add it to the start-up file for your shell (e.g., .bash_profileor .profile).

’PATH=$PATH:/usr/local/sbin

Configuring the system host hame

If you’re using a DHCP server that’s giving you a random host name, you need to permanently configure the host
name. This is because RabbitMQ uses the host name to communicate with nodes.

Use the scutil command to permanently set your host name:

$ sudo scutil --set HostName myhost.local

Then add that host name to /etc/hosts so it’s possible to resolve it back into an IP address:

3.2. Getting Started 15

http://www.somic.org/2009/02/19/on-rabbitmqctl-and-badrpcnodedown/
http://www.rabbitmq.com/admin-guide.html
http://www.rabbitmq.com/admin-guide.html#access-control
https://github.com/mxcl/homebrew/
https://github.com/Homebrew/homebrew/wiki/Installation

Celery Documentation, Release 4.4.2

127.0.0.1 localhost myhost myhost.local

If you start the rabbitmg-server, your rabbit node should now be rabbit@myhost, as verified by rabbitmgctl:

$ sudo rabbitmgctl status
Status of node rabbit@myhost

[{running_applications, [{rabbit, "RabbitM(
{mnesia, "MNESIA CXC 138 12"™,"4.4.12"},
{os_mon, "CPO
1, "SASL ¢
{stdlib, "ERTS
{kernel, "ERTS
st]},
bit@myhost] }]

n

{nodes, [rabbit@myhc

{running_nodes, [rc

...done.

This is especially important if your DHCP server gives you a host name starting with an IP address, (e.g.,
23.10.112.31.comcast.net). In this case RabbitMQ will try to use rabbit@23: an illegal host name.

Starting/Stopping the RabbitMQ server

To start the server:

’$ sudo rabbitmg-server

you can also run it in the background by adding the —~detached option (note: only one dash):

’$ sudo rabbitmg-server -detached

Never use kill (kil1 (1)) to stop the RabbitMQ server, but rather use the rabbitmgctl command:

’$ sudo rabbitmgctl stop

When the server is running, you can continue reading Setting up RabbitMQ.

Using Redis

Installation

For the Redis support you have to install additional dependencies. You can install both Celery and these dependencies
in one go using the celery [redis] bundle:

$ pip install -U "celery[redis]"

Configuration

Configuration is easy, just configure the location of your Redis database:

app.conf.broker_url = 'redis://localhost:6379/0"

Where the URL is in the format of:

16 Chapter 3. Contents

Celery Documentation, Release 4.4.2

’redis://:password@hostname:port/db_number

all fields after the scheme are optional, and will default to Localhost on port 6379, using database 0.

If a Unix socket connection should be used, the URL needs to be in the format:

’redis+socket:///path/to/redis.sock

Specifying a different database number when using a Unix socket is possible by adding the virtual_ host param-

eter to the URL:

redis+socket:///path/to/redis.sock?virtual_host=db_number

It is also easy to connect directly to a list of Redis Sentinel:

app.conf.broker_url =

app.conf.broker_transport_options = { 'master_name': "clusterl" }

< 'sentinel://localhost:26379;sentinel://localhost:26380;sentinel://localhost:26381"

Visibility Timeout

The visibility timeout defines the number of seconds to wait for the worker to acknowledge the task before the message

is redelivered to another worker. Be sure to see Caveats below.

This option is set via the broker_transport_options setting:

app.conf.broker_transport_options = {'visibility_timeout': 3600} +# 1 hour.

The default visibility timeout for Redis is 1 hour.

Results

If you also want to store the state and return values of tasks in Redis, you should configure these settings:

app.conf.result_backend = 'redis://localhost:6379/0"

For a complete list of options supported by the Redis result backend, see Redis backend settings.

If you are using Sentinel, you should specify the master_name using
result_backend_transport_options setting:

the

app.conf.result_backend_transport_options = {'master_name': "mymaster"}

Caveats
Fanout prefix

Broadcast messages will be seen by all virtual hosts by default.

You have to set a transport option to prefix the messages so that they will only be received by the active virtual host:

app.conf.broker_transport_options = {'fanout_prefix': True}

3.2. Getting Started

17

Celery Documentation, Release 4.4.2

Note that you won’t be able to communicate with workers running older versions or workers that doesn’t have this
setting enabled.

This setting will be the default in the future, so better to migrate sooner rather than later.

Fanout patterns

Workers will receive all task related events by default.

To avoid this you must set the fanout_patterns fanout option so that the workers may only subscribe to worker
related events:

app.conf.broker_transport_options = {'fanout_patterns': True}

Note that this change is backward incompatible so all workers in the cluster must have this option enabled, or else they
won’t be able to communicate.

This option will be enabled by default in the future.

Visibility timeout

If a task isn’t acknowledged within the Visibility Timeout the task will be redelivered to another worker and executed.

This causes problems with ETA/countdown/retry tasks where the time to execute exceeds the visibility timeout; in fact
if that happens it will be executed again, and again in a loop.

So you have to increase the visibility timeout to match the time of the longest ETA you’re planning to use.

Note that Celery will redeliver messages at worker shutdown, so having a long visibility timeout will only delay the
redelivery of ‘lost’ tasks in the event of a power failure or forcefully terminated workers.

Periodic tasks won’t be affected by the visibility timeout, as this is a concept separate from ETA/countdown.

You can increase this timeout by configuring a transport option with the same name:

app.conf.broker_transport_options = {'visibility_timeout': 43200}

The value must be an int describing the number of seconds.

Key eviction

Redis may evict keys from the database in some situations

If you experience an error like:

InconsistencyError: Probably the key ('_kombu.binding.celery') has been
removed from the Redis database.

then you may want to configure the redis—server to not evict keys by setting the t imeout parameter to O in the
redis configuration file.

Using Amazon SQS

18 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Installation

For the Amazon SQS support you have to install additional dependencies. You can install both Celery and these
dependencies in one go using the celery [sqgs] bundle:

$ pip install celery[sgs]

Configuration

You have to specify SQS in the broker URL:

’broker_url = 'sgs://ABCDEFGHIJKLMNOPQRST:ZYXK7NiynGlTogH8Nj+P9nlE73sg3@"’

where the URL format is:

sqgs://aws_access_key_id:aws_secret_access_key@

Please note that you must remember to include the @ sign at the end and encode the password so it can always be
parsed correctly. For example:

from kombu.utils.url import safequote

aws_access_key = safequote ("ABCDEFGHIJKLMNOPQRST")
aws_secret_key = safequote ("ZYXK7NiynG/TogH8Nj+P9nlE73sg3")

broker_url = "sqgs://{aws_access_key}:{aws_secret_key}Q".format (
aws_access_key=aws_access_key, aws_secret_key=aws_secret_key,

The login credentials can also be set using the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY, in that case the broker URL may only be sgs://.

If you are using IAM roles on instances, you can set the BROKER_URL to: sqgs:// and kombu will attempt to
retrieve access tokens from the instance metadata.

Options
Region

The default region is us-east-1 but you can select another region by configuring the
broker_transport_options setting:

broker_transport_options = {'region': 'eu-west-1"'}

See also:
An overview of Amazon Web Services regions can be found here:

http://aws.amazon.com/about-aws/globalinfrastructure/

Visibility Timeout

The visibility timeout defines the number of seconds to wait for the worker to acknowledge the task before the message
is redelivered to another worker. Also see caveats below.

3.2. Getting Started 19

http://aws.amazon.com/about-aws/globalinfrastructure/

Celery Documentation, Release 4.4.2

This option is set via the broker_ transport_options setting:

broker_transport_options = {'visibility_ timeout': 3600} # 1 hour.

The default visibility timeout is 30 seconds.

Polling Interval

The polling interval decides the number of seconds to sleep between unsuccessful polls. This value can be either an
int or a float. By default the value is one second: this means the worker will sleep for one second when there’s no
more messages to read.

You must note that more frequent polling is also more expensive, so increasing the polling interval can save you
money.

The polling interval can be set via the broker transport_options setting:

broker_transport_options = {'polling_interval': 0.3}

Very frequent polling intervals can cause busy loops, resulting in the worker using a lot of CPU time. If you need sub-
millisecond precision you should consider using another transport, like RabbitMQ <broker-amgp>, or Redis <broker-
redis>.

Long Polling

SQS Long Polling is enabled by default and the WaitTimeSeconds parameter of ReceiveMessage operation is set
to 10 seconds.

The value of WaitTimeSeconds parameter can be set via the broker_ transport_options setting:

broker_transport_options = {'wait_time_seconds': 15}

Valid values are 0 to 20. Note that newly created queues themselves (also if created by Celery) will have the default
value of 0 set for the “Receive Message Wait Time” queue property.

Queue Prefix

By default Celery won’t assign any prefix to the queue names, If you have other services using SQS you can configure
it do so using the broker transport_options setting:

broker_transport_options = {'queue_name_prefix': 'celery-'}

Caveats

 Ifataskisn’t acknowledged withinthe visibility_timeout, the task will be redelivered to another worker
and executed.

This causes problems with ETA/countdown/retry tasks where the time to execute exceeds the visibil-
ity timeout; in fact if that happens it will be executed again, and again in a loop.

So you have to increase the visibility timeout to match the time of the longest ETA you’re planning
to use.

20 Chapter 3. Contents

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Celery Documentation, Release 4.4.2

Note that Celery will redeliver messages at worker shutdown, so having a long visibility timeout
will only delay the redelivery of ‘lost’ tasks in the event of a power failure or forcefully terminated
workers.

Periodic tasks won’t be affected by the visibility timeout, as it is a concept separate from
ETA/countdown.

The maximum visibility timeout supported by AWS as of this writing is 12 hours (43200 seconds):

broker_transport_options = {'visibility_timeout': 43200}

* SQS doesn’t yet support worker remote control commands.

* SQS doesn’t yet support events, and so cannot be used with celery events, celerymon, or the Django
Admin monitor.

Results

Multiple products in the Amazon Web Services family could be a good candidate to store or publish results with, but
there’s no such result backend included at this point.

Warning: Don’t use the amgp result backend with SQS.

It will create one queue for every task, and the queues will not be collected. This could cost you money that would
be better spent contributing an AWS result store backend back to Celery :)

Broker Overview

This is comparison table of the different transports supports, more information can be found in the documentation for
each individual transport (see Broker Instructions).

Name Status Monitoring | Remote Control
RabbitMQ Stable Yes Yes
Redis Stable Yes Yes
Amazon SQS | Stable No No
Zookeeper Experimental | No No

Experimental brokers may be functional but they don’t have dedicated maintainers.

Missing monitor support means that the transport doesn’t implement events, and as such Flower, celery events, celery-
mon and other event-based monitoring tools won’t work.

Remote control means the ability to inspect and manage workers at runtime using the celery inspect and celery control
commands (and other tools using the remote control API).

3.2.3 First Steps with Celery

Celery is a task queue with batteries included. It’s easy to use so that you can get started without learning the full
complexities of the problem it solves. It’s designed around best practices so that your product can scale and integrate
with other languages, and it comes with the tools and support you need to run such a system in production.

In this tutorial you’ll learn the absolute basics of using Celery.

Learn about;

3.2. Getting Started 21

Celery Documentation, Release 4.4.2

* Choosing and installing a message transport (broker).

* Installing Celery and creating your first task.

* Starting the worker and calling tasks.

» Keeping track of tasks as they transition through different states, and inspecting return values.

Celery may seem daunting at first - but don’t worry - this tutorial will get you started in no time. It’s deliberately
kept simple, so as to not confuse you with advanced features. After you have finished this tutorial, it’s a good idea to
browse the rest of the documentation. For example the Next Steps tutorial will showcase Celery’s capabilities.

* Choosing a Broker
— RabbitMQ
— Redis
— Other brokers
e Installing Celery
* Application
* Running the Celery worker server
* Calling the task
* Keeping Results
* Configuration
* Where to go from here
» Troubleshooting

— Worker doesn’t start: Permission Error

— Result backend doesn’t work or tasks are always in PENDING state

Choosing a Broker

Celery requires a solution to send and receive messages; usually this comes in the form of a separate service called a
message broker.

There are several choices available, including:

RabbitMQ

RabbitMQ is feature-complete, stable, durable and easy to install. It’s an excellent choice for a production environ-
ment. Detailed information about using RabbitMQ with Celery:

Using RabbitMQ

If you’re using Ubuntu or Debian install RabbitMQ by executing this command:

$ sudo apt—-get install rabbitmg-server

Or, if you want to run it on Docker execute this:

22 Chapter 3. Contents

http://www.rabbitmq.com/

Celery Documentation, Release 4.4.2

$ docker run -d -p 5672:5672 rabbitmg

When the command completes, the broker will already be running in the background, ready to move messages for
you: Starting rabbitmg-server: SUCCESS.

Don’t worry if you’re not running Ubuntu or Debian, you can go to this website to find similarly simple installation
instructions for other platforms, including Microsoft Windows:

http://www.rabbitmq.com/download.html

Redis

Redis is also feature-complete, but is more susceptible to data loss in the event of abrupt termination or power failures.
Detailed information about using Redis:

Using Redis

If you want to run it on Docker execute this:

$ docker run -d -p 6379:6379 redis

Other brokers

In addition to the above, there are other experimental transport implementations to choose from, including Amazon
SOS.

See Broker Overview for a full list.
Installing Celery

Celery is on the Python Package Index (PyPI), so it can be installed with standard Python tools like pip or
easy_install:

$ pip install celery

Application

The first thing you need is a Celery instance. We call this the Celery application or just app for short. As this instance
is used as the entry-point for everything you want to do in Celery, like creating tasks and managing workers, it must
be possible for other modules to import it.

In this tutorial we keep everything contained in a single module, but for larger projects you want to create a dedicated
module.

Let’s create the file tasks.py:

from celery import Celery
app = Celery('tasks', broker='pyamgp://guest@localhost//")
@Qapp.task

def add(x, y):
return x + y

3.2. Getting Started 23

http://www.rabbitmq.com/download.html
https://redis.io/

Celery Documentation, Release 4.4.2

The first argument to Celery is the name of the current module. This is only needed so that names can be automati-
cally generated when the tasks are defined in the __main__ module.

The second argument is the broker keyword argument, specifying the URL of the message broker you want to use.
Here using RabbitMQ (also the default option).

See Choosing a Broker above for more choices — for RabbitMQ you can use amgp: //localhost, or for Redis you
canuse redis://localhost.

You defined a single task, called add, returning the sum of two numbers.

Running the Celery worker server

You can now run the worker by executing our program with the worker argument:

$ celery -A tasks worker --loglevel=info

Note: See the Troubleshooting section if the worker doesn’t start.

In production you’ll want to run the worker in the background as a daemon. To do this you need to use the tools
provided by your platform, or something like supervisord (see Daemonization for more information).

For a complete listing of the command-line options available, do:

’$ celery worker —--help

There are also several other commands available, and help is also available:

’$ celery help

Calling the task

To call our task you can use the delay () method.

This is a handy shortcut to the apply_async () method that gives greater control of the task execution (see Calling
Tasks):

>>> from tasks import add
>>> add.delay (4, 4)

The task has now been processed by the worker you started earlier. You can verify this by looking at the worker’s
console output.

Calling a task returns an AsyncResult instance. This can be used to check the state of the task, wait for the task to
finish, or get its return value (or if the task failed, to get the exception and traceback).

Results are not enabled by default. In order to do remote procedure calls or keep track of task results in a database,
you will need to configure Celery to use a result backend. This is described in the next section.

Keeping Results

If you want to keep track of the tasks’ states, Celery needs to store or send the states somewhere. There are several
built-in result backends to choose from: SQLAIchemy/Django ORM, Memcached, Redis, RPC (RabbitMQ/AMQP),
and — or you can define your own.

24 Chapter 3. Contents

http://supervisord.org
http://www.sqlalchemy.org/
http://djangoproject.com
http://memcached.org
https://redis.io/
http://www.rabbitmq.com/

Celery Documentation, Release 4.4.2

For this example we use the rpc result backend, that sends states back as transient messages. The backend is specified
via the backend argument to Celery, (or via the result_backend setting if you choose to use a configuration
module):

’app = Celery('tasks', backend='rpc://', broker='pyamgp://")

Or if you want to use Redis as the result backend, but still use RabbitMQ as the message broker (a popular combina-
tion):

’app = Celery('tasks', backend='redis://localhost', broker='pyamgp://")

To read more about result backends please see Result Backends.

Now with the result backend configured, let’s call the task again. This time you’ll hold on to the AsyncResult
instance returned when you call a task:

>>> result = add.delay (4, 4)

The ready () method returns whether the task has finished processing or not:

>>> result.ready ()
False

You can wait for the result to complete, but this is rarely used since it turns the asynchronous call into a synchronous
one:

>>> result.get (timeout=1)

In case the task raised an exception, get () will re-raise the exception, but you can override this by specifying the
propagate argument:

’>>> result.get (propagate=False)

If the task raised an exception, you can also gain access to the original traceback:

’>>> result.traceback

Warning: Backends use resources to store and transmit results. To ensure that resources are released, you must
eventually call get () or forget () on EVERY AsyncResult instance returned after calling a task.

See celery.result for the complete result object reference.

Configuration

Celery, like a consumer appliance, doesn’t need much configuration to operate. It has an input and an output. The
input must be connected to a broker, and the output can be optionally connected to a result backend. However, if you
look closely at the back, there’s a lid revealing loads of sliders, dials, and buttons: this is the configuration.

The default configuration should be good enough for most use cases, but there are many options that can be configured
to make Celery work exactly as needed. Reading about the options available is a good idea to familiarize yourself with
what can be configured. You can read about the options in the Configuration and defaults reference.

The configuration can be set on the app directly or by using a dedicated configuration module. As an example you can
configure the default serializer used for serializing task payloads by changing the task_serializer setting:

3.2. Getting Started 25

Celery Documentation, Release 4.4.2

app.conf.task_serializer = 'json'

If you’re configuring many settings at once you can use update:

app.conf.update (
task_serializer="'json',
accept_content=["'json'], # Ignore other content
result_serializer='json',
timezone="'Europe/Oslo"',
enable_utc=True,

For larger projects, a dedicated configuration module is recommended. Hard coding periodic task intervals and task
routing options is discouraged. It is much better to keep these in a centralized location. This is especially true
for libraries, as it enables users to control how their tasks behave. A centralized configuration will also allow your
SysAdmin to make simple changes in the event of system trouble.

You can tell your Celery instance to use a configuration module by calling the app.config from object ()
method:

app.config_from_object ('celeryconfig')

This module is often called “celeryconfig”, but you can use any module name.

In the above case, a module named celeryconfig.py must be available to load from the current directory or on
the Python path. It could look something like this:

celeryconfig.py:

broker_url = 'pyamgp://'
result_backend = 'rpc://'

task_serializer = 'Jjson'
result_serializer = 'json'
accept_content = ['json']
timezone = 'Europe/Oslo'
enable_utc = True

To verify that your configuration file works properly and doesn’t contain any syntax errors, you can try to import it:

$ python -m celeryconfig

For a complete reference of configuration options, see Configuration and defaults.
To demonstrate the power of configuration files, this is how you’d route a misbehaving task to a dedicated queue:

celeryconfig.py:

task_routes = {
'tasks.add': 'low-priority',

Or instead of routing it you could rate limit the task instead, so that only 10 tasks of this type can be processed in a
minute (10/m):

celeryconfig.py:

26 Chapter 3. Contents

Celery Documentation, Release 4.4.2

task_annotations = {
'tasks.add': {'rate_limit': '10/m'}

If you’re using RabbitMQ or Redis as the broker then you can also direct the workers to set a new rate limit for the
task at runtime:

$ celery —A tasks control rate_limit tasks.add 10/m
worker@example.com: OK

new rate limit set successfully

See Routing Tasks to read more about task routing, and the t ask_annotat ions setting for more about annotations,
or Monitoring and Management Guide for more about remote control commands and how to monitor what your
workers are doing.

Where to go from here

If you want to learn more you should continue to the Next Steps tutorial, and after that you can read the User Guide.

Troubleshooting

There’s also a troubleshooting section in the Frequently Asked Questions.

Worker doesn’t start: Permission Error

* If you’re using Debian, Ubuntu or other Debian-based distributions:
Debian recently renamed the /dev/shm special file to /run/shm.

A simple workaround is to create a symbolic link:

1In —-s /run/shm /dev/shm

e Others:

If you provide any of the ——pidfile, ——logfile or ——statedb arguments, then you must
make sure that they point to a file or directory that’s writable and readable by the user starting the
worker.

Result backend doesn’t work or tasks are always in PENDING state

All tasks are PENDING by default, so the state would’ve been better named “unknown”. Celery doesn’t update the
state when a task is sent, and any task with no history is assumed to be pending (you know the task id, after all).

1) Make sure that the task doesn’t have ignore_result enabled.
Enabling this option will force the worker to skip updating states.

2) Make sure the task_ignore_ result setting isn’t enabled.

3) Make sure that you don’t have any old workers still running.

It’s easy to start multiple workers by accident, so make sure that the previous worker is properly shut
down before you start a new one.

3.2. Getting Started 27

Celery Documentation, Release 4.4.2

An old worker that isn’t configured with the expected result backend may be running and is hijacking
the tasks.

The —-pidfile argument can be set to an absolute path to make sure this doesn’t happen.
4) Make sure the client is configured with the right backend.

If, for some reason, the client is configured to use a different backend than the worker, you won’t be
able to receive the result. Make sure the backend is configured correctly:

>>> result = task.delay ()
>>> print (result.backend)

3.2.4 Next Steps

The First Steps with Celery guide is intentionally minimal. In this guide I’ll demonstrate what Celery offers in more
detail, including how to add Celery support for your application and library.

This document doesn’t document all of Celery’s features and best practices, so it’s recommended that you also read
the User Guide

» Using Celery in your Application
* Calling Tasks

» Canvas: Designing Work-flows

* Routing

* Remote Control

» Timezone

* Optimization

e What to do now?

Using Celery in your Application

Our Project

Project layout:

proj/__init__ .py
/celery.py
/tasks.py

proj/celery.py

from __ future import absolute_import, unicode_literals
from celery import Celery

app = Celery('proj',

(continues on next page)

28 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

broker="'amgp://"',
backend="'amgp://"',
include=["'proj.tasks'])

Optional configuration, see the application user guide.
app.conf.update (
result_expires=3600,

if name == '__main__ ':
app.start ()

In this module you created our Ce lery instance (sometimes referred to as the app). To use Celery within your project
you simply import this instance.

* The broker argument specifies the URL of the broker to use.
See Choosing a Broker for more information.
* The backend argument specifies the result backend to use,

It’s used to keep track of task state and results. While results are disabled by default I use the RPC
result backend here because I demonstrate how retrieving results work later, you may want to use
a different backend for your application. They all have different strengths and weaknesses. If you
don’t need results it’s better to disable them. Results can also be disabled for individual tasks by
setting the @task (ignore_result=True) option.

See Keeping Results for more information.

* The include argument is a list of modules to import when the worker starts. You need to add our tasks module
here so that the worker is able to find our tasks.

proj/tasks.py

from _ future import absolute_import, unicode_literals

from .celery import app

@app.task
def add(x, vy):
return x + y

Qapp.task
def mul (x, y):
return x * y

Qapp.task
def xsum (numbers) :
return sum(numbers)

3.2. Getting Started 29

Celery Documentation, Release 4.4.2

Starting the worker

The celery program can be used to start the worker (you need to run the worker in the directory above proj):

$ celery -A proj worker -1 info

When the worker starts you should see a banner and some messages:

777777777777777 celery@halcyon.local v4.0 (latentcall)

——— kkkkk —————

—— 4%x%xxxxx ———— [Configuration]

- *%xx ——— x ——— . broker: amgp://guest@localhost:5672//

- xk —————————— . app: __main__ :0x1012d8590

- kx —————————— . concurrency: 8 (processes)

— kk —————————— . events: OFF (enable -E to monitor this worker)
Dk

— xxx ——— * ——— [Queues]

—— kkxxkkx ———— . celery: exchange:celery(direct) binding:celery

——— kkkkk —————

[2012-06-08 16:23:51,078: WARNING/MainProcess] celery@halcyon.local has started.

— The broker is the URL you specified in the broker argument in our ce1lery module, you can also specify a different
broker on the command-line by using the —b option.

— Concurrency is the number of prefork worker process used to process your tasks concurrently, when all of these are
busy doing work new tasks will have to wait for one of the tasks to finish before it can be processed.

The default concurrency number is the number of CPU’s on that machine (including cores), you can specify a custom
number using the celery worker -c option. There’s no recommended value, as the optimal number depends on
a number of factors, but if your tasks are mostly I/O-bound then you can try to increase it, experimentation has shown
that adding more than twice the number of CPU’s is rarely effective, and likely to degrade performance instead.

Including the default prefork pool, Celery also supports using Eventlet, Gevent, and running in a single thread (see
Concurrency).

— Events is an option that when enabled causes Celery to send monitoring messages (events) for actions occurring
in the worker. These can be used by monitor programs like celery events, and Flower - the real-time Celery
monitor, that you can read about in the Monitoring and Management guide.

— Queues is the list of queues that the worker will consume tasks from. The worker can be told to consume from several
queues at once, and this is used to route messages to specific workers as a means for Quality of Service, separation of
concerns, and prioritization, all described in the Routing Guide.

You can get a complete list of command-line arguments by passing in the ——he 1p flag:

$ celery worker —--help

These options are described in more detailed in the Workers Guide.

Stopping the worker

To stop the worker simply hit Control-c. A list of signals supported by the worker is detailed in the Workers Guide.

In the background

In production you’ll want to run the worker in the background, this is described in detail in the daemonization tutorial.

30 Chapter 3. Contents

Celery Documentation, Release 4.4.2

The daemonization scripts uses the celery multi command to start one or more workers in the background:

$ celery multi start wl -A proj -1 info
celery multi v4.0.0 (latentcall)
> Starting nodes...

> wl.halcyon.local: OK

You can restart it too:

$ celery multi restart wl -A proj -1 info

celery multi v4.0.0 (latentcall)
> Stopping nodes...

> wl.halcyon.local: TERM -> 64024
> Waiting for 1 node.....

> wl.halcyon.local: OK
> Restarting node wl.halcyon.local: OK
celery multi v4.0.0 (latentcall
> Stopping nodes...

wl.halcyon.local: TERM -> 64052

or stop it:

’$ celery multi stop wl -A proj -1 info

The stop command is asynchronous so it won’t wait for the worker to shutdown. You’ll probably want to use the
stopwait command instead, this ensures all currently executing tasks are completed before exiting:

’$ celery multi stopwait wl -A proj -1 info

Note: celery multi doesn’t store information about workers so you need to use the same command-line argu-
ments when restarting. Only the same pidfile and logfile arguments must be used when stopping.

By default it’1l create pid and log files in the current directory, to protect against multiple workers launching on top of
each other you’re encouraged to put these in a dedicated directory:

$ mkdir -p /var/run/celery

$ mkdir -p /var/log/celery

$ celery multi start wl -A proj -1 info —--pidfile=/var/run/celery/%n.pid \
—-logfile=/var/log/celery/%n%I.log

With the multi command you can start multiple workers, and there’s a powerful command-line syntax to specify
arguments for different workers too, for example:

$ celery multi start 10 -A proj -1 info -Q:1-3 images,video -Q:4,5 data \
-Q default -L:4,5 debug

For more examples see the mult i module in the API reference.

About the ——app argument

The ——app argument specifies the Celery app instance to use, it must be in the form of module.path:attribute

But it also supports a shortcut form If only a package name is specified, where it’ll try to search for the app instance,
in the following order:

With ——app=proj:

3.2. Getting Started 31

Celery Documentation, Release 4.4.2

1) an attribute named proj. app, or
2) an attribute named proj.celery, or
3) any attribute in the module pro j where the value is a Celery application, or
If none of these are found it’ll try a submodule named proj.celery:
4) an attribute named proj.celery.app, or
5) an attribute named proj.celery.celery,or
6) Any attribute in the module proj. celery where the value is a Celery application.

This scheme mimics the practices used in the documentation — that is, proj : app for a single contained module, and
proj.celery:app for larger projects.

Calling Tasks

You can call a task using the delay () method:

>>> from proj.tasks import add

>>> add.delay (2, 2)

This method is actually a star-argument shortcut to another method called apply_async ():

’>>> add.apply_async((2, 2))

The latter enables you to specify execution options like the time to run (countdown), the queue it should be sent to,
and so on:

>>> add.apply_async((2, 2), queue='lopri', countdown=10)

In the above example the task will be sent to a queue named lopri and the task will execute, at the earliest, 10
seconds after the message was sent.

Applying the task directly will execute the task in the current process, so that no message is sent:

>>> add (2, 2)
4

These three methods - delay (), apply_async (), and applying (__call
that’s also used for signatures.

), represents the Celery calling API,

A more detailed overview of the Calling API can be found in the Calling User Guide.
Every task invocation will be given a unique identifier (an UUID), this is the task id.

The delay and apply_async methods return an AsyncResult instance, that can be used to keep track of the
tasks execution state. But for this you need to enable a result backend so that the state can be stored somewhere.

Results are disabled by default because of the fact that there’s no result backend that suits every application, so to
choose one you need to consider the drawbacks of each individual backend. For many tasks keeping the return value
isn’t even very useful, so it’s a sensible default to have. Also note that result backends aren’t used for monitoring tasks
and workers, for that Celery uses dedicated event messages (see Monitoring and Management Guide).

If you have a result backend configured you can retrieve the return value of a task:

32 Chapter 3. Contents

Celery Documentation, Release 4.4.2

>>> res = add.delay (2, 2)
>>> res.get (timeout=1)

You can find the task’s id by looking at the id attribute:

>>> res.id

You can also inspect the exception and traceback if the task raised an exception, in fact result .get () will propa-
gate any errors by default:

>>> res = add.delay (2, '2"'")
>>> res.get (timeout=1)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "celery/result.py", line 221, in get
return self.backend.wait_for_pending(
File "celery/backends/asynchronous.py", line 195, in wait_for_pending
return result.maybe_throw(callback=callback, propagate=propagate)
File "celery/result.py", line 333, in maybe_throw
self.throw(value, self._to_remote_traceback (tb))
File "celery/result.py", line 326, in throw
self.on_ready.throw(xargs, *xkwargs)
File "vine/promises.py", line 244, in throw
reraise (type (exc), exc, tb)
File "vine/five.py", line 195, in reraise
raise value
TypeError: unsupported operand type(s) for +: 'int' and 'str'

If you don’t wish for the errors to propagate then you can disable that by passing the propagate argument:

>>> res.get (propagate=False)
TypeError ("unsupported operand type(s) for +: 'int' and 'str'")

In this case it’ll return the exception instance raised instead, and so to check whether the task succeeded or failed
you’ll have to use the corresponding methods on the result instance:

>>> res.failed()
True

>>> res.successful ()
False

So how does it know if the task has failed or not? It can find out by looking at the tasks state:

>>> res.state
'FAILURE'

A task can only be in a single state, but it can progress through several states. The stages of a typical task can be:

PENDING —-> STARTED —-> SUCCESS

The started state is a special state that’s only recorded if the task_track_started setting is enabled, or if the
@task (track_started=True) option is set for the task

3.2. Getting Started 33

Celery Documentation, Release 4.4.2

The pending state is actually not a recorded state, but rather the default state for any task id that’s unknown: this you
can see from this example:

>>> from proj.celery import app

>>> res = app.AsyncResult ('this-id-does-not-exist')
>>> res.state
'PENDING'

If the task is retried the stages can become even more complex. To demonstrate, for a task that’s retried two times the
stages would be:

PENDING —-> STARTED —-> RETRY —-> STARTED —-> RETRY —-> STARTED —-> SUCCESS

To read more about task states you should see the States section in the tasks user guide.

Calling tasks is described in detail in the Calling Guide.

Canvas: Designing Work-flows

You just learned how to call a task using the tasks delay method, and this is often all you need, but sometimes you
may want to pass the signature of a task invocation to another process or as an argument to another function, for this
Celery uses something called signatures.

A signature wraps the arguments and execution options of a single task invocation in such a way that it can be passed
to functions or even serialized and sent across the wire.

You can create a signature for the add task using the arguments (2, 2), and a countdown of 10 seconds like this:

>>> add.signature((2, 2), countdown=10)
tasks.add (2, 2)

There’s also a shortcut using star arguments:

>>> add.s (2, 2)
tasks]

dd(z, 2)

And there’s that calling API again. ..

Signature instances also support the calling API, meaning they have delay and apply_async methods.

But there’s a difference in that the signature may already have an argument signature specified. The add task takes
two arguments, so a signature specifying two arguments would make a complete signature:

>>> sl = add.s (2, 2)
>>> res = sl.delay ()
>>> res.get ()

But, you can also make incomplete signatures to create what we call partials:

incomplete partial: add(?, 2)
>>> s2 = add.s (2)

s2 is now a partial signature that needs another argument to be complete, and this can be resolved when calling the
signature:

34 Chapter 3. Contents

Celery Documentation, Release 4.4.2

resolves the partial: add(8, 2)
>>> res = s2.delay(8)
>>> res.get ()

10

Here you added the argument 8 that was prepended to the existing argument 2 forming a complete signature of add (8,
2).

Keyword arguments can also be added later, these are then merged with any existing keyword arguments, but with new
arguments taking precedence:

>>> s3 = add.s (2, 2, debug=True)
>>> s3.delay (debug=False) # debug is now False.

As stated, signatures support the calling API: meaning that
* sig.apply_async(args=(), kwargs={}, =*xoptions)

Calls the signature with optional partial arguments and partial keyword arguments. Also supports
partial execution options.

* sig.delay(xargs, =xxkwargs)

Star argument version of apply_async. Any arguments will be prepended to the arguments in the signature,
and keyword arguments is merged with any existing keys.

So this all seems very useful, but what can you actually do with these? To get to that I must introduce the canvas
primitives. . .

The Primitives

* group
e chain

e chord

* map

* starmap
e chunks

These primitives are signature objects themselves, so they can be combined in any number of ways to compose
complex work-flows.

Note: These examples retrieve results, so to try them out you need to configure a result backend. The example project
above already does that (see the backend argument to Celery).

Let’s look at some examples:

Groups

A group calls a list of tasks in parallel, and it returns a special result instance that lets you inspect the results as a
group, and retrieve the return values in order.

3.2. Getting Started 35

Celery Documentation, Release 4.4.2

>>> from celery import group

>>> from proj.tasks import add

>>> group(add.s (i, i) for i in range(10)) () .get ()
(6, 2, 4, 6, 8, 10, 12, 14, 16, 18]

* Partial group

>>> g = group(add.s (i) for i in range(10))
>>> g (10) .get ()
(1o, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Chains

Tasks can be linked together so that after one task returns the other is called:

>>> from celery import chain
>>> from proj.tasks import add, mul

(4 + 4) * 8
>>> chain(add.s (4, 4) | mul.s(8)) () .get ()
64

or a partial chain:

>>> # (2 + 4) x 8

>>> g = chain(add.s(4) | mul.s(8))
>>> g (4) .get ()

64

Chains can also be written like this:

>>> (add.s (4, 4) | mul.s(8)) ().get ()
64

Chords

A chord is a group with a callback:

>>> from celery import chord
>>> from proj.tasks import add, xsum

>>> chord((add.s (i, i) for i in range(10)), xsum.s()) ().get ()

90

A group chained to another task will be automatically converted to a chord:

>>> (group(add.s(i, i) for i in range(10)) | xsum.s()) ().get ()
90

Since these primitives are all of the signature type they can be combined almost however you want, for example:

>>> upload_document.s (file) | group(apply_filter.s () for filter in filters)

Be sure to read more about work-flows in the Canvas user guide.

36 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Routing

Celery supports all of the routing facilities provided by AMQP, but it also supports simple routing where messages are
sent to named queues.

The task_routes setting enables you to route tasks by name and keep everything centralized in one location:

app.conf.update (
task_routes = {
'proj.tasks.add': {'queue': 'hipri'},
}I

You can also specify the queue at runtime with the queue argument to apply_async:

>>> from proj.tasks import add
>>> add.apply_async((2, 2), queue='hipri')

You can then make a worker consume from this queue by specifying the celery worker -Q option:

’$ celery -A proj worker —-Q hipri

You may specify multiple queues by using a comma separated list, for example you can make the worker consume
from both the default queue, and the hipri queue, where the default queue is named celery for historical reasons:

’$ celery —-A proj worker -Q hipri,celery

The order of the queues doesn’t matter as the worker will give equal weight to the queues.

To learn more about routing, including taking use of the full power of AMQP routing, see the Routing Guide.

Remote Control

If you’re using RabbitMQ (AMQP), Redis, or Qpid as the broker then you can control and inspect the worker at
runtime.

For example you can see what tasks the worker is currently working on:

$ celery -A proj inspect active

This is implemented by using broadcast messaging, so all remote control commands are received by every worker in
the cluster.

You can also specify one or more workers to act on the request using the ——destination option. This is a comma
separated list of worker host names:

$ celery —-A proj inspect active --destination=celery@example.com

If a destination isn’t provided then every worker will act and reply to the request.

The celery inspect command contains commands that doesn’t change anything in the worker, it only replies
information and statistics about what’s going on inside the worker. For a list of inspect commands you can execute:

$ celery —-A proj inspect —--help

Then there’s the celery control command, that contains commands that actually changes things in the worker
at runtime:

3.2. Getting Started 37

Celery Documentation, Release 4.4.2

’$ celery —-A proj control --help

For example you can force workers to enable event messages (used for monitoring tasks and workers):

’$ celery —-A proj control enable_events

When events are enabled you can then start the event dumper to see what the workers are doing:

’$ celery -A proj events —--dump

or you can start the curses interface:

’$ celery -A proj events

when you’re finished monitoring you can disable events again:

’$ celery —-A proj control disable_events

The celery status command also uses remote control commands and shows a list of online workers in the cluster:

’$ celery —-A proj status

You can read more about the celery command and monitoring in the Monitoring Guide.

Timezone

All times and dates, internally and in messages uses the UTC timezone.

When the worker receives a message, for example with a countdown set it converts that UTC time to local time. If you
wish to use a different timezone than the system timezone then you must configure that using the ¢ imezone setting:

app.conf.timezone = 'Europe/London'

Optimization
The default configuration isn’t optimized for throughput by default, it tries to walk the middle way between many
short tasks and fewer long tasks, a compromise between throughput and fair scheduling.

If you have strict fair scheduling requirements, or want to optimize for throughput then you should read the Optimizing
Guide.

If you’re using RabbitMQ then you can install the librabbitmq module: this is an AMQP client implemented in C:

$ pip install librabbitmg

What to do now?

Now that you have read this document you should continue to the User Guide.

There’s also an API reference if you’re so inclined.

38 Chapter 3. Contents

https://pypi.python.org/pypi/librabbitmq/

Celery Documentation, Release 4.4.2

3.2.5 Resources

» Getting Help
— Mailing list
- IRC

* Bug tracker

o Wiki

* Contributing

e License

Getting Help
Mailing list

For discussions about the usage, development, and future of Celery, please join the celery-users mailing list.

IRC

Come chat with us on IRC. The #celery channel is located at the Freenode network.

Bug tracker

If you have any suggestions, bug reports, or annoyances please report them to our issue tracker at https://github.com/
celery/celery/issues/

Wiki

https://wiki.github.com/celery/celery/

Contributing

Development of celery happens at GitHub: https://github.com/celery/celery

You're highly encouraged to participate in the development of celery. If you don’t like GitHub (for some reason)
you’re welcome to send regular patches.

Be sure to also read the Contributing to Celery section in the documentation.

License

This software is licensed under the New BSD License. See the LICENSE file in the top distribution directory for the
full license text.

3.2. Getting Started 39

https://groups.google.com/group/celery-users/
https://freenode.net
https://github.com/celery/celery/issues/
https://github.com/celery/celery/issues/
https://wiki.github.com/celery/celery/
https://github.com/celery/celery
http://docs.celeryproject.org/en/master/contributing.html

Celery Documentation, Release 4.4.2

3.3 User Guide

Release 4.4
Date Mar 17, 2020

3.3.1 Application

* Main Name
* Configuration
e Laziness

* Breaking the chain

e Abstract Tasks

The Celery library must be instantiated before use, this instance is called an application (or app for short).

The application is thread-safe so that multiple Celery applications with different configurations, components, and tasks
can co-exist in the same process space.

Let’s create one now:

>>> from celery import Celery
>>> app = Celery ()

>>> app

<Celery _ _main__:0x100469£d0>

The last line shows the textual representation of the application: including the name of the app class (Celery), the
name of the current main module (__main__), and the memory address of the object (0x100469£d0).

Main Name

Only one of these is important, and that’s the main module name. Let’s look at why that is.

When you send a task message in Celery, that message won’t contain any source code, but only the name of the task
you want to execute. This works similarly to how host names work on the internet: every worker maintains a mapping
of task names to their actual functions, called the rask registry.

Whenever you define a task, that task will also be added to the local registry:

>>> (@Qapp.task
def add(x, y):
return x + y

>>> add

<@task: main__ .add>

>>> add.name

main__ .add

>>> app.tasks['__main__.add']
<@task: _ _main__ .add>

40 Chapter 3. Contents

Celery Documentation, Release 4.4.2

and there you see that __main___ again; whenever Celery isn’t able to detect what module the function belongs to, it
uses the main module name to generate the beginning of the task name.

This is only a problem in a limited set of use cases:
1. If the module that the task is defined in is run as a program.
2. If the application is created in the Python shell (REPL).
For example here, where the tasks module is also used to start a worker with app . worker_main():

tasks.py:

from celery import Celery
app = Celery()

Qapp.task
def add(x, y): return x + y

if name == '__main_ ':
app.worker_main ()

When this module is executed the tasks will be named starting with “__main__ ", but when the module is imported
by another process, say to call a task, the tasks will be named starting with “tasks” (the real name of the module):

>>> from tasks import add
>>> add.name
tasks.add

You can specify another name for the main module:

>>> app = Celery('tasks')
>>> app.main
'tasks'

>>> Q@app.task
def add(x, y):
return x + y

>>> add.name
tasks.add

See also:

Names

Configuration

There are several options you can set that’ll change how Celery works. These options can be set directly on the app
instance, or you can use a dedicated configuration module.

The configuration is available as app. conf:

>>> app.conf.timezone
'Europe/London'

where you can also set configuration values directly:

>>> app.conf.enable_utc = True

3.3. User Guide 41

Celery Documentation, Release 4.4.2

or update several keys at once by using the update method:

>>> app.conf.update (
enable_utc=True,
timezone='Europe/London',

The configuration object consists of multiple dictionaries that are consulted in order:

1. Changes made at run-time.

2. The configuration module (if any)

3. The default configuration (celery.app.defaults).
You can even add new default sources by using the app.add_defaults () method.
See also:

Go to the Configuration reference for a complete listing of all the available settings, and their default values.

config from object

The app.config_from _object () method loads configuration from a configuration object.
This can be a configuration module, or any object with configuration attributes.

Note that any configuration that was previously set will be reset when config_ from object () is called. If you
want to set additional configuration you should do so after.

Example 1: Using the name of a module

The app.config from object () method can take the fully qualified name of a Python module, or even the
name of a Python attribute, for example: "celeryconfig", "myproj.config.celery", or "myproj.
config:CeleryConfig":

from celery import Celery

app = Celery ()
app.config_from_object ('celeryconfig')

The celeryconfig module may then look like this:

celeryconfig.py:

enable_utc = True
timezone = 'Europe/London'

and the app will be able to use it as long as import celeryconfig is possible.

Example 2: Passing an actual module object

You can also pass an already imported module object, but this isn’t always recommended.

42 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Tip: Using the name of a module is recommended as this means the module does not need to be serialized when the
prefork pool is used. If you’re experiencing configuration problems or pickle errors then please try using the name of
a module instead.

import celeryconfig
from celery import Celery

app = Celery()
app.config_from object (celeryconfiqg)

Example 3: Using a configuration class/object

from celery import Celery
app = Celery ()

class Config:
enable_utc = True
timezone = 'Europe/London'

app.config_from_object (Config)
or using the fully qualified name of the object:
f

app.config_from_object ("'module:Config')

config from_envvar

The app.config from envvar () takes the configuration module name from an environment variable

For example — to load configuration from a module specified in the environment variable named
CELERY_CONFIG_MODULE:

import os
from celery import Celery

#: Set default configuration module name
os.environ.setdefault ('CELERY_CONFIG_MODULE', 'celeryconfig')

app = Celery ()
app.config_from_envvar ('CELERY_CONFIG_MODULE")

You can then specify the configuration module to use via the environment:

$ CELERY_CONFIG_MODULE="celeryconfig.prod" celery worker -1 info

Censored configuration

If you ever want to print out the configuration, as debugging information or similar, you may also want to filter out
sensitive information like passwords and API keys.

Celery comes with several utilities useful for presenting the configuration, one is humanize ():

3.3. User Guide 43

Celery Documentation, Release 4.4.2

>>> app.conf.humanize (with_defaults=False, censored=True)

This method returns the configuration as a tabulated string. This will only contain changes to the configuration by
default, but you can include the built-in default keys and values by enabling the with_defaults argument.

If you instead want to work with the configuration as a dictionary, you can use the table () method:

>>> app.conf.table(with_defaults=False, censored=True)

Please note that Celery won’t be able to remove all sensitive information, as it merely uses a regular expression to
search for commonly named keys. If you add custom settings containing sensitive information you should name the
keys using a name that Celery identifies as secret.

A configuration setting will be censored if the name contains any of these sub-strings:

APTI, TOKEN, KEY, SECRET, PASS, SIGNATURE, DATABASE

Laziness

The application instance is lazy, meaning it won’t be evaluated until it’s actually needed.
Creating a Celery instance will only do the following:
1. Create a logical clock instance, used for events.
2. Create the task registry.
3. Set itself as the current app (but not if the set_as_current argument was disabled)
4. Callthe app.on_init () callback (does nothing by default).

The app . task () decorators don’t create the tasks at the point when the task is defined, instead it’1l defer the creation
of the task to happen either when the task is used, or after the application has been finalized,

This example shows how the task isn’t created until you use the task, or access an attribute (in this case repr ()):

>>> (@app.task
>>> def add(x, y):
return x + y

>>> type (add)

<class 'celery.local.PromiseProxy

>>> add.__evaluated__ ()
False

>>> add # <-— causes repr (add)

<@task: main .add>

>>> add.__evaluated_ ()
True

Finalization of the app happens either explicitly by calling app. finalize () —or implicitly by accessing the app .
tasks attribute.

Finalizing the object will:
1. Copy tasks that must be shared between apps

Tasks are shared by default, but if the shared argument to the task decorator is disabled, then the
task will be private to the app it’s bound to.

44 Chapter 3. Contents

Celery Documentation, Release 4.4.2

2. Evaluate all pending task decorators.
3. Make sure all tasks are bound to the current app.

Tasks are bound to an app so that they can read default values from the configuration.

The “default app”
Celery didn’t always have applications, it used to be that there was only a module-based API, and for backwards
compatibility the old API is still there until the release of Celery 5.0.

Celery always creates a special app - the “default app”, and this is used if no custom application has been instanti-
ated.

The celery.task module is there to accommodate the old API, and shouldn’t be used if you use a custom app.
You should always use the methods on the app instance, not the module based APIL

For example, the old Task base class enables many compatibility features where some may be incompatible with
newer features, such as task methods:

S
=
[y
.
2
0
o

from celery.task import Task

from celery import Task # << NEW base class.

The new base class is recommended even if you use the old module-based API.

Breaking the chain

While it’s possible to depend on the current app being set, the best practice is to always pass the app instance around
to anything that needs it.

I call this the “app chain”, since it creates a chain of instances depending on the app being passed.

The following example is considered bad practice:

from celery import current_app

class Scheduler (object) :

def run(self):
app = current_app

Instead it should take the app as an argument:

class Scheduler (object) :

def _ _init__ (self, app):
self.app = app

Internally Celery uses the celery.app.app_or_default () function so that everything also works in the
module-based compatibility API

from celery.app import app_or_default

class Scheduler (object) :
def _ init__ (self, app=None):
self.app = app_or_default (app)

3.3. User Guide 45

Celery Documentation, Release 4.4.2

In development you can set the CELERY_TRACE_APP environment variable to raise an exception if the app chain
breaks:

$ CELERY_TRACE_APP=1 celery worker -1 info

Evolving the API

Celery has changed a lot from 2009 since it was initially created.

For example, in the beginning it was possible to use any callable as a task:

def hello(to):
return 'hello {0}'.format (to)

>>> from celery.execute import apply_async

>>> apply_async (hello, ('world!',))

or you could also create a Task class to set certain options, or override other behavior

from celery.task import Task
from celery.registry import tasks

class Hello (Task):
queue = 'hipri'

def run(self, to):
return 'hello {0}'.format (to)

tasks.register (Hello)

>>> Hello.delay ('world!")

Later, it was decided that passing arbitrary call-able’s was an anti-pattern, since it makes it very hard to use serial-
izers other than pickle, and the feature was removed in 2.0, replaced by task decorators:

from celery.task import task

@task (queue="hipri')
def hello(to):
return 'hello {0}'.format (to)

Abstract Tasks

All tasks created using the task () decorator will inherit from the application’s base Ta sk class.

You can specify a different base class using the base argument:

@app.task (base=0OtherTask) :
def add(x, vy):
return x + y

To create a custom task class you should inherit from the neutral base class: celery.Task.

from celery import Task

class DebugTask (Task) :

(continues on next page)

46 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

def _ _call_(self, xargs, =**kwargs):
print ('TASK STARTING: {0O.name}[{0.request.id}]'.format (self))
return self.run(xargs, *xxkwargs)

Tip: If you override the task’s __call__ method, then it’s very important that you also call self.run to ex-
ecute the body of the task. Do not call super () .__call_ . The _ _call__ method of the neutral base class
celery.Task is only present for reference. For optimization, this has been unrolled into celery.app.trace.
build_tracer.trace_task which calls run directly on the custom task class if no __call__ method is
defined.

The neutral base class is special because it’s not bound to any specific app yet. Once a task is bound to an app it’ll
read configuration to set default values, and so on.

To realize a base class you need to create a task using the app. task () decorator:

@Qapp.task (base=DebugTask)
def add(x, y):
return x + y

It’s even possible to change the default base class for an application by changing its app. Task () attribute:

>>> from celery import Celery, Task
>>> app = Celery ()

>>> class MyBaseTask (Task) :
queue = 'hipri'

>>> app.Task = MyBaseTask
>>> app.Task
<unbound MyBaseTask>

>>> (@app.task
def add(x, vy):
return x + y

>>> add

<@task: _ _main__.add>

>>> add. class .mro ()

[<class add of <Celery _ _main__:0x1012b4410>>,
<unbound MyBaseTask>,

<unbound Task>,

<type 'object'>]

3.3.2 Tasks

Tasks are the building blocks of Celery applications.

A task is a class that can be created out of any callable. It performs dual roles in that it defines both what happens
when a task is called (sends a message), and what happens when a worker receives that message.

3.3. User Guide 47

Celery Documentation, Release 4.4.2

Every task class has a unique name, and this name is referenced in messages so the worker can find the right function
to execute.

A task message is not removed from the queue until that message has been acknowledged by a worker. A worker
can reserve many messages in advance and even if the worker is killed — by power failure or some other reason — the
message will be redelivered to another worker.

Ideally task functions should be idempotent: meaning the function won’t cause unintended effects even if called
multiple times with the same arguments. Since the worker cannot detect if your tasks are idempotent, the default
behavior is to acknowledge the message in advance, just before it’s executed, so that a task invocation that already
started is never executed again.

If your task is idempotent you can set the acks_ 1ate option to have the worker acknowledge the message after the
task returns instead. See also the FAQ entry Should I use retry or acks_late?.

Note that the worker will acknowledge the message if the child process executing the task is terminated (either by the
task calling sys.exit (), or by signal) even when acks_ I1ate is enabled. This behavior is by purpose as. ..

1. We don’t want to rerun tasks that forces the kernel to send a SIGSEGV (segmentation fault) or similar signals
to the process.

2. We assume that a system administrator deliberately killing the task does not want it to automatically restart.

3. A task that allocates too much memory is in danger of triggering the kernel OOM Kkiller, the same may happen
again.

4. A task that always fails when redelivered may cause a high-frequency message loop taking down the system.

If you really want a task to be redelivered in these scenarios you should consider enabling the
task_reject_on worker_ lost setting.

Warning: A task that blocks indefinitely may eventually stop the worker instance from doing any other work.

If your task does I/O then make sure you add timeouts to these operations, like adding a timeout to a web request
using the requests library:

connect_timeout, read_timeout = 5.0, 30.0
response = requests.get (URL, timeout=(connect_timeout, read_timeout))

Time limits are convenient for making sure all tasks return in a timely manner, but a time limit event will actually
kill the process by force so only use them to detect cases where you haven’t used manual timeouts yet.

The default prefork pool scheduler is not friendly to long-running tasks, so if you have tasks that run for min-
utes/hours make sure you enable the ~Ofair command-line argument to the celery worker. See Prefork
pool prefetch settings for more information, and for the best performance route long-running and short-running
tasks to dedicated workers (Automatic routing).

If your worker hangs then please investigate what tasks are running before submitting an issue, as most likely the
hanging is caused by one or more tasks hanging on a network operation.

In this chapter you’ll learn all about defining tasks, and this is the table of contents:

* Basics
e Names

» Task Request

48 Chapter 3. Contents

https://docs.python.org/dev/library/sys.html#sys.exit
https://pypi.python.org/pypi/requests/

Celery Documentation, Release 4.4.2

* Logging

Retrying

List of Options

e States

Semipredicates

Custom task classes

How it works

Tips and Best Practices

Performance and Strategies

Example

Basics

You can easily create a task from any callable by using the task () decorator:

from .models import User

Qapp.task
def create_user (username, password) :
User.objects.create (username=username, password=password)

There are also many options that can be set for the task, these can be specified as arguments to the decorator:

@Qapp.task(serializer="'json')
def create_user (username, password) :
User.objects.create (username=username, password=password)

How do I import the task decorator? And what’s “app”?
The task decorator is available on your Celery application instance, if you don’t know what this is then please
read First Steps with Celery.

If you’re using Django (see First steps with Django), or you’re the author of a library then you probably want to use
the shared_task () decorator:

from celery import shared_task

@shared_ task
def add(x, vy):
return x + y

Multiple decorators

When using multiple decorators in combination with the task decorator you must make sure that the fask decorator
is applied last (oddly, in Python this means it must be first in the list):

3.3. User Guide 49

Celery Documentation, Release 4.4.2

@app.task

@decorator2

@decoratorl

def add(x, vy):
return x + y

Bound tasks

A task being bound means the first argument to the task will always be the task instance (self), just like Python
bound methods:

logger = get_task_logger (__name_)

@task (bind=True)
def add(self, x, vy):
logger.info(self.request.id)

Bound tasks are needed for retries (using app. Task.retry ()), for accessing information about the current task
request, and for any additional functionality you add to custom task base classes.

Task inheritance

The base argument to the task decorator specifies the base class of the task:

import celery
class MyTask (celery.Task):

def on_failure(self, exc, task_id, args, kwargs, einfo):
print ('{0!r} failed: {1l!r}'.format (task_id, exc))

@task (base=MyTask)
def add(x, y):
raise KeyError ()

Names

Every task must have a unique name.

If no explicit name is provided the task decorator will generate one for you, and this name will be based on 1) the
module the task is defined in, and 2) the name of the task function.

Example setting explicit name:

>>> (@app.task (name="'sum-of-two-numbers')
>>> def add(x, y):
return x + y

>>> add.name
al

'sum-of-two—numbers

A best practice is to use the module name as a name-space, this way names won’t collide if there’s already a task with
that name defined in another module.

50 Chapter 3. Contents

Celery Documentation, Release 4.4.2

>>> Q@Qapp.task (name='tasks.add')
>>> def add(x, y):
return x + y

You can tell the name of the task by investigating its . name attribute:

>>> add.name
'tasks.add'

The name we specified here (tasks.add) is exactly the name that would’ve been automatically generated for us if
the task was defined in a module named tasks.py:

tasks.py:

Qapp.task
def add(x, y):
return x + y

>>> from tasks import add
>>> add.name
'tasks.add’

Automatic naming and relative imports

Absolute Imports

The best practice for developers targeting Python 2 is to add the following to the top of every module:

from _ future import absolute_import

This will force you to always use absolute imports so you will never have any problems with tasks using relative
names.

Absolute imports are the default in Python 3 so you don’t need this if you target that version.

Relative imports and automatic name generation don’t go well together, so if you’re using relative imports you should
set the name explicitly.

For example if the client imports the module "myapp.tasks" as " . tasks", and the worker imports the module as
"myapp.tasks", the generated names won’t match and an Not Registered error will be raised by the worker.

This is also the case when using Django and using project .myapp-style naming in INSTALLED_APPS:

INSTALLED_APPS = ['project.myapp']

If you install the app under the name project .myapp then the tasks module will be imported as project.
myapp . tasks, so you must make sure you always import the tasks using the same name:

>>> from project.myapp.tasks import mytask # << GOOD

>>> from myapp.tasks import mytask # << BAD!!!

The second example will cause the task to be named differently since the worker and the client imports the modules
under different names:

3.3. User Guide 51

Celery Documentation, Release 4.4.2

>>> from project.myapp.tasks import mytask
>>> mytask.name
'project . .myapp.tasks.mytask'

>>> from myapp.tasks import mytask
>>> mytask.name

'myapp.tasks.mytask'

For this reason you must be consistent in how you import modules, and that is also a Python best practice.

Similarly, you shouldn’t use old-style relative imports:

from module import foo # BAD!

from proj.module import foo # GOOD!

New-style relative imports are fine and can be used:

from .module import foo # GOOD!

If you want to use Celery with a project already using these patterns extensively and you don’t have the time to refactor
the existing code then you can consider specifying the names explicitly instead of relying on the automatic naming:

@task (name='"'proj.tasks.add"')
def add(x, y):
return x + y

Changing the automatic naming behavior

New in version 4.0.

There are some cases when the default automatic naming isn’t suitable. Consider having many tasks within many
different modules:

project/

/__init__ .py

/celery.py

/moduled/
/__init__ .py
/tasks.py

/moduleB/
/__init__ .py
/tasks.py

Using the default automatic naming, each task will have a generated name like moduleA.tasks.taskA, mod-
uleA.tasks.taskB, moduleB.tasks.test, and so on. You may want to get rid of having fasks in all task names. As pointed
above, you can explicitly give names for all tasks, or you can change the automatic naming behavior by overriding
app.gen_task_name (). Continuing with the example, celery.py may contain:

from celery import Celery
class MyCelery (Celery) :
def gen_task name (self, name, module):

if module.endswith('.tasks'):
module = module[:-6]

(continues on next page)

52 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

return super (MyCelery, self).gen_task_name (name, module)

app = MyCelery('main')

So each task will have a name like moduleA.taskA, moduleA.taskB and moduleB.test.

Warning: Make sure that your app.gen_task_name () is a pure function: meaning that for the same input it
must always return the same output.

Task Request

app. Task.request contains information and state related to the currently executing task.
The request defines the following attributes:
id The unique id of the executing task.
group The unique id of the task’s group, if this task is a member.
chord The unique id of the chord this task belongs to (if the task is part of the header).
correlation_id Custom ID used for things like de-duplication.
args Positional arguments.
kwargs Keyword arguments.
origin Name of host that sent this task.
retries How many times the current task has been retried. An integer starting at 0.
is_eager Setto True if the task is executed locally in the client, not by a worker.
eta The original ETA of the task (if any). This is in UTC time (depending on the enable utc setting).

expires The original expiry time of the task (if any). This is in UTC time (depending on the
enable_utc setting).

hostname Node name of the worker instance executing the task.

delivery_info Additional message delivery information. This is a mapping containing the exchange and
routing key used to deliver this task. Used by for example app. Task. retry () to resend the task
to the same destination queue. Availability of keys in this dict depends on the message broker used.

reply-to Name of queue to send replies back to (used with RPC result backend for example).
called_directly This flag is set to true if the task wasn’t executed by the worker.
timelimit A tuple of the current (soft, hard) time limits active for this task (if any).
callbacks A list of signatures to be called if this task returns successfully.
errback A list of signatures to be called if this task fails.
utc Set to true the caller has UTC enabled (enable utc).
New in version 3.1.
headers Mapping of message headers sent with this task message (may be None).
reply_to Where to send reply to (queue name).

correlation_id Usually the same as the task id, often used in amgp to keep track of what a reply is for.

3.3. User Guide 53

Celery Documentation, Release 4.4.2

New in version 4.0.
root_id The unique id of the first task in the workflow this task is part of (if any).
parent_id The unique id of the task that called this task (if any).

chain Reversed list of tasks that form a chain (if any). The last item in this list will be the next task
to succeed the current task. If using version one of the task protocol the chain tasks will be in
request.callbacks instead.

Example

An example task accessing information in the context is:

@app.task (bind=True)
def dump_context (self, x, vy):
print ('Executing task id {0.id}, args: {0.args!r} kwargs: {0O.kwargs!r}'.format (
self.request))

The bind argument means that the function will be a “bound method” so that you can access attributes and methods
on the task type instance.

Logging

The worker will automatically set up logging for you, or you can configure logging manually.

A special logger is available named “celery.task”, you can inherit from this logger to automatically get the task name
and unique id as part of the logs.

The best practice is to create a common logger for all of your tasks at the top of your module:

from celery.utils.log import get_task_logger
logger = get_task_logger (__name_)

Qapp.task

def add(x, y):
logger.info ('Adding {0} + {1}'.format (x, y))
return x + y

Celery uses the standard Python logger library, and the documentation can be found here.

You can also use print (), as anything written to standard out/-err will be redirected to the logging system (you can
disable this, see worker redirect_stdouts).

Note: The worker won’t update the redirection if you create a logger instance somewhere in your task or task module.

If you want to redirect sys.stdout and sys.stderr to a custom logger you have to enable this manually, for
example:

import sys
logger = get_task_logger (__name_)
@app.task (bind=True)

def add(self, x, vy):
old_outs = sys.stdout, sys.stderr

(continues on next page)

54 Chapter 3. Contents

https://docs.python.org/dev/library/logging.html#module-logging
https://docs.python.org/dev/library/functions.html#print

Celery Documentation, Release 4.4.2

(continued from previous page)

rlevel = self.app.conf.worker_redirect_stdouts_level
try:
self.app.log.redirect_stdouts_to_logger (logger, rlevel)
print ('Adding {0} + {1}'.format(x, vy))
return x + y
finally:
sys.stdout, sys.stderr = old_outs

Note: If a specific Celery logger you need is not emitting logs, you should check that the logger is propagating
properly. In this example “celery.app.trace” is enabled so that “succeeded in” logs are emitted:

import celery
import logging

@celery.signals.after_setup_logger.connect

def on_after_ setup_logger (x*xkwargs) :
logger = logging.getLogger ('celery')
logger.propagate = True
logger = logging.getLogger ('celery.app.trace')
logger.propagate = True

Note: If you want to completely disable Celery logging configuration, use the setup_logging signal:

import celery

@celery.signals.setup_logging.connect
def on_setup_logging (x*xkwargs) :
pass

Argument checking

New in version 4.0.

Celery will verify the arguments passed when you call the task, just like Python does when calling a normal function:

>>> (@app.task
def add(x, vy):
return x + y
Calling the task with two arguments works:
>>> add.delay (8, 8)
<AsyncResult: f59d71ca-1549-43e0-bed41-4e8821a83c0c>
Calling the task with only one argument fails:
>>> add.delay (8)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "celery/app/task.py", line 376, in delay
return self.apply_async(args, kwargs)

(continues on next page)

3.3. User Guide 55

Celery Documentation, Release 4.4.2

(continued from previous page)

File "celery/app/task.py", line 485, in apply_async
check_arguments (x (args or ()), =% (kwargs or {}))
TypeError: add() takes exactly 2 arguments (1 given)

You can disable the argument checking for any task by setting its ¢ yping attribute to False:

>>> (@app.task (typing=False)
def add(x, y):
return x + y

Works locall

y, but the worker receiving the task will raise an error.
>>> add.delay (8)
£5

<AsyncResult:

Hiding sensitive information in arguments

New in version 4.0.

When using task_protocol 2 or higher (default since 4.0), you can override how positional arguments and key-
word arguments are represented in logs and monitoring events using the argsrepr and kwargsrepr calling argu-
ments:

>>> add.apply_async((2, 3), argsrepr=' (<secret-x>, <secret-y>)"')

>>> charge.s (account, card='1234 5678 1234 5678") .set (
kwargsrepr=repr ({'card': 'xxxx #**x*x xxxx 5678'})
) .delay ()

Warning: Sensitive information will still be accessible to anyone able to read your task message from the broker,
or otherwise able intercept it.

For this reason you should probably encrypt your message if it contains sensitive information, or in this example
with a credit card number the actual number could be stored encrypted in a secure store that you retrieve and
decrypt in the task itself.

Retrying

app.Task.retry () can be used to re-execute the task, for example in the event of recoverable errors.

When you call retry it’ll send a new message, using the same task-id, and it’ll take care to make sure the message
is delivered to the same queue as the originating task.

When a task is retried this is also recorded as a task state, so that you can track the progress of the task using the result
instance (see States).

Here’s an example using retry:

Qapp.task (bind=True)
def send_twitter_status(self, oauth, tweet):
try:
twitter = Twitter (ocauth)
twitter.update_status (tweet)

(continues on next page)

56 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

except (Twitter.FailWhaleError, Twitter.LoginError) as exc:
raise self.retry (exc=exc)

Note: The app.Task.retry () call will raise an exception so any code after the retry won’t be reached. This is
the Ret ry exception, it isn’t handled as an error but rather as a semi-predicate to signify to the worker that the task is
to be retried, so that it can store the correct state when a result backend is enabled.

This is normal operation and always happens unless the throw argument to retry is set to False.

The bind argument to the task decorator will give access to self (the task type instance).

The exc argument is used to pass exception information that’s used in logs, and when storing task results. Both the
exception and the traceback will be available in the task state (if a result backend is enabled).

If the task has a max_retries value the current exception will be re-raised if the max number of retries has been
exceeded, but this won’t happen if:

* An exc argument wasn’t given.
In this case the MaxRetriesExceededError exception will be raised.
e There’s no current exception

If there’s no original exception to re-raise the exc argument will be used instead, so:

self.retry(exc=Twitter.LoginError())

will raise the exc argument given.

Using a custom retry delay

When a task is to be retried, it can wait for a given amount of time before doing so, and the default delay is defined by
the default_retry delay attribute. By default this is set to 3 minutes. Note that the unit for setting the delay is
in seconds (int or float).

You can also provide the countdown argument to retry () to override this default.

Qapp.task (bind=True, default_retry_delay=30 * 60) # retry in 30 minutes.
def add(self, x, vy):
try:
something_raising()
except Exception as exc:
overrides the default delay to retry after 1 minute
raise self.retry(exc=exc, countdown=60)

Automatic retry for known exceptions

New in version 4.0.
Sometimes you just want to retry a task whenever a particular exception is raised.

Fortunately, you can tell Celery to automatically retry a task using autoretry_for argument in the task () decorator:

3.3. User Guide 57

Celery Documentation, Release 4.4.2

from twitter.exceptions import FailWhaleError

@app.task (autoretry_for=(FailWhaleError,))
def refresh timeline (user):
return twitter.refresh_timeline (user)

If you want to specify custom arguments for an internal retry () call, pass retry_kwargs argument to task ()
decorator:

@app.task (autoretry_for=(FailWhaleError,),
retry_kwargs={'max_retries': 5})
def refresh timeline (user):
return twitter.refresh_timeline (user)

This is provided as an alternative to manually handling the exceptions, and the example above will do the same as
wrapping the task body ina try ... except statement:

@app.task
def refresh timeline (user):
try:
twitter.refresh_timeline (user)
except FailWhaleError as exc:
raise div.retry(exc=exc, max_retries=5)

If you want to automatically retry on any error, simply use:

@app.task (autoretry_for=(Exception,))
def x():

New in version 4.2.

If your tasks depend on another service, like making a request to an API, then it’s a good idea to use exponential
backoff to avoid overwhelming the service with your requests. Fortunately, Celery’s automatic retry support makes it
easy. Just specify the ret ry_backoff argument, like this:

from requests.exceptions import RequestException

@app.task (autoretry_for=(RequestException,), retry_backoff=True)
def x():

By default, this exponential backoff will also introduce random jitter to avoid having all the tasks run at the same
moment. It will also cap the maximum backoff delay to 10 minutes. All these settings can be customized via options
documented below.

New in version 4.4.

You can also set autoretry_for, retry_kwargs, retry_backoff, retry_backoff_max and retry_jitter options in class-based
tasks:

class BaseTaskWithRetry (Task) :
autoretry_for = (TypeError,)
retry_kwargs = {'max_retries': 5}
retry_backoff = True
retry_backoff_max = 700
retry_Jjitter = False

58 Chapter 3. Contents

https://docs.python.org/dev/reference/compound_stmts.html#try
https://docs.python.org/dev/reference/compound_stmts.html#except
https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Jitter

Celery Documentation, Release 4.4.2

Task.autoretry_ for
A list/tuple of exception classes. If any of these exceptions are raised during the execution of the task, the task
will automatically be retried. By default, no exceptions will be autoretried.

Task.retry_ kwargs
A dictionary. Use this to customize how autoretries are executed. Note that if you use the exponential backoff
options below, the countdown task option will be determined by Celery’s autoretry system, and any countdown
included in this dictionary will be ignored.

Task.retry backoff

A boolean, or a number. If this option is set to True, autoretries will be delayed following the rules of expo-
nential backoff. The first retry will have a delay of 1 second, the second retry will have a delay of 2 seconds, the
third will delay 4 seconds, the fourth will delay 8 seconds, and so on. (However, this delay value is modified by
retry_ jitter,if itis enabled.) If this option is set to a number, it is used as a delay factor. For example, if
this option is set to 3, the first retry will delay 3 seconds, the second will delay 6 seconds, the third will delay
12 seconds, the fourth will delay 24 seconds, and so on. By default, this option is set to False, and autoretries
will not be delayed.

Task.retry backoff max
A number. If retry_backoff is enabled, this option will set a maximum delay in seconds between task
autoretries. By default, this option is set to 600, which is 10 minutes.

Task.retry_ jitter
A boolean. Jitter is used to introduce randomness into exponential backoff delays, to prevent all tasks in
the queue from being executed simultaneously. If this option is set to True, the delay value calculated by
retry_backoff is treated as a maximum, and the actual delay value will be a random number between zero
and that maximum. By default, this option is set to True.

List of Options
The task decorator can take a number of options that change the way the task behaves, for example you can set the rate
limit for a task using the rate_limit option.

Any keyword argument passed to the task decorator will actually be set as an attribute of the resulting task class, and
this is a list of the built-in attributes.

General

Task.name
The name the task is registered as.

You can set this name manually, or a name will be automatically generated using the module and class name.
See also Names.

Task.request
If the task is being executed this will contain information about the current request. Thread local storage is used.

See Task Request.

Task.max_retries
Only applies if the task calls self.retry or if the task is decorated with the autoretry_for argument.

The maximum number of attempted retries before giving up. If the number of retries exceeds this value a
MaxRetriesExceededError exception will be raised.

3.3. User Guide 59

https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Jitter

Celery Documentation, Release 4.4.2

Note: You have to call retry () manually, as it won’t automatically retry on exception..

The default is 3. A value of None will disable the retry limit and the task will retry forever until it succeeds.

Task.throws
Optional tuple of expected error classes that shouldn’t be regarded as an actual error.

Errors in this list will be reported as a failure to the result backend, but the worker won’t log the event as an
error, and no traceback will be included.

Example:

@task (throws= (KeyError, HttpNotFound)) :
def get_foo():
something ()

Error types:
» Expected errors (in Task.throws)
Logged with severity INFO, traceback excluded.
» Unexpected errors
Logged with severity ERROR, with traceback included.

Task.default_retry_ delay
Default time in seconds before a retry of the task should be executed. Can be either int or f1oat. Default is
a three minute delay.

Task.rate_limit
Set the rate limit for this task type (limits the number of tasks that can be run in a given time frame). Tasks will
still complete when a rate limit is in effect, but it may take some time before it’s allowed to start.

If this is None no rate limit is in effect. If it is an integer or float, it is interpreted as “tasks per second”.

The rate limits can be specified in seconds, minutes or hours by appending “/s”, “/m” or “/h” to the value.
Tasks will be evenly distributed over the specified time frame.

Example: “100/m” (hundred tasks a minute). This will enforce a minimum delay of 600ms between starting
two tasks on the same worker instance.

Defaultis the task_default_rate_1limit setting: if not specified means rate limiting for tasks is disabled
by default.

Note that this is a per worker instance rate limit, and not a global rate limit. To enforce a global rate limit (e.g.,
for an API with a maximum number of requests per second), you must restrict to a given queue.

Task.time_limit
The hard time limit, in seconds, for this task. When not set the workers default is used.

Task.soft_time limit
The soft time limit for this task. When not set the workers default is used.

Task.ignore_result
Don’t store task state. Note that this means you can’t use AsyncResult to check if the task is ready, or get its
return value.

Task.store_errors_even_if ignored
If True, errors will be stored even if the task is configured to ignore results.

60 Chapter 3. Contents

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.4.2

Task.serializer
A string identifying the default serialization method to use. Defaults to the task serializer setting.
Can be pickle, json, yaml, or any custom serialization methods that have been registered with kombu.
serialization.registry.

Please see Serializers for more information.

Task.compression
A string identifying the default compression scheme to use.

Defaults to the task compression setting. Can be gzip, or bzip2, or any custom compression schemes that
have been registered with the kombu . compression registry.

Please see Compression for more information.

Task.backend
The result store backend to use for this task. An instance of one of the backend classes in celery.backends.
Defaults to app.backend, defined by the result_backend setting.

Task.acks_late
If set to True messages for this task will be acknowledged after the task has been executed, not just before (the
default behavior).

Note: This means the task may be executed multiple times should the worker crash in the middle of execution.
Make sure your tasks are idempotent.

The global default can be overridden by the task_acks_late setting.

Task.track started
If True the task will report its status as “started”” when the task is executed by a worker. The default value is
False as the normal behavior is to not report that level of granularity. Tasks are either pending, finished, or
waiting to be retried. Having a “started” status can be useful for when there are long running tasks and there’s a
need to report what task is currently running.

The host name and process id of the worker executing the task will be available in the state meta-data (e.g.,
result.info[‘pid’])

The global default can be overridden by the task_track_ started setting.
See also:

The API reference for Task.

States
Celery can keep track of the tasks current state. The state also contains the result of a successful task, or the exception
and traceback information of a failed task.

There are several result backends to choose from, and they all have different strengths and weaknesses (see Result
Backends).

During its lifetime a task will transition through several possible states, and each state may have arbitrary meta-data
attached to it. When a task moves into a new state the previous state is forgotten about, but some transitions can be
deduced, (e.g., a task now in the FATILED state, is implied to have been in the STARTED state at some point).

There are also sets of states, like the set of FAILURE_STATES, and the set of READY STATES.

The client uses the membership of these sets to decide whether the exception should be re-raised
(PROPAGATE_STATES), or whether the state can be cached (it can if the task is ready).

You can also define Custom states.

3.3. User Guide 61

https://kombu.readthedocs.io/en/master/reference/kombu.compression.html#module-kombu.compression

Celery Documentation, Release 4.4.2

Result Backends

If you want to keep track of tasks or need the return values, then Celery must store or send the states somewhere so
that they can be retrieved later. There are several built-in result backends to choose from: SQLAlchemy/Django ORM,
Memcached, RabbitMQ/QPid (rpc), and Redis — or you can define your own.

No backend works well for every use case. You should read about the strengths and weaknesses of each backend, and
choose the most appropriate for your needs.

Warning: Backends use resources to store and transmit results. To ensure that resources are released, you must
eventually call get () or forget () on EVERY AsyncResult instance returned after calling a task.

See also:

Task result backend settings

RPC Result Backend (RabbitMQ/QPid)

The RPC result backend (rpc://) is special as it doesn’t actually sfore the states, but rather sends them as messages.
This is an important difference as it means that a result can only be retrieved once, and only by the client that initiated
the task. Two different processes can’t wait for the same result.

Even with that limitation, it is an excellent choice if you need to receive state changes in real-time. Using messaging
means the client doesn’t have to poll for new states.

The messages are transient (non-persistent) by default, so the results will disappear if the broker restarts. You can
configure the result backend to send persistent messages using the result_persistent setting.

Database Result Backend

Keeping state in the database can be convenient for many, especially for web applications with a database already in
place, but it also comes with limitations.

* Polling the database for new states is expensive, and so you should increase the polling intervals of operations,
such as result.get().

* Some databases use a default transaction isolation level that isn’t suitable for polling tables for changes.

In MySQL the default transaction isolation level is REPEATABLE-READ: meaning the transaction won’t see
changes made by other transactions until the current transaction is committed.

Changing that to the READ-COMMITTED isolation level is recommended.

Built-in States
PENDING

Task is waiting for execution or unknown. Any task id that’s not known is implied to be in the pending state.

62 Chapter 3. Contents

Celery Documentation, Release 4.4.2

STARTED

Task has been started. Not reported by default, to enable please see app. Task.track_started.

meta-data pid and hostname of the worker process executing the task.

SUCCESS

Task has been successfully executed.
meta-data result contains the return value of the task.
propagates Yes
ready Yes

FAILURE

Task execution resulted in failure.

meta-data result contains the exception occurred, and traceback contains the backtrace of the stack at
the point when the exception was raised.

propagates Yes

RETRY

Task is being retried.

meta-data result contains the exception that caused the retry, and traceback contains the backtrace of the
stack at the point when the exceptions was raised.

propagates No

REVOKED

Task has been revoked.

propagates Yes

Custom states

You can easily define your own states, all you need is a unique name. The name of the state is usually an uppercase
string. As an example you could have a look at the abortable tasks which defines a custom ABORTED state.

Use update_state () to update a task’s state:.

Qapp.task (bind=True)
def upload files(self, filenames):
for i, file in enumerate (filenames) :
if not self.request.called_directly:
self.update_state(state="'PROGRESS',
meta={'current': i, 'total': len(filenames) })

3.3. User Guide 63

Celery Documentation, Release 4.4.2

Here I created the state “PROGRESS”, telling any application aware of this state that the task is currently in progress,
and also where it is in the process by having current and total counts as part of the state meta-data. This can then be
used to create progress bars for example.

Creating pickleable exceptions

A rarely known Python fact is that exceptions must conform to some simple rules to support being serialized by the
pickle module.

Tasks that raise exceptions that aren’t pickleable won’t work properly when Pickle is used as the serializer.

To make sure that your exceptions are pickleable the exception MUST provide the original arguments it was in-
stantiated with in its . args attribute. The simplest way to ensure this is to have the exception call Exception.
init .

Let’s look at some examples that work, and one that doesn’t:

OK:
class HttpError (Exception) :
pass

BAD:
class HttpError (Exception) :

def _ init (self, status_code):
self.status_code = status_code

OK:

class HttpError (Exception) :

def _ init (self, status_code):
self.status_code = status_code
Exception.__init__ (self, status_code) # <—— REQUIRED
So the rule is: For any exception that supports custom arguments args, Exception.__init__ (self,

xargs) must be used.

There’s no special support for keyword arguments, so if you want to preserve keyword arguments when the exception
is unpickled you have to pass them as regular args:

class HttpError (Exception) :

def _ init_ (self, status_code, headers=None, body=None) :
self.status_code = status_code
self.headers = headers
self.body = body

super (HttpError, self).__init__ (status_code, headers, body)

Semipredicates

The worker wraps the task in a tracing function that records the final state of the task. There are a number of exceptions
that can be used to signal this function to change how it treats the return of the task.

64 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Ignore

The task may raise Tgnore to force the worker to ignore the task. This means that no state will be recorded for the
task, but the message is still acknowledged (removed from queue).

This can be used if you want to implement custom revoke-like functionality, or manually store the result of a task.

Example keeping revoked tasks in a Redis set:

from celery.exceptions import Ignore

Qapp.task (bind=True)
def some_task(self):
if redis.ismember ('tasks.revoked', self.request.id):
raise Ignore ()

Example that stores results manually:

from celery import states
from celery.exceptions import Ignore

Qapp.task (bind=True)
def get_tweets(self, user):
timeline = twitter.get_timeline (user)
if not self.request.called_directly:
self.update_state(state=states.SUCCESS, meta=timeline)
raise Ignore ()

Reject

The task may raise Re ject to reject the task message using AMQPs basic_reject method. This won’t have any
effect unless Task.acks_lateisenabled.

Rejecting a message has the same effect as acking it, but some brokers may implement additional functionality that
can be used. For example RabbitMQ supports the concept of Dead Letter Exchanges where a queue can be configured
to use a dead letter exchange that rejected messages are redelivered to.

Reject can also be used to re-queue messages, but please be very careful when using this as it can easily result in an
infinite message loop.

Example using reject when a task causes an out of memory condition:

import errno
from celery.exceptions import Reject

@app.task (bind=True, acks_late=True)
def render_ scene(self, path):
file = get_file(path)
try:
renderer.render_scene (file)

if the file is too big to fit in memory

Erags

we reject it so that it's redelivered to the dead letter exchange

+

and we can manually inspect the situation.
except MemoryError as exc:

raise Reject (exc, requeue=False)
except OSError as exc:

(continues on next page)

3.3. User Guide 65

http://www.rabbitmq.com/dlx.html

Celery Documentation, Release 4.4.2

(continued from previous page)

if exc.errno == errno.ENOMEM:
raise Reject (exc, requeue=False)

For any other error we retry after 10 seconds.
except Exception as exc:
raise self.retry(exc, countdown=10)

Example re-queuing the message:

from celery.exceptions import Reject

@app.task (bind=True, acks_late=True)
def requeues (self):
if not self.request.delivery_info['redelivered']:
raise Reject ('no reason', requeue=True)
print ('received two times')

Consult your broker documentation for more details about the basic_reject method.

Retry

The Ret ry exception is raised by the Task . ret ry method to tell the worker that the task is being retried.

Custom task classes

All tasks inherit from the app. Task class. The run () method becomes the task body.

As an example, the following code,

@app.task
def add(x, y):
return x + y

will do roughly this behind the scenes:

class _AddTask (app.Task) :

def run(self, x, y):
return x + y
add = app.tasks[_AddTask.name]

Instantiation

A task is not instantiated for every request, but is registered in the task registry as a global instance.

This means thatthe __init___ constructor will only be called once per process, and that the task class is semantically
closer to an Actor.

If you have a task,

from celery import Task

class NaiveAuthenticateServer (Task) :

(continues on next page)

66 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

def _ init__ (self):
self.users = {'george': 'password'}

def run(self, username, password):
try:
return self.users[username] == password
except KeyError:
return False

And you route every request to the same process, then it will keep state between requests.

This can also be useful to cache resources, For example, a base Task class that caches a database connection:

from celery import Task

class DatabaseTask (Task) :
_db = None

@property
def db(self):
if self._db is None:
self._db = Database.connect ()
return self._db

Per task usage

The above can be added to each task like this:

@app.task (base=DatabaseTask)
def process_rows () :
for row in process_rows.db.table.all():
process_row (row)

The db attribute of the process_rows task will then always stay the same in each process.

App-wide usage

You can also use your custom class in your whole Celery app by passing it as the task_cls argument when in-
stantiating the app. This argument should be either a string giving the python path to your Task class or the class
itself:

from celery import Celery

app = Celery('tasks', task_cls='your.module.path:DatabaseTask')

This will make all your tasks declared using the decorator syntax within your app to use your DatabaseTask class
and will all have a db attribute.

The default value is the class provided by Celery: 'celery.app.task:Task"'.

3.3. User Guide 67

Celery Documentation, Release 4.4.2

Handlers

after_ return (self, status, retval, task_id, args, kwargs, einfo)
Handler called after the task returns.

Parameters
* status — Current task state.
* retval — Task return value/exception.
* task_id - Unique id of the task.
* args — Original arguments for the task that returned.
* kwargs — Original keyword arguments for the task that returned.
Keyword Arguments einfo — ExceptionInfo instance, containing the traceback (if any).
The return value of this handler is ignored.

on_failure (self, exc, task_id, args, kwargs, einfo)
This is run by the worker when the task fails.

Parameters
* exc — The exception raised by the task.
* task_id - Unique id of the failed task.
* args — Original arguments for the task that failed.
* kwargs — Original keyword arguments for the task that failed.
Keyword Arguments einfo — ExceptionInfo instance, containing the traceback.
The return value of this handler is ignored.

on_retry (self, exc, task_id, args, kwargs, einfo)
This is run by the worker when the task is to be retried.

Parameters
* exc — The exception sent to retry ().
* task_id - Unique id of the retried task.
* args — Original arguments for the retried task.
* kwargs — Original keyword arguments for the retried task.
Keyword Arguments einfo — ExceptionInfo instance, containing the traceback.
The return value of this handler is ignored.

on_success (self, retval, task_id, args, kwargs)
Run by the worker if the task executes successfully.

Parameters
* retval — The return value of the task.
* task_id - Unique id of the executed task.
* args — Original arguments for the executed task.
* kwargs — Original keyword arguments for the executed task.

The return value of this handler is ignored.

68 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Requests and custom requests

Upon receiving a message to run a task, the worker creates a request to represent such demand.

Custom task classes may override which request class to use by changing the attribute celery.app.task. Task.
Request. You may either assign the custom request class itself, or its fully qualified name.

The request has several responsibilities. Custom request classes should cover them all — they are responsible to actually
run and trace the task. We strongly recommend to inherit from celery.worker. request.Request.

When using the pre-forking worker, the methods on_t imeout () and on_failure () are executed in the main
worker process. An application may leverage such facility to detect failures which are not detected using celery.
app.task.Task.on_failure().

As an example, the following custom request detects and logs hard time limits, and other failures.

import logging
from celery.worker.request import Request

logger = logging.getLogger ('my.package')

class MyRequest (Request) :
'A minimal custom request to log failures and hard time limits.'

def on_timeout (self, soft, timeout):
super (MyRequest, self).on_timeout (soft, timeout)
if not soft:
logger.warning (
'A hard timeout was enforced for task %s',
self.task.name

def on_failure(self, exc_info, send_failed_event=True, return_ok=False):
super (Request, self).on_failure(
exc_info,
send_failed_event=send_failed_event,
return_ok=return_ok
)
logger.warning (
'Failure detected for task %s',
self.task.name

class MyTask (Task) :
Request = MyRequest # you can use a FQON 'my.package:MyRequest'

@app.task (base=MyTask)
def some_longrunning task():

use your imagination

How it works

Here come the technical details. This part isn’t something you need to know, but you may be interested.

All defined tasks are listed in a registry. The registry contains a list of task names and their task classes. You can
investigate this registry yourself:

3.3. User Guide 69

Celery Documentation, Release 4.4.2

>>> from proj.celery import app
>>> app.tasks

{'celery.chord_unlock':
<@task: celery.chord_unlock>,
'celery.backend_cleanup':
<@tas} >ry.backend_cleanup>,

'celery.chorc

<@task: celery.chord>}

This is the list of tasks built into Celery. Note that tasks will only be registered when the module they’re defined in is
imported.

The default loader imports any modules listed in the import s setting.
The app. task () decorator is responsible for registering your task in the applications task registry.

When tasks are sent, no actual function code is sent with it, just the name of the task to execute. When the worker then
receives the message it can look up the name in its task registry to find the execution code.

This means that your workers should always be updated with the same software as the client. This is a drawback, but
the alternative is a technical challenge that’s yet to be solved.

Tips and Best Practices
Ignore results you don’t want

If you don’t care about the results of a task, be sure to set the i gnore_result option, as storing results wastes time
and resources.

@app.task (ignore_result=True)
def mytask() :
something ()

Results can even be disabled globally using the task_ignore result setting.

Results can be enabled/disabled on a per-execution basis, by passing the ignore_result boolean parameter, when
calling apply_async or delay.

@app.task
def mytask(x, y):
return x + y

No result will be stored

result = mytask.apply_async(l, 2, ignore_result=True)

print result.get () # —-> None

Result will be stored

result = mytask.apply_async(l, 2, ignore_result=False)
print result.get () # -> 3

By default tasks will not ignore results (1gnore_result=False) when a result backend is configured.
The option precedence order is the following:

1. Global task ignore result

2. ignore_result option

3. Task execution option ignore_result

70 Chapter 3. Contents

Celery Documentation, Release 4.4.2

More optimization tips

You find additional optimization tips in the Optimizing Guide.

Avoid launching synchronous subtasks

Having a task wait for the result of another task is really inefficient, and may even cause a deadlock if the worker pool
is exhausted.

Make your design asynchronous instead, for example by using callbacks.

Bad:

Qapp.task

def update_page_info (url):
page = fetch_page.delay (url) .get ()
info = parse_page.delay(url, page) .get ()
store_page_info.delay(url, info)

Qapp.task
def fetch_page (url):
return myhttplib.get (url)

Qapp.task
def parse_page (page) :
return myparser.parse_document (page)

Qapp.task
def store_page_info(url, info):
return PageInfo.objects.create(url, info)

Good:

def update_page_info (url):
fetch_page —-> parse_page —-> store_page
chain = fetch_page.s(url) | parse_page.s() | store_page_info.s(url)
chain ()

Qapp.task()
def fetch_page (url):
return myhttplib.get (url)

Qapp.task()
def parse_page (page) :
return myparser.parse_document (page)

@Qapp.task (ignore_result=True)
def store_page_info(info, url):
PageInfo.objects.create (url=url, info=info)

Here I instead created a chain of tasks by linking together different signature ()’s. You can read about chains and
other powerful constructs at Canvas: Designing Work-flows.

By default Celery will not allow you to run subtasks synchronously within a task, but in rare or extreme cases you
might need to do so. WARNING: enabling subtasks to run synchronously is not recommended!

3.3. User Guide 71

Celery Documentation, Release 4.4.2

@app.task

def update_page_info (url):
page = fetch_page.delay (url) .get (disable_sync_subtasks=False)
info = parse_page.delay (url, page) .get (disable_sync_subtasks=False)
store_page_info.delay(url, info)

@app.task
def fetch_page(url):
return myhttplib.get (url)

Qapp.task
def parse_page (url, page):
return myparser.parse_document (page)

@app.task
def store_page_info(url, info):
return PageInfo.objects.create(url, info)

Performance and Strategies

Granularity

The task granularity is the amount of computation needed by each subtask. In general it is better to split the problem
up into many small tasks rather than have a few long running tasks.

With smaller tasks you can process more tasks in parallel and the tasks won’t run long enough to block the worker
from processing other waiting tasks.

However, executing a task does have overhead. A message needs to be sent, data may not be local, etc. So if the tasks
are too fine-grained the overhead added probably removes any benefit.

See also:

The book Art of Concurrency has a section dedicated to the topic of task granularity [AOCI].

Data locality

The worker processing the task should be as close to the data as possible. The best would be to have a copy in memory,
the worst would be a full transfer from another continent.

If the data is far away, you could try to run another worker at location, or if that’s not possible - cache often used data,
or preload data you know is going to be used.

The easiest way to share data between workers is to use a distributed cache system, like memcached.
See also:

The paper Distributed Computing Economics by Jim Gray is an excellent introduction to the topic of data locality.

State

Since Celery is a distributed system, you can’t know which process, or on what machine the task will be executed.
You can’t even know if the task will run in a timely manner.

The ancient async sayings tells us that “asserting the world is the responsibility of the task”. What this means is that
the world view may have changed since the task was requested, so the task is responsible for making sure the world is

72 Chapter 3. Contents

http://oreilly.com/catalog/9780596521547
http://memcached.org/
http://research.microsoft.com/pubs/70001/tr-2003-24.pdf

Celery Documentation, Release 4.4.2

how it should be; If you have a task that re-indexes a search engine, and the search engine should only be re-indexed
at maximum every 5 minutes, then it must be the tasks responsibility to assert that, not the callers.

Another gotcha is Django model objects. They shouldn’t be passed on as arguments to tasks. It’s almost always better
to re-fetch the object from the database when the task is running instead, as using old data may lead to race conditions.

Imagine the following scenario where you have an article and a task that automatically expands some abbreviations in
it:

class Article (models.Model) :
title = models.CharField()
body = models.TextField()

@app.task

def expand_abbreviations (article):
article.body.replace('MyCorp', 'My Corporation')
article.save ()

First, an author creates an article and saves it, then the author clicks on a button that initiates the abbreviation task:

>>> article = Article.objects.get (1d=102)
>>> expand_abbreviations.delay (article)

Now, the queue is very busy, so the task won’t be run for another 2 minutes. In the meantime another author makes
changes to the article, so when the task is finally run, the body of the article is reverted to the old version because the
task had the old body in its argument.

Fixing the race condition is easy, just use the article id instead, and re-fetch the article in the task body:

@app.task

def expand_abbreviations (article_id):
article = Article.objects.get (id=article_id)
article.body.replace('MyCorp', 'My Corporation')
article.save ()

>>> expand_abbreviations.delay (article_id)

There might even be performance benefits to this approach, as sending large messages may be expensive.

Database transactions

Let’s have a look at another example:

from django.db import transaction
from django.http import HttpResponseRedirect

@transaction.atomic

def create_article(request) :
article = Article.objects.create()
expand_abbreviations.delay (article.pk)
return HttpResponseRedirect ('/articles/")

This is a Django view creating an article object in the database, then passing the primary key to a task. It uses the
transaction.atomic decorator, that will commit the transaction when the view returns, or roll back if the view raises an
exception.

There’s a race condition if the task starts executing before the transaction has been committed; The database object
doesn’t exist yet!

3.3. User Guide 73

Celery Documentation, Release 4.4.2

The solution is to use the on_commi t callback to launch your Celery task once all transactions have been committed
successfully.

from django.db.transaction import on_commit

def create_article(request):
article = Article.objects.create()
on_commit (lambda: expand_abbreviations.delay (article.pk))

Note: on_commit is available in Django 1.9 and above, if you are using a version prior to that then the django-
transaction-hooks library adds support for this.

Example

Let’s take a real world example: a blog where comments posted need to be filtered for spam. When the comment is
created, the spam filter runs in the background, so the user doesn’t have to wait for it to finish.

I have a Django blog application allowing comments on blog posts. I'll describe parts of the models/views and tasks
for this application.

blog/models.py

The comment model looks like this:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class Comment (models.Model) :

name = models.CharField(_('name'), max_length=64)
email_address = models.EmailField(_('email address'))
homepage = models.URLField(_('home page'),

blank=True, verify_exists=False)
comment = models.TextField(_('comment'))
pub_date = models.DateTimeField(_('Published date'),

editable=False, auto_add_now=True)

is_spam = models.BooleanField(_('spam?'),

default=False, editable=False)

class Meta:
verbose_name = _ ('comment')
verbose_name_plural = _ ('comments')

In the view where the comment is posted, I first write the comment to the database, then I launch the spam filter task
in the background.

blog/views.py

from django import forms
from django.http import HttpResponseRedirect
from django.template.context import RequestContext

(continues on next page)

74 Chapter 3. Contents

https://github.com/carljm/django-transaction-hooks
https://github.com/carljm/django-transaction-hooks

Celery Documentation, Release 4.4.2

(continued from previous page)

from django.shortcuts import get_object_or_404, render_to_response

from blog import tasks
from blog.models import Comment

class CommentForm (forms.ModelForm) :

class Meta:
model = Comment

def add_comment (request, slug, template_name='comments/create.html'):
post = get_object_or_404 (Entry, slug=slug)
remote_addr = request.META.get ('REMOTE_ADDR')

if request.method == 'post':
form = CommentForm(request.POST, request.FILES)
if form.is_valid():
comment = form.save ()
Check spam asynchronously.
tasks.spam_filter.delay (comment_id=comment.id,
remote_addr=remote_addr)
return HttpResponseRedirect (post.get_absolute_url())
else:

form = CommentForm ()

context = RequestContext (request, {'form': form})
return render_to_response (template_name, context_instance=context)

To filter spam in comments I use Akismet, the service used to filter spam in comments posted to the free blog platform
Wordpress. Akismet is free for personal use, but for commercial use you need to pay. You have to sign up to their
service to get an API key.

To make API calls to Akismet I use the akismet.py library written by Michael Foord.

blog/tasks.py

from celery import Celery
from akismet import Akismet

from django.core.exceptions import ImproperlyConfigured
from django.contrib.sites.models import Site

from blog.models import Comment

app = Celery (broker='amgp://")

Qapp.task
def spam_ filter (comment_id, remote_addr=None) :
logger = spam_filter.get_logger ()
logger.info ('Running spam filter for comment %s', comment_id)

(continues on next page)

3.3. User Guide 75

http://akismet.com/faq/
http://akismet.com/faq/
http://akismet.com/faq/
http://www.voidspace.org.uk/downloads/akismet.py
http://www.voidspace.org.uk/

Celery Documentation, Release 4.4.2

(continued from previous page)

comment = Comment.objects.get (pk=comment_id)
current_domain = Site.objects.get_current () .domain
akismet = Akismet (settings.AKISMET_KEY, 'http://{0}'.format (domain))
if not akismet.verify_key():
raise ImproperlyConfigured('Invalid AKISMET_KEY')

is_spam = akismet.comment_check (user_ip=remote_addr,
comment_content=comment.comment,
comment__author=comment .name,
comment_author_email=comment .email_address)
if is_spam:
comment .is_spam = True
comment .save ()

return is_spam

3.3.3 Calling Tasks

* Basics

Linking (callbacks/errbacks)

On message

ETA and Countdown
* Expiration

* Message Sending Retry

Connection Error Handling
» Serializers
* Compression

e Connections

Routing options

Results options

Basics

This document describes Celery’s uniform “Calling API” used by task instances and the canvas.
The API defines a standard set of execution options, as well as three methods:
* apply_async(args[, kwargs[, ...]11)
Sends a task message.
* delay(xargs, =*xkwargs)

Shortcut to send a task message, but doesn’t support execution options.

76 Chapter 3. Contents

Celery Documentation, Release 4.4.2

e calling (__call__)

Applying an object supporting the calling API (e.g., add (2, 2)) means that the task will not be
executed by a worker, but in the current process instead (a message won’t be sent).

Quick Cheat Sheet
* T.delay (arg, kwarg=value) Star arguments shortcut to .apply_async. (.delay (*args,
*xkwargs) calls .apply_async (args, kwargs)).
e T.apply_async((arg,), {'kwarg': wvalue})
* T.apply_ async (countdown=10) executes in 10 seconds from now.

* T.apply_async(eta=now + timedelta (seconds=10)) executes in 10 seconds from now,
specified using eta

* T.apply_async (countdown=60, expires=120) executes in one minute from now, but expires
after 2 minutes.

* T.apply_async(expires=now + timedelta(days=2)) expires in 2 days, set using
datetime.

Example

The delay () method is convenient as it looks like calling a regular function:

’task.delay(argl, arg2, kwargl='x', kwarg2='y')

Using apply_async () instead you have to write:

’task.apply_async(args:[argl, arg2], kwargs={'kwargl': 'x', 'kwarg2': 'y'}) ‘

Tip

If the task isn’t registered in the current process you can use send_task () to call the task by name instead.

So delay is clearly convenient, but if you want to set additional execution options you have to use apply_async.

The rest of this document will go into the task execution options in detail. All examples use a task called add, returning
the sum of two arguments:

Qapp.task
def add(x, y):
return x + y

There’s another way...

You’ll learn more about this later while reading about the Canvas, but signature’s are objects used to pass around
the signature of a task invocation, (for example to send it over the network), and they also support the Calling API:

task.s(argl, arg2, kwargl='x', kwargs2='y').apply_async()

3.3. User Guide 77

https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.4.2

Linking (callbacks/errbacks)

Celery supports linking tasks together so that one task follows another. The callback task will be applied with the
result of the parent task as a partial argument:

add.apply_async((2, 2), link=add.s(16))

What’s s?

The add. s call used here is called a signature. If you don’t know what they are you should read about them in the
canvas guide. There you can also learn about chain: a simpler way to chain tasks together.

In practice the 1ink execution option is considered an internal primitive, and you’ll probably not use it directly,
but use chains instead.

Here the result of the first task (4) will be sent to a new task that adds 16 to the previous result, forming the expression
(2+2)+16 =20

You can also cause a callback to be applied if task raises an exception (errback), but this behaves differently from a
regular callback in that it will be passed the id of the parent task, not the result. This is because it may not always be
possible to serialize the exception raised, and so this way the error callback requires a result backend to be enabled,
and the task must retrieve the result of the task instead.

This is an example error callback:

@Qapp.task
def error handler (uuid) :
result = AsyncResult (uuid)
exc = result.get (propagate=False)
print ('Task {0} raised exception: {1l!r}\n{2!r}'.format (
uuid, exc, result.traceback))

it can be added to the task using the 1ink_error execution option:

’add.apply_async((Z, 2), link_error=error_handler.s()) ‘

In addition, both the 1ink and 1ink_error options can be expressed as a list:

’add.apply_async((Z, 2), link=[add.s(16), other_task.s()])

The callbacks/errbacks will then be called in order, and all callbacks will be called with the return value of the parent
task as a partial argument.

On message

Celery supports catching all states changes by setting on_message callback.

For example for long-running tasks to send task progress you can do something like this:

@Qapp.task (bind=True)
def hello(self, a, b):
time.sleep (1)
self.update_state (state="PROGRESS", meta={'progress': 50})
time.sleep (1)
self.update_state (state="PROGRESS", meta={'progress': 90})

(continues on next page)

78 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

time.sleep (1)
return 'hello world: %i' % (a+b)

def on_raw_message (body) :
print (body)

a, b=1,1
r = hello.apply_async (args=(a, b))
print (r.get (on_message=on_raw_message, propagate=False))

Will generate output like this:

{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7"',
'result': {'progress': 50},
'children': [],
'status': 'PROGRESS',

'traceback': None}
'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d47",

—_—

'result': {'progress': 90},
'children': [],
'status': 'PROGRESS',
'traceback': None}
{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7",
'result': 'hello world: 10',
'children': [],
'status': 'SUCCESS',

'traceback': None}
hello world: 10

ETA and Countdown

The ETA (estimated time of arrival) lets you set a specific date and time that is the earliest time at which your task will
be executed. countdown is a shortcut to set ETA by seconds into the future.

>>> result = add.apply_async((2, 2), countdown=3)
>>> result.get () # this takes at least 3 C

20

The task is guaranteed to be executed at some time after the specified date and time, but not necessarily at that exact
time. Possible reasons for broken deadlines may include many items waiting in the queue, or heavy network latency.
To make sure your tasks are executed in a timely manner you should monitor the queue for congestion. Use Munin, or
similar tools, to receive alerts, so appropriate action can be taken to ease the workload. See Munin.

While countdown is an integer, efa must be a datetime object, specifying an exact date and time (including mil-
lisecond precision, and timezone information):

>>> from datetime import datetime, timedelta

>>> tomorrow = datetime.utcnow() + timedelta (days=1)
>>> add.apply_async((2, 2), eta=tomorrow)

3.3. User Guide 79

https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.4.2

Expiration

The expires argument defines an optional expiry time, either as seconds after task publish, or a specific date and time
using datetime:

>>> # Task expires after one minute from now.
>>> add.apply_async((10, 10), expires=60)

>>> # Also supports datetime
>>> from datetime import datetime, timedelta
>>> add.apply_async((10, 10), kwargs,
expires=datetime.now () + timedelta (days=1)

When a worker receives an expired task it will mark the task as REVOKED (TaskRevokedError).

Message Sending Retry

Celery will automatically retry sending messages in the event of connection failure, and retry behavior can be config-
ured — like how often to retry, or a maximum number of retries — or disabled all together.

To disable retry you can set the ret ry execution option to False:

add.apply_async((2, 2), retry=False)

Related Settings

* task publish retry
* task publish_retry policy

Retry Policy

A retry policy is a mapping that controls how retries behave, and can contain the following keys:
* max_retries

Maximum number of retries before giving up, in this case the exception that caused the retry to fail
will be raised.

A value of None means it will retry forever.
The default is to retry 3 times.
e interval_start

Defines the number of seconds (float or integer) to wait between retries. Default is O (the first retry
will be instantaneous).

* interval_step

On each consecutive retry this number will be added to the retry delay (float or integer). Default is
0.2.

e interval_max
Maximum number of seconds (float or integer) to wait between retries. Default is 0.2.

For example, the default policy correlates to:

80 Chapter 3. Contents

https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.4.2

add.apply_async((2, 2), retry=True, retry_policy={

'max_retries': 3,

'interval_start': O,
'interval_step': 0.2,
'interval_max': 0.2,

b

the maximum time spent retrying will be 0.4 seconds. It’s set relatively short by default because a connection failure
could lead to a retry pile effect if the broker connection is down — For example, many web server processes waiting to
retry, blocking other incoming requests.

Connection Error Handling

When you send a task and the message transport connection is lost, or the connection cannot be initiated, an
OperationalError error will be raised:

>>> from proj.tasks import add
>>> add.delay (2, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "celery/app/task.py", line 388, in delay
return self.apply_async(args, kwargs)
File "celery/app/task.py", line 503, in apply_async
**xoptions
File "celery/app/base.py", line 662, in send_task
amgp.send_task_message (P, name, message, **options)
File "celery/backends/rpc.py", line 275, in on_task_call
maybe_declare (self.binding (producer.channel), retry=True)
File "/opt/celery/kombu/kombu/messaging.py", line 204, in _get_channel
channel = self._channel = channel ()
File "/opt/celery/py-amgp/amgp/connection.py", line 272, in connect
self.transport.connect ()
File "/opt/celery/py-amgp/amgp/transport.py", line 100, in connect
self._connect (self.host, self.port, self.connect_timeout)
File "/opt/celery/py-amgp/amgp/transport.py", line 141, in _connect
self.sock.connect (sa)
kombu.exceptions.OperationalError: [Errno 61] Connection refused

If you have retries enabled this will only happen after retries are exhausted, or when disabled immediately.

You can handle this error too:

>>> from celery.utils.log import get_logger
>>> logger = get_logger (___name__)

>>> try:
add.delay (2, 2)
except add.OperationalError as exc:
logger.exception ('Sending task raised: %r', exc)

Serializers

3.3. User Guide 81

Celery Documentation, Release 4.4.2

Security

The pickle module allows for execution of arbitrary functions, please see the security guide.

Celery also comes with a special serializer that uses cryptography to sign your messages.

Data transferred between clients and workers needs to be serialized, so every message in Celery has a
content_type header that describes the serialization method used to encode it.

The default serializer is JSON, but you can change this using the task_serializer setting, or for each individual
task, or even per message.

There’s built-in support for JSON, pickle, YAML and msgpack, and you can also add your own custom serializers
by registering them into the Kombu serializer registry

See also:
Message Serialization in the Kombu user guide.
Each option has its advantages and disadvantages.

json — JSON is supported in many programming languages, is now a standard part of Python (since 2.6), and is
fairly fast to decode using the modern Python libraries, such as simplejson.

The primary disadvantage to JSON is that it limits you to the following data types: strings, Unicode, floats,
Boolean, dictionaries, and lists. Decimals and dates are notably missing.

Binary data will be transferred using Base64 encoding, increasing the size of the transferred data by 34% com-
pared to an encoding format where native binary types are supported.

However, if your data fits inside the above constraints and you need cross-language support, the default setting
of JSON is probably your best choice.

See http://json.org for more information.

Note: (From Python official docs https://docs.python.org/3.6/library/json.html) Keys in key/value pairs of
JSON are always of the type st r. When a dictionary is converted into JSON, all the keys of the dictionary are
coerced to strings. As a result of this, if a dictionary is converted into JSON and then back into a dictionary, the
dictionary may not equal the original one. That is, loads (dumps (x)) != x if x has non-string keys.

pickle — If you have no desire to support any language other than Python, then using the pickle encoding will
gain you the support of all built-in Python data types (except class instances), smaller messages when send-
ing binary files, and a slight speedup over JSON processing.

See pickle for more information.

yaml - YAML has many of the same characteristics as json, except that it natively supports more data types (in-
cluding dates, recursive references, etc.).

However, the Python libraries for YAML are a good bit slower than the libraries for JSON.

If you need a more expressive set of data types and need to maintain cross-language compatibility, then YAML
may be a better fit than the above.

See http://yaml.org/ for more information.

msgpack — msgpack is a binary serialization format that’s closer to JSON in features. It’s very young however,
and support should be considered experimental at this point.

See http://msgpack.org/ for more information.

82 Chapter 3. Contents

https://docs.python.org/dev/library/pickle.html#module-pickle
https://kombu.readthedocs.io/en/master/userguide/serialization.html#guide-serialization
https://pypi.python.org/pypi/simplejson/
http://json.org
https://docs.python.org/3.6/library/json.html
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/pickle.html#module-pickle
http://yaml.org/
http://msgpack.org/

Celery Documentation, Release 4.4.2

The encoding used is available as a message header, so the worker knows how to deserialize any task. If you use a
custom serializer, this serializer must be available for the worker.

The following order is used to decide the serializer used when sending a task:

1. The serializer execution option.

2. The Task.serializer attribute

3. The task_serializer setting.

Example setting a custom serializer for a single task invocation:

>>> add.apply_async((10, 10), serializer='json')

Compression

Celery can compress messages using the following builtin schemes:

e brotli

* bzip2

* gzip

e [zma

brotli is optimized for the web, in particular small text documents. It is most effective for serving

static content such as fonts and html pages.

To use it, install Celery with:

$ pip install celery([brotli]

bzip2 creates smaller files than gzip, but compression and decompression speeds are noticeably

slower than those of gzip.

To use it, please ensure your Python executable was compiled with bzip2 support.

If you get the following TmportError:

>>> import bz2

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: No module named 'bz2'

it means that you should recompile your Python version with bzip2 support.

gzip is suitable for systems that require a small memory footprint, making it ideal for systems with

limited memory. It is often used to generate files with the “.tar.gz” extension.
To use it, please ensure your Python executable was compiled with gzip support.

If you get the following ITmportError:

>>> import gzip

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: No module named 'gzip'

it means that you should recompile your Python version with gzip support.

3.3. User Guide

83

https://docs.python.org/dev/library/exceptions.html#ImportError
https://docs.python.org/dev/library/exceptions.html#ImportError

Celery Documentation, Release 4.4.2

Izma provides a good compression ratio and executes with fast compression and decompression
speeds at the expense of higher memory usage.

To use it, please ensure your Python executable was compiled with 1zma support and that your Python
version is 3.3 and above.

If you get the following ITmportError:

>>> import lzma

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: No module named 'lzma'

it means that you should recompile your Python version with 1zma support.

Alternatively, you can also install a backport using:

$ pip install celery[lzma]

e zlib

zlib is an abstraction of the Deflate algorithm in library form which includes support both for the gzip
file format and a lightweight stream format in its APL. It is a crucial component of many software
systems - Linux kernel and Git VCS just to name a few.

To use it, please ensure your Python executable was compiled with zlib support.

If you get the following ImportError:

>>> import zlib

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: No module named 'zlib'

it means that you should recompile your Python version with zlib support.
o zstd

zstd targets real-time compression scenarios at zlib-level and better compression ratios. It’s backed
by a very fast entropy stage, provided by HuffO and FSE library.

To use it, install Celery with:

$ pip install celery[zstd]

You can also create your own compression schemes and register them in the kombu compression registry.
The following order is used to decide the compression scheme used when sending a task:

1. The compression execution option.

2. The Task.compression attribute.

3. The task_ compression attribute.

Example specifying the compression used when calling a task:

>>> add.apply_async((2, 2), compression='zlib"')

84 Chapter 3. Contents

https://docs.python.org/dev/library/exceptions.html#ImportError
https://docs.python.org/dev/library/exceptions.html#ImportError
https://kombu.readthedocs.io/en/master/reference/kombu.compression.html#kombu.compression.register

Celery Documentation, Release 4.4.2

Connections

Automatic Pool Support

Since version 2.3 there’s support for automatic connection pools, so you don’t have to manually handle connections
and publishers to reuse connections.

The connection pool is enabled by default since version 2.5.

See the broker_pool_1imit setting for more information.

You can handle the connection manually by creating a publisher:

results = []
with add.app.pool.acquire (block=True) as connection:
with add.get_publisher (connection) as publisher:
try:
for args in numbers:
res = add.apply_async((2, 2), publisher=publisher)
results.append(res)
print ([res.get () for res in results])

Though this particular example is much better expressed as a group:

>>> from celery import group

>>> numbers = [(2, 2), (4, 4), (8, 8), (16, 16)]
>>> res = group(add.s (i, j) for i, j in numbers) .apply_async()

>>> res.get ()
(4, 8, 16, 32]

Routing options

Celery can route tasks to different queues.

Simple routing (name <->name) is accomplished using the queue option:

’add.apply_async(queue='priority.high') ‘

You can then assign workers to the priority.high queue by using the workers —O argument:

’$ celery —-A proj worker -1 info -Q celery,priority.high ‘

See also:

Hard-coding queue names in code isn’t recommended, the best practice is to use configuration routers
(task_routes).

To find out more about routing, please see Routing Tasks.
Results options

You can enable or disable result storage using the task ignore result setting or by using the
ignore_result option:

3.3. User Guide 85

Celery Documentation, Release 4.4.2

>>> result = add.apply_async(l, 2, ignore_result=True)
>>> result.get ()

None
>>> # Do not ignore result (default)

>>> result = add.apply_async(l, 2, ignore_result=False)
>>> result.get ()

If you’d like to store additional metadata about the task in the result backend set the result_extended setting to
True.

See also:

For more information on tasks, please see Tasks.

Advanced Options

These options are for advanced users who want to take use of AMQP’s full routing capabilities. Interested parties may
read the routing guide.

* exchange

Name of exchange (or a kombu.entity.Exchange) to send the message to.
* routing_key

Routing key used to determine.
* priority

A number between 0 and 255, where 255 is the highest priority.

Supported by: RabbitMQ, Redis (priority reversed, O is highest).

3.3.4 Canvas: Designing Work-flows

» Signatures
— Partials
— Immutability
— Callbacks

* The Primitives

— Chains

Groups

Chords

Map & Starmap

Chunks

86 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Signatures

New in version 2.0.

You just learned how to call a task using the tasks delay method in the calling guide, and this is often all you need,
but sometimes you may want to pass the signature of a task invocation to another process or as an argument to another
function.

A signature () wraps the arguments, keyword arguments, and execution options of a single task invocation in a
way such that it can be passed to functions or even serialized and sent across the wire.

* You can create a signature for the add task using its name like this:

>>> from celery import signature
>>> signature ('tasks.add', args=(2, 2),
tasks.

add (2, 2)

countdown=10)

This task has a signature of arity 2 (two arguments): (2,

2), and sets the countdown execution option to 10.

* or you can create one using the task’s signature method:

>>> add.signature((2, 2),

d(2, 2)

countdown=10)

tasks.ad

* There’s also a shortcut using star arguments:

>>> add.s (2,
tasks.add (2,

2)

2)

» Keyword arguments are also supported:

>>> add.s (2, 2, debug=True)

tasks.add (2, 2, debug=True)

* From any signature instance you can inspect the different fields:

>>> s =
>>>

add.signature((2, 2),
s.args

{'debug':
(2, 2)

>>> s.kwargs

{'debug': True}
>>> s.options
1': 10}

{ 'countc n

True}, countdown=10)

* It supports the “Calling API” of delay, apply_async,

etc., including being called directly (__call_).

Calling the signature will execute the task inline in the current process:

>>> add (2, 2)

>>> add.s (2, 2) ()

delay is our beloved shortcut to apply_async taking star-arguments:

>>> result = add.delay (2, 2)
>>> result.get ()

apply_async takes the same arguments as the app. Task.apply async () method:

3.3.

User Guide

87

Celery Documentation, Release 4.4.2

>>> add.apply_async(args, kwargs, #*xoptions)
>>> add.signature (args, kwargs, =*options).apply_async()

>>> add.apply_async((2, 2), countdown=1)
>>> add.signature((2, 2), countdown=1l).apply_async()

* You can’t define options with s (), but a chaining set call takes care of that:

>>> add.s (2, 2).set (countdown=1)

proj.tasks.add (2, 2)

Partials

With a signature, you can execute the task in a worker:

>>> add.s (2, 2).delay()
>>> add.s (2, 2).apply_async (countdown=1)

Or you can call it directly in the current process:

>>> add.s (2, 2) ()
4

Specifying additional args, kwargs, or options to apply_async/delay creates partials:

¢ Any arguments added will be prepended to the args in the signature:

>>> partial = add.s(2) # incomplete signature
>>> partial.delay (4) # 4 + 2
>>> partial.apply_async((4,)) # same

* Any keyword arguments added will be merged with the kwargs in the signature, with the new keyword arguments
taking precedence:

>>> s = add.s (2, 2)
>>> s.delay (debug=True) :
>>> s.apply_async (kwargs={'debug': True}) #

* Any options added will be merged with the options in the signature, with the new options taking precedence:

>>> s = add.signature((2, 2), countdown=10)
>>> s.apply_async (countdown=1) # countdown is now 1

You can also clone signatures to create derivatives:

>>> s = add.s (2)
proj.tasks.add (2)

>>> s.clone(args=(4,), kwargs={'debug': True})
proj.tasks.add (4, 2, debug=True)

Immutability

New in version 3.0.

88 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Partials are meant to be used with callbacks, any tasks linked, or chord callbacks will be applied with the result of the
parent task. Sometimes you want to specify a callback that doesn’t take additional arguments, and in that case you can
set the signature to be immutable:

’>>> add.apply_async ((2, 2), link=reset_buffers.signature (immutable=True))

The . si () shortcut can also be used to create immutable signatures:

’>>> add.apply_async((2, 2), link=reset_buffers.si())

Only the execution options can be set when a signature is immutable, so it’s not possible to call the signature with
partial args/kwargs.

Note: In this tutorial I sometimes use the prefix operator ~ to signatures. You probably shouldn’t use it in your
production code, but it’s a handy shortcut when experimenting in the Python shell:

>>> ~sig

>>> # is the same as
>>> sig.delay () .get ()

Callbacks

New in version 3.0.

Callbacks can be added to any task using the 1 ink argument to apply_async:

N

add.apply_async ((

, 2), link=other_task.s())

The callback will only be applied if the task exited successfully, and it will be applied with the return value of the
parent task as argument.

As I mentioned earlier, any arguments you add to a signature, will be prepended to the arguments specified by the
signature itself!

If you have the signature:

’>>> sig = add.s (10)

then sig.delay(result) becomes:

’>>> add.apply_async (args=(result, 10))

Now let’s call our add task with a callback using partial arguments:

>>> add.apply_async((2, 2), link=add.s(8))

As expected this will first launch one task calculating 2 + 2, then another task calculating 4 + 8.

The Primitives

New in version 3.0.

3.3. User Guide 89

Celery Documentation, Release 4.4.2

Overview

* group
The group primitive is a signature that takes a list of tasks that should be applied in parallel.
* chain

The chain primitive lets us link together signatures so that one is called after the other, essentially
forming a chain of callbacks.

e chord

A chord is just like a group but with a callback. A chord consists of a header group and a body,
where the body is a task that should execute after all of the tasks in the header are complete.

* map

The map primitive works like the built-in map function, but creates a temporary task where a list
of arguments is applied to the task. For example, task.map ([1, 2]) —resultsin a single task
being called, applying the arguments in order to the task function so that the result is:

res = [task(l), task(2)] ‘

* starmap

Works exactly like map except the arguments are applied as xargs. For example add.
starmap ([(2, 2), (4, 4)1) resultsin a single task calling:

’res = [add (2, 2), add(4, 4)] ‘

¢ chunks

Chunking splits a long list of arguments into parts, for example the operation:

>>> items = zip(range (1000), range(1000)) # 1000 items
>>> add.chunks (items, 10)

will split the list of items into chunks of 10, resulting in 100 tasks (each processing 10 items in
sequence).

The primitives are also signature objects themselves, so that they can be combined in any number of ways to compose
complex work-flows.

Here’s some examples:
 Simple chain

Here’s a simple chain, the first task executes passing its return value to the next task in the chain, and
SO on.

>>> from celery import chain

>> # 2 + 2 + 4 + 8

>>> res = chain(add.s (2, 2), add.s(4), add.s(8)) ()
>>> res.get ()

16

This can also be written using pipes:

>>> (add.s (2, 2) | add.s(4) | add.s(8)) () .get ()
16

920 Chapter 3. Contents

Celery Documentation, Release 4.4.2

e Immutable signatures

Signatures can be partial so arguments can be added to the existing arguments, but you may not
always want that, for example if you don’t want the result of the previous task in a chain.

In that case you can mark the signature as immutable, so that the arguments cannot be changed:

>>> add.signature((2, 2), immutable=True) ‘

There’s also a . si () shortcut for this, and this is the preferred way of creating signatures:

>>> add.si (2, 2) ‘

Now you can create a chain of independent tasks instead:

>>> res = (add.si(2, 2) | add.si(4, 4) | add.si (8, 8)) ()
>>> res.get ()
16

>>> res.parent.get ()

>>> res.parent.parent.get ()

» Simple group

You can easily create a group of tasks to execute in parallel:

>>> from celery import group

>>> res = group(add.s (i, i) for i in range(10)) ()
>>> res.get (timeout=1)
(6, 2, 4, o6, 8, 10, 12, 14, 1lo6, 18]

 Simple chord

The chord primitive enables us to add a callback to be called when all of the tasks in a group have
finished executing. This is often required for algorithms that aren’t embarrassingly parallel:

>>> from celery import chord
>>> res = chord((add.s(i, i) for i in range (10)), xsum.s()) ()
>>> res.get ()

The above example creates 10 task that all start in parallel, and when all of them are complete the
return values are combined into a list and sent to the xsum task.

The body of a chord can also be immutable, so that the return value of the group isn’t passed on to
the callback:

>>> chord((import_contact.s(c) for c in contacts),
notify_complete.si (import_id)) .apply_async ()

Note the use of . si above; this creates an immutable signature, meaning any new arguments passed
(including to return value of the previous task) will be ignored.

* Blow your mind by combining

Chains can be partial too:

3.3. User Guide 91

Celery Documentation, Release 4.4.2

>>> cl = (add.s(4) | mul.s(8))

(16 + 4) %= 8

>>> res = cl(16)
>>> res.get ()
160

this means that you can combine chains:

B ((4 + 16) * 2 + 4) = 8
|

>>> c2 = (add.s (4, 16) mul.s(2) | (add.s(4) | mul.s(8)))

>>> res = c2()
>>> res.get ()
352

Chaining a group together with another task will automatically upgrade it to be a chord:

>>> c3 = (group(add.s(i, i) for i in range(10)) | xsum.s())
>>> res = c3()
>>> res.get ()

90
IV

Groups and chords accepts partial arguments too, so in a chain the return value of the previous task
is forwarded to all tasks in the group:

>>> new_user_workflow = (create_user.s() | group(
import_contacts.s (),
send_welcome_email.s ()))
new_user_workflow.delay (username="artv',
first="Art',
last="'Vandelay',
email="art@vandelay.com')

If you don’t want to forward arguments to the group then you can make the signatures in the group
immutable:

>>> res = (add.s (4, 4) | group(add.si(i, 1) for i in range(10))) ()
>>> res.get ()

<GroupResult: de
c01831b-9486
bf-4771
92d-4b03-boe

kn

104b2be0-7b75-44eb
51a5-0386-4973-aa37

72d71-4b71-428e-b604-6

>>> res.parent.get ()

92

Chapter 3. Contents

Celery Documentation, Release 4.4.2

Chains

New in version 3.0.

Tasks can be linked together: the linked task is called when the task returns successfully:

>>> res = add.apply_async((2, 2), link=mul.s(16))
>>> res.get ()

The linked task will be applied with the result of its parent task as the first argument. In the above case where the
result was 4, this will result in mul (4, 16).

The results will keep track of any subtasks called by the original task, and this can be accessed from the result instance:

>>> res.children
[<AsyncResult: 8c350acf-519d-4553-8a53-4ad3abcbaebd>]

>>> res.children([0].get ()

The result instance also has a collect () method that treats the result as a graph, enabling you to iterate over the
results:

>>> list (res.collect())
[(<AsyncResult: 7b720856

By default collect () will raise an TncompleteStream exception if the graph isn’t fully formed (one of the
tasks hasn’t completed yet), but you can get an intermediate representation of the graph too:

>>> for result, value in res.collect (intermediate=True)):

You can link together as many tasks as you like, and signatures can be linked too:

>>> s = add.s (2, 2)
>>> s.link (mul.s(4))
>>> s.link (log_result.s())

You can also add error callbacks using the on_error method:

’>>> add.s (2, 2).on_error(log_error.s()) .delay()

This will result in the following . apply_async call when the signature is applied:

’>>> add.apply_async((2, 2), link_error=log_error.s())

The worker won’t actually call the errback as a task, but will instead call the errback function directly so that the raw
request, exception and traceback objects can be passed to it.

Here’s an example errback:

from _ future_ import print_function

import os

from proj.celery import app

(continues on next page)

3.3. User Guide 93

Celery Documentation, Release 4.4.2

(continued from previous page)

Qapp.task
def log error (request, exc, traceback):
with open(os.path.join('/var/errors', request.id), 'a') as fh:
print ('--\n\n{0} {1} {2}'.format (
task_id, exc, traceback), file=fh)

To make it even easier to link tasks together there’s a special signature called cha i n that lets you chain tasks together:

>>> from celery import chain
>>> from proj.tasks import add, mul

>>> # (4 + 4) = 8 x 10

>>> res = chain(add.s (4, 4), mul.s(8), mul.s(10))
4) proj.tasks.mul (8) | proj.tasks.mul (10)

Calling the chain will call the tasks in the current process and return the result of the last task in the chain:

>>> res = chain(add.s (4, 4), mul.s(8), mul.s(10)) ()
>>> res.get ()

A0
oal

It also sets parent attributes so that you can work your way up the chain to get intermediate results:

>>> res.parent.get ()

64

>>> res.parent.parent.get ()

e}

>>> res.parent.parent
<AsyncRe 6778

sult: eeaad925-6778-4adl1-88c8-b2a63doil

Chains can also be made using the | (pipe) operator:

>>> (add.s (2, 2) | mul.s(8) | mul.s(10)) .apply_async()

Graphs

In addition you can work with the result graph as a DependencyGraph:

>>> res = chain(add.s (4, 4), mul.s(8), mul.s(10)) ()

>>> res.parent.parent.graph

1~ O

You can even convert these graphs to dot format:

>>> with open('graph.dot', 'w') as fh:
res.parent.parent.graph.to_dot (fh)

94 Chapter 3. Contents

Celery Documentation, Release 4.4.2

and create images:

$ dot -Tpng graph.dot —-o graph.png

69c1a41b-391c-4605-96ee-d700c0a7b532

Groups

New in version 3.0.
A group can be used to execute several tasks in parallel.

The group function takes a list of signatures:

>>> from celery import group
>>> from proj.tasks import add

>>> group(add.s (2, 2), add.s (4, 4))
(proj.tasks.add (2, 2), proj.tasks.add(4, 4))

If you call the group, the tasks will be applied one after another in the current process, and a GroupResult instance
is returned that can be used to keep track of the results, or tell how many tasks are ready and so on:

>>> g = group(add.s (2, 2), add.s (4, 4))

>>> res = g{()
>>> res.get ()
[4, 8]

Group also supports iterators:

>>> group(add.s (i, i) for i in range (100)) ()

A group is a signature object, so it can be used in combination with other signatures.

Group Results

The group task returns a special result too, this result works just like normal task results, except that it works on the
group as a whole:

3.3. User Guide 95

Celery Documentation, Release 4.4.2

>>> from celery import group
>>> from tasks import add

>>> job = group ([
add.s (2, 2),
add.s (4, 4),
add.s (8, 8),
add.s (16, 16),
add.s (32, 32),
1)
>>> result = job.apply_async ()
>>> result.ready () # have all subtasks completed?
True
>>> result.successful () # were all subtasks successful?
True
>>> result.get ()
(4, 8, 16, 32, 64]

The GroupResult takes a list of AsyncResult instances and operates on them as if it was a single task.
It supports the following operations:
e successful ()
Return True if all of the subtasks finished successfully (e.g., didn’t raise an exception).
e failed()
Return True if any of the subtasks failed.
* waiting ()
Return True if any of the subtasks isn’t ready yet.
* ready ()
Return True if all of the subtasks are ready.
e completed_count ()
Return the number of completed subtasks.
e revoke ()
Revoke all of the subtasks.
* join()

Gather the results of all subtasks and return them in the same order as they were called (as a list).

Chords

New in version 2.3.

Note: Tasks used within a chord must not ignore their results. If the result backend is disabled for any task (header
or body) in your chord you should read “Important Notes.” Chords are not currently supported with the RPC result
backend.

96 Chapter 3. Contents

Celery Documentation, Release 4.4.2

A chord is a task that only executes after all of the tasks in a group have finished executing.
Let’s calculate the sum of the expression 1 + 1 + 2 + 2 + 3 + 3...n + n up to a hundred digits.

First you need two tasks, add () and t sum () (sum () is already a standard function):

Qapp.task
def add(x, y):
return x + y

@app.task
def tsum (numbers) :
return sum(numbers)

Now you can use a chord to calculate each addition step in parallel, and then get the sum of the resulting numbers:

>>> from celery import chord
>>> from tasks import add, tsum

>>> chord(add.s (i, 1)
for i in range (100)) (tsum.s()) .get ()

99

0
22U

This is obviously a very contrived example, the overhead of messaging and synchronization makes this a lot slower
than its Python counterpart:

>>> sum(i + i for i in range (100))

The synchronization step is costly, so you should avoid using chords as much as possible. Still, the chord is a powerful
primitive to have in your toolbox as synchronization is a required step for many parallel algorithms.

Let’s break the chord expression down:

>>> callback = tsum.s ()
>>> header = [add.s (i, 1) for i in range(100)]
>>> result = chord(header) (callback)

>>> result.get ()

9900

Remember, the callback can only be executed after all of the tasks in the header have returned. Each step in the header
is executed as a task, in parallel, possibly on different nodes. The callback is then applied with the return value of each
task in the header. The task id returned by chord () is the id of the callback, so you can wait for it to complete and
get the final return value (but remember to never have a task wait for other tasks)

Error handling

So what happens if one of the tasks raises an exception?

The chord callback result will transition to the failure state, and the error is set to the ChordError exception:

>>> ¢ = chord([add.s (4, 4), raising_task.s(), add.s(8, 8)1])
>>> result = c()
>>> result.get ()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "x/celery/result.py", line 120, in get

(continues on next page)

3.3. User Guide 97

https://docs.python.org/dev/library/functions.html#sum

Celery Documentation, Release 4.4.2

(continued from previous page)

interval=interval)
File "x/celery/backends/amgp.py", line 150, in wait_for
raise metal['result']
celery.exceptions.ChordError: Dependency 97de6f3f-ea67-4517-a2lc-d867c6lfcbd’
raised ValueError ('something something',)

While the traceback may be different depending on the result backend used, you can see that the error description
includes the id of the task that failed and a string representation of the original exception. You can also find the
original traceback in result.traceback.

Note that the rest of the tasks will still execute, so the third task (add.s (8, 8)) is still executed even though the
middle task failed. Also the ChordError only shows the task that failed first (in time): it doesn’t respect the ordering
of the header group.

To perform an action when a chord fails you can therefore attach an errback to the chord callback:

@app.task
def on_chord_error (request, exc, traceback):
print ('Task {0!r} raised error: {l!r}'.format (request.id, exc))

>>> ¢ = (group(add.s (i, 1) for i in range(10)) |
xsum.s () .on_error (on_chord_error.s())) .delay()

Important Notes

Tasks used within a chord must not ignore their results. In practice this means that you must enable a
result_backend in order to use chords. Additionally, if task_ignore_result is set to True in your con-
figuration, be sure that the individual tasks to be used within the chord are defined with ignore_result=False.
This applies to both Task subclasses and decorated tasks.

Example Task subclass:

class MyTask (Task) :
ignore_result = False

Example decorated task:

@app.task (ignore_result=False)
def another_ task (project):
do_something ()

By default the synchronization step is implemented by having a recurring task poll the completion of the group every
second, calling the signature when ready.

Example implementation:

from celery import maybe_signature

@app.task (bind=True)
def unlock_chord(self, group, callback, interval=1l, max_retries=None) :
if group.ready () :
return maybe_signature (callback) .delay (group.join())
raise self.retry(countdown=interval, max_retries=max_retries)

This is used by all result backends except Redis and Memcached: they increment a counter after each task in the
header, then applies the callback when the counter exceeds the number of tasks in the set.

98 Chapter 3. Contents

Celery Documentation, Release 4.4.2

The Redis and Memcached approach is a much better solution, but not easily implemented in other backends (sugges-
tions welcome!).

Note: Chords don’t properly work with Redis before version 2.2; you’ll need to upgrade to at least redis-server 2.2
to use them.

Note: If you’re using chords with the Redis result backend and also overriding the Task.after_return()
method, you need to make sure to call the super method or else the chord callback won’t be applied.

def after return(self, xargs, xxkwargs):
do_something ()
super (MyTask, self).after_return(xargs, =*xkwargs)

Map & Starmap

map and starmap are built-in tasks that calls the task for every element in a sequence.
They differ from group in that

* only one task message is sent

* the operation is sequential.

For example using map:

>>> from proj.tasks import add

>>> ~xsum.map ([range (10), range(100)])
[45, 4950]

is the same as having a task doing:

Qapp.task
def temp():
return [xsum(range (10)), xsum(range (100))]

and using starmap:

>>> ~add.starmap (zip(range (10), range (10)))
(6, 2, 4, 6, 8, 10, 12, 14, 16, 18]

is the same as having a task doing:

Qapp.task
def temp():
return [add(i, i) for i in range(10)]

Both map and starmap are signature objects, so they can be used as other signatures and combined in groups etc.,
for example to call the starmap after 10 seconds:

>>> add.starmap (zip(range (10), range (10))) .apply_async (countdown=10)

3.3. User Guide 99

Celery Documentation, Release 4.4.2

Chunks

Chunking lets you divide an iterable of work into pieces, so that if you have one million objects, you can create 10
tasks with hundred thousand objects each.

Some may worry that chunking your tasks results in a degradation of parallelism, but this is rarely true for a busy
cluster and in practice since you’re avoiding the overhead of messaging it may considerably increase performance.

To create a chunks signature you can use app. Task.chunks ():

>>> add.chunks (zip (range (100), range (100)), 10)

As with group the act of sending the messages for the chunks will happen in the current process when called:

>>> from proj.tasks import add

>>> res = add.chunks (zip(range (100), range (100)), 10) ()
>>> res.get ()
[[0, 2 / 6

while calling . apply_async will create a dedicated task so that the individual tasks are applied in a worker instead:

’ >>> add.chunks (zip (range (100), range (100)), 10).apply_async() ‘

You can also convert chunks to a group:

’>>> group = add.chunks (zip(range (100), range(100)), 10).group () ‘

and with the group skew the countdown of each task by increments of one:

’>>> group.skew (start=1, stop=10) () ‘

This means that the first task will have a countdown of one second, the second task a countdown of two seconds, and
SO on.

3.3.5 Workers Guide

* Starting the worker
» Stopping the worker
* Restarting the worker

* Process Signals

* Variables in file paths

100 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Concurrency

Remote control

Commands
» Time Limits
* Rate Limits
* Max tasks per child setting

* Max memory per child setting

Autoscaling

Queues

Inspecting workers

Additional Commands

Writing your own remote control commands

Starting the worker

Daemonizing

You probably want to use a daemonization tool to start the worker in the background. See Daemonization for help
starting the worker as a daemon using popular service managers.

You can start the worker in the foreground by executing the command:

’$ celery -A proj worker -1 info ‘

For a full list of available command-line options see worker, or simply do:

’$ celery worker --help ‘

You can start multiple workers on the same machine, but be sure to name each individual worker by specifying a node
name with the ——hostname argument:

$ celery —-A proj worker —--loglevel=INFO --concurrency=10 -n workerl@%h
$ celery -A proj worker —--loglevel=INFO —--concurrency=10 -n worker2@%h
$ celery —-A proj worker —--loglevel=INFO --concurrency=10 -n worker3@%h

The hostname argument can expand the following variables:
* %h: Hostname, including domain name.
* $n: Hostname only.
* %d: Domain name only.

If the current hostname is george.example.com, these will expand to:

3.3. User Guide 101

Celery Documentation, Release 4.4.2

Variable | Template Result

workerl@%h | workerl @george.example.com
workerl@%n | workerl @george
workerl@%d | workerl @example.com

o\°
o

o | o
QB3

Note for supervisor users

The % sign must be escaped by adding a second one: %%h.

Stopping the worker

Shutdown should be accomplished using the TERM signal.

When shutdown is initiated the worker will finish all currently executing tasks before it actually terminates. If these
tasks are important, you should wait for it to finish before doing anything drastic, like sending the KILL signal.

If the worker won’t shutdown after considerate time, for being stuck in an infinite-loop or similar, you can use the
KILL signal to force terminate the worker: but be aware that currently executing tasks will be lost (i.e., unless the
tasks have the acks_ 1ate option set).

Also as processes can’t override the KILL signal, the worker will not be able to reap its children; make sure to do so
manually. This command usually does the trick:

’$ pkill -9 —-f 'celery worker'

If you don’t have the pkill command on your system, you can use the slightly longer version:

’$ ps auxww | awk '/celery worker/ {print $2}' | xargs kill -9

Restarting the worker

To restart the worker you should send the TERM signal and start a new instance. The easiest way to manage workers
for development is by using celery multi:

$ celery multi start 1 -A proj -1 info -c4 --pidfile=/var/run/celery/%$n.pid
$ celery multi restart 1 —--pidfile=/var/run/celery/%n.pid

For production deployments you should be using init-scripts or a process supervision system (see Daemonization).

Other than stopping, then starting the worker to restart, you can also restart the worker using the HUP signal. Note that
the worker will be responsible for restarting itself so this is prone to problems and isn’t recommended in production:

$ kill -HUP S$pid

Note: Restarting by HUP only works if the worker is running in the background as a daemon (it doesn’t have a
controlling terminal).

HUP is disabled on macOS because of a limitation on that platform.

102 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Process Signals

The worker’s main process overrides the following signals:

TERM | Warm shutdown, wait for tasks to complete.
QUIT | Cold shutdown, terminate ASAP

USR1 | Dump traceback for all active threads.

USR2 | Remote debug, see celery.contrib. rdb.

Variables in file paths

The file path arguments for ~——logfile, ——pidfile, and ——statedb can contain variables that the worker will
expand:

Node name replacements

¢ %p: Full node name.
* %$h: Hostname, including domain name.
* $n: Hostname only.
* %d: Domain name only.
* %1i: Prefork pool process index or O if MainProcess.
* $1: Prefork pool process index with separator.
For example, if the current hostname is george@foo.example . com then these will expand to:
e ——logfile=%p.log->georgelfoo.example.com.log
¢ ——logfile=%h.log->foo.example.com.log
¢ ——logfile=%n.log->george.log

¢ ——logfile=%d.log->example.com.log

Prefork pool process index

The prefork pool process index specifiers will expand into a different filename depending on the process that’ll even-
tually need to open the file.

This can be used to specify one log file per child process.

Note that the numbers will stay within the process limit even if processes exit or if au-
toscale/maxtasksperchild/time limits are used. That is, the number is the process index not the process
count or pid.

* %1 - Pool process index or 0 if MainProcess.
Where -n workerl@example.com —-c2 —-f %$n-%i.log will result in three log files:
— workerl-0.1log (main process)
— workerl-1.1log (pool process 1)
— workerl-2.1log (pool process 2)

* %I - Pool process index with separator.

3.3. User Guide 103

Celery Documentation, Release 4.4.2

Where -n workerl@example.com -c2 —-f %$n%I.log will resultin three log files:
— workerl.log (main process)
— workerl-1.1log (pool process 1)

— workerl-2.1log (pool process 2)
Concurrency
By default multiprocessing is used to perform concurrent execution of tasks, but you can also use Eventlet. The number

of worker processes/threads can be changed using the ——concurrency argument and defaults to the number of
CPUs available on the machine.

Number of processes (multiprocessing/prefork pool)

More pool processes are usually better, but there’s a cut-off point where adding more pool processes affects perfor-
mance in negative ways. There’s even some evidence to support that having multiple worker instances running, may
perform better than having a single worker. For example 3 workers with 10 pool processes each. You need to exper-
iment to find the numbers that works best for you, as this varies based on application, work load, task run times and
other factors.

Remote control

New in version 2.0.

The celery command

The celery program is used to execute remote control commands from the command-line. It supports all of the
commands listed below. See Management Command-line Utilities (inspect/control) for more information.

pool support prefork, eventlet, gevent, thread, blocking:solo (see note)
broker support amgp, redis

Workers have the ability to be remote controlled using a high-priority broadcast message queue. The commands can
be directed to all, or a specific list of workers.

Commands can also have replies. The client can then wait for and collect those replies. Since there’s no central
authority to know how many workers are available in the cluster, there’s also no way to estimate how many workers
may send a reply, so the client has a configurable timeout — the deadline in seconds for replies to arrive in. This
timeout defaults to one second. If the worker doesn’t reply within the deadline it doesn’t necessarily mean the worker
didn’t reply, or worse is dead, but may simply be caused by network latency or the worker being slow at processing
commands, so adjust the timeout accordingly.

In addition to timeouts, the client can specify the maximum number of replies to wait for. If a destination is specified,
this limit is set to the number of destination hosts.

Note: The solo pool supports remote control commands, but any task executing will block any waiting control
command, so it is of limited use if the worker is very busy. In that case you must increase the timeout waiting for
replies in the client.

104 Chapter 3. Contents

Celery Documentation, Release 4.4.2

The broadcast () function

This is the client function used to send commands to the workers. Some remote control commands also have higher-
level interfaces using broadcast () in the background, like rate_Ilimit (),and ping ().

Sending the rate_1imit command and keyword arguments:

>>> app.control.broadcast ('rate_limit',
arguments={"'task_name': 'myapp.mytask',
'rate_limit': '200/m'})

This will send the command asynchronously, without waiting for a reply. To request a reply you have to use the reply
argument:

>>> app.control.broadcast ('rate_limit', {
'task_name': 'myapp.mytask', 'rate_limit': '200/m'}, reply=True)
rate limit se

rate limit

[{'workerl.example.com

~cessfully'},

{'worker2.example. fully'},

{'worker3.example.com

Using the destination argument you can specify a list of workers to receive the command:

>>> app.control.broadcast ('rate_limit', {
'task_name': 'myapp.mytask',
'rate_limit': '200/m'}, reply=True,
destination=["'workerl@example.com'])

[{'workerl.example.com': 'New rate limit set suc sfully'}]

Of course, using the higher-level interface to set rate limits is much more convenient, but there are commands that can
only be requested using broadcast ().

Commands

revoke: Revoking tasks

pool support all, terminate only supported by prefork
broker support amgp, redis
command celery —-A proj control revoke <task_id>
All worker nodes keeps a memory of revoked task ids, either in-memory or persistent on disk (see Persistent revokes).

When a worker receives a revoke request it will skip executing the task, but it won’t terminate an already executing
task unless the terminate option is set.

Note: The terminate option is a last resort for administrators when a task is stuck. It’s not for terminating the task,
it’s for terminating the process that’s executing the task, and that process may have already started processing another
task at the point when the signal is sent, so for this reason you must never call this programmatically.

If terminate is set the worker child process processing the task will be terminated. The default signal sent is TERM,
but you can specify this using the signal argument. Signal can be the uppercase name of any signal defined in the
signal module in the Python Standard Library.

Terminating a task also revokes it.

Example

3.3. User Guide 105

https://docs.python.org/dev/library/signal.html#module-signal

Celery Documentation, Release 4.4.2

>>> result.revoke ()
>>> AsyncResult (id) .revoke ()
>>> app.control.revoke ('d9078da5-9915-40a0-bfal-392c7bded2ed")

>>> app.control.revoke ('d9078da5-9915-40a0-bfal-392c7bde42ed’,
terminate=True)

>>> app.control.revoke ('d9078da5-9915-40a0-bfal-392c7bded2ed’,
terminate=True, signal='SIGKILL'")

Revoking multiple tasks

New in version 3.1.
The revoke method also accepts a list argument, where it will revoke several tasks at once.

Example

>>> app.control.revoke ([

'7993b0aa-1f0b-4780-9af0-c47c0858b3f2",
'£565793e-b041-4b2b-9cad-dca22762a55d",
. 'd9d35e03-2997-42d0-al3e-64a66b88a618"',
1)

The GroupResult . revoke method takes advantage of this since version 3.1.

Persistent revokes

Revoking tasks works by sending a broadcast message to all the workers, the workers then keep a list of revoked tasks
in memory. When a worker starts up it will synchronize revoked tasks with other workers in the cluster.

The list of revoked tasks is in-memory so if all workers restart the list of revoked ids will also vanish. If you want to
preserve this list between restarts you need to specify a file for these to be stored in by using the —statedb argument to
celery worker:

’$ celery -A proj worker -1 info --statedb=/var/run/celery/worker.state

or if you use celery multi you want to create one file per worker instance so use the %n format to expand the
current node name:

’:e;erj multi start 2 -1 info statedb=/var/run/celery/%n.state

See also Variables in file paths

Note that remote control commands must be working for revokes to work. Remote control commands are only sup-
ported by the RabbitMQ (amqp) and Redis at this point.

Time Limits

New in version 2.0.

pool support prefork/gevent

106 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Soft, or hard?

The time limit is set in two values, soft and hard. The soft time limit allows the task to catch an exception to clean
up before it is killed: the hard timeout isn’t catch-able and force terminates the task.

A single task can potentially run forever, if you have lots of tasks waiting for some event that’ll never happen you’ll
block the worker from processing new tasks indefinitely. The best way to defend against this scenario happening is
enabling time limits.

The time limit (—time-limit) is the maximum number of seconds a task may run before the process executing it is
terminated and replaced by a new process. You can also enable a soft time limit (—soft-time-limit), this raises an
exception the task can catch to clean up before the hard time limit kills it:

from myapp import app
from celery.exceptions import SoftTimelLimitExceeded

@Qapp.task
def mytask () :
try:
do_work ()
except SoftTimelLimitExceeded:
clean_up_in_a_hurry ()

Time limits can also be set using the task_time Ilimit/task_soft_time_ limit settings.

Note: Time limits don’t currently work on platforms that don’t support the STGUSR1 signal.

Changing time limits at run-time

New in version 2.3.
broker support amgp, redis

There’s a remote control command that enables you to change both soft and hard time limits for a task — named
time_limit.

Example changing the time limit for the tasks.crawl_the_web task to have a soft time limit of one minute, and
a hard time limit of two minutes:

>>> app.control.time_limit ('tasks.crawl_the_web',
soft=60, hard=120, reply=True)

[{'workerl.example.com': {'ok': 'time imits

Only tasks that starts executing after the time limit change will be affected.

Rate Limits

Changing rate-limits at run-time

Example changing the rate limit for the myapp.mytask task to execute at most 200 tasks of that type every minute:

3.3. User Guide 107

Celery Documentation, Release 4.4.2

>>> app.control.rate_limit ('myapp.mytask', '200/m'")

The above doesn’t specify a destination, so the change request will affect all worker instances in the cluster. If you
only want to affect a specific list of workers you can include the destination argument:

>>> app.control.rate_limit ('myapp.mytask', '200/m',
destination=["'celery@workerl.example.com'])

Warning: This won’t affect workers with the worker disable rate 1imits setting enabled.

Max tasks per child setting

New in version 2.0.
pool support prefork

With this option you can configure the maximum number of tasks a worker can execute before it’s replaced by a new
process.

This is useful if you have memory leaks you have no control over for example from closed source C extensions.

The option can be set using the workers --max-tasks-per-child argument or using the
worker._max_tasks_per_child Setting.

Max memory per child setting

New in version 4.0.
pool support prefork

With this option you can configure the maximum amount of resident memory a worker can execute before it’s replaced
by a new process.

This is useful if you have memory leaks you have no control over for example from closed source C extensions.

The option can be set using the workers --max-memory-per—-child argument or using the
worker_max_memory_per._child setting.

Autoscaling

New in version 2.2.
pool support prefork, gevent
The autoscaler component is used to dynamically resize the pool based on load:
¢ The autoscaler adds more pool processes when there is work to do,
— and starts removing processes when the workload is low.

It’s enabled by the ——autoscale option, which needs two numbers: the maximum and minimum number of pool
processes:

108 Chapter 3. Contents

Celery Documentation, Release 4.4.2

——autoscale=AUTOSCALE
Enable autoscaling by providing
max_concurrency,min_concurrency. Example:
——autoscale=10,3 (always keep 3 processes, but grow to
10 if necessary) .

You can also define your own rules for the autoscaler by subclassing Autoscaler. Some ideas for met-
rics include load average or the amount of memory available. You can specify a custom autoscaler with the
worker_autoscaler setting.

Queues

A worker instance can consume from any number of queues. By default it will consume from all queues defined in the
task_queues setting (that if not specified falls back to the default queue named celery).

You can specify what queues to consume from at start-up, by giving a comma separated list of queues to the —O option:

$ celery —-A proj worker -1 info -Q foo,bar,baz

If the queue name is defined in task_queues it will use that configuration, but if it’s not defined in the list of queues
Celery will automatically generate a new queue for you (depending on the task_create missing queues
option).

You can also tell the worker to start and stop consuming from a queue at run-time using the remote control commands
add_consumer and cancel_consumer.

Queues: Adding consumers

The add_consumer control command will tell one or more workers to start consuming from a queue. This operation
is idempotent.

To tell all workers in the cluster to start consuming from a queue named “foo” you can use the celery control
program:

$ celery —-A proj control add_consumer foo
—> workerl.local: OK

started consuming from u'foo

If you want to specify a specific worker you can use the ~-—dest ination argument:

$ celery -A proj control add_consumer foo —-d celery@workerl.local

The same can be accomplished dynamically using the app. control.add _consumer () method:

>>> app.control.add_consumer ('foo', reply=True)
[{u'workerl.local': {u'ok': u"already consuming from u'foo'"}}]

>>> app.control.add_consumer ('foo', reply=True,
destination=['workerl@example.com'])

[{u'workerl.local': {u'ok': u"already consuming from u'foo'"}}]

By now we’ve only shown examples using automatic queues, If you need more control you can also specify the
exchange, routing_key and even other options:

3.3. User Guide 109

Celery Documentation, Release 4.4.2

>>> app.control.add_consumer (
queue='baz',
exchange='ex"',
exchange_type='topic',
routing_key='media.x"',
options={
'queue_durable': False,
'exchange_durable': False,
}I
reply=True,
destination=['wl@example.com', 'w2@example.com'])

Queues: Canceling consumers

You can cancel a consumer by queue name using the cancel_consumer control command.

To force all workers in the cluster to cancel consuming from a queue you can use the celery control program:

’$ celery —-A proj control cancel_consumer foo

The —-destination argument can be used to specify a worker, or a list of workers, to act on the command:

’$ celery —-A proj control cancel_consumer foo -d celery@workerl.local

You can also cancel consumers programmatically using the app. control.cancel_consumer () method:

>>> app.control.cancel_consumer ('foo', reply=True)

[{u'workerl.local': {u'ok': u"no longer consuming from u'foo'"}}]

Queues: List of active queues

You can get a list of queues that a worker consumes from by using the active_queues control command:

$ celery -A proj inspect active_gueues
[...]

Like all other remote control commands this also supports the ——dest inat ion argument used to specify the work-
ers that should reply to the request:

$ celery -A proj inspect active_queues -d celery@workerl.local
[...]

This can also be done programmatically by using the app.control.inspect.active_qgueues () method:

>>> app.control.inspect () .active_qgqueues ()
[...]

>>> app.control.inspect (['workerl.local']) .active_queues ()
[...]

Inspecting workers

app.control.inspect lets you inspect running workers. It uses remote control commands under the hood.

110 Chapter 3. Contents

Celery Documentation, Release 4.4.2

You can also use the ce lery command to inspect workers, and it supports the same commands as the app . control
interface.

>>> # Inspect all nodes.

>>> 1 = app.control.inspect ()
>>> # Specify multiple nodes to inspect.
>>> 1 = app.control.inspect (['workerl.example.com',

'worker2.example.com'])

>>> # Specify a single node to inspect.
>>>

-

= app.control.inspect ('workerl.example.com')

Dump of registered tasks

You can get a list of tasks registered in the worker using the registered():

>>> i.registered()
[{'workerl.example.com': ['tasks.add',
'tasks.sleeptask']}]

Dump of currently executing tasks

You can get a list of active tasks using active ():

>>> 1.active ()
[{'workerl.example.com':

[{'name': 'tasks.sleeptask',
'id': '32666e90-809c-41fa-8e93-5ae0c80afbbf"',
'args': '(8,)"',
'kwargs': "{}'}]1}]

Dump of scheduled (ETA) tasks

You can get a list of tasks waiting to be scheduled by using scheduled():

>>> 1.scheduled()
[{'workerl.example.com':

[{'eta': '2010-06-07 09:07:52"', 'priority': O,
'request': {
'name': 'tasks.sleeptask',
'id': '1a7980ea-8b19-413e-91d2-0b74£3844c4d"',
'args': 'J[1]"'",
'kwargs': '"{}'}},
{'eta': '2010-06-07 09:07:53"', 'priority': O,
'request': {
'name': 'tasks.sleeptask',
'id': '49661b9%a-aa22-4120-94b7-9ee8031d219d"',
'args': '[2]"',
'kwargs': "{}'}}1}]

3.3. User Guide 111

Celery Documentation, Release 4.4.2

Note: These are tasks with an ETA/countdown argument, not periodic tasks.

Dump of reserved tasks

Reserved tasks are tasks that have been received, but are still waiting to be executed.

You can get a list of these using reserved () :

>>> i.reserved()

[{'workerl.example

[{'"name': 'tasks.
'ic a—-8e93-5ae0c80afbbf’',

Statistics

The remote control command inspect stats (or stats ()) will give you a long list of useful (or not so useful)
statistics about the worker:

$ celery -A proj inspect stats

The output will include the following fields:
* broker

Section for broker information.

connect_timeout
Timeout in seconds (int/float) for establishing a new connection.

— heartbeat

Current heartbeat value (set by client).
— hostname

Node name of the remote broker.
— insist

No longer used.
— login_method

Login method used to connect to the broker.
- port

Port of the remote broker.
- ssl

SSL enabled/disabled.
— transport

Name of transport used (e.g., amgp or redis)

112 Chapter 3. Contents

Celery Documentation, Release 4.4.2

transport_options
Options passed to transport.
— uri_prefix

Some transports expects the host name to be a URL.

redis+socket:///tmp/redis.sock

In this example the URI-prefix will be redis.

userid

User id used to connect to the broker with.

virtual_host
Virtual host used.
e clock

Value of the workers logical clock. This is a positive integer and should be increasing every time you
receive statistics.

e pid
Process id of the worker instance (Main process).
* pool
Pool-specific section.
— max-concurrency

Max number of processes/threads/green threads.

max-tasks-per-child

Max number of tasks a thread may execute before being recycled.

processes
List of PIDs (or thread-id’s).
— put—-guarded-by-semaphore

Internal

timeouts
Default values for time limits.
— writes

Specific to the prefork pool, this shows the distribution of writes to each process in the
pool when using async I/O.

e prefetch_count
Current prefetch count value for the task consumer.

* rusage
System usage statistics. The fields available may be different on your platform.
From getrusage (2):

— stime

3.3. User Guide 113

Celery Documentation, Release 4.4.2

Time spent in operating system code on behalf of this process.
- utime
Time spent executing user instructions.
— maxrss
The maximum resident size used by this process (in kilobytes).
- idrss
Amount of non-shared memory used for data (in kilobytes times ticks of execution)
— isrss

Amount of non-shared memory used for stack space (in kilobytes times ticks of execu-
tion)

— ixrss
Amount of memory shared with other processes (in kilobytes times ticks of execution).
— inblock
Number of times the file system had to read from the disk on behalf of this process.
— oublock
Number of times the file system has to write to disk on behalf of this process.
- majflt
Number of page faults that were serviced by doing 1/O.
- minflt
Number of page faults that were serviced without doing I/O.
— msgrcv
Number of IPC messages received.
— msgsnd
Number of IPC messages sent.
— nvcsw
Number of times this process voluntarily invoked a context switch.
— nivcsw
Number of times an involuntary context switch took place.
— nsignals
Number of signals received.
— nswap
The number of times this process was swapped entirely out of memory.
* total

Map of task names and the total number of tasks with that type the worker has accepted since start-up.

114 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Additional Commands

Remote shutdown

This command will gracefully shut down the worker remotely:

>>> app.control.broadcast ('shutdown') # shutdown all workers
>>> app.control.broadcast ('shutdown', destination='workerl@example.com')

Ping

This command requests a ping from alive workers. The workers reply with the string ‘pong’, and that’s just about it.
It will use the default one second timeout for replies unless you specify a custom timeout:

>>> app.control.ping(timeout=0.5)
ng'},

'pong'},

[{'workerl.example.com': 'po
{'worker2.

{'worker3.ex

ping () also supports the destination argument, so you can specify the workers to ping:

>>> ping(['worker2.example.com', 'worker3.example.com'])
[{'worker2.example.com': 'pong'},

{'worker3.example.com': 'pong'}]

Enable/disable events

You can enable/disable events by using the enable_events, disable_events commands. This is useful to temporarily
monitor a worker using celery events/celerymon.

>>> app.control.enable_events ()
>>> app.control.disable_events ()

Writing your own remote control commands

There are two types of remote control commands:
¢ Inspect command

Does not have side effects, will usually just return some value found in the worker, like the list of
currently registered tasks, the list of active tasks, etc.

 Control command
Performs side effects, like adding a new queue to consume from.

Remote control commands are registered in the control panel and they take a single argument: the current
ControlDispatch instance. From there you have access to the active Consumer if needed.

Here’s an example control command that increments the task prefetch count:

3.3. User Guide 115

Celery Documentation, Release 4.4.2

from celery.worker.control import control_command

@control_command (
args=[('n', int)],
signature='[N=1]", # <- used for help on the command-line.
)
def increase_prefetch_ count (state, n=1):
state.consumer.gos.increment_eventually (n)
return {'ok': 'prefetch count incremented'}

Make sure you add this code to a module that is imported by the worker: this could be the same module as where your
Celery app is defined, or you can add the module to the imports setting.

Restart the worker so that the control command is registered, and now you can call your command using the celery
control utility:

$ celery —-A proj control increase_prefetch_count 3

You can also add actions to the celery inspect program, for example one that reads the current prefetch count:

from celery.worker.control import inspect_command

@inspect_command ()
def current_prefetch count (state):
return {'prefetch_count': state.consumer.gos.value}

After restarting the worker you can now query this value using the celery inspect program:

$ celery —-A proj inspect current_prefetch_count

3.3.6 Daemonization

* Generic init-scripts
— Init-script: celeryd
* Example configuration
* Using a login shell
* FExample Django configuration
* Available options
— Init-script: celerybeat
* Example configuration
* FExample Django configuration
* Available options
— Troubleshooting
* Usage systemd

— Service file: celery.service

x Example configuration

116 Chapter 3. Contents

Celery Documentation, Release 4.4.2

— Service file: celerybeat.service
* Running the worker with superuser privileges (root)

® SLl]?(?I’Vl.S()I’

e Jaunchd (macOS)

Most Linux distributions these days use systemd for managing the lifecycle of system and user services.

You can check if your Linux distribution uses systemd by typing:

$ systemd —--version

2

7stemd 237

’AM +AUDIT +SELINUX NIT +UTMP +LIBCRYPTSE"
+GNUTLS +ACL +XZ +KMOD —IDN2 +IDN
—hierarchy=hybrid

If you have output similar to the above, please refer to our systemd documentation for guidance.

However, the init.d script should still work in those Linux distributions as well since systemd provides the systemd-
sysv compatibility layer which generates services automatically from the init.d scripts we provide.

If you package Celery for multiple Linux distributions and some do not support systemd or to other Unix systems as
well, you may want to refer to our init.d documentation.

Generic init-scripts

See the extra/generic-init.d/ directory Celery distribution.

This directory contains generic bash init-scripts for the celery worker program, these should run on Linux,
FreeBSD, OpenBSD, and other Unix-like platforms.

Init-script: celeryd

Usage /etc/init.d/celeryd {startlstoplrestart|status)
Configuration file /etc/default/celeryd

To configure this script to run the worker properly you probably need to at least tell it where to change directory to
when it starts (to find the module containing your app, or your configuration module).

The daemonization script is configured by the file /etc/default/celeryd. This is a shell (sh) script where you
can add environment variables like the configuration options below. To add real environment variables affecting the
worker you must also export them (e.g., export DISPLAY=":0")

Superuser privileges required
The init-scripts can only be used by root, and the shell configuration file must also be owned by root.

Unprivileged users don’t need to use the init-script, instead they can use the celery multi utility (or celery
worker --detach):

$ celery multi start workerl \
-A proj \
——pidfile="S$HOME/run/celery/%n.pid" \
—-logfile="SHOME/log/celery/%n%I.log"

(continues on next page)

3.3. User Guide 117

https://github.com/celery/celery/tree/master/extra/generic-init.d/

Celery Documentation, Release 4.4.2

(continued from previous page)

$ celery multi restart workerl \
-A proj \
—-logfile="SHOME/log/celery/%n%I.log" \
—-—pidfile="S$HOME/run/celery/%n.pid

$ celery multi stopwait workerl —--pidfile="S$HOME/run/celery/%n.pid"

Example configuration

This is an example configuration for a Python project.

/etc/default/celeryd:

Names of nodes to start

most people will only start one node:
CELERYD_NODES="workerl"

but you can also start multiple and configure settings

for each in CELERYD_OPTS

#CELERYD_NODES="workerl worker2 worker3"

alternatively, you can specify the number of nodes to start:
#CELERYD_NODES=10

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use

comment out this line if you don't use an app
CELERY_APP="proj"

or fully qualified:
#CELERY_APP="proj.tasks:app"

Where to chdir at start.
CELERYD_CHDIR="/opt/Myproject/"

Extra command-line arguments to the worker

CELERYD_OPTS="--time-1imit=300 —--concurrency=8"
Configure node-specific settings by appending node name to arguments:
#CELERYD_OPTS="--time-1imit=300 -c 8 -c:worker2 4 -c:worker3 2 -Ofair:workerl"

Set logging level to DEBUG
#CELERYD_LOG_LEVEL="DEBUG"

%n will be replaced with the first part of the nodename.
CELERYD_LOG_FILE="/var/log/celery/%$n%I.log"
CELERYD_PID_FILE="/var/run/celery/%n.pid"

Workers should run as an unprivileged user.

You need to create this user manually (or you can choose

a user/group combination that already exists (e.g., nobody).
CELERYD_USER="celery"

CELERYD_GROUP="celery"

(continues on next page)

118 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

If enabled pid and

and owned by the us
CELERY_CREATE_DIRS=1

Using a login shell

You can inherit the environment of the CELERYD_USER by using a login shell:

CELERYD_SU_ARGS="-1"

Note that this isn’t recommended, and that you should only use this option when absolutely necessary.

Example Django configuration

Django users now uses the exact same template as above, but make sure that the module that defines your Celery app
instance also sets a default value for DOANGO_SETTINGS_MODULE as shown in the example Django project in First
steps with Django.

Available options

e CELERY_APP
App instance to use (value for ——app argument).
e CELERY_BIN

Absolute or relative path to the celery program. Examples:

celery

/usr/local/bin/celery

/virtualenvs/proj/bin/celery

— /virtualenvs/proj/bin/python -m celery

CELERYD_NODES
List of node names to start (separated by space).
e CELERYD_OPTS

Additional command-line arguments for the worker, see celery worker —help for a list. This also
supports the extended syntax used by multi to configure settings for individual nodes. See celery
multi —help for some multi-node configuration examples.

e CELERYD_CHDIR

Path to change directory to at start. Default is to stay in the current directory.
e CELERYD_PID_FILE

Full path to the PID file. Default is /var/run/celery/%n.pid
¢ CELERYD_LOG_FILE

3.3. User Guide 119

https://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE

Celery Documentation, Release 4.4.2

Full path to the worker log file. Default is /var/log/celery/%n%I.log Note: Using %I is important
when using the prefork pool as having multiple processes share the same log file will lead to race

conditions.
e CELERYD_LOG_LEVEL

Worker log level. Default is INFO.
e CELERYD_USER

User to run the worker as. Default is current user.
e CELERYD_GROUP

Group to run worker as. Default is current user.

e CELERY_CREATE_DIRS

Always create directories (log directory and pid file directory). Default is to only create directories

when no custom logfile/pidfile set.

e CELERY_CREATE_RUNDIR

Always create pidfile directory. By default only enabled when no custom pidfile location set.

¢ CELERY_CREATE_LOGDIR

Always create logfile directory. By default only enable when no custom logfile location set.

Init-script: celerybeat

Usage /etc/init.d/celerybeat {startlstoplrestart}

Configuration file /etc/default/celerybeat or /etc/default/celeryd.

Example configuration

This is an example configuration for a Python project:

Jetc/default/celerybeat:

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use

comment out this ine if you don't use an app
CELERY_APP="proj"

or fully qualified:

#CELERY_APP="proj.tasks:app"

Where to chdir at start.
CELERYBEAT_CHDIR="/opt/Myproject/"

Extra arguments to celerybeat

CELERYBEAT_ OPTS="--schedule=/var/run/celery/celerybeat-schedule"

120

Chapter 3. Contents

Celery Documentation, Release 4.4.2

Example Django configuration

You should use the same template as above, but make sure the DJANGO_SETTINGS_MODULE variable is set (and
exported), and that CELERYD_CHDIR is set to the projects directory:

export DJANGO_SETTINGS_MODULE="settings"

CELERYD_CHDIR="/opt/MyProject"

Available options

e CELERY_APP
App instance to use (value for ——app argument).
e CELERYBEAT_OPTS

Additional arguments to celery beat, see celery beat --help for a list of available op-
tions.

e CELERYBEAT_PID_FILE

Full path to the PID file. Defaultis /var/run/celeryd.pid.
e CELERYBEAT_LOG_FILE

Full path to the log file. Defaultis /var/log/celeryd. log.
e CELERYBEAT_TOG_LEVEL

Log level to use. Default is INFO.
e CELERYBEAT_USER

User to run beat as. Default is the current user.
e CELERYBEAT_GROUP

Group to run beat as. Default is the current user.
e CELERY_CREATE_DIRS

Always create directories (log directory and pid file directory). Default is to only create directories
when no custom logfile/pidfile set.

e CELERY_CREATE_RUNDIR
Always create pidfile directory. By default only enabled when no custom pidfile location set.
e CELERY_CREATE_LOGDIR

Always create logfile directory. By default only enable when no custom logfile location set.

Troubleshooting

If you can’t get the init-scripts to work, you should try running them in verbose mode:

sh -x /etc/init.d/celeryd start

3.3. User Guide 121

Celery Documentation, Release 4.4.2

This can reveal hints as to why the service won’t start.

If the worker starts with “OK” but exits almost immediately afterwards and there’s no evidence in the log file, then
there’s probably an error but as the daemons standard outputs are already closed you’ll not be able to see them any-
where. For this situation you can use the C_FAKEFORK environment variable to skip the daemonization step:

C_FAKEFORK=1 sh -x /etc/init.d/celeryd start

and now you should be able to see the errors.

Commonly such errors are caused by insufficient permissions to read from, or write to a file, and also by syntax errors
in configuration modules, user modules, third-party libraries, or even from Celery itself (if you've found a bug you
should report it).

Usage systemd

* extra/systemd/
Usage systemctl {start|stoplrestart|status} celery.service

Configuration file /etc/conf.d/celery

Service file: celery.service

This is an example systemd file:

/etc/systemd/system/celery.service:

[Unit]
Description=Celery Service
After=network.target

[Service]

Type=forking

User=celery

Group=celery

EnvironmentFile=/etc/conf.d/celery

WorkingDirectory=/opt/celery

ExecStart=/bin/sh —-c '${CELERY_BIN} multi start ${CELERYD_NODES} \
-A ${CELERY_APP} —--pidfile=${CELERYD_PID_FILE} \
—--logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'

ExecStop=/bin/sh -c '${CELERY_BIN} multi stopwait ${CELERYD_NODES} \
——pidfile=${CELERYD_PID_FILE}'

ExecReload=/bin/sh —-c 'S${CELERY_BIN} multi restart ${CELERYD_NODES} \
-A ${CELERY_APP} —--pidfile=${CELERYD_PID_FILE} \
——logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'

[Install]
WantedBy=multi-user.target

Once you’ve put that file in /etc/systemd/system, you should run systemctl daemon-reload in order
that Systemd acknowledges that file. You should also run that command each time you modity it.

To configure user, group, chdir change settings: User, Group, and WorkingDirectory defined in /etc/
systemd/system/celery.service.

You can also use systemd-tmpfiles in order to create working directories (for logs and pid).

file /etc/tmpfiles.d/celery.conf

122 Chapter 3. Contents

https://github.com/celery/celery/tree/master/extra/systemd/

Celery Documentation, Release 4.4.2

d /var/run/celery 0755 celery celery -
d /var/log/celery 0755 celery celery -

Example configuration

This is an example configuration for a Python project:

/etc/conf.d/celery:

Name of nodes to start

here we have a single node
CELERYD_NODES="w1"

or we could have three nodes:
#CELERYD_NODES="wl w2 w3"

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use

comment out this line if you don't use an app
CELERY_APP="proj"

or fully qualified:
#CELERY_APP="proj.tasks:app"

How to call manage.py
CELERYD_MULTI="multi"

Extra command-line arguments to the worker

CELERYD_OPTS="--time-1imit=300 —--concurrency=8"

— %n will be replaced with the first part of the nodename.

- %I will be replaced with the current child process index

and is important when using the prefork pool to avoid race

CELERYD_PID_FILE="/var/run/celery/%n.pid"
CELERYD_LOG_FILE="/var/log/celery/%n%I.log"
CELERYD_LOG_LEVEL="INFO"

you may wish to add these options for Celery Beat
CELERYBEAT_PID_FILE="/var/run/celery/beat.pid"
CELERYBEAT_LOG_FILE="/var/log/celery/beat.log"

conditions.

Service file: celerybeat.service

This is an example systemd file for Celery Beat:

/etc/systemd/system/celerybeat.service:

[Unit]
Description=Celery Beat Service
After=network.target

[Service]
Type=simple

(continues on next page)

3.3. User Guide

123

Celery Documentation, Release 4.4.2

(continued from previous page)

User=celery

Group=celery

EnvironmentFile=/etc/conf.d/celery

WorkingDirectory=/opt/celery

ExecStart=/bin/sh —-c '${CELERY_BIN} beat \
-A ${CELERY_APP} --pidfile=${CELERYBEAT_ PID_FILE} \
——logfile=${CELERYBEAT_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL}"

[Install]
WantedBy=multi-user.target

Running the worker with superuser privileges (root)

Running the worker with superuser privileges is a very dangerous practice. There should always be a workaround to
avoid running as root. Celery may run arbitrary code in messages serialized with pickle - this is dangerous, especially
when run as root.

By default Celery won’t run workers as root. The associated error message may not be visible in the logs but may be
seen if C_FAKEFORK is used.

To force Celery to run workers as root use C_FORCE_ROOT.

When running as root without C_FORCE_ROOT the worker will appear to start with “OK” but exit immediately after
with no apparent errors. This problem may appear when running the project in a new development or production
environment (inadvertently) as root.

supervisor

* extra/supervisord/

launchd (macOS)

¢ extra/macOS

3.3.7 Periodic Tasks

e Introduction
e Time Zones
» Entries
— Available Fields
* Crontab schedules
* Solar schedules

* Starting the Scheduler

— Using custom scheduler classes

124 Chapter 3. Contents

https://github.com/celery/celery/tree/master/extra/supervisord/
https://github.com/celery/celery/tree/master/extra/macOS/

Celery Documentation, Release 4.4.2

Introduction
celery beat is a scheduler; It kicks off tasks at regular intervals, that are then executed by available worker nodes
in the cluster.

By default the entries are taken from the beat_schedule setting, but custom stores can also be used, like storing
the entries in a SQL database.

You have to ensure only a single scheduler is running for a schedule at a time, otherwise you’d end up with duplicate
tasks. Using a centralized approach means the schedule doesn’t have to be synchronized, and the service can operate
without using locks.

Time Zones

The periodic task schedules uses the UTC time zone by default, but you can change the time zone used using the
t imezone setting.

An example time zone could be Europe/London:

timezone = 'Europe/London'

This setting must be added to your app, either by configuring it directly using (app.conf.timezone =
'Europe/London'), or by adding it to your configuration module if you have set one up using app.
config_from_object. See Configuration for more information about configuration options.

The default scheduler (storing the schedule in the celerybeat—-schedule file) will automatically detect that the
time zone has changed, and so will reset the schedule itself, but other schedulers may not be so smart (e.g., the Django
database scheduler, see below) and in that case you’ll have to reset the schedule manually.

Django Users
Celery recommends and is compatible with the new USE_TZ setting introduced in Django 1.4.

For Django users the time zone specified in the TIME_ZONE setting will be used, or you can specify a custom time
zone for Celery alone by using the t imezone setting.

The database scheduler won’t reset when timezone related settings change, so you must do this manually:

$ python manage.py shell
>>> from djcelery.models import PeriodicTask
>>> PeriodicTask.objects.update (last_run_at=None)

Django-Celery only supports Celery 4.0 and below, for Celery 4.0 and above, do as follow:

$ python manage.py shell
>>> from django_celery_beat.models import PeriodicTask
>>> PeriodicTask.objects.update (last_run_at=None)

Entries

To call a task periodically you have to add an entry to the beat schedule list.

from celery import Celery
from celery.schedules import crontab

(continues on next page)

3.3. User Guide 125

Celery Documentation, Release 4.4.2

(continued from previous page)

app = Celery()

@app.on_after_ configure.connect
def setup_periodic_tasks (sender, xxkwargs):
Calls test('hello') every 10 seconds.

sender.add_periodic_task (10.0, test.s('hello'), name='add every 10'")

Calls test ('world') every 30 seconds

sender.add_periodic_task (30.0, test.s('world'), expires=10)

7:30 a.m.

Executes every Monday morning at
sender.add_periodic_task(
crontab (hour=7, minute=30, day_of_week=1),

test.s ('Happy Mondays!'),

Qapp.task
def test (arg):
print (arg)

Setting these up from within the on_after configure handler means that we’ll not evaluate the app at module
level when using test.s ().

The add_periodic_task () function will add the entry to the beat_ schedule setting behind the scenes, and
the same setting can also be used to set up periodic tasks manually:

Example: Run the fasks.add task every 30 seconds.

app.conf.beat_schedule = {
'add-every-30-seconds': {
'task': 'tasks.add',
'schedule': 30.0,
'args': (16, 16)
}I

app.conf.timezone = 'UTC'

Note: If you're wondering where these settings should go then please see Configuration. You can either set these
options on your app directly or you can keep a separate module for configuration.

If you want to use a single item tuple for args, don’t forget that the constructor is a comma, and not a pair of parenthe-
ses.

Using a t imedelta for the schedule means the task will be sent in 30 second intervals (the first task will be sent 30
seconds after celery beat starts, and then every 30 seconds after the last run).

A Crontab like schedule also exists, see the section on Crontab schedules.

Like with cron, the tasks may overlap if the first task doesn’t complete before the next. If that’s a concern you should
use a locking strategy to ensure only one instance can run at a time (see for example Ensuring a task is only executed
one at a time).

Available Fields

e task

126 Chapter 3. Contents

https://docs.python.org/dev/library/datetime.html#datetime.timedelta

Celery Documentation, Release 4.4.2

The name of the task to execute.
e schedule
The frequency of execution.

This can be the number of seconds as an integer, a t imedelta, ora crontab. You can also define
your own custom schedule types, by extending the interface of schedule.

* args

Positional arguments (1ist or tuple).
e kwargs

Keyword arguments (dict).
* options

Execution options (dict).

This can be any argument supported by apply_async () — exchange, routing_key, expires, and so
on.

e relative

If relative is true t imedelta schedules are scheduled “by the clock.” This means the frequency is
rounded to the nearest second, minute, hour or day depending on the period of the t imedelta.

By default relative is false, the frequency isn’t rounded and will be relative to the time when celery
beat was started.

Crontab schedules

If you want more control over when the task is executed, for example, a particular time of day or day of the week, you
can use the crontab schedule type:

from celery.schedules import crontab

app.conf.beat_schedule = {

Executes every Monday morning at 7:30 a.m.
'add-every-monday-morning': {

'task': 'tasks.add',

'schedule': crontab (hour=7, minute=30, day_of_week=1),
'‘args': (16, 16),

}l

The syntax of these Crontab expressions are very flexible.

Some examples:

3.3. User Guide 127

https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/stdtypes.html#tuple
https://docs.python.org/dev/library/stdtypes.html#dict
https://docs.python.org/dev/library/stdtypes.html#dict
https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/datetime.html#datetime.timedelta

Celery Documentation, Release 4.4.2

Example

Meaning

crontab ()

Execute every minute.

crontab (minute=0, hour=0)
crontab (minute=0, hour='x/3")

Execute daily at midnight.

Execute every three hours: midnight, 3am, 6am, 9am,
noon, 3pm, 6pm, 9pm.

Same as previous.

crontab (minute=0, hour='0,3,6,9,12,
15,18,21")

crontab (minute="'%/15")
crontab (day_of_week='sunday"')

Execute every 15 minutes.
Execute every minute (!) at Sundays.
Same as previous.

crontab (minute='*"', hour='x"',
day_of_week='"'sun')

Execute every ten minutes, but only between 3-4 am,

crontab (minute='+/10', hour='3,17, 5-6 pm, and 10-11 pm on Thursdays or Fridays.

22", day_of_week="thu, fri')

crontab (minute=0, hour='x/2,%/3") Execute every even hour, and every hour divisible by
three. This means: at every hour except: lam, Sam,
7am, 11am, 1pm, Spm, 7pm, 11pm

Execute hour divisible by 5. This means that it is trig-
gered at 3pm, not Spm (since 3pm equals the 24-hour
clock value of “15”, which is divisible by 5).

Execute every hour divisible by 3, and every hour during
office hours (8am-5pm).

Execute on the second day of every month.

Execute on every even numbered day.

crontab (minute=0, hour='=*x/5")

crontab (minute=0, hour='%x/3,8-17")

crontab (0, 0, day_of_month='2")

crontab (0, 0, day_of_month='2-30/2")

Execute on the first and third weeks of the month.
crontab (0, 0, day_of_month='1-7,

15-21")

crontab(0, 0, day of month='11', Execute on the eleventh of May every year.

month_of_year='5")

Execute every day on the first month of eve uarter.
crontab (0, 0, month_of_year='%/3") y day va

See celery.schedules.crontab for more documentation.

Solar schedules

If you have a task that should be executed according to sunrise, sunset, dawn or dusk, you can use the solar schedule
type:

from celery.schedules import solar

app.conf.beat_schedule = {
Executes at sunset in Melbourne

'add-at-melbourne-sunset': {

(continues on next page)

128 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

'task': 'tasks.add',
'schedule': solar('sunset', -37.81753, 144.96715),
'args': (16, 16),

b

The arguments are simply: solar (event, latitude, longitude)

Be sure to use the correct sign for latitude and longitude:

Sign | Argument Meaning
+ latitude North

- latitude South

+ longitude | East

- longitude | West

Possible event types are:

Event Meaning

dawn_astronohiierafe at the moment after which the sky is no longer completely dark. This is when the sun is
18 degrees below the horizon.

dawn_naut igaExecute when there’s enough sunlight for the horizon and some objects to be distinguishable;
formally, when the sun is 12 degrees below the horizon.

dawn_civil | Execute when there’s enough light for objects to be distinguishable so that outdoor activities can
commence; formally, when the Sun is 6 degrees below the horizon.

sunrise Execute when the upper edge of the sun appears over the eastern horizon in the morning.
solar_noon | Execute when the sun is highest above the horizon on that day.
sunset Execute when the trailing edge of the sun disappears over the western horizon in the evening.

dusk_civil | Execute at the end of civil twilight, when objects are still distinguishable and some stars and
planets are visible. Formally, when the sun is 6 degrees below the horizon.

dusk_naut igalxecute when the sun is 12 degrees below the horizon. Objects are no longer distinguishable,
and the horizon is no longer visible to the naked eye.

dusk_astronohiierafe at the moment after which the sky becomes completely dark; formally, when the sun is
18 degrees below the horizon.

All solar events are calculated using UTC, and are therefore unaffected by your timezone setting.

In polar regions, the sun may not rise or set every day. The scheduler is able to handle these cases (i.e., a sunrise
event won’t run on a day when the sun doesn’t rise). The one exception is solar_noon, which is formally defined
as the moment the sun transits the celestial meridian, and will occur every day even if the sun is below the horizon.

Twilight is defined as the period between dawn and sunrise; and between sunset and dusk. You can schedule an event
according to “twilight” depending on your definition of twilight (civil, nautical, or astronomical), and whether you
want the event to take place at the beginning or end of twilight, using the appropriate event from the list above.

See celery.schedules. solar for more documentation.

Starting the Scheduler

To start the celery beat service:

$ celery —-A proj beat

3.3. User Guide 129

Celery Documentation, Release 4.4.2

You can also embed beat inside the worker by enabling the workers —B option, this is convenient if you’ll never run
more than one worker node, but it’s not commonly used and for that reason isn’t recommended for production use:

’$ celery —-A proj worker -B

Beat needs to store the last run times of the tasks in a local database file (named celerybeat-schedule by default), so it
needs access to write in the current directory, or alternatively you can specify a custom location for this file:

’$ celery -A proj beat -s /home/celery/var/run/celerybeat-schedule

Note: To daemonize beat see Daemonization.

Using custom scheduler classes

Custom scheduler classes can be specified on the command-line (the ——scheduler argument).

The default scheduler is the celery.beat.PersistentScheduler, that simply keeps track of the last run
times in a local shelve database file.

There’s also the django-celery-beat extension that stores the schedule in the Django database, and presents a convenient
admin interface to manage periodic tasks at runtime.

To install and use this extension:

1. Use pip to install the package:

$ pip install django-celery-beat

2. Addthe django_celery_beat module to INSTALLED_APPS in your Django project’ settings.py:

INSTALLED_APPS = (
.7
'django_celery_beat',

Note that there is no dash in the module name, only underscores.

3. Apply Django database migrations so that the necessary tables are created:

$ python manage.py migrate

4. Start the celery beat service using the django_celery_beat.
schedulers:DatabaseScheduler scheduler:

$ celery -A proj beat -1 info --scheduler django_celery_beat.
—schedulers:DatabaseScheduler

Note: You may also add this as the beat_scheduler setting directly.

5. Visit the Django-Admin interface to set up some periodic tasks.

3.3.8 Routing Tasks

130 Chapter 3. Contents

https://docs.python.org/dev/library/shelve.html#module-shelve
https://pypi.python.org/pypi/django-celery-beat/

Celery Documentation, Release 4.4.2

Note: Alternate routing concepts like topic and fanout is not available for all transports, please consult the transport

comparison table.

* Basics
— Automatic routing
* Changing the name of the default queue
* How the queues are defined
— Manual routing
* Special Routing Options
— RabbitMQ Message Priorities
— Redis Message Priorities

* AMQP Primer

Messages

Producers, consumers, and brokers

Exchanges, queues, and routing keys

Exchange types
+ Direct exchanges
* Topic exchanges

Related API commands

— Hands-on with the API
* Routing Tasks
— Defining queues
— Specifying task destination

— Routers

— Broadcast

Basics

Automatic routing

The simplest way to do routing is to use the task_create_missing queues setting (on by default).

With this setting on, a named queue that’s not already defined in task_queues will be created automatically. This

makes it easy to perform simple routing tasks.

Say you have two servers, x, and y that handle regular tasks, and one server z, that only handles feed related tasks. You

can use this configuration:

task_routes = {'feed.tasks.import_feed': {'queue':

'feeds'}}

3.3. User Guide

131

https://kombu.readthedocs.io/en/master/introduction.html#transport-comparison
https://kombu.readthedocs.io/en/master/introduction.html#transport-comparison

Celery Documentation, Release 4.4.2

With this route enabled import feed tasks will be routed to the “feeds” queue, while all other tasks will be routed to
the default queue (named “celery” for historical reasons).

Alternatively, you can use glob pattern matching, or even regular expressions, to match all tasks in the feed.tasks
name-space:

app.conf.task_routes = {'feed.tasks.x': {'queue': 'feeds'}}

If the order of matching patterns is important you should specify the router in items format instead:

task_routes = ([

('feed.tasks.x', {'queue': 'feeds'}),
('web.tasks.x', {'queue': 'web'}),
(re.compile(r' (video|image) \.tasks\..x"'"), {'queue': 'media'}),

1)

Note: The task_routes setting can either be a dictionary, or a list of router objects, so in this case we need to
specify the setting as a tuple containing a list.

After installing the router, you can start server z to only process the feeds queue like this:

’user@z:/s celery —-A proj worker -Q feeds

You can specify as many queues as you want, so you can make this server process the default queue as well:

’user@z:/s celery —-A proj worker -Q feeds,celery

Changing the name of the default queue

You can change the name of the default queue by using the following configuration:

app.conf.task_default_qgqueue = 'default'

How the queues are defined

The point with this feature is to hide the complex AMQP protocol for users with only basic needs. However — you
may still be interested in how these queues are declared.

A queue named “video” will be created with the following settings:

{'exchange': 'video',
'exchange_type': 'direct',
'routing_key': 'video'}

The non-AMQP backends like Redis or SOS don’t support exchanges, so they require the exchange to have the same
name as the queue. Using this design ensures it will work for them as well.

Manual routing

Say you have two servers, x, and y that handle regular tasks, and one server z, that only handles feed related tasks, you
can use this configuration:

132 Chapter 3. Contents

Celery Documentation, Release 4.4.2

from kombu import Queue

app.conf.task_default_queue = 'default'
app.conf.task_qgqueues = (
Queue ('default', routing_key='task.#'),
Queue ('feed_tasks', routing_key='feed.#'),

)

app.conf.task_default_exchange = 'tasks'
app.conf.task_default_exchange_type = 'topic'
app.conf.task_default_routing_key = 'task.default'

task_queues is a list of Queue instances. If you don’t set the exchange or exchange type values for a key, these
will be taken from the task_default_exchangeand task_default_exchange_type settings.

To route a task to the feed_tasks queue, you can add an entry in the task_routes setting:

task_routes = {
'feeds.tasks.import_feed': {
'queue': 'feed_tasks',
'routing_key': 'feed.import',

by

You can also override this using the routing_key argument to Task .apply_async (), or send_task ():

>>> from feeds.tasks import import_feed

>>> import_feed.apply_async(args=['http://cnn.com/rss'],
queue="'feed_tasks',
routing_key="'feed.import')

To make server z consume from the feed queue exclusively you can start it with the celery worker -Q option:

user@z:/$ celery -A proj worker -Q feed_tasks —--hostname=z@%h

Servers x and y must be configured to consume from the default queue:

user@x:/$ celery -A proj worker —-Q default —--hostname=x@%h
userQy:/$ celery -A proj worker —-Q default --hostname=yQ@%h

If you want, you can even have your feed processing worker handle regular tasks as well, maybe in times when there’s
a lot of work to do:

user@z:/$ celery -A proj worker —-Q feed_tasks,default --hostname=z@%h

If you have another queue but on another exchange you want to add, just specify a custom exchange and exchange
type:

from kombu import Exchange, Queue

app.conf.task_queues = (

Queue ('feed_tasks', routing_key="'feed.#'),
Queue ('regular_tasks', routing_key='task.#'),
Queue ('image_tasks', exchange=Exchange ('mediatasks', type='direct'),

routing_key='image.compress'),

If you’re confused about these terms, you should read up on AMQP.

3.3. User Guide 133

Celery Documentation, Release 4.4.2

See also:

In addition to the Redis Message Priorities below, there’s Rabbits and Warrens, an excellent blog post describing
queues and exchanges. There’s also The CloudAMQP tutorial, For users of RabbitMQ the RabbitMQ FAQ could be
useful as a source of information.

Special Routing Options
RabbitMQ Message Priorities
supported transports RabbitMQ

New in version 4.0.

Queues can be configured to support priorities by setting the x-max-priority argument:

from kombu import Exchange, Queue

app.conf.task_qgqueues = [
Queue ('tasks', Exchange('tasks'), routing_key='tasks',
queue_arguments={'x-max-priority': 10}),

A default value for all queues can be set using the task_queue max_priority setting:

’app.conf.task_queue_max_priority = 10

A default priority for all tasks can also be specified using the task_default_ priority setting:

’app.conf.task_default_priority =5

Redis Message Priorities

supported transports Redis

While the Celery Redis transport does honor the priority field, Redis itself has no notion of priorities. Please read this
note before attempting to implement priorities with Redis as you may experience some unexpected behavior.

To start scheduling tasks based on priorities you need to configure queue_order_strategy transport option.

The priority support is implemented by creating n lists for each queue. This means that even though there are 10 (0-9)
priority levels, these are consolidated into 4 levels by default to save resources. This means that a queue named celery
will really be split into 4 queues:

["celery0', 'celery3', 'celery6', 'celery9']

If you want more priority levels you can set the priority_steps transport option:

app.conf.broker_transport_options = {
'priority_steps': list (range(10)),
'queue_order_strategy': 'priority',

That said, note that this will never be as good as priorities implemented at the server level, and may be approximate at
best. But it may still be good enough for your application.

134 Chapter 3. Contents

http://web.archive.org/web/20160323134044/http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/
https://www.rabbitmq.com/faq.html

Celery Documentation, Release 4.4.2

AMQP Primer

Messages

A message consists of headers and a body. Celery uses headers to store the content type of the message and its content
encoding. The content type is usually the serialization format used to serialize the message. The body contains the
name of the task to execute, the task id (UUID), the arguments to apply it with and some additional meta-data — like
the number of retries or an ETA.

This is an example task message represented as a Python dictionary:

{'task': 'myapp.tasks.add',
'id': '54086c5e-6193-4575-8308-dbab76798756"',
'args': [4, 4],

'kwargs': {}}

Producers, consumers, and brokers

The client sending messages is typically called a publisher, or a producer, while the entity receiving messages is called
a consumer.

The broker is the message server, routing messages from producers to consumers.

You're likely to see these terms used a lot in AMQP related material.

Exchanges, queues, and routing keys

1. Messages are sent to exchanges.

2. An exchange routes messages to one or more queues. Several exchange types exists, providing different ways
to do routing, or implementing different messaging scenarios.

3. The message waits in the queue until someone consumes it.

4. The message is deleted from the queue when it has been acknowledged.
The steps required to send and receive messages are:

1. Create an exchange

2. Create a queue

3. Bind the queue to the exchange.

Celery automatically creates the entities necessary for the queues in task_queues to work (except if the queue’s
auto_declare setting is set to False).

Here’s an example queue configuration with three queues; One for video, one for images, and one default queue for
everything else:

from kombu import Exchange, Queue

app.conf.task_queues = (
Queue ('default', Exchange ('default'), routing_key='default'),

Queue ('videos', Exchange('media'), routing_key='media.video'),
Queue ('images', Exchange('media'), routing_key='media.image'),
)
app.conf.task_default_qgqueue = 'default'

(continues on next page)

3.3. User Guide 135

Celery Documentation, Release 4.4.2

(continued from previous page)

app.conf.task_default_exchange_type = 'direct'
app.conf.task_default_routing_key = 'default'
Exchange types

The exchange type defines how the messages are routed through the exchange. The exchange types defined in the stan-
dard are direct, topic, fanout and headers. Also non-standard exchange types are available as plug-ins to RabbitMQ,
like the last-value-cache plug-in by Michael Bridgen.

Direct exchanges

Direct exchanges match by exact routing keys, so a queue bound by the routing key video only receives messages with
that routing key.

Topic exchanges

Topic exchanges matches routing keys using dot-separated words, and the wild-card characters: » (matches a single
word), and # (matches zero or more words).

With routing keys like usa .news, usa.weather, norway.news, and norway .weather, bindings could be
* .news (all news), usa. # (all items in the USA), or usa.weather (all USA weather items).

Related APl commands

exchange.declare (exchange_name, type, passive,
durable, auto_delete, internal)
Declares an exchange by name.

See amgp:Channel .exchange_declare.
Keyword Arguments

* passive — Passive means the exchange won’t be created, but you can use this to check if
the exchange already exists.

* durable - Durable exchanges are persistent (i.e., they survive a broker restart).

* auto_delete — This means the exchange will be deleted by the broker when there are no
more queues using it.

queue .declare (queue_name, passive, durable, exclusive, auto_delete)
Declares a queue by name.

See amgp: Channel .queue_declare
Exclusive queues can only be consumed from by the current connection. Exclusive also implies auto_delete.

queue .bind (queue_name, exchange_name, routing_key)
Binds a queue to an exchange with a routing key.

Unbound queues won’t receive messages, so this is necessary.

See amgp : Channel .queue_bind

136 Chapter 3. Contents

https://github.com/squaremo/rabbitmq-lvc-plugin
https://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.exchange_declare
https://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_declare
https://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_bind

Celery Documentation, Release 4.4.2

queue .delete (name, if_unused=False, if_empty=False)
Deletes a queue and its binding.

See amgp: Channel .queue_delete

exchange.delete (name, if_unused=False)
Deletes an exchange.

See amgp:Channel .exchange_delete

Note: Declaring doesn’t necessarily mean “create”. When you declare you assert that the entity exists and that
it’s operable. There’s no rule as to whom should initially create the exchange/queue/binding, whether consumer or
producer. Usually the first one to need it will be the one to create it.

Hands-on with the API

Celery comes with a tool called celery amgp that’s used for command line access to the AMQP API, enabling
access to administration tasks like creating/deleting queues and exchanges, purging queues or sending messages. It
can also be used for non-AMQP brokers, but different implementation may not implement all commands.

You can write commands directly in the arguments to celery amgp, or just start with no arguments to start it in
shell-mode:

$ celery -A proj amgp

inecting to amgp://guest@localhost:5672/.

Here 1> is the prompt. The number 1, is the number of commands you have executed so far. Type help for a list of
commands available. It also supports auto-completion, so you can start typing a command and then hit the tab key to
show a list of possible matches.

Let’s create a queue you can send messages to:

$ celery -A proj amgp

1> exchange.declare testexchange direct
ok

2> queue.dec

ok. queue:t

3> queue.binc

ok.

This created the direct exchange testexchange, and a queue named testqueue. The queue is bound to the
exchange using the routing key testkey.

From now on all messages sent to the exchange testexchange with routing key testkey will be moved to this
queue. You can send a message by using the basic.publish command:

4> basic.publish 'This is a message!' testexchange testkey
ok.

Now that the message is sent you can retrieve it again. You can use the basic.get command here, that polls for
new messages on the queue in a synchronous manner (this is OK for maintenance tasks, but for services you want to
use basic.consume instead)

Pop a message off the queue:

3.3. User Guide 137

https://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_delete
https://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.exchange_delete

Celery Documentation, Release 4.4.2

'delivery_info': {'deli

'exchanc

1

routing_key': u'testkey'},

'properties': {}}

AMOQP uses acknowledgment to signify that a message has been received and processed successfully. If the message
hasn’t been acknowledged and consumer channel is closed, the message will be delivered to another consumer.

Note the delivery tag listed in the structure above; Within a connection channel, every received message has a unique
delivery tag, This tag is used to acknowledge the message. Also note that delivery tags aren’t unique across connec-
tions, so in another client the delivery tag / might point to a different message than in this channel.

You can acknowledge the message you received using basic.ack:

6> basic.ack 1

To clean up after our test session you should delete the entities you created:

Routing Tasks

Defining queues

In Celery available queues are defined by the task_queues setting.

Here’s an example queue configuration with three queues; One for video, one for images, and one default queue for
everything else:

default_exchange = Exchange ('default', type='direct')
media_exchange = Exchange ('media', type='direct')

app.conf.task_qgqueues = (
Queue ('default', default_exchange, routing_key='default'),
Queue ('videos', media_exchange, routing_key='media.video'),
Queue ('images', media_exchange, routing_ key='media.image')

)

app.conf.task_default_qgqueue = 'default'
app.conf.task_default_exchange = 'default'
app.conf.task_default_routing_key = 'default'

Here, the task_default_queue will be used to route tasks that doesn’t have an explicit route.

The default exchange, exchange type, and routing key will be used as the default routing values for tasks, and as the
default values for entries in task_queues.

Multiple bindings to a single queue are also supported. Here’s an example of two routing keys that are both bound to
the same queue:

138 Chapter 3. Contents

Celery Documentation, Release 4.4.2

from kombu import Exchange, Queue, binding
media_exchange = Exchange ('media', type='direct')

CELERY_QUEUES = (
Queue ('media', [
binding (media_exchange, routing_key='media.video'),
binding (media_exchange, routing_key='media.image'),

1),

Specifying task destination

The destination for a task is decided by the following (in order):
1. The routing arguments to Task.apply_async ().
2. Routing related attributes defined on the Task itself.
3. The Routers defined in task _routes.

It’s considered best practice to not hard-code these settings, but rather leave that as configuration options by using
Routers; This is the most flexible approach, but sensible defaults can still be set as task attributes.

Routers

A router is a function that decides the routing options for a task.

All you need to define a new router is to define a function with the signature (name, args, kwargs,
options, task=None, *xkw):

def route_task (name, args, kwargs, options, task=None, xxkw):

if name == 'myapp.tasks.compress_video':
return {'exchange': 'video',
'exchange_type': 'topic',
'routing_key': 'video.compress'}

If you return the queue key, it’ll expand with the defined settings of that queue in task_queues:

{'queue': 'video', 'routing_key': 'video.compress'}
becomes —>
{'"queue': 'video',

'exchange': 'video',

'exchange_type': 'topic',

'routing_key': 'video.compress'}

You install router classes by adding them to the task_routes setting:

’task_routes = (route_task,)

Router functions can also be added by name:

’task_routes = ('myapp.routers.route_task',)

3.3. User Guide 139

Celery Documentation, Release 4.4.2

For simple task name -> route mappings like the router example above, you can simply drop adictinto task_routes
to get the same behavior:

task_routes = {
'myapp.tasks.compress_video': {
'queue': 'video',
'routing_key': 'video.compress',

by

The routers will then be traversed in order, it will stop at the first router returning a true value, and use that as the final
route for the task.

You can also have multiple routers defined in a sequence:

task_routes = [
route_task,

{

'myapp.tasks.compress_video': {
'queue': 'video',
'routing_key': 'video.compress',

by

The routers will then be visited in turn, and the first to return a value will be chosen.

If you’re using Redis or RabbitMQ you can also specify the queue’s default priority in the route.

task_routes = {
'myapp.tasks.compress_video': {
'queue': 'video',
'routing_key': 'video.compress',
'priority': 10,
}I

Similarly, calling apply_async on a task will override that default priority.

task.apply_async (priority=0)

Priority Order and Cluster Responsiveness

It is important to note that, due to worker prefetching, if a bunch of tasks submitted at the same time they may be out of
priority order at first. Disabling worker prefetching will prevent this issue, but may cause less than ideal performance
for small, fast tasks. In most cases, simply reducing worker_prefetch_multiplier to 1 is an easier and cleaner way to
increase the responsiveness of your system without the costs of disabling prefetching entirely.

Note that priorities values are sorted in reverse when using the redis broker: 0 being highest priority.

Broadcast

Celery can also support broadcast routing. Here is an example exchange broadcast_tasks that delivers copies of
tasks to all workers connected to it:

140 Chapter 3. Contents

Celery Documentation, Release 4.4.2

from kombu.common import Broadcast

app.conf.task_qgqueues = (Broadcast ('broadcast_tasks'),)
app.conf.task_routes = {
'tasks.reload_cache': {
'queue': 'broadcast_tasks',
'exchange': 'broadcast_tasks'

Now the tasks.reload_cache task will be sent to every worker consuming from this queue.

Here is another example of broadcast routing, this time with a celery beat schedule:

from kombu.common import Broadcast
from celery.schedules import crontab

app.conf.task_queues = (Broadcast ('broadcast_tasks'),)

app.conf.beat_schedule = {
'test-task': {

'task': 'tasks.reload_cache',
'schedule': crontab (minute=0, hour='x/3"'),
'options': {'exchange': 'broadcast_tasks'}

}y

Broadcast & Results

Note that Celery result doesn’t define what happens if two tasks have the same task_id. If the same task is distributed
to more than one worker, then the state history may not be preserved.

It’s a good idea to set the task.ignore_result attribute in this case.

3.3.9 Monitoring and Management Guide

e Introduction
* Workers
— Management Command-line Utilities (inspect/control)
* Commands
* Specifying destination nodes
— Flower: Real-time Celery web-monitor
+ Features
* Usage
— celery events: Curses Monitor

* RabbitMQ

— Inspecting queues

3.3. User Guide 141

Celery Documentation, Release 4.4.2

e Redis

e Munin

e Events

k

*

*

*

*

*
*

*

Introduction

There are several tools available to monitor and inspect Celery clusters.

— Inspecting queues

— Snapshots

Custom Camera

— Real-time processing
* Event Reference

— Task Events

task-sent
task-received
task-started
task-succeeded
task-failed
task-rejected
task-revoked

task-retried

— Worker Events

worker-online

worker-heartbeat

worker-offline

This document describes some of these, as as well as features related to monitoring, like events and broadcast com-

mands.

Workers

Management Command-line Utilities (inspect/control)

celery can also be used to inspect and manage worker nodes (and to some degree tasks).

To list all the commands available do:

’$ celery help

or to get help for a specific command do:

’$ celery <command> --help

142

Chapter 3. Contents

Celery Documentation, Release 4.4.2

Commands

shell: Drop into a Python shell.

The locals will include the celery variable: this is the current app. Also all known tasks will be automatically
added to locals (unless the ——without—-tasks flag is set).

Uses Ipython, bpython, or regular python in that order if installed. You can force an implementation using
—-—ipython, ——bpython, or ——python.

status: List active nodes in this cluster

’s celery —-A proj status ‘

result: Show the result of a task

’$ celery —-A proj result -t tasks.add 4el96aa4-0141-4601-8138-7aa33db0£577 ‘

Note that you can omit the name of the task as long as the task doesn’t use a custom result backend.
purge: Purge messages from all configured task queues.

This command will remove all messages from queues configured in the CELERY_QUEUES setting:

Warning: There’s no undo for this operation, and messages will be permanently deleted!

’$ celery -A proj purge ‘

You can also specify the queues to purge using the -Q option:

’$ celery —-A proj purge -Q celery, foo,bar ‘

and exclude queues from being purged using the -X option:

’$ celery —-A proj purge -X celery ‘

inspect active: List active tasks

’s celery -A proj inspect active ‘

These are all the tasks that are currently being executed.

inspect scheduled: List scheduled ETA tasks

’$ celery —-A proj inspect scheduled ‘

These are tasks reserved by the worker when they have an efa or countdown argument set.

inspect reserved: List reserved tasks

’$ celery -A proj inspect reserved ‘

This will list all tasks that have been prefetched by the worker, and is currently waiting to be executed
(doesn’t include tasks with an ETA value set).

inspect revoked: List history of revoked tasks

3.3. User Guide 143

https://pypi.python.org/pypi/Ipython/
https://pypi.python.org/pypi/bpython/

Celery Documentation, Release 4.4.2

’$ celery —-A proj inspect revoked ‘

* inspect registered: List registered tasks

’$ celery —-A proj inspect registered ‘

* inspect stats: Show worker statistics (see Statistics)

’$ celery -A proj inspect stats ‘

* inspect query_task: Show information about task(s) by id.

Any worker having a task in this set of ids reserved/active will respond with status and information.

’$ celery —-A proj inspect query_task e9f6c8f0-fec9-4ae8-a8c6-cf8c8451d4£8 ‘

You can also query for information about multiple tasks:

’s celery —-A proj inspect query_task idl id2 ... idN ‘

¢ control enable_events: Enable events

’$ celery —-A proj control enable_events ‘

« control disable_events: Disable events

’$ celery —-A proj control disable_events ‘

* migrate: Migrate tasks from one broker to another (EXPERIMENTAL).

’s celery -A proj migrate redis://localhost amgp://localhost ‘

This command will migrate all the tasks on one broker to another. As this command is new and experimental
you should be sure to have a backup of the data before proceeding.

Note: All inspect and control commands supports a ——t imeout argument, This is the number of seconds to
wait for responses. You may have to increase this timeout if you’re not getting a response due to latency.

Specifying destination nodes

By default the inspect and control commands operates on all workers. You can specify a single, or a list of workers by
using the ——dest inat ion argument:

$ celery -A proj inspect -d wl@e.com,w2@e.com reserved

$ celery —-A proj control -d wl@e.com,w2@e.com enable_events

Flower: Real-time Celery web-monitor

Flower is a real-time web based monitor and administration tool for Celery. It’s under active development, but
is already an essential tool. Being the recommended monitor for Celery, it obsoletes the Django-Admin monitor,
celerymon and the ncurses based monitor.

144 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Flower is pronounced like “flow”, but you can also use the botanical version if you prefer.

Features

 Real-time monitoring using Celery Events

Task progress and history

— Ability to show task details (arguments, start time, run-time, and more)

Graphs and statistics

¢ Remote Control

View worker status and statistics

Shutdown and restart worker instances

Control worker pool size and autoscale settings

View and modify the queues a worker instance consumes from

View currently running tasks

View scheduled tasks (ETA/countdown)
View reserved and revoked tasks

Apply time and rate limits
Configuration viewer

Revoke or terminate tasks

* HTTP API

List workers

Shut down a worker

Restart worker’s pool

Grow worker’s pool

Shrink worker’s pool
Autoscale worker pool

Start consuming from a queue
Stop consuming from a queue
List tasks

List (seen) task types

Get a task info

Execute a task

Execute a task by name

Get a task result

Change soft and hard time limits for a task
Change rate limit for a task

Revoke a task

3.3. User Guide

145

Celery Documentation, Release 4.4.2

* OpenlD authentication

Screenshots

P Celer\r Flower »®

&= C' | [localhost:5555 /workers i d

Name Status Concurrency Completed Tasks Running Tasks Queues
[J celeryl.pi.local [Oniine | 4 13902 0 images, data, video
[| celery2.pi.local [Oniine | 4 13900 0 images, data, video
[| celery3.pi.local [Oniine | 4 13826 0 images, data, video
) celery4.pi.local [Oniine | 1 1988 0 data
[celery5.pi.local [Oniine | 1 1983 0 data
) celeryB.pi.local [Offiine | 3 2245 3
[| celery7.pi.local [Oniine | a 2083 a celery, data
[| celeryB.pi.local [Oniine | a 2079 a celery
[| celery9.pi.local [Oniine | a 2087 a celery

More screenshots:

Usage

You can use pip to install Flower:

$ pip install flower

Running the flower command will start a web-server that you can visit:

$ celery -A proj flower

The default port is http://localhost:5555, but you can change this using the —port argument:

$ celery -A proj flower —-port=5555

Broker URL can also be passed through the ——broker argument :

$ celery flower —--broker=amgp://guest:guest@localhost:5672//
or
$ celery flower —--broker=redis://guest:guest@localhost:6379/0

146 Chapter 3. Contents

https://github.com/mher/flower/tree/master/docs/screenshots
http://localhost:5555
https://flower.readthedocs.io/en/latest/config.html#port

Celery Documentation, Release 4.4.2

8 00 / CE|EI"\|' Flower X\D =

€ & € | [localhost:5555/monitor

Celew Flower Workers Tasks | Monitor Docs About

Succeeded tasks Man, 13 Aug 2012 14:12:28 GMT

v [celery9.pl.local
v I celeryé.pl.local
v I celeryz.pl.local
v B celery?.pl.local
v B celery.pl.local
v B celery.pl.local
v Il celery3.pl.local
v I celery4.pl.local

v coloryt.pliocal s celeryd.pilocal: 135.00

Then, you can visit flower in your web browser :

$ open http://localhost:5555

Flower has many more features than are detailed here, including authorization options. Check out the official docu-
mentation for more information.

celery events: Curses Monitor

New in version 2.0.

celery events is a simple curses monitor displaying task and worker history. You can inspect the result and traceback
of tasks, and it also supports some management commands like rate limiting and shutting down workers. This monitor
was started as a proof of concept, and you probably want to use Flower instead.

Starting:

$ celery -A proj events

You should see a screen like:

celery events is also used to start snapshot cameras (see Snapshots:

$ celery —-A proj events —-camera=<camera-class> —-—-frequency=1.0

and it includes a tool to dump events to st dout:

3.3. User Guide 147

https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/

Celery Documentation, Release 4.4.2

148 Chapter 3. Contents

Celery Documentation, Release 4.4.2

’$ celery —-A proj events —--dump

For a complete list of options use ——help:

’$ celery events —--help

RabbitMQ

To manage a Celery cluster it is important to know how RabbitMQ can be monitored.

RabbitMQ ships with the rabbitmqctl(1) command, with this you can list queues, exchanges, bindings, queue lengths,
the memory usage of each queue, as well as manage users, virtual hosts and their permissions.

Note: The default virtual host (" /") is used in these examples, if you use a custom virtual host you have to add the
—p argument to the command, for example: rabbitmgctl list_qgueues —-p my_vhost

Inspecting queues

Finding the number of tasks in a queue:

$ rabbitmgctl list_queues name messages messages_ready \
messages_unacknowledged

Here messages_ready is the number of messages ready for delivery (sent but not received), messages_unacknowledged
is the number of messages that’s been received by a worker but not acknowledged yet (meaning it is in progress, or
has been reserved). messages is the sum of ready and unacknowledged messages.

Finding the number of workers currently consuming from a queue:

’$ rabbitmgctl list_gueues name consumers

Finding the amount of memory allocated to a queue:

’$ rabbitmgctl list_gqueues name memory

Tip Adding the —g option to rabbitmqctl(1) makes the output easier to parse.

Redis

If you’re using Redis as the broker, you can monitor the Celery cluster using the redis-cli(1) command to list lengths
of queues.

Inspecting queues

Finding the number of tasks in a queue:

$ redis-cli -h HOST -p PORT -n DATABASE_NUMBER llen QUEUE_NAME

The default queue is named celery. To get all available queues, invoke:

3.3. User Guide 149

http://www.rabbitmq.com/man/rabbitmqctl.1.man.html
http://www.rabbitmq.com/man/rabbitmqctl.1.man.html

Celery Documentation, Release 4.4.2

$ redis-cli -h HOST -p PORT -n DATABASE_NUMBER keys \%

Note: Queue keys only exists when there are tasks in them, so if a key doesn’t exist it simply means there are no
messages in that queue. This is because in Redis a list with no elements in it is automatically removed, and hence it
won’t show up in the keys command output, and llen for that list returns 0.

Also, if you’re using Redis for other purposes, the output of the keys command will include unrelated values stored
in the database. The recommended way around this is to use a dedicated DATABASE_NUMBER for Celery, you can
also use database numbers to separate Celery applications from each other (virtual hosts), but this won’t affect the
monitoring events used by for example Flower as Redis pub/sub commands are global rather than database based.

Munin

This is a list of known Munin plug-ins that can be useful when maintaining a Celery cluster.
* rabbitmg-munin: Munin plug-ins for RabbitMQ.
https://github.com/ask/rabbitmqg-munin
* celery_tasks: Monitors the number of times each task type has been executed (requires celerymon).
https://github.com/munin-monitoring/contrib/blob/master/plugins/celery/celery_tasks
e celery_tasks_states: Monitors the number of tasks in each state (requires celerymon).

https://github.com/munin-monitoring/contrib/blob/master/plugins/celery/celery_tasks_states

Events

The worker has the ability to send a message whenever some event happens. These events are then captured by tools
like Flower, and celery events to monitor the cluster.

Snapshots

New in version 2.1.

Even a single worker can produce a huge amount of events, so storing the history of all events on disk may be very
expensive.

A sequence of events describes the cluster state in that time period, by taking periodic snapshots of this state you can
keep all history, but still only periodically write it to disk.

To take snapshots you need a Camera class, with this you can define what should happen every time the state is
captured; You can write it to a database, send it by email or something else entirely.

celery events is then used to take snapshots with the camera, for example if you want to capture state every 2
seconds using the camera myapp . Camera you run celery events with the following arguments:

$ celery -A proj events -c myapp.Camera —--frequency=2.0

150 Chapter 3. Contents

https://github.com/ask/rabbitmq-munin
https://github.com/munin-monitoring/contrib/blob/master/plugins/celery/celery_tasks
https://github.com/munin-monitoring/contrib/blob/master/plugins/celery/celery_tasks_states

Celery Documentation, Release 4.4.2

Custom Camera

Cameras can be useful if you need to capture events and do something with those events at an interval. For real-time

event processing you should use app . events.Receiver directly, like in Real-time processing.

Here is an example camera, dumping the snapshot to screen:

from pprint import pformat
from celery.events.snapshot import Polaroid

class DumpCam(Polaroid) :

clear_after = True # clear after flush (incl, state.event_count).

def on_shutter (self, state):
if not state.event_count:
No new events since last snapshot.
return
print ('Workers: {0}'.format (pformat (state.workers, indent=4)))
print ('Tasks: {0}'.format (pformat (state.tasks, indent=4)))

print ('Total: {0.event_count} events, {0.task_count} tasks'.format (

state))

See the API reference for celery.events. state to read more about state objects.

Now you can use this cam with celery events by specifying it with the —c option:

$ celery -A proj events —-c myapp.DumpCam —--frequency=2.0

Or you can use it programmatically like this:

from celery import Celery
from myapp import DumpCam

def main (app, freg=1.0):
state = app.events.State ()
with app.connection() as connection:

recv = app.events.Receiver (connection, handlers={'x': state.event})

with DumpCam(state, freg=freq):
recv.capture (limit=None, timeout=None)
if name == '_ _main_ ':
app = Celery (broker='amgp://guest@localhost//")
main (app)

Real-time processing

To process events in real-time you need the following
* An event consumer (this is the Receiver)

¢ A set of handlers called when events come in.

You can have different handlers for each event type, or a catch-all handler can be used (‘*”)

* State (optional)

app.events.State is a convenient in-memory representation of tasks and workers in the cluster that’s

updated as events come in.

3.3. User Guide

151

Celery Documentation, Release 4.4.2

It encapsulates solutions for many common things, like checking if a worker is still alive (by verifying heart-
beats), merging event fields together as events come in, making sure time-stamps are in sync, and so on.

Combining these you can easily process events in real-time:

from celery import Celery

def my monitor (app) :
state = app.events.State ()

def announce_failed tasks (event):
state.event (event)
task only
will keep track of this
task =

name 1is sent with

print ('TASK FAILED: %s([%s]

task.name,

with app.connection ()
recv =
'task-failed':
'x': state.event,
1)
recv.capture (limit=None,
if _ name_ == g :

app =
my_monitor (app)

' main_

ot
5S

task.uuid, task.info(),))

timeout=None,

for us.
state.tasks.get (event ['uuid'])

5

as connection:
app.events.Receiver (connection,

handlers={

announce_failed_tasks,

wakeup=True)

Celery (broker='amgp://guest@localhost//")

Note: The wakeup argument to capture sends a signal to all workers to force them to send a heartbeat. This way
you can immediately see workers when the monitor starts.

You can listen to specific events by specifying the handlers:

from celery import Celery

def my monitor (app) :
state = app.events.State ()

def announce_failed tasks (event):
state.event (event)
task name is
this

owill for

task =

keep track of

print ('TASK FAILED:
task.name,

%s[%s]

with app.connection ()
recv =
'task-failed':

1)

recv.capture (limit=None,

sent only with -received event,

ol
5S

task.uuid, task.info(),))

app.events.Receiver (connection,

timeout=None,

and state

-

us.

state.tasks.get (event ['uuid'])

5

as connection:

handlers={

announce_failed_tasks,

wakeup=True)

(continues on next page)

152

Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

if _ name_ == '_ _main_ ':
app = Celery (broker='amgp://guest@localhost//")
my_monitor (app)

Event Reference
This list contains the events sent by the worker, and their arguments.
Task Events
task-sent
signature task-sent (uuid, name, args, kwargs, retries, eta, expires,

queue, exchange, routing_key, root_id, parent_id)

Sent when a task message is published and the task_send_sent_event setting is enabled.

task-received

signature task-received (uuid, name, args, kwargs, retries, eta,
hostname, timestamp, root_id, parent_id)

Sent when the worker receives a task.

task-started

signature task-started (uuid, hostname, timestamp, pid)

Sent just before the worker executes the task.

task-succeeded

signature task-succeeded (uuid, result, runtime, hostname, timestamp)
Sent if the task executed successfully.

Run-time is the time it took to execute the task using the pool. (Starting from the task is sent to the worker pool, and
ending when the pool result handler callback is called).

task-failed

signature task-failed(uuid, exception, traceback, hostname, timestamp)

Sent if the execution of the task failed.

3.3. User Guide 153

Celery Documentation, Release 4.4.2

task-rejected

signature task-rejected (uuid, requeued)

The task was rejected by the worker, possibly to be re-queued or moved to a dead letter queue.

task-revoked

signature task-revoked (uuid, terminated, signum, expired)
Sent if the task has been revoked (Note that this is likely to be sent by more than one worker).
* terminated is set to true if the task process was terminated, and the signum field set to the signal used.

* expiredis set to true if the task expired.

task-retried

signature task-retried (uuid, exception, traceback, hostname, timestamp)

Sent if the task failed, but will be retried in the future.

Worker Events
worker-online

signature worker-online (hostname, timestamp, freq, sw_ident, sw_ver,
SW_SYVYS)

The worker has connected to the broker and is online.
¢ hostname: Nodename of the worker.
* timestamp: Event time-stamp.
* freq: Heartbeat frequency in seconds (float).
* sw_ident: Name of worker software (e.g., py—celery).
e sw_ver: Software version (e.g., 2.2.0).

* sw_sys: Operating System (e.g., Linux/Darwin).

worker-heartbeat

signature worker-heartbeat (hostname, timestamp, freq, sw_ident, sw_ver,
sw_sys, active, processed)

Sent every minute, if the worker hasn’t sent a heartbeat in 2 minutes, it is considered to be offline.
¢ hostname: Nodename of the worker.
* timestamp: Event time-stamp.
* freq: Heartbeat frequency in seconds (float).

e sw_ident: Name of worker software (e.g., py—celery).

154 Chapter 3. Contents

Celery Documentation, Release 4.4.2

* sw_ver: Software version (e.g., 2.2.0).
e sw_sys: Operating System (e.g., Linux/Darwin).
* active: Number of currently executing tasks.

* processed: Total number of tasks processed by this worker.

worker-offline
signature worker-offline (hostname, timestamp, freq, sw_ident, sw_ver,
SW_SYVYS)

The worker has disconnected from the broker.

3.3.10 Security

* Introduction

* Areas of Concern
— Broker
— Client
— Worker

e Serializers

* Message Signing

e Intrusion Detection

— Logs

— Tripwire

Introduction

While Celery is written with security in mind, it should be treated as an unsafe component.

Depending on your Security Policy, there are various steps you can take to make your Celery installation more secure.

Areas of Concern

Broker

It’s imperative that the broker is guarded from unwanted access, especially if accessible to the public. By default,
workers trust that the data they get from the broker hasn’t been tampered with. See Message Signing for information
on how to make the broker connection more trustworthy.

The first line of defense should be to put a firewall in front of the broker, allowing only white-listed machines to access
it.

3.3. User Guide 155

https://en.wikipedia.org/wiki/Security_policy

Celery Documentation, Release 4.4.2

Keep in mind that both firewall misconfiguration, and temporarily disabling the firewall, is common in the real world.
Solid security policy includes monitoring of firewall equipment to detect if they’ve been disabled, be it accidentally or
on purpose.

In other words, one shouldn’t blindly trust the firewall either.

If your broker supports fine-grained access control, like RabbitMQ, this is something you should look at enabling. See
for example http://www.rabbitmq.com/access-control.html.

If supported by your broker backend, you can enable end-to-end SSL encryption and authentication using
broker use_ssl.

Client

In Celery, “client” refers to anything that sends messages to the broker, for example web-servers that apply tasks.
Having the broker properly secured doesn’t matter if arbitrary messages can be sent through a client.

[Need more text here]

Worker

The default permissions of tasks running inside a worker are the same ones as the privileges of the worker itself. This
applies to resources, such as; memory, file-systems, and devices.

An exception to this rule is when using the multiprocessing based task pool, which is currently the default. In this
case, the task will have access to any memory copied as a result of the fork () call, and access to memory contents
written by parent tasks in the same worker child process.

Limiting access to memory contents can be done by launching every task in a subprocess (fork () + execve ()).

Limiting file-system and device access can be accomplished by using chroot, jail, sandboxing, virtual machines, or
other mechanisms as enabled by the platform or additional software.

Note also that any task executed in the worker will have the same network access as the machine on which it’s running.
If the worker is located on an internal network it’s recommended to add firewall rules for outbound traffic.

Serializers
The default serializer is JSON since version 4.0, but since it has only support for a restricted set of types you may want
to consider using pickle for serialization instead.

The pickle serializer is convenient as it can serialize almost any Python object, even functions with some work, but for
the same reasons pickle is inherently insecure*”, and should be avoided whenever clients are untrusted or unauthenti-
cated.

You can disable untrusted content by specifying a white-list of accepted content-types in the accept_content
setting:

New in version 3.0.18.

Note: This setting was first supported in version 3.0.18. If you’re running an earlier version it will simply be ignored,
so make sure you're running a version that supports it.

0 https://blog.nelhage.com/2011/03/exploiting-pickle/

156 Chapter 3. Contents

http://www.rabbitmq.com/access-control.html
https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/FreeBSD_jail
https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://blog.nelhage.com/2011/03/exploiting-pickle/

Celery Documentation, Release 4.4.2

’accept_content = ['json']

This accepts a list of serializer names and content-types, so you could also specify the content type for json:

’accept_content = ['application/json']

Celery also comes with a special auth serializer that validates communication between Celery clients and workers,
making sure that messages originates from trusted sources. Using Public-key cryptography the auth serializer can
verify the authenticity of senders, to enable this read Message Signing for more information.

Message Signing

Celery can use the cryptography library to sign message using Public-key cryptography, where messages sent by
clients are signed using a private key and then later verified by the worker using a public certificate.

Optimally certificates should be signed by an official Certificate Authority, but they can also be self-signed.

To enable this you should configure the task_serializer setting to use the auth serializer. Enforcing the workers
to only accept signed messages, you should set accept_content to [‘auth’]. For additional signing of the event pro-
tocol, set event_serializer to auth. Also required is configuring the paths used to locate private keys and certificates
on the file-system: the security_key, security certificate, and security_ cert_store settings
respectively. You can tweak the signing algorithm with security digest.

With these configured it’s also necessary to call the celery.setup_security () function. Note that this will
also disable all insecure serializers so that the worker won’t accept messages with untrusted content types.

This is an example configuration using the auth serializer, with the private key and certificate files located in /etc/ssl.

app = Celery ()

app.conf.update (
security_key="'/etc/ssl/private/worker.key'
security_certificate="'/etc/ssl/certs/worker.pem'
security_cert_store='/etc/ssl/certs/*.pem',
security_digest='sha256"',
task_serializer='auth',
event_serializer="'auth',
accept_content=["auth']

)

app.setup_security ()

Note: While relative paths aren’t disallowed, using absolute paths is recommended for these files.

Also note that the auth serializer won’t encrypt the contents of a message, so if needed this will have to be enabled
separately.

Intrusion Detection

The most important part when defending your systems against intruders is being able to detect if the system has been
compromised.

3.3. User Guide 157

https://pypi.python.org/pypi/cryptography/
https://en.wikipedia.org/wiki/Certificate_authority

Celery Documentation, Release 4.4.2

Logs

Logs are usually the first place to look for evidence of security breaches, but they’re useless if they can be tampered
with.

A good solution is to set up centralized logging with a dedicated logging server. Access to it should be restricted. In
addition to having all of the logs in a single place, if configured correctly, it can make it harder for intruders to tamper
with your logs.

This should be fairly easy to setup using syslog (see also syslog-ng and rsyslog). Celery uses the 1ogging library,
and already has support for using syslog.

A tip for the paranoid is to send logs using UDP and cut the transmit part of the logging server’s network cable :-)

Tripwire

Tripwire is a (now commercial) data integrity tool, with several open source implementations, used to keep crypto-
graphic hashes of files in the file-system, so that administrators can be alerted when they change. This way when
the damage is done and your system has been compromised you can tell exactly what files intruders have changed
(password files, logs, back-doors, root-kits, and so on). Often this is the only way you’ll be able to detect an intrusion.

Some open source implementations include:
e OSSEC
e Samhain
* Open Source Tripwire
* AIDE

Also, the ZFS file-system comes with built-in integrity checks that can be used.

3.3.11 Optimizing

Introduction

The default configuration makes a lot of compromises. It’s not optimal for any single case, but works well enough for
most situations.

There are optimizations that can be applied based on specific use cases.

Optimizations can apply to different properties of the running environment, be it the time tasks take to execute, the
amount of memory used, or responsiveness at times of high load.

Ensuring Operations
In the book Programming Pearls, Jon Bentley presents the concept of back-of-the-envelope calculations by asking the
question;

How much water flows out of the Mississippi River in a day?

The point of this exercise*" is to show that there’s a limit to how much data a system can process in a timely manner.
Back of the envelope calculations can be used as a means to plan for this ahead of time.

0 The chapter is available to read for free here: The back of the envelope. The book is a classic text. Highly recommended.

158 Chapter 3. Contents

https://en.wikipedia.org/wiki/Syslog-ng
http://www.rsyslog.com/
https://docs.python.org/dev/library/logging.html#module-logging
http://tripwire.com/
http://www.ossec.net/
http://la-samhna.de/samhain/index.html
http://sourceforge.net/projects/tripwire/
http://aide.sourceforge.net/
https://en.wikipedia.org/wiki/ZFS
http://www.cs.bell-labs.com/cm/cs/pearls/
http://books.google.com/books?id=kse_7qbWbjsC&pg=PA67

Celery Documentation, Release 4.4.2

In Celery; If a task takes 10 minutes to complete, and there are 10 new tasks coming in every minute, the queue will
never be empty. This is why it’s very important that you monitor queue lengths!

A way to do this is by using Munin. You should set up alerts, that’ll notify you as soon as any queue has reached an
unacceptable size. This way you can take appropriate action like adding new worker nodes, or revoking unnecessary
tasks.

General Settings

Broker Connection Pools

The broker connection pool is enabled by default since version 2.5.

You can tweak the broker pool_ Ilimit setting to minimize contention, and the value should be based on the
number of active threads/green-threads using broker connections.

Using Transient Queues

Queues created by Celery are persistent by default. This means that the broker will write messages to disk to ensure
that the tasks will be executed even if the broker is restarted.

But in some cases it’s fine that the message is lost, so not all tasks require durability. You can create a transient queue
for these tasks to improve performance:

from kombu import Exchange, Queue

task_queues = (
Queue ('celery', routing_key='celery'),
Queue ('transient', Exchange('transient', delivery_mode=1l),
routing_key="'transient', durable=False),

or by using task_routes:

task_routes = {
'proj.tasks.add': {'queue': 'celery', 'delivery_mode': 'transient'}

The delivery_mode changes how the messages to this queue are delivered. A value of one means that the message
won’t be written to disk, and a value of two (default) means that the message can be written to disk.

To direct a task to your new transient queue you can specify the queue argument (or use the task_routes setting):

task.apply_async (args, queue='transient')

For more information see the routing guide.

Worker Settings

Prefetch Limits

Prefetch is a term inherited from AMQP that’s often misunderstood by users.

3.3. User Guide 159

Celery Documentation, Release 4.4.2

The prefetch limit is a limit for the number of tasks (messages) a worker can reserve for itself. If it is zero, the worker
will keep consuming messages, not respecting that there may be other available worker nodes that may be able to
process them soonert?, or that the messages may not even fit in memory.

The workers’ default prefetch count is the worker._prefetch_multiplier setting multiplied by the number of
concurrency slots$” (processes/threads/green-threads).

If you have many tasks with a long duration you want the multiplier value to be one: meaning it’ll only reserve one
task per worker process at a time.

However — If you have many short-running tasks, and throughput/round trip latency is important to you, this number
should be large. The worker is able to process more tasks per second if the messages have already been prefetched,
and is available in memory. You may have to experiment to find the best value that works for you. Values like 50 or
150 might make sense in these circumstances. Say 64, or 128.

If you have a combination of long- and short-running tasks, the best option is to use two worker nodes that are
configured separately, and route the tasks according to the run-time (see Routing Tasks).

Reserve one task at a time

The task message is only deleted from the queue after the task is acknowledged, so if the worker crashes before
acknowledging the task, it can be redelivered to another worker (or the same after recovery).

When using the default of early acknowledgment, having a prefetch multiplier setting of one, means the worker will
reserve at most one extra task for every worker process: or in other words, if the worker is started with —c 10, the
worker may reserve at most 20 tasks (10 acknowledged tasks executing, and 10 unacknowledged reserved tasks) at
any time.

Often users ask if disabling “prefetching of tasks” is possible, but what they really mean by that, is to have a worker
only reserve as many tasks as there are worker processes (10 unacknowledged tasks for —c 10)

That’s possible, but not without also enabling late acknowledgment. Using this option over the default behavior means
a task that’s already started executing will be retried in the event of a power failure or the worker instance being killed
abruptly, so this also means the task must be idempotent

See also:
Notes at Should I use retry or acks_late?.

You can enable this behavior by using the following configuration options:

task_acks_late = True
worker_prefetch_multiplier = 1

Prefork pool prefetch settings

The prefork pool will asynchronously send as many tasks to the processes as it can and this means that the processes
are, in effect, prefetching tasks.

This benefits performance but it also means that tasks may be stuck waiting for long running tasks to complete:

0 RabbitMQ and other brokers deliver messages round-robin, so this doesn’t apply to an active system. If there’s no prefetch limit and you restart
the cluster, there will be timing delays between nodes starting. If there are 3 offline nodes and one active node, all messages will be delivered to the
active node.

0 This is the concurrency setting; worker concurrency or the celery worker -c option.

160 Chapter 3. Contents

Celery Documentation, Release 4.4.2

-> send task Tl to process A
A executes T1
—-> send task T2 to process B
B executes T2

<- T2 complete sent by process B

-> send task T3 to process A

A still executing T1l, T3 stuck in local buffer and won't start until
Tl returns, and other queued tasks won't be sent to idle processes
<- Tl complete sent by process A

A executes T3

The worker will send tasks to the process as long as the pipe buffer is writable. The pipe buffer size varies based on
the operating system: some may have a buffer as small as 64KB but on recent Linux versions the buffer size is 1MB
(can only be changed system wide).

You can disable this prefetching behavior by enabling the -0 fair worker option:

$ celery -A proj worker -1 info -0 fair

With this option enabled the worker will only write to processes that are available for work, disabling the prefetch
behavior:

-> send task Tl to process A
A executes T1
-> send task T2 to process B
B executes T2

<- T2 complete sent by process B

-> send T3 to process B

B executes T3

<- T3 complete sent by process B
<- Tl complete sent by process A

3.3.12 Debugging

Debugging Tasks Remotely (using pdb)

Basics

celery.contrib.rdb is an extended version of pdb that enables remote debugging of processes that doesn’t
have terminal access.

Example usage:

from celery import task
from celery.contrib import rdb

@task ()

def add(x, vy):
result = x + y
rdb.set_trace () # <- set break-point
return result

3.3. User Guide 161

https://docs.python.org/dev/library/pdb.html#module-pdb

Celery Documentation, Release 4.4.2

set_trace () sets a break-point at the current location and creates a socket you can telnet into to remotely debug
your task.

The debugger may be started by multiple processes at the same time, so rather than using a fixed port the debugger
will search for an available port, starting from the base port (6900 by default). The base port can be changed using the
environment variable CELERY RDB _PORT.

By default the debugger will only be available from the local host, to enable access from the outside you have to set
the environment variable CELERY_RDB_HOST.

When the worker encounters your break-point it’ll log the following information:

[INFO/MainProcess] Received task:
tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8]
[WARNING/PoolWorker—1] Remote Debugger:6900:
Please telnet 127.0.0.1 6900. Type “exit’ in session to continue.
[2011-01-18 14:25:44,119: WARNING/PoolWorker-1] Remote Debugger:6900:
Waiting for client...

If you telnet the port specified you’ll be presented with a pdb shell:

$ telnet localhost 6900
Connected to localhost.

scape character is '"7]'.
> /opt/devel/demoapp/tasks.py (128)add()
> return result

(Pdb)

Enter help to get a list of available commands, It may be a good idea to read the Python Debugger Manual if you
have never used pdb before.

To demonstrate, we’ll read the value of the result variable, change it and continue execution of the task:

Pdb) result

Pdb) continue

(

4

(Pdb) result = 'hello from rdb'

(

Connection closed by foreign host.

The result of our vandalism can be seen in the worker logs:

[2011-01-18 14:35:36,599: INFO/MainProcess] Task
tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8] succeeded
in 61.481s: 'hello from rdb'

Tips
Enabling the break-point signal

If the environment variable CELERY_RDBSIG is set, the worker will open up an rdb instance whenever the SIGUSR2
signal is sent. This is the case for both main and worker processes.

For example starting the worker with:

$ CELERY_RDBSIG=1 celery worker -1 info

You can start an rdb session for any of the worker processes by executing:

162 Chapter 3. Contents

http://docs.python.org/library/pdb.html

Celery Documentation, Release 4.4.2

$ kill -USR2 <pid>

3.3.13 Concurrency

Release 4.4
Date Mar 17, 2020

Concurrency with Eventlet

Introduction

The Eventlet homepage describes it as a concurrent networking library for Python that allows you to change how you
run your code, not how you write it.

* Tt uses epoll(4) or libevent for highly scalable non-blocking 1/0O.

» Coroutines ensure that the developer uses a blocking style of programming that’s similar to threading, but
provide the benefits of non-blocking I/O.

» The event dispatch is implicit: meaning you can easily use Eventlet from the Python interpreter, or as a small
part of a larger application.

Celery supports Eventlet as an alternative execution pool implementation and in some cases superior to prefork. How-
ever, you need to ensure one task doesn’t block the event loop too long. Generally, CPU-bound operations don’t go
well with Eventlet. Also note that some libraries, usually with C extensions, cannot be monkeypatched and therefore
cannot benefit from using Eventlet. Please refer to their documentation if you are not sure. For example, pylibmc does
not allow cooperation with Eventlet but psycopg2 does when both of them are libraries with C extensions.

The prefork pool can take use of multiple processes, but how many is often limited to a few processes per CPU. With
Eventlet you can efficiently spawn hundreds, or thousands of green threads. In an informal test with a feed hub system
the Eventlet pool could fetch and process hundreds of feeds every second, while the prefork pool spent 14 seconds
processing 100 feeds. Note that this is one of the applications async I/O is especially good at (asynchronous HTTP
requests). You may want a mix of both Eventlet and prefork workers, and route tasks according to compatibility or
what works best.

Enabling Eventlet

You can enable the Eventlet pool by using the celery worker -P worker option.

$ celery —-A proj worker —-P eventlet -c 1000

Examples

See the Eventlet examples directory in the Celery distribution for some examples taking use of Eventlet support.

3.3.14 Signals

3.3. User Guide 163

http://eventlet.net
http://linux.die.net/man/4/epoll
http://monkey.org/~provos/libevent/
https://en.wikipedia.org/wiki/Asynchronous_I/O#Select.28.2Fpoll.29_loops
https://en.wikipedia.org/wiki/Coroutine
https://github.com/celery/celery/tree/master/examples/eventlet

Celery Documentation, Release 4.4.2

* Basics
* Signals

— Task Signals
% before task_publish
% after_task_publish
* task_prerun
* task_postrun
* task_retry
% task_success
% task failure
% task received
% task_revoked
% task_unknown
* task_rejected

— App Signals
* import_modules

— Worker Signals
* celeryd after_setup
% celeryd init
* worker_init
* worker__ready
* heartbeat_sent
% worker_shutting_down
* worker_process_init
% worker._process_shutdown
* worker_shutdown

— Beat Signals
*x beat_init
*x beat_embedded 1init

— Eventlet Signals
* eventlet_pool_started
* eventlet_pool_preshutdown
* eventlet_ pool_ postshutdown

* eventlet_ _pool_apply

— Logging Signals

164 Chapter 3. Contents

Celery Documentation, Release 4.4.2

* setup_logging

* after_setup_logger

* after_setup_task_logger
— Command signals

* user_preload options

— Deprecated Signals

% task_sent

Signals allow decoupled applications to receive notifications when certain actions occur elsewhere in the application.
Celery ships with many signals that your application can hook into to augment behavior of certain actions.
Basics

Several kinds of events trigger signals, you can connect to these signals to perform actions as they trigger.

Example connecting to the after task publish signal:

from celery.signals import after_task_publish

@after_ task_publish.connect
def task_sent_handler (sender=None, headers=None, body=None, xxkwargs):
information about task are

located in headers for task messages

using the tas

k protocol version 2.

info = headers if 'task' in headers else body

print ('after_task_publish for task id {info[id]}'.format (
info=info,

))

Some signals also have a sender you can filter by. For example the after task_ publish signal uses the task
name as a sender, so by providing the sender argument to connect you can connect your handler to be called
every time a task with name “proj.tasks.add” is published:

@after_ task_publish.connect (sender="'proj.tasks.add')
def task_sent_handler (sender=None, headers=None, body=None, xxkwargs):

information about sk are located in headers for task messages

1 version 2.

using the task protc

info = headers if 'task' in headers else body

print ('after_task_publish for task id {info[id]}'.format (
info=info,

))

Signals use the same implementation as d jango.core.dispatch. As a result other keyword parameters (e.g.,
signal) are passed to all signal handlers by default.

The best practice for signal handlers is to accept arbitrary keyword arguments (i.e., » xkwargs). That way new Celery
versions can add additional arguments without breaking user code.

Signals

Task Signals

3.3. User Guide 165

Celery Documentation, Release 4.4.2

before_task_publish

New in version 3.1.
Dispatched before a task is published. Note that this is executed in the process sending the task.
Sender is the name of the task being sent.
Provides arguments:
* body
Task message body.

This is a mapping containing the task message fields, see Version 2 and Version 1 for a reference of
possible fields that can be defined.

* exchange
Name of the exchange to send to or a Exchange object.
* routing_key
Routing key to use when sending the message.
* headers
Application headers mapping (can be modified).
* properties
Message properties (can be modified)
¢ declare

List of entities (Exchange, Queue, or binding to declare before publishing the message. Can be
modified.

e retry_policy

Mapping of retry options. Can be any argument to kombu .Connection.ensure () and can be
modified.

after task_publish

Dispatched when a task has been sent to the broker. Note that this is executed in the process that sent the task.
Sender is the name of the task being sent.
Provides arguments:

* headers

The task message headers, see Version 2 and Version I for a reference of possible fields that can be
defined.

* body

The task message body, see Version 2 and Version I for a reference of possible fields that can be
defined.

* exchange
Name of the exchange or Exchange object used.

e routing_key

166 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange

Celery Documentation, Release 4.4.2

Routing key used.

task_prerun

Dispatched before a task is executed.
Sender is the task object being executed.
Provides arguments:
e task_id
Id of the task to be executed.
* task
The task being executed.

* args

The tasks positional arguments.

* kwargs

The tasks keyword arguments.

task_postrun

Dispatched after a task has been executed.
Sender is the task object executed.
Provides arguments:
* task_id
Id of the task to be executed.
* task
The task being executed.

* args

The tasks positional arguments.

* kwargs

The tasks keyword arguments.
* retval

The return value of the task.
* state

Name of the resulting state.

3.3. User Guide

167

Celery Documentation, Release 4.4.2

task_retry

Dispatched when a task will be retried.
Sender is the task object.
Provides arguments:
* request
The current task request.
* reason
Reason for retry (usually an exception instance, but can always be coerced to st r).
* einfo

Detailed exception information, including traceback (a billiard.einfo.ExceptionInfo
object).

task_success

Dispatched when a task succeeds.
Sender is the task object executed.
Provides arguments

e result Return value of the task.

task failure

Dispatched when a task fails.
Sender is the task object executed.
Provides arguments:
e task_id
Id of the task.
* exception
Exception instance raised.
* args
Positional arguments the task was called with.
* kwargs
Keyword arguments the task was called with.
* traceback
Stack trace object.
* einfo

Thebilliard.einfo.ExceptionInfo instance.

168 Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

task_ received

Dispatched when a task is received from the broker and is ready for execution.
Sender is the consumer object.
Provides arguments:

* request

This is a Request instance, and not task . request. When using the prefork pool this signal is
dispatched in the parent process, so task . request isn’t available and shouldn’t be used. Use this
object instead, as they share many of the same fields.

task_revoked

Dispatched when a task is revoked/terminated by the worker.
Sender is the task object revoked/terminated.
Provides arguments:

* request

This is a Request instance, and not task.request. When using the prefork pool this signal is
dispatched in the parent process, so task . request isn’t available and shouldn’t be used. Use this
object instead, as they share many of the same fields.

e terminated
Set to True if the task was terminated.
* signum

Signal number used to terminate the task. If this is None and terminated is True then TERM should
be assumed.

* expired

Set to True if the task expired.

task unknown

Dispatched when a worker receives a message for a task that’s not registered.
Sender is the worker Consumer.
Provides arguments:
* name
Name of task not found in registry.
e id
The task id found in the message.
* message
Raw message object.
* exc

The error that occurred.

3.3. User Guide 169

Celery Documentation, Release 4.4.2

task_rejected

Dispatched when a worker receives an unknown type of message to one of its task queues.
Sender is the worker Consumer.
Provides arguments:
* message
Raw message object.
* exc

The error that occurred (if any).

App Signals
import_modules

This signal is sent when a program (worker, beat, shell) etc, asks for modules in the i nclude and imports settings
to be imported.

Sender is the app instance.

Worker Signals
celeryd after_setup

This signal is sent after the worker instance is set up, but before it calls run. This means that any queues from the
celery worker —Q option is enabled, logging has been set up and so on.

It can be used to add custom queues that should always be consumed from, disregarding the celery worker -0
option. Here’s an example that sets up a direct queue for each worker, these queues can then be used to route a task to
any specific worker:

from celery.signals import celeryd_after_setup

@celeryd_after_ setup.connect

def setup_direct_queue (sender, instance, xxkwargs):
queue_name = '{0}.dq'.format (sender) # sender is the nodename of the worker
instance.app.amgp.queues.select_add (queue_name)

Provides arguments:
* sender
Node name of the worker.
* instance

This is the celery.apps.worker.Worker instance to be initialized. Note that only the app
and hostname (nodename) attributes have been set so far, and the rest of __init__ hasn’t been
executed.

e conf

The configuration of the current app.

170 Chapter 3. Contents

Celery Documentation, Release 4.4.2

celeryd_init

This is the first signal sent when celery worker starts up. The sender is the host name of the worker, so this
signal can be used to setup worker specific configuration:

from celery.signals import celeryd_init

@celeryd init.connect (sender='workerl2@example.com')
def configure_workerl2 (conf=None, xxkwargs):
conf.task_default_rate_limit = '10/m’

or to set up configuration for multiple workers you can omit specifying a sender when you connect:

from celery.signals import celeryd_init

@celeryd init.connect
def configure_workers (sender=None, conf=None, *xkwargs):

if sender in ('workerl@example.com', 'worker2@example.com'):
conf.task_default_rate_limit = '10/m'

if sender == 'worker3@example.com':
conf.worker_prefetch_multiplier = 0

Provides arguments:
* sender
Nodename of the worker.
* instance

This is the celery.apps.worker.Worker instance to be initialized. Note that only the app
and hostname (nodename) attributes have been set so far, and the rest of __init__ hasn’t been
executed.

e conf
The configuration of the current app.
* options

Options passed to the worker from command-line arguments (including defaults).

worker_init

Dispatched before the worker is started.

worker_ready

Dispatched when the worker is ready to accept work.

heartbeat_sent

Dispatched when Celery sends a worker heartbeat.

Sender is the celery.worker.heartbeat .Heart instance.

3.3. User Guide 171

Celery Documentation, Release 4.4.2

worker_shutting down

Dispatched when the worker begins the shutdown process.
Provides arguments:
* sig
The POSIX signal that was received.
* how
The shutdown method, warm or cold.
* exitcode

The exitcode that will be used when the main process exits.

worker_ process_init

Dispatched in all pool child processes when they start.

Note that handlers attached to this signal mustn’t be blocking for more than 4 seconds, or the process will be killed
assuming it failed to start.

worker_ process_shutdown

Dispatched in all pool child processes just before they exit.

Note: There’s no guarantee that this signal will be dispatched, similarly to finally blocks it’s impossible to guar-
antee that handlers will be called at shutdown, and if called it may be interrupted during.

Provides arguments:
e pid
The pid of the child process that’s about to shutdown.
* exitcode

The exitcode that’ll be used when the child process exits.

worker_shutdown

Dispatched when the worker is about to shut down.

Beat Signals
beat_init

Dispatched when celery beat starts (either standalone or embedded).

Sender is the celery.beat. Service instance.

172 Chapter 3. Contents

https://docs.python.org/dev/reference/compound_stmts.html#finally

Celery Documentation, Release 4.4.2

beat_embedded init

Dispatched in addition to the beat_ init signal when celery beat is started as an embedded process.

Sender is the celery.beat. Service instance.

Eventlet Signals
eventlet_pool_ started

Sent when the eventlet pool has been started.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_preshutdown

Sent when the worker shutdown, just before the eventlet pool is requested to wait for remaining workers.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_ postshutdown

Sent when the pool has been joined and the worker is ready to shutdown.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_apply

Sent whenever a task is applied to the pool.
Sender is the celery.concurrency.eventlet.TaskPool instance.
Provides arguments:
* target
The target function.
* args
Positional arguments.
* kwargs

Keyword arguments.

Logging Signals
setup_logging

Celery won’t configure the loggers if this signal is connected, so you can use this to completely override the logging
configuration with your own.

If you’d like to augment the logging configuration setup by Celery then you can use the after _setup_logger
and after_setup_task_logger signals.

3.3. User Guide 173

Celery Documentation, Release 4.4.2

Provides arguments:
e loglevel
The level of the logging object.
e logfile
The name of the logfile.
e format
The log format string.
* colorize

Specify if log messages are colored or not.

after_setup_logger

Sent after the setup of every global logger (not task loggers). Used to augment logging configuration.
Provides arguments:
* logger
The logger object.
e loglevel
The level of the logging object.
e logfile
The name of the logfile.
e format
The log format string.
* colorize

Specify if log messages are colored or not.

after_ setup_task logger

Sent after the setup of every single task logger. Used to augment logging configuration.
Provides arguments:
* logger
The logger object.
* loglevel
The level of the logging object.
e logfile
The name of the logfile.
e format

The log format string.

174 Chapter 3. Contents

Celery Documentation, Release 4.4.2

e colorize

Specify if log messages are colored or not.

Command signals
user_preload _options

This signal is sent after any of the Celery command line programs are finished parsing the user preload options.

It can be used to add additional command-line arguments to the celery umbrella command:

from celery import Celery
from celery import signals
from celery.bin.base import Option

app = Celery ()
app.user_options|['preload'].add (Option (

'-—-monitoring', action='store_true’,

help='Enable our external monitoring utility, blahblah',
))

@signals.user_preload_options.connect
def handle_preload_options (options, =**kwargs):
if options|['monitoring']:
enable_monitoring()

Sender is the Command instance, and the value depends on the program that was called (e.g., for the umbrella com-
mand it’ll be a CeleryCommand) object).

Provides arguments:
® app
The app instance.
* options

Mapping of the parsed user preload options (with default values).

Deprecated Signals
task_sent

This signal is deprecated, please use after_task_publish instead.

3.3.15 Testing with Celery
Tasks and unit tests

To test task behavior in unit tests the preferred method is mocking.

Eager mode

The eager mode enabled by the task_always_eager setting is by definition not suitable for unit tests.

3.3. User Guide 175

Celery Documentation, Release 4.4.2

When testing with eager mode you are only testing an emulation of what happens in a worker, and there are many

discrepancies between the emulation and what happens in reality.

A Celery task is much like a web view, in that it should only define how to perform the action in the context of being

called as a task.

This means optimally tasks only handle things like serialization, message headers, retries, and so on, with the actual

logic implemented elsewhere.

Say we had a task like this:

from .models import Product

Qapp.task (bind=True)
def send order (self, product_pk, quantity, price):

price = Decimal (price) # Jjson serializes this to string.

models are passed by id, not serialized.
product = Product.objects.get (product_pk)

try:
product.order (quantity, price)
except OperationalError as exc:
raise self.retry (exc=exc)

Note: A task being bound means the first argument to the task will always be the task instance (self). which means
you do get a self argument as the first argument and can use the Task class methods and attributes.

You could write unit tests for this task, using mocking like in this example:

from pytest import raises
from celery.exceptions import Retry

for python 2: use mock.patch from “pip install mock’.
from unittest.mock import patch

from proj.models import Product
from proj.tasks import send_order

class test_send_order:

@patch('proj.tasks.Product.order') # < patching Product in module above

def test_success(self, product_order):
product = Product.objects.create(
name="'Foo',
)
send_order (product.pk, 3, Decimal (30.3))
product_order.assert_called_with (3, Decimal (30.3))

@patch('proj.tasks.Product.order"')
@patch('proj.tasks.send_order.retry')
def test_failure(self, send_order_retry, product_order):
product = Product.objects.create(
name="'Foo',

(continues on next page)

176 Chapter 3. Contents

http://docs.celeryproject.org/en/latest/userguide/tasks.html#bound-tasks

Celery Documentation, Release 4.4.2

(continued from previous page)

Set a side effect on the patched methods
4+

so that they raise the errors we want.
send_order_retry.side_effect = Retry()

product_order.side_effect = OperationalError ()

with raises (Retry):

send_order (product.pk, 3, Decimal (30.6))

Py.test

New in version 4.0.

Celery is also a pytest plugin that adds fixtures that you can use in your integration (or unit) test suites.

Marks

celery - Set test app configuration.

The celery mark enables you to override the configuration used for a single test case:

@pytest .mark.celery (result_backend='redis://")
def test_something() :

or for all the test cases in a class:

@pytest.mark.celery (result_backend="'redis://")
class test_something:

def test_one(self):

def test_two(self):

Fixtures
Function scope
celery_app - Celery app used for testing.

This fixture returns a Celery app you can use for testing.

Example:

def test_create_task(celery_app, celery_worker):
@Qcelery app.task
def mul (x, y):
return x *x y

assert mul.delay (4, 4).get (timeout=10) == 16

3.3. User Guide

177

https://pypi.python.org/pypi/pytest/

Celery Documentation, Release 4.4.2

celery worker - Embed live worker.

This fixture starts a Celery worker instance that you can use for integration tests. The worker will be started in a
separate thread and will be shutdown as soon as the test returns.

Example:

Put this in your conftest.py
@pytest.fixture (scope='session')
def celery_config():

return {
'broker_url': 'amgp://"',
'result_backend': 'redis://'

def test_add(celery_worker):
mytask.delay ()

If you wish to override some setting in one test cases
only — you can use the "~ “celery = mark:

@pytest .mark.celery (result_backend="'rpc')

def test_other (celery_worker):

Session scope
celery_config - Override to setup Celery test app configuration.

You can redefine this fixture to configure the test Celery app.

The config returned by your fixture will then be used to configure the celery_app(), and
celery_session_app () fixtures.

Example:

@pytest . fixture (scope='session')
def celery_config():
return {
'broker_url': 'amgp://"',
'result_backend': 'rpc',

celery parameters - Override to setup Celery test app parameters.

You can redefine this fixture to change the __ _init__ parameters of test Celery app. In contrast to
celery_config (), these are directly passed to when instantiating Celery.

The config returned by your fixture will then be used to configure the celery_app(), and
celery_session_app () fixtures.

Example:

178 Chapter 3. Contents

Celery Documentation, Release 4.4.2

@pytest. fixture (scope='session')
def celery_parameters () :
return
'task_cls': my.package.MyCustomTaskClass,
'strict_typing': False,

celery_worker_parameters - Override to setup Celery worker parameters.

You can redefine this fixture to change the ___init__ parameters of test Celery workers. These are directly passed
to WorkController when it is instantiated.

The config returned by your fixture will then be used to configure the celery_worker (), and
celery_session_worker () fixtures.

Example:

@pytest. fixture (scope='session')
def celery_ worker_ parameters():

return {
'queues': ('"high-prio', 'low-prio'),
'exclude_queues': ('celery'),

celery enable_logging - Override to enable logging in embedded workers.

This is a fixture you can override to enable logging in embedded workers.

Example:

@pytest. fixture (scope='session')
def celery_enable_logging() :
return True

celery_includes - Add additional imports for embedded workers.

You can override fixture to include modules when an embedded worker starts.

You can have this return a list of module names to import, which can be task modules, modules registering signals,
and so on.

Example:

@pytest. fixture (scope='session')
def celery_includes () :
return |
'proj.tests.tasks',
'proj.tests.celery_signal_handlers',

3.3. User Guide 179

Celery Documentation, Release 4.4.2

celery worker_pool - Override the pool used for embedded workers.

You can override fixture to configure the execution pool used for embedded workers.

Example:

@pytest . fixture (scope='session')
def celery_worker_pool():
return 'prefork'

Warning: You cannot use the gevent/eventlet pools, that is unless your whole test suite is running with the
monkeypatches enabled.

celery_ session_worker - Embedded worker that lives throughout the session.

This fixture starts a worker that lives throughout the testing session (it won’t be started/stopped for every test).

Example:

Add this to your conftest.py
@pytest. fixture (scope='session')
def celery_config():

return
'broker_url': 'amgp://',
'result_backend': 'rpc',

Do this in your tests.
def test_add_task(celery_session_worker) :
assert add.delay (2, 2) == 4

Warning: It’s probably a bad idea to mix session and ephemeral workers. . .

celery session_app - Celery app used for testing (session scope).

This can be used by other session scoped fixtures when they need to refer to a Celery app instance.

use_celery_app_trap - Raise exception on falling back to default app.

This is a fixture you can override in your conftest .py, to enable the “app trap”: if something tries to access the
default or current_app, an exception is raised.

Example:

@pytest. fixture (scope='session')
def use_celery app_trap():
return True

If a test wants to access the default app, you would have to mark it using the depends_on_current_app fixture:

180 Chapter 3. Contents

Celery Documentation, Release 4.4.2

@pytest .mark.usefixtures ('depends_on_current_app')
def test_something() :
something ()

3.3.16 Extensions and Bootsteps

* Custom Message Consumers
* Blueprints
» Worker
— Attributes
— Example worker bootstep
* Consumer
— Attributes
— Methods
* Installing Bootsteps
» Command-line programs
— Adding new command-line options
— Adding new celery sub-commands
» Worker API

— Hub - The workers async event loop

— Timer - Scheduling events

Custom Message Consumers

You may want to embed custom Kombu consumers to manually process your messages.

For that purpose a special ConsumerStep bootstep class exists, where you only need to define the
get_consumers method, that must return a list of kombu . Consumer objects to start whenever the connection is
established:

from celery import Celery
from celery import bootsteps
from kombu import Consumer, Exchange, Queue

my_queue = Queue ('custom', Exchange('custom'), 'routing_ key')

app = Celery (broker='amgp://")

class MyConsumerStep (bootsteps.ConsumerStep) :

def get_consumers (self, channel):
return [Consumer (channel,

(continues on next page)

3.3. User Guide 181

https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.html#kombu.asynchronous.Hub
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer

Celery Documentation, Release 4.4.2

(continued from previous page)

queues=[my_dueue],
callbacks=[self.handle_message],
accept=['json'])]

def handle message (self, body, message):
print ('Received message: {0!r}'.format (body))
message.ack ()
app.steps['consumer'].add (MyConsumerStep)

def send _me_a message (who, producer=None) :
with app.producer_or_acquire (producer) as producer:
producer.publish (
{'hello': who},
serializer="json',
exchange=my_qgueue.exchange,
routing_key="'routing_key"',
declare=[my_queue],
retry=True,

if name == '__main__':

send_me_a_message ('world!")

Note: Kombu Consumers can take use of two different message callback dispatching mechanisms. The first one is the
callbacks argument that accepts a list of callbacks with a (body, message) signature, the second one is the
on_message argument that takes a single callback with a (message,) signature. The latter won’t automatically
decode and deserialize the payload.

def get_consumers (self, channel):
return [Consumer (channel, gqueues=[my_dgueue],
on_message=self.on_message)]

def on_message(self, message):
payload = message.decode ()
print (
'Received message: {0!r} {props!r} rawlen={s}'.format (
payload, props=message.properties, s=len(message.body),
))

message.ack ()

Blueprints

Bootsteps is a technique to add functionality to the workers. A bootstep is a custom class that defines hooks to do
custom actions at different stages in the worker. Every bootstep belongs to a blueprint, and the worker currently defines
two blueprints: Worker, and Consumer

Figure A: Bootsteps in the Worker and Consumer blueprints. Starting from the bottom up the first step in the
worker blueprint is the Timer, and the last step is to start the Consumer blueprint, that then establishes the
broker connection and starts consuming messages.

182 Chapter 3. Contents

Celery Documentation, Release 4.4.2

StateDB

Timer

3.3. User Guide 183

Celery Documentation, Release 4.4.2

Worker
The Worker is the first blueprint to start, and with it starts major components like the event loop, processing pool, and
the timer used for ETA tasks and other timed events.

When the worker is fully started it continues with the Consumer blueprint, that sets up how tasks are executed, connects
to the broker and starts the message consumers.

The WorkController is the core worker implementation, and contains several methods and attributes that you can
use in your bootstep.

Attributes

app
The current app instance.

hostname
The workers node name (e.g., workerI @example.com)

blueprint
This is the worker Blueprint.

hub
Event loop object (Hub). You can use this to register callbacks in the event loop.

This is only supported by async I/O enabled transports (amqgp, redis), in which case the worker.use_eventloop
attribute should be set.

Your worker bootstep must require the Hub bootstep to use this:

class WorkerStep (bootsteps.StartStopStep) :
requires = {'celery.worker.components:Hub'}

pool
The current process/eventlet/gevent/thread pool. See celery.concurrency.base.BasePool.

Your worker bootstep must require the Pool bootstep to use this:

class WorkerStep (bootsteps.StartStopStep) :
requires = {'celery.worker.components:Pool'}

timer
Timer used to schedule functions.

Your worker bootstep must require the Timer bootstep to use this:

class WorkerStep (bootsteps.StartStopStep) :
requires = {'celery.worker.components:Timer'}

statedb
Database <celery.worker.state.Persistent>" to persist state between worker restarts.

This is only defined if the st atedb argument is enabled.

Your worker bootstep must require the St atedb bootstep to use this:

class WorkerStep (bootsteps.StartStopStep) :
requires = {'celery.worker.components:Statedb'}

184 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.html#kombu.asynchronous.Hub
https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.timer.html#kombu.asynchronous.timer.Timer

Celery Documentation, Release 4.4.2

autoscaler
Autoscaler used to automatically grow and shrink the number of processes in the pool.

This is only defined if the aut oscale argument is enabled.

Your worker bootstep must require the Autoscaler bootstep to use this:

class WorkerStep (bootsteps.StartStopStep) :
requires = ('celery.worker.autoscaler:Autoscaler',)

autoreloader
Autoreloader used to automatically reload use code when the file-system changes.

This is only defined if the autoreload argument is enabled. Your worker bootstep must require the Au-
toreloader bootstep to use this;

class WorkerStep (bootsteps.StartStopStep) :
requires = ('celery.worker.autoreloader:Autoreloader',)

Example worker bootstep

An example Worker bootstep could be:

from celery import bootsteps

class ExampleWorkerStep (bootsteps.StartStopStep) :
requires = {'celery.worker.components:Pool'}

def _ _init__ (self, worker, x+*kwargs):
print ('Called when the WorkController instance is constructed')
print ('Arguments to WorkController: {O!r}'.format (kwargs))

def create(self, worker):
this method can be used te the action methods
to another object that

return self

‘“start’’ and " stop
def start(self, worker):
print ('Called when the worker is started.')

def stop(self, worker):
print ('Called when the worker shuts down.')

def terminate(self, worker):
print ('Called when the worker terminates')

Every method is passed the current WorkController instance as the first argument.

Another example could use the timer to wake up at regular intervals:

from celery import bootsteps

class DeadlockDetection (bootsteps.StartStopStep) :
requires = {'celery.worker.components:Timer'}

def _ init_ (self, worker, deadlock_timeout=3600) :

(continues on next page)

3.3. User Guide 185

Celery Documentation, Release 4.4.2

(continued from previous page)

self.timeout = deadlock_timeout
self.requests = []
self.tref = None

def start(self, worker):
run every 30 seconds.

self.tref = worker.timer.call_repeatedly(
30.0, self.detect, (worker,), priority=10,

def stop(self, worker):
if self.tref:
self.tref.cancel ()
self.tref = None

def detect (self, worker):
update active requests
for req in worker.active_requests:
if reg.time_start and time() - reg.time_start > self.timeout:

raise SystemExit ()

Consumer

The Consumer blueprint establishes a connection to the broker, and is restarted every time this connection is lost.
Consumer bootsteps include the worker heartbeat, the remote control command consumer, and importantly, the task
consumer.

When you create consumer bootsteps you must take into account that it must be possible to restart your blueprint. An
additional ‘shutdown’ method is defined for consumer bootsteps, this method is called when the worker is shutdown.

Attributes

app
The current app instance.

controller
The parent WorkController object that created this consumer.

hostname
The workers node name (e.g., workerI @example.com)

blueprint
This is the worker Blueprint.

hub
Event loop object (Hub). You can use this to register callbacks in the event loop.

This is only supported by async I/O enabled transports (amgp, redis), in which case the worker.use_eventloop
attribute should be set.

Your worker bootstep must require the Hub bootstep to use this:

class WorkerStep (bootsteps.StartStopStep) :
requires = {'celery.worker.components:Hub'}

186 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.html#kombu.asynchronous.Hub

Celery Documentation, Release 4.4.2

connection
The current broker connection (kombu.Connection).

A consumer bootstep must require the ‘Connection’ bootstep to use this:

class Step (bootsteps.StartStopStep) :
requires = {'celery.worker.consumer.connection:Connection'}

event_dispatcher
A app.events.Dispatcher object that can be used to send events.

A consumer bootstep must require the Events bootstep to use this.

class Step (bootsteps.StartStopStep) :
requires = {'celery.worker.consumer.events:Events'}

gossip
Worker to worker broadcast communication (Gossip).

A consumer bootstep must require the Gossip bootstep to use this.

class RatelimitStep (bootsteps.StartStopStep) :
"""Rate limit tasks based on the number of workers in the

cluster."""
requires = {'celery.worker.consumer.gossip:Gossip'}
def start(self, c):

self.c = ¢

self.c.gossip.on.node_leave.add(self.on_cluster_size_change)
self.c.gossip.on.node_lost.add(self.on_node_lost)
self.tasks = [
self.app.tasks['proj.tasks.add"']
self.app.tasks['proj.tasks.mul']

(

c
self.c.gossip.on.node_join.add(self.on_cluster_size_change)

c

c

]

self.last_size = None

def on_cluster_size_ change(self, worker):
cluster_size = len(list(self.c.gossip.state.alive_workers()))
if cluster_size != self.last_size:
for task in self.tasks:
task.rate_limit = 1.0 / cluster_size
self.c.reset_rate_limits ()
self.last_size = cluster_size

def on_node_lost (self, worker):

may have processed heartbeat too late, so wake up soon
in order to s

ee 1if the worker recovered.
self.c.timer.call_after (10.0, self.on_cluster_size_change)

Callbacks
* <set> gossip.on.node_join
Called whenever a new node joins the cluster, providing a Worker instance.
e <set> gossip.on.node_leave
Called whenever a new node leaves the cluster (shuts down), providing a Worker instance.

* <set> gossip.on.node_lost

3.3. User Guide 187

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection

Celery Documentation, Release 4.4.2

Called whenever heartbeat was missed for a worker instance in the cluster (heartbeat not received
or processed in time), providing a Worker instance.

This doesn’t necessarily mean the worker is actually offline, so use a time out mechanism if the
default heartbeat timeout isn’t sufficient.

pool
The current process/eventlet/gevent/thread pool. See celery.concurrency.base.BasePool.

timer
Timer <celery.utils.timer2.Schedule used to schedule functions.

heart
Responsible for sending worker event heartbeats (Heart).

Your consumer bootstep must require the Heart bootstep to use this:

class Step (bootsteps.StartStopStep) :
requires = {'celery.worker.consumer.heart:Heart'}

task_consumer
The kombu . Consumer object used to consume task messages.

Your consumer bootstep must require the 7asks bootstep to use this:

class Step(bootsteps.StartStopStep) :
requires = {'celery.worker.consumer.tasks:Tasks'}

strategies

Every registered task type has an entry in this mapping, where the value is used to execute an incoming message
of this task type (the task execution strategy). This mapping is generated by the Tasks bootstep when the

consumer starts:

for name, task in app.tasks.items():
strategies[name] = task.start_strategy(app, consumer)
task.__trace_ = celery.app.trace.build_tracer(
name, task, loader, hostname

Your consumer bootstep must require the Zasks bootstep to use this:

class Step (bootsteps.StartStopStep) :
requires = {'celery.worker.consumer.tasks:Tasks'}

task_ buckets

A defaultdict used to look-up the rate limit for a task by type. Entries in this dict may be None (for no
limit) or a TokenBucket instance implementing consume (tokens) and expected_time (tokens).

TokenBucket implements the token bucket algorithm, but any algorithm may be used as long as it conforms to

the same interface and defines the two methods above.

gos
The QoS object can be used to change the task channels current prefetch_count value:

increment at next cycle
consumer.gos.increment_eventually (1)
decrement at next cycle
consumer.qos.decrement_eventually (1)
consumer.gos.set (10)

188 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer
https://docs.python.org/dev/library/collections.html#collections.defaultdict
https://kombu.readthedocs.io/en/master/reference/kombu.utils.limits.html#kombu.utils.limits.TokenBucket
https://en.wikipedia.org/wiki/Token_bucket

Celery Documentation, Release 4.4.2

Methods

consumer.reset_rate limits ()
Updates the task_bucket s mapping for all registered task types.

consumer .bucket_for_task (type, Bucket=TokenBucket)
Creates rate limit bucket for a task using its task.rate_limit attribute.

consumer.add_task_ queue (name, exchange=None, exchange_ type=None,
routing key=None, *xoptions):
Adds new queue to consume from. This will persist on connection restart.

consumer.cancel_task_queue (name)
Stop consuming from queue by name. This will persist on connection restart.

apply_eta_task (request)
Schedule ETA task to execute based on the request . eta attribute. (Request)

Installing Bootsteps

app.steps['worker'] and app.steps|['consumer'] can be modified to add new bootsteps:

>>> app

>>> app.
.steps['consumer'] .add (MyConsumerStep)

>>> app

>>> app

>>> app.

{step:proj.StepB{ ()}, step:proj.MyConsumerStep{ ()},

= Celery ()
steps|['worker'].add (MyWorkerStep) # < add class, don't instantiate

.steps['consumer'] .update ([StepA, StepB])

steps['consumer']
tep:proj.StepA{ ()}

0

The order of steps isn’t important here as the order is decided by the resulting dependency graph (Step.requires).

To illustrate how you can install bootsteps and how they work, this is an example step that prints some useless debug-
ging information. It can be added both as a worker and consumer bootstep:

from celery import Celery
from celery import bootsteps

class InfoStep (bootsteps.Step):

def

def

def

init (self, parent, **kwargs):
here we can prepare the Worker/Consumer object
4

1

in any way we want, set attribute defaults, and so or

print ('{0!r} is in init'.format (parent))

start (self, parent):

our step is started together with all other Worker/Consumer
bootsteps.

print ('{0!r} is starting'.format (parent))

stop (self, parent):

the Consumer calls stop every time the consumer is
restarted (i.e., connec n is lost) and also at
The Worker will call stop at shutdown only.

print ('{0!r} is stopping'.format (parent))

(continues on next page)

3.3. User Guide 189

Celery Documentation, Release 4.4.2

(continued from previous page)

def shutdown (self, parent):

shutdown alled by the Consumer at shutdown, it's not

called by Worker.

print ('{0!r} is shutting down'.format (parent))

app = Celery (broker='amgp://")
app.steps['worker'].add(InfoStep)
app.steps|['consumer'].add(InfoStep)

Starting the worker with this step installed will give us the following logs:

<Worker: w@example.com (initializing)> is in init
<Consumer: w@example.com (initializing)> is in init
[2013-05-29 16:18:20,544: WARNING/MainProcess]
<Worker: w@example.com (running)> is starting
[2013-05-29 16:18:21,577: WARNING/MainProcess]
<Consumer: w@example.com (running)> is starting
<Consumer: wl@example.com (closing)> is stopping
<Worker: w@example.com (closing)> is stopping
<Consumer: wlexample.com (terminating)> is shutting down

The print statements will be redirected to the logging subsystem after the worker has been initialized, so the “is
starting” lines are time-stamped. You may notice that this does no longer happen at shutdown, this is because the
stop and shutdown methods are called inside a signal handler, and it’s not safe to use logging inside such a
handler. Logging with the Python logging module isn’t reentrant: meaning you cannot interrupt the function then call
it again later. It’s important that the st op and shut down methods you write is also reentrant.

Starting the worker with ——1oglevel=debug will show us more information about the boot process:

[2013-05-29 16:18:20,509: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2013-05-29 16:18:20,511: DEBUG/MainProcess] | Worker: Building graph...
<celery.apps.worker.Worker object at 0x101ad8410> is in init

[2013-05-29 16:18:20,511: DEBUG/MainProcess] | Worker: New boot order:

{Hub, Pool, Timer, StateDB, Autoscaler, InfoStep, Beat, Consumer}
[2013-05-29 16:18:20,514: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2013-05-29 16:18:20,514: DEBUG/MainProcess] | Consumer: Building graph...
<celery.worker.consumer.Consumer object at 0x101c2d8d0> is in init
[2013-05-29 16:18:20,515: DEBUG/MainProcess] | Consumer: New boot order:

{Connection, Mingle, Events, Gossip, InfoStep, Agent,
Heart, Control, Tasks, event loop}
[2013-05-29 16:18:20,522: DEBUG/MainProcess
[2013-05-29 16:18:20,522: DEBUG/MainProcess

[2013-05-29 16:18:20,522: DEBUG/MainProcess | Worker: Starting Pool
[2013-05-29 16:18:20,542: DEBUG/MainProcess] ~-- substep ok
[2013-05-29 16:18:20,543: DEBUG/MainProcess] | Worker: Starting InfoStep
[2013-05-29 16:18:20,544: WARNING/MainProcess]

<celery.apps.worker.Worker object at 0x101ad8410> is starting
[2013-05-29 16:18:20,544: DEBUG/MainProcess] ~-- substep ok
[2013-05-29 16:18:20,544: DEBUG/MainProcess] | Worker: Starting Consumer
[2013-05-29 16:18:20,544: DEBUG/MainProcess] | Consumer: Starting Connection
[2013-05-29 16:18:20,559: INFO/MainProcess] Connected to amgp://guest@127.0.0.1:5672//
[2013-05-29 16:18:20,560: DEBUG/MainProcess] ~—-- substep ok
[2013-05-29 16:18:20,560: DEBUG/MainProcess] | Consumer: Starting Mingle
[2013-05-29 16:18:20,560: INFO/MainProcess] mingle: searching for neighbors
[2013-05-29 16:18:21,570: INFO/MainProcess] mingle: no one here
[2013-05-29 16:18:21,570: DEBUG/MainProcess] ~-- substep ok
[2013-05-29 16:18:21,571: DEBUG/MainProcess] | Consumer: Starting Events

| Worker: Starting Hub
~—— substep ok

(continues on next page)

190 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

A

[2013-05-29 16:18:21,572: DEBUG/MainProcess —-— substep ok

]
[2013-05-29 16:18:21,572: DEBUG/MainProcess] | Consumer: Starting Gossip
[2013-05-29 16:18:21,577: DEBUG/MainProcess] "~-- substep ok
[2013-05-29 16:18:21,577: DEBUG/MainProcess] | Consumer: Starting InfoStep

[2013-05-29 16:18:21,577: WARNING/MainProcess]
<celery.worker.consumer.Consumer object at 0x101c2d8d0> is starting
[2013-05-29 16:18:21,578: DEBUG/MainProcess] ~-- substep ok
[2013-05-29 16:18:21,578: DEBUG/MainProcess] | Consumer: Starting Heart
[2013-05-29 16:18:21,579: DEBUG/MainProcess] —-— substep ok
[2013-05-29 16:18:21,579: DEBUG/MainProcess] | Consumer: Starting Control
[2013-05-29 16:18:21,583: DEBUG/MainProcess] ~-- substep ok
1
]
]
1

A

A

[2013-05-29 16:18:21,583: DEBUG/MainProcess | Consumer: Starting Tasks
[2013-05-29 16:18:21,606: DEBUG/MainProcess] basic.qgos: prefetch_count->80
[2013-05-29 16:18:21,606: DEBUG/MainProcess] ~-- substep ok

[2013-05-29 16:18:21,606: DEBUG/MainProcess] | Consumer: Starting event loop
[2013-05-29 16:18:21,608: WARNING/MainProcess] celery@example.com ready.

Command-line programs

Adding new command-line options
Command-specific options

You can add additional command-line options to the worker, beat, and events commands by modifying the
user_options attribute of the application instance.

Celery commands uses the argparse module to parse command-line arguments, and so to add custom arguments
you need to specify a callback that takes a argparse.ArgumentParser instance - and adds arguments. Please
see the argparse documentation to read about the fields supported.

Example adding a custom option to the celery worker command:

from celery import Celery
app = Celery (broker='amgp://")

def add_worker_ arguments (parser) :
parser.add_argument (
'—-—enable-my-option', action='store_true', default=False,
help='Enable custom option.',
) ’
app.user_options|['worker'].add (add_worker_arguments)

All bootsteps will now receive this argument as a keyword argument to Bootstep.__init_ :

from celery import bootsteps
class MyBootstep (bootsteps.Step) :
def _ init__ (self, parent, enable_my_option=False, x*options):
super () .__init__ (parent, x*xoptions)
if enable_my_option:

party()

app.steps|['worker'].add (MyBootstep)

3.3. User Guide 191

https://docs.python.org/dev/library/argparse.html#module-argparse
https://docs.python.org/dev/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/dev/library/argparse.html#module-argparse

Celery Documentation, Release 4.4.2

Preload options

The celery umbrella command supports the concept of ‘preload options’. These are special options passed to all
sub-commands and parsed outside of the main parsing step.

The list of default preload options can be found in the API reference: celery.bin.base.

You can add new preload options too, for example to specify a configuration template:

from celery import Celery
from celery import signals
from celery.bin import Option

app = Celery()

def add_preload options (parser):
parser.add_argument (
'-Z2', '—-—template', default='default',
help='Configuration template to use.',
)
app.user_options|['preload'].add(add_preload_options)

@signals.user_preload_options.connect
def on_preload parsed (options, xxkwargs):
use_template (options|['template'])

Adding nhew celery sub-commands

New commands can be added to the celery umbrella command by using setuptools entry-points.

Entry-points is special meta-data that can be added to your packages setup . py program, and then after installation,
read from the system using the pkg_resources module.

Celery recognizes celery.commands entry-points to install additional sub-commands, where the value of the
entry-point must point to a valid subclass of celery.bin.base.Command. There’s limited documentation, un-
fortunately, but you can find inspiration from the various commands in the celery.bin package.

This is how the Flower monitoring extension adds the celery flower command, by adding an entry-point in
setup.py:

setup (
name="'flower',
entry_points={
'celery.commands': [
'flower = flower.command:FlowerCommand',

i

The command definition is in two parts separated by the equal sign, where the first part is the name of the sub-command
(flower), then the second part is the fully qualified symbol path to the class that implements the command:

flower.command:FlowerCommand

The module path and the name of the attribute should be separated by colon as above.

In the module flower/command. py, the command class is defined something like this:

192 Chapter 3. Contents

http://reinout.vanrees.org/weblog/2010/01/06/zest-releaser-entry-points.html
https://pypi.python.org/pypi/Flower/

Celery Documentation, Release 4.4.2

from celery.bin.base import Command

class FlowerCommand (Command) :

def add_arguments (self, parser):
parser.add_argument (
'—-—port', default=8888, type='int',
help='Webserver port',
) 14
parser.add_argument (
'-—debug', action='store_true',

)

def run(self, port=None, debug=False, xxkwargs):
print ('Running our command')

Worker API

Hub - The workers async event loop

supported transports amqp, redis
New in version 3.0.

The worker uses asynchronous I/O when the amqp or redis broker transports are used. The eventual goal is for all
transports to use the event-loop, but that will take some time so other transports still use a threading-based solution.

hub . add (fd, callback, flags)

hub.add_reader (fd, callback, *args)
Add callback to be called when f£d is readable.

The callback will stay registered until explicitly removed using hub. remove (£d), or the file descriptor is
automatically discarded because it’s no longer valid.

Note that only one callback can be registered for any given file descriptor at a time, so calling add a second
time will remove any callback that was previously registered for that file descriptor.

A file descriptor is any file-like object that supports the £i1eno method, or it can be the file descriptor number
(int).

hub.add_writer (fd, callback, *args)
Add callback to be called when £d is writable. See also notes for hub.add reader () above.

hub . remove (fd)
Remove all callbacks for file descriptor £d from the loop.

Timer - Scheduling events

timer.call_after (secs, callback, args=(), kwargs=(),
priority=0)

timer.call_repeatedly(secs, callback, args=(), kwargs=(),
priority=0)

timer.call_at (eta, callback, args=(), kwargs=(),
priority=0)

3.3. User Guide 193

Celery Documentation, Release 4.4.2

3.3.17 Configuration and defaults

This document describes the configuration options available.

If you’re using the default loader, you must create the celeryconfig.py module and make sure it’s available on
the Python path.

* Example configuration file
* New lowercase settings
* Configuration Directives
— General settings
— Time and date settings
— Task settings
— Task execution settings
— Task result backend settings
— Database backend settings
— RPC backend settings
— Cache backend settings
— Redis backend settings
— Cassandra backend settings
— 83 backend settings
— Azure Block Blob backend settings
— Elasticsearch backend settings
— Riak backend settings
— AWS DynamoDB backend settings
— IronCache backend settings
— Couchbase backend settings
— ArangoDB backend settings
— CosmosDB backend settings (experimental)
— CouchDB backend settings
— File-system backend settings
— Consul K/V store backend settings
— Message Routing
— Broker Settings
— Worker
— Events

— Remote Control Commands

— Logging

194 Chapter 3. Contents

Celery Documentation, Release 4.4.2

— Security

— Custom Component Classes (advanced)

— Beat Settings (celery beat)

Example configuration file

This is an example configuration file to get you started. It should contain all you need to run a basic Celery set-up.

Broker settings.
broker_url = 'amgp://guest:guest@localhost:5672//"

List of modules to import when the Celery worker starts.
imports = ('myapp.tasks',)

Using the database to store task state and results.
result_backend = 'db+sqglite:///results.db’
task_annotations = {'tasks.add': {'rate_limit': '10/s'}}

New lowercase settings

Version 4.0 introduced new lower case settings and setting organization.

The major difference between previous versions, apart from the lower case names, are the renaming of some prefixes,
like celery_beat_to beat_, celeryd_ to worker_, and most of the top level celery__ settings have been
moved into a new task_ prefix.

Note: Celery will still be able to read old configuration files, so there’s no rush in moving to the new settings format.
Furthermore, we provide the celery upgrade command that should handle plenty of cases (including Django).

Configuration Directives

General settings
accept_content

Default: {'json'} (set, list, or tuple).
A white-list of content-types/serializers to allow.
If a message is received that’s not in this list then the message will be discarded with an error.

By default only json is enabled but any content type can be added, including pickle and yaml; when this is the case
make sure untrusted parties don’t have access to your broker. See Security for more.

Example:
using serializer name
accept_content = ['json']

(continues on next page)

3.3. User Guide 195

Celery Documentation, Release 4.4.2

(continued from previous page)

or the actual content-type (MIME)

accept_content = ['application/json']

result_accept_content

Default: None (can be set, list or tuple).

New in version 4.3.

A white-list of content-types/serializers to allow for the result backend.

If a message is received that’s not in this list then the message will be discarded with an error.

By default it is the same serializer as accept_content. However, a different serializer for accepted content of the
result backend can be specified. Usually this is needed if signed messaging is used and the result is stored unsigned in
the result backend. See Security for more.

Example:

using serializer name
result_accept_content = ['Json']

or the actual content-type (MIME)
result_accept_content = ['application/json']

Time and date settings
enable_utc

New in version 2.5.
Default: Enabled by default since version 3.0.
If enabled dates and times in messages will be converted to use the UTC timezone.

Note that workers running Celery versions below 2.5 will assume a local timezone for all messages, so only enable if
all workers have been upgraded.

timezone

New in version 2.5.
Default: "UTC".
Configure Celery to use a custom time zone. The timezone value can be any time zone supported by the pytz library.

If not set the UTC timezone is used. For backwards compatibility there’s also a enable_utc setting, and when this
is set to false the system local timezone is used instead.

Task settings

196 Chapter 3. Contents

https://pypi.python.org/pypi/pytz/

Celery Documentation, Release 4.4.2

task_annotations

New in version 2.5.
Default: None.

This setting can be used to rewrite any task attribute from the configuration. The setting can be a dict, or a list of
annotation objects that filter for tasks and return a map of attributes to change.

This will change the rate_1limit attribute for the tasks.add task:

’task_annotations = {'tasks.add': {'rate_limit': '10/s'}}

or change the same for all tasks:

’task_annotations = {'"x': {'rate_limit': '10/s'}}

You can change methods too, for example the on_failure handler:

def my on_ failure(self, exc, task_id, args, kwargs, einfo):
print ('Oh no! Task failed: {0O!r}'.format (exc))

task_annotations = {'x': {'on_failure': my_on_failure}}

If you need more flexibility then you can use objects instead of a dict to choose the tasks to annotate:

class MyAnnotate (object) :
def annotate(self, task):
if task.name.startswith('tasks.'):

return {'rate_limit': '10/s'}

task_annotations = (MyAnnotate(), {other,})

task_compression

Default: None

Default compression used for task messages. Can be gzip, bzip2 (if available), or any custom compression schemes
registered in the Kombu compression registry.

The default is to send uncompressed messages.

task_protocol

Default: 2 (since 4.0).
Set the default task message protocol version used to send tasks. Supports protocols: 1 and 2.

Protocol 2 is supported by 3.1.24 and 4.x+.

task _serializer

Default: "json™ (since 4.0, earlier: pickle).

3.3. User Guide 197

Celery Documentation, Release 4.4.2

A string identifying the default serialization method to use. Can be json (default), pickle, yaml, msgpack, or any
custom serialization methods that have been registered with kombu.serialization.registry.

See also:

Serializers.

task_publish_retry

New in version 2.2.
Default: Enabled.

Decides if publishing task messages will be retried in the case of connection loss or other connection errors. See also
task_publish_retry policy.

task_publish_retry policy

New in version 2.2.
Default: See Message Sending Retry.

Defines the default policy when retrying publishing a task message in the case of connection loss or other connection
errors.

Task execution settings
task_always_eager

Default: Disabled.

If this is True, all tasks will be executed locally by blocking until the task returns. apply_async () and Task.
delay () will return an EagerResult instance, that emulates the API and behavior of AsyncResult, except the
result is already evaluated.

That is, tasks will be executed locally instead of being sent to the queue.

task_eager_propagates

Default: Disabled.

If this is True, eagerly executed tasks (applied by task.apply(), or when the task_always_eager setting is
enabled), will propagate exceptions.

It’s the same as always running apply () with throw=True.

task remote_ tracebacks

Default: Disabled.
If enabled task results will include the workers stack when re-raising task errors.

This requires the tblib library, that can be installed using pip:

198 Chapter 3. Contents

https://pypi.python.org/pypi/tblib/

Celery Documentation, Release 4.4.2

$ pip install celery[tblib]

See Bundles for information on combining multiple extension requirements.

task_ignore_result

Default: Disabled.

Whether to store the task return values or not (tombstones). If you still want to store errors, just not successful return
values, you can set task_store_errors_even 1if ignored.

task_store_errors_even_if ignored

Default: Disabled.

If set, the worker stores all task errors in the result store even if Task.ignore_result ison.

task_track started

Default: Disabled.

If True the task will report its status as ‘started’ when the task is executed by a worker. The default value is False
as the normal behavior is to not report that level of granularity. Tasks are either pending, finished, or waiting to be
retried. Having a ‘started’ state can be useful for when there are long running tasks and there’s a need to report what
task is currently running.

task _time limit

Default: No time limit.

Task hard time limit in seconds. The worker processing the task will be killed and replaced with a new one when this
is exceeded.

task _soft_time_limit

Default: No soft time limit.
Task soft time limit in seconds.

The SoftTimeLimitExceeded exception will be raised when this is exceeded. For example, the task can catch
this to clean up before the hard time limit comes:

from celery.exceptions import SoftTimeLimitExceeded

Qapp.task
def mytask () :
try:
return do_work ()
except SoftTimelimitExceeded:
cleanup_in_a_hurry ()

3.3. User Guide 199

Celery Documentation, Release 4.4.2

task _acks_late

Default: Disabled.

Late ack means the task messages will be acknowledged after the task has been executed, not just before (the default
behavior).

See also:

FAQ: Should I use retry or acks_late?.

task_acks_on failure or_timeout

Default: Enabled
When enabled messages for all tasks will be acknowledged even if they fail or time out.

Configuring this setting only applies to tasks that are acknowledged after they have been executed and only if
task acks lateis enabled.

task_reject_on_worker_lost

Default: Disabled.

Even if task_acks_late is enabled, the worker will acknowledge tasks when the worker process executing them
abruptly exits or is signaled (e.g., KILL/INT, etc).

Setting this to true allows the message to be re-queued instead, so that the task will execute again by the same worker,
or another worker.

Warning: Enabling this can cause message loops; make sure you know what you’re doing.

task default_ rate limit

Default: No rate limit.

The global default rate limit for tasks.

This value is used for tasks that doesn’t have a custom rate limit
See also:

The setting:worker_disable_rate_limits setting can disable all rate limits.

Task result backend settings
result_backend

Default: No result backend enabled by default.
The backend used to store task results (tombstones). Can be one of the following:

* rpc Send results back as AMQP messages See RPC backend settings.

200 Chapter 3. Contents

Celery Documentation, Release 4.4.2

* database Use arelational database supported by SQLAlchemy. See Database backend settings.
* redis Use Redis to store the results. See Redis backend settings.

* cache Use Memcached to store the results. See Cache backend settings.

e cassandra Use Cassandra to store the results. See Cassandra backend settings.

* elasticsearch Use Elasticsearch to store the results. See Elasticsearch backend settings.

¢ ironcache Use [ronCache to store the results. See /ronCache backend settings.

* couchbase Use Couchbase to store the results. See Couchbase backend settings.

e arangodb Use ArangoDB to store the results. See ArangoDB backend settings.

* couchdb Use CouchDB to store the results. See CouchDB backend settings.

* cosmosdbsql (experimental) Use the CosmosDB PaaS to store the results. See CosmosDB backend
settings (experimental).

* filesystem Use a shared directory to store the results. See File-system backend settings.
* consul Use the Consul K/V store to store the results See Consul K/V store backend settings.

e azureblockblob Use the AzureBlockBlob PaaS store to store the results See Azure Block Blob backend
settings.

¢ s3 Use the S3 to store the results See S3 backend settings.

result_backend_ transport_options

Default: {} (empty mapping).
A dict of additional options passed to the underlying transport.
See your transport user manual for supported options (if any).

Example setting the visibility timeout (supported by Redis and SQS transports):

result_backend_transport_options = {'visibility_timeout': 18000} +# 5 hours

result_ serializer

Default: json since 4.0 (earlier: pickle).
Result serialization format.

See Serializers for information about supported serialization formats.

result_compression

Default: No compression.

Optional compression method used for task results. Supports the same options as the task_compression setting.

3.3. User Guide 201

http://sqlalchemy.org
https://redis.io
http://memcached.org
http://cassandra.apache.org/
https://aws.amazon.com/elasticsearch-service/
http://www.iron.io/cache
https://www.couchbase.com/
https://www.arangodb.com/
http://www.couchdb.com/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://consul.io/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://aws.amazon.com/s3/

Celery Documentation, Release 4.4.2

result_extended

Default: False

Enables extended task result attributes (name, args, kwargs, worker, retries, queue, delivery_info) to be written to
backend.

result_expires

Default: Expire after 1 day.
Time (in seconds, or a t imede 1t a object) for when after stored task tombstones will be deleted.

A built-in periodic task will delete the results after this time (celery.backend_cleanup), assuming that
celery beat is enabled. The task runs daily at 4am.

A value of None or 0 means results will never expire (depending on backend specifications).

Note: For the moment this only works with the AMQP, database, cache, Couchbase, and Redis backends.

When using the database backend, celery beat must be running for the results to be expired.

result_cache_max

Default: Disabled by default.
Enables client caching of results.

This can be useful for the old deprecated ‘amqp’ backend where the result is unavailable as soon as one result instance
consumes it.

This is the total number of results to cache before older results are evicted. A value of O or None means no limit, and
a value of —1 will disable the cache.

Disabled by default.

result_chord_join_timeout

Default: 3.0.

The timeout in seconds (int/float) when joining a group’s results within a chord.

Database backend settings
Database URL Examples

To use the database backend you have to configure the result_backend setting with a connection URL and the
db+ prefix:

result_backend = 'db+scheme://user:password@host:port/dbname’

Examples:

202 Chapter 3. Contents

https://docs.python.org/dev/library/datetime.html#datetime.timedelta

Celery Documentation, Release 4.4.2

sglite (filename)

result_backend = 'db+sglite:///results.sqglite'

mysql

result_backend = 'db+mysqgl://scott:tiger@localhost/foo'

postgresqgl

result_backend = 'db+postgresqgl://scott:tiger@localhost/mydatabase’
oracle

result_backend = 'db+oracle://scott:tiger@127.0.0.1:1521/sidname'’

Please see Supported Databases for a table of supported databases, and Connection String for more information about
connection strings (this is the part of the URI that comes after the db+ prefix).

database_engine_options

Default: {} (empty mapping).

To specify additional SQLAIchemy database engine options you can use the database_engine_options set-
ting:

echo enables

logging from SQLAlchemy.

app.conf.database_engine_options = {'echo': True}

database_short_lived sessions

Default: Disabled by default.

Short lived sessions are disabled by default. If enabled they can drastically reduce performance, especially on systems
processing lots of tasks. This option is useful on low-traffic workers that experience errors as a result of cached
database connections going stale through inactivity. For example, intermittent errors like (OperationalError) (2006,
‘MySQL server has gone away’) can be fixed by enabling short lived sessions. This option only affects the database
backend.

database_table_schemas

Default: {} (empty mapping).

When SQLAIchemy is configured as the result backend, Celery automatically creates two tables to store result meta-
data for tasks. This setting allows you to customize the schema of the tables:

use custom schema for the database result backend.
database_table_schemas = {

'task': 'celery',

'group': 'celery',

3.3. User Guide 203

http://www.sqlalchemy.org/docs/core/engines.html#supported-databases
http://www.sqlalchemy.org/docs/core/engines.html#database-urls

Celery Documentation, Release 4.4.2

database_table_ names

Default: {} (empty mapping).

When SQLAlchemy is configured as the result backend, Celery automatically creates two tables to store result meta-
data for tasks. This setting allows you to customize the table names:

use custom table names for the database result backend.
database_table_names = {

'task': 'myapp_taskmeta',

'group': 'myapp_groupmeta',

RPC backend settings
result_persistent

Default: Disabled by default (transient messages).

If set to True, result messages will be persistent. This means the messages won’t be lost after a broker restart.

Example configuration

result_backend = 'rpc://"'
result_persistent = False

Please note: using this backend could trigger the raise of celery.backends.rpc.BacklogLimitExceeded
if the task tombstone is too old.

E.g.

for i in range (10000) :
r = debug_task.delay ()

print (r.state) # this would raise celery.backends.rpc.BacklogLimitExceeded

Cache backend settings

Note: The cache backend supports the pylibmc and python-memcached libraries. The latter is used only if pylibmc
isn’t installed.

Using a single Memcached server:

result_backend = 'cache+memcached://127.0.0.1:11211/"

Using multiple Memcached servers:

result_backend = """
cache+memcached://172.19.26.240:11211;172.19.26.242:11211/
mmww . Strip()

204 Chapter 3. Contents

https://pypi.python.org/pypi/pylibmc/
https://pypi.python.org/pypi/python-memcached/
https://pypi.python.org/pypi/pylibmc/

Celery Documentation, Release 4.4.2

The “memory” backend stores the cache in memory only:

result_backend = 'cache'
cache_backend = 'memory'

cache_backend options

Default: {} (empty mapping).

You can set pylibmc options using the cache _backend_options setting:

cache_backend_options = {
'binary': True,
'behaviors': {'tcp_nodelay': True},

cache_backend

This setting is no longer used as it’s now possible to specify the cache backend directly in the result_backend
setting.

Redis backend settings

Configuring the backend URL

Note: The Redis backend requires the redis library.
To install this package use pip:

$ pip install celery[redis]

See Bundles for information on combining multiple extension requirements.

This backend requires the result_backend setting to be set to a Redis or Redis over TLS URL:

’result_backend = 'redis://:password@host:port/db"'

For example:

’result_backend = 'redis://localhost/0"

is the same as:

’result_backend = 'redis://'

Use the rediss: // protocol to connect to redis over TLS:

’result_backend = 'rediss://:password@host:port/db?ssl_cert_regs=required’'

Note that the ss1_cert_reqgs string should be one of required, optional, or none (though, for backwards
compatibility, the string may also be one of CERT_REQUIRED, CERT_OPTIONAL, CERT_NONE).

3.3. User Guide 205

https://pypi.python.org/pypi/pylibmc/
https://pypi.python.org/pypi/redis/
https://www.iana.org/assignments/uri-schemes/prov/rediss

Celery Documentation, Release 4.4.2

If a Unix socket connection should be used, the URL needs to be in the format::

result_backend = 'socket:///path/to/redis.sock’

The fields of the URL are defined as follows:
1. password
Password used to connect to the database.
2. host
Host name or IP address of the Redis server (e.g., localhost).
3. port
Port to the Redis server. Default is 6379.

Database number to use. Default is 0. The db can include an optional leading slash.

When using a TLS connection (protocol is rediss: //), you may pass in all values in broker use_ss1 as query
parameters. Paths to certificates must be URL encoded, and ss1_cert_regs is required. Example:

result_backend = 'rediss://:password@host:port/db?\
ssl_cert_regs=required\
&ssl_ca_certs=%2Fvar%2Fssl%2Fmyca.pem\ # /var/ssl/myca.pem
&ssl_certfile=%2Fvar$%$2Fssl%2Fredis—-server—cert.pem\ # /var/ssl/redis-server—

—cert.pem
&ssl_keyfile=%2Fvar%2Fssl%2Fprivate%2Fworker-key.
—pemnm' # /var/ssl/private/worker-key.pem

Note that the ss1_cert_regs string should be one of required, optional, or none (though, for backwards
compatibility, the string may also be one of CERT_REQUIRED, CERT_OPTIONAL, CERT_NONE).

redis_backend_use_ssl

Default: Disabled.

The Redis backend supports SSL. This value must be set in the form of a dictionary. The valid key-value pairs are the
same as the ones mentioned in the redis sub-section under broker_use_ssl.

redis_max connections

Default: No limit.

Maximum number of connections available in the Redis connection pool used for sending and retrieving results.

Warning: Redis will raise a ConnectionError if the number of concurrent connections exceeds the maximum.

redis_socket_connect_timeout

New in version 4.0.1.

Default: None

206 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Socket timeout for connections to Redis from the result backend in seconds (int/float)

redis_socket_ timeout

Default: 120.0 seconds.

Socket timeout for reading/writing operations to the Redis server in seconds (int/float), used by the redis result back-
end.

redis_retry on_timeout

New in version 4.4.1.
Default: False

To retry reading/writing operations on TimeoutError to the Redis server, used by the redis result backend. Shouldn’t
set this variable if using Redis connection by unix socket.

redis_socket_keepalive

New in version 4.4.1.
Default: False

Socket TCP keepalive to keep connections healthy to the Redis server, used by the redis result backend.

Cassandra backend settings

Note: This Cassandra backend driver requires cassandra-driver.

To install, use pip:

$ pip install celery[cassandra]

See Bundles for information on combining multiple extension requirements.

This backend requires the following configuration directives to be set.

cassandra_servers

Default: [] (empty list).

List of host Cassandra servers. For example:

cassandra_servers = ['localhost']

cassandra_port

Default: 9042.

Port to contact the Cassandra servers on.

3.3. User Guide 207

https://pypi.python.org/pypi/cassandra-driver/

Celery Documentation, Release 4.4.2

cassandra_keyspace

Default: None.

The key-space in which to store the results. For example:

cassandra_keyspace = 'tasks_keyspace'

cassandra_table

Default: None.

The table (column family) in which to store the results. For example:

cassandra_table = 'tasks'

cassandra_read_consistency

Default: None.

The read consistency used. Values can be ONE, TWO, THREE, QUORUM, ALL, LOCAL_QUORUM, EACH_QUORUM,
LOCAL_ONE.

cassandra_write_ consistency

Default: None.

The write consistency used. Values can be ONE, TWO, THREE, QUORUM, ALL, LOCAL_QUORUM, EACH_QUORUM,
LOCAL_ONE.

cassandra_entry_ttl

Default: None.

Time-to-live for status entries. They will expire and be removed after that many seconds after adding. A value of
None (default) means they will never expire.

cassandra_auth_provider

Default: None.

AuthProvider class within cassandra.auth module to use. Values can be PlainTextAuthProvider or
SaslAuthProvider.

cassandra_auth_kwargs

Default: {} (empty mapping).

Named arguments to pass into the authentication provider. For example:

208 Chapter 3. Contents

Celery Documentation, Release 4.4.2

cassandra_auth_kwargs = {
username: 'cassandra',
password: 'cassandra'

cassandra_options

Default: {} (empty mapping).

Named arguments to pass into the cassandra.cluster class.

cassandra_options = {
'cgl_version': '3.2.1"
'protocol_version': 3

Example configuration

cassandra_servers = ['localhost']
cassandra_keyspace = 'celery'
cassandra_table = 'tasks'
cassandra_read_consistency = 'ONE'
cassandra_write_consistency = 'ONE'

cassandra_entry_ttl = 86400

S3 backend settings

Note: This s3 backend driver requires s3.

To install, use s3:

$ pip install celery[s3]

See Bundles for information on combining multiple extension requirements.

This backend requires the following configuration directives to be set.

s3_access_key_id

Default: None.

The s3 access key id. For example:

s3_access_key_id = 'acces_key_id'

3.3. User Guide 209

https://pypi.python.org/pypi/s3/

Celery Documentation, Release 4.4.2

s3_secret_access_key

Default: None.

The s3 secret access key. For example:

s3_secret_access_key = 'acces_secret_access_key'

s3_bucket

Default: None.

The s3 bucket name. For example:

s3_bucket = 'bucket_name'

s3_base_path

Default: None.

A base path in the s3 bucket to use to store result keys. For example:

s3_base_path = '/prefix'

s3_endpoint_url

Default: None.

A custom s3 endpoint url. Use it to connect to a custom self-hosted s3 compatible backend (Ceph, Scality...). For
example:

s3_endpoint_url = 'https://.s3.custom.url'

s3_region

Default: None.

The s3 aws region. For example:

s3_region = 'us-east-1"'

Example configuration

s3_access_key_id = 's3-access-key-id'
s3_secret_access_key = 's3-secret-access-key'
s3_bucket = 'mybucket'

s3_base_path = '/celery_ result_backend'
s3_endpoint_url = 'https://endpoint_url'

210 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Azure Block Blob backend settings

To use AzureBlockBlob as the result backend you simply need to configure the result_hbackend setting with the
correct URL.

The required URL format is azureblockblob:// followed by the storage connection string. You can find the
storage connection string in the Access Keys pane of your storage account resource in the Azure Portal.

Example configuration

result_backend =
—'azureblockblob://DefaultEndpointsProtocol=https;AccountName=somename; AccountKey=Lou. |.bzg==; Endpo:

azureblockblob container name

Default: celery.

The name for the storage container in which to store the results.

azureblockblob_retry initial backoff sec

Default: 2.

The initial backoff interval, in seconds, for the first retry. Subsequent retries are attempted with an exponential strategy.

azureblockblob_retry increment_base

Default: 2.

azureblockblob_retry max attempts

Default: 3.

The maximum number of retry attempts.

Elasticsearch backend settings

To use Elasticsearch as the result backend you simply need to configure the result_backend setting with the
correct URL.

Example configuration

result_backend = 'elasticsearch://example.com:9200/index_name/doc_type'

3.3. User Guide 211

https://azure.microsoft.com/en-us/services/storage/blobs/
https://aws.amazon.com/elasticsearch-service/

Celery Documentation, Release 4.4.2

elasticsearch_retry_on_timeout

Default: False

Should timeout trigger a retry on different node?

elasticsearch _max retries

Default: 3.

Maximum number of retries before an exception is propagated.

elasticsearch_timeout

Default: 10.0 seconds.

Global timeout,used by the elasticsearch result backend.

Riak backend settings

Note: The Riak backend requires the riak library.

To install the this package use pip:

$ pip install celery[riak]

See Bundles for information on combining multiple extension requirements.

This backend requires the result_backend setting to be set to a Riak URL:

’result_backend = 'riak://host:port/bucket'

For example:

’result_backend = 'riak://localhost/celery

is the same as:

’result_backend = 'riak://"

The fields of the URL are defined as follows:
1. host
Host name or IP address of the Riak server (e.g., ‘localhost’).
2. port
Port to the Riak server using the protobuf protocol. Default is 8087.
3. bucket
Bucket name to use. Default is celery. The bucket needs to be a string with ASCII characters only.

Alternatively, this backend can be configured with the following configuration directives.

212 Chapter 3. Contents

https://pypi.python.org/pypi/riak/

Celery Documentation, Release 4.4.2

riak_backend_settings

Default: {} (empty mapping).
This is a dict supporting the following keys:
* host
The host name of the Riak server. Defaults to "1ocalhost".
* port
The port the Riak server is listening to. Defaults to 8087.
* bucket
The bucket name to connect to. Defaults to “celery”.
* protocol

The protocol to use to connect to the Riak server. This isn’t configurable via result_backend

AWS DynamoDB backend settings

Note: The Dynamodb backend requires the boto3 library.

To install this package use pip:

$ pip install celery[dynamodb]

See Bundles for information on combining multiple extension requirements.

This backend requires the result_backend setting to be set to a DynamoDB URL:

result_backend =

[

—'dynamodb://aws_access_key_id:aws_secret_access_key@region:port/table?read=n&write=m'

For example, specifying the AWS region and the table name:

’result_backend = 'dynamodb://Qus-east-1/celery_results

or retrieving AWS configuration parameters from the environment, using the default table name (celery) and speci-
fying read and write provisioned throughput:

result_backend = 'dynamodb://Q/?read=5&write=5"

or using the downloadable version of DynamoDB locally:

result_backend = 'dynamodb://Qlocalhost:8000"

or using downloadable version or other service with conforming API deployed on any host:

result_backend = 'dynamodb://Qus—-east-1"
dynamodb_endpoint_url = 'http://192.168.0.40:8000"'

The fields of the DynamoDB URL in result_backend are defined as follows:

1. aws_access_key_id & aws_secret_access_key

3.3. User Guide 213

https://pypi.python.org/pypi/boto3/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.Endpoint.html

Celery Documentation, Release 4.4.2

The credentials for accessing AWS API resources. These can also be resolved by the boto3 library
from various sources, as described here.

2. region

The AWS region, e.g. us—east-1 or localhost for the Downloadable Version. See the boto3
library documentation for definition options.

3. port

The listening port of the local DynamoDB instance, if you are using the downloadable version. If you have not
specified the region parameter as 1ocalhost, setting this parameter has no effect.

4. table

Table name to use. Default is celery. See the DynamoDB Naming Rules for information on the
allowed characters and length.

5. read & write

The Read & Write Capacity Units for the created DynamoDB table. Default is 1 for both read and
write. More details can be found in the Provisioned Throughput documentation.

6. ttl_seconds

Time-to-live (in seconds) for results before they expire. The default is to not expire results, while
also leaving the DynamoDB table’s Time to Live settings untouched. If tt1_seconds is set to
a positive value, results will expire after the specified number of seconds. Setting tt1_seconds
to a negative value means to not expire results, and also to actively disable the DynamoDB table’s
Time to Live setting. Note that trying to change a table’s Time to Live setting multiple times in
quick succession will cause a throttling error. More details can be found in the DynamoDB TTL
documentation

IronCache backend settings

Note: The IronCache backend requires the iron_celery library:

To install this package use pip:

’$ pip install iron_celery

IronCache is configured via the URL provided in result_backend, for example:

’ result_backend = 'ironcache://project_id:token@'

Or to change the cache name:

ironcache:://project_id:token@/awesomecache

For more information, see: https://github.com/iron-io/iron_celery

Couchbase backend settings

Note: The Couchbase backend requires the couchbase library.

To install this package use pip:

214 Chapter 3. Contents

https://pypi.python.org/pypi/boto3/
http://boto3.readthedocs.io/en/latest/guide/configuration.html#configuring-credentials
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://pypi.python.org/pypi/boto3/
http://boto3.readthedocs.io/en/latest/guide/configuration.html#environment-variable-configuration
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html#limits-naming-rules
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html
https://pypi.python.org/pypi/iron_celery/
https://github.com/iron-io/iron_celery
https://pypi.python.org/pypi/couchbase/

Celery Documentation, Release 4.4.2

$ pip install celery[couchbase]

See Bundles for instructions how to combine multiple extension requirements.

This backend can be configured via the result_backend set to a Couchbase URL:

result_backend = 'couchbase://username:password@host:port/bucket’'

couchbase_backend_settings

Default: {} (empty mapping).
This is a dict supporting the following keys:
* host
Host name of the Couchbase server. Defaults to localhost.
* port
The port the Couchbase server is listening to. Defaults to 8091.
* bucket
The default bucket the Couchbase server is writing to. Defaults to default.
* username
User name to authenticate to the Couchbase server as (optional).
* password

Password to authenticate to the Couchbase server (optional).

ArangoDB backend settings

Note: The ArangoDB backend requires the pyArango library.

To install this package use pip:

$ pip install celery[arangodb]

See Bundles for instructions how to combine multiple extension requirements.

This backend can be configured via the result_backend setto a ArangoDB URL:

result_backend = 'arangodb://username:password@host:port/database/collection’

arangodb_backend settings

Default: {} (empty mapping).
This is a dict supporting the following keys:

* host

3.3. User Guide 215

https://pypi.python.org/pypi/pyArango/

Celery Documentation, Release 4.4.2

Host name of the ArangoDB server. Defaults to localhost.
* port
The port the ArangoDB server is listening to. Defaults to 8529.
* database
The default database in the ArangoDB server is writing to. Defaults to celery.
* collection
The default collection in the ArangoDB servers database is writing to. Defaults to celery.
* username
User name to authenticate to the ArangoDB server as (optional).
* password

Password to authenticate to the ArangoDB server (optional).

CosmosDB backend settings (experimental)

To use CosmosDB as the result backend, you simply need to configure the result_backend setting with the correct
URL.

Example configuration

result_backend =
—'cosmosdbsqgl://:{InsertAccountPrimaryKeyHere}@{InsertAccountNameHere}.documents.azure|com'

cosmosdbsqgl_database_name

Default: celerydb.

The name for the database in which to store the results.

cosmosdbsql_collection_name

Default: celerycol.

The name of the collection in which to store the results.

cosmosdbsql_consistency level

Default: Session.
Represents the consistency levels supported for Azure Cosmos DB client operations.

Consistency levels by order of strength are: Strong, BoundedStaleness, Session, ConsistentPrefix and Eventual.

216 Chapter 3. Contents

https://azure.microsoft.com/en-us/services/cosmos-db/

Celery Documentation, Release 4.4.2

cosmosdbsqgl_max_retry_attempts

Default: 9.

Maximum number of retries to be performed for a request.

cosmosdbsgl _max_retry wait_time

Default: 30.

Maximum wait time in seconds to wait for a request while the retries are happening.

CouchDB backend settings

Note: The CouchDB backend requires the pycouchdb library:

To install this Couchbase package use pip:

$ pip install celery[couchdb]

See Bundles for information on combining multiple extension requirements.

This backend can be configured via the result_backend set to a CouchDB URL:

result_backend = 'couchdb://username:password@host:port/container’

The URL is formed out of the following parts:
* username
User name to authenticate to the CouchDB server as (optional).
* password
Password to authenticate to the CouchDB server (optional).
* host
Host name of the CouchDB server. Defaults to localhost.
* port
The port the CouchDB server is listening to. Defaults to 8091.

e container

The default container the CouchDB server is writing to. Defaults to default.

File-system backend settings

This backend can be configured using a file URL, for example:

CELERY_RESULT_BACKEND = 'file:///var/celery/results'

3.3. User Guide

217

https://pypi.python.org/pypi/pycouchdb/

Celery Documentation, Release 4.4.2

The configured directory needs to be shared and writable by all servers using the backend.

If you’re trying Celery on a single system you can simply use the backend without any further configuration. For
larger clusters you could use NFS, GlusterES, CIFS, HDFS (using FUSE), or any other file-system.

Consul K/V store backend settings

The Consul backend can be configured using a URL, for example:
CELERY_RESULT_BACKEND = ‘consul://localhost:8500/°
The backend will storage results in the K/V store of Consul as individual keys.

The backend supports auto expire of results using TTLs in Consul.

Message Routing
task_queues

Default: None (queue taken from default queue settings).
Most users will not want to specify this setting and should rather use the automatic routing facilities.

If you really want to configure advanced routing, this setting should be a list of kombu . Queue objects the worker
will consume from.

Note that workers can be overridden this setting via the —Q option, or individual queues from this list (by name) can
be excluded using the —X option.

Also see Basics for more information.
The default is a queue/exchange/binding key of celery, with exchange type direct.

See also task_routes

task_routes

Default: None.

A list of routers, or a single router used to route tasks to queues. When deciding the final destination of a task the
routers are consulted in order.

A router can be specified as either:
* A function with the signature (name, args, kwargs, options, task=None, *xkwargs)
* A string providing the path to a router function.
¢ A dict containing router specification: Will be converted to a celery.routes.MapRoute instance.

e Alist of (pattern, route) tuples: Will be converted to a celery.routes.MapRoute instance.

Examples:
task_routes = {
'celery.ping': 'default',
'mytasks.add': 'cpu-bound',
'feed.tasks.x': 'feeds', # <-— glob pattern
re.compile (r' (image|video) \.tasks\..*"): 'media', # < regex

(continues on next page)

218 Chapter 3. Contents

http://www.gluster.org/
http://hadoop.apache.org/
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue

Celery Documentation, Release 4.4.2

(continued from previous page)

'video.encode': {

'queue': 'video',

'exchange': 'media',

'routing_key': 'media.video.encode',
}I

task_routes = ('myapp.tasks.route_task', {'celery.ping': 'default})

Where myapp .tasks.route_task could be:

def route_task(self, name, args, kwargs, options, task=None, xxkw):
if task == 'celery.ping':
return {'queue': 'default'}

route_task may return a string or a dict. A string then means it’s a queue name in task gueues, a dict means
it’s a custom route.

When sending tasks, the routers are consulted in order. The first router that doesn’t return None is the route to use.
The message options is then merged with the found route settings, where the task’s settings have priority.

Example if apply_async () has these arguments:

Task.apply_async (immediate=False, exchange='video',
routing_key="'video.compress')

and a router returns:

’{'immediate‘: True, 'exchange': 'urgent'}

the final message options will be:

immediate=False, exchange='video', routing_ key='video.compress' ‘

(and any default message options defined in the Task class)
Values defined in task_routes have precedence over values defined in t ask_queues when merging the two.

With the follow settings:

task_queues = {
'cpubound': {
'exchange': 'cpubound',
'routing_key': 'cpubound',
}I
}
task_routes = {
'tasks.add': {
'queue': 'cpubound',
'routing_key': 'tasks.add',
'serializer': 'json',
}I
}

The final routing options for tasks . add will become:

3.3. User Guide 219

Celery Documentation, Release 4.4.2

{'exchange': 'cpubound',
'routing_key': 'tasks.add',
'serializer': 'json'}

See Routers for more examples.

task_queue_ha_policy

brokers RabbitMQ
Default: None.

This will set the default HA policy for a queue, and the value can either be a string (usually all):

’task_queue_ha_policy = 'all"

Using ‘all’ will replicate the queue to all current nodes, Or you can give it a list of nodes to replicate to:

’ task_queue_ha_policy = ['rabbit@hostl', 'rabbit@host2']

Using a list will implicitly set x—ha-policy to ‘nodes’ and x—ha-policy—-params to the given list of nodes.

See http://www.rabbitmg.com/ha.html for more information.

task_queue_max_priority

brokers RabbitMQ
Default: None.

See RabbitMQ Message Priorities.

task_default_priority

brokers RabbitMQ, Redis
Default: None.

See RabbitMQ Message Priorities.

task_inherit_parent_priority

brokers RabbitMQ
Default: False.

If enabled, child tasks will inherit priority of the parent task.

The last task in chain will also have priority set to 5.

chain = celery.chain(add.s(2) add.s (2) .set (priority=5) | add.s(3))

Priority inheritance also works when calling child tasks from a parent task with delay or apply_async.

See RabbitMQ Message Priorities.

220 Chapter 3. Contents

http://www.rabbitmq.com/ha.html

Celery Documentation, Release 4.4.2

worker_ direct

Default: Disabled.
This option enables so that every worker has a dedicated queue, so that tasks can be routed to specific workers.

The queue name for each worker is automatically generated based on the worker hostname and a . dqg suffix, using the
C.dqg exchange.

For example the queue name for the worker with node name wl@example . com becomes:

wl@example.com.dg

Then you can route the task to the task by specifying the hostname as the routing key and the C . dg exchange:

task_routes = {
'tasks.add': {'exchange': 'C.dq', 'routing_key': 'wl@example.com'}

task_create_missing_ queues

Default: Enabled.

If enabled (default), any queues specified that aren’t defined in task_queues will be automatically created. See
Automatic routing.

task_default_queue

Default: "celery".
The name of the default queue used by .apply_async if the message has no route or no custom queue has been specified.

This queue must be listed in task_queues. If task_queues isn’t specified then it’s automatically created con-
taining one queue entry, where this name is used as the name of that queue.

See also:

Changing the name of the default queue

task_default_exchange

Default: Uses the value set for task default_queue.

Name of the default exchange to use when no custom exchange is specified for a key in the task_queues setting.

task_default_exchange_type

Default: "direct™".

Default exchange type used when no custom exchange type is specified for a key in the task_queues setting.

3.3. User Guide 221

Celery Documentation, Release 4.4.2

task_default_routing_ key

Default: Uses the value set for task default_queue.

The default routing key used when no custom routing key is specified for a key in the task_queues setting.

task _default_delivery mode

Default: "persistent™".

Can be transient (messages not written to disk) or persistent (written to disk).

Broker Settings
broker_ url

Default: "amgp://"
Default broker URL. This must be a URL in the form of:

transport://userid:password@Rhostname:port/virtual_host

Only the scheme part (transport://) is required, the rest is optional, and defaults to the specific transports default
values.

The transport part is the broker implementation to use, and the default is amgp, (uses 1ibrabbitmg if installed or
falls back to pyamgp). There are also other choices available, including; redis://, sqs://,and gpid://.

The scheme can also be a fully qualified path to your own transport implementation:

broker_url = 'proj.transports.MyTransport://localhost'

More than one broker URL, of the same transport, can also be specified. The broker URLs can be passed in as a single
string that’s semicolon delimited:

broker_url =
—'transport://userid:password@hostname:port//;transport://userid:password@hostname:port

Or as a list:

broker_url = [
'transport://userid:password@localhost:port//"',
'transport://userid:password@hostname:port//"'

The brokers will then be used in the broker failover strategy.

See URLs in the Kombu documentation for more information.

broker read url/broker_write url

Default: Taken from broker url.

These settings can be configured, instead of broker. url to specify different connection parameters for broker
connections used for consuming and producing.

222 Chapter 3. Contents

e

https://kombu.readthedocs.io/en/master/userguide/connections.html#connection-urls

Celery Documentation, Release 4.4.2

Example:
broker_read_url = 'amqgp://user:pass@broker.example.com:56721"
broker_write_url = 'amgp://user:pass@broker.example.com:56722"'

Both options can also be specified as a list for failover alternates, see broker._url for more information.

broker_ failover_strategy

Default: "round-robin".

Default failover strategy for the broker Connection object. If supplied, may map to a key in
‘kombu.connection.failover_strategies’, or be a reference to any method that yields a single item from a supplied
list.

Example:

Random failover strategy
def random_failover_strategy (servers):
it = list (servers) # don't modify callers list
shuffle = random.shuffle
for _ in repeat (None) :
shuffle (it)
yield it [0]

broker_failover_strategy = random_failover_strategy

broker_heartbeat

transports supported pyamgp
Default: 120. 0 (negotiated by server).
Note: This value is only used by the worker, clients do not use a heartbeat at the moment.

It’s not always possible to detect connection loss in a timely manner using TCP/IP alone, so AMQP defines something
called heartbeats that’s is used both by the client and the broker to detect if a connection was closed.

If the heartbeat value is 10 seconds, then the heartbeat will be monitored at the interval specified by the
broker_heartbeat_checkrate setting (by default this is set to double the rate of the heartbeat value, so for
the 10 seconds, the heartbeat is checked every 5 seconds).

broker heartbeat_checkrate

transports supported pyamgp
Default: 2.0.

At intervals the worker will monitor that the broker hasn’t missed too many heartbeats. The rate at which this is
checked is calculated by dividing the broker heartbeat value with this value, so if the heartbeat is 10.0 and the
rate is the default 2.0, the check will be performed every 5 seconds (twice the heartbeat sending rate).

broker_use_ssl

transports supported pyamgp, redis

3.3. User Guide 223

Celery Documentation, Release 4.4.2

Default: Disabled.
Toggles SSL usage on broker connection and SSL settings.

The valid values for this option vary by transport.

pyamqp

If True the connection will use SSL with default SSL settings. If set to a dict, will configure SSL connection according
to the specified policy. The format used is Python’s ss1.wrap_socket () options.

Note that SSL socket is generally served on a separate port by the broker.

Example providing a client cert and validating the server cert against a custom certificate authority:

import ssl

broker_use_ssl = {
'keyfile': '/var/ssl/private/worker-key.pem',
'certfile': '/var/ssl/amgp-server—-cert.pem',
'ca_certs': '/var/ssl/myca.pem’,

'cert_regs': ssl.CERT_REQUIRED

Warning: Be careful using broker_use_ssl=True. It’s possible that your default configuration won’t
validate the server cert at all. Please read Python ssl module security considerations.

redis

The setting must be a dict with the following keys:
¢ ssl_cert_reqgs (required): one of the SSLContext .verify mode values:
— ss1.CERT_NONE
— ss1.CERT_OPTIONAL
— ss1.CERT_REQUIRED
* ssl_ca_certs (optional): path to the CA certificate
* ssl_certfile (optional): path to the client certificate

* ssl_keyfile (optional): path to the client key

broker pool_limit

New in version 2.3.
Default: 10.
The maximum number of connections that can be open in the connection pool.

The pool is enabled by default since version 2.5, with a default limit of ten connections. This number can be tweaked
depending on the number of threads/green-threads (eventlet/gevent) using a connection. For example running eventlet
with 1000 greenlets that use a connection to the broker, contention can arise and you should consider increasing the
limit.

224 Chapter 3. Contents

https://docs.python.org/dev/library/ssl.html#ssl.wrap_socket
https://docs.python.org/3/library/ssl.html#ssl-security

Celery Documentation, Release 4.4.2

If set to None or 0 the connection pool will be disabled and connections will be established and closed for every use.

broker_connection_timeout

Default: 4.0.

The default timeout in seconds before we give up establishing a connection to the AMQP server. This setting is
disabled when using gevent.

Note: The broker connection timeout only applies to a worker attempting to connect to the broker. It does not apply
to producer sending a task, see broker_ transport_options for how to provide a timeout for that situation.

broker_ connection_retry

Default: Enabled.
Automatically try to re-establish the connection to the AMQP broker if lost.

The time between retries is increased for each retry, and is not exhausted Dbefore
broker connection max_ retries isexceeded.

broker_connection_max_ retries

Default: 100.
Maximum number of retries before we give up re-establishing a connection to the AMQP broker.

If this is set to 0 or None, we’ll retry forever.

broker_ login_method

Default: "AMOPLAIN".

Set custom amqp login method.

broker_ transport_options

New in version 2.2.

Default: {} (empty mapping).

A dict of additional options passed to the underlying transport.
See your transport user manual for supported options (if any).

Example setting the visibility timeout (supported by Redis and SQS transports):

broker_transport_options = {'visibility_ timeout': 18000} # 5 hours

Example setting the producer connection maximum number of retries (so producers won’t retry forever if the broker
isn’t available at the first task execution):

3.3. User Guide 225

Celery Documentation, Release 4.4.2

broker_transport_options = {'max_retries': 5}

Worker

imports

Default: [] (empty list).
A sequence of modules to import when the worker starts.

This is used to specify the task modules to import, but also to import signal handlers and additional remote control
commands, etc.

The modules will be imported in the original order.

include

Default: [] (empty list).
Exact same semantics as imports, but can be used as a means to have different import categories.

The modules in this setting are imported after the modules in imports.

worker_concurrency

Default: Number of CPU cores.
The number of concurrent worker processes/threads/green threads executing tasks.

If you’re doing mostly I/O you can have more processes, but if mostly CPU-bound, try to keep it close to the number
of CPUs on your machine. If not set, the number of CPUs/cores on the host will be used.

worker prefetch multiplier

Default: 4.

How many messages to prefetch at a time multiplied by the number of concurrent processes. The default is 4 (four
messages for each process). The default setting is usually a good choice, however — if you have very long running
tasks waiting in the queue and you have to start the workers, note that the first worker to start will receive four times
the number of messages initially. Thus the tasks may not be fairly distributed to the workers.

To disable prefetching, set worker prefetch multiplier to 1. Changing that setting to 0 will allow the
worker to keep consuming as many messages as it wants.

For more on prefetching, read Prefetch Limits

Note: Tasks with ETA/countdown aren’t affected by prefetch limits.

226 Chapter 3. Contents

Celery Documentation, Release 4.4.2

worker_ lost_wait

Default: 10.0 seconds.

In some cases a worker may be killed without proper cleanup, and the worker may have published a result before
terminating. This value specifies how long we wait for any missing results before raising a WorkerLostError
exception.

worker_ max_tasks_per_child

Maximum number of tasks a pool worker process can execute before it’s replaced with a new one. Default is no limit.

worker_ max_memory_per_ child

Default: No limit. Type: int (kilobytes)

Maximum amount of resident memory, in kilobytes, that may be consumed by a worker before it will be replaced by
a new worker. If a single task causes a worker to exceed this limit, the task will be completed, and the worker will be
replaced afterwards.

Example:

worker_max_memory_per_child = 12000 # 12MB

worker_disable rate_ limits

Default: Disabled (rate limits enabled).

Disable all rate limits, even if tasks has explicit rate limits set.

worker_state_db

Default: None.

Name of the file used to stores persistent worker state (like revoked tasks). Can be a relative or absolute path, but be
aware that the suffix .db may be appended to the file name (depending on Python version).

Can also be set viathe celery worker --statedb argument.

worker_ timer precision

Default: 1.0 seconds.
Set the maximum time in seconds that the ETA scheduler can sleep between rechecking the schedule.

Setting this value to 1 second means the schedulers precision will be 1 second. If you need near millisecond precision
you can set this to 0.1.

3.3. User Guide 227

Celery Documentation, Release 4.4.2

worker_ enable remote_control

Default: Enabled by default.

Specify if remote control of the workers is enabled.

worker_ proc_alive_timeout

Default: 4.0.

The timeout in seconds (int/float) when waiting for a new worker process to start up.

Events
worker_send_ task_ events

Default: Disabled by default.

Send task-related events so that tasks can be monitored using tools like flower. Sets the default value for the workers
—E argument.

task _send sent_event

New in version 2.2.
Default: Disabled by default.

If enabled, a task-sent event will be sent for every task so tasks can be tracked before they’re consumed by a
worker.

event_queue_ttl

transports supported amgp
Default: 5.0 seconds.

Message expiry time in seconds (int/float) for when messages sent to a monitor clients event queue is deleted
(x-message—-ttl)

For example, if this value is set to 10 then a message delivered to this queue will be deleted after 10 seconds.

event_queue_expires

transports supported amgp
Default: 60.0 seconds.

Expiry time in seconds (int/float) for when after a monitor clients event queue will be deleted (x—expires).

228 Chapter 3. Contents

Celery Documentation, Release 4.4.2

event_queue_prefix

Default: "celeryev".

The prefix to use for event receiver queue names.

event_exchange

Default: "celeryev".

Name of the event exchange.

Warning: This option is in experimental stage, please use it with caution.

event_serializer

Default: "json™".
Message serialization format used when sending event messages.
See also:

Serializers.

Remote Control Commands

Note: To disable remote control commands see the worker _enable remote_control setting.

control_queue_ttl

Default: 300.0
Time in seconds, before a message in a remote control command queue will expire.

If using the default of 300 seconds, this means that if a remote control command is sent and no worker picks it up
within 300 seconds, the command is discarded.

This setting also applies to remote control reply queues.

control_dqueue_expires

Default: 10.0
Time in seconds, before an unused remote control command queue is deleted from the broker.

This setting also applies to remote control reply queues.

3.3. User Guide 229

Celery Documentation, Release 4.4.2

control_exchange

Default: "celery™".

Name of the control command exchange.

Warning: This option is in experimental stage, please use it with caution.

Logging
worker_hijack_root_logger

New in version 2.2.

Default: Enabled by default (hijack root logger).

By default any previously configured handlers on the root logger will be removed. If you want to customize your own
logging handlers, then you can disable this behavior by setting worker_hijack_root_logger = False.

Note: Logging can also be customized by connecting to the celery.signals.setup_logging signal.

worker_log color

Default: Enabled if app is logging to a terminal.

Enables/disables colors in logging output by the Celery apps.

worker_ log_ format

Default:

"[%$ (asctime)s: %$(levelname)s/% (processName)s] % (message)s"

The format to use for log messages.

See the Python 10gging module for more information about log formats.

worker_ task_log format

Default:

"[$(asctime)s: % (levelname)s/% (processName) s]
[%$ (task_name) s (% (task_id)s)] % (message)s"

The format to use for log messages logged in tasks.

See the Python 10gging module for more information about log formats.

230

Chapter 3. Contents

https://docs.python.org/dev/library/logging.html#module-logging
https://docs.python.org/dev/library/logging.html#module-logging

Celery Documentation, Release 4.4.2

worker redirect_stdouts

Default: Enabled by default.
If enabled stdout and stderr will be redirected to the current logger.

Used by celery worker and celery beat.

worker_redirect_stdouts_level

Default: WARNING.

The log level output to stdout and stderr is logged as. Can be one of DEBUG, INFO, WARNING, ERROR, or
CRITICAL.

Security
security_key

Default: None.
New in version 2.5.

The relative or absolute path to a file containing the private key used to sign messages when Message Signing is used.

security certificate

Default: None.
New in version 2.5.

The relative or absolute path to an X.509 certificate file used to sign messages when Message Signing is used.

security_cert_store

Default: None.
New in version 2.5.

The directory containing X.509 certificates used for Message Signing. Can be a glob with wild-cards, (for example
/etc/certs/*.pem).

security_digest

Default: sha256.
New in version 4.3.

A cryptography digest used to sign messages when Message Signing is used. https://cryptography.io/en/latest/hazmat/
primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes

3.3. User Guide 231

https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes

Celery Documentation, Release 4.4.2

Custom Component Classes (advanced)
worker_ pool

Default: "prefork" (celery.concurrency.prefork:TaskPool).

Name of the pool class used by the worker.

Eventlet/Gevent

Never use this option to select the eventlet or gevent pool. You must use the —P option to celery worker instead,
to ensure the monkey patches aren’t applied too late, causing things to break in strange ways.

worker pool restarts

Default: Disabled by default.

If enabled the worker pool can be restarted using the pool_restart remote control command.

worker_autoscaler

New in version 2.2.
Default: "celery.worker.autoscale:Autoscaler".

Name of the autoscaler class to use.

worker_consumer

Default: "celery.worker.consumer:Consumer".

Name of the consumer class used by the worker.

worker_timer

Default: "kombu.asynchronous.hub.timer:Timer".

Name of the ETA scheduler class used by the worker. Default is or set by the pool implementation.

Beat Settings (celery beat)
beat_schedule

Default: {} (empty mapping).
The periodic task schedule used by beat. See Entries.

232 Chapter 3. Contents

Celery Documentation, Release 4.4.2

beat_scheduler

Default: "celery.beat:PersistentScheduler".

The default scheduler class. May be set to "django_celery_beat.schedulers:DatabaseScheduler"
for instance, if used alongside django-celery-beat extension.

Can also be set via the celery beat -S argument.

beat_schedule filename

Default: "celerybeat—-schedule".

Name of the file used by PersistentScheduler to store the last run times of periodic tasks. Can be a relative or absolute
path, but be aware that the suffix .db may be appended to the file name (depending on Python version).

Can also be set viathe celery beat --schedule argument.

beat_sync_every

Default: 0.

The number of periodic tasks that can be called before another database sync is issued. A value of O (default) means
sync based on timing - default of 3 minutes as determined by scheduler.sync_every. If set to 1, beat will call sync after
every task message sent.

beat_max_loop_interval

Default: 0.
The maximum number of seconds beat can sleep between checking the schedule.

The default for this value is scheduler specific. For the default Celery beat scheduler the value is 300 (5 minutes), but
for the django-celery-beat database scheduler it’s 5 seconds because the schedule may be changed externally, and so
it must take changes to the schedule into account.

Also when running Celery beat embedded (—B) on Jython as a thread the max interval is overridden and set to 1 so
that it’s possible to shut down in a timely manner.

3.3.18 Documenting Tasks with Sphinx

This document describes how auto-generate documentation for Tasks using Sphinx.

celery.contrib.sphinx

Sphinx documentation plugin used to document tasks.
Introduction

Usage

Add the extension to your docs/conf . py configuration module:

3.3. User Guide 233

https://pypi.python.org/pypi/django-celery-beat/
https://pypi.python.org/pypi/django-celery-beat/

Celery Documentation, Release 4.4.2

extensions = (...,
'celery.contrib.sphinx')

If you'd like to change the prefix for tasks in reference documentation then you can change the
celery_task_prefix configuration value:

celery_task_prefix = ' (task)' # < default

With the extension installed autodoc will automatically find task decorated objects (e.g. when using the automod-
ule directive) and generate the correct (as well as add a (task) prefix), and you can also refer to the tasks using
:task:proj.tasks.add syntax.

Use .. autotask: : to alternatively manually document a task.

class celery.contrib.sphinx.TaskDirective (name, arguments, options, content, lineno, con-

tent_offset, block_text, state, state_machine)
Sphinx task directive.

get_signature_prefix (sig)
May return a prefix to put before the object name in the signature.

class celery.contrib.sphinx.TaskDocumenter (directive, name, indent="")
Document task definitions.

classmethod can_document_member (member, membername, isattr, parent)
Called to see if a member can be documented by this documenter.

check_module ()
Check if self.object is really defined in the module given by self.modname.

document_members (all_members=False)
Generate reST for member documentation.

If all_members is True, do all members, else those given by self.options.members.

format_args ()
Format the argument signature of self.object.

Should return None if the object does not have a signature.

celery.contrib.sphinx.autodoc_skip_member handler (app, what, name, obj, skip, options)
Handler for autodoc-skip-member event.

celery.contrib.sphinx.setup (app)
Setup Sphinx extension.

3.4 Django

Release 4.4
Date Mar 17, 2020

3.4.1 First steps with Django

Using Celery with Django

234 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Note: Previous versions of Celery required a separate library to work with Django, but since 3.1 this is no longer
the case. Django is supported out of the box now so this document only contains a basic way to integrate Celery and
Django. You’ll use the same API as non-Django users so you’re recommended to read the First Steps with Celery
tutorial first and come back to this tutorial. When you have a working example you can continue to the Nexr Steps
guide.

Note: Celery 4.0 supports Django 1.8 and newer versions. Please use Celery 3.1 for versions older than Django 1.8.

To use Celery with your Django project you must first define an instance of the Celery library (called an “app”)

If you have a modern Django project layout like:

- proj/
- manage.py
- proj/
- __init__ .py
- settings.py
- urls.py

then the recommended way is to create a new proj/proj/celery.py module that defines the Celery instance:

file proj/proj/celery.py

from _ future import absolute_import, unicode_literals
import os
from celery import Celery

set the default Django settings module for the 'celery' program.
os.environ.setdefault ('DJANGO_SETTINGS_MODULE', 'proj.settings')

app = Celery('proj')

Using a string here means the worker doesn't have to serialize
the configuration object to child processes.
— namespace="'CELERY' means all celery-related configuration keys

= e

should have a "CELERY_" prefix.

app.config_from_object ('django.conf:settings', namespace='CELERY')
Load task modules from all registered Django app configs.
app.autodiscover_tasks ()

@app.task (bind=True)
def debug task(self):
print ('Request: {0!r}'.format (self.request))

Then you need to import this app in your proj/proj/__init__ .py module. This ensures that the app is loaded
when Django starts so that the @shared_task decorator (mentioned later) will use it:

proj/proj/__init__ .py:

from _ future import absolute_import, unicode_literals

(continues on next page)

3.4. Django 235

Celery Documentation, Release 4.4.2

(continued from previous page)

Django starts so that shared_task will use t
from .celery import app as celery_app

_all___ = ('celery_app',)

Note that this example project layout is suitable for larger projects, for simple projects you may use a single contained
module that defines both the app and tasks, like in the First Steps with Celery tutorial.

Let’s break down what happens in the first module, first we import absolute imports from the future, so that our
celery.py module won’t clash with the library:

’from _ future_ import absolute_import

Then we set the default DJANGO_SETTINGS_MODULE environment variable for the celery command-line pro-
gram:

’os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings"')

You don’t need this line, but it saves you from always passing in the settings module to the ce lery program. It must
always come before creating the app instances, as is what we do next:

app = Celery('proj')

This is our instance of the library, you can have many instances but there’s probably no reason for that when using
Django.

We also add the Django settings module as a configuration source for Celery. This means that you don’t have to use
multiple configuration files, and instead configure Celery directly from the Django settings; but you can also separate
them if wanted.

app.config_from_object ('django.conf:settings', namespace='CELERY')

The uppercase name-space means that all Celery configuration options must be specified in uppercase in-
stead of lowercase, and start with CELERY_, so for example the task _always_eager setting be-
comes CELERY_TASK_ALWAYS_EAGER, and the broker url setting becomes CELERY_BROKER_URL.
This also applies to the workers settings, for instance, the worker concurrency setting becomes
CELERY_WORKER_CONCURRENCY

You can pass the settings object directly instead, but using a string is better since then the worker doesn’t have to
serialize the object. The CELERY_ namespace is also optional, but recommended (to prevent overlap with other
Django settings).

Next, a common practice for reusable apps is to define all tasks in a separate tasks.py module, and Celery does
have a way to auto-discover these modules:

app.autodiscover_tasks ()

With the line above Celery will automatically discover tasks from all of your installed apps, following the tasks.py
convention:

- appl/
- tasks.py
- models.py
- app2/
- tasks.py
- models.py

236 Chapter 3. Contents

https://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE

Celery Documentation, Release 4.4.2

This way you don’t have to manually add the individual modules to the CELERY_TMPORTS setting.

Finally, the debug_task example is a task that dumps its own request information. This is using the new
bind=True task option introduced in Celery 3.1 to easily refer to the current task instance.

Using the @shared_task decorator

The tasks you write will probably live in reusable apps, and reusable apps cannot depend on the project itself, so you
also cannot import your app instance directly.

The @shared_task decorator lets you create tasks without having any concrete app instance:

demoapp/tasks.py:

Create your tasks here
from future import absolute_import, unicode_literals

from celery import shared_task
from demoapp.models import Widget

@shared_task
def add(x, vy):
return x + y

@shared_task
def mul (x, vy):
return x x y

@shared_task
def xsum (numbers) :
return sum (numbers)

@shared_task
def count_widgets () :
return Widget.objects.count ()

@shared_task

def rename_ widget (widget_id, name) :
w = Widget.objects.get (id=widget_id)
w.name = name
w.save ()

See also:

You can find the full source code for the Django example project at: https://github.com/celery/celery/tree/master/
examples/django/

Relative Imports

You have to be consistent in how you import the task module. For example, if you have project.app in
INSTALLED_APPS, then you must also import the tasks from project.app or else the names of the tasks
will end up being different.

3.4. Django 237

https://github.com/celery/celery/tree/master/examples/django/
https://github.com/celery/celery/tree/master/examples/django/

Celery Documentation, Release 4.4.2

See Automatic naming and relative imports

Extensions

django-celery-results - Using the Django ORM/Cache as a result backend

The django-celery-results extension provides result backends using either the Django ORM, or the Django Cache
framework.

To use this with your project you need to follow these steps:

1. Install the django-celery-results library:

$ pip install django-celery-results

2. Add django_celery_results to INSTALLED_APPS in your Django project’s settings.py:

INSTALLED_APPS = (
.7

'django_celery_results',

Note that there is no dash in the module name, only underscores.

3. Create the Celery database tables by performing a database migrations:

$ python manage.py migrate django_celery_results

4. Configure Celery to use the django-celery-results backend.

Assuming you are using Django’s settings.py to also configure Celery, add the following set-
tings:

’CELERY_RESULT_BACKEND = 'django-db' ‘

For the cache backend you can use:

’CELERY_CACHE_BACKEND = 'django-cache' ‘

We can also use the cache defined in the CACHES setting in django.

celery setting.
CELERY_CACHE_BACKEND = 'default'

django setting.

CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.db.DatabaseCache',
'LOCATION': 'my_cache_table’',

For additional configuration options, view the Task result backend settings reference.

238 Chapter 3. Contents

https://pypi.python.org/pypi/django-celery-results/
https://pypi.python.org/pypi/django-celery-results/
https://pypi.python.org/pypi/django-celery-results/

Celery Documentation, Release 4.4.2

django-celery-beat - Database-backed Periodic Tasks with Admin interface.

See Using custom scheduler classes for more information.

Starting the worker process

In a production environment you’ll want to run the worker in the background as a daemon - see Daemonization - but
for testing and development it is useful to be able to start a worker instance by using the celery worker manage
command, much as you’d use Django’s manage .py runserver:

’$ celery -A proj worker -1 info ‘

For a complete listing of the command-line options available, use the help command:

’$ celery help ‘

Known Issues

CONN_MAX_AGE other than zero is known to cause issues according to bug #4878. Until this is fixed, please set
CONN_MAX_AGE to zero.

Where to go from here

If you want to learn more you should continue to the Next Steps tutorial, and after that you can study the User Guide.

3.5 Contributing

Welcome!
This document is fairly extensive and you aren’t really expected to study this in detail for small contributions;

The most important rule is that contributing must be easy and that the community is friendly and not
nitpicking on details, such as coding style.

If you’re reporting a bug you should read the Reporting bugs section below to ensure that your bug report contains
enough information to successfully diagnose the issue, and if you’re contributing code you should try to mimic the
conventions you see surrounding the code you’re working on, but in the end all patches will be cleaned up by the
person merging the changes so don’t worry too much.

* Community Code of Conduct

Be considerate

Be respectful

Be collaborative

When you disagree, consult others

When you’re unsure, ask for help

Step down considerately

3.5. Contributing 239

https://github.com/celery/celery/issues/4878

Celery Documentation, Release 4.4.2

* Reporting Bugs
— Security
— Other bugs
— Issue Trackers
* Contributors guide to the code base
» Versions
* Branches

— dev branch

Maintenance branches

Archived branches

— Feature branches
e Tags
» Working on Features & Patches
— Forking and setting up the repository
— Developing and Testing with Docker
— Running the unit test suite
* Calculating test coverage
- Code coverage in HTML format
- Code coverage in XML (Cobertura-style)
* Running the tests on all supported Python versions
— Building the documentation
— Verifying your contribution
* pyflakes & PEP-8
* API reference
x Isort
— Creating pull requests
* Status Labels
* Coding Style
* Contributing features requiring additional libraries
* Contacts
— Committers
* Ask Solem
* Asif Saif Uddin

+ Dmitry Malinovsky

% Jonel Cristian Mdries

240 Chapter 3. Contents

Celery Documentation, Release 4.4.2

* Mher Movsisyan
% Omer Katz
x Steeve Morin
x Josue Balandrano Coronel
— Website
% Mauro Rocco
x Jan Henrik Helmers
* Packages
— celery

kombu

- amgp
- vine
- billiard
— django-celery-beat
— django-celery-results
- librabbitmg
- cell
- cyme
— Deprecated
* Release Procedure

— Updating the version number

— Releasing

3.5.1 Community Code of Conduct

The goal is to maintain a diverse community that’s pleasant for everyone. That’s why we would greatly appreciate it
if everyone contributing to and interacting with the community also followed this Code of Conduct.

The Code of Conduct covers our behavior as members of the community, in any forum, mailing list, wiki, website,
Internet relay chat (IRC), public meeting or private correspondence.

The Code of Conduct is heavily based on the Ubuntu Code of Conduct, and the Pylons Code of Conduct.

Be considerate

Your work will be used by other people, and you in turn will depend on the work of others. Any decision you take
will affect users and colleagues, and we expect you to take those consequences into account when making decisions.
Even if it’s not obvious at the time, our contributions to Celery will impact the work of others. For example, changes
to code, infrastructure, policy, documentation and translations during a release may negatively impact others’ work.

3.5. Contributing 241

https://www.ubuntu.com/community/conduct
http://docs.pylonshq.com/community/conduct.html

Celery Documentation, Release 4.4.2

Be respectful

The Celery community and its members treat one another with respect. Everyone can make a valuable contribution
to Celery. We may not always agree, but disagreement is no excuse for poor behavior and poor manners. We might
all experience some frustration now and then, but we cannot allow that frustration to turn into a personal attack. It’s
important to remember that a community where people feel uncomfortable or threatened isn’t a productive one. We
expect members of the Celery community to be respectful when dealing with other contributors as well as with people
outside the Celery project and with users of Celery.

Be collaborative

Collaboration is central to Celery and to the larger free software community. We should always be open to collab-
oration. Your work should be done transparently and patches from Celery should be given back to the community
when they’re made, not just when the distribution releases. If you wish to work on new code for existing upstream
projects, at least keep those projects informed of your ideas and progress. It many not be possible to get consensus
from upstream, or even from your colleagues about the correct implementation for an idea, so don’t feel obliged to
have that agreement before you begin, but at least keep the outside world informed of your work, and publish your
work in a way that allows outsiders to test, discuss, and contribute to your efforts.

When you disagree, consult others

Disagreements, both political and technical, happen all the time and the Celery community is no exception. It’s
important that we resolve disagreements and differing views constructively and with the help of the community and
community process. If you really want to go a different way, then we encourage you to make a derivative distribution
or alternate set of packages that still build on the work we’ve done to utilize as common of a core as possible.

When you’re unsure, ask for help
Nobody knows everything, and nobody is expected to be perfect. Asking questions avoids many problems down the

road, and so questions are encouraged. Those who are asked questions should be responsive and helpful. However,
when asking a question, care must be taken to do so in an appropriate forum.

Step down considerately
Developers on every project come and go and Celery is no different. When you leave or disengage from the project,

in whole or in part, we ask that you do so in a way that minimizes disruption to the project. This means you should
tell people you’re leaving and take the proper steps to ensure that others can pick up where you left off.

3.5.2 Reporting Bugs

Security

You must never report security related issues, vulnerabilities or bugs including sensitive information to the bug tracker,
or elsewhere in public. Instead sensitive bugs must be sent by email to security@celeryproject.org.

If you’d like to submit the information encrypted our PGP key is:

Version: GnuPG v1.4.15 (Darwin)

(continues on next page)

242 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

mQENBFJpWDkBCADFIc9/FpgsedowlNvsTC7GYfnJL19X00hnL99sPx+DPbfr+cSE
IwiU+Wp2 TfUX7pCLEGrODiEP6ZCZbgt iPgId+JYvMxpP6GXbjiI1HRwWIEQNH8R1X
cVxy3rQfVv8PGG1iJuyBBjxzVETHW25ht VAZ5TI1+CkxmuyyEYqgZN2 £NdOwEU1 9D
+c10G1gSECHCQICbhacLSzdpngAt 1Gkrc96r TwGHBBSvDaGDD2pF SkVUuTLMb IR Vp
1nKOPMsU1jiip2EMr2DvfuXiUIUvagqInTPNWkDynLoh69ib5xC19CSVLONjkKBsr
Pe+gqAY291iBatatpXsydY7GIUzyBT3MzgMJ1ABEBAAGOMUN1bGVyeSBTZWN1cml0
eSBUZWFtIDxzZWN1lcml0eUBJjZWx1lcnlwem9gZWNOLmOyZz6JATgEEWECACIFALJp
WDkCGWMGCwk IBWMCBhUIAgkKCWQWAgMBAh4BAhe AAAOJEOArFOUDCicIwlIH/26f
CViDC7/P13jr+srRdjAsWvQztia9HmT1Y8cUnbmkROw6b6j3F2ayw8VhkyFWgYEJ
wtPBV8mMHKADiVSFARS+0yGsfCkia5wDSQuIveXgqR1IrXUygqdbmF4NUFTyCZYoh+C
ZiQPN9IxGhFPr5QD1Mx21zWglrvillGl jY2Es1v/xED3AeCOBleUGVRe /uJHKJGv7J
rjOpFCcpt ZX+WDF22AN235WYwgIM6TrNfSu8sv8vNAQOVnsKcgsghuwomSGsO£fMQj
LFzIn95MKBBU1G5wOs7JtwiV9jefGqIGBO2FAVOVbVPdK/saSnB+7K36dQcIHams
5hU4Xj0RIJi0d5id1RC5AQOEUM1YOQEIAJs 80wHMk rdcvy 9kk 2HBVbdghgAREMKY
gmphDp7prRLIFgSY/dKpCbGOu82zyJypdb70iaQ5pfPzPpQcd2dIcohkkh7G3E+e
hS2L9AXHpwR26/PzMBXyr2iNnNc4vTksHvGVDxzFnRpkabvbI/hrrZmYNYhOEAiv
uhE54b3/XhXwFgHjZzXb91i8hgJI3nsO0pRwvUAMIbRGMbvE8e9F+kqgVOyWYNnh6QL
4Vpll+epgp2RKPHYNQftbQyrAHXTOkQF 9pP1x013MKYaFTADscuAp4T3dy7xmiwS
crgMbZLz frxfFOsNXTUGESvmJCcm+mybAtRo4aV6ACOhAOINevMx 8pUAEQEAAYKB
HwQYAQIACQUCUmM1YOQIbDAAKCRDgKxT1AwonCNFbB/9esir/f7TufE+isNgErzR/
aZKZo2WzZR9c75kbgo6J6DYuUHe6xI00Z2gZ601ABDEZAINXGulysFLCiPdatQ8x
8zt 3DF9BMKEck54ZvAjpNSern6zfzbl jPYWZg3TKx1Ts/GuCgBAUV4i5vDTZ7xK/
aF+0FY52zN7¢ciZHkgLgMiTZ+RhgRcK6FhVBP/Y7d9N1BOcDBRTxxE1Z0Olutebn7gud
ciwdhfoRk8gNN19szZugq3UU64zpkM2sBsIFMItGF2FADRx10aOWZHMIYyVZriPEFgW
RUWJSjs7jBVNgOVy4fCu/5+e+XLOUBOOqtM5W7ELt 0t 1w9t Xebt PEetV86in8fU2
=0chn

Other bugs
Bugs can always be described to the Mailing list, but the best way to report an issue and to ensure a timely response is
to use the issue tracker.
1) Create a GitHub account.
You need to create a GitHub account to be able to create new issues and participate in the discussion.
2) Determine if your bug is really a bug.

You shouldn’t file a bug if you’re requesting support. For that you can use the Mailing list, or IRC. If you still need
support you can open a github issue, please prepend the title with [QUESTION].

3) Make sure your bug hasn’t already been reported.

Search through the appropriate Issue tracker. If a bug like yours was found, check if you have new information that
could be reported to help the developers fix the bug.

4) Check if you’re using the latest version.

A bug could be fixed by some other improvements and fixes - it might not have an existing report in the bug tracker.
Make sure you’re using the latest releases of celery, billiard, kombu, amqp, and vine.

5) Collect information about the bug.

To have the best chance of having a bug fixed, we need to be able to easily reproduce the conditions that caused it.
Most of the time this information will be from a Python traceback message, though some bugs might be in design,
spelling or other errors on the website/docs/code.

A) If the error is from a Python traceback, include it in the bug report.

3.5. Contributing 243

https://github.com/signup/free

Celery Documentation, Release 4.4.2

B) We also need to know what platform you’re running (Windows, macOS, Linux, etc.), the version of your Python
interpreter, and the version of Celery, and related packages that you were running when the bug occurred.

C) If you’re reporting a race condition or a deadlock, tracebacks can be hard to get or might not be that useful. Try
to inspect the process to get more diagnostic data. Some ideas:

* Enable Celery’s breakpoint signal and use it to inspect the process’s state. This will allow you to open a
pdb session.

¢ Collect tracing data using strace ‘_(Linux), :command.: ‘dtruss (macOS), and ktrace (BSD), ltrace, and
Isof.

D) Include the output from the celery report command:

$ celery —-A proj report

This will also include your configuration settings and it will try to remove values for keys known
to be sensitive, but make sure you also verify the information before submitting so that it doesn’t
contain confidential information like API tokens and authentication credentials.

E) Your issue might be tagged as Needs Test Case. A test case represents all the details needed to reproduce what
your issue is reporting. A test case can be some minimal code that reproduces the issue or detailed instructions
and configuration values that reproduces said issue.

6) Submit the bug.

By default GitHub will email you to let you know when new comments have been made on your bug. In the event
you’ve turned this feature off, you should check back on occasion to ensure you don’t miss any questions a developer
trying to fix the bug might ask.

Issue Trackers

Bugs for a package in the Celery ecosystem should be reported to the relevant issue tracker.
e celery: https://github.com/celery/celery/issues/
e kombu: https://github.com/celery/kombu/issues
* amgqp: https://github.com/celery/py-amqp/issues
* vine: https://github.com/celery/vine/issues
e librabbitmgq: https://github.com/celery/librabbitmg/issues
* django-celery-beat: https://github.com/celery/django-celery-beat/issues
* django-celery-results: https://github.com/celery/django-celery-results/issues

If you’re unsure of the origin of the bug you can ask the Mailing list, or just use the Celery issue tracker.

3.5.3 Contributors guide to the code base

There’s a separate section for internal details, including details about the code base and a style guide.

Read Contributors Guide to the Code for more!

244 Chapter 3. Contents

https://docs.python.org/dev/library/pdb.html#module-pdb
https://en.wikipedia.org/wiki/Ltrace
https://en.wikipedia.org/wiki/Lsof
https://github.com
https://pypi.python.org/pypi/celery/
https://github.com/celery/celery/issues/
https://pypi.python.org/pypi/kombu/
https://github.com/celery/kombu/issues
https://pypi.python.org/pypi/amqp/
https://github.com/celery/py-amqp/issues
https://pypi.python.org/pypi/vine/
https://github.com/celery/vine/issues
https://pypi.python.org/pypi/librabbitmq/
https://github.com/celery/librabbitmq/issues
https://pypi.python.org/pypi/django-celery-beat/
https://github.com/celery/django-celery-beat/issues
https://pypi.python.org/pypi/django-celery-results/
https://github.com/celery/django-celery-results/issues

Celery Documentation, Release 4.4.2

3.5.4 Versions
Version numbers consists of a major version, minor version and a release number. Since version 2.1.0 we use the
versioning semantics described by SemVer: http://semver.org.

Stable releases are published at PyPI while development releases are only available in the GitHub git repository as
tags. All version tags starts with “v”, so version 0.8.0 has the tag v0.8.0.

3.5.5 Branches

Current active version branches:
¢ dev (which git calls “master”) (https://github.com/celery/celery/tree/master)
e 4.2 (https://github.com/celery/celery/tree/4.2)
* 4.1 (https://github.com/celery/celery/tree/4.1)
* 3.1 (https://github.com/celery/celery/tree/3.1)
You can see the state of any branch by looking at the Changelog:
https://github.com/celery/celery/blob/master/Changelog

If the branch is in active development the topmost version info should contain meta-data like:

:release—-date: TBA
:status: DEVELOPMENT
:branch: dev (git calls this master)

The status field can be one of:
* PLANNING
The branch is currently experimental and in the planning stage.
e DEVELOPMENT

The branch is in active development, but the test suite should be passing and the product should be
working and possible for users to test.

¢ FROZEN

The branch is frozen, and no more features will be accepted. When a branch is frozen the focus is on
testing the version as much as possible before it is released.

dev branch

The dev branch (called “master” by git), is where development of the next version happens.

Maintenance branches

Maintenance branches are named after the version — for example, the maintenance branch for the 2.2.x series is named
2.2.

Previously these were named releaseXX-maint.

The versions we currently maintain is:

3.5. Contributing 245

http://semver.org
https://github.com/celery/celery/tree/master
https://github.com/celery/celery/tree/4.2
https://github.com/celery/celery/tree/4.1
https://github.com/celery/celery/tree/3.1
https://github.com/celery/celery/blob/master/Changelog

Celery Documentation, Release 4.4.2

°* 42
This is the current series.
4.1
Drop support for python 2.6. Add support for python 3.4, 3.5 and 3.6.
* 3.1
Official support for python 2.6, 2.7 and 3.3, and also supported on PyPy.

Archived branches

Archived branches are kept for preserving history only, and theoretically someone could provide patches for these if
they depend on a series that’s no longer officially supported.

An archived version is named X.Y-archived.

To maintain a cleaner history and drop compatibility to continue improving the project, we do not have any archived
version right now.

Feature branches

Major new features are worked on in dedicated branches. There’s no strict naming requirement for these branches.

Feature branches are removed once they’ve been merged into a release branch.

3.5.6 Tags

» Tags are used exclusively for tagging releases. A release tag is named with the format vX. Y. Z — for example
v2.3.1.

» Experimental releases contain an additional identifier vX.Y.Z-1id — for example v3.0.0-rcl.

» Experimental tags may be removed after the official release.

3.5.7 Working on Features & Patches

Note: Contributing to Celery should be as simple as possible, so none of these steps should be considered mandatory.

You can even send in patches by email if that’s your preferred work method. We won’t like you any less, any contri-
bution you make is always appreciated!

However, following these steps may make maintainer’s life easier, and may mean that your changes will be accepted
sooner.

Forking and setting up the repository

First you need to fork the Celery repository, a good introduction to this is in the GitHub Guide: Fork a Repo.

After you have cloned the repository, you should checkout your copy to a directory on your machine:

$ git clone git@github.com:username/celery.git

246 Chapter 3. Contents

https://help.github.com/fork-a-repo/

Celery Documentation, Release 4.4.2

When the repository is cloned, enter the directory to set up easy access to upstream changes:

$ cd celery
$ git remote add upstream git://github.com/celery/celery.git
$ git fetch upstream

If you need to pull in new changes from upstream you should always use the ——rebase optionto git pull:

git pull rebase upstream master

With this option, you don’t clutter the history with merging commit notes. See Rebasing merge commits in git. If you
want to learn more about rebasing, see the Rebase section in the GitHub guides.

If you need to work on a different branch than the one git calls master, you can fetch and checkout a remote branch
like this:

git checkout --track -b 5.0-devel upstream/5.0-devel

Note: Any feature or fix branch should be created from upstream/master.

Developing and Testing with Docker

Because of the many components of Celery, such as a broker and backend, Docker and docker-compose can be utilized
to greatly simplify the development and testing cycle. The Docker configuration here requires a Docker version of at
least 17.13.0 and docker-compose 1.13.0+.

The Docker components can be found within the docker/ folder and the Docker image can be built via:

’$ docker-compose build celery

and run via:

’$ docker—-compose run —--rm celery <command>

where <command> is a command to execute in a Docker container. The —rm flag indicates that the container should
be removed after it is exited and is useful to prevent accumulation of unwanted containers.

Some useful commands to run:
* bash
To enter the Docker container like a normal shell
* make test
To run the test suite. Note: This will run tests using python 3.8 by default.
* tox

To run tox and test against a variety of configurations. Note: This command will run tests for every
environment defined in tox.ini. It takes a while.

e pyenv exec python{2.7,3.5,3.6,3.7,3.8} -m pytest t/unit
To run unit tests using pytest.

Note: {2.7,3.5,3.6,3.7,3.8} means you can use any of those options. e.g. pyenv exec
python3.6 -m pytest t/unit

* pyenv exec python{2.7,3.5,3.6,3.7,3.8} -m pytest t/integration

3.5. Contributing 247

https://notes.envato.com/developers/rebasing-merge-commits-in-git/
https://help.github.com/rebase/
https://www.docker.com/
https://docs.docker.com/compose/

Celery Documentation, Release 4.4.2

To run integration tests using pytest

Note: {2.7,3.5,3.6,3.7,3.8} means you can use any of those options. e.g. pyenv exec
python3.6 -m pytest t/unit

By default, docker-compose will mount the Celery and test folders in the Docker container, allowing code changes and
testing to be immediately visible inside the Docker container. Environment variables, such as the broker and backend
to use are also defined in the docker/docker—compose. yml file.

By running docker-compose build celery animage will be created with the name celery/celery:dev.
This docker image has every dependency needed for development installed. pyenv is used to install multiple python
versions, the docker image offers python 2.7, 3.5, 3.6, 3.7 and 3.8. The default python version is set to 3.8.

The docker-compose.yml file defines the necessary environment variables to run integration tests. The celery
service also mounts the codebase and sets the PYTHONPATH environment variable to /home/developer/
celery. By setting PYTHONPATH the service allows to use the mounted codebase as global module for development.
If you prefer, you can also run python -m pip install -e . toinstall the codebase in development mode.

If you would like to run a Django or stand alone project to manually test or debug a feature, you can use the image
built by docker-compose and mount your custom code. Here’s an example:

Assuming a folder structure such as:

ository cloned here.

version: "3"
services:
celery:
image: celery/celery:dev
environment:

TEST_BROKER: amgp://rabbit:5672
TEST_BACKEND: redis://redis
volumes:
- ../../celery:/home/developer/celery
- ../my_project:/home/developer/my_project
depends_on:

- rabbit
- redis
rabbit:
image: rabbitmg:latest
redis:

image: redis:latest

In the previous example, we are using the image that we can build from this repository and mounting the celery code
base as well as our custom project.

Running the unit test suite

If you like to develop using virtual environments or just outside docker, you must make sure all necessary dependencies
are installed. There are multiple requirements files to make it easier to install all dependencies. You do not have to use
every requirements file but you must use default.txt.

248 Chapter 3. Contents

Celery Documentation, Release 4.4.2

pip install -U -r requirements/default.txt

To run the Celery test suite you need to install requirements/test.txt.

$ pip install -U -r requirements/test.txt
$ pip install -U -r requirements/default.txt

After installing the dependencies required, you can now execute the test suite by calling py.test:

$ py.test t/unit
$ py.test t/integration

Some useful options to py . test are:

* —x

Stop running the tests at the first test that fails.
e -s

Don’t capture output
¢ -V

Run with verbose output.

If you want to run the tests for a single test file only you can do so like this:

$ py.test t/unit/worker/test_worker.py

Calculating test coverage

To calculate test coverage you must first install the pytest-cov module.

Installing the pytest-cov module:

$ pip install -U pytest-cov

Code coverage in HTML format

1. Run py.test with the ——cov-report=html argument enabled:

’$ py.test —--cov=celery —--cov-report=html

2. The coverage output will then be located in the htmlcov/ directory:

’$ open htmlcov/index.html

Code coverage in XML (Cobertura-style)

1. Run py.test with the ——cov-report=xml argument enabled:

$ py.test —--cov=celery —--cov-report=xml

1. The coverage XML output will then be located in the coverage . xml file.

3.5. Contributing

249

https://pypi.python.org/pypi/pytest/
https://pypi.python.org/pypi/pytest-cov/
https://pypi.python.org/pypi/pytest-cov/

Celery Documentation, Release 4.4.2

Running the tests on all supported Python versions

There’s a tox configuration file in the top directory of the distribution.

To run the tests for all supported Python versions simply execute:

’$ tox

Use the tox —e option if you only want to test specific Python versions:

’$ tox —e 2.7

Building the documentation

To build the documentation, you need to install the dependencies listed in requirements/docs.txt and
requirements/default.txt:

$ pip install -U -r requirements/docs.txt
$ pip install -U -r requirements/default.txt

Additionally, to build with no warnings, you will need to install the following packages:

$ apt-get install texlive texlive-latex-extra dvipng

After these dependencies are installed, you should be able to build the docs by running:

$ cd docs
$ rm —-rf _build
$ make html

Make sure there are no errors or warnings in the build output. After building succeeds, the documentation is available
at_build/html.

Verifying your contribution

To use these tools, you need to install a few dependencies. These dependencies can be found in requirements/
pkgutils.txt.

Installing the dependencies:

$ pip install -U -r requirements/pkgutils.txt

pyflakes & PEP-8

To ensure that your changes conform to PEP 8 and to run pyflakes execute:

’$ make flakecheck

To not return a negative exit code when this command fails, use the f1akes target instead:

’$ make flakes

250 Chapter 3. Contents

https://pypi.python.org/pypi/tox/
https://www.python.org/dev/peps/pep-0008

Celery Documentation, Release 4.4.2

API reference

To make sure that all modules have a corresponding section in the API reference, please execute:

$ make apicheck

If files are missing, you can add them by copying an existing reference file.

If the module is internal, it should be part of the internal reference located in docs/internals/reference/. If
the module is public, it should be located in docs/reference/.

For example, if reference is missing for the module celery.worker.awesome and this module is considered part
of the public API, use the following steps:

Use an existing file as a template:

$ cd docs/reference/
$ cp celery.schedules.rst celery.worker.awesome.rst

Edit the file using your favorite editor:

$ vim celery.worker.awesome.rst

change every occurrence of " ‘celery.schedules ~ to
~“celery.worker.awesome

Edit the index using your favorite editor:

$ vim index.rst

Add " celery.worker.awesome ° to the index.

Commit your changes:

Add the file to git

$ git add celery.worker.awesome.rst

$ git add index.rst

$ git commit celery.worker.awesome.rst index.rst \
-m "Adds reference for celery.worker.awesome"

Isort

Isort is a python utility to help sort imports alphabetically and separated into sections. The Celery project uses isort to
better maintain imports on every module. Please run isort if there are any new modules or the imports on an existent
module had to be modified.

$ isort my_module.py # Run isort for one file

$ isort -rc . # Run it recurs
$ isort m_module.py —-diff # Do =

Creating pull requests

When your feature/bugfix is complete, you may want to submit a pull request, so that it can be reviewed by the
maintainers.

3.5. Contributing 251

https://isort.readthedocs.io/en/latest/

Celery Documentation, Release 4.4.2

Before submitting a pull request, please make sure you go through this checklist to make it easier for the maintainers
to accept your proposed changes:

¢ [] Make sure any change or new feature has a unit and/or integration test. If a test is not written, a label

will be assigned to your PR with the name Needs Test Coverage.

[] Make sure unit test coverage does not decrease. py.test —-xv —-cov=celery

——cov-report=xml —--cov-report term. You can check the current test coverage here:
https://codecov.io/gh/celery/celery

[1 Run £1lake8 against the code. The following commands are valid and equivalent.:

$ flake8 -7 2 celery/ t/
$ make flakecheck
$ tox —-e flake$8

[] Run flakeplus against the code. The following commands are valid and equivalent.:

$ flakeplus —--2.7 celery/ t/
$ make flakes
$ tox —e flakeplus

[] Run pydocstyle against the code. The following commands are valid and equivalent.:

[1B

$ pydocstyle celery/
$ tox —e pydocstyle

uild api docs to make sure everything is OK. The following commands are valid and equivalent.:

$ make apicheck
$ cd docs && sphinx-build -b apicheck -d _build/doctrees . _build/apicheck
$ tox —e apicheck

uild configcheck. The following commands are valid and equivalent.:

$ make configcheck

$ cd docs && sphinx-build -b configcheck -d _build/doctrees . _build/
—configcheck

$ tox -e configcheck

[] Run bandit to make sure there’s no security issues. The following commands are valid and equiva-

lent.:

$ pip install -U bandit
$ bandit -b bandit.json celery/
$ tox -e bandit

[] Run unit and integration tests for every python version. The following commands are valid and

[1C

equivalent.:

’$ tox -v

onfirm isort on any new or modified imports:

’$ isort my_module.py —-diff ‘

Creating pull requests is easy, and they also let you track the progress of your contribution. Read the Pull Requests
section in the GitHub Guide to learn how this is done.

252

Chapter 3. Contents

https://codecov.io/gh/celery/celery
http://help.github.com/send-pull-requests/

Celery Documentation, Release 4.4.2

You can also attach pull requests to existing issues by following the steps outlined here: https://bit.ly/koJoso

You can also use hub to create pull requests. Example: https://theiconic.tech/git-hub-fbe2el3ef4d|

Status Labels

There are different labels used to easily manage github issues and PRs. Most of these labels make it easy to categorize
each issue with important details. For instance, you might see a Component : canvas label on an issue or PR. The
Component : canvas label means the issue or PR corresponds to the canvas functionality. These labels are set by
the maintainers and for the most part external contributors should not worry about them. A subset of these labels are
prepended with Status:. Usually the Status: labels show important actions which the issue or PR needs. Here is a
summary of such statuses:

Status: Cannot Reproduce

One or more Celery core team member has not been able to reproduce the issue.
Status: Confirmed

The issue or PR has been confirmed by one or more Celery core team member.
Status: Duplicate

A duplicate issue or PR.

Status: Feedback Needed

One or more Celery core team member has asked for feedback on the issue or PR.
Status: Has Testcase

It has been confirmed the issue or PR includes a test case. This is particularly important to correctly write tests
for any new feature or bug fix.

Status: In Progress

The PR is still in progress.

Status: Invalid

The issue reported or the PR is not valid for the project.

Status: Needs Documentation

The PR does not contain documentation for the feature or bug fix proposed.
Status: Needs Rebase

The PR has not been rebased with master. It is very important to rebase PRs before they can be merged to
master to solve any merge conflicts.

Status: Needs Test Coverage

Celery uses codecov to verify code coverage. Please make sure PRs do not decrease code coverage. This label
will identify PRs which need code coverage.

Status: Needs Test Case

The issue or PR needs a test case. A test case can be a minimal code snippet that reproduces an issue or a
detailed set of instructions and configuration values that reproduces the issue reported. If possible a test case
can be submitted in the form of a PR to Celery’s integration suite. The test case will be marked as failed until
the bug is fixed. When a test case cannot be run by Celery’s integration suite, then it’s better to describe in the
issue itself.

3.5.

Contributing 253

https://bit.ly/koJoso
https://hub.github.com/
https://theiconic.tech/git-hub-fbe2e13ef4d1
https://github.com/celery/celery/labels
https://codecov.io/gh/celery/celery

Celery Documentation, Release 4.4.2

Status: Needs Verification

This label is used to notify other users we need to verify the test case offered by the reporter and/or we need to
include the test in our integration suite.

 Status: Not a Bug
It has been decided the issue reported is not a bug.
 Status: Won’t Fix

It has been decided the issue will not be fixed. Sadly the Celery project does not have unlimited resources and
sometimes this decision has to be made. Although, any external contributors are invited to help out even if an
issue or PR is labeled as Status: Won't Fix.

¢ Status: Works For Me

One or more Celery core team members have confirmed the issue reported works for them.

3.5.8 Coding Style

You should probably be able to pick up the coding style from surrounding code, but it is a good idea to be aware of the
following conventions.

* All Python code must follow the PEP 8 guidelines.
pep8 is a utility you can use to verify that your code is following the conventions.
* Docstrings must follow the PEP 257 conventions, and use the following style.

Do this:

def method(self, arg):
"""Short description.

More details.

nwn

or:

def method(self, arg):
"""Short description.™""

but not this:

def method(self, arg):

Short description.

nwn

¢ Lines shouldn’t exceed 78 columns.

You can enforce this in vim by setting the textwidth option:

set textwidth=78

If adhering to this limit makes the code less readable, you have one more character to go on. This means 78 is a
soft limit, and 79 is the hard limit :)

* Import order

254 Chapter 3. Contents

https://www.python.org/dev/peps/pep-0008
https://pypi.python.org/pypi/pep8/
https://www.python.org/dev/peps/pep-0257

Celery Documentation, Release 4.4.2

Python standard library (import xxx)

Python standard library (from xxx import)

Third-party packages.

Other modules from the current package.

or in case of code using Django:

Python standard library (import xxx)

Python standard library (from xxx import)

Third-party packages.

Django packages.

Other modules from the current package.
Within these sections the imports should be sorted by module name.

Example:

import threading
import time

from collections import deque
from Queue import Queue, Empty

from .platforms import Pidfile
from .five import zip_longest, items, range
from .utils.time import maybe_timedelta

* Wild-card imports must not be used (from xxx import *).
* For distributions where Python 2.5 is the oldest support version, additional rules apply:

— Absolute imports must be enabled at the top of every module:

’from __ future_ import absolute_import ‘

— If the module uses the with statement and must be compatible with Python 2.5 (celery isn’t),
then it must also enable that:

’from _ future_ import with_statement

— Every future import must be on its own line, as older Python 2.5 releases didn’t support import-
ing multiple features on the same future import line:

Good
from _ future import absolute_import
from _ future import with_statement

Bad

from _ future import absolute_import, with_statement

(Note that this rule doesn’t apply if the package doesn’t include support for Python 2.5)
* Note that we use “new-style” relative imports when the distribution doesn’t support Python versions below 2.5

This requires Python 2.5 or later:

3.5. Contributing 255

https://docs.python.org/dev/reference/compound_stmts.html#with

Celery Documentation, Release 4.4.2

from . import submodule

3.5.9 Contributing features requiring additional libraries

Some features like a new result backend may require additional libraries that the user must install.
We use setuptools extra_requires for this, and all new optional features that require third-party libraries must be added.
1) Add a new requirements file in requirements/extras

For the Cassandra backend this is requirements/extras/cassandra.txt, and the file
looks like this:

pycassa

These are pip requirement files, so you can have version specifiers and multiple packages are sepa-
rated by newline. A more complex example could be:

pycassa 2.0 breaks Foo
pycassa>=1.0,<2.0
thrift

2) Modify setup.py

After the requirements file is added, you need to add it as an option to setup.py in the
extras_require section:

extra['extras_require'] = {

'cassandra': extras('cassandra.txt'),

3) Document the new feature in docs/includes/installation.txt

You must add your feature to the list in the Bundles section of docs/includes/
installation.txt.

After you’ve made changes to this file, you need to render the distro README file:

$ pip install -U requirements/pkgutils.txt
$ make readme

That’s all that needs to be done, but remember that if your feature adds additional configuration options, then these
needs to be documented in docs/configuration.rst. Also, all settings need to be added to the celery/
app/defaults.py module.

Result backends require a separate section in the docs/configuration. rst file.

3.5.10 Contacts

This is a list of people that can be contacted for questions regarding the official git repositories, PyPI packages Read
the Docs pages.

If the issue isn’t an emergency then it’s better to report an issue.

256 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Committers

Ask Solem

github https://github.com/ask

twitter https://twitter.com/#!/asksol

Asif Saif Uddin

github https://github.com/auvipy

twitter https://twitter.com/#!/auvipy

Dmitry Malinovsky

github https://github.com/malinoff

twitter https://twitter.com/__malinoff__

lonel Cristian Maries

github https://github.com/ionelmc

twitter https://twitter.com/ionelmc

Mher Movsisyan

github https://github.com/mher

twitter https://twitter.com/#!/movsm

Omer Katz

github https://github.com/thedrow

twitter https://twitter.com/the_drow

Steeve Morin

github https://github.com/steeve

twitter https://twitter.com/#!/steeve

Josue Balandrano Coronel

github https://github.com/xirdneh

twitter https://twitter.com/eusoj_xirdneh

3.5. Contributing 257

https://github.com/ask
https://twitter.com/#!/asksol
https://github.com/auvipy
https://twitter.com/#!/auvipy
https://github.com/malinoff
https://twitter.com/__malinoff__
https://github.com/ionelmc
https://twitter.com/ionelmc
https://github.com/mher
https://twitter.com/#!/movsm
https://github.com/thedrow
https://twitter.com/the_drow
https://github.com/steeve
https://twitter.com/#!/steeve
https://github.com/xirdneh
https://twitter.com/eusoj_xirdneh

Celery Documentation, Release 4.4.2

Website

The Celery Project website is run and maintained by

Mauro Rocco

github https://github.com/fireantology
twitter https:/twitter.com/#!/fireantology

with design by:

Jan Henrik Helmers

web http://www.helmersworks.com

twitter https://twitter.com/#!/helmers

3.5.11 Packages

celery

git https://github.com/celery/celery

CI https://travis-ci.org/#!/celery/celery

Windows-CI https://ci.appveyor.com/project/ask/celery
PyPI celery

docs http://docs.celeryproject.org

kombu

Messaging library.
git https://github.com/celery/kombu
CI https://travis-ci.org/#!/celery/kombu
Windows-CI https://ci.appveyor.com/project/ask/kombu
PyPI kombu

docs https://kombu.readthedocs.io

amqp

Python AMQP 0.9.1 client.
git https://github.com/celery/py-amqp
CI https://travis-ci.org/#!/celery/py-amqp
Windows-CI https://ci.appveyor.com/project/ask/py-amqgp
PyPI amqp

258

Chapter 3. Contents

https://github.com/fireantology
https://twitter.com/#!/fireantology
http://www.helmersworks.com
https://twitter.com/#!/helmers
https://github.com/celery/celery
https://travis-ci.org/#!/celery/celery
https://ci.appveyor.com/project/ask/celery
https://pypi.python.org/pypi/celery/
http://docs.celeryproject.org
https://github.com/celery/kombu
https://travis-ci.org/#!/celery/kombu
https://ci.appveyor.com/project/ask/kombu
https://pypi.python.org/pypi/kombu/
https://kombu.readthedocs.io
https://github.com/celery/py-amqp
https://travis-ci.org/#!/celery/py-amqp
https://ci.appveyor.com/project/ask/py-amqp
https://pypi.python.org/pypi/amqp/

Celery Documentation, Release 4.4.2

vine

docs https://amgp.readthedocs.io

Promise/deferred implementation.

bill

git https://github.com/celery/vine/

CI https://travis-ci.org/#!/celery/vine/

Windows-CI https://ci.appveyor.com/project/ask/vine
PyPI vine

docs https://vine.readthedocs.io

iard

Fork of multiprocessing containing improvements that’ll eventually be merged into the Python stdlib.

git https://github.com/celery/billiard

CI https://travis-ci.org/#!/celery/billiard/

Windows-CI https://ci.appveyor.com/project/ask/billiard
PyPI billiard

django-celery-beat

Database-backed Periodic Tasks with admin interface using the Django ORM.

git https://github.com/celery/django-celery-beat

CI https://travis-ci.org/#!/celery/django-celery-beat

Windows-CI https://ci.appveyor.com/project/ask/django-celery-beat
PyPI django-celery-beat

django—-celery-results

Store task results in the Django ORM, or using the Django Cache Framework.

git https://github.com/celery/django-celery-results
CI https://travis-ci.org/#!/celery/django-celery-results
Windows-CI https://ci.appveyor.com/project/ask/django-celery-results

PyPI django-celery-results

librabbitmg

Very fast Python AMQP client written in C.

git https://github.com/celery/librabbitmq
PyPI librabbitmq

3.5. Contributing

259

https://amqp.readthedocs.io
https://github.com/celery/vine/
https://travis-ci.org/#!/celery/vine/
https://ci.appveyor.com/project/ask/vine
https://pypi.python.org/pypi/vine/
https://vine.readthedocs.io
https://github.com/celery/billiard
https://travis-ci.org/#!/celery/billiard/
https://ci.appveyor.com/project/ask/billiard
https://pypi.python.org/pypi/billiard/
https://github.com/celery/django-celery-beat
https://travis-ci.org/#!/celery/django-celery-beat
https://ci.appveyor.com/project/ask/django-celery-beat
https://pypi.python.org/pypi/django-celery-beat/
https://github.com/celery/django-celery-results
https://travis-ci.org/#!/celery/django-celery-results
https://ci.appveyor.com/project/ask/django-celery-results
https://pypi.python.org/pypi/django-celery-results/
https://github.com/celery/librabbitmq
https://pypi.python.org/pypi/librabbitmq/

Celery Documentation, Release 4.4.2

cell

Actor library.
git https://github.com/celery/cell
PyPI cell

cyme

Distributed Celery Instance manager.
git https://github.com/celery/cyme
PyPI cyme

docs https://cyme.readthedocs.io/

Deprecated

* django-celery
git https://github.com/celery/django-celery
PyPI django-celery
docs http://docs.celeryproject.org/en/latest/django
e Flask—-Celery
git https://github.com/ask/Flask-Celery
PyPI Flask-Celery
* celerymon
git https://github.com/celery/celerymon
PyPI celerymon
* carrot
git https://github.com/ask/carrot
PyPI carrot
* ghettoqg
git https://github.com/ask/ghettoq
PyPI ghettoq
* kombu-sglalchemy
git https://github.com/ask/kombu-sqlalchemy
PyPI kombu-sglalchemy
* django-kombu
git https://github.com/ask/django-kombu
PyPI django-kombu
* pylibrabbitmg

260

Chapter 3. Contents

https://github.com/celery/cell
https://pypi.python.org/pypi/cell/
https://github.com/celery/cyme
https://pypi.python.org/pypi/cyme/
https://cyme.readthedocs.io/
https://github.com/celery/django-celery
https://pypi.python.org/pypi/django-celery/
http://docs.celeryproject.org/en/latest/django
https://github.com/ask/Flask-Celery
https://pypi.python.org/pypi/Flask-Celery/
https://github.com/celery/celerymon
https://pypi.python.org/pypi/celerymon/
https://github.com/ask/carrot
https://pypi.python.org/pypi/carrot/
https://github.com/ask/ghettoq
https://pypi.python.org/pypi/ghettoq/
https://github.com/ask/kombu-sqlalchemy
https://pypi.python.org/pypi/kombu-sqlalchemy/
https://github.com/ask/django-kombu
https://pypi.python.org/pypi/django-kombu/

Celery Documentation, Release 4.4.2

Old name for librabbitmgq.
git None

PyPI pylibrabbitmq

3.5.12 Release Procedure

Updating the version number

The version number must be updated in three places:
e celery/__init__ .py
* docs/include/introduction.txt
e README.rst

The changes to the previous files can be handled with the [bumpversion command line tool] (https://pypi.org/project/
bumpversion/). The corresponding configuration lives in . bumpversion.cfg. To do the necessary changes, run:

’$ bumpversion

After you have changed these files, you must render the README files. There’s a script to convert sphinx syntax to
generic reStructured Text syntax, and the make target readme does this for you:

’$ make readme

Now commit the changes:

’$ git commit -a -m "Bumps version to X.Y.Z"

and make a new version tag:

$ git tag vX.Y.Z
$ git push —--tags

Releasing

Commands to make a new public stable release:

$ make distcheck # checks pep8, autodoc index, runs tests and more

$ make dist # NOTE: Runs git clean -xdf and remo s files not in the repo.

$ python setup.py sdist upload —--sign —--identity='Celery Security Team'
$ python setup.py bdist_wheel upload --sign --identity='Celery Security Team'

If this is a new release series then you also need to do the following:

* Go to the Read The Docs management interface at: https://readthedocs.org/projects/celery/?fromdocs=
celery

* Enter “Edit project”
Change default branch to the branch of this series, for example, use the 2 . 4 branch for the 2.4 series.

* Also add the previous version under the “versions” tab.

3.5. Contributing 261

https://pypi.python.org/pypi/librabbitmq/
https://pypi.python.org/pypi/pylibrabbitmq/
https://pypi.org/project/bumpversion/
https://pypi.org/project/bumpversion/
https://readthedocs.org/projects/celery/?fromdocs=celery
https://readthedocs.org/projects/celery/?fromdocs=celery

Celery Documentation, Release 4.4.2

3.6 Community Resources

This is a list of external blog posts, tutorials, and slides related to Celery. If you have a link that’s missing from this

list, please contact the mailing-list or submit a patch.

* Resources
— Who’s using Celery

- Wiki

Celery questions on Stack Overflow

e News

Mailing-list Archive: celery-users

3.6.1 Resources

Who'’s using Celery

https://github.com/celery/celery/wiki#fcompanieswebsites-using-celery
Wiki
https://github.com/celery/celery/wiki

Celery questions on Stack Overflow

https://stackoverflow.com/search?q=celery &tab=newest

Mailing-list Archive: celery-users

http://blog.gmane.org/gmane.comp.python.amqp.celery.user

3.6.2 News

This section has moved to the Celery homepage: http://celeryproject.org/community/

3.7 Tutorials

Release 4.4
Date Mar 17, 2020

262

Chapter 3. Contents

https://github.com/celery/celery/wiki#companieswebsites-using-celery
https://github.com/celery/celery/wiki
https://stackoverflow.com/search?q=celery&tab=newest
http://blog.gmane.org/gmane.comp.python.amqp.celery.user
http://celeryproject.org/community/

Celery Documentation, Release 4.4.2

3.7.1 Task Cookbook

* Ensuring a task is only executed one at a time

Ensuring a task is only executed one at a time

You can accomplish this by using a lock.
In this example we’ll be using the cache framework to set a lock that’s accessible for all workers.

It’s part of an imaginary RSS feed importer called djangofeeds. The task takes a feed URL as a single argument, and
imports that feed into a Django model called Feed. We ensure that it’s not possible for two or more workers to import
the same feed at the same time by setting a cache key consisting of the MD5 check-sum of the feed URL.

The cache key expires after some time in case something unexpected happens, and something always will. ..

For this reason your tasks run-time shouldn’t exceed the timeout.

Note: In order for this to work correctly you need to be using a cache backend where the . add operation is atomic.
memcached is known to work well for this purpose.

from celery import task

from celery.five import monotonic

from celery.utils.log import get_task_logger
from contextlib import contextmanager

from django.core.cache import cache

from hashlib import md5

from djangofeeds.models import Feed

logger = get_task_logger (__name_)
LOCK_EXPIRE = 60 % 10 # Lock expires in 10 minutes

@Qcontextmanager

def memcache_lock (lock_id, oid):
timeout_at = monotonic () + LOCK_EXPIRE - 3
cache.add fails if the key already exists
status = cache.add(lock_id, oid, LOCK_EXPIRE)

try:
yield status
finally:
memcache delete is very slow, but we have to use it to take
advantage of using add() for atomic locking
if monotonic() < timeout_at and status:

don't release the lock if we exceeded the timeout

to lessen the chance of releasing an expired lock

owned by someone else

also don't release the lock if we didn't acquire it
cache.delete (lock_id)

@task (bind=True)
def import_ feed(self, feed_url):

The cache key consists of the task name and the MD5 digest

(continues on next page)

3.7. Tutorials 263

Celery Documentation, Release 4.4.2

(continued from previous page)

of the feed URL.
feed_url_hexdigest = md5 (feed_url) .hexdigest ()

lock_id = '"{0}-lock—-{1l}'.format (self.name, feed_url_hexdigest)

logger.debug ('Importing feed: %s', feed_url)
with memcache_lock (lock_id, self.app.oid) as acquired:
if acquired:
return Feed.objects.import_feed(feed_url) .url
logger.debug (
'Feed %s is already being imported by another worker',

feed_url)

3.8 Frequently Asked Questions

* General
— What kinds of things should I use Celery for?
* Misconceptions
— Does Celery really consist of 50.000 lines of code?
— Does Celery have many dependencies?
* celery

* kombu

Is Celery heavy-weight?

Is Celery dependent on pickle?

Is Celery for Django only?
Do I have to use AMQP/RabbitMQ?

— Is Celery multilingual ?
» Troubleshooting
— MySQL is throwing deadlock errors, what can I do?
— The worker isn’t doing anything, just hanging
— Task results aren’t reliably returning
— Why is Task.delay/apply*/the worker just hanging?
— Does it work on FreeBSD?
— I'm having IntegrityError: Duplicate Key errors. Why?
— Why aren’t my tasks processed?
— Why won’t my Task run?
— Why won’t my periodic task run?
— How do I purge all waiting tasks?

— I've purged messages, but there are still messages left in the queue?

e Results

264

Chapter 3. Contents

Celery Documentation, Release 4.4.2

How do I get the result of a task if I have the ID that points there?

e Security

Isn’t using pickle a security concern?
Can messages be encrypted?

Is it safe to run celery worker as root?

* Brokers

Why is RabbitMQ crashing?
Can I use Celery with ActiveMQ/STOMP?

What features aren’t supported when not using an AMQP broker?

o Tasks

How can I reuse the same connection when calling tasks?

sudo ina subprocess returns None

Why do workers delete tasks from the queue if they’'re unable to process them?
Can I call a task by name?

Can I get the task id of the current task?

Can I specify a custom task_id?

Can I use decorators with tasks?

Can I use natural task ids?

Can I run a task once another task has finished?

Can I cancel the execution of a task?

Why aren’t my remote control commands received by all workers?
Can [send some tasks to only some servers?

Can I disable prefetching of tasks?

Can I change the interval of a periodic task at runtime?

Does Celery support task priorities?

Should I use retry or acks_late?

Can I schedule tasks to execute at a specific time?

Can I safely shut down the worker?

Can I run the worker in the background on [platform]?

* Django

— What purpose does the database tables created by d jango—celery-results have?

What purpose does the database tables created by d jango—-celery—-beat have?

o Windows

Does Celery support Windows?

3.8. Frequently Asked Questions

265

https://docs.python.org/dev/library/subprocess.html#module-subprocess

Celery Documentation, Release 4.4.2

3.8.1 General

What kinds of things should | use Celery for?

Answer: Queue everything and delight everyone is a good article describing why you’d use a queue in a web context.
These are some common use cases:

* Running something in the background. For example, to finish the web request as soon as possible, then update
the users page incrementally. This gives the user the impression of good performance and “snappiness”, even
though the real work might actually take some time.

* Running something after the web request has finished.
* Making sure something is done, by executing it asynchronously and using retries.
* Scheduling periodic work.
And to some degree:
* Distributed computing.

e Parallel execution.

3.8.2 Misconceptions

Does Celery really consist of 50.000 lines of code?

Answer: No, this and similarly large numbers have been reported at various locations.
The numbers as of this writing are:

e core: 7,141 lines of code.

e tests: 14,209 lines.

* backends, contrib, compat utilities: 9,032 lines.

Lines of code isn’t a useful metric, so even if Celery did consist of 50k lines of code you wouldn’t be able to draw any
conclusions from such a number.

Does Celery have many dependencies?

A common criticism is that Celery uses too many dependencies. The rationale behind such a fear is hard to imagine,
especially considering code reuse as the established way to combat complexity in modern software development, and
that the cost of adding dependencies is very low now that package managers like pip and PyPI makes the hassle of
installing and maintaining dependencies a thing of the past.

Celery has replaced several dependencies along the way, and the current list of dependencies are:

celery

¢ kombu

Kombu is part of the Celery ecosystem and is the library used to send and receive messages. It’s also the library
that enables us to support many different message brokers. It’s also used by the OpenStack project, and many others,
validating the choice to separate it from the Celery code-base.

e billiard

266 Chapter 3. Contents

https://decafbad.com/blog/2008/07/04/queue-everything-and-delight-everyone
https://pypi.python.org/pypi/kombu/
https://pypi.python.org/pypi/billiard/

Celery Documentation, Release 4.4.2

Billiard is a fork of the Python multiprocessing module containing many performance and stability improvements. It’s
an eventual goal that these improvements will be merged back into Python one day.

It’s also used for compatibility with older Python versions that don’t come with the multiprocessing module.

* pytz

The pytz module provides timezone definitions and related tools.

kombu

Kombu depends on the following packages:

e amqp
The underlying pure-Python amqp client implementation. AMQP being the default broker this is a natural dependency.

Note: To handle the dependencies for popular configuration choices Celery defines a number of “bundle” packages,
see Bundles.

Is Celery heavy-weight?

Celery poses very little overhead both in memory footprint and performance.

But please note that the default configuration isn’t optimized for time nor space, see the Optimizing guide for more
information.

Is Celery dependent on pickle?

Answer: No, Celery can support any serialization scheme.

We have built-in support for JSON, YAML, Pickle, and msgpack. Every task is associated with a content type, so you
can even send one task using pickle, another using JSON.

The default serialization support used to be pickle, but since 4.0 the default is now JSON. If you require sending
complex Python objects as task arguments, you can use pickle as the serialization format, but see notes in Serializers.

If you need to communicate with other languages you should use a serialization format suited to that task, which pretty
much means any serializer that’s not pickle.

You can set a global default serializer, the default serializer for a particular Task, or even what serializer to use when
sending a single task instance.

Is Celery for Django only?

Answer: No, you can use Celery with any framework, web or otherwise.

Do | have to use AMQP/RabbitMQ?

Answer: No, although using RabbitMQ is recommended you can also use Redis, SQS, or Qpid.
See Brokers for more information.

Redis as a broker won’t perform as well as an AMQP broker, but the combination RabbitMQ as broker and Redis as
a result store is commonly used. If you have strict reliability requirements you’re encouraged to use RabbitMQ or

3.8. Frequently Asked Questions 267

https://pypi.python.org/pypi/pytz/
https://pypi.python.org/pypi/amqp/

Celery Documentation, Release 4.4.2

another AMQP broker. Some transports also use polling, so they’re likely to consume more resources. However, if
you for some reason aren’t able to use AMQP, feel free to use these alternatives. They will probably work fine for
most use cases, and note that the above points are not specific to Celery; If using Redis/database as a queue worked
fine for you before, it probably will now. You can always upgrade later if you need to.

Is Celery multilingual?

Answer: Yes.

worker is an implementation of Celery in Python. If the language has an AMQP client, there shouldn’t be much
work to create a worker in your language. A Celery worker is just a program connecting to the broker to process
messages.

Also, there’s another way to be language-independent, and that’s to use REST tasks, instead of your tasks being
functions, they’re URLs. With this information you can even create simple web servers that enable preloading of code.
Simply expose an endpoint that performs an operation, and create a task that just performs an HTTP request to that
endpoint.

You can also use Flower’s REST API to invoke tasks.

3.8.3 Troubleshooting

MySQL is throwing deadlock errors, what can | do?

Answer: MySQL has default isolation level set to REPEATABLE-READ, if you don’t really need that, set it to READ-
COMMITTED. You can do that by adding the following to your my . cnf:

[mysgld]
transaction-isolation = READ-COMMITTED

For more information about InnoDB ‘s transaction model see MySQL - The InnoDB Transaction Model and Locking
in the MySQL user manual.

(Thanks to Honza Kral and Anton Tsigularov for this solution)
The worker isn’t doing anything, just hanging

Answer: See MySQL is throwing deadlock errors, what can I do?, or Why is Task.delay/apply*/the worker just
hanging?.

Task results aren’t reliably returning

Answer: If you're using the database backend for results, and in particular using MySQL, see MySOL is throwing
deadlock errors, what can I do?.

Why is Task.delay/apply*/the worker just hanging?

Answer: There’s a bug in some AMQP clients that’ll make it hang if it’s not able to authenticate the current user, the
password doesn’t match or the user doesn’t have access to the virtual host specified. Be sure to check your broker
logs (for RabbitMQ that’s /var/log/rabbitmg/rabbit.log on most systems), it usually contains a message
describing the reason.

268 Chapter 3. Contents

https://flower.readthedocs.io
https://flower.readthedocs.io/en/latest/api.html#post--api-task-async-apply-(.+)
https://dev.mysql.com/doc/refman/5.1/en/innodb-transaction-model.html

Celery Documentation, Release 4.4.2

Does it work on FreeBSD?

Answer: Depends;
When using the RabbitMQ (AMQP) and Redis transports it should work out of the box.

For other transports the compatibility prefork pool is used and requires a working POSIX semaphore implementation,
this is enabled in FreeBSD by default since FreeBSD 8.x. For older version of FreeBSD, you have to enable POSIX
semaphores in the kernel and manually recompile billiard.

Luckily, Viktor Petersson has written a tutorial to get you started with Celery on FreeBSD here: http://www.
playingwithwire.com/2009/10/how-to- get-celeryd- to-work-on-freebsd/

I’'m having IntegrityError: Duplicate Key errors. Why?

Answer: See MySOL is throwing deadlock errors, what can I do?. Thanks to @ @howsthedotcom.

Why aren’t my tasks processed?

Answer: With RabbitMQ you can see how many consumers are currently receiving tasks by running the following
command:

$ rabbitmgctl list_queues —-p <myvhost> name messages consumers
Listing queues

celery

This shows that there’s 2891 messages waiting to be processed in the task queue, and there are two consumers pro-
cessing them.

One reason that the queue is never emptied could be that you have a stale worker process taking the messages hostage.
This could happen if the worker wasn’t properly shut down.

When a message is received by a worker the broker waits for it to be acknowledged before marking the message as
processed. The broker won’t re-send that message to another consumer until the consumer is shut down properly.

If you hit this problem you have to kill all workers manually and restart them:

$ pkill 'celery worker'

$ # — If you don't have pkill use:
$ # ps auxww | awk '/celery worker/ {print $2}' | xargs kill

You may have to wait a while until all workers have finished executing tasks. If it’s still hanging after a long time you
can kill them by force with:

$ pkill -9 'celery worker'

$ # If you don't have pkill use:

$ # ps auxww | awk '/celery worker/ {print $2}' |

xargs kill -9

Why won’t my Task run?

Answer: There might be syntax errors preventing the tasks module being imported.

You can find out if Celery is able to run the task by executing the task manually:

3.8. Frequently Asked Questions 269

http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/
http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/
https://github.com/@howsthedotcom/

Celery Documentation, Release 4.4.2

>>> from myapp.tasks import MyPeriodicTask
>>> MyPeriodicTask.delay ()

Watch the workers log file to see if it’s able to find the task, or if some other error is happening.

Why won’t my periodic task run?

Answer: See Why won’t my Task run?.

How do I purge all waiting tasks?

Answer: You can use the celery purge command to purge all configured task queues:

$ celery —-A proj purge

or programmatically:

>>> from proj.celery import app
>>> app.control.purge ()
1753

If you only want to purge messages from a specific queue you have to use the AMQP API or the celery amgp
utility:

$ celery -A proj amgp dqueue.purge <gueue name>

The number 1753 is the number of messages deleted.

You can also start the worker with the ——purge option enabled to purge messages when the worker starts.

I’'ve purged messages, but there are still messages left in the queue?

Answer: Tasks are acknowledged (removed from the queue) as soon as they re actually executed. After the worker has
received a task, it will take some time until it’s actually executed, especially if there are a lot of tasks already waiting for
execution. Messages that aren’t acknowledged are held on to by the worker until it closes the connection to the broker
(AMQP server). When that connection is closed (e.g., because the worker was stopped) the tasks will be re-sent by

the broker to the next available worker (or the same worker when it has been restarted), so to properly purge the queue
of waiting tasks you have to stop all the workers, and then purge the tasks using celery.control.purge ().

3.8.4 Results
How do I get the result of a task if | have the ID that points there?

Answer: Use task.AsyncResult:

>>> result = my_task.AsyncResult (task_id)
>>> result.get ()

This will give you a AsyncResult instance using the tasks current result backend.

If you need to specify a custom result backend, or you want to use the current application’s default backend you can
use app.AsyncResult:

270 Chapter 3. Contents

Celery Documentation, Release 4.4.2

>>> result = app.AsyncResult (task_id)
>>> result.get ()

3.8.5 Security

Isn’t using pickle a security concern?
Answer: Indeed, since Celery 4.0 the default serializer is now JSON to make sure people are choosing serializers
consciously and aware of this concern.

It’s essential that you protect against unauthorized access to your broker, databases and other services transmitting
pickled data.

Note that this isn’t just something you should be aware of with Celery, for example also Django uses pickle for its
cache client.

For the task messages you can set the task_serializer setting to “json” or “yaml” instead of pickle.
Similarly for task results you can set result_serializer.

For more details of the formats used and the lookup order when checking what format to use for a task see Serializers

Can messages be encrypted?

Answer: Some AMQP brokers supports using SSL (including RabbitMQ). You can enable this using the
broker_use_ssl1 setting.

It’s also possible to add additional encryption and security to messages, if you have a need for this then you should
contact the Mailing list.

Is it safe to run celery worker as root?

Answer: No!

We’re not currently aware of any security issues, but it would be incredibly naive to assume that they don’t exist,
so running the Celery services (celery worker, celery beat, celeryev, etc) as an unprivileged user is
recommended.

3.8.6 Brokers

Why is RabbitMQ crashing?

Answer: RabbitMQ will crash if it runs out of memory. This will be fixed in a future release of RabbitMQ. please
refer to the RabbitMQ FAQ: https://www.rabbitmq.com/faq.html#node-runs-out-of-memory

Note: This is no longer the case, RabbitMQ versions 2.0 and above includes a new persister, that’s tolerant to out of
memory errors. RabbitMQ 2.1 or higher is recommended for Celery.

If you’re still running an older version of RabbitMQ and experience crashes, then please upgrade!

Misconfiguration of Celery can eventually lead to a crash on older version of RabbitMQ. Even if it doesn’t crash, this
can still consume a lot of resources, so it’s important that you’re aware of the common pitfalls.

3.8. Frequently Asked Questions 271

https://www.rabbitmq.com/faq.html#node-runs-out-of-memory

Celery Documentation, Release 4.4.2

* Events.
Running worker with the —E option will send messages for events happening inside of the worker.

Events should only be enabled if you have an active monitor consuming them, or if you purge the event queue period-
ically.

¢ AMQP backend results.

When running with the AMQP result backend, every task result will be sent as a message. If you don’t collect these
results, they will build up and RabbitMQ will eventually run out of memory.

This result backend is now deprecated so you shouldn’t be using it. Use either the RPC backend for rpc-style calls, or
a persistent backend if you need multi-consumer access to results.

Results expire after 1 day by default. It may be a good idea to lower this value by configuring the result_expires
setting.

If you don’t use the results for a task, make sure you set the ignore_result option:

@app.task (ignore_result=True)
def mytask () :
pass

class MyTask (Task) :
ignore_result = True

Can | use Celery with ActiveMQ/STOMP?

Answer: No. It used to be supported by Carrot (our old messaging library) but isn’t currently supported in Kombu
(our new messaging library).

What features aren’t supported when not using an AMQP broker?

This is an incomplete list of features not available when using the virtual transports:
* Remote control commands (supported only by Redis).
* Monitoring with events may not work in all virtual transports.

* The header and fanout exchange types (fanout is supported by Redis).

3.8.7 Tasks

How can | reuse the same connection when calling tasks?

Answer: See the broker_pool_1imit setting. The connection pool is enabled by default since version 2.5.

sudo in a subprocess returns None

There’s a sudo configuration option that makes it illegal for process without a tty to run sudo:

Defaults requiretty

272 Chapter 3. Contents

https://pypi.python.org/pypi/Carrot/
https://pypi.python.org/pypi/Kombu/

Celery Documentation, Release 4.4.2

If you have this configuration in your /et c/sudoers file then tasks won’t be able to call sudo when the worker is
running as a daemon. If you want to enable that, then you need to remove the line from /etc/sudoers.

See: http://timelordz.com/wiki/Apache_Sudo_Commands

Why do workers delete tasks from the queue if they’re unable to process them?

Answer:

The worker rejects unknown tasks, messages with encoding errors and messages that don’t contain the proper fields
(as per the task message protocol).

If it didn’t reject them they could be redelivered again and again, causing a loop.

Recent versions of RabbitMQ has the ability to configure a dead-letter queue for exchange, so that rejected messages
is moved there.

Can | call a task by name?

Answer: Yes, use app.send_task ().

You can also call a task by name, from any language, using an AMQP client:

>>> app.send_task ('tasks.add', args=[2, 2], kwargs={})
<AsyncResult: 373550e8-b9%al0-4666-bcb6l-ace0lfadfold>

To use chain, chord or group with tasks called by name, use the Celery. signature () method:

>>> chain (
app.signature ('tasks.add', args=[2, 2], kwargs={}),
app.signature ('tasks.add', args=[1, 1], kwargs={})
) .apply_async ()

<AsyncResult: e9d52312-c161-46£f0-9013-2713e6d£f812d>

Can | get the task id of the current task?

Answer: Yes, the current id and more is available in the task request:

@app.task (bind=True)
def mytask (self):
cache.set (self.request.id, "Running")

For more information see Task Request.

If you don’t have a reference to the task instance you can use app. current_task:

>>> app.current_task.request.id

But note that this will be any task, be it one executed by the worker, or a task called directly by that task, or a task
called eagerly.

To get the current task being worked on specifically, use current_worker_task:

>>> app.current_worker_task.request.id

3.8. Frequently Asked Questions 273

http://timelordz.com/wiki/Apache_Sudo_Commands

Celery Documentation, Release 4.4.2

Note: Both current_task, and current_worker task can be None.

Can | specify a custom task_id?

Answer: Yes, use the fask_id argument to Task.apply_async ():

>>> task.apply_async(args, kwargs, task_id='...")

Can | use decorators with tasks?

Answer: Yes, but please see note in the sidebar at Basics.

Can | use natural task ids?

Answer: Yes, but make sure it’s unique, as the behavior for two tasks existing with the same id is undefined.

The world will probably not explode, but they can definitely overwrite each others results.

Can | run a task once another task has finished?

Answer: Yes, you can safely launch a task inside a task.

A common pattern is to add callbacks to tasks:

from celery.utils.log import get_task_logger
logger = get_task_logger (__name_)

Qapp.task

def add(x, y):

return x + y

@app.task (ignore_result=True)
def log_result (result):

logger.info("log_result got: %r", result)
Invocation:
>>> (add.s (2, 2) | log_result.s()) .delay()

See Canvas: Designing Work-flows for more information.

Can | cancel the execution of a task?

Answer: Yes, Use result.revoke():

>>> result = add.apply_async (args=[2, 2], countdown=120)
>>> result.revoke()

or if you only have the task id:

274

Chapter 3. Contents

Celery Documentation, Release 4.4.2

>>> from proj.celery import app
>>> app.control.revoke (task_id)

The latter also support passing a list of task-ids as argument.

Why aren’t my remote control commands received by all workers?
Answer: To receive broadcast remote control commands, every worker node creates a unique queue name, based on
the nodename of the worker.

If you have more than one worker with the same host name, the control commands will be received in round-robin
between them.

To work around this you can explicitly set the nodename for every worker using the —n argument to worker:

$ celery -A proj worker —-n workerl@%h
$ celery -A proj worker —-n worker2@%h

where $h expands into the current hostname.

Can | send some tasks to only some servers?
Answer: Yes, you can route tasks to one or more workers, using different message routing topologies, and a worker
instance can bind to multiple queues.

See Routing Tasks for more information.

Can | disable prefetching of tasks?
Answer: Maybe! The AMQP term “prefetch” is confusing, as it’s only used to describe the task prefetching limit.
There’s no actual prefetching involved.

Disabling the prefetch limits is possible, but that means the worker will consume as many tasks as it can, as fast as
possible.

A discussion on prefetch limits, and configuration settings for a worker that only reserves one task at a time is found
here: Prefetch Limits.

Can | change the interval of a periodic task at runtime?

Answer: Yes, you can use the Django database scheduler, or you can create a new schedule subclass and override
is_due():

from celery.schedules import schedule
class my_schedule (schedule) :

def is due(self, last_run_at):
return run_now, next_time_to_check

3.8. Frequently Asked Questions 275

Celery Documentation, Release 4.4.2

Does Celery support task priorities?

Answer: Yes, RabbitMQ supports priorities since version 3.5.0, and the Redis transport emulates priority support.

You can also prioritize work by routing high priority tasks to different workers. In the real world this usually works
better than per message priorities. You can use this in combination with rate limiting, and per message priorities to
achieve a responsive system.

Should I use retry or acks_late?

Answer: Depends. It’s not necessarily one or the other, you may want to use both.

Task.retry is used to retry tasks, notably for expected errors that is catch-able with the try block. The AMQP
transaction isn’t used for these errors: if the task raises an exception it’s still acknowledged!

The acks_late setting would be used when you need the task to be executed again if the worker (for some reason)
crashes mid-execution. It’s important to note that the worker isn’t known to crash, and if it does it’s usually an
unrecoverable error that requires human intervention (bug in the worker, or task code).

In an ideal world you could safely retry any task that’s failed, but this is rarely the case. Imagine the following task:

@app.task
def process_upload(filename, tmpfile):
Increment a file count stored in a database

increment_file counter ()
add_file_metadata_to_db(filename, tmpfile)
copy_file_to_destination(filename, tmpfile)

If this crashed in the middle of copying the file to its destination the world would contain incomplete state. This isn’t a
critical scenario of course, but you can probably imagine something far more sinister. So for ease of programming we
have less reliability; It’s a good default, users who require it and know what they are doing can still enable acks_late
(and in the future hopefully use manual acknowledgment).

In addition Task.retry has features not available in AMQP transactions: delay between retries, max retries, etc.

So use retry for Python errors, and if your task is idempotent combine that with acks_late if that level of reliability is
required.

Can | schedule tasks to execute at a specific time?

Answer: Yes. You can use the efa argument of Task.apply _async ().

See also Periodic Tasks.

Can | safely shut down the worker?

Answer: Yes, use the TERM signal.

This will tell the worker to finish all currently executing jobs and shut down as soon as possible. No tasks should be
lost even with experimental transports as long as the shutdown completes.

You should never stop worker with the KILL signal (ki1ll -9), unless you’ve tried TERM a few times and waited
a few minutes to let it get a chance to shut down.

Also make sure you kill the main worker process only, not any of its child processes. You can direct a kill signal to a
specific child process if you know the process is currently executing a task the worker shutdown is depending on, but
this also means that a WorkerLostError state will be set for the task so the task won’t run again.

276 Chapter 3. Contents

https://docs.python.org/dev/reference/compound_stmts.html#try

Celery Documentation, Release 4.4.2

Identifying the type of process is easier if you have installed the setproctitle module:

$ pip install setproctitle

With this library installed you’ll be able to see the type of process in ps listings, but the worker must be restarted for
this to take effect.

See also:
Stopping the worker

Can | run the worker in the background on [platform]?

Answer: Yes, please see Daemonization.

3.8.8 Django

What purpose does the database tables created by django-celery-beat have?

When the database-backed schedule is used the periodic task schedule is taken from the PeriodicTask model,
there are also several other helper tables (IntervalSchedule, CrontabSchedule, PeriodicTasks).

What purpose does the database tables created by django-celery-results have?

The Django database result backend extension requires two extra models: TaskResult and GroupResult.

3.8.9 Windows

Does Celery support Windows?

Answer: No.
Since Celery 4.x, Windows is no longer supported due to lack of resources.

But it may still work and we are happy to accept patches.

3.9 Change history

This document contains change notes for bugfix & new features in the 4.x series, please see What’s new in Celery 4.4
(Cliffs) for an overview of what’s new in Celery 4.4.

3.9.1 4.4.0

release-date 2019-12-16 9.45 A.M UTC+6:00

release-by Asif Saif Uddin
* This version is officially supported on CPython 2.7, 3.5, 3.6, 3.7 & 3.8 and is also supported on PyPy2 & PyPy3.
* Kombu 4.6.7

* Task class definitions can have retry attributes (#5869)

3.9. Change history 277

https://pypi.python.org/pypi/setproctitle/

Celery Documentation, Release 4.4.2

3.9.2 4.4.0rc5

release-date 2019-12-07 21.05 A.M UTC+6:00

release-by Asif Saif Uddin

Kombu 4.6.7

Events bootstep disabled if no events (#5807)

SQS - Reject on failure (#5843)

Add a concurrency model with ThreadPoolExecutor (#5099)
Add auto expiry for DynamoDB backend (#5805)

Store extending result in all backends (#5661)

Fix a race condition when publishing a very large chord header (#5850)

Improve docs and test matrix

3.9.3 4.4.0rc4

release-date 2019-11-11 00.45 A.M UTC+6:00
release-by Asif Saif Uddin

Kombu 4.6.6

Py-AMQP 2.5.2

Python 3.8

Numerious bug fixes

PyPy 7.2

3.9.4 4.4.0rc3

release-date 2019-08-14 23.00 PM UTC+6:00
release-by Asif Saif Uddin

Kombu 4.6.4

Billiard 3.6.1

Py-AMQP 2.5.1

Avoid serializing datetime (#5606)

Fix: (group() | group()) not equals single group (#5574)

Revert “Broker connection uses the heartbeat setting from app config.

Additional file descriptor safety checks.

fixed call for null args (#5631)

Added generic path for cache backend.

Fix Nested group(chain(group)) fails (#5638)
Use self.run() when overriding __call__ (#5652)

278

Chapter 3. Contents

Celery Documentation, Release 4.4.2

* Fix termination of asyncloop (#5671)
 Fix migrate task to work with both v1 and v2 of the message protocol.

» Updating task_routes config during runtime now have effect.

3.9.5 4.4.0rc2

release-date 2019-06-15 4:00 A.M UTC+6:00
release-by Asif Saif Uddin
* Many bugs and regressions fixed.

¢ Kombu 4.6.3

3.9.6 4.4.0rci

release-date 2019-06-06 1:00 PM UTC+6:00
release-by Asif Saif Uddin
* Python 3.4 drop
* Kombu 4.6.1
* Replace deprecated PyMongo methods usage (#5443)
* Pass task request when calling update_state (#5474)
* Fix bug in remaining time calculation in case of DST time change (#5411)
* Fix missing task name when requesting extended result (#5439)
* Fix collections import issue on Python 2.7 (#5428)
* handle AttributeError in base backend exception deserializer (#5435)
* Make AsynPool’s proc_alive_timeout configurable (#5476)
* AMQP Support for extended result (#5495)
* Fix SQL Alchemy results backend to work with extended result (#5498)
* Fix restoring of exceptions with required param (#5500)
* Django: Re-raise exception if ImportError not caused by missing tasks module (#5211)
* Django: fixed a regression putting DB connections in invalid state when CONN_MAX_AGE /= 0 (#5515)
» Fixed OSError leading to lost connection to broker (#4457)
* Fixed an issue with inspect API unable get details of Request
* Fix mogodb backend authentication (#5527)
* Change column type for Extended Task Meta args/kwargs to LargeBinary
* Handle http_auth in Elasticsearch backend results (#5545)
* Fix task serializer being ignored with task_always_eager=True (#5549)
* Fix task.replace to work in .apply() as well as “.apply_async() (#5540)
* Fix sending of worker_process_init signal for solo worker (#5562)

* Fix exception message upacking (#5565)

3.9. Change history 279

Celery Documentation, Release 4.4.2

* Add delay parameter function to beat_schedule (#5558)

* Multiple documentation updates

3.9.7 4.3.0

release-date 2019-03-31 7:00 PM UTC+3:00

release-by Omer Katz

Added support for broadcasting using a regular expression pattern or a glob pattern to multiple Pidboxes.
This allows you to inspect or ping multiple workers at once.

Contributed by Dmitry Malinovsky & Jason Held

Added support for PEP 420 namespace packages.

This allows you to load tasks from namespace packages.

Contributed by Colin Watson

Added acks_on_failure_or_timeout as a setting instead of a task only option.
This was missing from the original PR but now added for completeness.

Contributed by Omer Katz

Added the task_received signal.

Contributed by Omer Katz

Fixed a crash of our CLI that occurred for everyone using Python < 3.6.

The crash was introduced in acd6025 by using the ModuleNotFoundError exception which was introduced
in Python 3.6.

Contributed by Omer Katz

Fixed a crash that occurred when using the Redis result backend while the result_expires is set to None.
Contributed by Toni Ruza & Omer Katz

Added support the DNS seedlist connection format for the MongoDB result backend.

This requires the dnspython package which will be installed by default when installing the dependencies for the
MongoDB result backend.

Contributed by George Psarakis

Bump the minimum eventlet version to 0.24.1.
Contributed by George Psarakis

Replace the msgpack-python package with msgpack.

We’re no longer using the deprecated package. See our important notes for this release for further details on
how to upgrade.

Contributed by Daniel Hahler
Allow scheduling error handlers which are not registered tasks in the current worker.

These kind of error handlers are now possible:

280

Chapter 3. Contents

https://github.com/celery/celery/commit/acd6025b7dc4db112a31020686fc8b15e1722c67
https://docs.python.org/dev/library/exceptions.html#ModuleNotFoundError
https://docs.mongodb.com/manual/reference/connection-string/#dns-seedlist-connection-format

Celery Documentation, Release 4.4.2

from celery import Signature

Signature (
'bar', args=['foo'],
link_error=Signature('msg.err', queue='msg')

) .apply_async ()

» Additional fixes and enhancements to the SSL support of the Redis broker and result backend.
Contributed by Jeremy Cohen
Code Cleanups, Test Coverage & CI Improvements by:
* Omer Katz
* Florian Chardin
Documentation Fixes by:
* Omer Katz
e Samuel Huang
* Amir Hossein Saeid Mehr

* Dmytro Litvinov

3.9.8 4.3.0 RC2

release-date 2019-03-03 9:30 PM UTC+2:00
release-by Omer Katz
* Filesystem Backend: Added meaningful error messages for filesystem backend.
Contributed by Lars Rinn
* New Result Backend: Added the ArangoDB backend.
Contributed by Dilip Vamsi Moturi

* Django: Prepend current working directory instead of appending so that the project directory will have prece-
dence over system modules as expected.

Contributed by Antonin Delpeuch
* Bump minimum py-redis version to 3.2.0.

Due to multiple bugs in earlier versions of py-redis that were causing issues for Celery, we were forced to bump
the minimum required version to 3.2.0.

Contributed by Omer Katz
* Dependencies: Bump minimum required version of Kombu to 4.4

Contributed by Omer Katz

3.9.9 4.3.0 RC1

release-date 2019-02-20 5:00 PM IST

release-by Omer Katz

3.9. Change history 281

Celery Documentation, Release 4.4.2

Canvas: celery.chain.apply () does not ignore keyword arguments anymore when applying the chain.
Contributed by Korijn van Golen
Result Set: Don’t attempt to cache results ina celery. result.ResultSet.

During a join, the results cache was populated using celery. result.ResultSet.get (), if one of the
results contains an exception, joining unexpectedly failed.

The results cache is now removed.
Contributed by Derek Harland

Application: celery.Celery.autodiscover_tasks () now attempts to import the package itself
when the related_name keyword argument is None.

Contributed by Alex Ioannidis

Windows Support: On Windows 10, stale PID files prevented celery beat to run. We now remove them when
a SystemExit israised.

Contributed by :github_user:‘na387¢
Task: Added the new task_acks_on_failure_ or_timeout setting.
Acknowledging SQS messages on failure or timing out makes it impossible to use dead letter queues.

We introduce the new option acks_on_failure_or_timeout, to ensure we can totally fallback on native SQS
message lifecycle, using redeliveries for retries (in case of slow processing or failure) and transitions to dead
letter queue after defined number of times.

Contributed by Mario Kostelac

RabbitMQ Broker: Adjust HA headers to work on RabbitMQ 3.x.
This change also means we’re ending official support for RabbitMQ 2.x.
Contributed by Asif Saif Uddin

Command Line: Improve celery update error handling.
Contributed by Federico Bond

Canvas: Support chords with task_always_eager setto True.
Contributed by Axel Haustant

Result Backend: Optionally store task properties in result backend.

Setting the result_extended configuration option to True enables storing additional task properties in the
result backend.

Contributed by John Arnold

Couchbase Result Backend: Allow the Couchbase result backend to automatically detect the serialization
format.

Contributed by Douglas Rohde
New Result Backend: Added the Azure Block Blob Storage result backend.

The backend is implemented on top of the azure-storage library which uses Azure Blob Storage for a scalable
low-cost PaaS backend.

The backend was load tested via a simple nginx/gunicorn/sanic app hosted on a DS4 virtual machine (4 vCores,
16 GB RAM) and was able to handle 600+ concurrent users at ~170 RPS.

282

Chapter 3. Contents

https://docs.python.org/dev/library/exceptions.html#SystemExit

Celery Documentation, Release 4.4.2

The commit also contains a live end-to-end test to facilitate verification of the backend functional-
ity. The test is activated by setting the AZUREBLOCKBLOB_URL environment variable to azureblock-
blob://{ ConnectionString} where the value for ConnectionString can be found in the Access Keys pane of a
Storage Account resources in the Azure Portal.

Contributed by Clemens Wolff
Task: celery.app.task.update_state () now accepts keyword arguments.

This allows passing extra fields to the result backend. These fields are unused by default but custom result
backends can use them to determine how to store results.

Contributed by Christopher Dignam
Gracefully handle consumer kombu . exceptions.DecodeError.

When using the v2 protocol the worker no longer crashes when the consumer encounters an error while decoding
a message.

Contributed by Steven Sklar
Deployment: Fix init.d service stop.
Contributed by Marcus McHale
Django: Drop support for Django < 1.11.
Contributed by Asif Saif Uddin

Django: Remove old djcelery loader.
Contributed by Asif Saif Uddin

Result Backend: celery.worker.request.Request now passes celery.app.task.Context to
the backend’s store_result functions.

Since the class currently passes self to these functions, revoking a task resulted in corrupted task result data
when django-celery-results was used.

Contributed by Kiyohiro Yamaguchi
Worker: Retry if the heartbeat connection dies.

Previously, we keep trying to write to the broken connection. This results in a memory leak because the event
dispatcher will keep appending the message to the outbound buffer.

Contributed by Raf Geens

Celery Beat: Handle microseconds when scheduling.
Contributed by K Davis

Asynpool: Fixed deadlock when closing socket.

Upon attempting to close a socket, celery.concurrency.asynpool.AsynPool only removed the
queue writer from the hub but did not remove the reader. This led to a deadlock on the file descriptor and
eventually the worker stopped accepting new tasks.

We now close both the reader and the writer file descriptors in a single loop iteration which prevents the dead-
lock.

Contributed by Joshua Engelman
Celery Beat: Correctly consider timezone when calculating timestamp.

Contributed by :github_user:‘yywing*

3.9.

Change history 283

Celery Documentation, Release 4.4.2

Celery Beat: celery.beat.Scheduler.schedules_equal () can now handle either arguments being
a None value.

Contributed by :github_user:* ratson‘

Documentation/Sphinx: Fixed Sphinx support for shared_task decorated functions.
Contributed by Jon Banafato

New Result Backend: Added the CosmosDB result backend.

This change adds a new results backend. The backend is implemented on top of the pydocumentdb library which
uses Azure CosmosDB for a scalable, globally replicated, high-performance, low-latency and high-throughput
PaaS backend.

Contributed by Clemens Wolff
Application: Added configuration options to allow separate multiple apps to run on a single RabbitMQ vhost.

The newly added event_exchange and control_exchange configuration options allow users to use
separate Pidbox exchange and a separate events exchange.

This allow different Celery applications to run separately on the same vhost.

Contributed by Artem Vasilyev

Result Backend: Forget parent result metadata when forgetting a result.

Contributed by :github_user:‘tothegump*

Task Store task arguments inside celery.exceptions.MaxRetriesExceededError.
Contributed by Anthony Ruhier

Result Backend: Added the result_accept_content setting.

This feature allows to configure different accepted content for the result backend.

A special serializer (auth) is used for signed messaging, however the result_serializer remains in json, because
we don’t want encrypted content in our result backend.

To accept unsigned content from the result backend, we introduced this new configuration option to specify the
accepted content from the backend.

Contributed by Benjamin Pereto

Canvas: Fixed error callback processing for class based tasks.
Contributed by Victor Mireyev

New Result Backend: Added the S3 result backend.
Contributed by Florian Chardin

Task: Added support for Cythonized Celery tasks.
Contributed by Andrey Skabelin

Riak Result Backend: Warn Riak backend users for possible Python 3.7 incompatibilities.
Contributed by George Psarakis

Python Runtime: Added Python 3.7 support.

Contributed by Omer Katz & Asif Saif Uddin

Auth Serializer: Revamped the auth serializer.

The auth serializer received a complete overhaul. It was previously horribly broken.

284

Chapter 3. Contents

Celery Documentation, Release 4.4.2

We now depend on cryptography instead of pyOpenSSL for this serializer.

Contributed by Benjamin Pereto

Command Line: celery report now reports kernel version along with other platform details.
Contributed by Omer Katz

Canvas: Fixed chords with chains which include sub chords in a group.

Celery now correctly executes the last task in these types of canvases:

c = chord(
group ([
chain (
dummy.si (),
chord (
group ([dummy.si (), dummy.si()]),
dumnmy.si(),
)I
)I
chain (

dummy.si (),
chord (
group ([dummy.si (), dummy.si()]),
dummy.si (),
)I
)I
1),
dummnmy . si ()

)

c.delay () .get ()

Contributed by Maximilien Cuony

Canvas: Complex canvases with error callbacks no longer raises an AttributeError.

Very complex canvases such as this no longer raise an At t ributeError which prevents constructing them.
We do not know why this bug occurs yet.

Contributed by Manuel Vazquez Acosta

Command Line: Added proper error messages in cases where app cannot be loaded.

Previously, celery crashed with an exception.

‘We now print a proper error message.

Contributed by Omer Katz

Task: Added the task_default_priority setting.

You can now set the default priority of a task using the task_default_priority setting. The setting’s
value will be used if no priority is provided for a specific task.

Contributed by :github_user:‘madprogrammer*
Dependencies: Bump minimum required version of Kombu to 4.3 and Billiard to 3.6.
Contributed by Asif Saif Uddin

Result Backend: Fix memory leak.

3.9.

Change history 285

https://docs.python.org/dev/library/exceptions.html#AttributeError
https://github.com/merchise/xopgi.base/blob/6634819ad5c701c04bc9baa5c527449070843b71/xopgi/xopgi_cdr/cdr_agent.py#L181
https://docs.python.org/dev/library/exceptions.html#AttributeError

Celery Documentation, Release 4.4.2

We reintroduced weak references to bound methods for AsyncResult callback promises, after adding full
weakref support for Python 2 in vine. More details can be found in celery/celery#4839.

Contributed by George Psarakis and :github_user:‘monsterxx03‘.
Task Execution: Fixed roundtrip serialization for eager tasks.

When doing the roundtrip serialization for eager tasks, the task serializer will always be JSON unless the se-
rializer argument is present in the call to celery.app.task.Task.apply_async (). If the serializer
argument is present but is ‘pickle’, an exception will be raised as pickle-serialized objects cannot be deserial-
ized without specifying to serialization.loads what content types should be accepted. The Producer’s serializer
seems to be set to None, causing the default to JSON serialization.

We now continue to use (in order) the serializer argumentto celery.app.task.Task.apply_async(),
if present, or the Producer’s serializer if not None. If the Producer’s serializer is None, it will use the Celery
app’s task_serializer configuration entry as the serializer.

Contributed by Brett Jackson

Redis Result Backend: The celery.backends.redis.ResultConsumer class no longer assumes
celery.backends.redis.ResultConsumer.start () to be called before celery.backends.
redis.ResultConsumer.drain_events().

This fixes a race condition when using the Gevent workers pool.
Contributed by Noam Kush
Task: Added the task_inherit_parent_priority setting.

Setting the task inherit parent_priority configuration option to True will make Celery tasks in-
herit the priority of the previous task linked to it.

Examples:

c = celery.chain(
add.s (2), # priority=None
add.s .set (priority=5), # priority=5
add.s
add.s
add.s

)

), # priority=5

) .set (priority=3), # priority=3
)

, # priority=3

@app.task (bind=True)
def child task (self):
pass

@Qapp.task (bind=True)
def parent_task(self):
child_task.delay ()

child_task will also have priority=5
parent_task.apply_async (args=[], priority=5)

Contributed by :github_user:‘madprogrammer*

Canvas: Added the result_chord_join timeout setting.

Previously, celery.result.GroupResult.join () had a fixed timeout of 3 seconds.
The result_chord_ join_timeout setting now allows you to change it.

Contributed by :github_user:‘srafehi‘

286

Chapter 3. Contents

https://github.com/celery/vine/tree/v1.2.0
https://github.com/celery/celery/pull/4839

Celery Documentation, Release 4.4.2

Code Cleanups, Test Coverage & CI Improvements by:

e Jon Dufresne

* Asif Saif Uddin

* Omer Katz

* Brett Jackson

¢ Bruno Alla

e :github_user:‘tothegump*
* Bojan Jovanovic

¢ Florian Chardin

« :github_user:‘walterqian‘
* Fabian Becker

e Lars Rinn

e :github_user:‘madprogrammer*

¢ Ciaran Courtney

Documentation Fixes by:

Lewis M. Kabui

Dash Winterson
Shanavas M
Brett Randall

Przemyslaw Suliga
Joshua Schmid
Asif Saif Uddin

Xiaodong
Vikas Prasad

Jamie Alessio

Lars Kruse

Guilherme Caminha

Andrea Rabbaglietti

Itay Bittan
Noah Hall

Peng Weikang

Mariatta Wijaya
Ed Morley
Pawel Adamczak

:github_user:‘CoffeeExpress*

:github_user:‘aviadatsnyk*

3.9.

Change history

287

Celery Documentation, Release 4.4.2

* Brian Schrader

* Josue Balandrano Coronel
¢ Tom Clancy

¢ Sebastian Wojciechowski
* Meysam Azad

¢ Willem Thiart

¢ Charles Chan

* Omer Katz

¢ Milind Shakya

3.10 What’s new in Celery 4.4 (Cliffs)

Author Asif Saif Uddin (auvipy at gmail.com)

Change history

What’s new documents describe the changes in major versions, we also have a Change history that lists the changes
in bugfix releases (0.0.x), while older series are archived under the History section.

Celery is a simple, flexible, and reliable distributed programming framework to process vast amounts of messages,
while providing operations with the tools required to maintain a distributed system with python.

It’s a task queue with focus on real-time processing, while also supporting task scheduling.

Celery has a large and diverse community of users and contributors, you should come join us on IRC or our mailing-
list.

To read more about Celery you should go read the introduction.
While this version is backward compatible with previous versions it’s important that you read the following section.

This version is officially supported on CPython 2.7, 3.5, 3.6, 3.7 & 3.8 and is also supported on PyPy2 & PyPy3.

Table of Contents

Make sure you read the important notes before upgrading to this version.

* Preface

— Wall of Contributors
* Upgrading from Celery 4.3
* Important Notes

— Supported Python Versions

— Dropped support for Python 3.4

288 Chapter 3. Contents

Celery Documentation, Release 4.4.2

— Kombu
— Billiard
— Redis Message Broker

Redis Result Backend

DynamoDB Result Backend
S3 Results Backend

SOS Message Broker
— Configuration

* News
— Task Pools
— Result Backends

— Tasks

— Canvas

3.10.1 Preface

The 4.4.0 release continues to improve our efforts to provide you with the best task execution platform for Python.
This release has been codenamed Cliffs which is one of my favorite tracks.

This release focuses on mostly bug fixes and usability improvement for developers. Many long standing bugs, us-
ability issues, documentation issues & minor ehancement issues were squashed which improve the overall developers
experience.

Celery 4.4 is the first release to support Python 3.8 & pypy36-7.2.

As we now begin to work on Celery 5, the next generation of our task execution platform, at least another 4.x is
expected before Celery 5 stable release & will get support for at least 1 years depending on community demand and
support.

We have also focused on reducing contribution friction and updated the contributing tools.

— Asif Saif Uddin

Wall of Contributors

Note: This wall was automatically generated from git history, so sadly it doesn’t not include the people who help
with more important things like answering mailing-list questions.

3.10.2 Upgrading from Celery 4.3

Please read the important notes below as there are several breaking changes.

3.10. What’s new in Celery 4.4 (Cliffs) 289

https://www.youtube.com/watch?v=i524g6JMkwI

Celery Documentation, Release 4.4.2

3.10.3 Important Notes

Supported Python Versions

The supported Python Versions are:
e CPython 2.7
¢ CPython 3.5
e CPython 3.6
e CPython 3.7
e CPython 3.8
PyPy2.7 7.2 (pypy2)
PyPy3.5 7.1 (pypy3)
PyPy3.6 7.2 (pypy3)

Dropped support for Python 3.4

Celery now requires either Python 2.7 or Python 3.5 and above.

Python 3.4 has reached EOL in March 2019. In order to focus our efforts we have dropped support for Python 3.4 in
this version.

If you still require to run Celery using Python 3.4 you can still use Celery 4.3. However we encourage you to upgrade
to a supported Python version since no further security patches will be applied for Python 3.4.

Kombu

Starting from this release, the minimum required version is Kombu 4.6.6.

Billiard

Starting from this release, the minimum required version is Billiard 3.6.1.

Redis Message Broker

Due to multiple bugs in earlier versions of redis-py that were causing issues for Celery, we were forced to bump the
minimum required version to 3.3.0.

Redis Result Backend

Due to multiple bugs in earlier versions of redis-py that were causing issues for Celery, we were forced to bump the
minimum required version to 3.3.0.

DynamoDB Result Backend

The DynamoDB result backend has gained TTL support. As a result the minimum boto3 version was bumped to
1.9.178 which is the first version to support TTL for DynamoDB.

290 Chapter 3. Contents

Celery Documentation, Release 4.4.2

S3 Results Backend

To keep up with the current AWS API changes the minimum boto3 version was bumped to 1.9.125.

SQS Message Broker

To keep up with the current AWS API changes the minimum boto3 version was bumped to 1.9.125.

Configuration

CELERY TASK_RESULT_EXPIRES has been replaced with CELERY RESULT _EXPIRES.

3.10.4 News

Task Pools

Threaded Tasks Pool

We reintroduced a threaded task pool using concurrent.futures. ThreadPoolExecutor.

The previous threaded task pool was experimental. In addition it was based on the threadpool package which is
obsolete.

You can use the new threaded task pool by setting worker pool to ‘threads® or by passing —pool threads to the
celery worker command.

Result Backends
ElasticSearch Results Backend
HTTP Basic Authentication Support

You can now use HTTP Basic Authentication when using the ElasticSearch result backend by providing the username
and the password in the URI.

Previously, they were ignored and only unauthenticated requests were issued.

MongoDB Results Backend
Support for Authentication Source and Authentication Method

You can now specify the authSource and authMethod for the MongoDB using the URI options. The following URI
does just that:

mongodb://user:password@example.com/?authSource=the_database&authMechanism=SCRAM-SHA-
256

Refer to the documentation for details about the various options.

3.10. What’s new in Celery 4.4 (Cliffs) 291

https://pypi.org/project/threadpool/
https://api.mongodb.com/python/current/examples/authentication.html

Celery Documentation, Release 4.4.2

Tasks

Task class definitions can now have retry attributes

You can now use autoretry_for, retry_kwargs, retry_backoff, retry_backoff_max and retry_jitter in class-based tasks:

class BaseTaskWithRetry (Task) :
autoretry_for = (TypeError,)
retry_kwargs = {'max_retries': 5}
retry_backoff = True
retry_backoff_max = 700
retry_Jjitter = False

Canvas

Replacing Tasks Eagerly

You can now call self.replace() on tasks which are run eagerly. They will work exactly the same as tasks which are
run asynchronously.

Chaining Groups

Chaining groups no longer result in a single group.

The following used to join the two groups into one. Now they correctly execute one after another:

>>> result = group(add.si(l, 2), add.si(l, 2)) | group(tsum.s (), tsum.s()).delay()
>>> result.get ()
[6, 6]

3.11 API Reference

Release 4.4
Date Mar 17, 2020

3.11.1 celery — Distributed processing

This module is the main entry-point for the Celery API. It includes commonly needed things for calling tasks, and
creating Celery applications.

Celery Celery application instance

group group tasks together

chain chain tasks together

chord chords enable callbacks for groups
signature () create a new task signature
Signature object describing a task invocation
current_app proxy to the current application instance
current_task | proxy to the currently executing task

292 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Celery application objects

New in version 2.5.

class celery.Celery (main=None, loader=None, backend=None, amgp=None, events=None,
log=None, control=None, set_as_current=True, tasks=None, broker=None,

include=None, changes=None, config_source=None, fixups=None,
task_cls=None, autofinalize=True, namespace=None, strict_typing=True,
**kwargs)

Celery application.

Parameters main (st r)— Name of the main module if running as __main__. This is used as the
prefix for auto-generated task names.

Keyword Arguments
e broker (st r)— URL of the default broker used.

* backend (Union[str, Type[celery.backends.base.Backend]])-There-
sult store backend class, or the name of the backend class to use.

Default is the value of the result_backend setting.

e autofinalize (bool) — If set to False a Runt imeError will be raised if the task
registry or tasks are used before the app is finalized.

* set_as_current (bool)— Make this the global current app.
* include (List [str])— List of modules every worker should import.
* amgp (Union[str, Type[RAMOP]])— AMQP object or class name.

* events (Union[str, Type[celery.app.events.Events]])— Events object
or class name.

* log(Union[str, Type[Logging]])-Log object or class name.

e control (Union[str, Type[celery.app.control.Control]]) — Control
object or class name.

* tasks (Union[str, Type[TaskRegistry]])— A task registry, or the name of a
registry class.

» fixups (List [str])— Listof fix-up plug-ins (e.g., see celery. fixups.django).

* config_source (Union[str, class])— Take configuration from a class, or object.
Attributes may include any settings described in the documentation.

* task_cls (Union[str, Type[celery.app.task.Task]])— base task class to
use. See this section for usage.

user_options = None
Custom options for command-line programs. See Adding new command-line options

steps = None
Custom bootsteps to extend and modify the worker. See I/nstalling Bootsteps.

current_task
Instance of task being executed, or None.

current_worker_ task
The task currently being executed by a worker or None.

Differs from current_task in that it’s not affected by tasks calling other tasks directly, or eagerly.

3.11. API Reference 293

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#RuntimeError
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://www.sphinx-doc.org/en/stable/usage/extensions/autosummary.html#class
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

amgp
amgp.

Type AMAQP related functionality

backend
Current backend instance.

loader
Current loader instance.

control
control.

Type Remote control

events
events.

Type Consuming and sending events

log
log.

Type Logging

tasks
Task registry.

Warning: Accessing this attribute will also auto-finalize the app.

pool
pool.

Note: This attribute is not related to the workers concurrency pool.

Type Broker connection pool

producer_pool

Task
Base task class for this app.

timezone
Current timezone for this app.

This is a cached property taking the time zone from the t imezone setting.
builtin_ fixups = {'celery.fixups.django:fixup'}
oid

Universally unique identifier for this app.

close()
Clean up after the application.

Only necessary for dynamically created apps, and you should probably use the with statement instead.

294 Chapter 3. Contents

https://docs.python.org/dev/reference/compound_stmts.html#with

Celery Documentation, Release 4.4.2

Example

>>> with Celery(set_as_current=False) as app:
with app.connection_for_write() as conn:
pass

signature (*args, **kwargs)
Return a new Signature bound to this app.

bugreport ()
Return information useful in bug reports.

config from_object (0bj, silent=False, force=False, namespace=None)
Read configuration from object.

Object is either an actual object or the name of a module to import.

Example

>>> celery.config_from_object ('myapp.celeryconfig')

>>> from myapp import celeryconfig
>>> celery.config_from_object (celeryconfiqg)

Parameters
e silent (bool)—If true then import errors will be ignored.
» force (bool)— Force reading configuration immediately. By default the configuration
will be read only when required.
config_from_envvar (variable_name, silent=False, force=False)
Read configuration from environment variable.

The value of the environment variable must be the name of a module to import.

Example

>>> os.environ['CELERY_CONFIG_MODULE'] = 'myapp.celeryconfig'
>>> celery.config_from_envvar ('CELERY_CONFIG_MODULE"')

autodiscover_tasks (packages=None, related_name="tasks’, force=False)
Auto-discover task modules.

Searches a list of packages for a “tasks.py” module (or use related_name argument).
If the name is empty, this will be delegated to fix-ups (e.g., Django).

For example if you have a directory layout like this:

foo/__init__ .py
tasks.py
models.py

bar/__init__.py
tasks.py

(continues on next page)

3.11. API Reference 295

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

(continued from previous page)

models.py

baz/__init__.py
models.py

Then calling app . autodiscover_tasks (['foo', 'bar', 'baz']) willresultinthe modules
foo.tasks and bar.tasks being imported.

Parameters

* packages (List [str]) — List of packages to search. This argument may also be a

callable, in which case the value returned is used (for lazy evaluation).

* related_name (str)— The name of the module to find. Defaults to “tasks”: meaning

“look for ‘module.tasks’ for every module in packages.”. If None will only try to
import the package, i.e. “look for ‘module’”.

* force (bool)—By default this call is lazy so that the actual auto-discovery won’t happen

until an application imports the default modules. Forcing will cause the auto-discovery to
happen immediately.

add_defaults (fun)
Add default configuration from dict d.

If the argument is a callable function then it will be regarded as a promise, and it won’t be loaded until the
configuration is actually needed.

This method can be compared to:

>>> celery.conf.update (d)

with a difference that 1) no copy will be made and 2) the dict will not be transferred when the worker
spawns child processes, so it’s important that the same configuration happens at import time when pickle
restores the object on the other side.

add_periodic_task (schedule, sig, args=(), kwargs=(), name=None, **opts)

setup_security (allowed_serializers=None, key=None, cert=None, store=None, digest="sha256’,

serializer="json’)

Setup the message-signing serializer.

This will affect all application instances (a global operation).

Disables untrusted serializers and if configured to use the auth serializer will register the auth serializer
with the provided settings into the Kombu serializer registry.

Parameters

allowed_serializers (Set[str]) — List of serializer names, or content_types
that should be exempt from being disabled.

key (st r)— Name of private key file to use. Defaults to the security key setting.

cert (str) — Name of certificate file to use. Defaults to the
security_certificate setting.

store (str) - Directory containing certificates. Defaults to the
security_cert_store setting.

digest (str)— Digest algorithm used when signing messages. Default is sha256.

296

Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

* serializer (str)— Serializer used to encode messages after they’ve been signed. See
task_serializer for the serializers supported. Default is json.

start (argv=None)
Run celery using argv.

Uses sys.argv if argv is not specified.

task (*args, **opts)
Decorator to create a task class out of any callable.

Examples

@Qapp.task
def refresh feed(url):
store_feed (feedparser.parse (url))

with setting extra options:

@Qapp.task (exchange="'feeds"')
def refresh feed(url):
return store_feed (feedparser.parse(url))

Note: App Binding: For custom apps the task decorator will return a proxy object, so that the act of
creating the task is not performed until the task is used or the task registry is accessed.

If you’re depending on binding to be deferred, then you must not access any attributes on the returned
object until the application is fully set up (finalized).

send_task (name, args=None, kwargs=None, countdown=None, eta=None, task_id=None, pro-
ducer=None, connection=None, router=None, result_cls=None, expires=None, pub-
lisher=None, link=None, link_error=None, add_to_parent=True, group_id=None,
retries=0, chord=None, reply_to=None, time_limit=None, soft_time_limit=None,
root_id=None, parent_id=None, route_name=None, shadow=None, chain=None,

task_type=None, **options)
Send task by name.

Supports the same arguments as Task.apply_async().
Parameters
* name (str)— Name of task to call (e.g., “fasks.add”).
e result_cls (AsyncResult) — Specify custom result class.
gen_task_name (name, module)

AsyncResult
Create new result instance.

See also:
celery.result.AsyncResult.

GroupResult
Create new group result instance.

See also:

celery.result.GroupResult.

3.11. API Reference 297

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/sys.html#sys.argv
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

worker_main (argv=None)
Run celery worker using argv.

Uses sys.

Worker

argv if argv is not specified.

Worker application.

See also:

Worker.

WorkController
Embeddable worker.

See also:

WorkController.

Beat

celery beat scheduler application.

See also:

Beat.

connection_for_read (url=None, **kwargs)
Establish connection used for consuming.

See also:

connection () for supported arguments.

connection_for_ write (url=None, **kwargs)
Establish connection used for producing.

See also:

connection () for supported arguments.

connection (hostname=None, userid=None, password=None, virtual_host=None, port=None,

ssl=None, connect_timeout=None, transport=None, transport_options=None, heart-
beat=None, login_method=None, failover_strategy=None, **kwargs)

Establish a connection to the message broker.

Please use connection_for_read() and connection_for_write () instead, to convey the in-
tent of use for this connection.

Parameters

url — Either the URL or the hostname of the broker to use.

hostname (st r)— URL, Hostname/IP-address of the broker. If a URL is used, then the
other argument below will be taken from the URL instead.

userid (str)— Username to authenticate as.

password (st r) — Password to authenticate with

virtual_ host (str)— Virtual host to use (domain).

port (int)— Port to connect to.

ssl (bool, Dict)— Defaultstothe broker use_ sslI setting.
transport (str)— defaults to the broker_transport setting.

transport_options (Dict) — Dictionary of transport specific options.

298

Chapter 3. Contents

https://docs.python.org/dev/library/sys.html#sys.argv
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

* heartbeat (int)— AMQP Heartbeat in seconds (pyamgp only).
* login_method (st r)— Custom login method to use (AMQP only).
* failover_ strategy (str, Callable)- Custom failover strategy.
* xxkwargs — Additional arguments to kombu.Connection.
Returns the lazy connection instance.
Return type kombu.Connection

connection_or_ acquire (connection=None, pool=True, *_, **)
Context used to acquire a connection from the pool.

For use within a with statement to get a connection from the pool if one is not already provided.

Parameters connection (kombu.Connection) — If not provided, a connection will be
acquired from the connection pool.

producer_or_acquire (producer=None)
Context used to acquire a producer from the pool.

For use within a with statement to get a producer from the pool if one is not already provided

Parameters producer (kombu.Producer) — If not provided, a producer will be acquired
from the producer pool.

select_queues (queues=None)
Select subset of queues.

Parameters queues (Sequence [str])— alist of queue names to keep.

now ()
Return the current time and date as a datetime.

set_current ()
Make this the current app for this thread.

set_default ()
Make this the default app for all threads.

finalize (auto=False)
Finalize the app.

This loads built-in tasks, evaluates pending task decorators, reads configuration, etc.

on_init ()
Optional callback called at init.

prepare_config (c)
Prepare configuration before it is merged with the defaults.

on_configure
Signal sent when app is loading configuration.

on_after_ configure
Signal sent after app has prepared the configuration.

on_after finalize
Signal sent after app has been finalized.

on_after fork
Signal sent in child process after fork.

3.11. API Reference 299

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/reference/compound_stmts.html#with
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/reference/compound_stmts.html#with
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

Canvas primitives

See Canvas: Designing Work-flows for more about creating task work-flows.

class celery.group (*fasks, **options)
Creates a group of tasks to be executed in parallel.

A group is lazy so you must call it to take action and evaluate the group.

Note: If only one argument is passed, and that argument is an iterable then that’ll be used as the list of tasks
instead: this allows us to use group with generator expressions.

Example
>>> lazy_group = group([add.s (2, 2), add.s (4, 4)])
>>> promise = lazy_group () # <—— evaluate: returns lazy result.
>>> promise.get () # <—— will wait for the task to return
(4, 8]
Parameters

* xtasks (List [Signature]) — A list of signatures that this group will call. If there’s
only one argument, and that argument is an iterable, then that’ll define the list of signatures
instead.

* xxoptions (Any) — Execution options applied to all tasks in the group.
Returns

signature that when called will then call all of the tasks in the group (and return a
GroupResult instance that can be used to inspect the state of the group).

Return type group
class celery.chain (*fasks, **options)
Chain tasks together.

Each tasks follows one another, by being applied as a callback of the previous task.

Note: If called with only one argument, then that argument must be an iterable of tasks to chain: this allows us
to use generator expressions.

Example

This is effectively ((2 + 2) + 4):

>>> res = chain(add.s (2, 2), add.s(4)) ()

>>> res.get ()
Q

Calling a chain will return the result of the last task in the chain. You can get to the other tasks by following the
result.parent’s:

300 Chapter 3. Contents

Celery Documentation, Release 4.4.2

>>> res.parent.get ()
4

Using a generator expression:

>>> lazy_chain = chain(add.s (i) for i in range (10))
>>> res = lazy_chain(3)

Parameters *tasks (Signature) — List of task signatures to chain. If only one argument is
passed and that argument is an iterable, then that’ll be used as the list of signatures to chain
instead. This means that you can use a generator expression.

Returns

A lazy signature that can be called to apply the first task in the chain. When that task suc-
ceeds the next task in the chain is applied, and so on.

Return type chain

class celery.chord (header, body=None, task="celery.chord’, args=None, kwargs=None, app=None,

**options)
Barrier synchronization primitive.

A chord consists of a header and a body.

The header is a group of tasks that must complete before the callback is called. A chord is essentially a callback

for a group of tasks.

The body is applied with the return values of all the header tasks as a list.

Example

The chord:

>>> res = chord([add.s (2, 2), add.s(4, 4)]) (sum_task.s())

is effectively 3((2 +2) + (4 +4)):

>>> res.get ()

12

celery.signature (varies, *args, **kwargs)
Create new signature.

« if the first argument is a signature already then it’s cloned.

« if the first argument is a dict, then a Signature version is returned.

Returns The resulting signature.
Return type Signature

class celery.Signature (task=None, args=None, kwargs=None, options=None, type=None, sub-

task_type=None, immutable=False, app=None, **ex)
Task Signature.

Class that wraps the arguments and execution options for a single task invocation.

3.11. API Reference

Celery Documentation, Release 4.4.2

Used as the parts in a group and other constructs, or to pass tasks around as callbacks while being compatible
with serializers with a strict type subset.

Signatures can also be created from tasks:

* Using the . signature () method that has the same signature as Task .apply_async:

>>> add.signature (args=(1,), kwargs={'kw': 2}, options={})

 orthe . s () shortcut that works for star arguments:

>>> add.s (1, kw=2)

 the . s () shortcut does not allow you to specify execution options but there’s a chaning .set method that
returns the signature:

’>>> add.s (2, 2).set (countdown=10) .set (expires=30) .delay ()

Note: You should use signature () to create new signatures. The Signature class is the type returned
by that function and should be used for isinstance checks for signatures.

See also:

Canvas: Designing Work-flows for the complete guide.

Parameters

e task (Union[Type[celery.app.task.Task], str]) - Either a task
class/instance, or the name of a task.

* args (Tuple) — Positional arguments to apply.
* kwargs (Dict)— Keyword arguments to apply.

* options (Dict)— Additional options to Task.apply_async ().

Note: If the first argument is a dict, the other arguments will be ignored and the values in the dict will be
used instead:

>>> s = signature('tasks.add', args=(2, 2))
>>> signature(s)

{'"task': 'tasks.add', args=(2, 2), kwargs={}, options={}}

Proxies
celery.current_app
The currently set app for this thread.

celery.current_task
The task currently being executed (only set in the worker, or when eager/apply is used).

Celery Application.

302 Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#dict

Celery Documentation, Release 4.4.2

e Proxies

e Functions

3.11.2 Proxies

celery.app.default_app = <Celery default>
Proxy always returning the app set as default.

3.11.3 Functions
celery.app.app_or_default (app=None)
Function returning the app provided or the default app if none.

The environment variable CELERY_TRACE_APP is used to trace app leaks. When enabled an exception is
raised if there is no active app.

celery.app.enable_trace ()
Enable tracing of app instances.

celery.app.disable_trace()
Disable tracing of app instances.

3.11.4 celery.app.task

Task implementation: request context and the task base class.

class celery.app.task.Task
Task base class.

Note: When called tasks apply the run () method. This method must be defined by all tasks (that is unless the
__call__ () method is overridden).

AsyncResult (task_id, **kwargs)
Get AsyncResult instance for the specified task.

Parameters task_id (str)— Task id to get result for.

exception MaxRetriesExceededError (*args, **kwargs)
The tasks max restart limit has been exceeded.

exception OperationalError
Recoverable message transport connection error.

Request = 'celery.worker.request:Request'
Request class used, or the qualified name of one.

Strategy = 'celery.worker.strategy:default'
Execution strategy used, or the qualified name of one.

abstract = True
Deprecated attribute abst ract here for compatibility.

3.11. API Reference 303

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

acks_late = False
When enabled messages for this task will be acknowledged after the task has been executed, and not just
before (the default behavior).

Please note that this means the task may be executed twice if the worker crashes mid execution.
The application default can be overridden with the task_acks_late setting.

acks_on_failure_or_timeout = True
When enabled messages for this task will be acknowledged even if it fails or times out.

Configuring this setting only applies to tasks that are acknowledged after they have been executed and
only if task_acks_late is enabled.

The application default can be overridden with the task_acks on_failure or timeout setting.

add_to_chord (sig, lazy=False)
Add signature to the chord the current task is a member of.

New in version 4.0.
Currently only supported by the Redis result backend.
Parameters
e sig (~@Signature) — Signature to extend chord with.

* lazy (bool) — If enabled the new task won’t actually be called, and sig.delay ()
must be called manually.

after_return (status, retval, task_id, args, kwargs, einfo)
Handler called after the task returns.

Parameters
e status (str)— Current task state.
* retval (Any) — Task return value/exception.
e task_id (str) - Unique id of the task.
* args (Tuple) — Original arguments for the task.
* kwargs (Dict) — Original keyword arguments for the task.
* einfo (ExceptionInfo)— Exception information.
Returns The return value of this handler is ignored.
Return type None

apply (args=None, kwargs=None, link=None, link_error=None, task_id=None, retries=None,
throw=None, logfile=None, loglevel=None, headers=None, **options)
Execute this task locally, by blocking until the task returns.

Parameters
* args (Tuple) — positional arguments passed on to the task.
* kwargs (Dict) — keyword arguments passed on to the task.

* throw (bool)—Re-raise task exceptions. Defaults to the task_eager_propagates
setting.

Returns pre-evaluated result.

Return type celery.result. EagerResult

304 Chapter 3. Contents

mailto:~@Signature
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

apply_async (args=None, kwargs=None, task_id=None, producer=None, link=None,

link_error=None, shadow=None, **options)

Apply tasks asynchronously by sending a message.

Parameters

args (Tuple) — The positional arguments to pass on to the task.
kwargs (Dict) — The keyword arguments to pass on to the task.

countdown (f1oat) — Number of seconds into the future that the task should execute.
Defaults to immediate execution.

eta (datetime) — Absolute time and date of when the task should be executed. May
not be specified if countdown is also supplied.

expires (float, datetime)— Datetime or seconds in the future for the task should
expire. The task won’t be executed after the expiration time.

shadow (st r) — Override task name used in logs/monitoring. Default is retrieved from
shadow_name ().

connection (kombu.Connection) — Re-use existing broker connection instead of
acquiring one from the connection pool.

retry (bool) — If enabled sending of the task message will be retried in the event of
connection loss or failure. Default is taken from the task _publish retry setting.
Note that you need to handle the producer/connection manually for this to work.

retry policy (Mapping) - Override the retry policy used. See the
task_publish_retry_policy setting.

queue (str, kombu.Queue) — The queue to route the task to. This must be a key
present in task_queues, or task_create_missing_queues must be enabled.
See Routing Tasks for more information.

exchange (str, kombu.Exchange)—Named custom exchange to send the task to.
Usually not used in combination with the queue argument.

routing_key (str)— Custom routing key used to route the task to a worker server. If
in combination with a queue argument only used to specify custom routing keys to topic
exchanges.

priority (int) — The task priority, a number between 0 and 9. Defaults to the
priority attribute.

serializer (str)— Serialization method to use. Can be pickle, json, yaml, msgpack or
any custom serialization method that’s been registered with kombu.serialization.
registry. Defaults to the serializer attribute.

compression (str) — Optional compression method to use. Can be one of z1ib,
bzip2, or any custom compression methods registered with kombu . compression.
register (). Defaults to the task_compression setting.

link (Signature) — A single, or a list of tasks signatures to apply if the task returns
successfully.

link_error (Signature) — A single, or a list of task signatures to apply if an error
occurs while executing the task.

producer (kombu.Producer) — custom producer to use when publishing the task.

3.11. API Reference

305

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.compression.html#kombu.compression.register
https://kombu.readthedocs.io/en/master/reference/kombu.compression.html#kombu.compression.register
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer

Celery Documentation, Release 4.4.2

* add_to_parent (bool)—If setto True (default) and the task is applied while executing
another task, then the result will be appended to the parent tasks request .children
attribute. Trailing can also be disabled by default using the t rai I attribute

e publisher (kombu.Producer)— Deprecated alias to producer.
* headers (Dict) — Message headers to be included in the message.
Returns Promise of future evaluation.
Return type celery.result. AsyncResult
Raises

* TypeError — If not enough arguments are passed, or too many arguments are passed.
Note that signature checks may be disabled by specifying @task (typing=False).

* kombu.exceptions.OperationalError —If a connection to the transport cannot
be made, or if the connection is lost.

Note: Also supports all keyword arguments supported by kombu .Producer.publish ().

autoregister = True
If disabled this task won’t be registered automatically.

backend
The result store backend used for this task.

chunks (it, n)
Create a chunks task for this task.

default_retry_delay = 180
Default time in seconds before a retry of the task should be executed. 3 minutes by default.

delay (*args, **kwargs)
Star argument version of apply_async ().

Does not support the extra options enabled by apply_async ().
Parameters
* xargs (Any) — Positional arguments passed on to the task.
* xxkwargs (Any) — Keyword arguments passed on to the task.
Returns Future promise.
Return type celery.result.AsyncResult

expires = None
Default task expiry time.

ignore_result = False
If enabled the worker won’t store task state and return values for this task. Defaults to the

task_ignore_result setting.

map (it)
Create a xmap task from it.

max_retries = 3
Maximum number of retries before giving up. If set to None, it will never stop retrying.

name = None
Name of the task.

306 Chapter 3. Contents

https://docs.python.org/dev/library/functions.html#bool
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/exceptions.html#TypeError
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer.publish

Celery Documentation, Release 4.4.2

classmethod on_bound (app)
Called when the task is bound to an app.

Note: This class method can be defined to do additional actions when the task class is bound to an app.

on_failure (exc, task_id, args, kwargs, einfo)
Error handler.

This is run by the worker when the task fails.

Parameters
* exc (Exception)— The exception raised by the task.
* task_id (str) - Unique id of the failed task.
* args (Tuple) — Original arguments for the task that failed.
* kwargs (Dict)— Original keyword arguments for the task that failed.
* einfo (ExceptionInfo)— Exception information.

Returns The return value of this handler is ignored.

Return type None

on_retry (exc, task_id, args, kwargs, einfo)
Retry handler.

This is run by the worker when the task is to be retried.

Parameters
* exc (Exception)—The exception sentto retry ().
e task_id (str) - Unique id of the retried task.
* args (Tuple) — Original arguments for the retried task.
* kwargs (Dict) — Original keyword arguments for the retried task.
* einfo (ExceptionInfo)— Exception information.

Returns The return value of this handler is ignored.

Return type None

on_success (retval, task_id, args, kwargs)
Success handler.

Run by the worker if the task executes successfully.
Parameters
e retval (Any) — The return value of the task.
* task_id (str)— Unique id of the executed task.
* args (Tuple) — Original arguments for the executed task.
* kwargs (Dict) — Original keyword arguments for the executed task.
Returns The return value of this handler is ignored.

Return type None

3.11. API Reference 307

https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/constants.html#None

Celery Documentation, Release 4.4.2

priority = None
Default task priority.

rate_limit = None

None (no rate limit), ‘7/00/s’ (hundred tasks a second), ‘700/m’ (hundred tasks a minute),*“100/h’ ¢ (hundred

tasks an hour)
Type Rate limit for this task type. Examples

reject_on_worker_lost = None

Even if acks_late is enabled, the worker will acknowledge tasks when the worker process executing

them abruptly exits or is signaled (e.g., KILL/INT, etc).

Setting this to true allows the message to be re-queued instead, so that the task will execute again by the

same worker, or another worker.
Warning: Enabling this can cause message loops; make sure you know what you’re doing.

replace (sig)
Replace this task, with a new task inheriting the task id.

Execution of the host task ends immediately and no subsequent statements will be run.
New in version 4.0.
Parameters sig (~@Signature) — signature to replace with.
Raises
* Tgnore — This is always raised when called in asynchrous context.
 Itis best to always use return self.replace(...) toconvey
* to the reader that the task won’t continue after being replaced.

request
Get current request object.

request_stack = <celery.utils.threads._LocalStack object>
Task request stack, the current request will be the topmost.

resultrepr_maxsize = 1024
Max length of result representation used in logs and events.

retry (args=None, kwargs=None, exc=None, throw=True, eta=None, countdown=None,

max_retries=None, **options)
Retry the task, adding it to the back of the queue.

Example

>>> from imaginary twitter_ lib import Twitter
>>> from proj.celery import app

>>> @app.task (bind=True)
def tweet (self, auth, message):
twitter = Twitter (oauth=auth)
try:
twitter.post_status_update (message)
except twitter.FailWhale as exc:
Retry in 5 minutes.

self.retry(countdown=60 x 5, exc=exc)

308 Chapter 3. Contents

mailto:~@Signature

Celery Documentation, Release 4.4.2

Note: Although the task will never return above as retry raises an exception to notify the worker, we use
raise in front of the retry to convey that the rest of the block won’t be executed.

Parameters
* args (Tuple) — Positional arguments to retry with.
* kwargs (Dict)— Keyword arguments to retry with.

* exc (Exception) — Custom exception to report when the max retry limit has been ex-
ceeded (default: MaxRetriesExceededError).

If this argument is set and retry is called while an exception was raised (sys.
exc_info () is set) it will attempt to re-raise the current exception.

If no exception was raised it will raise the exc argument provided.
* countdown (f1oat)— Time in seconds to delay the retry for.
* eta (datetime)— Explicit time and date to run the retry at.

* max_retries (int) — If set, overrides the default retry limit for this execution.
Changes to this parameter don’t propagate to subsequent task retry attempts. A value
of None, means “use the default”, so if you want infinite retries you’d have to set the
max_retries attribute of the task to None first.

e time_1limit (int) - If set, overrides the default time limit.
e soft_time_ limit (int) - If set, overrides the default soft time limit.

e throw (bool)—If thisis False, don’t raise the Ret ry exception, that tells the worker
to mark the task as being retried. Note that this means the task will be marked as failed if
the task raises an exception, or successful if it returns after the retry call.

* xxoptions (Any) — Extra options to pass on to apply_async ().

Raises celery.exceptions.Retry — To tell the worker that the task has been re-sent for
retry. This always happens, unless the throw keyword argument has been explicitly set to
False, and is considered normal operation.

run (*args, **kwargs)
The body of the task executed by workers.

s (*args, **kwargs)
Create signature.

Shortcut for .s (xa, **k) -> .signature(a, k).

send_event (type_, retry=True, retry_policy=None, **fields)
Send monitoring event message.

This can be used to add custom event types in Flower and other monitors.
Parameters type (str)—Type of event, e.g. "task-failed".
Keyword Arguments

* retry (bool) — Retry sending the message if the connection is lost. Default is taken
from the task_publish_ retry setting.

e retry policy (Mapping) — Retry settings. Default is taken from the
task_publish_retry_policy setting.

3.11.

API Reference 309

https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://pypi.python.org/pypi/Flower/
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

* xxfields (Any) — Map containing information about the event. Must be JSON serial-
izable.

send_events = True
If enabled the worker will send monitoring events related to this task (but only if the worker is configured
to send task related events). Note that this has no effect on the task-failure event case where a task is not
registered (as it will have no task class to check this flag).

serializer = 'json'
The name of a serializer that are registered with kombu.serialization.registry. Default is
‘json’.

shadow_name (args, kwargs, options)
Override for custom task name in worker logs/monitoring.

Example

from celery.utils.imports import qualname

def shadow_name (task, args, kwargs, options):
return qualname (args[0])

@app.task (shadow_name=shadow_name, serializer='pickle')
def apply_ function_async(fun, xargs, **kwargs):
return fun(xargs, =**kwargs)

Parameters
* args (Tuple) — Task positional arguments.
* kwargs (Dict) — Task keyword arguments.
* options (Dict) — Task execution options.
si (*args, **kwargs)
Create immutable signature.
Shortcut for .si (xa, **k) —-> .signature(a, k, immutable=True).

signature (args=None, *starargs, **starkwargs)
Create signature.

Returns
object for this task, wrapping arguments and execution options for a single task invocation.
Return type signature

soft_time limit = None
Soft time limit. Defaults to the task_soft_time_ limit setting.

starmap (it)
Create a xstarmap task from it.

store_errors_even_if ignored = False
When enabled errors will be stored even if the task is otherwise configured to ignore results.

subtask (args=None, *starargs, **starkwargs)
Create signature.

Returns

310 Chapter 3. Contents

Celery Documentation, Release 4.4.2

object for this task, wrapping arguments and execution options for a single task invocation.
Return type signature

throws = ()
Tuple of expected exceptions.

These are errors that are expected in normal operation and that shouldn’t be regarded as a real error by the
worker. Currently this means that the state will be updated to an error state, but the worker won’t log the
event as an error.

time_limit = None
Hard time limit. Defaults to the task_time_ 1imit setting.

track_started = False
If enabled the task will report its status as ‘started’ when the task is executed by a worker. Disabled by
default as the normal behavior is to not report that level of granularity. Tasks are either pending, finished,
or waiting to be retried.

Having a ‘started’ status can be useful for when there are long running tasks and there’s a need to report
what task is currently running.

The application default can be overridden using the task track started setting.

trail = True
If enabled the request will keep track of subtasks started by this task, and this information will be sent with
the result (result.children).

typing = True
Enable argument checking. You can set this to false if you don’t want the signature to be checked when
calling the task. Defaults to Celery.strict_typing.

update_state (fask_id=None, state=None, meta=None, **kwargs)
Update task state.

Parameters
e task_id (str)—1Id of the task to update. Defaults to the id of the current task.
* state (str)— New state.
* meta (Dict) — State meta-data.

class celery.app.task.Context (*args, **kwargs)
Task request variables (Task.request).

celery.app.task.TaskType
alias of builtins.type

Sending/Receiving Messages (Kombu integration).

« AMQP

* Queues

3.11.5 AMQP

class celery.app.amgp.AMQP (app)
App AMQP API: app.amqp.

3.11. API Reference 311

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

Connection
Broker connection class used. Default is kombu . Connection.

Consumer
Base Consumer class used. Default is kombu . Consumer.

Producer
Base Producer class used. Default is kombu .Producer.

queues
All currently defined task queues (a Queues instance).

argsrepr_maxsize
Max size of positional argument representation used for logging purposes. Default is 1024.

kwargsrepr_ maxsize
Max size of keyword argument representation used for logging purposes. Default is 1024.

Queues (queues, create_missing=None, ha_policy=None, autoexchange=None, max_priority=None)

Router (queues=None, create_missing=None)
Return the current task router.

flush_routes ()
create_task _message
send_task_message
default_queue
default_exchange
producer_pool
router

routes

3.11.6 Queues

class celery.app.amgp.Queues (queues=None, default_exchange=None, create_missing=True,
ha_policy=None, autoexchange=None, max_priority=None,

default_routing_key=None)
Queue name declaration mapping.

Parameters
* queues (Iterable) — Initial list/tuple or dict of queues.

* create_missing (bool) — By default any unknown queues will be added automati-
cally, but if this flag is disabled the occurrence of unknown queues in wanted will raise
KeyError.

* ha_policy (Sequence, str)— Default HA policy for queues with none set.
* max_priority (int)— Default x-max-priority for queues with none set.

add (queue, **kwargs)
Add new queue.

The first argument can either be a kombu . Queue instance, or the name of a queue. If the former the rest
of the keyword arguments are ignored, and options are simply taken from the queue instance.

Parameters

312 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#KeyError
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue

Celery Documentation, Release 4.4.2

* queue (kombu.Queue, str)- Queue to add.
e exchange (kombu.Exchange, str)—if queue is str, specifies exchange name.
* routing key (str)—if queue is str, specifies binding key.
* exchange_type (st r)—if queue is str, specifies type of exchange.
* xxoptions (Any)— Additional declaration options used when queue is a str.
add_compat (name, **options)
consume_from

deselect (exclude)
Deselect queues so that they won’t be consumed from.

Parameters exclude (Sequence[str], str)— Names of queues to avoid consuming
from.

format (indent=0, indent_first=True)
Format routing table into string for log dumps.

new_missing (name)

select (include)
Select a subset of currently defined queues to consume from.

Parameters include (Sequence[str], str)—Names of queues to consume from.

select_add (queue, **kwargs)
Add new task queue that’ll be consumed from.

The queue will be active even when a subset has been selected using the celery worker -0 option.

3.11.7 celery.app.defaults

Configuration introspection and defaults.

class celery.app.defaults.Option (default=None, *args, **kwargs)
Describes a Celery configuration option.

alt = None

deprecate_by = None

old = {}

remove_by = None

to_python (value)

typemap = {'any': <function Option.<lambda>>, 'bool': <function strtobool>, 'dict':

celery.app.defaults.flatten (d, root=", keyfilter=<function _flatten_keys>)
Flatten settings.

celery.app.defaults. £find (name, namespace=’celery’)
Find setting by name.

3.11. API Reference 313

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

3.11.8 celery.app.control

Worker Remote Control Client.
Client for worker remote control commands. Server implementation is in celery.worker.control.

class celery.app.control.Inspect (destination=None, timeout=1.0, callback=None, con-
nection=None, app=None, limit=None, pattern=None,

matcher=None)
API for app.control.inspect.

active (safe=None)
active_queues ()

app = None

clock ()

conf (with_defaults=False)

hello (from_node, revoked=None)
memdump (samples=10)

memsample ()

objgraph (type="Request’, n=200, max_depth=10)
ping (destination=None)
query_task (*ids)

registered (*taskinfoitems)
registered_tasks (*taskinfoitems)
report ()

reserved (safe=None)

revoked ()

scheduled (safe=None)

stats ()

class celery.app.control.Control (app=None)
Worker remote control client.

class Mailbox (namespace, type=’direct’, connection=None, clock=None, accept=None, seri-
alizer=None, producer_pool=None, queue_ttl=None, queue_expires=None, re-

ply_queue_ttl=None, reply_queue_expires=10.0)
Process Mailbox.

Node (hostname=None, state=None, channel=None, handlers=None)

abcast (command, kwargs=None)

accept = ['json']

call (destination, command, kwargs=None, timeout=None, callback=None, channel=None)
cast (destination, command, kwargs=None)

connection = None

exchange = None

314 Chapter 3. Contents

Celery Documentation, Release 4.4.2

exchange_fmt = '$%s.pidbox'

get_queue (hostname)

get_reply queue ()

multi_call (command, kwargs=None, timeout=1, limit=None, callback=None, channel=None)
namespace = None

node_cls
alias of Node

oid

producer_or_acquire (producer=None, channel=None)
producer_pool

reply exchange = None

reply_exchange_fmt = 'reply.%s.pidbox'
reply_ queue

serializer = None

type = 'direct'

add_consumer (queue, exchange=None, exchange_type="direct’, routing_key=None, options=None,

destination=None, **kwargs)
Tell all (or specific) workers to start consuming from a new queue.

Only the queue name is required as if only the queue is specified then the exchange/routing key will be set
to the same name (like automatic queues do).

Note: This command does not respect the default queue/exchange options in the configuration.

Parameters
* queue (str)— Name of queue to start consuming from.
* exchange (st r)— Optional name of exchange.

* exchange_type (str) — Type of exchange (defaults to ‘direct’) command to, when
empty broadcast to all workers.

* routing_ key (str)— Optional routing key.
* options (Dict) — Additional options as supported by kombu.entity.Queue.
from_dict ().
See also:
broadcast () for supported keyword arguments.

autoscale (max, min, destination=None, **kwargs)
Change worker(s) autoscale setting.

See also:

Supports the same arguments as broadcast ().

3.11. API Reference 315

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

broadcast (command, arguments=None, destination=None, connection=None, reply=False, time-
out=1.0, limit=None, callback=None, channel=None, pattern=None, matcher=None,

**extra_kwargs)
Broadcast a control command to the celery workers.

Parameters
¢ command (st r)— Name of command to send.
* arguments (Dict)— Keyword arguments for the command.

* destination (List) - If set, a list of the hosts to send the command to, when empty
broadcast to all workers.

e connection (kombu.Connection)— Custom broker connection to use, if not set, a
connection will be acquired from the pool.

* reply (bool)— Wait for and return the reply.

* timeout (float) - Timeout in seconds to wait for the reply.

e limit (int)— Limit number of replies.

* callback (Callable)— Callback called immediately for each reply received.
e pattern (str)— Custom pattern string to match

* matcher (Callable)— Custom matcher to run the pattern to match

cancel_consumer (queue, destination=None, **kwargs)
Tell all (or specific) workers to stop consuming from queue.

See also:
Supports the same arguments as broadcast ().

disable_events (destination=None, **kwargs)
Tell all (or specific) workers to disable events.

See also:
Supports the same arguments as broadcast ().

discard_all (connection=None)
Discard all waiting tasks.

This will ignore all tasks waiting for execution, and they will be deleted from the messaging server.

Parameters connection (kombu.Connection) — Optional specific connection instance
to use. If not provided a connection will be acquired from the connection pool.

Returns the number of tasks discarded.
Return type int
election (id, topic, action=None, connection=None)

enable_events (destination=None, **kwargs)
Tell all (or specific) workers to enable events.

See also:
Supports the same arguments as broadcast ().

heartbeat (destination=None, **kwargs)
Tell worker(s) to send a heartbeat immediately.

See also:

316 Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.4.2

Supports the same arguments as broadcast ()
inspect

ping (destination=None, timeout=1.0, **kwargs)
Ping all (or specific) workers.

Returns Listof { 'hostname': reply} dictionaries.
Return type List[Dict]

See also:

broadcast () for supported keyword arguments.

pool_grow (n=1, destination=None, **kwargs)
Tell all (or specific) workers to grow the pool by n.

See also:
Supports the same arguments as broadcast ().

pool_restart (modules=None, reload=False, reloader=None, destination=None, **kwargs)
Restart the execution pools of all or specific workers.

Keyword Arguments
e modules (Sequence [str])— List of modules to reload.
* reload (bool) — Flag to enable module reloading. Default is False.
* reloader (Any) — Function to reload a module.
¢ destination (Sequence [str]) - List of worker names to send this command to.
See also:
Supports the same arguments as broadcast ()

pool_shrink (n=1, destination=None, **kwargs)
Tell all (or specific) workers to shrink the pool by n.

See also:
Supports the same arguments as broadcast ().

purge (connection=None)
Discard all waiting tasks.

This will ignore all tasks waiting for execution, and they will be deleted from the messaging server.

Parameters connection (kombu.Connection) — Optional specific connection instance
to use. If not provided a connection will be acquired from the connection pool.

Returns the number of tasks discarded.
Return type int

rate_limit (task_name, rate_limit, destination=None, **kwargs)
Tell workers to set a new rate limit for task by type.

Parameters
* task_name (str)— Name of task to change rate limit for.

e rate_limit (int, str) - The rate limit as tasks per second, or a rate limit string
(‘100/m’, etc. see celery.task.base.Task.rate_1limit for more information).

3.11. API Reference 317

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

See also:

broadcast () for supported keyword arguments.

revoke (task_id, destination=None, terminate=False, signal="SIGTERM’, **kwargs)

Tell all (or specific) workers to revoke a task by id (or list of ids).

If a task is revoked, the workers will ignore the task and not execute it after all.

Parameters

e task_id (Union (str, 1ist))—Id of the task to revoke (or list of ids).

* terminate (bool) — Also terminate the process currently working on the task (if any).

e signal (str)— Name of signal to send to process if terminate. Default is TERM.

See also:

broadcast () for supported keyword arguments.

shutdown (destination=None, **kwargs)
Shutdown worker(s).

See also:
Supports the same arguments as broadcast ()

terminate (fask_id, destination=None, signal="SIGTERM’, **kwargs)
Tell all (or specific) workers to terminate a task by id (or list of ids).

See also:
This is just a shortcut to revoke () with the terminate argument enabled.

time_limit (task_name, soft=None, hard=None, destination=None, **kwargs)
Tell workers to set time limits for a task by type.

Parameters
* task_name (str)— Name of task to change time limits for.
e soft (float)— New soft time limit (in seconds).
e hard (fI1oat)— New hard time limit (in seconds).

* xxkwargs (Any) — arguments passed on to broadcast ().

celery.app.control.flatten_reply (reply)
Flatten node replies.

Convert from a list of replies in this format:

[{'aRexample.com': reply},
{'bl@example.com': reply}]

into this format:

{'alexample.com': reply,
'b@example.com': reply}

3.11.9 celery.app.registry

Registry of available tasks.

318

Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.4.2

class celery.app.registry.TaskRegistry
Map of registered tasks.

exception NotRegistered
The task ain’t registered.

filter_types (type)
periodic ()

register (task)
Register a task in the task registry.

The task will be automatically instantiated if not already an instance. Name must be configured prior to

registration.
regular ()

unregister (name)
Unregister task by name.

Parameters name (st r) — name of the task to unregister, or a celery.task.base.Task

with a valid name attribute.

Raises celery.exceptions.NotRegistered — if the task is not registered.

3.11.10 celery.app.backends

Backend selection.

celery.app.backends.by_name (backend=None, loader=None,

sion_namespace="celery.result_backends’)
Get backend class by name/alias.

celery.app.backends.by_url (backend=None, loader=None)
Get backend class by URL.

3.11.11 celery.app.builtins

Built-in Tasks.

The built-in tasks are always available in all app instances.

3.11.12 celery.app.events

Implementation for the app.events shortcuts.

class celery.app.events.Events (app=None)
Implements app.events.

Dispatcher

Receiver

State
default_dispatcher (hostname=None, enabled=True, buffer_while_offline=False)
dispatcher_cls = 'celery.events.dispatcher:EventDispatcher'

receiver_cls = 'celery.events.receiver:EventReceiver'

exten-

3.11. API Reference

319

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

state_cls = 'celery.events.state:State'

3.11.13 celery.app.log

Logging configuration.

The Celery instances logging section: Celery.log.

Sets up logging for the worker and other programs, redirects standard outs, colors log output, patches logging related
compatibility fixes, and so on.

class celery.app.log.TaskFormatter (fint=None, use_color=True)

Formatter for tasks, adding the task name and id.

format (record)

Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The mes-
sage attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is called to format the event time. If there is

exception information, it is formatted using formatException() and appended to the message.

class celery.app.log.Logging (app)

Application logging setup (app.log).

already_setup = False

colored (logfile=None, enabled=None)
get_default_logger (name=’celery’, **kwargs)
redirect_stdouts (loglevel=None, name="celery.redirected’)

redirect_stdouts_to_logger (logger, loglevel=None, stdout=True, stderr=True)
Redirect sys.stdout and sys.stderr to logger.

Parameters
* logger (logging.Logger) — Logger instance to redirect to.
* loglevel (int, str)—Theloglevel redirected message will be logged as.

setup (loglevel=None, logfile=None, redirect_stdouts=False, redirect_level="WARNING’, col-
orize=None, hostname=None)

setup_handlers (logger, logfile, format, colorize, formatter=<class ‘cel-
ery.utils.log. ColorFormatter’>, **kwargs)

setup_logger (name=’celery’, *args, **kwargs)
Deprecated: No longer used.
setup_logging_ subsystem (loglevel=None, logfile=None, format=None, colorize=None, host-
name=None, **kwargs)

setup_task_loggers (loglevel=None, logfile=None, format=None, colorize=None, propa-

gate=False, **kwargs)
Setup the task logger.

If logfile is not specified, then sys.stderr is used.
Will return the base task logger object.

supports_color (colorize=None, logfile=None)

320

Chapter 3. Contents

https://docs.python.org/dev/library/logging.html#logging.Logger
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

3.11.14 celery.app.utils

App utilities: Compat settings, bug-report tool, pickling apps.

class celery.app.utils.Settings (changes, defaults=None, keys=None, prefix=None)
Celery settings object.

broker read url
broker_url
broker write_url
finalize()

find_option (name, namespace="")
Search for option by name.

Example

>>> from proj.celery import app
>>> app.conf.find option('disable_rate_limits')

('worker', 'prefetch_multiplier’,
<Option: type->bool default->False>)
Parameters

* name (str)— Name of option, cannot be partial.
* namespace (st r) — Preferred name-space (None by default).
Returns of (namespace, key, type).
Return type Tuple
find_value_for_key (name, namespace=’"celery’)
Shortcut to get_by_parts (xfind_option (name) [:—1]).

get_by_ parts (*parts)
Return the current value for setting specified as a path.

Example

>>> from proj.celery import app
>>> app.conf.get_by_parts('worker', 'disable_rate_limits"')
False

humanize (with_defaults=False, censored=True)
Return a human readable text showing configuration changes.

result_ backend

table (with_defaults=False, censored=True)
task_default_exchange
task_default_routing key

timezone

3.11. API Reference 321

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

value_set_for (key)

without_defaults ()
Return the current configuration, but without defaults.

celery.app.utils.appstr (app)
String used in __repr___ etc, to id app instances.

celery.app.utils.bugreport (app)
Return a string containing information useful in bug-reports.

celery.app.utils.filter hidden_settings (conf)
Filter sensitive settings.

celery.app.utils.find_app (app, symbol_by_name=<function symbol_by_name>, imp=<function
import_from_cwd>)
Find app by name.

3.11.15 celery.bootsteps

A directed acyclic graph of reusable components.

class celery.bootsteps.Blueprint (steps=None, name=None, on_start=None, on_close=None,

on_stopped=None)
Blueprint containing bootsteps that can be applied to objects.

Parameters
* Sequence[Union[str, Step]] (steps)— List of steps.
* name (st r)— Set explicit name for this blueprint.
* on_start (Callable) - Optional callback applied after blueprint start.
* on_close (Callable)— Optional callback applied before blueprint close.
* on_stopped (Callable)— Optional callback applied after blueprint stopped.

GraphFormatter
alias of StepFormatter

alias

apply (parent, **kwargs)
Apply the steps in this blueprint to an object.

This will apply the __init__ and include methods of each step, with the object as argument:

step = Step (obj)

step.include (ob7j)

For StartStopStep the services created will also be added to the objects steps attribute.
claim_steps ()
close (parent)
connect_with (other)
default_steps = {}
human_state ()

info (parent)

322 Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

join (timeout=None)

load_step (step)

name = None

restart (parent, method="stop’, description="restarting’, propagate=False)

send_all (parent, method, description=None, reverse=True, propagate=True, args=())

start (parent)

started = 0

state = None

state_to_name = {0: 'initializing', 1l: 'running', 2: ‘'closing', 3: 'terminating'}
stop (parent, close=True, terminate=False)

class celery.bootsteps.Step (parent, **kwargs)
A Bootstep.

The __init__ () method is called when the step is bound to a parent object, and can as such be used to
initialize attributes in the parent object at parent instantiation-time.

alias

conditional = False
Set this to true if the step is enabled based on some condition.

create (parent)
Create the step.

enabled = True
This provides the default for include if ().

include (parent)

include_if (parent)
Return true if bootstep should be included.

You can define this as an optional predicate that decides whether this step should be created.
info (0bj)
instantiate (name, *args, **kwargs)

label = None
Optional short name used for graph outputs and in logs.

last = False
This flag is reserved for the workers Consumer, since it is required to always be started last. There can
only be one object marked last in every blueprint.

name = 'celery.bootsteps.Step'
Optional step name, will use qualname if not specified.

requires = ()
List of other steps that that must be started before this step. Note that all dependencies must be in the same
blueprint.

class celery.bootsteps.StartStopStep (parent, **kwargs)
Bootstep that must be started and stopped in order.

close (parent)

3.11. API Reference 323

Celery Documentation, Release 4.4.2

include (parent)
name = 'celery.bootsteps.StartStopStep'

obj = None
Optional obj created by the create () method. This is used by StartStopStep to keep the original
service object.

start (parent)
stop (parent)
terminate (parent)

class celery.bootsteps.ConsumerStep (parent, **kwargs)
Bootstep that starts a message consumer.

consumers = None

get_consumers (channel)

name = 'celery.bootsteps.ConsumerStep'

requires = ('celery.worker.consumer:Connection',)
shutdown (c)

start (¢)

stop (¢)

3.11.16 celery.result

Task results/state and results for groups of tasks.

class celery.result.ResultBase
Base class for results.

parent = None
Parent result (if part of a chain)

class celery.result.AsyncResult (id, backend=None, task_name=None, app=None, par-

ent=None)
Query task state.

Parameters
e id(str)—See id.
* backend (Backend) — See backend.

exception TimeoutError
The operation timed out.

app = None
args
as_tuple()

backend = None
The task result backend to use.

build_graph (intermediate=False, formatter=None)

children

324 Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

collect (intermediate=False, **kwargs)
Collect results as they return.

Iterator, like get () will wait for the task to complete, but will also follow AsyncResult and
ResultsSet returned by the task, yielding (result, wvalue) tuples for each result in the tree.

An example would be having the following tasks:

from celery import group
from proj.celery import app

Qapp.task(trail=True)
def A (how_many) :
return group(B.s (i) for i in range (how_many)) ()

@app.task(trail=True)
def B(i):
return pow2.delay (i)

Qapp.task (trail=True)
def pow2 (i) :
return 1 xx 2

>>> from celery.result import ResultBase
>>> from proj.tasks import A

>>> result = A.delay(10)
>>> [v for v in result.collect ()
if not isinstance (v, (ResultBase, tuple))]

1, 4, 9, 16, 25, 36, 49, 64, 81]

O -
~ .

Note: The Task.trail option must be enabled so that the list of children is stored in result.
children. This is the default but enabled explicitly for illustration.

Yields Tuple[AsyncResult, Any] — tuples containing the result instance of the child task, and the
return value of that task.

date_done

UTC date and time.

failed()
Return True if the task failed.

forget ()
Forget the result of this task and its parents.

get (timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True,
callback=None, on_message=None, on_interval=None, disable_sync_subtasks=True,
EXCEPTION_STATES=frozenset({"REVOKED’, ’RETRY’, "FAILURE’}), PROPA-

GATE_STATES=frozenset({' REVOKED’, 'FAILURE’}))
Wait until task is ready, and return its result.

Warning: Waiting for tasks within a task may lead to deadlocks. Please read Avoid launching syn-
chronous subtasks.

3.11. API Reference 325

Celery Documentation, Release 4.4.2

Warning: Backends use resources to store and transmit results. To ensure that resources are released,
you must eventually call get () or forget () on EVERY AsyncResult instance returned after
calling a task.

Parameters
* timeout (float) - How long to wait, in seconds, before the operation times out.
* propagate (bool)— Re-raise exception if the task failed.

e interval (float) — Time to wait (in seconds) before retrying to retrieve the result.
Note that this does not have any effect when using the RPC/redis result store backends, as
they don’t use polling.

* no_ack (bool) — Enable amqp no ack (automatically acknowledge message). If this is
False then the message will not be acked.

* follow_parents (bool)— Re-raise any exception raised by parent tasks.

* disable_sync_subtasks (bool) — Disable tasks to wait for sub tasks this is the
default configuration. CAUTION do not enable this unless you must.

Raises

e celery.exceptions.TimeoutError — if timeout isn’t None and the result does
not arrive within timeout seconds.

e Exception —If the remote call raised an exception then that exception will be re-raised
in the caller process.
get_leaf ()
graph

id = None
The task’s UUID.

ignored

If True, task result retrieval is disabled.
info

Task return value.

Note: When the task has been executed, this contains the return value. If the task raised an exception, this
will be the exception instance.

iterdeps (intermediate=False)

kwargs

maybe_reraise (propagate=True, callback=None)
maybe_throw (propagate=True, callback=None)
name

queue

ready ()
Return True if the task has executed.

326 Chapter 3. Contents

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#Exception

Celery Documentation, Release 4.4.2

If the task is still running, pending, or is waiting for retry then False is returned.

result
Task return value.

Note: When the task has been executed, this contains the return value. If the task raised an exception, this
will be the exception instance.

retries

revoke (connection=None, terminate=False, signal=None, wait=False, timeout=None)
Send revoke signal to all workers.

Any worker receiving the task, or having reserved the task, must ignore it.
Parameters
* terminate (bool) — Also terminate the process currently working on the task (if any).
e signal (str)— Name of signal to send to process if terminate. Default is TERM.

* wait (bool) — Wait for replies from workers. The timeout argument specifies the
seconds to wait. Disabled by default.

* timeout (float) - Time in seconds to wait for replies when wait is enabled.

state
The tasks current state.

Possible values includes:
PENDING
The task is waiting for execution.
STARTED
The task has been started.
RETRY
The task is to be retried, possibly because of failure.
FAILURE

The task raised an exception, or has exceeded the retry limit. The result attribute then
contains the exception raised by the task.

SUCCESS

The task executed successfully. The result attribute then contains the tasks return
value.

status
The tasks current state.

Possible values includes:
PENDING
The task is waiting for execution.
STARTED

The task has been started.

3.11. API Reference 327

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.4.2

RETRY
The task is to be retried, possibly because of failure.
FAILURE

The task raised an exception, or has exceeded the retry limit. The result attribute then
contains the exception raised by the task.

SUCCESS

The task executed successfully. The result attribute then contains the tasks return
value.

successful ()
Return True if the task executed successfully.

supports_native_join

task_id
Compat. alias to 1 d.

then (callback, on_error=None, weak=False)
throw (*args, **kwargs)

traceback
Get the traceback of a failed task.

wait (timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True,
callback=None, on_message=None, on_interval=None, disable_sync_subtasks=True,
EXCEPTION_STATES=frozenset({' REVOKED’, 'RETRY”, "FAILURE’}), PROPA-

GATE_STATES=frozenset({"REVOKED’, 'FAILURE’}))
Wait until task is ready, and return its result.

Warning: Waiting for tasks within a task may lead to deadlocks. Please read Avoid launching syn-
chronous subtasks.

Warning: Backends use resources to store and transmit results. To ensure that resources are released,
you must eventually call get () or forget () on EVERY AsyncResult instance returned after
calling a task.

Parameters
* timeout (f1oat)— How long to wait, in seconds, before the operation times out.
* propagate (bool)— Re-raise exception if the task failed.

e interval (float) — Time to wait (in seconds) before retrying to retrieve the result.
Note that this does not have any effect when using the RPC/redis result store backends, as
they don’t use polling.

* no_ack (bool)— Enable amqp no ack (automatically acknowledge message). If this is
False then the message will not be acked.

» follow_parents (bool)— Re-raise any exception raised by parent tasks.

¢ disable_sync_subtasks (bool) — Disable tasks to wait for sub tasks this is the
default configuration. CAUTION do not enable this unless you must.

328 Chapter 3. Contents

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

Raises

e celery.exceptions.TimeoutError — if timeout isn’t None and the result does
not arrive within timeout seconds.

e Exception —If the remote call raised an exception then that exception will be re-raised
in the caller process.
worker

class celery.result.ResultSet (results, app=None, ready_barrier=None, **kwargs)
A collection of results.

Parameters results (Sequence [AsyncResult])— List of result instances.

add (result)
Add AsyncResult as a new member of the set.

Does nothing if the result is already a member.
app
backend

clear ()
Remove all results from this set.

completed_count ()
Task completion count.

Returns the number of tasks completed.
Return type int

discard (result)
Remove result from the set if it is a member.

Does nothing if it’s not a member.

failed()
Return true if any of the tasks failed.

Returns
true if one of the tasks failed. (i.c., raised an exception)
Return type bool

forget ()
Forget about (and possible remove the result of) all the tasks.

get (timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True, on_message=None,

disable_sync_subtasks=True, on_interval=None)
See join ().

This is here for API compatibility with AsyncResult, in additionituses join native () if available
for the current result backend.

iter_native (fimeout=None, interval=0.5, no_ack=True, on_message=None, on_interval=None)
Backend optimized version of iterate ().

New in version 2.2.
Note that this does not support collecting the results for different task types using different backends.

This is currently only supported by the amqp, Redis and cache result backends.

3.11. API Reference 329

https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

iterate (timeout=None, propagate=True, interval=0.5)
Deprecated method, use get () with a callback argument.

join (timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True, on_message=None,
disable_sync_subtasks=True, on_interval=None)
Gather the results of all tasks as a list in order.

Note: This can be an expensive operation for result store backends that must resort to polling (e.g.,

database).

You should consider using join_native () if your backend supports it.

Warning: Waiting for tasks within a task may lead to deadlocks. Please see Avoid launching syn-
chronous subtasks.

Parameters

timeout (f1oat)—The number of seconds to wait for results before the operation times
out.

propagate (bool) — If any of the tasks raises an exception, the exception will be re-
raised when this flag is set.

interval (float) - Time to wait (in seconds) before retrying to retrieve a result from
the set. Note that this does not have any effect when using the amqp result store backend,
as it does not use polling.

callback (Callable)— Optional callback to be called for every result received. Must
have signature (task_id, wvalue) No results will be returned by this function if a
callback is specified. The order of results is also arbitrary when a callback is used. To
get access to the result object for a particular id you’ll have to generate an index first:
index = {r.id: r for r in gres.results.values ()} Oryou can cre-
ate new result objects on the fly: result = app.AsyncResult (task_id) (both
will take advantage of the backend cache anyway).

no_ack (bool)— Automatic message acknowledgment (Note that if this is setto False
then the messages will not be acknowledged).

disable_sync_subtasks (bool) — Disable tasks to wait for sub tasks this is the
default configuration. CAUTION do not enable this unless you must.

Raises celery.exceptions.TimeoutError —if timeout isn’t None and the opera-
tion takes longer than t imeout seconds.

join_native (timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True,

on_message=None, on_interval=None, disable_sync_subtasks=True)

Backend optimized version of join ().

New in version 2.2.

Note that this does not support collecting the results for different task types using different backends.

This is currently only supported by the amqp, Redis and cache result backends.

maybe_reraise (callback=None, propagate=True)

maybe_throw (callback=None, propagate=True)

330

Chapter 3. Contents

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

ready ()
Did all of the tasks complete? (either by success of failure).

Returns true if all of the tasks have been executed.
Return type bool

remove (result)
Remove result from the set; it must be a member.

Raises KeyError — if the result isn’t a member.

results = None
List of results in in the set.

revoke (connection=None, terminate=False, signal=None, wait=False, timeout=None)
Send revoke signal to all workers for all tasks in the set.

Parameters
* terminate (bool) — Also terminate the process currently working on the task (if any).
* signal (str)— Name of signal to send to process if terminate. Default is TERM.

* wait (bool) — Wait for replies from worker. The timeout argument specifies the
number of seconds to wait. Disabled by default.

* timeout (float) — Time in seconds to wait for replies when the wait argument is
enabled.

successful ()
Return true if all tasks successful.

Returns
true if all of the tasks finished successfully (i.e. didn’t raise an exception).
Return type bool
supports_native_join
then (callback, on_error=None, weak=False)

update (results)
Extend from iterable of results.

waiting ()
Return true if any of the tasks are incomplete.

Returns
true if one of the tasks are still waiting for execution.
Return type bool

class celery.result.GroupResult (id=None, results=None, parent=None, **kwargs)
Like ResultSet, but with an associated id.

This type is returned by group.
It enables inspection of the tasks state and return values as a single entity.
Parameters
* id (str)—The id of the group.

e results (Sequence [AsyncResult])— List of result instances.

3.11. API Reference 331

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#KeyError
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

* parent (ResultBase) — Parent result of this group.
as_tuple()
children

delete (backend=None)
Remove this result if it was previously saved.

id = None
The UUID of the group.

classmethod restore (id, backend=None, app=None)
Restore previously saved group result.

results = None
List/iterator of results in the group

save (backend=None)
Save group-result for later retrieval using restore ().

Example

>>> def save_and restore(result):
result.save ()

result = GroupResult.restore(result.id)

class celery.result.EBagerResult (id, ret_value, state, traceback=None)
Result that we know has already been executed.

forget ()
Forget the result of this task and its parents.

get (timeout=None, propagate=True, disable_sync_subtasks=True, **kwargs)
Wait until task is ready, and return its result.

Warning: Waiting for tasks within a task may lead to deadlocks. Please read Avoid launching syn-
chronous subtasks.

Warning: Backends use resources to store and transmit results. To ensure that resources are released,
you must eventually call get () or forget () on EVERY AsyncResult instance returned after
calling a task.

Parameters
* timeout (f1oat)— How long to wait, in seconds, before the operation times out.
* propagate (bool)— Re-raise exception if the task failed.

e interval (float) — Time to wait (in seconds) before retrying to retrieve the result.
Note that this does not have any effect when using the RPC/redis result store backends, as
they don’t use polling.

* no_ack (bool) — Enable amqgp no ack (automatically acknowledge message). If this is
False then the message will not be acked.

* follow_parents (bool)— Re-raise any exception raised by parent tasks.

332 Chapter 3. Contents

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

* disable_sync_subtasks (bool) — Disable tasks to wait for sub tasks this is the
default configuration. CAUTION do not enable this unless you must.

Raises

e celery.exceptions.TimeoutError — if timeout isn’t None and the result does
not arrive within timeout seconds.

* Exception — If the remote call raised an exception then that exception will be re-raised
in the caller process.
ready ()
Return True if the task has executed.

If the task is still running, pending, or is waiting for retry then False is returned.

result
The tasks return value.

revoke (*args, **kwargs)
Send revoke signal to all workers.

Any worker receiving the task, or having reserved the task, must ignore it.
Parameters
* terminate (bool) — Also terminate the process currently working on the task (if any).
e signal (str)— Name of signal to send to process if terminate. Default is TERM.

* wait (bool) — Wait for replies from workers. The timeout argument specifies the
seconds to wait. Disabled by default.

* timeout (float)— Time in seconds to wait for replies when wait is enabled.

state
The tasks state.

status
The tasks state.

supports_native_join
then (callback, on_error=None, weak=False)

traceback
The traceback if the task failed.

wait (timeout=None, propagate=True, disable_sync_subtasks=True, **kwargs)
Wait until task is ready, and return its result.

Warning: Waiting for tasks within a task may lead to deadlocks. Please read Avoid launching syn-
chronous subtasks.

Warning: Backends use resources to store and transmit results. To ensure that resources are released,
you must eventually call get () or forget () on EVERY AsyncResult instance returned after
calling a task.

Parameters

3.11. API Reference 333

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.4.2

* timeout (float)— How long to wait, in seconds, before the operation times out.
* propagate (bool)— Re-raise exception if the task failed.

e interval (float) — Time to wait (in seconds) before retrying to retrieve the result.
Note that this does not have any effect when using the RPC/redis result store backends, as
they don’t use polling.

* no_ack (bool) — Enable amqgp no ack (automatically acknowledge message). If this is
False then the message will not be acked.

* follow_parents (bool)— Re-raise any exception raised by parent tasks.

* disable_sync_subtasks (bool) — Disable tasks to wait for sub tasks this is the
default configuration. CAUTION do not enable this unless you must.

Raises

e celery.exceptions. TimeoutError — if timeout isn’t None and the result does
not arrive within timeout seconds.

* Exception — If the remote call raised an exception then that exception will be re-raised

in the caller process.

celery.result.result_from_tuple (r, app=None)
Deserialize result from tuple.

3.11.17 celery.schedules

Schedules define the intervals at which periodic tasks run.

exception celery.schedules.ParseException
Raised by crontab_parser when the input can’t be parsed.

class celery.schedules.schedule (run_every=None, relative=False, nowfun=None, app=None)
Schedule for periodic task.

Parameters
* run_every (float, timedelta)- Time interval.

* relative (bool) — If set to True the run time will be rounded to the resolution of the
interval.

* nowfun (Callable)— Function returning the current date and time (datetime).
* app (Celery) — Celery app instance.
human_seconds

is_due (last_run_at)
Return tuple of (is_due, next_time_to_check).

Notes

¢ next time to check is in seconds.
* (True, 20), means the task should be run now, and the next time to check is in 20 seconds.

* (False, 12.3), means the task is not due, but that the scheduler should check again in 12.3
seconds.

334 Chapter 3. Contents

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.4.2

The next time to check is used to save energy/CPU cycles, it does not need to be accurate but will influence
the precision of your schedule. You must also keep in mind the value of beat_max_loop_interval,
that decides the maximum number of seconds the scheduler can sleep between re-checking the periodic
task intervals. So if you have a task that changes schedule at run-time then your next_run_at check will
decide how long it will take before a change to the schedule takes effect. The max loop interval takes
precedence over the next check at value returned.

Scheduler max interval variance

The default max loop interval may vary for different schedulers. For the default scheduler the value is 5
minutes, but for example the django-celery-beat database scheduler the value is 5 seconds.

relative = False
remaining estimate (last_run_at)
seconds

>

class celery.schedules.crontab (minute="*", hour="*, day_of week="*", day_of month="%*,

month_of _year="*", ¥**kwargs)
Crontab schedule.

A Crontab can be used as the run_every value of a periodic task entry to add crontab (5) -like scheduling.

Like a cron (5)-job, you can specify units of time of when you’d like the task to execute. It’s a reasonably
complete implementation of cron’s features, so it should provide a fair degree of scheduling needs.

You can specify a minute, an hour, a day of the week, a day of the month, and/or a month in the year in any of
the following formats:

minute

* A (list of) integers from 0-59 that represent the minutes of an hour of when execution should occur;
or

* A string representing a Crontab pattern. This may get pretty advanced, like minute="'+/15" (for
every quarter) or minute='1,13,30-45,50-59/2".

hour
* A (list of) integers from 0-23 that represent the hours of a day of when execution should occur; or

* A string representing a Crontab pattern. This may get pretty advanced, like hour="+/3" (for every
three hours) or hour="'0, 8-17/2" (at midnight, and every two hours during office hours).

day of_ week

* A (list of) integers from 0-6, where Sunday = 0 and Saturday = 6, that represent the days of a week
that execution should occur.

e A string representing a Crontab pattern. This may get pretty advanced, like
day_of_week="mon-fri' (for weekdays only). (Beware that day_of_week="x%/2"
does not literally mean ‘every two days’, but ‘every day that is divisible by two’!)

day_of_month
* A (list of) integers from 1-31 that represents the days of the month that execution should occur.

e A string representing a Crontab pattern. This may get pretty advanced, such as
day_of_month='2-30/2"' (for every even numbered day) or day_of_month='1-7,
15-21" (for the first and third weeks of the month).

month_of_year

3.11. API Reference 335

https://pypi.python.org/pypi/django-celery-beat/

Celery Documentation, Release 4.4.2

* A (list of) integers from 1-12 that represents the months of the year during which execution can occur.

e A string representing a Crontab pattern. This may get pretty advanced, such as
month_of_year="'x/3" (for the first month of every quarter) or month_of_year='2-12/
2" (for every even numbered month).

nowfun
Function returning the current date and time (datet ime).

app
The Celery app instance.

It’s important to realize that any day on which execution should occur must be represented by entries in all three
of the day and month attributes. For example, if day_of_week is 0 and day_of_month is every seventh
day, only months that begin on Sunday and are also in the month_of_year attribute will have execution
events. Or, day_of_week is 1 and day_of_month is ‘1-7,15-21" means every first and third Monday of
every month present in month_of_year.

is_due (last_run_at)
Return tuple of (is_due, next_time_to_run).

Note: Next time to run is in seconds.

SeeAlso: celery.schedules.schedule.is due () for more information.

remaining_delta (last_run_at, tz=None, ffwd=<class ’celery.utils.time.ffwd’>)

remaining estimate (last_run_at, ffwd=<class 'celery.utils.time.ffwd’>)
Estimate of next run time.

Returns when the periodic task should run next asa t imedelta.

class celery.schedules.crontab_parser (max_=60, min_=0)

Parser for Crontab expressions.

Any expression of the form ‘groups’ (see BNF grammar below) is accepted and expanded to a set of numbers.
These numbers represent the units of time that the Crontab needs to run on:

digit HEEN VAN

dow o fa'.u'z!

number :: digit+ | dow+

steps :: number

range :: number ('-' number) ?
numspec :: 'x' | range

expr :: numspec ('/' steps) *?
groups :: expr (',' expr) =

The parser is a general purpose one, useful for parsing hours, minutes and day of week expressions. Example
usage:

>>> minutes = crontab_parser (60) .parse('*/15")
[0, 15, 30, 45]
>>> hours = crontab_parser (24) .parse('+x/4")

(0, 4, 8, 12, 16, 20]
>>> day_of_week crontab_parser (7) .parse('*x")

(0, 1, 2, 3, 4, 5, 6]

nos

It can also parse day of month and month of year expressions if initialized with a minimum of 1. Example usage:

336

Chapter 3. Contents

https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.timedelta

Celery Documentation, Release 4.4.2

>>> days_of_month =
(r, 4, 7, 10, 13,
>>> months_of_year =
(1, 3, 5, 7, 9, 11]
>>> months_of_year =

crontab_parser (31,

0,

- - Ho
19, 22, 25, 293,

crontab_parser (12,

crontab_parser (12,

1) .parse('x/3")

31]

1) .parse('*/2")

1) .parse('2-12/2")

S P - -5
2, 4, 6, 8, 10, 12

The maximum possible expanded value returned is found by the formula:
maxymin_1

exception ParseException
Raised by crontab_parser when the input can’t be parsed.

parse (spec)

celery.schedules.maybe_schedule (s, relative=False, app=None)
Return schedule from number, timedelta, or actual schedule.

class celery.schedules.solar (event, lat, lon, **kwargs)
Solar event.

A solar event can be used as the run_every value of a periodic task entry to schedule based on certain solar

events.

Notes

Available event valus are:
e dawn_astronomical
e dawn_nautical
e dawn_civil
* sunrise
* solar_noon
* sunset
e dusk_civil
e dusk_nautical

e dusk_astronomical

Parameters
* event (str)— Solar event that triggers this task. See note for available values.
* lat (int) - The latitude of the observer.
* lon (int) - The longitude of the observer.

* nowfun (Callable) — Function returning the current date and time as a
class:~datetime.datetime.

* app (Celery) — Celery app instance.

is_due (last_run_at)

Return tuple of (is_due, next_time_to_run).

3.11. API Reference

337

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.4.2

Note: next time to run is in seconds.

See also:
celery.schedules.schedule.is_due () for more information.

remaining_estimate (last_run_at)
Return estimate of next time to run.

Returns

when the periodic task should run next, or if it shouldn’t run today (e.g., the sun does not
rise today), returns the time when the next check should take place.

Return type timedelta

3.11.18 celery.signals

Celery Signals.

This module defines the signals (Observer pattern) sent by both workers and clients.

Functions can be connected to these signals, and connected functions are called whenever a signal is called.
See also:

Signals for more information.

3.11.19 celery.security

Message Signing Serializer.

celery.security.setup_security (allowed_serializers=None, key=None, cert=None, store=None,
digest=None, serializer="json’, app=None)
See Celery.setup_security ().

3.11.20 celery.utils.debug

» Sampling Memory Usage

* API Reference

Sampling Memory Usage

This module can be used to diagnose and sample the memory usage used by parts of your application.

For example, to sample the memory usage of calling tasks you can do this:

from celery.utils.debug import sample_mem, memdump

from tasks import add

(continues on next page)

338 Chapter 3. Contents

https://docs.python.org/dev/library/datetime.html#datetime.timedelta

Celery Documentation, Release 4.4.2

(continued from previous page)

try:
for i in range (100):
for j in range (100) :
add.delay (i, 7J)
sample_mem ()
finally:
memdump ()

API Reference

Utilities for debugging memory usage, blocking calls, etc.

celery.utils.debug.sample_mem ()
Sample RSS memory usage.

Statistics can then be output by calling memdump () .

celery.utils.debug.memdump (samples=10, file=None)
Dump memory statistics.

Will print a sample of all RSS memory samples added by calling sample mem (), and in addition print used
RSS memory after gc.collect ().

celery.utils.debug.sample (x, n, k=0)
Given a list x a sample of length n of that list is returned.

For example, if # is 10, and x has 100 items, a list of every tenth. item is returned.
k can be used as offset.

celery.utils.debug.mem_rss ()
Return RSS memory usage as a humanized string.

celery.utils.debug.ps ()
Return the global psutil.Process instance.

Note: Returns None if psutil is not installed.

3.11.21 celery.exceptions

» Error Hierarchy I

Celery error types.

Error Hierarchy

* Exception
— celery.exceptions.CeleryError
* ImproperlyConfigured

* SecurityError

3.11. API Reference 339

https://docs.python.org/dev/library/gc.html#gc.collect
https://pypi.python.org/pypi/psutil/
https://docs.python.org/dev/library/exceptions.html#Exception

Celery Documentation, Release 4.4.2

* TaskPredicate
- Ignore
- Reject
- Retry

* TaskError
- QueueNotFound
- IncompleteStream
- NotRegistered
- AlreadyRegistered
- TimeoutError
- MaxRetriesExceededError
- TaskRevokedError
- InvalidTaskError
- ChordError

— kombu.exceptions.KombuError
* OperationalError

Raised when a transport connection error occurs while sending a message (be it a task,
remote control command error).

Note: This exception does not inherit from CeleryError.

— billiard errors (prefork pool)
* SoftTimeLimitExceeded
* TimeLimitExceeded
* WorkerLostError
* Terminated
* UserWarning
- CeleryWarning
* AlwaysEagerIgnored
% DuplicateNodenameWarning
* FixupWarning
* NotConfigured
* BaseException
— SystemExit
* WorkerTerminate

* WorkerShutdown

340 Chapter 3. Contents

https://docs.python.org/dev/library/exceptions.html#UserWarning
https://docs.python.org/dev/library/exceptions.html#BaseException
https://docs.python.org/dev/library/exceptions.html#SystemExit

Celery Documentation, Release 4.4.2

exception celery.exceptions.CeleryWarning
Base class for all Celery warnings.

exception celery.exceptions.AlwaysEagerIgnored
send_task ignores task_always_eager option.

exception celery.exceptions.DuplicateNodenameWarning
Multiple workers are using the same nodename.

exception celery.exceptions.FixupWarning
Fixup related warning.

exception celery.exceptions.NotConfigured
Celery hasn’t been configured, as no config module has been found.

exception celery.exceptions.CeleryError
Base class for all Celery errors.

exception celery.exceptions.ImproperlyConfigured
Celery is somehow improperly configured.

exception celery.exceptions.SecurityError
Security related exception.

exception celery.exceptions.OperationalError
Recoverable message transport connection error.

exception celery.exceptions.TaskPredicate
Base class for task-related semi-predicates.

exception celery.exceptions.Ignore
A task can raise this to ignore doing state updates.

exception celery.exceptions.Reject (reason=None, requeue=False)
A task can raise this if it wants to reject/re-queue the message.

exception celery.exceptions.Retry (message=None, exc=None, when=None, **kwargs)
The task is to be retried later.

exc = None
Exception (if any) that caused the retry to happen.

humanize ()

message = None
Optional message describing context of retry.

when = None
Time of retry (ETA), either numbers.Real or datetime.

exception celery.exceptions.TaskError
Task related errors.

exception celery.exceptions.QueueNotFound
Task routed to a queue not in conf . queues.

exception celery.exceptions.IncompleteStream
Found the end of a stream of data, but the data isn’t complete.

exception celery.exceptions.NotRegistered
The task ain’t registered.

exception celery.exceptions.AlreadyRegistered
The task is already registered.

3.11. API Reference 341

https://docs.python.org/dev/library/numbers.html#numbers.Real
https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.4.2

exception celery.exceptions.TimeoutError
The operation timed out.

exception celery.exceptions.MaxRetriesExceededError (*args, **kwargs)
The tasks max restart limit has been exceeded.

exception celery.exceptions.TaskRevokedError
The task has been revoked, so no result available.

exception celery.exceptions.InvalidTaskError
The task has invalid data or ain’t properly constructed.

exception celery.exceptions.ChordError
A task part of the chord raised an exception.

exception celery.exceptions.SoftTimeLimitExceeded
The soft time limit has been exceeded. This exception is raised to give the task a chance to clean up.

exception celery.exceptions.TimeLimitExceeded
The time limit has been exceeded and the job has been terminated.

exception celery.exceptions.WorkerLostError
The worker processing a job has exited prematurely.

exception celery.exceptions.Terminated
The worker processing a job has been terminated by user request.

exception celery.exceptions.CPendingDeprecationWarning
Warning of pending deprecation.

exception celery.exceptions.CDeprecationWarning
Warning of deprecation.

exception celery.exceptions.WorkerShutdown
Signals that the worker should perform a warm shutdown.

exception celery.exceptions.WorkerTerminate
Signals that the worker should terminate immediately.

3.11.22 celery.loaders

Get loader by name.
Loaders define how configuration is read, what happens when workers start, when tasks are executed and so on.

celery.loaders.get_loader_cls (loader)
Get loader class by name/alias.

3.11.23 celery.loaders.app

The default loader used with custom app instances.

class celery.loaders.app.AppLoader (app, **kwargs)
Default loader used when an app is specified.

3.11.24 celery.loaders.default

The default loader used when no custom app has been initialized.

342 Chapter 3. Contents

Celery Documentation, Release 4.4.2

class celery.loaders.default.Loader (app, **kwargs)
The loader used by the default app.

read_configuration (fail_silently=True)
Read configuration from celeryconfig.py.

setup_settings (settingsdict)

3.11.25 celery.loaders.base

Loader base class.

class celery.loaders.base.BaseLoader (app, **kwargs)
Base class for loaders.

Loaders handles,
* Reading celery client/worker configurations.
¢ What happens when a task starts? See on_task_init ().
¢ What happens when the worker starts? See on_worker _init ().
* What happens when the worker shuts down? See on_worker shutdown ().
* What modules are imported to find tasks?
autodiscover_tasks (packages, related_name="tasks’)
builtin_modules = frozenset ()

cmdline_config parser (args, namespace=’celery’, re_type=re.compile(’"\\(\w+)\\)’), ex-
tra_types=None, override_types=None)

conf
Loader configuration.

config_from_object (0bj, silent=False)
configured = False

default modules

find module (module)
import_default_modules ()
import_from_cwd (module, imp=None, package=None)
import_module (module, package=None)
import_task_module (module)
init_worker ()

init_worker_ process ()

now (utc=True)

on_process_cleanup ()
Called after a task is executed.

on_task_init (fask_id, task)
Called before a task is executed.

on_worker_ init ()
Called when the worker (celery worker) starts.

3.11. API Reference 343

Celery Documentation, Release 4.4.2

on_worker_process_init ()
Called when a child process starts.

on_worker_shutdown ()
Called when the worker (celery worker) shuts down.

override_backends = {}
read_configuration (env="CELERY_CONFIG_MODULE’)
shutdown_worker ()

worker initialized = False

e States

o Sets

READY STATES

UNREADY STATES

EXCEPTION_STATES

PROPAGATE_STATES

* Misc

ALL STATES

Built-in task states.

3.11.26 States

See States.

3.11.27 Sets
READY_STATES

Set of states meaning the task result is ready (has been executed).

UNREADY_STATES

Set of states meaning the task result is not ready (hasn’t been executed).

EXCEPTION_STATES

Set of states meaning the task returned an exception.

PROPAGATE_STATES

Set of exception states that should propagate exceptions to the user.

344 Chapter 3. Contents

Celery Documentation, Release 4.4.2

ALL_STATES

Set of all possible states.

3.11.28 Misc

celery.states.PENDING = 'PENDING'
Task state is unknown (assumed pending since you know the id).

celery.states.RECEIVED = 'RECEIVED'

Task was received by a worker (only used in events).
celery.states.STARTED = 'STARTED'

Task was started by a worker (task_track_started).
celery.states.SUCCESS = 'SUCCESS'

Task succeeded
celery.states.FAILURE = 'FAILURE'

Task failed
celery.states.REVOKED = 'REVOKED'

Task was revoked.
celery.states.RETRY = 'RETRY'

Task is waiting for retry.

celery.states.precedence (state)
Get the precedence index for state.

Lower index means higher precedence.

class celery.states.state
Task state.

State is a subclass of st r, implementing comparison methods adhering to state precedence rules:

>>> from celery.states import state, PENDING, SUCCESS

>>> state (PENDING) < state (SUCCESS)
True

Any custom state is considered to be lower than FATLURE and SUCCESS, but higher than any of the other
built-in states:

>>> state ('PROGRESS') > state (STARTED)

lrue

>>> state ('PROGRESS') > state ('SUCCESS')
False

3.11.29 celery.contrib.abortable

e Abortable tasks overview

— Usage example

3.11. API Reference 345

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

Abortable Tasks.

Abortable tasks overview
For long-running Task’s, it can be desirable to support aborting during execution. Of course, these tasks should be
built to support abortion specifically.
The AbortableTask serves as a base class for all Task objects that should support abortion by producers.
* Producers may invoke the abort () method on AbortableAsyncResult instances, to request abortion.

* Consumers (workers) should periodically check (and honor!) the is_aborted () method at controlled points
in their task’s run () method. The more often, the better.

The necessary intermediate communication is dealt with by the AbortableTask implementation.

Usage example

In the consumer:

from _ future import absolute_import

from celery.contrib.abortable import AbortableTask
from celery.utils.log import get_task_logger

from proj.celery import app
logger = get_logger (__name__)

@app.task (bind=True, base=AbortableTask)
def long running task (self):
results = []
for i in range (100):
check after every 5 iterations...
(or alternatively, check when some timer is due)
if not i % 5:
if self.is_aborted():
respect aborted state, and terminate gracefully.
logger.warning ('Task aborted')
return
value = do_something_expensive (i)
results.append(y)
logger.info ('Task complete')
return results

In the producer:

from _ future import absolute_import
import time

from proj.tasks import MyLongRunningTask
def myview (request) :

result is of type AbortableAsyncResult
result = long_running_task.delay ()

(continues on next page)

346 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

abort the task after 10 seconds
time.sleep (10)
result.abort ()

After the result.abort() call, the task execution isn’t aborted immediately. In fact, it’s not guaranteed to abort at all.
Keep checking result.state status, or call result.get(timeout=) to have it block until the task is finished.

Note: In order to abort tasks, there needs to be communication between the producer and the consumer. This is
currently implemented through the database backend. Therefore, this class will only work with the database backends.

class celery.contrib.abortable.AbortableAsyncResult (id, backend=None,
task_name=None, app=None,

parent=None)
Represents an abortable result.

Specifically, this gives the AsyncResult a abort () method, that sets the state of the underlying Task to
‘ABORTED’.

abort ()
Set the state of the task to ABORTED.

Abortable tasks monitor their state at regular intervals and terminate execution if so.

Warning: Be aware that invoking this method does not guarantee when the task will be aborted (or
even if the task will be aborted at all).

is_aborted()
Return True if the task is (being) aborted.

class celery.contrib.abortable.AbortableTask
Task that can be aborted.

This serves as a base class for all Task’s that support aborting during execution.

All subclasses of AbortableTask mustcall the is_aborted () method periodically and act accordingly
when the call evaluates to True.

AsyncResult (task_id)
Return the accompanying AbortableAsyncResult instance.

abstract = True

is_aborted (**kwargs)
Return true if task is aborted.

Checks against the backend whether this AbortableAsyncResult is ABORTED.
Always return False in case the task_id parameter refers to a regular (non-abortable) Task.

Be aware that invoking this method will cause a hit in the backend (for example a database query), so find
a good balance between calling it regularly (for responsiveness), but not too often (for performance).

3.11.30 celery.contrib.migrate

Message migration tools (Broker <-> Broker).

3.11. API Reference 347

Celery Documentation, Release 4.4.2

exception celery.contrib.migrate.StopFiltering
Semi-predicate used to signal filter stop.

class celery.contrib.migrate.State
Migration progress state.

count = 0
filtered = 0
strtotal
total_apx = 0

celery.contrib.migrate.republish (producer, message, exchange=None, routing_key=None, re-

move_props=None)
Republish message.

celery.contrib.migrate.migrate_task (producer, body_, message, queues=None)
Migrate single task message.

celery.contrib.migrate.migrate_tasks (source, dest, migrate=<function migrate_task>,

app=None, queues=None, **kwargs)
Migrate tasks from one broker to another.

celery.contrib.migrate.move (predicate, connection=None, exchange=None, routing_key=None,
source=None, app=None, callback=None, limit=None, trans-

form=None, **kwargs)
Find tasks by filtering them and move the tasks to a new queue.

Parameters

* predicate (Callable) - Filter function used to decide the messages to move. Must
accept the standard signature of (body, message) used by Kombu consumer call-
backs. If the predicate wants the message to be moved it must return either:

1) atuple of (exchange, routing_key),or
2) a Queue instance, or

3) any other true value means the specified exchange and routing_key argu-
ments will be used.

¢ connection (kombu.Connection)— Custom connection to use.

* source — List[Union[str, kombu.Queue]]: Optional list of source queues to use instead
of the default (queues in task_queues). This list can also contain Queue instances.

* exchange (str, kombu.Exchange)— Default destination exchange.
* routing_key (st r)— Default destination routing key.
* limit (int)— Limit number of messages to filter.

* callback (Callable) — Callback called after message moved, with signature
(state, body, message).

* transform (Callable) — Optional function to transform the return value (destina-
tion) of the filter function.

Also supports the same keyword arguments as start_filter ().

To demonstrate, the move_task_by_1id () operation can be implemented like this:

348 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.4.2

def is_wanted_task (body, message):
if body['id'] == wanted_id:
return Queue ('foo', exchange=Exchange('foo'),
routing_key="'foo")

move (is_wanted_task)

or with a transform:

def transform(value) :
if isinstance(value, string_t):
return Queue (value, Exchange (value), value)
return value

move (is_wanted_task, transform=transform)

Note: The predicate may also return a tuple of (exchange, routing_key) to specify the destination to
where the task should be moved, or a Queue instance. Any other true value means that the task will be moved
to the default exchange/routing_key.

celery.contrib.migrate.task_id_eq (task_id, body, message)
Return true if task id equals task_id’.

celery.contrib.migrate.task_id_in (ids, body, message)
Return true if task id is member of set ids’.

celery.contrib.migrate.start_filter (app, conn, filter, limit=None, timeout=1.0,
ack_messages=False, tasks=None, queues=None, call-
back=None, forever=False, on_declare_queue=None,
consume_from=None, state=None, accept=None,

*rkwargs)
Filter tasks.

celery.contrib.migrate.move_task_by_id (task_id, dest, **kwargs)
Find a task by id and move it to another queue.

Parameters
e task_id (str)—1Id of task to find and move.
* dest — (str, kombu.Queue): Destination queue.

* transform (Callable) — Optional function to transform the return value (destina-
tion) of the filter function.

* xxkwargs (Any) — Also supports the same keyword arguments as move ().

celery.contrib.migrate.move_by_idmap (map, **kwargs)
Move tasks by matching from a task_id: queue mapping.

Where queue is a queue to move the task to.

Example

>>> move_by_idmap ({
'S5beet6e82-fd4ac-468e-bd3d-13e8600250bc': Queue ('name'),
'adaB8652d-aef3-466b-abd2-becdaflb82b3': Queue ('name'),

(continues on next page)

3.11. API Reference 349

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

(continued from previous page)

'3a2bl140d-7dbl-41ba-ac90-c36alefdablf': Queue ('name')},
queues=['hipri'])

celery.contrib.migrate.move_by taskmap (map, **kwargs)
Move tasks by matching from a task_name: queue mapping.

queue is the queue to move the task to.

Example

>>> move_by_taskmap ({
'tasks.add': Queue('name'),
'tasks.mul': Queue ('name'),

b

celery.contrib.migrate.move_direct (predicate, connection=None, exchange=None, rout-
ing_key=None, source=None, app=None, callback=None,
limit=None, *, transform=<function worker_direct>,

**kwargs)
Find tasks by filtering them and move the tasks to a new queue.

Parameters

* predicate (Callable) - Filter function used to decide the messages to move. Must
accept the standard signature of (body, message) used by Kombu consumer call-
backs. If the predicate wants the message to be moved it must return either:

1) atuple of (exchange, routing_key),or
2) a Queue instance, or

3) any other true value means the specified exchange and routing_key argu-
ments will be used.

¢ connection (kombu.Connection)— Custom connection to use.

* source — List[Union[str, kombu.Queue]]: Optional list of source queues to use instead
of the default (queues in task_queues). This list can also contain Queue instances.

* exchange (str, kombu.Exchange)— Default destination exchange.
* routing_key (st r)— Default destination routing key.
* limit (int)— Limit number of messages to filter.

* callback (Callable) — Callback called after message moved, with signature
(state, body, message).

* transform (Callable) — Optional function to transform the return value (destina-
tion) of the filter function.

Also supports the same keyword arguments as start_filter ().

To demonstrate, the move_task_by_id () operation can be implemented like this:

def is_wanted_task (body, message) :
if body['id'] == wanted_id:
return Queue ('foo', exchange=Exchange('foo'),
routing_key='foo')

(continues on next page)

350 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.4.2

(continued from previous page)

move (is_wanted_task)

or with a transform:

def transform(value) :
if isinstance(value, string_t):
return Queue (value, Exchange (value), value)
return value

move (is_wanted_task, transform=transform)

Note: The predicate may also return a tuple of (exchange, routing_key) to specify the destination to
where the task should be moved, or a Queue instance. Any other true value means that the task will be moved
to the default exchange/routing_key.

celery.contrib.migrate.move_direct_by id (task_id, dest, **kwargs)
Find a task by id and move it to another queue.

Parameters
e task_id (str)-Id of task to find and move.
* dest — (str, kombu.Queue): Destination queue.

* transform (Callable) — Optional function to transform the return value (destina-
tion) of the filter function.

* xxkwargs (Any) — Also supports the same keyword arguments as move ().

3.11.31 celery.contrib.pytest

* API Reference

API Reference

Fixtures and testing utilities for py.test.

celery.contrib.pytest.celery_ app (request, celery_config, celery_parameters, cel-

ery_enable_logging, use_celery_app_trap)
Fixture creating a Celery application instance.

celery.contrib.pytest.celery_ config()
Redefine this fixture to configure the test Celery app.

The config returned by your fixture will then be used to configure the celery app () fixture.

celery.contrib.pytest.celery_enable logging ()
You can override this fixture to enable logging.

celery.contrib.pytest.celery_ includes ()
You can override this include modules when a worker start.

3.11. API Reference 351

https://docs.python.org/dev/library/stdtypes.html#str
https://pypi.python.org/pypi/pytest/

Celery Documentation, Release 4.4.2

You can have this return a list of module names to import, these can be task modules, modules registering
signals, and so on.

celery.contrib.pytest.celery parameters ()
Redefine this fixture to change the init parameters of test Celery app.

The dict returned by your fixture will then be used as parameters when instantiating Celery.

celery.contrib.pytest.celery_session_app (request, celery_config, celery_parameters, cel-

ery_enable_logging, use_celery_app_trap)
Session Fixture: Return app for session fixtures.

celery.contrib.pytest.celery_ session_worker (request, celery_session_app, cel-
ery_includes, celery_worker_pool, cel-

ery_worker_parameters)
Session Fixture: Start worker that lives throughout test suite.

celery.contrib.pytest.celery worker (request, celery_app, celery_includes, cel-

ery_worker_pool, celery_worker_parameters)
Fixture: Start worker in a thread, stop it when the test returns.

celery.contrib.pytest.celery worker_ parameters ()
Redefine this fixture to change the init parameters of Celery workers.

This can be used e. g. to define queues the worker will consume tasks from.
The dict returned by your fixture will then be used as parameters when instantiating WorkController.

celery.contrib.pytest.celery worker_ pool ()
You can override this fixture to set the worker pool.

The “solo” pool is used by default, but you can set this to return e.g. “prefork”.

celery.contrib.pytest.depends_on_current_app (celery_app)
Fixture that sets app as current.

celery.contrib.pytest.pytest_configure (config)
Register additional pytest configuration.

celery.contrib.pytest.use_celery_ app_trap()
You can override this fixture to enable the app trap.

The app trap raises an exception whenever something attempts to use the current or default apps.

3.11.32 celery.contrib.sphinx

Sphinx documentation plugin used to document tasks.

Introduction

Usage

Add the extension to your docs/conf . py configuration module:

extensions = (...,
'celery.contrib.sphinx')

If you'd like to change the prefix for tasks in reference documentation then you can change the
celery_task_prefix configuration value:

352 Chapter 3. Contents

Celery Documentation, Release 4.4.2

celery_task_prefix = ' (task)' # < default

With the extension installed autodoc will automatically find task decorated objects (e.g. when using the automod-
ule directive) and generate the correct (as well as add a (task) prefix), and you can also refer to the tasks using
:task:proj.tasks.add syntax.

Use .. autotask: : to alternatively manually document a task.

class celery.contrib.sphinx.TaskDirective (name, arguments, options, content, lineno, con-

tent_offset, block_text, state, state_machine)
Sphinx task directive.

get_signature_prefix (sig)
May return a prefix to put before the object name in the signature.

class celery.contrib.sphinx.TaskDocumenter (directive, name, indent="")
Document task definitions.

classmethod can_document_member (member, membername, isattr, parent)
Called to see if a member can be documented by this documenter.

check_module ()
Check if self.object is really defined in the module given by self.modname.

document_members (all members=False)
Generate reST for member documentation.

If all_members is True, do all members, else those given by self.options.members.

format_args ()
Format the argument signature of self.object.

Should return None if the object does not have a signature.

celery.contrib.sphinx.autodoc_skip_member handler (app, what, name, obj, skip, options)
Handler for autodoc-skip-member event.

celery.contrib.sphinx.setup (app)
Setup Sphinx extension.

3.11.33 celery.contrib.testing.worker

* API Reference I

API Reference

Embedded workers for integration tests.

class celery.contrib.testing.worker.TestWorkController (*args, **kwargs)
Worker that can synchronize on being fully started.

ensure_started()
Wait for worker to be fully up and running.

3.11. API Reference 353

Celery Documentation, Release 4.4.2

Warning: Worker must be started within a thread for this to work, or it will block forever.

on_consumer_ready (consumer)
Callback called when the Consumer blueprint is fully started.

celery.contrib.testing.worker.setup_app_for_worker (app, loglevel, logfile)
Setup the app to be used for starting an embedded worker.

celery.contrib.testing.worker.start_worker (app, concurrency=1, pool="solo’,
loglevel="error’, logfile=None,
perform_ping_check=True,

ping_task_timeout=10.0, **kwargs)
Start embedded worker.

Yields celery.app.worker.Worker — worker instance.

3.11.34 celery.contrib.testing.app

* API Reference I

API Reference

Create Celery app instances used for testing.

celery.contrib.testing.app.DEFAULT_TEST_ CONFIG = {'accept_content': {'json'}, 'broker_hea:
Contains the default configuration values for the test app.

celery.contrib.testing.app.TestApp (name=None, config=None, enable_logging=False,
set_as_current=False, log=<class ‘cel-
ery.contrib.testing.app.UnitLogging’>, backend=None,

broker=None, **kwargs)
App used for testing.

class celery.contrib.testing.app.Trap
Trap that pretends to be an app but raises an exception instead.

This to protect from code that does not properly pass app instances, then falls back to the current_app.

class celery.contrib.testing.app.UnitLogging (*args, **kwargs)
Sets up logging for the test application.

celery.contrib.testing.app.set_trap (app)
Contextmanager that installs the trap app.

The trap means that anything trying to use the current or default app will raise an exception.

celery.contrib.testing.app.setup_default_app (app, use_trap=False)
Setup default app for testing.

Ensures state is clean after the test returns.

3.11.35 celery.contrib.testing.manager

354 Chapter 3. Contents

Celery Documentation, Release 4.4.2

* API Reference I

API Reference

Integration testing utilities.

class celery.contrib.testing.manager.Manager (app, **kwargs)
Test helpers for task integration tests.

class celery.contrib.testing.manager.ManagerMixin
Mixin that adds Manager capabilities.

assert_accepted (ids, interval=0.5, desc="waiting for tasks to be accepted’, **policy)
assert_received (ids, interval=0.5, desc="waiting for tasks to be received’, **policy)

assert_result_tasks_in_progress_or_completed (async_results, interval=0.5,
desc="waiting for tasks to be
started or completed’, **policy)

assert_task_state_from_ result (fun, results, interval=0.5, **policy)
assert_task_worker_state (fun, ids, interval=0.5, **policy)

ensure_not_for_a_while (fun, catch, desc="thing’, max_retries=20, interval_start=0.1, inter-
val_step=0.02, interval_max=1.0, emit_warning="False, **options)
Make sure something does not happen (at least for a while).

inspect (timeout=3.0)

is_accepted (ids, **kwargs)

is_received (ids, **kwargs)

static is_result_task_in_progress (results, **kwargs)
join (r, propagate=False, max_retries=10, **kwargs)
missing_results (r)

query_ task_states (ids, timeout=0.5)
query_tasks (ids, timeout=0.5)

remark (s, sep="-")

retry_ over_time (*args, **kwargs)
true_or_raise (fun, *args, **kwargs)

wait_for (fun, catch, desc="thing’, args=(), kwargs=None, errback=None, max_retries=10, inter-
val_start=0.1, interval_step=0.5, interval_max=5.0, emit_warning=~False, **options)
Wait for event to happen.

The catch argument specifies the exception that means the event has not happened yet.

exception celery.contrib.testing.manager.Sentinel
Signifies the end of something.

celery.contrib.testing.manager.humanize_seconds (secs, prefix=", sep=", now="now’, *,

microseconds=True)
Show seconds in human form.

For example, 60 becomes “1 minute”, and 7200 becomes “2 hours”.

3.11. API Reference 355

Celery Documentation, Release 4.4.2

Parameters

* prefix (str)— can be used to add a preposition to the output (e.g., ‘in” will give ‘in 1
second’, but add nothing to ‘now’).

¢ now (str)— Literal ‘now’.

e microseconds (bool) — Include microseconds.

3.11.36 celery.contrib.testing.mocks

* API Reference I

API Reference

Useful mocks for unit testing.

celery.contrib.testing.mocks.TaskMessage (name, id=None, args=(), kwargs=None, call-
backs=None, errbacks=None, chain=None,

shadow=None, utc=None, **options)
Create task message in protocol 2 format.

celery.contrib.testing.mocks.TaskMessagel (name, id=None, args=(), kwargs=None, call-
backs=None, errbacks=None, chain=None,
**options)
Create task message in protocol 1 format.

celery.contrib.testing.mocks.task_message_from sig(app, sig, utc=True, TaskMes-

sage=<function TaskMessage>)
Create task message from celery. Signature.

Example

>>> m = task_message_from_sig(app, add.s (2, 2))
>>> amgp_client.basic_publish(m, exchange='ex', routing_key='rkey"')

3.11.37 celery.contrib.rdb

Remote Debugger.

Introduction

This is a remote debugger for Celery tasks running in multiprocessing pool workers. Inspired by a lost post on
dzone.com.

Usage

356 Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

from celery.contrib import rdb
from celery import task

@task ()

def add(x, vy):
result = x + y
rdb.set_trace ()
return result

Environment Variables

CELERY_RDB_HOST

CELERY_ RDB_HOST

Hostname to bind to. Default is ‘127.0.0.1” (only accessible from localhost).

CELERY_RDB_PORT

CELERY_RDB_PORT

Base port to bind to. Default is 6899. The debugger will try to find an available port starting from the
base port. The selected port will be logged by the worker.

celery.contrib.rdb.set_trace (frame=None)
Set break-point at current location, or a specified frame.

celery.contrib.rdb.debugger ()
Return the current debugger instance, or create if none.

class celery.contrib.rdb.Rdb (host="127.0.0.1, port=6899, port_search_limit=100,
port_skew=0, out=<_io.TextlOWrapper name="<stdout>’
mode="w’ encoding="UTF-8’>)
Remote debugger.

3.11.38 celery.events

Monitoring Event Receiver+Dispatcher.

Events is a stream of messages sent for certain actions occurring in the worker (and clients if
task_send_sent_event is enabled), used for monitoring purposes.

celery.events.Event (type, _fields=None, __dict__=<class ’dict’>, __now__=<built-in function

time>, **fields)
Create an event.

Notes

An event is simply a dictionary: the only required field is type. A t imestamp field will be set to the current
time if not provided.

3.11. API Reference 357

Celery Documentation, Release 4.4.2

class celery.events.EventDispatcher (connection=None, hostname=None, enabled=True,

channel=None, buffer_while_offline=True,
app=None, serializer=None, groups=None, deliv-
ery_mode=1, buffer_group=None, buffer_limit=24,
on_send_buffered=None)

Dispatches event messages.

Parameters

connection (kombu.Connect ion)— Connection to the broker.

hostname (str) — Hostname to identify ourselves as, by default uses the hostname
returned by anon_nodename ().

groups (Sequence [str]) — List of groups to send events for. send () will ignore
send requests to groups not in this list. If this is None, all events will be sent. Example
groups include "task" and "worker".

enabled (bool) — Set to False to not actually publish any events, making send ()
a no-op.

channel (kombu.Channel)— Can be used instead of connection to specify an exact
channel to use when sending events.

buffer_while offline (bool)-If enabled events will be buffered while the con-
nection is down. f1ush () must be called as soon as the connection is re-established.

Note: Youneedto close () this after use.

DISABLED_TRANSPORTS = {'sql'}

app = None

close ()

Close the event dispatcher.

disable ()

enable ()

extend buffer (other)
Copy the outbound buffer of another instance.

flush (errors=True, groups=True)
Flush the outbound buffer.

on_disabled = None

on_enabled

= None

publish (type, fields, producer, blind=False, Event=<function Event>, **kwargs)
Publish event using custom Producer.

Parameters

* type (str)— Event type name, with group separated by dash (-). fields: Dictionary
of event fields, must be json serializable.

e producer (kombu.Producer) — Producer instance to use: only the publish
method will be called.

* retry (bool)— Retry in the event of connection failure.

358

Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

* retry policy (Mapping) — Map of custom retry policy options. See
ensure ().

* blind (bool)-Don’tsetlogical clock value (also don’t forward the internal logical
clock).

* Event (Callable)— Event type used to create event. Defaults to Event ().

e utcoffset (Callable)- Function returning the current utc offset in hours.

publisher

send (type, blind=False, utcoffset=<function utcoffset>, retry=False, retry_policy=None,

Event=<function Event>, **fields)
Send event.

Parameters
* type (str)— Event type name, with group separated by dash (-).
* retry (bool)— Retry in the event of connection failure.

* retry policy (Mapping) — Map of custom retry policy options. See
ensure ().

* blind (bool)-Don’t set logical clock value (also don’t forward the internal logical
clock).

e Event (Callable)— Event type used to create event, defaults to Event ().
* utcoffset (Callable)— unction returning the current utc offset in hours.

* xxfields (Any) — Event fields — must be json serializable.

class celery.events.EventReceiver (channel, handlers=None, routing_key="#', node_id=None,

app=None, queue_prefix=None, accept=None,
queue_ttl=None, queue_expires=None)

Capture events.

app

Parameters
e connection (kombu.Connection)— Connection to the broker.

* handlers (Mapping [Callable]) — Event handlers. This is a map of event type
names and their handlers. The special handler “*” captures all events that don’t have a
handler.

= None

capture (limit=None, timeout=None, wakeup=True)

Open up a consumer capturing events.

This has to run in the main process, and it will never stop unless EventDispatcher.should_stop
is set to True, or forced via KeyboardInterrupt or SystemExit.

connection

event_from message (body, localize=True, now=<built-in function time>, 1z-
fields=operator.itemgetter(’utcoffset’, ‘timestamp’), ad-
just_timestamp=<function adjust_timestamp>, CLIENT_CLOCK_SKEW=-
1)

get_consumers (Consumer, channel)

itercapture (limit=None, timeout=None, wakeup=True)

on_consume_ready (connection, channel, consumers, wakeup=True, **kwargs)

3.11. API Reference 359

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#bool
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/dev/library/exceptions.html#SystemExit

Celery Documentation, Release 4.4.2

process (type, event)
Process event by dispatching to configured handler.

wakeup_workers (channel=None)

celery.events.get_exchange (conn, name="’celeryev’)
Get exchange used for sending events.

Parameters

* conn (kombu. Connection)— Connection used for sending/receiving events.

* name (str)— Name of the exchange. Default is celeryev.

Note: The event type changes if Redis is used as the transport (from topic -> fanout).

celery.events.group_£from (fype)
Get the group part of an event type name.

Example

>>> group_from('task—-sent')
'task'

>>> group_from('custom—-my—-event')
'custom'

3.11.39 celery.events.receiver

Event receiver implementation.

class celery.events.receiver.EventReceiver (channel, handlers=None, rout-
ing_key="#', node_id=None, app=None,
queue_prefix=None, accept=None,

queue_ttl=None, queue_expires=None)
Capture events.

Parameters
e connection (kombu.Connect ion)— Connection to the broker.

* handlers (Mapping [Callable]) — Event handlers. This is a map of event type
names and their handlers. The special handler “*” captures all events that don’t have a

handler.
app = None

capture (limit=None, timeout=None, wakeup=True)
Open up a consumer capturing events.

This has to run in the main process, and it will never stop unless EventDispatcher.should_stop
is set to True, or forced via KeyboardInterrupt or SystemExit.

connection

360 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/dev/library/exceptions.html#SystemExit

Celery Documentation, Release 4.4.2

event_from_message (body, localize=True, now=<built-in function time>, 1z-
fields=operator.itemgetter(utcoffset’, ‘timestamp’), ad-
just_timestamp=<function adjust_timestamp>, CLIENT_CLOCK_SKEW=-
1)

get_consumers (Consumer, channel)
itercapture (limit=None, timeout=None, wakeup=True)
on_consume_ready (connection, channel, consumers, wakeup=True, **kwargs)

process (type, event)
Process event by dispatching to configured handler.

wakeup_workers (channel=None)

3.11.40 celery.events.state

Event dispatcher sends events.

class celery.events.dispatcher.EventDispatcher (connection=None, hostname=None,
enabled=True, channel=None,
buffer_while_offline=True,
app=None, serializer=None,
groups=None, delivery_mode=1,

buffer_group=None, buffer_limit=24,
on_send_buffered=None)
Dispatches event messages.

Parameters
¢ connection (kombu.Connection)— Connection to the broker.

* hostname (str) — Hostname to identify ourselves as, by default uses the hostname
returned by anon_nodename ().

* groups (Sequence [str]) — List of groups to send events for. send () will ignore
send requests to groups not in this list. If this is None, all events will be sent. Example
groups include "task" and "worker".

* enabled (bool)— Setto False to not actually publish any events, making send ()
a no-op.

* channel (kombu.Channel)— Can be used instead of connection to specify an exact
channel to use when sending events.

e buffer_while_ offline (bool)-If enabled events will be buffered while the con-
nection is down. f1ush () must be called as soon as the connection is re-established.

Note: You need to close () this after use.

DISABLED_TRANSPORTS = {'sql'}
app = None

close ()
Close the event dispatcher.

disable ()

enable ()

3.11. API Reference 361

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

extend buffer (other)
Copy the outbound buffer of another instance.

flush (errors=True, groups=True)
Flush the outbound buffer.

on_disabled = None
on_enabled = None

publish (type, fields, producer, blind=False, Event=<function Event>, **kwargs)
Publish event using custom Producer.

Parameters

* type (str)— Event type name, with group separated by dash (-). fields: Dictionary
of event fields, must be json serializable.

e producer (kombu.Producer) — Producer instance to use: only the publish
method will be called.

* retry (bool)— Retry in the event of connection failure.

* retry policy (Mapping) — Map of custom retry policy options. See
ensure ().

* blind (bool)-Don’t set logical clock value (also don’t forward the internal logical
clock).

* Event (Callable)— Eventtype used to create event. Defaults to Event ().
* utcoffset (Callable)— Function returning the current utc offset in hours.
publisher

send (type, blind=False, utcoffset=<function utcoffset>, retry=False, retry_policy=None,

Event=<function Event>, **fields)
Send event.

Parameters
* type (str)— Event type name, with group separated by dash (-).
* retry (bool)— Retry in the event of connection failure.

* retry policy (Mapping) — Map of custom retry policy options. See
ensure ().

* blind (bool)-Don’tsetlogical clock value (also don’t forward the internal logical
clock).

* Event (Callable)— Event type used to create event, defaults to Event ().
* utcoffset (Callable)— unction returning the current utc offset in hours.

* xxfields (Any) — Event fields — must be json serializable.

3.11.41 celery.events.event

Creating events, and event exchange definition.

celery.events.event .Event (type, _fields=None, __dict__=<class 'dict’>, __now__=<built-in func-

tion time>, **fields)
Create an event.

362 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/functions.html#bool
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

Notes
An event is simply a dictionary: the only required field is type. A t imestamp field will be set to the current
time if not provided.

celery.events.event.event_exchange = <unbound Exchange celeryev (topic)>
Exchange used to send events on. Note: Use get_exchange () instead, as the type of exchange will vary
depending on the broker connection.

celery.events.event .get_exchange (conn, name="’celeryev’)
Get exchange used for sending events.

Parameters
* conn (kombu.Connection)— Connection used for sending/receiving events.

* name (st r)— Name of the exchange. Default is celeryev.

Note: The event type changes if Redis is used as the transport (from topic -> fanout).

celery.events.event.group_£from (fype)
Get the group part of an event type name.

Example

>>> group_from('task—-sent')
'task'

>>> group_from('custom—-my—-event')
'custom'

3.11.42 celery.events.state

In-memory representation of cluster state.

This module implements a data-structure used to keep track of the state of a cluster of workers and the tasks it is
working on (by consuming events).

For every event consumed the state is updated, so the state represents the state of the cluster at the time of the last
event.

Snapshots (celery.events. snapshot) can be used to take “pictures” of this state at regular intervals to for
example, store that in a database.

class celery.events.state.Worker (hostname=None, pid=None, freq=60, heartbeats=None,
clock=0, active=None, processed=None, loadavg=None,

sw_ident=None, sw_ver=None, sw_sys=None)
Worker State.

active
alive
clock
event

expire_window = 200

3.11. API Reference 363

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

freq
heartbeat_expires
heartbeat_max = 4
heartbeats
hostname

id

loadavg

pid

processed
status_string
sw_ident

SwW_sys

sw_ver

update (f, **kw)

class celery.events.state.Task (uuid=None, cluster_state=None, children=None, **kwargs)

Task State.

args = None
as_dict ()
client = None
clock = 0

eta = None

event (type_, timestamp=None, local_received=None, fields=None, precedence=<function
precedence>, items=<function items>, setattr=<built-in function setattr>,
task_event_to_state=<built-in method get of dict object>, RETRY="RETRY’)

exception = None
exchange = None
expires = None
failed = None
id
info (fields=None, extra=None)
Information about this task suitable for on-screen display.

kwargs = None

merge_rules = {'RECEIVED': ('name', 'args', 'kwargs',6 'parent_id', 'root_id', 'retries
How to merge out of order events. Disorder is detected by logical ordering (e.g., task—received
must’ve happened before a task—-failed event).

A merge rule consists of a state and a list of fields to keep from that state. (RECEIVED, ('name',
'args'), means the name and args fields are always taken from the RECEIVED state, and any values
for these fields received before or after is simply ignored.

name = None

364

Chapter 3. Contents

Celery Documentation, Release 4.4.2

origin

parent
parent_id = None
ready

received = None
rejected = None
result = None

retried = None

retries = None
revoked = None
root

root_id = None
routing_key = None
runtime = None
sent = None
started = None
state = 'PENDING'
succeeded = None
timestamp = None
traceback = None

worker = None

class celery.events.state.State (callback=None, workers=None, tasks=None,
taskheap=None, max_workers_in_memory=5000,
max_tasks_in_memory=10000, on_node_join=None,
on_node_leave=None, tasks_by_type=None,

tasks_by_worker=None)
Records clusters state.

class Task (uuid=None, cluster_state=None, children=None, **kwargs)
Task State.

args = None
as_dict ()
client = None
clock = 0

eta = None

event (type_, timestamp=None, local_received=None, fields=None, precedence=<function
precedence>, items=<function items>, setattr=<built-in function setattr>,
task_event_to_state=<built-in method get of dict object>, RETRY="RETRY")

exception = None

exchange = None

3.11. API Reference 365

Celery Documentation, Release 4.4.2

expires = None
failed = None
id
info (fields=None, extra=None)
Information about this task suitable for on-screen display.
kwargs = None
merge_rules = {'RECEIVED': ('name',
name = None
origin
parent
parent_id = None
ready
received = None
rejected = None
result = None
retried = None
retries = None
revoked = None
root
root_id = None
routing_key = None
runtime = None
sent = None
started = None
state = 'PENDING'
succeeded = None
timestamp = None
traceback = None

worker = None

'args',

'kwargs',

'parent_id', 'root_id',

class Worker (hostname=None, pid=None, freq=60, heartbeats=None, clock=0, active=None, pro-

cessed=None, loadavg=None, sw_ident=None, sw_ver=None, sw_sys=None)

Worker State.
active
alive
clock
event

expire_window = 200

366

Chapter 3. Contents

'ret

Celery Documentation, Release 4.4.2

freq
heartbeat_expires
heartbeat_max = 4
heartbeats
hostname

id

loadavg

pid

processed
status_string
sw_ident

SwW_sys

sw_ver
update (f, **kw)

alive workers ()
Return a list of (seemingly) alive workers.

clear (ready=True)

clear_tasks (ready=True)

event (event)

event_count = 0

freeze_while (fun, *args, **kwargs)

get_or_ create_task (uuid)
Get or create task by uuid.

get_or_create_worker (hostname, **kwargs)
Get or create worker by hostname.

Returns of (worker, was_created) pairs.
Return type Tuple
heap_multiplier = 4
itertasks (limit=None)
rebuild_taskheap (timetuple=<class ’kombu.clocks.timetuple’>)
task_count = 0

task_event (type_, fields)
Deprecated, use event ().

task_types ()
Return a list of all seen task types.

tasks_by_time (limit=None, reverse=True)
Generator yielding tasks ordered by time.

Yields Tuples of (uuid, Task).

3.11. API Reference 367

Celery Documentation, Release 4.4.2

tasks_by_timestamp (limit=None, reverse=True)
Generator yielding tasks ordered by time.

Yields Tuples of (uuid, Task).

worker_event (fype_, fields)
Deprecated, use event ().

celery.events.state.heartbeat_expires (timestamp, freq=60,

expire_window=200, Dec-

imal=<class ’decimal.Decimal’>, float=<class
float’>, isinstance=<built-in function isinstance>)

Return time when heartbeat expires.

3.11.43 celery.beat

The periodic task scheduler.

exception celery.beat.SchedulingError
An error occurred while scheduling a task.

class celery.beat.ScheduleEntry (name=None, task=None,

last_run_at=None, to-

tal_run_count=None, schedule=None, args=(), kwargs=None,
options=None, relative=False, app=None)

An entry in the scheduler.
Parameters
* name (str)—see name.
¢ schedule (schedule) —see schedule.
* args (Tuple)—see args.
* kwargs (Dict)—see kwargs.
e options (Dict)—see options.

e last_run_at (datetime)—see last_run_at.

e total_run_count (int)-see total run_count.

e relative (bool)—Is the time relative to when the server starts?

args = None
Positional arguments to apply.

default _now()
editable_fields_equal (other)

is_due ()
See is_due ().

kwargs = None
Keyword arguments to apply.

last_run_at = None
The time and date of when this task was last scheduled.

name = None
The task name

next (last_run_at=None)
Return new instance, with date and count fields updated.

368

Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

options = None
Task execution options.

schedule = None
The schedule (schedule)

total run _count = 0
Total number of times this task has been scheduled.

update (other)
Update values from another entry.

Will only update “editable” fields: task, schedule, args, kwargs, options.

class celery.beat.Scheduler (app, schedule=None, max_interval=None, Producer=None,

lazy=False, sync_every_tasks=None, **kwargs)
Scheduler for periodic tasks.

The celery beat program may instantiate this class multiple times for introspection purposes, but then with
the 1azy argument set. It’s important for subclasses to be idempotent when this argument is set.

Parameters
* schedule (schedule) —see schedule.
* max_interval (int)-see max interval.
e lazy (bool)—Don’t set up the schedule.

Entry
alias of ScheduleEntry

add (**kwargs)

adjust (n, drift=-0.01)

apply_async (entry, producer=None, advance=True, **kwargs)
apply_entry (entry, producer=None)

close ()

connection

get_schedule ()

info

install default_entries (data)

is_due (entry)

logger = <Logger celery.beat (WARNING) >

max_interval = 300
Maximum time to sleep between re-checking the schedule.

merge_inplace (b)

populate_heap (event_t=<class ’celery.beat.event_t’>, heapify=<built-in function heapify>)
Populate the heap with the data contained in the schedule.

producer
reserve (entry)

schedule
The schedule dict/shelve.

3.11. API Reference 369

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

schedules_equal (old_schedules, new_schedules)
send_task (*args, **kwargs)

set_schedule (schedule)

setup_schedule ()

should_sync ()

sync ()

sync_every = 180
How often to sync the schedule (3 minutes by default)

sync_every_tasks = None
How many tasks can be called before a sync is forced.

tick (event_t=<class 'celery.beat.event_t’>, min=<built-in function min>, heappop=<built-in function

heappop>, heappush=<built-in function heappush>)
Run a tick - one iteration of the scheduler.

Executes one due task per call.
Returns preferred delay in seconds for next call.
Return type float
update_from_dict (dict_)

class celery.beat.PersistentScheduler (*args, **kwargs)
Scheduler backed by shelve database.

close ()

get_schedule ()

info

known_suffixes = ('', '.db', '.dat', '.bak', '.dir')

persistence = <module 'shelve' from '/home/docs/.pyenv/versions/3.7.3/1lib/python3.7/sh
schedule

set_schedule (schedule)

setup_schedule ()

sync ()

class celery.beat.Service (app, max_interval=None, schedule_filename=None, sched-

uler_cls=None)
Celery periodic task service.

get_scheduler (lazy=False, extension_namespace="celery.beat_schedulers’)
scheduler

scheduler cls
alias of PersistentScheduler

start (embedded_process=False)
stop (wait=False)

sync ()

370 Chapter 3. Contents

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/shelve.html#module-shelve

Celery Documentation, Release 4.4.2

celery.beat .EmbeddedService (app, max_interval=None, **kwargs)
Return embedded clock service.

Parameters thread (bool) — Run threaded instead of as a separate process. Uses
multiprocessing by default, if available.

3.11.44 celery.apps.worker

Worker command-line program.
This module is the ‘program-version’ of celery.worker.

It does everything necessary to run that module as an actual application, like installing signal handlers, platform
tweaks, and so on.

class celery.apps.worker.Worker (app=None, hostname=None, **kwargs)
Worker as a program.

emit_banner ()
extra_info ()

install_platform tweaks (worker)
Install platform specific tweaks and workarounds.

macOS_proxy_ detection_workaround ()
See https://github.com/celery/celery/issues#issue/161.

on_after_init (purge=False, no_color=None, redirect_stdouts=None, redi-
rect_stdouts_level=None, **kwargs)

on_before_init (quiet=False, **kwargs)
on_consumer_ready (consumer)
on_init_blueprint ()

on_start ()

purge_messages ()
set_process_status (info)
setup_logging (colorize=None)
startup_info (artlines=True)

tasklist (include_builtins=True, sep="\n’, int_="celery.’)

3.11.45 celery.apps.beat

Beat command-line program.
This module is the ‘program-version’ of celery.beat.
It does everything necessary to run that module as an actual application, like installing signal handlers and so on.

class celery.apps.beat.Beat (max_interval=None, app=None, socket_timeout=30, pidfile=None,
no_color=None, loglevel="WARN’, logfile=None, schedule=None,
scheduler=None, scheduler_cls=None, redirect_stdouts=None, redi-

rect_stdouts_level=None, **kwargs)
Beat as a service.

3.11. API Reference 371

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing
https://github.com/celery/celery/issues#issue/161

Celery Documentation, Release 4.4.2

class Service (app, max_interval=None, schedule_filename=None, scheduler_cls=None)
Celery periodic task service.

get_scheduler (lazy=False, extension_namespace="celery.beat_schedulers’)
scheduler

scheduler_cls
alias of PersistentScheduler

start (embedded_process=False)
stop (wait=False)
sync ()

app = None

banner (service)

init_ loader ()

install_sync_handler (service)
Install a SIGTERM + SIGINT handler saving the schedule.

run ()

set_process_title()
setup_logging (colorize=None)
start_scheduler ()

startup_info (service)

3.11.46 celery.apps.multi

Start/stop/manage workers.

class celery.apps.multi.Cluster (nodes, cmd=None, env=None, on_stopping_preamble=None,

on_send_signal=None, on_still_waiting_for=None,
on_still_waiting_progress=None, on_still_waiting_end=None,
on_node_start=None, on_node_restart=None,
on_node_shutdown_ok=None, on_node_status=None,
on_node_signal=None, on_node_signal_dead=None,
on_node_down=None, on_child_spawn=None,

on_child_signalled=None, on_child_failure=None)
Represent a cluster of workers.

data

find (name)

getpids (on_down=None)

kill ()

restart (sig=<Signals.SIGTERM: 15>)

send_all (sig)

shutdown_nodes (nodes, sig=<Signals.SIGTERM: 15>, retry=None)
start ()

start_node (node)

372 Chapter 3. Contents

Celery Documentation, Release 4.4.2

stop (retry=None, callback=None, sig=<Signals. SIGTERM: 15>)
stopwait (retry=2, callback=None, sig=<Signals.SIGTERM: 15>)

class celery.apps.multi.Node (name, cmd=None, append=None, options=None, ex-
tra_args=None)
Represents a node in a cluster.

alive ()

argv_with_executable

executable

classmethod from kwargs (name, **kwargs)
getopt (*alt)

handle_process_exit (retcode, on_signalled=None, on_failure=None)
logfile

pid

pidfile

prepare_argv (argv, path)

send (sig, on_error=None)

start (env=None, **kwargs)

3.11.47 celery.worker

Worker implementation.

class celery.worker.WorkController (app=None, hostname=None, **kwargs)
Unmanaged worker instance.

class Blueprint (steps=None, name=None, on_start=None, on_close=None, on_stopped=None)
Worker bootstep blueprint.

default_steps = {'celery.worker.autoscale:WorkerComponent', 'celery.worker.compone
name = 'Worker'

app = None

blueprint = None

exitcode = None
contains the exit code if a SystemExit event is handled.

info ()

on_after init (**kwargs)
on_before_init (**kwargs)
on_close ()
on_consumer_ready (consumer)
on_init_blueprint ()
on_start ()

on_stopped ()

3.11. API Reference 373

https://docs.python.org/dev/library/exceptions.html#SystemExit

Celery Documentation, Release 4.4.2

pidlock = None

pool = None

prepare_args (**kwargs)

register with_event_loop (hub)

reload (modules=None, reload=False, reloader=None)
rusage ()

semaphore = None

setup_defaults (concurrency=None, loglevel="WARN’, logfile=None, task_events=None,
pool=None, consumer_cls=None, timer_cls=None, timer_precision=None,
autoscaler_cls=None, pool_putlocks=None, pool_restarts=None,
optimization=None, O=None, statedb=None, time_limit=None,
soft_time_limit=None, scheduler=None, pool_cls=None, state_db=None,
task_time_limit=None, task_soft_time_limit=None, scheduler_cls=None, sched-
ule_filename=None, max_tasks_per_child=None, prefetch_multiplier=None, dis-
able_rate_limits=None, worker_lost_wait=None, max_memory_per_child=None,
5 fow)

setup_includes (includes)

setup_instance (queues=None, ready_callback=None, pidfile=None, include=None,
use_eventloop=None, exclude_queues=None, **kwargs)

setup_queues (include, exclude=None)
should_use_eventloop ()
signal_consumer_close ()

start ()

state

stats ()

stop (in_sighandler=False, exitcode=None)
Graceful shutdown of the worker server.

terminate (in_sighandler=False)
Not so graceful shutdown of the worker server.

3.11.48 celery.worker.request

Task request.

This module defines the Request class, that specifies how tasks are executed.

class celery.worker.request.Request (message, on_ack=<function noop>, hostname=None,

eventer=None, app=None, connection_errors=None,
request_dict=None, task=None, on_reject=<function
noop>, body=None, headers=None, decoded=False,
utc=True, maybe_make_aware=<function
maybe_make_aware>, maybe_iso8601=<function

maybe_iso8601>, **opts)
A request for task execution.

acknowledge ()
Acknowledge task.

374

Chapter 3. Contents

Celery Documentation, Release 4.4.2

acknowledged = False
app

args

argsrepr

body

chord
connection_errors
content_encoding
content_type
correlation_id
delivery_ info
errbacks

eta

eventer

execute (loglevel=None, logfile=None)
Execute the task ina t race_task ().

Parameters
* loglevel (int) - The loglevel used by the task.
* logfile (str)— The logfile used by the task.

execute_using_pool (pool, **kwargs)
Used by the worker to send this task to the pool.

Parameters pool (TaskPool)— The execution pool used to execute this request.

Raises celery.exceptions. TaskRevokedError — if the task was revoked.

expires

group
hostname
humaninfo ()
id

info (safe=False)
kwargs
kwargsrepr

maybe_expire ()
If expired, mark the task as revoked.

message
name

on_accepted (pid, time_accepted)
Handler called when task is accepted by worker pool.

3.11. API Reference

375

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

on_ack

on_failure (exc_info, send_failed_event=True, return_ok=False)
Handler called if the task raised an exception.

on_reject

on_retry (exc_info)
Handler called if the task should be retried.

on_success (failed__retval__runtime, **kwargs)
Handler called if the task was successfully processed.

on_timeout (soft, timeout)
Handler called if the task times out.

parent_id

reject (requeue=False)
reply_to
request_dict

revoked ()
If revoked, skip task and mark state.

root_id
send_event (type, **fields)
store_errors

task

task_id

task_name
terminate (pool, signal=None)
time_limits = (None, None)

time_start = None

type
tzlocal

utc

worker_ pid None

3.11.49 celery.worker.state

Internal worker state (global).

This includes the currently active and reserved tasks, statistics, and revoked tasks.

celery.worker.state.SOFTWARE _INFO = {'sw_ident': 'py-celery', 'sw_sys':

Worker software/platform information.

celery.worker.state.reserved requests = <_weakrefset.WeakSet object>
set of all reserved Request’s.

celery.worker.state.active_requests = <_weakrefset.WeakSet object>
set of currently active Request’s.

'Linux’',

376 Chapter 3. Contents

'sw_ver

Celery Documentation, Release 4.4.2

celery.worker.state.total_count = {}
count of tasks accepted by the worker, sorted by type.

celery.worker.state.revoked = <LimitedSet (0): maxlen=50000, expires=10800, minlen=0>
the list of currently revoked tasks. Persistent if statedb set.

>

celery.worker.state.task_reserved (request, add_request=<method-wrapper ’__setitem__" of
dict object>, add_reserved_request=<bound method Weak-

Set.add of <_weakrefset.WeakSet object>>)
Update global state when a task has been reserved.

celery.worker.state.maybe_shutdown ()
Shutdown if flags have been set.

celery.worker.state.task_accepted (request, _all_total_count=None,
add_active_request=<bound method Weak-
Set.add of <_weakrefset. WeakSet object>>,
add_to_total_count=<bound method Counter.update of

Counter()>)
Update global state when a task has been accepted.

celery.worker.state.task_ready (request, remove_request=<built-in method pop of dict
object>, discard_active_request=<bound method Weak-
Set.discard of <_weakrefset. WeakSet object>>, dis-
card_reserved_request=<bound method WeakSet.discard of

<_weakrefset. WeakSet object>>)
Update global state when a task is ready.

class celery.worker.state.Persistent (state, filename, clock=None)
Stores worker state between restarts.

This is the persistent data stored by the worker when celery worker --statedb isenabled.
Currently only stores revoked task id’s.
close ()

compress ()
Returns a bytes object containing compressed data.

data Binary data to be compressed.
level Compression level, in 0-9 or -1.
db

decompress ()
Returns a bytes object containing the uncompressed data.

data Compressed data.
wbits The window buffer size and container format.
bufsize The initial output buffer size.
merge ()
open ()
protocol = 2
save ()
storage = <module 'shelve' from '/home/docs/.pyenv/versions/3.7.3/1lib/python3.7/shelve

sync ()

3.11. API Reference 377

Celery Documentation, Release 4.4.2

3.11.50 celery.worker.strategy

Task execution strategy (optimization).

celery.worker.strategy.default (task, app, consumer, info=<bound method Logger.info
of <Logger celery.worker.strategy (WARNING)>>, er-
ror=<bound method Logger.error of <Logger cel-
ery.worker.strategy (WARNING)>>, task_reserved=<function
task_reserved>, to_system_tz=<bound method
_Zone.to_system of <celery.utils.time._Zone object>>,
bytes=<class ’bytes’>, buffer_t=<class ’vine.five.buffer_t’>,

protol _to_proto2=<function protol_to_proto2>)
Default task execution strategy.

Note: Strategies are here as an optimization, so sadly it’s not very easy to override.

3.11.51 celery.worker.consumer

Worker consumer.

class celery.worker.consumer.Consumer (on_task_request, init_callback=<function noop>,
hostname=None, pool=None, app=None,
timer=None, controller=None, hub=None, amq-
heartbeat=None, worker_options=None, dis-
able_rate_limits=False, initial_prefetch_count=2,
prefetch_multiplier=1, **kwargs)
Consumer blueprint.

class Blueprint (steps=None, name=None, on_start=None, on_close=None, on_stopped=None)
Consumer blueprint.

default_steps = ['celery.worker.consumer.connection:Connection', 'celery.worker.co
name = 'Consumer'
shutdown (parent)

Strategies
alias of builtins.dict

add_task_queue (queue, exchange=None, exchange_type=None, routing_key=None, **options)

apply_eta_task (rask)
Method called by the timer to apply a task with an ETA/countdown.

bucket_for_ task (type)
call_soon (p, *args, **kwargs)
cancel_task_queue (queue)

connect ()
Establish the broker connection used for consuming tasks.

Retries establishing the connection if the broker. connection_retry setting is enabled
connection_for_ read (heartbeat=None)

connection_ for_write (heartbeat=None)

378 Chapter 3. Contents

Celery Documentation, Release 4.4.2

create_task_handler (promise=<class 'vine.promises.promise’>)
ensure_connected (conn)

init_callback = None
Optional callback called the first time the worker is ready to receive tasks.

loop_args ()

on_close ()

on_connection_error_ after_connected (exc)
on_connection_error_before connected (exc)

on_decode_error (message, exc)
Callback called if an error occurs while decoding a message.

Simply logs the error and acknowledges the message so it doesn’t enter a loop.

Parameters
* message (kombu.Message) — The message received.
* exc (Exception)— The exception being handled.
on_invalid_task (body, message, exc)
on_ready ()
on_send_event_buffered ()
on_unknown_message (body, message)
on_unknown_task (body, message, exc)
perform_pending operations ()

pool = None
The current worker pool instance.

register with_event_loop (hub)
reset_rate_limits ()
restart_count = -1

shutdown ()

start ()

stop ()

timer = None
A timer used for high-priority internal tasks, such as sending heartbeats.

update_strategies ()

class celery.worker.consumer .Agent (c, ¥**kwargs)

Agent starts cell actors.
conditional = True

create (¢)
Create the step.

name = 'celery.worker.consumer.agent.Agent'

requires = (step:celery.worker.consumer.connection.Connection{()},)

3.11. API Reference

379

https://docs.python.org/dev/library/exceptions.html#Exception
https://pypi.python.org/pypi/cell/

Celery Documentation, Release 4.4.2

class celery.worker.consumer.Connection (c, **kwargs)
Service managing the consumer broker connection.

info (c)

name = 'celery.worker.consumer.connection.Connection'
shutdown (¢)

start (¢)

class celery.worker.consumer.Control (c, **kwargs)
Remote control command service.

include if (¢)
Return true if bootstep should be included.

You can define this as an optional predicate that decides whether this step should be created.
name = 'celery.worker.consumer.control.Control'
requires = (step:celery.worker.consumer.tasks.Tasks{ (step:celery.worker.consumer.mingl

class celery.worker.consumer.Events (¢, task_events=True, without_heartbeat=False, with-
out_gossip=False, **kwargs)
Service used for sending monitoring events.

name = 'celery.worker.consumer.events.Events'

requires = (step:celery.worker.consumer.connection.Connection{()},)
shutdown (¢)

start (¢)

stop (¢)

class celery.worker.consumer.Gossip (c, without_gossip=False, interval=35.0, heart-

beat_interval=2.0, **kwargs)
Bootstep consuming events from other workers.

This keeps the logical clock value up to date.

call_task (task)

compatible_transport (app)
compatible_transports = {'amqgp', 'redis'}
election (id, topic, action=None)

get_consumers (channel)

label = 'Gossip'

name = 'celery.worker.consumer.gossip.Gossip'
on_elect (event)

on_elect_ack (event)

on_message (prepare, message)

on_node_join (worker)

on_node_leave (worker)

on_node_ lost (worker)

periodic ()

380 Chapter 3. Contents

Celery Documentation, Release 4.4.2

register_timer ()
requires = (step:celery.worker.consumer.mingle.Mingle{ (step:celery.worker.consumer.eve:
start (¢)

class celery.worker.consumer.Heart (¢, without_heartbeat=False, heartbeat_interval=None,
**kwargs)
Bootstep sending event heartbeats.

This service sends a worker—heartbeat message every n seconds.

Note: Not to be confused with AMQP protocol level heartbeats.

name = 'celery.worker.consumer.heart.Heart'

requires = (step:celery.worker.consumer.events.Events{ (step:celery.worker.consumer.con
shutdown (¢)

start (¢)

stop (¢)

class celery.worker.consumer.Mingle (c, without_mingle=False, **kwargs)
Bootstep syncing state with neighbor workers.

At startup, or upon consumer restart, this will:

* Sync logical clocks.

* Sync revoked tasks.
compatible_transport (app)
compatible_transports = {'amgp', 'redis'}
label = 'Mingle'
name = 'celery.worker.consumer.mingle.Mingle'
on_clock_event (c, clock)
on_node_reply (c, nodename, reply)
on_revoked received (c, revoked)
requires = (step:celery.worker.consumer.events.Events{ (step:celery.worker.consumer.con
send_hello (c)
start (¢)
sync (¢)
sync_with_node (c, clock=None, revoked=None, **kwargs)

class celery.worker.consumer.Tasks (c, **kwargs)
Bootstep starting the task message consumer.

info (¢)
Return task consumer info.

name = 'celery.worker.consumer.tasks.Tasks'

requires = (step:celery.worker.consumer.mingle.Mingle{ (step:celery.worker.consumer.eve

3.11. API Reference 381

Celery Documentation, Release 4.4.2

shutdown (¢)
Shutdown task consumer.

start (¢)
Start task consumer.

stop (¢)
Stop task consumer.

3.11.52 celery.worker.consumer.agent

Celery + cell integration.

class celery.worker.consumer.agent .Agent (¢, **kwargs)
Agent starts cell actors.

conditional = True

create (¢)
Create the step.

name = 'celery.worker.consumer.agent.Agent'

requires = (step:celery.worker.consumer.connection.Connection{()},)

3.11.53 celery.worker.consumer.connection

Consumer Broker Connection Bootstep.

class celery.worker.consumer.connection.Connection (c, **kwargs)
Service managing the consumer broker connection.

info (¢)
name = 'celery.worker.consumer.connection.Connection'
shutdown (¢)

start (c¢)

3.11.54 celery.worker.consumer.consumer

Worker Consumer Blueprint.

This module contains the components responsible for consuming messages from the broker, processing the messages
and keeping the broker connections up and running.

class celery.worker.consumer.consumer .Consumer (on_task_request,
init_callback=<function noop>,
hostname=None, pool=None,
app=None, timer=None, con-
troller=None, hub=None, amgheart-
beat=None, worker_options=None,
disable_rate_limits=Fualse,
initial_prefetch_count=2,
prefetch_multiplier=1, **kwargs)

Consumer blueprint.

382 Chapter 3. Contents

https://pypi.python.org/pypi/cell/
https://pypi.python.org/pypi/cell/

Celery Documentation, Release 4.4.2

class Blueprint (steps=None, name=None, on_start=None, on_close=None, on_stopped=None)
Consumer blueprint.

default_steps = ['celery.worker.consumer.connection:Connection', 'celery.worker.co
name = 'Consumer'
shutdown (parent)

Strategies
aliasof builtins.dict

add_task_queue (queue, exchange=None, exchange_type=None, routing_key=None, **options)

apply_eta_task (task)
Method called by the timer to apply a task with an ETA/countdown.

bucket_for_ task (type)
call_soon (p, *args, **kwargs)
cancel_task_queue (queue)

connect ()
Establish the broker connection used for consuming tasks.

Retries establishing the connection if the broker. connection_retry setting is enabled
connection_for_ read (heartbeat=None)
connection_for_write (heartbeat=None)
create_task_handler (promise=<class 'vine.promises.promise’>)
ensure_connected (conn)

init_callback = None
Optional callback called the first time the worker is ready to receive tasks.

loop_args ()

on_close()
on_connection_error after connected (exc)
on_connection_error before_connected (exc)

on_decode_error (message, exc)
Callback called if an error occurs while decoding a message.

Simply logs the error and acknowledges the message so it doesn’t enter a loop.
Parameters
* message (kombu.Message) — The message received.
* exc (Exception)— The exception being handled.
on_invalid_task (body, message, exc)
on_ready ()
on_send_event_buffered()
on_unknown_message (body, message)
on_unknown_task (body, message, exc)

perform_pending_operations ()

3.11. API Reference 383

https://docs.python.org/dev/library/exceptions.html#Exception

Celery Documentation, Release 4.4.2

pool = None
The current worker pool instance.

register_with_event_loop (hub)
reset_rate limits ()
restart_count = -1
shutdown ()

start ()

stop ()

timer = None
A timer used for high-priority internal tasks, such as sending heartbeats.

update_strategies ()

class celery.worker.consumer.consumer .Evloop (parent, **kwargs)
Event loop service.

Note: This is always started last.

label = 'event loop'

last = True

name = 'celery.worker.consumer.consumer.Evloop'
patch_all (c)

start (¢)

celery.worker.consumer.consumer .dump_body (m, body)
Format message body for debugging purposes.

3.11.55 celery.worker.consumer.control

Worker Remote Control Bootstep.
Control -> celery.worker.pidbox ->kombu.pidbox.
The actual commands are implemented in celery.worker.control.

class celery.worker.consumer.control.Control (c, **kwargs)
Remote control command service.

include_if (¢)
Return true if bootstep should be included.

You can define this as an optional predicate that decides whether this step should be created.
name = 'celery.worker.consumer.control.Control'

requires = (step:celery.worker.consumer.tasks.Tasks{ (step:celery.worker.consumer.mingl

384 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.pidbox.html#module-kombu.pidbox

Celery Documentation, Release 4.4.2

3.11.56 celery.worker.consumer.events

Worker Event Dispatcher Bootstep.
Events -> celery.events.EventDispatcher.

class celery.worker.consumer.events.Events (c, task_events=True, with-
out_heartbeat=False, without_gossip=~False,

**kwargs)
Service used for sending monitoring events.

name = 'celery.worker.consumer.events.Events'

requires = (step:celery.worker.consumer.connection.Connection{()},)
shutdown (¢)

start (¢)

stop (¢)

3.11.57 celery.worker.consumer.gossip

Worker <-> Worker communication Bootstep.

class celery.worker.consumer.gossip.Gossip (c, without_gossip=False, interval=5.0, heart-

beat_interval=2.0, **kwargs)
Bootstep consuming events from other workers.

This keeps the logical clock value up to date.

call_ task (task)

compatible_transport (app)
compatible_transports = {'amgp', 'redis'}
election (id, topic, action=None)

get_consumers (channel)

label = 'Gossip'

name = 'celery.worker.consumer.gossip.Gossip'
on_elect (event)

on_elect_ack (event)

on_message (prepare, message)

on_node_join (worker)

on_node_leave (worker)

on_node_lost (worker)

periodic ()

register_timer ()

requires = (step:celery.worker.consumer.mingle.Mingle{ (step:celery.worker.consumer.eve:

start (c¢)

3.11. API Reference 385

Celery Documentation, Release 4.4.2

3.11.58 celery.worker.consumer.heart

Worker Event Heartbeat Bootstep.

class celery.worker.consumer.heart.Heart (c, without_heartbeat=False, heart-
beat_interval=None, **kwargs)
Bootstep sending event heartbeats.

This service sends a worker—-heartbeat message every n seconds.

Note: Not to be confused with AMQP protocol level heartbeats.

name = 'celery.worker.consumer.heart.Heart'

requires = (step:celery.worker.consumer.events.Events{ (step:celery.worker.consumer.con
shutdown (¢)

start (¢)

stop (¢)

3.11.59 celery.worker.consumer.mingle

Worker <-> Worker Sync at startup (Bootstep).

class celery.worker.consumer.mingle.Mingle (c, without_mingle=False, **kwargs)
Bootstep syncing state with neighbor workers.

At startup, or upon consumer restart, this will:

* Sync logical clocks.

* Sync revoked tasks.
compatible_transport (app)
compatible_transports = {'amgp', 'redis'}
label = 'Mingle'’
name = 'celery.worker.consumer.mingle.Mingle'
on_clock_event (c, clock)
on_node_reply (c, nodename, reply)
on_revoked_received (c, revoked)
requires = (step:celery.worker.consumer.events.Events{ (step:celery.worker.consumer.con
send_hello (c)
start (¢)
sync (¢)

sync_with_node (c, clock=None, revoked=None, **kwargs)

386 Chapter 3. Contents

Celery Documentation, Release 4.4.2

3.11.60 celery.worker.consumer.tasks

Worker Task Consumer Bootstep.

class celery.worker.consumer.tasks.Tasks (¢, **kwargs)
Bootstep starting the task message consumer.

info (¢)
Return task consumer info.

name = 'celery.worker.consumer.tasks.Tasks'
requires = (step:celery.worker.consumer.mingle.Mingle{ (step:celery.worker.consumer.eve:

shutdown (¢)
Shutdown task consumer.

start (¢)
Start task consumer.

stop (¢)
Stop task consumer.

3.11.61 celery.worker.worker

WorkController can be used to instantiate in-process workers.

The command-line interface for the worker is in celery.bin.worker, while the worker program is in celery.
apps.worker.

The worker program is responsible for adding signal handlers, setting up logging, etc. This is a bare-bones worker
without global side-effects (i.e., except for the global state stored in celery.worker. state).

The worker consists of several components, all managed by bootsteps (mod:celery.bootsteps).

class celery.worker.worker.WorkController (app=None, hostname=None, **kwargs)
Unmanaged worker instance.

class Blueprint (steps=None, name=None, on_start=None, on_close=None, on_stopped=None)
Worker bootstep blueprint.

default_steps = {'celery.worker.autoscale:WorkerComponent', 'celery.worker.compone
name = 'Worker'

app = None

blueprint = None

exitcode = None
contains the exit code if a SystemExit event is handled.

info ()

on_after_init (**kwargs)
on_before_init (**kwargs)
on_close ()
on_consumer_ready (consumer)
on_init_blueprint ()

on_start ()

3.11. API Reference 387

https://docs.python.org/dev/library/exceptions.html#SystemExit

Celery Documentation, Release 4.4.2

on_stopped ()

pidlock = None

pool = None

prepare_args (**kwargs)

register with_event_loop (hub)

reload (modules=None, reload=False, reloader=None)
rusage ()

semaphore = None

setup_defaults (concurrency=None, loglevel="WARN’, logfile=None,
pool=None, consumer_cls=None, timer_cls=None,
pool_putlocks=None,
optimization=None, O=None, statedb=None,
soft_time_limit=None, scheduler=None, pool_cls=None,

autoscaler_cls=None,

task_events=None,

timer_precision=None,
pool_restarts=None,

time_limit=None,
state_db=None,

task_time_limit=None, task_soft_time_limit=None, scheduler_cls=None, sched-
ule_filename=None, max_tasks_per_child=None, prefetch_multiplier=None, dis-
able_rate_limits=None, worker_lost_wait=None, max_memory_per_child=None,

setup_includes (includes)

setup_instance (queues=None, ready_callback=None,

setup_queues (include, exclude=None)
should_use_eventloop ()
signal_consumer_close ()

start ()

state

stats ()

stop (in_sighandler=False, exitcode=None)
Graceful shutdown of the worker server.

terminate (in_sighandler=False)
Not so graceful shutdown of the worker server.

3.11.62 celery.bin.base

Base command-line interface.

exception celery.bin.base.Error (reason, status=None)
Exception raised by commands.

status =1

exception celery.bin.base.UsageError (reason, status=None)
Exception raised for malformed arguments.

status = 64

class celery.bin.base.Extensions (namespace, register)
Loads extensions from setuptools entrypoints.

pidfile=None,
use_eventloop=None, exclude_queues=None, **kwargs)

include=None,

388

Chapter 3. Contents

Celery Documentation, Release 4.4.2

add (cls, name)
load ()

class celery.bin.base.Command (app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,

on_usage_error=None)
Base class for command-line applications.

Parameters
* app (Celery)— The app to use.
* get_app (Callable)— Fucntion returning the current app when no app provided.

exception Error (reason, status=None)
Exception raised by commands.

status =1

Parser
alias of argparse.ArgumentParser

exception UsageError (reason, status=None)
Exception raised for malformed arguments.

status = 64
add_append_opt (acc, opt, value)
add_arguments (parser)
add_compat_options (parser, options)
add_preload_arguments (parser)

args = ''
Arg list used in help.

args_name = 'args'
Name of argparse option used for parsing positional args.

ask (g, choices, default=None)
Prompt user to choose from a tuple of string values.

If a default is not specified the question will be repeated until the user gives a valid choice.
Matching is case insensitive.
Parameters
* g (str)—the question to ask (don’t include questionark)
* choice (Tuple[str])—tuple of possible choices, must be lowercase.
e default (Any) — Default value if any.
check_args (args)
colored
create_parser (prog_name, command=None)

description = "'
Text to print in —help before option list.

die (msg, status=1)

doc = None

3.11. API Reference 389

https://docs.python.org/dev/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

early_ version (argv)

enable_config_from _cmdline = False
Enable if the application should support config from the cmdline.

epilog = None
Text to print at end of —help

error (s)

execute_from_commandline (argv=None)

Execute application from command-line.

Parameters argv (List [str])— The list of command-line arguments. Defaults to sys.

argv.
expanduser (value)

find_app (app)

get_cls_by_name (name, imp=<function import_from_cwd>)

get_options ()

handle_argv (prog_name, argv, command=None)
Parse arguments from argv and dispatch to run ().

tional arguments.

Warning: Exits with an error message if supports_args is disabled and argv contains posi-

Parameters

* prog_name (str)— The program name (argv [0]).

* argv (List [str])— Restof command-line arguments.

host_format (s, **extra)

leaf = True

Set to true if this command doesn’t have sub-commands

maybe_patch_concurrency (argv=None)

namespace = None
Default configuration name-space.

no_color

node_format (s, nodename, **extra)
on_concurrency_setup ()
on_error (exc)

on_usage_error (exc)

option_1list = None

List of options (without preload options).

out (s, fhi=None)

parse_doc (doc)

390

Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

parse_options (prog_name, arguments, command=None)
Parse the available options.

parse_preload options (args)
prepare_args (options, args)
prepare_arguments (parser)
prepare_parser (parser)

pretty (n)

pretty_dict_ok_error (n)
pretty_list (n)
process_cmdline_config (argv)
prog_name = 'celery'
respects_app_option = True

run (*args, **options)

run_from_argv (prog_name, argv=None, command=None)
say_chat (direction, title, body="")
say_remote_command_reply (replies)
setup_app_from commandline (argv)
show_body = True

show_reply = True

supports_args = True
If false the parser will raise an exception if positional args are provided.

symbol_by_ name (name, imp=<function import_from_cwd>)
usage (command)
verify args (given, _index=0)

version = '4.4.2 (cliffs)'
Application version.

with_pool_option (argv)
Return tuple of (short_opts, long_opts).

Returns only if the command supports a pool argument, and used to monkey patch eventlet/gevent envi-
ronments as early as possible.

Example

>>> has_pool_option = (['-P'], ['-—-pool'])

class celery.bin.base.Option (*opts, **attrs)
Instance attributes: _short_opts : [string] _long_opts : [string]

action : string type : string dest : string default : any nargs : int const : any choices : [string] callback :
function callback_args : (any*) callback_kwargs : { string : any } help : string metavar : string

3.11. API Reference 391

Celery Documentation, Release 4.4.2

ACTIONS = ('store', 'store_const', 'store_true', 'store_false', 'append',K 'append_ cons
ALWAYS_TYPED_ACTIONS = ('store', 'append')

ATTRS = ['action', 'type', 'dest', 'default', 'nargs', 'const', 'choices', 'callback',
CHECK_METHODS = [<function Option._check_action>, <function Option._check_type>, <func
CONST_ACTIONS = ('store_const', 'append const')

STORE_ACTIONS = ('store', 'store_const', 'store_true', 'store_ false', 'append',K 'appen
TYPED_ACTIONS = ('store', 'append', 'callback')

TYPES = ('string', 'int', 'long', 'float', 'complex', 'choice')

TYPE_CHECKER = {'choice': <function check_choice>, 'complex': <function check_builti

check_value (opt, value)

convert_value (opt, value)

get_opt_string()

process (opt, value, values, parser)

take_action (action, dest, opt, value, values, parser)
takes_value ()

celery.bin.base.daemon_options (parser, default_pidfile=None, default_logfile=None)
Add daemon options to argparse parser.

3.11.63 celery.bin.celery

* Preload Options

* Daemon Options

* celery inspect
* celery control
s celery migrate
* celery upgrade
* celery shell

e celery result

e celery purge

* celery call

The celery umbrella command.

Preload Options

These options are supported by all commands, and usually parsed before command-specific arguments.

-A, ——app
app instance to use (e.g., module.attr_name)

392 Chapter 3. Contents

Celery Documentation, Release 4.4.2

-b, —-broker
URL to broker. default is amgp: //guest@localhost//

——loader
name of custom loader class to use.

——config
Name of the configuration module

-C, ——-no-color
Disable colors in output.

-9, ——quiet
Give less verbose output (behavior depends on the sub command).

—-help
Show help and exit.

Daemon Options
These options are supported by commands that can detach into the background (daemon). They will be present in any
command that also has a —detach option.

-f, --logfile
Path to log file. If no logfile is specified, stderr is used.

—-pidfile
Optional file used to store the process pid.

The program won’t start if this file already exists and the pid is still alive.

——uid
User id, or user name of the user to run as after detaching.

-—-gid
Group id, or group name of the main group to change to after detaching.

——umask
Effective umask (in octal) of the process after detaching. Inherits the umask of the parent process by default.

—-workdir
Optional directory to change to after detaching.

——executable
Executable to use for the detached process.

celery inspect
-t, —-timeout
Timeout in seconds (float) waiting for reply

—-d, —--destination

Comma separated list of destination node names.
-j, —-—json

Use json as output format.

3.11. API Reference 393

Celery Documentation, Release 4.4.2

celery control

-t,

_d,

_j,

——timeout
Timeout in seconds (float) waiting for reply

——destination

Comma separated list of destination node names.

—-—json
Use json as output format.

celery migrate

-n,

-t,

-a,

—=limit
Number of tasks to consume (int).

—timeout
Timeout in seconds (float) waiting for tasks.

——ack-messages
Ack messages from source broker.

——tasks
List of task names to filter on.

—-—queues
List of queues to migrate.

——forever
Continually migrate tasks until killed.

celery upgrade

--django

Upgrade a Django project.

——compat

Maintain backwards compatibility.

—-no-backup

Don’t backup original files.

celery shell

-I, —--ipython

Force iPython implementation.
-B, —-bpython

Force bpython implementation.
-P, —-python

Force default Python shell.
-T, —-without-tasks

Don’t add tasks to locals.
—-—eventlet

Use eventlet monkey patches.
394

Chapter 3. Contents

https://pypi.python.org/pypi/iPython/
https://pypi.python.org/pypi/bpython/
https://pypi.python.org/pypi/eventlet/

Celery Documentation, Release 4.4.2

——gevent
Use gevent monkey patches.

celery result

-t, ——task
Name of task (if custom backend).

——traceback
Show traceback if any.

celery purge

-f, ——force

Don’t prompt for verification before deleting messages (DANGEROUS)

celery call
-a, —--args
Positional arguments (json format).

-k, —--kwargs
Keyword arguments (json format).

—-—eta
Scheduled time in ISO-8601 format.

——countdown
ETA in seconds from now (float/int).
——expires
Expiry time in float/int seconds, or a ISO-8601 date.

——-serializer
Specify serializer to use (default is json).

——queue
Destination queue.

——exchange
Destination exchange (defaults to the queue exchange).

——routing-key
Destination routing key (defaults to the queue routing key).

class celery.bin.celery.CeleryCommand (app=None,
stdout=None,
on_error=None, on_usage_error=None)

Base class for commands.

get_app=None, no_color=False,
quiet=False,

stderr=None,

commands = {'amgp': <class 'celery.bin.amgp.amgp'>, 'beat':

enable_config_from _cmdline = True
execute (command, argv=None)

execute_from_commandline (argv=None)
Execute application from command-line.

<class

'celery.bin.beat..

3.11. API Reference

395

https://pypi.python.org/pypi/gevent/

Celery Documentation, Release 4.4.2

Parameters argv (List [str])— The list of command-line arguments. Defaults to sys.

argv.
ext_fmt = '{self.namespace}.commands'
classmethod get_command_ info (command, indent=0, color=None, colored=None,

app=None)

handle_argv (prog_name, argv, **kwargs)
Parse arguments from argv and dispatch to run () .

Warning: Exits with an error message if supports_args is disabled and argv contains posi-
tional arguments.

Parameters
* prog_name (str)— The program name (argv [0]).

* argv (List [str])—Restof command-line arguments.

classmethod list_commands (indent=0, colored=None, app=None)
load_extension_commands ()

namespace = 'celery'

on_concurrency_setup ()

on_usage_error (exc, command=None)

prepare_prog_name (name)

prog_name = 'celery'

classmethod register_command (fun, name=None)

with_pool_option (argv)
Return tuple of (short_opts, long_opts).

Returns only if the command supports a pool argument, and used to monkey patch eventlet/gevent envi-
ronments as early as possible.

Example

>>> has_pool_option = (['-P'], ['--pool'])

celery.bin.celery.main (argv=None)
Start celery umbrella command.

3.11.64 celery.bin.worker

Program used to start a Celery worker instance.
The celery worker command (previously known as celeryd)
See also:

See Preload Options.

396 Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

-c,

-0

—-—concurrency
Number of child processes processing the queue. The default is the number of CPUs available on your system.

——pool
Pool implementation:

prefork (default), eventlet, gevent, threads or solo.

——hostname
Set custom hostname (e.g., ‘w1 @ %%h’). Expands: %%h (hostname), %%n (name) and %%d, (domain).

—-beat
Also run the celery beat periodic task scheduler. Please note that there must only be one instance of this service.

Note: -B is meant to be used for development purposes. For production environment, you need to start
celery beat separately.

—-—-queues
List of queues to enable for this worker, separated by comma. By default all configured queues are enabled.
Example: -Q video,image

——exclude—-queues
List of queues to disable for this worker, separated by comma. By default all configured queues are enabled.
Example: -X video,image.

——include
Comma separated list of additional modules to import. Example: -I foo.tasks,bar.tasks

—-schedule
Path to the schedule database if running with the -B option. Defaults to celerybeat-schedule. The extension
“.db” may be appended to the filename.

Apply optimization profile. Supported: default, fair

——prefetch—-multiplier

Set custom prefetch multiplier value for this worker instance.

—-scheduler

_S,

_E,

Scheduler class to use. Defaultis celery.beat.PersistentScheduler

——statedb
Path to the state database. The extension ‘.db’ may be appended to the filename. Default: {default}

—--task-events
Send task-related events that can be captured by monitors like celery events, celerymon, and others.

——without—-gossip

Don’t subscribe to other workers events.

—--without-mingle

Don’t synchronize with other workers at start-up.

——without-heartbeat

Don’t send event heartbeats.

—-heartbeat-interval

Interval in seconds at which to send worker heartbeat

3.11. API Reference 397

mailto:'w1@%%h

Celery Documentation, Release 4.4.2

——purge
Purges all waiting tasks before the daemon is started. WARNING: This is unrecoverable, and the tasks will be
deleted from the messaging server.

——time-limit
Enables a hard time limit (in seconds int/float) for tasks.

——soft-time-limit
Enables a soft time limit (in seconds int/float) for tasks.

——-max—-tasks—-per-child
Maximum number of tasks a pool worker can execute before it’s terminated and replaced by a new worker.

—-max-memory-per—child
Maximum amount of resident memory, in KiB, that may be consumed by a child process before it will be
replaced by a new one. If a single task causes a child process to exceed this limit, the task will be completed
and the child process will be replaced afterwards. Default: no limit.

——autoscale
Enable autoscaling by providing max_concurrency, min_concurrency. Example:

-—autoscale=10,3

(always keep 3 processes, but grow to 10 if necessary)

——detach
Start worker as a background process.

-f, ——-logfile
Path to log file. If no logfile is specified, stderr is used.

-1, --loglevel
Logging level, choose between DEBUG, INFO, WARNING, ERROR, CRITICAL, or FATAL.

——pidfile
Optional file used to store the process pid.

The program won’t start if this file already exists and the pid is still alive.

--uid

User id, or user name of the user to run as after detaching.
--gid

Group id, or group name of the main group to change to after detaching.
——umask

Effective umask (1) (in octal) of the process after detaching. Inherits the umask (1) of the parent process by
default.

——workdir
Optional directory to change to after detaching.

——executable
Executable to use for the detached process.

class celery.bin.worker.worker (app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,

on_usage_error=None)
Start worker instance.

398 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Examples

$ celery worker —-—app=proj -1 info
$ celery worker -A proj -1 info -Q hipri,lopri

$ celery worker -A proj —-concurrency=4
$ celery worker -A proj —-concurrency=1000 -P eventlet
$ celery worker —--autoscale=10,0

add_arguments (parser)

doc = 'Program used to start a Celery worker instance.\n\nThe :program: celery worker’
enable_config from_cmdline = True

maybe_detach (argv, dopts=None)

namespace = 'worker'

removed_flags = {'——force-execv', '——no-execv'}

run (hostname=None, pool_cls=None, app=None, uid=None, gid=None, loglevel=None, logfile=None,
pidfile=None, statedb=None, **kwargs)

run_from_argv (prog_name, argv=None, command=None)
supports_args = False

with_pool_option (argv)
Return tuple of (short_opts, long_opts).

Returns only if the command supports a pool argument, and used to monkey patch eventlet/gevent envi-
ronments as early as possible.

Example

>>> has_pool_option = (['-P'], ['-—-pool'])

celery.bin.worker.main (app=None)
Start worker.

3.11.65 celery.bin.beat

The celery beat command.
See also:
See Preload Options and Daemon Options.

——detach
Detach and run in the background as a daemon.

-s, —-schedule
Path to the schedule database. Defaults to celerybeat-schedule. The extension ‘.db’ may be appended to the
filename. Default is {default}.

—-S, ——scheduler
Scheduler class to use. Defaultis {default}.

—--max-interval
Max seconds to sleep between schedule iterations.

3.11. API Reference 399

Celery Documentation, Release 4.4.2

-f, ——-logfile
Path to log file. If no logfile is specified, stderr is used.

-1, --loglevel
Logging level, choose between DEBUG, INFO, WARNING, ERROR, CRITICAL, or FATAL.

——pidfile
File used to store the process pid. Defaults to celerybeat.pid.

The program won’t start if this file already exists and the pid is still alive.
-—-uid

User id, or user name of the user to run as after detaching.
-—-gid

Group id, or group name of the main group to change to after detaching.

——umask
Effective umask (in octal) of the process after detaching. Inherits the umask of the parent process by default.

——workdir
Optional directory to change to after detaching.

——executable
Executable to use for the detached process.

class celery.bin.beat .beat (app=None, get_app=None, no_color=False, stdout=None,

stderr=None, quiet=False, on_error=None, on_usage_error=None)
Start the beat periodic task scheduler.

Examples

$ celery beat -1 info
$ celery beat -s /var/run/celery/beat-schedule --detach
$ celery beat -S django

The last example requires the django-celery-beat extension package found on PyPI.

add_arguments (parser)

doc = "The :program: celery beat® command.\n\n.. program:: celery beat\n\n..

enable_config_from_cmdline = True

run (detach=False, logfile=None, pidfile=None, uid=None, gid=None, umask=None, workdir=None,
*rkwargs)

supports_args = False

3.11.66 celery.bin.events

The celery events command.
See also:
See Preload Options and Daemon Options.

-d, --dump
Dump events to stdout.

-c, ——-camera
Take snapshots of events using this camera.

400 Chapter 3. Contents

seealso:

https://pypi.python.org/pypi/django-celery-beat/

Celery Documentation, Release 4.4.2

——detach
Camera: Detach and run in the background as a daemon.

-F, --freq, —--frequency
Camera: Shutter frequency. Default is every 1.0 seconds.

-r, ——maxrate
Camera: Optional shutter rate limit (e.g., 10/m).

-1, --loglevel
Logging level, choose between DEBUG, INFO, WARNING, ERROR, CRITICAL, or FATAL. Default is INFO.

-f, ——-logfile
Path to log file. If no logfile is specified, stderr is used.

—-pidfile
Optional file used to store the process pid.

The program won’t start if this file already exists and the pid is still alive.
—-uid

User id, or user name of the user to run as after detaching.
--gid

Group id, or group name of the main group to change to after detaching.

——umask
Effective umask (in octal) of the process after detaching. Inherits the umask of the parent process by default.

—-workdir
Optional directory to change to after detaching.

——executable
Executable to use for the detached process.

class celery.bin.events.events (app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,

on_usage_error=None)
Event-stream utilities.

Notes

- Start graphical monitor (requires curses)
$ celery events —-—app=proj

$ celery events -d —-—app=proj

- Dump events to screen.

$ celery events -b amgp://

- Run snapshot camera.

$ celery events -c <camera> [options]

Examples

$ celery events
$ celery events -d
$ celery events -c mod.attr -F 1.0 --detach --maxrate=100/m -1 info

add_arguments (parser)

doc = "The :program: celery events command.\n\n.. program:: celery events\n\n.. seea

3.11. API Reference 401

Celery Documentation, Release 4.4.2

run (dump=False, camera=None, frequency=1.0, maxrate=None, loglevel="INFO’, logfile=None,
prog_name=’celery events’, pidfile=None, uid=None, gid=None, umask=None, workdir=None,
detach=False, **kwargs)

run_evcam (camera, logfile=None, pidfile=None, uid=None, gid=None, umask=None, workdir=None,
detach=False, **kwargs)

run_evdump ()
run_evtop ()
set_process_status (prog, info=")

supports_args = False

3.11.67 celery.bin.logtool

The celery logtool command.

class celery.bin.logtool.logtool (app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,

on_usage_error=None)
The celery logtool command.

args = '<action> [arguments]\n stats [filel|- [file2 [...]]1]1\n
debug (files)

errors (files)

incomplete (files)

run (what=None, *files, **kwargs)

sayl (line, *_)

stats (files)

traces (files)

3.11.68 celery.bin.amqgp

The celery amgp command.

class celery.bin.amgp.AMQPAdmin (*args, **kwargs)
The celery celery amgp utility.

Shell
alias of AMOShell

connect (conn=None)
note (m)
run ()

class celery.bin.amgp.AMQShell (*args, **kwargs)
AMQP API Shell.

Parameters

e connect (Callable) - Function used to connect to the server. Must return kombu .
Connection object.

402 Chapter 3. Contents

..... traces [fil

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection

Celery Documentation, Release 4.4.2

* silent (bool) — If enabled, the commands won’t have annoying output not relevant
when running in non-shell mode.

amgp = {'basic.ack': <celery.bin.amgp.Spec object>, 'basic.get': <celery.bin.amqgp.Sp
Map of AMQP API commands and their Spec.

builtins = {'EOF': 'do_exit', 'exit': 'do_exit', 'help': 'do_help'}
Map of built-in command names -> method names

chan = None

completenames (fext, *ignored)
Return all commands starting with fext, for tab-completion.

conn = None
counter =1

default (line)
Called on an input line when the command prefix is not recognized.

If this method is not overridden, it prints an error message and returns.

dispatch (cmd, arglist)
Dispatch and execute the command.

Look-up order is: builtins->amgp.
display_ command_help (cmd, short=False)

do_exit (*args)
The ‘exit’ command.

do_help (*args)
List available commands with “help” or detailed help with “help cmd”.

get_amgp_api_command (cmd, arglist)
Get AMQP command wrapper.

With a command name and a list of arguments, convert the arguments to Python values and find the
corresponding method on the AMQP channel object.

Returns of (method, processed_args) pairs.
Return type Tuple
get_names ()
identchars = '.'
inc_counter = count (2)
needs_reconnect = False

note (m)
Say something to the user. Disabled if silent.

onecmd (l/ine)
Parse line and execute command.

parseline (parts)
Parse input line.

Returns

of three items: (command_name, arglist, original_line)

3.11. API Reference 403

https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

Return type Tuple

prompt
str(object="") -> str str(bytes_or_buffer[, encoding][, errors]]) -> str

Create a new string object from the given object. If encoding or errors is specified, then the object must
expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns
the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding().
errors defaults to ‘strict’.

prompt_fmt = '{self.counter}> '

respond (retval)
What to do with the return value of a command.

say (m)

class celery.bin.amgp.Spec (*args, **kwargs)
AMQP Command specification.

Used to convert arguments to Python values and display various help and tool-tips.
Parameters
* args (Sequence) —see args.
* returns (str)-see returns.

args = None
List of arguments this command takes. Should contain (argument_name, argument_type) tu-
ples.

coerce (index, value)
Coerce value for argument at index.

format_arg (name, type, default_value=None)

format_response (response)
Format the return value of this command in a human-friendly way.

format_signature ()

returns = None
Helpful human string representation of what this command returns. May be None, to signify the return
type is unknown.

str_args_to_python (arglist)
Process list of string arguments to values according to spec.

Example
>>> spec = Spec ([('queue', str), ('if_unused', bool)])
>>> spec.str_args_to_python ('pobox', 'true')
('"pobox', True)
class celery.bin.amgp.amqgp (app=None, get_app=None, no_color=False, stdout=None,

stderr=None, quiet=False, on_error=None, on_usage_error=None)
AMOQP Administration Shell.

Also works for non-AMQP transports (but not ones that store declarations in memory).

404 Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

Examples

start shell mode
celery amgp
show list of commands

v v v »n

celery amgp help

wn

celery amgp exchange.delete name
celery amgp queue.delete queue
celery amgp queue.delete queue yes yes

«“ n

run (*args, **options)

3.11.69 celery.bin.graph

The celery graph command.

class celery.bin.graph.graph (app=None, get_app=None, no_color=False, std-

out=None, stderr=None, quiet=False, on_error=None,

on_usage_error=None)
The celery graph command.

args = '<TYPE> [arguments]\n bootsteps [worker] [consumer]\n workers

bootsteps (*args, **kwargs)
run (what=None, *args, **kwargs)

workers (*args, **kwargs)

3.11.70 celery.bin.multi

Start multiple worker instances from the command-line.

Examples

$ # Single worker with explicit name and events enabled.

$ celery multi start Leslie -E

$ # Pidfiles and logfiles are stored in the current directory

$ # by default. Use --pidfile and --logfile argument to change

$ # this. The abbreviation %n will be expanded to the current

$ # node name.

$ celery multi start Leslie -E —--pidfile=/var/run/celery/%n.pid
-—logfile=/var/log/celery/%n%I.log

$ # You need to add the same arguments when you restart,

$ # as these aren't persisted anywhere.

$ celery multi restart Leslie -E —--pidfile=/var/run/celery/%n.pid

-—logfile=/var/log/celery/%$n%I.log

$ # To stop the node, you need to specify the same pidfile.

$ celery multi stop Leslie —-pidfile=/var/run/celery/%n.pid

$ # 3 workers, with 3 processes each

(continues on next page)

3.11. API Reference 405

[enum

Celery Documentation, Release 4.4.2

(continued from previous page)

$ celery multi start 3 -c 3

celery worker -n celeryl@myhost -c 3
celery worker -n celery2@myhost -c 3
celery worker -n celery3@myhost -c 3

$ # start 3 named workers

$ celery multi start image video data -c 3
celery worker -n image@myhost -c 3

celery worker —-n video@myhost -c 3

celery worker -n data@myhost -c 3

$ # specify custom hostname

$ celery multi start 2 --hostname=worker.example.com -c 3
celery worker -n celeryl@worker.example.com -c 3

celery worker -n celery2@worker.example.com —-c 3

$ # specify fully qualified nodenames
$ celery multi start fooQworker.example.com bar@worker.example.com -c 3
$ # fully qualified nodenames but using the current hostname
$ celery multi start foo@%h bar@%h
$ # Advanced example starting 10 workers in the background:
S # * Three of the workers processes the images and video queue
S # x* Two of the workers processes the data queue with loglevel DEBUG
S # * the rest processes the default' queue.
$ celery multi start 10 -1 INFO -Q:1-3 images,video -Q:4,5 data
-Q default -L:4,5 DEBUG
$ # You can show the commands necessary to start the workers with
$ # the 'show' command:
$ celery multi show 10 -1 INFO -Q:1-3 images,video -Q:4,5 data
-Q default -L:4,5 DEBUG
$ # Additional options are added to each celery worker' comamnd,
$ # but you can also modify the options for ranges of, or specific workers

$ # 3 workers: Two with 3 processes, and one with 10 processes.
$ celery multi start 3 -c¢ 3 -c:1 10

celery worker -n celeryl@myhost -c 10

celery worker -n celery2@myhost -c 3

celery worker -n celery3@myhost -c 3

$ # can also specify options for named workers

$ celery multi start image video data —-c 3 -c:image 10
celery worker -n image@myhost -c 10

celery worker -n video@myhost -c 3

celery worker -n data@myhost -c 3

$ # ranges and lists of workers in options is also allowed:
$ # (-c:1-3 can also be written as -c:1,2,3)

$ celery multi start 5 -¢ 3 -c:1-3 10

celery worker -n celeryl@myhost -c 10

celery worker -n celery2@myhost -c 10

celery worker -n celery3@myhost -c 10

celery worker -n celery4@myhost -c 3

celery worker -n celery5@myhost -c 3

(continues on next page)

406 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

$ # lists also works with named workers
$ celery multi start foo bar baz xuzzy -c 3 -c:foo,bar,baz 10

ry worker -n

y worker -n

orker -n

class celery.bin.multi.MultiTool (env=None, cmd=None, fh=None, stdout=None, stderr=None,
**kwargs)
The celery multi program.

Cluster (nodes, cmd=None)
DOWN
FAILED

class MultiParser (cmd="celery worker’, append="", prefix="", suffix=", range_prefix="celery’)

class Node (name, cmd=None, append=None, options=None, extra_args=None)
Represents a node in a cluster.

alive ()
argv_with_executable
executable
classmethod from kwargs (name, **kwargs)
getopt (*alt)
handle_process_exit (retcode, on_signalled=None, on_failure=None)
logfile
pid
pidfile
prepare_argv (argv, path)
send (sig, on_error=None)
start (env=None, **kwargs)
parse (p)
OK

OptionParser
alias of celery.apps.multi.NamespacedOptionParser

call_command (command, argv)
cluster_from_argv (argv, cmd=None)
execute_from_commandline (argv, cmd=None)
expand (template, *argv)

get (wanted, *argv)

help (*argv)

3.11. API Reference 407

Celery Documentation, Release 4.4.2

kill (cluster)

names (cluster)

on_child failure (node, retcode)
on_child_signalled (node, signum)
on_child_spawn (node, argstr, env)
on_node_down (node)
on_node_restart (node)
on_node_shutdown_ok (node)
on_node_signal (node, sig)
on_node_signal_dead (node)
on_node_ start (node)
on_node_status (node, retval)
on_send_signal (node, sig)
on_still waiting end()
on_still waiting_ for (nodes)
on_still waiting_ progress (nodes)
on_stopping preamble (nodes)
reserved_options = [('—-—-nosplash', 'nosplash'), ('—-—quiet', 'quiet'), ('—q', 'quiet'),
restart (cluster, sig, **kwargs)

show (cluster)

start (cluster)

stop (cluster, sig, **kwargs)
stop_verify (cluster, sig, **kwargs)
stopwait (cluster, sig, **kwargs)

validate_arguments (argv)

3.11.71 celery.bin.call

The celery call program used to send tasks from the command-line.

class celery.bin.call.call (app=None, get_app=None, no_color=False, stdout=None,

stderr=None, quiet=False, on_error=None, on_usage_error=None)
Call a task by name.

Examples

$ celery call tasks.add --args='[2, 2]'
$ celery call tasks.add --args='[2, 2]' —--countdown=10

add_arguments (parser)

408 Chapter 3. Contents

Celery Documentation, Release 4.4.2

args = '<task_name>'
args_name = 'posargs'

run (name, *_, **kwargs)

3.11.72 celery.bin.control

The celery control,. inspect and . status programs.

class celery.bin.control.control (*args, **kwargs)
Workers remote control.

Availability: RabbitMQ (AMQP), Redis, and MongoDB transports.

Examples

$ celery control enable_events —--timeout=5

$ celery control -d workerl@example.com enable_events
$ celery control -d wl.e.com,w2.e.com enable_events

$ celery control -d wl.e.com add_consumer queue_name
$ celery control -d wl.e.com cancel_consumer gueue_name

$ celery control add_consumer queue exchange direct rkey

call (method, arguments, **options)
control_group = 'control'
name = 'control'

class celery.bin.control.inspect (*args, **kwargs)
Inspect the worker at runtime.

Availability: RabbitMQ (AMQP) and Redis transports.

Examples

$ celery inspect active —--timeout=5
$ celery inspect scheduled -d workerlRexample.com
$ celery inspect revoked -d wl@e.com,w2@e.com

call (method, arguments, **options)

control_group = 'inspect'
name = 'inspect'
class celery.bin.control.status (app=None, get_app=None, no_color=Fualse, std-

out=None, stderr=None, quiet=False, on_error=None,

on_usage_error=None)
Show list of workers that are online.

option_1list = None

run (*args, **kwargs)

3.11. API Reference 409

Celery Documentation, Release 4.4.2

3.11.73 celery.bin.list

The celery list bindings command, used to inspect queue bindings.

class celery.bin.list.list_ (app=None, get_app=None, no_color=False, stdout=None,
stderr=None, quiet=False, on_error=None, on_usage_error=None)
Get info from broker.

Note: For RabbitMQ the management plugin is required.

Example

$ celery list bindings

args = '[bindings]'
list_bindings (management)

run (what=None, *_, **kw)

3.11.74 celery.bin.migrate

The celery migrate command, used to filter and move messages.

class celery.bin.migrate.migrate (app=~None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,
on_usage_error=None)
Migrate tasks from one broker to another.

Warning: This command is experimental, make sure you have a backup of the tasks before you continue.

Example

$ celery migrate amgp://A.example.com amgp://guest@B.example.com//
$ celery migrate redis://localhost amgp://guest@localhost//

add_arguments (parser)
args = '<source_url> <dest_url>'
on_migrate_task (state, body, message)

progress_fmt = 'Migrating task {state.count}/{state.strtotal}: {body[task] } [{body[id]

run (source, destination, **kwargs)

3.11.75 celery.bin.purge

The celery purge program, used to delete messages from queues.

410 Chapter 3. Contents

Celery Documentation, Release 4.4.2

class celery.bin.purge.purge (app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,
on_usage_error=None)
Erase all messages from all known task queues.

Warning: There’s no undo operation for this command.

add_arguments (parser)

fmt_empty = 'No messages purged from {gnum} {queues}'

fmt_purged = 'Purged {mnum} {messages} from {gqnum} known task {queues}.'

run (force=False, queues=None, exclude_queues=None, **kwargs)

warn_prelude = '{warning}: This will remove all tasks from {queues}: {names}.\n Ther

warn_prompt = 'Are you sure you want to delete all tasks'

3.11.76 celery.bin.result

The celery result program, used to inspect task results.

class celery.bin.result.result (app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,

on_usage_error=None)
Gives the return value for a given task id.

Examples

$ celery result 8f511516-e2f5-4da4-9d2f-0fb83a86e500
$ celery result 8f511516-e2f5-4dad4-9d2f-0fb83a86e500 -t tasks.add
$ celery result 8f511516-e2f5-4da4-9d2f-0fb83a86e500 —-traceback

add_arguments (parser)
args = '<task_id>'

run (task_id, *args, **kwargs)

3.11.77 celery.bin.shell

The celery shell program, used to start a REPL.

class celery.bin.shell.shell (app=None, get_app=None, no_color=Fualse, std-
out=None, stderr=None, quiet=False, on_error=None,

on_usage_error=None)
Start shell session with convenient access to celery symbols.

The following symbols will be added to the main globals:
e celery: the current application.
* chord, group, chain, chunks, xmap, xstarmap subtask, Task
* all registered tasks.

add_arguments (parser)

3.11. API Reference 411

Celery Documentation, Release 4.4.2

invoke_bpython_shell ()
invoke_default_shell ()
invoke_fallback_ shell ()
invoke_ipython_shell ()

run (*args, **kwargs)

3.11.78 celery.bin.upgrade

The celery upgrade command, used to upgrade from previous versions.

class celery.bin.upgrade.upgrade (app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,

on_usage_error=None)
Perform upgrade between versions.

add_arguments (parser)

choices = {'settings'}

run (*args, **kwargs)

settings (command, filename=None, no_backup=False, django=False, compat=False, **kwargs)

usage (command)

3.12 Internals

Release 4.4
Date Mar 17, 2020

3.12.1 Contributors Guide to the Code

* Philosophy
— The API>RCP Precedence Rule
* Conventions and Idioms Used
— Classes
* Naming
* Default values
* Exceptions
x Composites
* Applications vs. “single mode”

e Module Overview

e Worker overview

412 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Philosophy

The API>RCP Precedence Rule

* The API is more important than Readability

» Readability is more important than Convention

* Convention is more important than Performance
— ...unless the code is a proven hot-spot.

More important than anything else is the end-user API. Conventions must step aside, and any suffering is always
alleviated if the end result is a better API.

Conventions and Idioms Used
Classes
Naming

¢ Follows PEP 8.
¢ Class names must be CamelCase.

* but not if they’re verbs, verbs shall be lower_case:

— test case for a class

class TestMyClass (Case): # BAD
pass

class test_MyClass (Case): # GOOD
pass

— test case for a function

class TestMyFunction (Case) : # BAD
pass

class test_my function (Case): # GOOD
pass

— "action" class (verb)

class UpdateTwitterStatus (object): # BAD
pass

class update_twitter_status (object): # GOOD
pass

Note: Sometimes it makes sense to have a class mask as a function, and there’s precedence for this
in the Python standard library (e.g., contextmanager). Celery examples include signature,
chord, inspect, promise and more..

¢ Factory functions and methods must be CamelCase (excluding verbs):

3.12. Internals 413

https://www.python.org/dev/peps/pep-0008

Celery Documentation, Release 4.4.2

class Celery (object):

def consumer_ factory(self): # BAD

def Consumer (self): # GOOD

Default values

Class attributes serve as default values for the instance, as this means that they can be set by either instantiation or
inheritance.

Example:

class Producer (object) :
active = True
serializer = 'json'

def init (self, serializer=None, active=None) :
self.serializer = serializer or self.serializer
must check for None when value can be false-y

self.active = active if active is not None else self.active

A subclass can change the default value:

TaskProducer (Producer) :
serializer = 'pickle'

and the value can be set at instantiation:

>>> producer = TaskProducer (serializer="'msgpack'")

Exceptions

Custom exceptions raised by an objects methods and properties should be available as an attribute and documented in
the method/property that throw.

This way a user doesn’t have to find out where to import the exception from, but rather use help (ob3j) and access
the exception class from the instance directly.

Example:

class Empty (Exception) :
pass

class Queue (object) :
Empty = Empty

def get (self):
"""Get the next item from the queue.

:raises Queue.Empty: if there are no more items left.

(continues on next page)

414 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

try:

return self.queue.popleft ()
except IndexError:

raise self.Empty ()

Composites

Similarly to exceptions, composite classes should be override-able by inheritance and/or instantiation. Common sense
can be used when selecting what classes to include, but often it’s better to add one too many: predicting what users
need to override is hard (this has saved us from many a monkey patch).

Example:

class Worker (object) :
Consumer = Consumer

def _ init_ (self, connection, consumer_cls=None) :
self.Consumer = consumer_cls or self.Consumer
def do_work (self):
with self.Consumer (self.connection) as consumer:
self.connection.drain_events ()

Applications vs. “single mode”
In the beginning Celery was developed for Django, simply because this enabled us get the project started quickly,
while also having a large potential user base.

In Django there’s a global settings object, so multiple Django projects can’t co-exist in the same process space, this
later posed a problem for using Celery with frameworks that don’t have this limitation.

Therefore the app concept was introduced. When using apps you use ‘celery’ objects instead of importing things from
Celery sub-modules, this (unfortunately) also means that Celery essentially has two API’s.

Here’s an example using Celery in single-mode:

from celery import task
from celery.task.control import inspect

from .models import CeleryStats

@task
def write_stats_to_db():
stats = inspect () .stats (timeout=1)

for node_name, reply in stats:
CeleryStats.objects.update_stat (node_name, stats)

and here’s the same using Celery app objects:

from .celery import celery
from .models import CeleryStats

(continues on next page)

3.12. Internals 415

Celery Documentation, Release 4.4.2

(continued from previous page)

Qapp.task
def write_stats_to _db():
stats = celery.control.inspect () .stats (timeout=1)

for node_name, reply in stats:
CeleryStats.objects.update_stat (node_name, stats)

In the example above the actual application instance is imported from a module in the project, this module could look
something like this:

from celery import Celery

app = Celery (broker='amgp://"')

Module Overview

e celery.app
This is the core of Celery: the entry-point for all functionality.
* celery.loaders

Every app must have a loader. The loader decides how configuration is read; what happens when
the worker starts; when a task starts and ends; and so on.

The loaders included are:
— app
Custom Celery app instances uses this loader by default.
— default
“single-mode” uses this loader by default.
Extension loaders also exist, for example celery-pylons.
* celery.worker
This is the worker implementation.
* celery.backends
Task result backends live here.
* celery.apps

Major user applications: worker and beat. The command-line wrappers for these are in celery.bin
(see below)

e celery.bin

Command-line applications. setup . py creates setuptools entry-points for these.
* celery.concurrency

Execution pool implementations (prefork, eventlet, gevent, solo, thread).
e celery.db

Database models for the SQLAIchemy database result backend. (should be moved into celery.
backends.database)

* celery.events

416 Chapter 3. Contents

https://pypi.python.org/pypi/celery-pylons/

Celery Documentation, Release 4.4.2

Sending and consuming monitoring events, also includes curses monitor, event dumper and utilities
to work with in-memory cluster state.

* celery.execute.trace
How tasks are executed and traced by the worker, and in eager mode.
* celery.security
Security related functionality, currently a serializer using cryptographic digests.
* celery.task
single-mode interface to creating tasks, and controlling workers.
e t.unit (int distribution)
The unit test suite.
* celery.utils

Utility functions used by the Celery code base. Much of it is there to be compatible across Python
versions.

* celery.contrib

Additional public code that doesn’t fit into any other name-space.

Worker overview

e celery.bin.worker:Worker
This is the command-line interface to the worker.
Responsibilities:
— Daemonization when ——-detach set,
— dropping privileges when using ——uid/ ——gid arguments
— Installs “concurrency patches” (eventlet/gevent monkey patches).

app.worker_main (argv) calls instantiate('celery.bin.worker:Worker') (app) .
execute_from_commandline (argv)

* app.Worker -> celery.apps.worker: Worker

Responsibilities: * sets up logging and redirects standard outs * installs signal handlers
(TERM/HUPISTOP/USRI (cry)/USR2 (rdb)) * prints banner and warnings (e.g., pickle warning)
* handles the celery worker -—purge argument

* app.WorkController -> celery.worker. WorkController

This is the real worker, built up around bootsteps.

3.12.2 Celery Deprecation Time-line

* Removals for version 5.0

— Old Task API

* Compat Task Modules

3.12. Internals 417

Celery Documentation, Release 4.4.2

Task attributes

Modules to Remove

Settings
* BROKER Settings

% REDIS Result Backend Settings

Task_sent signal

Result

* Settings

* Removals for version 2.0

Removals for version 5.0

Old Task API
Compat Task Modules

¢ Module celery.decorators will be removed:

This means you need to change:

’from celery.decorators import task ‘

Into:

’from celery import task ‘

* Module celery.task may be removed (not decided)

This means you should change:

’from celery.task import task ‘

into:

’from celery import task ‘

—and:

’from celery.task import Task ‘

into:

’from celery import Task ‘

Note that the new Task class no longer uses classmethod () for these methods:
* delay
* apply_async

* retry

418 Chapter 3. Contents

https://docs.python.org/dev/library/functions.html#classmethod

Celery Documentation, Release 4.4.2

This also means that you can’t call these methods directly on the class, but have to instantiate the task first:

apply
AsyncResult

subtask

>>>

>>>

MyTask.delay () # NO LONGER WORKS

MyTask () .delay () 4 WORKS!

Task attributes

The task attributes:

queue
exchange
exchange_type
routing_key
delivery_mode

priority

is deprecated and must be set by task_routes instead.

Mod

ules to Remove

celery.execute
This module only contains send_task: this must be replaced with app . send_task instead.
celery.decorators

See Compat Task Modules
celery.log

Use app. 1og instead.
celery.messaging

Use app. amgp instead.
celery.registry

Use celery.app.registry instead.
celery.task.control

Use app. control instead.
celery.task.schedules

Use celery.schedules instead.
celery.task.chords

Use celery.chord () instead.

3.12

. Internals

419

Celery Documentation, Release 4.4.2

Settings

BROKER Settings

Setting name Replace with
BROKER_HOST broker url
BROKER_PORT broker url
BROKER_USER broker url
BROKER_PASSWORD | broker url
BROKER_VHOST broker url
REDIS Result Backend Settings
Setting name Replace with
CELERY_REDIS_HOST result_backend
CELERY_REDIS_PORT result_backend
CELERY_REDIS_DB result_backend
CELERY_REDIS_PASSWORD | result_backend
REDIS_HOST result_backend
REDIS_PORT result_backend
REDIS_DB result_backend
REDIS_PASSWORD result_backend

Task_sent signal

The task_sent signal will be removed in version 4.0. Please use the before task publish and

after_task_publish signals instead.

Result

Apply to: AsyncResult, FEagerResult:
* Result.wait () ->Result.get ()
e Result.task _id() ->Result.id

* Result.status->Result.state.

Settings

Setting name

Replace with

CELERY_AMQP_TASK_RESULT_EXPIRES

result_expires

Removals for version 2.0

* The following settings will be removed:

420

Chapter 3. Contents

Celery Documentation, Release 4.4.2

Setting name Replace with
CELERY_AMQP_CONSUMER_QUEUES task_queues
CELERY_AMQP_CONSUMER_QUEUES task_queues
CELERY_AMQP_EXCHANGE task_default_exchange
CELERY_AMQP_EXCHANGE_TYPE task_default_exchange_type
CELERY_AMQP_CONSUMER_ROUTING_KEY | task_queues
CELERY_AMQP_PUBLISHER_ROUTING_KEY | task_default_routing_key

¢ CELERY_LOADER definitions without class name.

For example, celery.loaders.default, needs to include the class name: cel-
ery.loaders.default.Loader.

* TaskSet.run (). Use celery.task.base.TaskSet.apply_async() instead.

3.12.3 Internals: The worker

e Introduction

e Data structures
— timer

» Components
— Consumer

— Timer

— TaskPool

Introduction

The worker consists of 4 main components: the consumer, the scheduler, the mediator and the task pool. All these
components runs in parallel working with two data structures: the ready queue and the ETA schedule.

Data structures

timer

The timer uses heapg to schedule internal functions. It’s very efficient and can handle hundred of thousands of
entries.

Components
Consumer

Receives messages from the broker using Kombu.

When a message is received it’s converted into a celery.worker. request . Request object.

3.12. Internals 421

https://docs.python.org/dev/library/heapq.html#module-heapq
https://pypi.python.org/pypi/Kombu/

Celery Documentation, Release 4.4.2

Tasks with an ETA, or rate-limit are entered into the fimer, messages that can be immediately processed are sent to the
execution pool.

ETA and rate-limit when used together will result in the rate limit being observed with the task being scheduled after
the ETA.

Timer

The timer schedules internal functions, like cleanup and internal monitoring, but also it schedules ETA tasks and rate
limited tasks. If the scheduled tasks ETA has passed it is moved to the execution pool.

TaskPool

This is a slightly modified multiprocessing.Pool. It mostly works the same way, except it makes sure all of
the workers are running at all times. If a worker is missing, it replaces it with a new one.

3.12.4 Message Protocol

» Task messages
— Version 2
* Definition
* Example
x Changes from version 1
— Version 1
* Message body
* Example message
— Task Serialization
* Event Messages
— Standard bodly fields

— Standard event types

— Example message

Task messages

Version 2

Definition

properties = {
'correlation_id': uuid task_id,
'content_type': string mimetype,

(continues on next page)

422 Chapter 3. Contents

Celery Documentation, Release 4.4.2

(continued from previous page)

'content_encoding': string encoding,

optional
'reply_to': string queue_or_url,
}
headers = {
'lang': string 'py'
'task': string task,
'id': uuid task_id,
'root_id': uuid root_id,
'parent_id': uuid parent_id,
'group': uuid group_id,

optional

'meth': string method_name,
'shadow': string alias_name,
'eta': is08601 ETA,

'expires': 1508601 expires,
'retries': int retries,
'timelimit': (soft, hard),
'argsrepr': str repr(args),
'kwargsrepr': str repr(kwargs),
'origin': str nodename,

body = (

object[] args,

Mapping kwargs,

Mapping embed {
'callbacks': Signature[] callbacks,
'errbacks': Signature[] errbacks,
'chain': Signature[] chain,
'chord': Signature chord_callback,

Example

This example sends a task message using version 2 of the protocol:

chain: add(add(add (2, 2), 4), 8) == 2 + 2 + 4 + 8

import json
import os
import socket

task_1id = uuid{()
args = (2, 2)
kwargs = {}
basic_publish (
message=json.dumps ((args, kwargs, None),
application_headers={
'lang': 'py',
'task': 'proj.tasks.add',
'argsrepr': repr (args),

(continues on next page)

3.12. Internals 423

Celery Documentation, Release 4.4.2

(continued from previous page)

'kwargsrepr': repr (kwargs),

'origin': '@'.join([os.getpid(), socket.gethostname()])
}
properties={

'correlation_id': task_id,

'content_type': 'application/json',

'content_encoding': 'utf-8',

Changes from version 1

* Protocol version detected by the presence of a t ask message header.
 Support for multiple languages via the 1ang header.

Worker may redirect the message to a worker that supports the language.
* Meta-data moved to headers.

This means that workers/intermediates can inspect the message and make decisions based on the
headers without decoding the payload (that may be language specific, for example serialized by the
Python specific pickle serializer).

e Always UTC

There’s no ut c flag anymore, so any time information missing timezone will be expected to be in
UTC time.

* Body is only for language specific data.
— Python stores args/kwargs and embedded signatures in body.
— If a message uses raw encoding then the raw data will be passed as a single argument to the function.
— Java/C, etc. can use a Thrift/protobuf document as the body
* origin is the name of the node sending the task.
¢ Dispatches to actor based on task, meth headers
meth is unused by Python, but may be used in the future to specify class+method pairs.
* Chain gains a dedicated field.

Reducing the chain into a recursive callbacks argument causes problems when the recursion
limit is exceeded.

This is fixed in the new message protocol by specifying a list of signatures, each task will then pop
a task off the list when sending the next message:

execute_task (message)

chain = embed['chain']

if chain:
sig = maybe_signature (chain.pop/())
sig.apply_async (chain=chain)

e correlation_idreplaces task_1id field.

e root_idand parent_id fields helps keep track of work-flows.

424 Chapter 3. Contents

Celery Documentation, Release 4.4.2

* shadow lets you specify a different name for logs, monitors can be used for concepts like tasks that calls a
function specified as argument:

from celery.utils.imports import qualname
class PickleTask (Task):

def unpack_args(self, fun, args=()):
return fun, args

def apply_ async(self, args, kwargs, =**options):

fun, real_args = self.unpack_args (xargs)
return super (PickleTask, self).apply_async(
(fun, real_args, kwargs), shadow=qualname (fun), =x=*options

@app.task (base=PickleTask)
def call(fun, args, kwargs):
return fun(xargs, =*xkwargs)

Version 1

In version 1 of the protocol all fields are stored in the message body: meaning workers and intermediate consumers
must deserialize the payload to read the fields.

Message body

* task
string

Name of the task. required

string
Unique id of the task (UUID). required
* args
list
List of arguments. Will be an empty list if not provided.
* kwargs
dictionary
Dictionary of keyword arguments. Will be an empty dictionary if not provided.
* retries
int
Current number of times this task has been retried. Defaults to 0 if not specified.
* eta

string (ISO 8601)

3.12. Internals 425

Celery Documentation, Release 4.4.2

Estimated time of arrival. This is the date and time in ISO 8601 format. If not provided the message isn’t
scheduled, but will be executed asap.

expires
string (ISO 8601)
New in version 2.0.2.

Expiration date. This is the date and time in ISO 8601 format. If not provided the message will never
expire. The message will be expired when the message is received and the expiration date has been
exceeded.

taskset
string
The group this task is part of (if any).
chord
Signature
New in version 2.3.

Signifies that this task is one of the header parts of a chord. The value of this key is the body of the cord
that should be executed when all of the tasks in the header has returned.

utc
bool
New in version 2.5.
If true time uses the UTC timezone, if not the current local timezone should be used.
callbacks
<list>Signature
New in version 3.0.
A list of signatures to call if the task exited successfully.
errbacks
<list>Signature
New in version 3.0.
A list of signatures to call if an error occurs while executing the task.
timelimit
<tuple>(float, float)
New in version 3.1.

Task execution time limit settings. This is a tuple of hard and soft time limit value (int/float or None for
no limit).

Example value specifying a soft time limit of 3 seconds, and a hard time limit of 10 seconds:

{"timelimit': (3.0, 10.0)}

426

Chapter 3. Contents

Celery Documentation, Release 4.4.2

Example message

This is an example invocation of a celery.task.ping task in json format:

{"id": "4cc7438e-afd4-4£f8f-a2f3-£f46567e7ca’77",
"task": "celery.task.PingTask",

"args": [],

"kwargs": {1},

"retries": O,

"eta": "2009-11-17T12:30:56.527191"}

Task Serialization

Several types of serialization formats are supported using the content_type message header.

The MIME-types supported by default are shown in the following table.

Scheme | MIME Type

json application/json
yaml application/x-yaml
pickle application/x-python-serialize

msgpack | application/x-msgpack

Event Messages

Event messages are always JSON serialized and can contain arbitrary message body fields.

Since version 4.0. the body can consist of either a single mapping (one event), or a list of mappings (multiple events).

There are also standard fields that must always be present in an event message:

Standard body fields

* string type

The type of event. This is a string containing the category and action separated by a dash delimiter
(e.g., task-succeeded).

* string hostname
The fully qualified hostname of where the event occurred at.
* unsigned long long clock
The logical clock value for this event (Lamport time-stamp).
* float timestamp
The UNIX time-stamp corresponding to the time of when the event occurred.
e signed short utcoffset

This field describes the timezone of the originating host, and is specified as the number of hours
ahead of/behind UTC (e.g., -2 or +1).

* unsigned long long pid

3.12. Internals

427

Celery Documentation, Release 4.4.2

The process id of the process the event originated in.

Standard event types

For a list of standard event types and their fields see the Event Reference.

Example message

This is the message fields for a task—-succeeded event:

properties = {
'routing_key': 'task.succeeded',
'exchange': 'celeryev',
'content_type': 'application/json',
'content_encoding': 'utf-8',
'delivery_mode': 1,
}
headers = {
'hostname': 'workerl@george.vandelay.com',
}
body = {
'type': 'task-succeeded',
'hostname': 'workerl@george.vandelay.com',
'pid': 6335,
'clock': 393912923921,
'timestamp': 1401717709.101747,

'utcoffset': -1,
'uuid': '9011d855-fdd1-4f8f-adb3-a413b499%eafb’,
'retval': '4"',

'runtime': 0.0003212,

3.12.5 “The Big Instance” Refactor

The app branch is a work-in-progress to remove the use of a global configuration in Celery.

Celery can now be instantiated and several instances of Celery may exist in the same process space. Also, large parts
can be customized without resorting to monkey patching.

Examples

Creating a Celery instance:

>>> from celery import Celery

>>> app = Celery ()

>>> app.config_from object ('celeryconfig')

>>> f#fapp.config_ from_envvar ('CELERY_CONFIG_MODULE")

Creating tasks:

@app.task
def add(x, y):
return x + y

428 Chapter 3. Contents

Celery Documentation, Release 4.4.2

Creating custom Task subclasses:

Task = celery.create_task_cls()
class DebugTask (Task) :

def on_failure(self, xargs, #**kwargs):
import pdb
pdb.set_trace ()

@app.task (base=DebugTask)
def add(x, y):
return x + y

Starting a worker:

worker = celery.Worker (loglevel='INFO')

Getting access to the configuration:

celery.conf.task_always_eager = True
celery.conf['task_always_eager'] = True

Controlling workers:

>>> celery.control.inspect () .active ()

>>> celery.control.rate_limit (add.name, '100/m'")
>>> celery.control.broadcast ('shutdown')

>>> celery.control.discard_all ()

Other interesting attributes:

Establish broker connection.
>>> celery.broker_connection ()

AMOQP
>>> celery.amgp

>>> celery.amgp.Router

>>> celery.amgp.get_queues ()

>>> celery.amgp.get_task_consumer ()

cific features.

Loader
>>> celery.loader
Default bac

>>> celery.backend

end

As you can probably see, this really opens up another dimension of customization abilities.

Deprecated

e celery.task.pingcelery.task.PingTask

Inferior to the ping remote control command. Will be removed in Celery 2.3.

3.12. Internals

429

Celery Documentation, Release 4.4.2

Aliases (Pending deprecation)

* celery.task.base
— .Task ->{app.Task/celery.app.task.Task}
* celery.task.sets
— .TaskSet -> {app.TaskSet}
* celery.decorators/celery.task
- .task ->{app.task}
* celery.execute
— .apply_async -> {task.apply_async}
- .apply ->{task.apply}
— .send_task ->{app.send_task}
— .delay_task ->no alternative
* celery.log
— .get_default_logger ->{app.log.get_default_logger}
— .setup_logger ->{app.log.setup_logger}
— .get_task_logger ->{app.log.get_task_logger}
— .setup_task_logger ->{app.log.setup_task_logger}
— .setup_logging_subsystem->{app.log.setup_logging_subsystem}
— .redirect_stdouts_to_logger ->{app.log.redirect_stdouts_to_logger}
* celery.messaging
— .establish_connection ->{app.broker_connection}
— .with_connection->{app.with_connection}
— .get_consumer_set -> {app.amgp.get_task_consumer}
— .TaskPublisher ->{app.amgp.TaskPublisher}
— .TaskConsumer -> {app.amgp.TaskConsumer}
— .ConsumerSet -> {app.amgp.ConsumerSet}
e celery.conf.x ->{app.conf}

NOTE: All configuration keys are now named the same as in the configuration. So the key
task_always_eager is accessed as:

>>> app.conf.task_always_eager

instead of:

>>> from celery import conf
>>> conf.always_eager

— .get_queues -> {app.amgp.get_qgueues}

* celery.task.control

430 Chapter 3. Contents

Celery Documentation, Release 4.4.2

— .broadcast -> {app.control.broadcast}
— .rate_limit ->{app.control.rate_limit}
- .ping->{app.control.ping}
— .revoke ->{app.control.revoke}
— .discard_all ->{app.control.discard_all}
— .inspect ->{app.control.inspect}
* celery.utils.info
— .humanize_seconds ->celery.utils.time.humanize_seconds
- .textindent ->celery.utils.textindent
— .get_broker_info->{app.amgp.get_broker_info}
— .format_broker_info->{app.amgp.format_broker_info}

— .format_queues -> {app.amgp.format_queues}

Default App Usage

To be backward compatible, it must be possible to use all the classes/functions without passing an explicit app instance.

This is achieved by having all app-dependent objects use default_app if the app instance is missing.

from celery.app import app_or_default
class SomeClass (object) :

def _ _init__ (self, app=None):
self.app = app_or_default (app)

The problem with this approach is that there’s a chance that the app instance is lost along the way, and everything
seems to be working normally. Testing app instance leaks is hard. The environment variable CELERY_TRACE_APP
can be used, when this is enabled celery.app.app_or_default () will raise an exception whenever it has to
go back to the default app instance.

App Dependency Tree

* {app}

celery.loaders.base.Baseloader

celery.backends.base.BaseBackend

{app.TaskSet}
* celery.task.sets.TaskSet (app.TaskSet)
— [app.TaskSetResult]
% celery.result.TaskSetResult (app.TaskSetResult)
¢ {app.AsyncResult}
— celery.result.BaseAsyncResult /celery.result.AsyncResult

* celery.bin.worker.WorkerCommand

3.12. Internals 431

Celery Documentation, Release 4.4.2

— celery.apps.worker.Worker
+ celery.worker.WorkerController
- celery.worker.consumer.Consumer

celery.worker.request.Request

celery.events.EventDispatcher

celery.worker.control.ControlDispatch
celery.worker.control.registry.Panel
celery.pidbox.BroadcastPublisher

celery.pidbox.BroadcastConsumer

- celery.beat.EmbeddedService

* celery.bin.events.EvCommand
— celery.events.snapshot.evcam
* celery.events.snapshot.Polaroid
* celery.events.EventReceiver

— celery.events.cursesmon.evtop
% celery.events.EventReceiver

* celery.events.cursesmon.CursesMonitor

— celery.events.dumper

% celery.events.EventReceiver

¢ celery.bin.amgp.AMQPAdmin
* celery.bin.beat .BeatCommand
— celery.apps.beat.Beat
+ celery.beat.Service

- celery.beat.Scheduler

3.12.6 Internal Module Reference

Release 4.4
Date Mar 17, 2020

celery.worker.components

Worker-level Bootsteps.

class celery.worker.components.Timer (parent, **kwargs)
Timer bootstep.

create (w)
Create the step.

name = 'celery.worker.components.Timer'

432

Chapter 3. Contents

Celery Documentation, Release 4.4.2

on_timer_ error (exc)
on_timer_ tick (delay)

class celery.worker.components.Hub (w, **kwargs)
Worker starts the event loop.

create (w)
Create the step.

include_if (w)
Return true if bootstep should be included.

You can define this as an optional predicate that decides whether this step should be created.

name = 'celery.worker.components.Hub'

requires = (step:celery.worker.components.Timer{()},)
start (w)

stop (w)

terminate (w)

class celery.worker.components.Pool (w, autoscale=None, **kwargs)
Bootstep managing the worker pool.

Describes how to initialize the worker pool, and starts and stops the pool during worker start-up/shutdown.

Adds attributes:
e autoscale
* pool
* max_concurrency
* min_concurrency
close (w)

create (w)
Create the step.

info (w)

name = 'celery.worker.components.Pool'

register with_event_1loop (w, hub)

requires = (step:celery.worker.components.Hub{ (step:celery.worker.components.Timer{ ()}
terminate (w)

class celery.worker.components.Beat (w, beat=False, **kwargs)
Step used to embed a beat process.

Enabled when the beat argument is set.
conditional = True

create (w)
Create the step.

label = 'Beat'
name = 'celery.worker.components.Beat'

class celery.worker.components.StateDB (w, **kwargs)
Bootstep that sets up between-restart state database file.

3.12. Internals 433

Celery Documentation, Release 4.4.2

create (w)
Create the step.

name = 'celery.worker.components.StateDB'

class celery.worker.components.Consumer (parent, **kwargs)
Bootstep starting the Consumer blueprint.

create (w)
Create the step.

last = True

name = 'celery.worker.components.Consumer'

celery.worker.loops

The consumers highly-optimized inner loop.

celery.worker.loops.asynloop (0bj, connection, consumer, blueprint, hub, qos, heartbeat, clock,

hbrate=2.0)
Non-blocking event loop.

celery.worker.loops.synloop (obj, connection, consumer, blueprint, hub, qos, heartbeat, clock,

hbrate=2.0, **kwargs)
Fallback blocking event loop for transports that doesn’t support AIO.

celery.worker.heartbeat

Heartbeat service.
This is the internal thread responsible for sending heartbeat events at regular intervals (may not be an actual thread).

class celery.worker.heartbeat .Heart (timer, eventer, interval=None)
Timer sending heartbeats at regular intervals.
Parameters
e timer (kombu.asynchronous. timer. Timer)— Timer to use.
* eventer (celery.events.EventDispatcher)— Event dispatcher to use.
e interval (float) — Time in seconds between sending heartbeats. Default is 2
seconds.
start ()

stop ()

celery.worker.control

Worker remote control command implementations.

class celery.worker.control.Panel (**kwargs)
Global registry of remote control commands.

data = {'active': <function active>, 'active_queues': <function active_queues>, 'add
meta = {'active': controller_info_t (alias='dump_active',K type='inspect', visible=True

classmethod register (*args, **kwargs)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

434 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.timer.html#kombu.asynchronous.timer.Timer
https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.4.2

celery.worker.pidbox

Worker Pidbox (remote control).

class celery.worker.pidbox.Pidbox (c)
Worker mailbox.

consumer = None
on_message (body, message)
on_stop ()

reset ()

shutdown (c)

start (¢)

stop (¢)

class celery.worker.pidbox.gPidbox (¢)
Worker pidbox (greenlet).

loop (c)
on_stop ()
reset ()

start (¢)

celery.worker.autoscale

Pool Autoscaling.

This module implements the internal thread responsible for growing and shrinking the pool according to the current
autoscale settings.

The autoscale thread is only enabled if the celery worker —-—autoscale option is used.

class celery.worker.autoscale.Autoscaler (pool, max_concurrency, min_concurrency=0,

worker=None, keepalive=30.0, mutex=None)
Background thread to autoscale pool workers.

body ()
force_scale_down (n)
force_scale_up (n)

info ()

maybe_scale (req=None)
processes

aty

scale_down (n)
scale_up (n)

update (max=None, min=None)

class celery.worker.autoscale.WorkerComponent (w, **kwargs)
Bootstep that starts the autoscaler thread/timer in the worker.

3.12. Internals 435

Celery Documentation, Release 4.4.2

conditional = True

create (w)
Create the step.

info (w)
Return Autoscaler info.

label = 'Autoscaler'
name = 'celery.worker.autoscale.WorkerComponent'
register with_event_1loop (w, hub)

requires = (step:celery.worker.components.Pool{ (step:celery.worker.components.Hub{ (ste

celery .concurrency

Pool implementation abstract factory, and alias definitions.

celery.concurrency.get_implementation (cls)
Return pool implementation by name.

celery.concurrency.solo

Single-threaded execution pool.

class celery.concurrency.solo.TaskPool (*args, **kwargs)
Solo task pool (blocking, inline, fast).

body_can_be buffer = True

celery.concurrency.prefork

Prefork execution pool.
Pool implementation using multiprocessing.

class celery.concurrency.prefork.TaskPool (limit=None, putlocks=True, fork-
ing_enable=True, callbacks_propagate=(),

app=None, **options)
Multiprocessing Pool implementation.

BlockingPool
aliasof billiard.pool.Pool

Pool
alias of celery.concurrency.asynpool.AsynPool

did start_ok ()
num_processes
on_close ()
on_start ()

on_stop ()
Gracefully stop the pool.

on_terminate ()
Force terminate the pool.

436 Chapter 3. Contents

https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing

Celery Documentation, Release 4.4.2

register_ with_event_1loop (loop)
restart ()

uses_semaphore = True
write_stats = None

celery.concurrency.prefork.process_initializer (app, hostname)
Pool child process initializer.

Initialize the child pool process to ensure the correct app instance is used and things like logging works.

celery.concurrency.prefork.process_destructor (pid, exitcode)
Pool child process destructor.

Dispatch the worker process_shutdown signal.

celery.concurrency.eventlet

Eventlet execution pool.

class celery.concurrency.eventlet.TaskPool (*args, **kwargs)
Eventlet Task Pool.

class Timer (*args, **kwargs)
Eventlet Timer.

cancel (tref)

clear ()

queue
Snapshot of underlying datastructure.

grow (n=1)

is_green = True

on_apply (target, args=None, kwargs=None, callback=None, accept_callback=None, **_)
on_start ()

on_stop ()

shrink (n=1)

signal_safe = False

task_join _will _block = False

celery.concurrency.gevent

Gevent execution pool.

class celery.concurrency.gevent .TaskPool (*args, **kwargs)
GEvent Pool.

class Timer (*args, **kwargs)

clear ()

queue
Snapshot of underlying datastructure.

3.12. Internals 437

Celery Documentation, Release 4.4.2

grow (n=1)
is_green = True
num_processes

on_apply (target, args=None, kwargs=None, callback=None, accept_callback=None, timeout=None,
timeout_callback=None, apply_target=<function apply_target>, **_)

on_start ()

on_stop ()

shrink (n=1)
signal_safe = False

task_join_will_block = False

celery.concurrency.thread

Thread execution pool.

class celery.concurrency.thread.TaskPool (*args, **kwargs)

Thread Task Pool.

body_can_be buffer = True

on_apply (target, args=None, kwargs=None, callback=None, accept_callback=None, **)
on_stop ()

signal_safe = False

celery.concurrency.base

Base Execution Pool.

class celery.concurrency.base.BasePool (limit=None, putlocks=True, forking_enable=True,

callbacks_propagate=(), app=None, **options)
Task pool.

CLOSE = 2
RUN = 1
TERMINATE = 3

class Timer (schedule=None, on_error=None, on_tick=None, on_start=None, max_interval=None,
*rewargs)
Timer thread.

Note: This is only used for transports not supporting AsynclO.

class Entry (fun, args=None, kwargs=None)
Schedule Entry.

args
cancel ()

canceled

438

Chapter 3. Contents

Celery Documentation, Release 4.4.2

cancelled
fun
kwargs
tref

Schedule
alias of kombu.asynchronous.timer.Timer

call_after (*args, **kwargs)
call_at (*args, **kwargs)
call_repeatedly (*args, **kwargs)
cancel (tref)

clear ()

empty ()

ensure_started ()

enter (entry, eta, priority=None)
enter_after (*args, **kwargs)
exit_after (secs, priority=10)
next ()

on_tick = None

queue

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable ob-
ject passed to the object’s constructor as the target argument, if any, with sequential and keyword
arguments taken from the args and kwargs arguments, respectively.

running = False
stop ()
active

apply_async (target, args=None, kwargs=None, **options)
Equivalent of the apply () built-in function.

Callbacks should optimally return as soon as possible since otherwise the thread which handles the result
will get blocked.

body_can_be_buffer = False
close()

did_start_ok()

flush ()

info

is_green = False
set to true if pool uses greenlets.

3.12. Internals 439

https://kombu.readthedocs.io/en/master/reference/kombu.asynchronous.timer.html#kombu.asynchronous.timer.Timer

Celery Documentation, Release 4.4.2

maintain_pool (*args, **kwargs)
num_processes

on_apply (*args, **kwargs)
on_close ()

on_hard_timeout (job)
on_soft_timeout (job)
on_start ()

on_stop ()

on_terminate ()

register_ with_event_1loop (loop)
restart ()

signal_safe = True
set to true if the pool can be shutdown from within a signal handler.

start ()

stop ()

task_join_will _block = True
terminate ()

terminate_ job (pid, signal=None)

uses_semaphore = False
only used by multiprocessing pool

celery.concurrency.base.apply_target (target, args=(), kwargs=None, callback=None, ac-
cept_callback=None, pid=None, getpid=<built-in
function getpid>, propagate=(), monotonic=<built-in
function monotonic>, **_)
Apply function within pool context.

celery.backends

Result Backends.

celery.backends.get_backend_by_ url (backend=None, loader=None)
Deprecated alias to celery.app.backends.by_url ().

celery.backends.get_backend cls (backend=None, loader=None, **kwargs)
Deprecated alias to celery.app.backends.by_name ().

celery.backends .base

Result backend base classes.
e BaseBackend defines the interface.

* KeyValueStoreBackend is a common base class using K/V semantics like _get and _put.

440 Chapter 3. Contents

Celery Documentation, Release 4.4.2

class celery.backends.base.BaseBackend (app, serializer=None, max_cached_results=None,
accept=None, expires=None, expires_type=None,
url=None, **kwargs)
Base (synchronous) result backend.

class celery.backends.base.KeyValueStoreBackend (*args, **kwargs)
Result backend base class for key/value stores.

class celery.backends.base.DisabledBackend (app, serializer=None,
max_cached_results=None, accept=None,
expires=None, expires_type=None, url=None,
**kwargs)

Dummy result backend.

as_uri (*args, **kwargs)
Return the backend as an URI, sanitizing the password or not.

ensure_chords_allowed ()
get_many (*args, **kwargs)
get_result (*args, **kwargs)
get_state (*args, **kwargs)
get_status (*args, **kwargs)
get_task_meta_for (*args, **kwargs)
get_traceback (*args, **kwargs)

store_result (*args, **kwargs)
Update task state and result.

wait_for (*args, **kwargs)

celery.backends.asynchronous

Async I/0 backend support utilities.

class celery.backends.asynchronous.AsyncBackendMixin
Mixin for backends that enables the async API.

add_pending_result (result, weak=False, start_drainer=True)
add_pending_results (results, weak=False)

is_async

iter_native (result, no_ack=True, **kwargs)

on_result fulfilled (result)

remove_pending_ result (result)

wait_for_pending (result, callback=None, propagate=True, **kwargs)

class celery.backends.asynchronous.BaseResultConsumer (backend, app, accept,
pending_results, pend-

ing_messages)
Manager responsible for consuming result messages.

cancel_for (task_id)

consume_from (fask_id)

3.12. Internals 441

Celery Documentation, Release 4.4.2

drain_events (timeout=None)

drain_events_until (p, timeout=None, on_interval=None)
on_after fork ()

on_out_of_ band_result (message)

on_state_change (meta, message)

on_wait_for_ pending (result, timeout=None, **kwargs)
start (initial_task_id, **kwargs)

stop ()

class celery.backends.asynchronous.Drainer (result_consumer)
Result draining service.

drain_events_until (p, timeout=None, interval=1, on_interval=None, wait=None)
start ()

stop ()

wait_for (p, wait, timeout=None)

celery.backends.asynchronous.register_ drainer (name)
Decorator used to register a new result drainer type.

celery.backends.azureblockblob

The Azure Storage Block Blob backend for Celery.

class celery.backends.azureblockblob.AzureBlockBlobBackend (url=None, con-

tainer_name=None,
retry_initial_backoff_sec=None,
retry_increment_base=None,
retry_max_attempts=None,
*args, **kwargs)

Azure Storage Block Blob backend for Celery.

delete (key)

Delete the value at a given key.
Parameters key — The key of the value to delete.

get (key)
Read the value stored at the given key.
Parameters key — The key for which to read the value.

mget (keys)
Read all the values for the provided keys.
Parameters keys — The list of keys to read.

set (key, value)
Store a value for a given key.
Parameters
* key — The key at which to store the value.
* value - The value to store.

442 Chapter 3. Contents

Celery Documentation, Release 4.4.2

celery.backends. rpc

The RPC result backend for AMQP brokers.
RPC-style result backend, using reply-to and one queue per client.

exception celery.backends.rpc.BacklogLimitExceeded
Too much state history to fast-forward.

class celery.backends.rpc.RPCBackend (app, connection=None, exchange=None, ex-
change_type=None, persistent=None, serializer=None,

auto_delete=True, **kwargs)
Base class for the RPC result backend.

exception BacklogLimitExceeded
Exception raised when there are too many messages for a task id.

class Consumer (channel, queues=None, no_ack=None, auto_declare=None, call-
backs=None, on_decode_error=None, on_message=None, accept=None,

prefetch_count=None, tag_prefix=None)
Consumer that requires manual declaration of queues.

auto_declare = False

class Exchange (name=", type=", channel=None, **kwargs)
An Exchange declaration.
Parameters
* name (str)— See name.
* type (str)—See type.
* channel (kombu.Connection, ChannelT)- See channel.
e durable (bool)—See durable.
e auto_delete (bool)—See auto_delete.
* delivery_mode (enum)— See delivery mode.
* arguments (Dict)— See arguments.
* no_declare (bool)—See no_declare
name
Name of the exchange. Default is no name (the default exchange).
Type str

type
This description of AMQP exchange types was shamelessly stolen from the blog post ‘AMQP in 10
minutes: Part 4‘_ by Rajith Attapattu. Reading this article is recommended if you’re new to amgp.

“AMQP defines four default exchange types (routing algorithms) that covers most of the common
messaging use cases. An AMQP broker can also define additional exchange types, so see your
broker manual for more information about available exchange types.

e direct (default)

Direct match between the routing key in the message, and the rout-
ing criteria used when a queue is bound to this exchange.
* topic

Wildcard match between the routing key and the routing pattern
specified in the exchange/queue binding. The routing key is treated
as zero or more words delimited by “.” and supports special wild-
card characters. “*” matches a single word and “#” matches zero
or more words.

* fanout

3.12. Internals 443

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

Queues are bound to this exchange with no arguments. Hence any
message sent to this exchange will be forwarded to all queues bound
to this exchange.

* headers

Queues are bound to this exchange with a table of arguments con-
taining headers and values (optional). A special argument named
“x-match” determines the matching algorithm, where “all” implies
an AND (all pairs must match) and “any” implies OR (at least one
pair must match).

argument s is used to specify the arguments.

Type str

channel
The channel the exchange is bound to (if bound).
Type ChannelT

durable
Durable exchanges remain active when a server restarts. Non-durable exchanges (transient ex-
changes) are purged when a server restarts. Default is True.
Type bool

auto_delete
If set, the exchange is deleted when all queues have finished using it. Default is False.
Type bool

delivery mode
The default delivery mode used for messages. The value is an integer, or alias string.
e 1 or “transient”
The message is transient. Which means it is stored in memory only, and is lost
if the server dies or restarts.
* 2 or “persistent” (default) The message is persistent. Which means the message is stored
both in-memory, and on disk, and therefore preserved if the server dies or restarts.
The default value is 2 (persistent).

Type enum

arguments
Additional arguments to specify when the exchange is declared.
Type Dict

no_declare
Never declare this exchange (declare () does nothing).
Type bool

Message (body, delivery_mode=None, properties=None, **kwargs)
Create message instance to be sent with publish ().
Parameters

* body (Any) — Message body.

* delivery_mode (bool) — Set custom delivery mode. Defaults to
delivery mode.

* priority (int)—Message priority, O to broker configured max priority,
where higher is better.

* content_type (str) — The messages content type. If content_type
is set, no serialization occurs as it is assumed this is either a binary ob-

444 Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

ject, or you’ve done your own serialization. Leave blank if using built-in
serialization as our library properly sets content_type.

* content_encoding (str) — The character set in which this object is
encoded. Use “binary” if sending in raw binary objects. Leave blank if
using built-in serialization as our library properly sets content_encoding.

* properties (Dict) — Message properties.
* headers (Dict) — Message headers.
PERSISTENT DELIVERY_MODE = 2
TRANSIENT_ DELIVERY MODE = 1
attrs = (('name', None), ('type', None), ('arguments', None), ('durable',K <class '

auto_delete = False

bind_to (exchange=", routing_key=", arguments=None, nowait=False, channel=None,
*rewargs)
Bind the exchange to another exchange.
Parameters nowait (bool)—If set the server will not respond, and the call will not
block waiting for a response. Default is False.

binding (routing_key=", arguments=None, unbind_arguments=None)

can_cache_declaration
bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be
subclassed.

declare (nowait=False, passive=None, channel=None)
Declare the exchange.

Creates the exchange on the broker, unless passive is set in which case it will only assert that the
exchange exists.
Argument:
nowait (bool): If set the server will not respond, and a response will not be waited for.
Defaultis False.

delete (if_unused=False, nowait=False)
Delete the exchange declaration on server.
Parameters

* if unused (bool) — Delete only if the exchange has no bindings. De-
faultis False.

* nowait (bool) - If set the server will not respond, and a response will
not be waited for. Defaultis False.

delivery_mode = None
durable = True

name = "'

no_declare = False
passive = False

publish (message, routing_key=None, mandatory=False, immediate=False, exchange=None)
Publish message.

3.12. Internals 445

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

Parameters

* message (Union[kombu.Message, str, bytes]) — Message
to publish.

* routing_key (st r)— Message routing key.

* mandatory (bool) — Currently not supported.

e immediate (bool) — Currently not supported.
type = 'direct'

unbind_from (source=", routing_key=", nowait=False, arguments=None, channel=None)
Delete previously created exchange binding from the server.

class Producer (channel, exchange=None, routing_key=None, serializer=None,

auto_declare=None, compression=None, on_return=None)
Message Producer.

Parameters

e channel (kombu.Connection, ChannelT)—- Connection or channel.

* exchange (kombu.entity.Exchange, str) — Optional default ex-
change.

* routing key (str)— Optional default routing key.

e serializer (str)— Default serializer. Default is “json”.

* compression (str)— Default compression method. Default is no compres-
sion.

* auto_declare (bool) — Automatically declare the default exchange at in-
stantiation. Default is True.

* on_return (Callable)- Callback to call for undeliverable messages, when
the mandatory or immediate arguments to publish () is used. This callback
needs the following signature: (exception, exchange, routing_key, message).
Note that the producer needs to drain events to use this feature.

auto_declare = True

channel

close ()
compression = None
connection

declare ()
Declare the exchange.

Note: This happens automatically at instantiation when the auto_declare flag is enabled.

exchange = None

maybe_declare (entity, retry=False, **retry_policy)
Declare exchange if not already declared during this session.

on_return = None

publish (body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False,
priority=0, content_type=None, content_encoding=None, serializer=None, head-
ers=None, compression=None, exchange=None, retry=False, retry_policy=None, de-
clare=None, expiration=None, **properties)
Publish message to the specified exchange.
Parameters

446 Chapter 3. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#bytes
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

* body (Any) — Message body.

e routing key (str)— Message routing key.

* delivery_mode (enum)— See delivery_mode.

* mandatory (bool) — Currently not supported.

e immediate (bool) — Currently not supported.

* priority (int)— Message priority. A number between 0 and 9.

* content_type (str)— Content type. Default is auto-detect.

* content_encoding (st r)— Content encoding. Default is auto-detect.
e serializer (str)— Serializer to use. Default is auto-detect.

* compression (str)— Compression method to use. Default is none.

* headers (Dict) — Mapping of arbitrary headers to pass along with the
message body.

* exchange (kombu.entity.Exchange, str) — Override the ex-
change. Note that this exchange must have been declared.

* declare (Sequence [EntityT]) — Optional list of required entities
that must have been declared before publishing the message. The entities
will be declared using maybe_declare ().

* retry (bool)— Retry publishing, or declaring entities if the connection
is lost.

* retry_policy (Dict)—Retry configuration, this is the keywords sup-
ported by ensure ().

* expiration (float) — A TTL in seconds can be specified per mes-
sage. Default is no expiration.

* xxproperties (Any) — Additional message properties, see AMQP
spec.

release ()

revive (channel)
Revive the producer after connection loss.

routing key = "'
serializer = None

class Queue (name=", exchange=None, routing_key=", channel=None, bindings=None,

on_declared=None, **kwargs)
Queue that never caches declaration.

can_cache_declaration = False

class ResultConsumer (*args, **kwargs)

class Consumer (channel, queues=None, no_ack=None, auto_declare=None, call-
backs=None, on_decode_error=None, on_message=None, accept=None,

prefetch_count=None, tag_prefix=None)
Message consumer.

Parameters

e channel (kombu.Connection, ChannelT)-see channel.

3.12.

Internals 447

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.common.html#kombu.common.maybe_declare
https://docs.python.org/dev/library/functions.html#bool
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#float
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection

Celery Documentation, Release 4.4.2

* queues (Sequence [kombu. Queue]) — see queues.

e no_ack (bool)—see no_ack.

* auto_declare (bool)-see auto_declare

* callbacks (Sequence[Callable])—see callbacks.

* on_message (Callable)— See on_message

¢ on_decode_error (Callable)-see on_decode_error.

* prefetch_count (int)-see prefetch_count.
exception ContentDisallowed
Consumer does not allow this content-type.

accept = None

add_queue (queue)
Add a queue to the list of queues to consume from.

Note: This will not start consuming from the queue, for that you will have to call
consume () after.

auto_declare = True
callbacks = None

cancel ()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not
send any more messages for this consumer.

cancel_by_queue (queue)
Cancel consumer by queue name.

channel = None

close()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not
send any more messages for this consumer.

connection

consume (no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues
added since the last call, it will not cancel consuming from removed queues (use
cancel_by_ queue ()).

Parameters no_ack (bool) - See no_ack.

consuming_from (queue)
Return True if currently consuming from queue’.

448 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

declare ()
Declare queues, exchanges and bindings.

Note: This is done automatically at instantiation when auto_declare is set.

flow (active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues
or otherwise finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content
(if any), and then wait until flow is reactivated.

no_ack = None
on_decode_error = None
on_message = None
prefetch _count = None

purge ()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

qos (prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes
processing a message, the following message is already held locally, rather than needing to
be sent down the channel. Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.
Parameters

* prefetch_size (int) — Specify the prefetch window in octets.
The server will send a message in advance if it is equal to or smaller
in size than the available prefetch size (and also falls within other
prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply.

* prefetch_count (int)— Specify the prefetch window in terms
of whole messages.

* apply_global (bool)— Apply new settings globally on all chan-
nels.

queues

receive (body, message)
Method called when a message is received.

This dispatches to the registered callbacks.
Parameters

* body (Any) — The decoded message body.

* message (Message) — The message instance.

3.12. Internals 449

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

Raises Not ImplementedError — If no consumer callbacks have been reg-
istered.

recover (requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.
Parameters requeue (bool) — By default the messages will be redelivered
to the original recipient. With requeue set to true, the server will attempt
to requeue the message, potentially then delivering it to an alternative sub-
scriber.

register_callback (callback)
Register a new callback to be called when a message is received.

Note: The signature of the callback needs to accept two arguments: (body, message), which
is the decoded message body and the Me s sage instance.

revive (channel)
Revive consumer after connection loss.

cancel_ for (task_id)

consume_from (task_id)

drain_events (timeout=None)

on_after fork()

start (initial_task_id, no_ack=True, **kwargs)
stop ()

as_uri (include_password=True)
Return the backend as an URI, sanitizing the password or not.

binding
delete_group (group_id)

destination_for (task_id, request)
Get the destination for result by task id.
Returns tuple of (reply_to, correlation_id).
Return type Tuple[str, str]

ensure_chords_allowed ()
get_task_meta (task_id, backlog_limit=1000)
oid

on_out_of_band_result (task_id, message)
on_reply declare (task_id)
on_result_fulfilled (result)
on_task_call (producer, task_id)
persistent = False

poll (task_id, backlog_limit=1000)

450

Chapter 3. Contents

https://docs.python.org/dev/library/exceptions.html#NotImplementedError
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

reload_group_result (fask_id)
Reload group result, even if it has been previously fetched.

reload_task_result (fask_id)
Reload task result, even if it has been previously fetched.

restore_group (group_id, cache=True)
Get the result for a group.

retry policy = {'interval max': 1, 'interval_start': O, 'interval_step': 1,
revive (channel)

save_group (group_id, result)
Store the result of an executed group.

store_result (task_id, result, state, traceback=None, request=None, **kwargs)
Send task return value and state.

supports_autoexpire = True

supports_native_join = True

celery.backends.database

SQLAIchemy result store backend.

class celery.backends.database.DatabaseBackend (dburi=None, engine_options=None,

url=None, **kwargs)
The database result backend.

ResultSession (session_manager=<celery.backends.database.session.SessionManager object>)

cleanup ()
Delete expired meta-data.

extended result
subpolling interval = 0.5

task_cls
alias of celery.backends.database.models. Task

taskset_cls
alias of celery.backends.database.models.TaskSet

celery.backends.amgp

The old AMQP result backend, deprecated and replaced by the RPC backend.

exception celery.backends.amgp.BacklogLimitExceeded
Too much state history to fast-forward.

class celery.backends.amgp.AMQPBackend (app, connection=None, exchange=None, ex-
change_type=None, persistent=None, serial-

izer=None, auto_delete=True, **kwargs)
The AMQP result backend.

Deprecated: Please use the RPC backend or a persistent backend.

exception BacklogLimitExceeded
Too much state history to fast-forward.

3.12. Internals 451

'max_re

Celery Documentation, Release 4.4.2

class Consumer (channel, queues=None, no_ack=None, auto_declare=None, call-
backs=None, on_decode_error=None, on_message=None, accept=None,

prefetch_count=None, tag_prefix=None)
Message consumer.

Parameters
* channel (kombu.Connection, ChannelT)-see channel.
* queues (Sequence [kombu.Queue]) — see queues.
* no_ack (bool)—see no_ack.
¢ auto_declare (bool)—see auto_declare
* callbacks (Sequence[Callable])—see callbacks.
* on_message (Callable)—See on_message
¢ on_decode_error (Callable)—-see on_decode_error.
* prefetch_count (int)-see prefetch_count.
exception ContentDisallowed
Consumer does not allow this content-type.

accept = None

add_queue (queue)
Add a queue to the list of queues to consume from.

Note: This will not start consuming from the queue, for that you will have to call consume ()
after.

auto_declare = True
callbacks = None

cancel ()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not send
any more messages for this consumer.

cancel_by_queue (queue)
Cancel consumer by queue name.

channel = None

close ()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not send
any more messages for this consumer.

connection

consume (no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues added since the
last call, it will not cancel consuming from removed queues (use cancel_ by _queue ()).
Parameters no_ack (bool)—See no_ack.

consuming_from (queue)
Return True if currently consuming from queue’.

452 Chapter 3. Contents

https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.4.2

declare ()
Declare queues, exchanges and bindings.

Note: This is done automatically at instantiation when auto_declare is set.

flow (active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues or
otherwise finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content (if
any), and then wait until flow is reactivated.

no_ack = None
on_decode error = None
on_message = None
prefetch_count = None

purge ()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

qos (prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes
processing a message, the following message is already held locally, rather than needing to be sent
down the channel. Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.
Parameters

» prefetch_size (int) — Specify the prefetch window in octets. The
server will send a message in advance if it is equal to or smaller in size
than the available prefetch size (and also falls within other prefetch limits).
May be set to zero, meaning “no specific limit”, although other prefetch
limits may still apply.

* prefetch_count (int) — Specify the prefetch window in terms of
whole messages.

* apply_global (bool)— Apply new settings globally on all channels.
queues

receive (body, message)
Method called when a message is received.

This dispatches to the registered callbacks.
Parameters

* body (Any) — The decoded message body.

* message (Message) — The message instance.
Raises Not ImplementedError — If no consumer callbacks have been registered.

3.12. Internals 453

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#NotImplementedError

Celery Documentation, Release 4.4.2

recover (requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.
Parameters requeue (bool) — By default the messages will be redelivered to the
original recipient. With requeue set to true, the server will attempt to requeue
the message, potentially then delivering it to an alternative subscriber.

register_callback (callback)
Register a new callback to be called when a message is received.

Note: The signature of the callback needs to accept two arguments: (body, message), which is the
decoded message body and the Me ssage instance.

revive (channel)
Revive consumer after connection loss.

class Exchange (name=", type=", channel=None, **kwargs)
An Exchange declaration.
Parameters
* name (str)— See name.
* type (str)—See type.
¢ channel (kombu.Connection, ChannelT)-See channel.
e durable (bool)—See durable.
¢ auto_delete (bool)—See auto_delete.
* delivery_mode (enum)— See delivery mode.
* arguments (Dict)— See arguments.
* no_declare (bool)—See no_declare
name
Name of the exchange. Default is no name (the default exchange).
Type str

type
This description of AMQP exchange types was shamelessly stolen from the blog post ‘AMQP in 10
minutes: Part 4‘_ by Rajith Attapattu. Reading this article is recommended if you're new to amgp.

“AMQP defines four default exchange types (routing algorithms) that covers most of the common
messaging use cases. An AMQP broker can also define additional exchange types, so see your
broker manual for more information about available exchange types.

e direct (default)

Direct match between the routing key in the message, and the rout-
ing criteria used when a queue is bound to this exchange.
* topic

Wildcard match between the routing key and the routing pattern
specified in the exchange/queue binding. The routing key is treated
as zero or more words delimited by “.” and supports special wild-
card characters. “*” matches a single word and “#” matches zero
or more words.

* fanout

Queues are bound to this exchange with no arguments. Hence any
message sent to this exchange will be forwarded to all queues bound
to this exchange.

* headers

454 Chapter 3. Contents

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

Queues are bound to this exchange with a table of arguments con-
taining headers and values (optional). A special argument named
“x-match” determines the matching algorithm, where “all” implies
an AND (all pairs must match) and “any” implies OR (at least one
pair must match).

argument s is used to specify the arguments.
Type str

channel
The channel the exchange is bound to (if bound).
Type ChannelT

durable
Durable exchanges remain active when a server restarts. Non-durable exchanges (transient ex-
changes) are purged when a server restarts. Default is True.
Type bool

auto_delete
If set, the exchange is deleted when all queues have finished using it. Default is False.
Type bool

delivery mode
The default delivery mode used for messages. The value is an integer, or alias string.
* 1 or “transient”
The message is transient. Which means it is stored in memory only, and is lost
if the server dies or restarts.
* 2 or “persistent” (default) The message is persistent. Which means the message is stored
both in-memory, and on disk, and therefore preserved if the server dies or restarts.
The default value is 2 (persistent).
Type enum

arguments
Additional arguments to specify when the exchange is declared.

Type Dict

no_declare
Never declare this exchange (declare () does nothing).
Type bool

Message (body, delivery_mode=None, properties=None, **kwargs)
Create message instance to be sent with publish ().
Parameters

* body (Any) — Message body.

* delivery mode (bool) — Set custom delivery mode. Defaults to
delivery_mode.

* priority (int)—Message priority, O to broker configured max priority,
where higher is better.

* content_type (str) — The messages content_type. If content type
is set, no serialization occurs as it is assumed this is either a binary ob-
ject, or you’ve done your own serialization. Leave blank if using built-in
serialization as our library properly sets content_type.

* content_encoding (str) — The character set in which this object is
encoded. Use “binary” if sending in raw binary objects. Leave blank if
using built-in serialization as our library properly sets content_encoding.

3.12. Internals 455

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.4.2

* properties (Dict)— Message properties.
* headers (Dict) — Message headers.
PERSISTENT DELIVERY_MODE = 2
TRANSIENT DELIVERY MODE = 1
attrs = (('name', None), ('type', None), ('arguments', None), ('durable',K <class '
auto_delete = False

bind_to (exchange=", routing_key=", arguments=None, nowait=False, channel=None,
*rewargs)
Bind the exchange to another exchange.
Parameters nowait (bool)— If set the server will not respond, and the call will not
block waiting for a response. Default is False.

binding (routing_key=", arguments=None, unbind_arguments=None)

can_cache_declaration
bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be
subclassed.

declare (nowait=False, passive=None, channel=None)
Declare the exchange.

Creates the exchange