

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Celery - Distributed Task Queue

Celery is a simple, flexible, and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

Celery is Open Source and licensed under the BSD License [http://www.opensource.org/licenses/BSD-3-Clause].

Getting Started

	If you’re new to Celery you can get started by following
the First Steps with Celery tutorial.

	You can also check out the FAQ.

Contents

	Copyright

	Getting Started
	Introduction to Celery

	Brokers

	First Steps with Celery

	Next Steps

	Resources

	User Guide
	Application

	Tasks

	Calling Tasks

	Canvas: Designing Work-flows

	Workers Guide

	Daemonization

	Periodic Tasks

	Routing Tasks

	Monitoring and Management Guide

	Security

	Optimizing

	Debugging

	Concurrency

	Signals

	Testing with Celery

	Extensions and Bootsteps

	Configuration and defaults

	Django

	Contributing

	Community Resources

	Tutorials

	Frequently Asked Questions

	Change history

	What’s new in Celery 4.0 (latentcall)

	What’s new in Celery 3.1 (Cipater)

	API Reference

	Internals

	History

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Copyright

Celery User Manual

by Ask Solem

Copyright © 2009-2016, Ask Solem.

All rights reserved. This material may be copied or distributed only
subject to the terms and conditions set forth in the Creative Commons
Attribution-ShareAlike 4.0 International
<http://creativecommons.org/licenses/by-sa/4.0/legalcode>`_ license.

You may share and adapt the material, even for commercial purposes, but
you must give the original author credit.
If you alter, transform, or build upon this
work, you may distribute the resulting work only under the same license or
a license compatible to this one.

Note

While the Celery documentation is offered under the
Creative Commons Attribution-ShareAlike 4.0 International license
the Celery software is offered under the
BSD License (3 Clause) [http://www.opensource.org/licenses/BSD-3-Clause]

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Getting Started

	Release:	4.0

	Date:	Dec 15, 2016

	Introduction to Celery
	What’s a Task Queue?

	What do I need?

	Get Started

	Celery is…

	Features

	Framework Integration

	Quick Jump

	Installation

	Brokers
	Broker Instructions

	Broker Overview

	First Steps with Celery
	Choosing a Broker

	Installing Celery

	Application

	Running the Celery worker server

	Calling the task

	Keeping Results

	Configuration

	Where to go from here

	Troubleshooting

	Next Steps
	Using Celery in your Application

	Calling Tasks

	Canvas: Designing Work-flows

	Routing

	Remote Control

	Timezone

	Optimization

	What to do now?

	Resources
	Getting Help

	Bug tracker

	Wiki

	Contributing

	License

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Introduction to Celery

	What’s a Task Queue?

	What do I need?

	Get Started

	Celery is…

	Features

	Framework Integration

	Quick Jump

	Installation

What’s a Task Queue?

Task queues are used as a mechanism to distribute work across threads or
machines.

A task queue’s input is a unit of work called a task. Dedicated worker
processes constantly monitor task queues for new work to perform.

Celery communicates via messages, usually using a broker
to mediate between clients and workers. To initiate a task the client adds a
message to the queue, the broker then delivers that message to a worker.

A Celery system can consist of multiple workers and brokers, giving way
to high availability and horizontal scaling.

Celery is written in Python, but the protocol can be implemented in any
language. In addition to Python there’s node-celery [https://github.com/mher/node-celery] for Node.js,
and a PHP client [https://github.com/gjedeer/celery-php].

Language interoperability can also be achieved
exposing an HTTP endpoint and having a task that requests it (webhooks).

What do I need?

Version Requirements

Celery version 4.0 runs on

	Python ❨2.7, 3.4, 3.5❩

	PyPy ❨5.4, 5.5❩

This is the last version to support Python 2.7,
and from the next version (Celery 5.x) Python 3.5 or newer is required.

If you’re running an older version of Python, you need to be running
an older version of Celery:

	Python 2.6: Celery series 3.1 or earlier.

	Python 2.5: Celery series 3.0 or earlier.

	Python 2.4 was Celery series 2.2 or earlier.

Celery is a project with minimal funding,
so we don’t support Microsoft Windows.
Please don’t open any issues related to that platform.

Celery requires a message transport to send and receive messages.
The RabbitMQ and Redis broker transports are feature complete,
but there’s also support for a myriad of other experimental solutions, including
using SQLite for local development.

Celery can run on a single machine, on multiple machines, or even
across data centers.

Get Started

If this is the first time you’re trying to use Celery, or if you haven’t
kept up with development in the 3.1 version and are coming from previous versions,
then you should read our getting started tutorials:

	First Steps with Celery

	Next Steps

Celery is…

	Simple

Celery is easy to use and maintain, and it doesn’t need configuration files.

It has an active, friendly community you can talk to for support,
including a mailing-list [http://groups.google.com/group/celery-users] and an IRC channel.

Here’s one of the simplest applications you can make:

from celery import Celery

app = Celery('hello', broker='amqp://guest@localhost//')

@app.task
def hello():
 return 'hello world'

	Highly Available

Workers and clients will automatically retry in the event
of connection loss or failure, and some brokers support
HA in way of Primary/Primary or Primary/Replica replication.

	Fast

A single Celery process can process millions of tasks a minute,
with sub-millisecond round-trip latency (using RabbitMQ,
librabbitmq, and optimized settings).

	Flexible

Almost every part of Celery can be extended or used on its own,
Custom pool implementations, serializers, compression schemes, logging,
schedulers, consumers, producers, broker transports, and much more.

It supports

	
	Brokers

	RabbitMQ, Redis,

	Amazon SQS, and more…

	Concurrency

	prefork (multiprocessing),

	Eventlet [http://eventlet.net/], gevent [http://gevent.org/]

	solo (single threaded)

	
	Result Stores

	AMQP, Redis

	Memcached,

	SQLAlchemy, Django ORM

	Apache Cassandra, Elasticsearch

	Serialization

	pickle, json, yaml, msgpack.

	zlib, bzip2 compression.

	Cryptographic message signing.

Features

	
	Monitoring

A stream of monitoring events is emitted by workers and
is used by built-in and external tools to tell you what
your cluster is doing – in real-time.

Read more….

	Work-flows

Simple and complex work-flows can be composed using
a set of powerful primitives we call the “canvas”,
including grouping, chaining, chunking, and more.

Read more….

	Time & Rate Limits

You can control how many tasks can be executed per second/minute/hour,
or how long a task can be allowed to run, and this can be set as
a default, for a specific worker or individually for each task type.

Read more….

	
	Scheduling

You can specify the time to run a task in seconds or a
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime], or or you can use
periodic tasks for recurring events based on a
simple interval, or Crontab expressions
supporting minute, hour, day of week, day of month, and
month of year.

Read more….

	Resource Leak Protection

The --max-tasks-per-child
option is used for user tasks leaking resources, like memory or
file descriptors, that are simply out of your control.

Read more….

	User Components

Each worker component can be customized, and additional components
can be defined by the user. The worker is built up using “bootsteps” — a
dependency graph enabling fine grained control of the worker’s
internals.

Framework Integration

Celery is easy to integrate with web frameworks, some of them even have
integration packages:

	Pyramid [http://docs.pylonsproject.org/en/latest/docs/pyramid.html]
	pyramid_celery [https://pypi.python.org/pypi/pyramid_celery/]

	Pylons [http://pylonshq.com/]
	celery-pylons [https://pypi.python.org/pypi/celery-pylons/]

	Flask [http://flask.pocoo.org/]
	not needed

	web2py [http://web2py.com/]
	web2py-celery [https://pypi.python.org/pypi/web2py-celery/]

	Tornado [http://www.tornadoweb.org/]
	tornado-celery [https://pypi.python.org/pypi/tornado-celery/]

For Django [http://djangoproject.com/] see First steps with Django.

The integration packages aren’t strictly necessary, but they can make
development easier, and sometimes they add important hooks like closing
database connections at fork(2).

Quick Jump

I want to ⟶

	
	get the return value of a task

	use logging from my task

	learn about best practices

	create a custom task base class

	add a callback to a group of tasks

	split a task into several chunks

	optimize the worker

	see a list of built-in task states

	create custom task states

	set a custom task name

	track when a task starts

	retry a task when it fails

	get the id of the current task

	
	know what queue a task was delivered to

	see a list of running workers

	purge all messages

	inspect what the workers are doing

	see what tasks a worker has registered

	migrate tasks to a new broker

	see a list of event message types

	contribute to Celery

	learn about available configuration settings

	get a list of people and companies using Celery

	write my own remote control command

	change worker queues at runtime

Jump to ⟶

	
	Brokers

	Applications

	Tasks

	Calling

	
	Workers

	Daemonizing

	Monitoring

	Optimizing

	
	Security

	Routing

	Configuration

	Django

	
	Contributing

	Signals

	FAQ

	API Reference

Installation

You can install Celery either via the Python Package Index (PyPI)
or from source.

To install using pip:

$ pip install -U Celery

Bundles

Celery also defines a group of bundles that can be used
to install Celery and the dependencies for a given feature.

You can specify these in your requirements or on the pip
command-line by using brackets. Multiple bundles can be specified by
separating them by commas.

$ pip install "celery[librabbitmq]"

$ pip install "celery[librabbitmq,redis,auth,msgpack]"

The following bundles are available:

Serializers

	celery[auth]:	for using the auth security serializer.

	celery[msgpack]:

	

 Brokers

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Brokers

	Release:	4.0

	Date:	Dec 15, 2016

Celery supports several message transport alternatives.

Broker Instructions

	Using RabbitMQ

	Using Redis

	Using Amazon SQS

Broker Overview

This is comparison table of the different transports supports,
more information can be found in the documentation for each
individual transport (see Broker Instructions).

	Name
	Status
	Monitoring
	Remote Control

	RabbitMQ
	Stable
	Yes
	Yes

	Redis
	Stable
	Yes
	Yes

	Amazon SQS
	Stable
	No
	No

	Zookeeper
	Experimental
	No
	No

Experimental brokers may be functional but they don’t have
dedicated maintainers.

Missing monitor support means that the transport doesn’t
implement events, and as such Flower, celery events, celerymon
and other event-based monitoring tools won’t work.

Remote control means the ability to inspect and manage workers
at runtime using the celery inspect and celery control commands
(and other tools using the remote control API).

 Using RabbitMQ

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Using RabbitMQ

	Installation & Configuration

	Installing the RabbitMQ Server
	Setting up RabbitMQ

	Installing RabbitMQ on macOS
	Configuring the system host name

	Starting/Stopping the RabbitMQ server

Installation & Configuration

RabbitMQ is the default broker so it doesn’t require any additional
dependencies or initial configuration, other than the URL location of
the broker instance you want to use:

broker_url = 'amqp://guest:guest@localhost:5672//'

For a description of broker URLs and a full list of the
various broker configuration options available to Celery,
see Broker Settings.

Installing the RabbitMQ Server

See Installing RabbitMQ [http://www.rabbitmq.com/install.html] over at RabbitMQ’s website. For macOS
see Installing RabbitMQ on macOS.

Note

If you’re getting nodedown errors after installing and using
rabbitmqctl then this blog post can help you identify
the source of the problem:

http://www.somic.org/2009/02/19/on-rabbitmqctl-and-badrpcnodedown/

Setting up RabbitMQ

To use Celery we need to create a RabbitMQ user, a virtual host and
allow that user access to that virtual host:

$ sudo rabbitmqctl add_user myuser mypassword

$ sudo rabbitmqctl add_vhost myvhost

$ sudo rabbitmqctl set_user_tags myuser mytag

$ sudo rabbitmqctl set_permissions -p myvhost myuser ".*" ".*" ".*"

See the RabbitMQ Admin Guide [http://www.rabbitmq.com/admin-guide.html] for more information about access control [http://www.rabbitmq.com/admin-guide.html#access-control].

Installing RabbitMQ on macOS

The easiest way to install RabbitMQ on macOS is using Homebrew [https://github.com/mxcl/homebrew/] the new and
shiny package management system for macOS.

First, install Homebrew using the one-line command provided by the Homebrew
documentation [https://github.com/Homebrew/homebrew/wiki/Installation]:

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Finally, we can install RabbitMQ using brew:

$ brew install rabbitmq

After you’ve installed RabbitMQ with brew you need to add the following to
your path to be able to start and stop the broker: add it to the start-up file for your
shell (e.g., .bash_profile or .profile).

PATH=$PATH:/usr/local/sbin

Configuring the system host name

If you’re using a DHCP server that’s giving you a random host name, you need
to permanently configure the host name. This is because RabbitMQ uses the host name
to communicate with nodes.

Use the scutil command to permanently set your host name:

$ sudo scutil --set HostName myhost.local

Then add that host name to /etc/hosts so it’s possible to resolve it
back into an IP address:

127.0.0.1 localhost myhost myhost.local

If you start the rabbitmq-server, your rabbit node should now
be rabbit@myhost, as verified by rabbitmqctl:

$ sudo rabbitmqctl status
Status of node rabbit@myhost ...
[{running_applications,[{rabbit,"RabbitMQ","1.7.1"},
 {mnesia,"MNESIA CXC 138 12","4.4.12"},
 {os_mon,"CPO CXC 138 46","2.2.4"},
 {sasl,"SASL CXC 138 11","2.1.8"},
 {stdlib,"ERTS CXC 138 10","1.16.4"},
 {kernel,"ERTS CXC 138 10","2.13.4"}]},
{nodes,[rabbit@myhost]},
{running_nodes,[rabbit@myhost]}]
...done.

This is especially important if your DHCP server gives you a host name
starting with an IP address, (e.g., 23.10.112.31.comcast.net). In this
case RabbitMQ will try to use rabbit@23: an illegal host name.

Starting/Stopping the RabbitMQ server

To start the server:

$ sudo rabbitmq-server

you can also run it in the background by adding the -detached option
(note: only one dash):

$ sudo rabbitmq-server -detached

Never use kill (kill(1)) to stop the RabbitMQ server,
but rather use the rabbitmqctl command:

$ sudo rabbitmqctl stop

When the server is running, you can continue reading Setting up RabbitMQ.

 Using Redis

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Using Redis

Installation

For the Redis support you have to install additional dependencies.
You can install both Celery and these dependencies in one go using
the celery[redis] bundle:

$ pip install -U "celery[redis]"

Configuration

Configuration is easy, just configure the location of
your Redis database:

app.conf.broker_url = 'redis://localhost:6379/0'

Where the URL is in the format of:

redis://:password@hostname:port/db_number

all fields after the scheme are optional, and will default to localhost
on port 6379, using database 0.

If a Unix socket connection should be used, the URL needs to be in the format:

redis+socket:///path/to/redis.sock

Specifying a different database number when using a Unix socket is possible
by adding the virtual_host parameter to the URL:

redis+socket:///path/to/redis.sock?virtual_host=db_number

Visibility Timeout

The visibility timeout defines the number of seconds to wait
for the worker to acknowledge the task before the message is redelivered
to another worker. Be sure to see Caveats below.

This option is set via the broker_transport_options setting:

app.conf.broker_transport_options = {'visibility_timeout': 3600} # 1 hour.

The default visibility timeout for Redis is 1 hour.

Results

If you also want to store the state and return values of tasks in Redis,
you should configure these settings:

app.conf.result_backend = 'redis://localhost:6379/0'

For a complete list of options supported by the Redis result backend, see
Redis backend settings

Caveats

Fanout prefix

Broadcast messages will be seen by all virtual hosts by default.

You have to set a transport option to prefix the messages so that
they will only be received by the active virtual host:

app.conf.broker_transport_options = {'fanout_prefix': True}

Note that you won’t be able to communicate with workers running older
versions or workers that doesn’t have this setting enabled.

This setting will be the default in the future, so better to migrate
sooner rather than later.

Fanout patterns

Workers will receive all task related events by default.

To avoid this you must set the fanout_patterns fanout option so that
the workers may only subscribe to worker related events:

app.conf.broker_transport_options = {'fanout_patterns': True}

Note that this change is backward incompatible so all workers in the
cluster must have this option enabled, or else they won’t be able to
communicate.

This option will be enabled by default in the future.

Visibility timeout

If a task isn’t acknowledged within the Visibility Timeout
the task will be redelivered to another worker and executed.

This causes problems with ETA/countdown/retry tasks where the
time to execute exceeds the visibility timeout; in fact if that
happens it will be executed again, and again in a loop.

So you have to increase the visibility timeout to match
the time of the longest ETA you’re planning to use.

Note that Celery will redeliver messages at worker shutdown,
so having a long visibility timeout will only delay the redelivery
of ‘lost’ tasks in the event of a power failure or forcefully terminated
workers.

Periodic tasks won’t be affected by the visibility timeout,
as this is a concept separate from ETA/countdown.

You can increase this timeout by configuring a transport option
with the same name:

app.conf.broker_transport_options = {'visibility_timeout': 43200}

The value must be an int describing the number of seconds.

Key eviction

Redis may evict keys from the database in some situations

If you experience an error like:

InconsistencyError: Probably the key ('_kombu.binding.celery') has been
removed from the Redis database.

then you may want to configure the redis-server to not evict keys
by setting the timeout parameter to 0 in the redis configuration file.

 Using Amazon SQS

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Using Amazon SQS

Installation

For the Amazon SQS support you have to install the boto [https://pypi.python.org/pypi/boto/]
library using pip:

$ pip install -U boto

Configuration

You have to specify SQS in the broker URL:

broker_url = 'sqs://ABCDEFGHIJKLMNOPQRST:ZYXK7NiynGlTogH8Nj+P9nlE73sq3@'

where the URL format is:

sqs://aws_access_key_id:aws_secret_access_key@

you must remember to include the “@” at the end.

The login credentials can also be set using the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY,
in that case the broker URL may only be sqs://.

If you are using IAM roles on instances, you can set the BROKER_URL to:
sqs:// and kombu will attempt to retrive access tokens from the instance
metadata.

Note

If you specify AWS credentials in the broker URL, then please keep in mind
that the secret access key may contain unsafe characters that needs to be
URL encoded.

Options

Region

The default region is us-east-1 but you can select another region
by configuring the broker_transport_options setting:

broker_transport_options = {'region': 'eu-west-1'}

See also

An overview of Amazon Web Services regions can be found here:

http://aws.amazon.com/about-aws/globalinfrastructure/

Visibility Timeout

The visibility timeout defines the number of seconds to wait
for the worker to acknowledge the task before the message is redelivered
to another worker. Also see caveats below.

This option is set via the broker_transport_options setting:

broker_transport_options = {'visibility_timeout': 3600} # 1 hour.

The default visibility timeout is 30 seconds.

Polling Interval

The polling interval decides the number of seconds to sleep between
unsuccessful polls. This value can be either an int or a float.
By default the value is one second: this means the worker will
sleep for one second when there’s no more messages to read.

You must note that more frequent polling is also more expensive, so increasing
the polling interval can save you money.

The polling interval can be set via the broker_transport_options
setting:

broker_transport_options = {'polling_interval': 0.3}

Very frequent polling intervals can cause busy loops, resulting in the
worker using a lot of CPU time. If you need sub-millisecond precision you
should consider using another transport, like RabbitMQ <broker-amqp>,
or Redis <broker-redis>.

Queue Prefix

By default Celery won’t assign any prefix to the queue names,
If you have other services using SQS you can configure it do so
using the broker_transport_options setting:

broker_transport_options = {'queue_name_prefix': 'celery-'}

Caveats

	If a task isn’t acknowledged within the visibility_timeout,
the task will be redelivered to another worker and executed.

This causes problems with ETA/countdown/retry tasks where the
time to execute exceeds the visibility timeout; in fact if that
happens it will be executed again, and again in a loop.

So you have to increase the visibility timeout to match
the time of the longest ETA you’re planning to use.

Note that Celery will redeliver messages at worker shutdown,
so having a long visibility timeout will only delay the redelivery
of ‘lost’ tasks in the event of a power failure or forcefully terminated
workers.

Periodic tasks won’t be affected by the visibility timeout,
as it is a concept separate from ETA/countdown.

The maximum visibility timeout supported by AWS as of this writing
is 12 hours (43200 seconds):

broker_transport_options = {'visibility_timeout': 43200}

	SQS doesn’t yet support worker remote control commands.

	SQS doesn’t yet support events, and so cannot be used with
celery events, celerymon, or the Django Admin
monitor.

Results

Multiple products in the Amazon Web Services family could be a good candidate
to store or publish results with, but there’s no such result backend included
at this point.

Warning

Don’t use the amqp result backend with SQS.

It will create one queue for every task, and the queues will
not be collected. This could cost you money that would be better
spent contributing an AWS result store backend back to Celery :)

 First Steps with Celery

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

First Steps with Celery

Celery is a task queue with batteries included.
It’s easy to use so that you can get started without learning
the full complexities of the problem it solves. It’s designed
around best practices so that your product can scale
and integrate with other languages, and it comes with the
tools and support you need to run such a system in production.

In this tutorial you’ll learn the absolute basics of using Celery.

Learn about;

	Choosing and installing a message transport (broker).

	Installing Celery and creating your first task.

	Starting the worker and calling tasks.

	Keeping track of tasks as they transition through different states,
and inspecting return values.

Celery may seem daunting at first - but don’t worry - this tutorial
will get you started in no time. It’s deliberately kept simple, so
to not confuse you with advanced features.
After you have finished this tutorial
it’s a good idea to browse the rest of the documentation,
for example the Next Steps tutorial will
showcase Celery’s capabilities.

	Choosing a Broker
	RabbitMQ

	Redis

	Other brokers

	Installing Celery

	Application

	Running the Celery worker server

	Calling the task

	Keeping Results

	Configuration

	Where to go from here

	Troubleshooting
	Worker doesn’t start: Permission Error

	Result backend doesn’t work or tasks are always in PENDING state

Choosing a Broker

Celery requires a solution to send and receive messages; usually this
comes in the form of a separate service called a message broker.

There are several choices available, including:

RabbitMQ

RabbitMQ [http://www.rabbitmq.com/] is feature-complete, stable, durable and easy to install.
It’s an excellent choice for a production environment.
Detailed information about using RabbitMQ with Celery:

Using RabbitMQ

If you’re using Ubuntu or Debian install RabbitMQ by executing this
command:

$ sudo apt-get install rabbitmq-server

When the command completes the broker is already running in the background,
ready to move messages for you: Starting rabbitmq-server: SUCCESS.

And don’t worry if you’re not running Ubuntu or Debian, you can go to this
website to find similarly simple installation instructions for other
platforms, including Microsoft Windows:

http://www.rabbitmq.com/download.html

Redis

Redis [http://redis.io/] is also feature-complete, but is more susceptible to data loss in
the event of abrupt termination or power failures. Detailed information about using Redis:

Using Redis

Other brokers

In addition to the above, there are other experimental transport implementations
to choose from, including Amazon SQS.

See Broker Overview for a full list.

Installing Celery

Celery is on the Python Package Index (PyPI), so it can be installed
with standard Python tools like pip or easy_install:

$ pip install celery

Application

The first thing you need is a Celery instance. We call this the Celery
application or just app for short. As this instance is used as
the entry-point for everything you want to do in Celery, like creating tasks and
managing workers, it must be possible for other modules to import it.

In this tutorial we keep everything contained in a single module,
but for larger projects you want to create
a dedicated module.

Let’s create the file tasks.py:

from celery import Celery

app = Celery('tasks', broker='pyamqp://guest@localhost//')

@app.task
def add(x, y):
 return x + y

The first argument to Celery is the name of the current module,
this only needed so names can be automatically generated when the tasks are
defined in the __main__ module.

The second argument is the broker keyword argument, specifying the URL of the
message broker you want to use. Here using RabbitMQ (also the default option).

See Choosing a Broker above for more choices –
for RabbitMQ you can use amqp://localhost, or for Redis you can
use redis://localhost.

You defined a single task, called add, returning the sum of two numbers.

Running the Celery worker server

You now run the worker by executing our program with the worker
argument:

$ celery -A tasks worker --loglevel=info

Note

See the Troubleshooting section if the worker
doesn’t start.

In production you’ll want to run the worker in the
background as a daemon. To do this you need to use the tools provided
by your platform, or something like supervisord [http://supervisord.org] (see Daemonization
for more information).

For a complete listing of the command-line options available, do:

$ celery worker --help

There are also several other commands available, and help is also available:

$ celery help

Calling the task

To call our task you can use the delay() method.

This is a handy shortcut to the apply_async()
method that gives greater control of the task execution (see
Calling Tasks):

>>> from tasks import add
>>> add.delay(4, 4)

The task has now been processed by the worker you started earlier,
and you can verify that by looking at the workers console output.

Calling a task returns an AsyncResult instance:
this can be used to check the state of the task, wait for the task to finish,
or get its return value (or if the task failed, the exception and traceback).

Results aren’t enabled by default, so if you want to do RPC or keep track
of task results in a database you have to configure Celery to use a result
backend. This is described by the next section.

Keeping Results

If you want to keep track of the tasks’ states, Celery needs to store or send
the states somewhere. There are several
built-in result backends to choose from: SQLAlchemy [http://www.sqlalchemy.org/]/Django [http://djangoproject.com] ORM,
Memcached [http://memcached.org], Redis [http://redis.io/], RPC (RabbitMQ [http://www.rabbitmq.com/]/AMQP),
and – or you can define your own.

For this example we use the rpc result backend, that sends states
back as transient messages. The backend is specified via the backend argument to
Celery, (or via the result_backend setting if
you choose to use a configuration module):

app = Celery('tasks', backend='rpc://', broker='pyamqp://')

Or if you want to use Redis as the result backend, but still use RabbitMQ as
the message broker (a popular combination):

app = Celery('tasks', backend='redis://localhost', broker='pyamqp://')

To read more about result backends please see Result Backends.

Now with the result backend configured, let’s call the task again.
This time you’ll hold on to the AsyncResult instance returned
when you call a task:

>>> result = add.delay(4, 4)

The ready() method returns whether the task
has finished processing or not:

>>> result.ready()
False

You can wait for the result to complete, but this is rarely used
since it turns the asynchronous call into a synchronous one:

>>> result.get(timeout=1)
8

In case the task raised an exception, get() will
re-raise the exception, but you can override this by specifying
the propagate argument:

>>> result.get(propagate=False)

If the task raised an exception you can also gain access to the
original traceback:

>>> result.traceback
…

See celery.result for the complete result object reference.

Configuration

Celery, like a consumer appliance, doesn’t need much to be operated.
It has an input and an output, where you must connect the input to a broker and maybe
the output to a result backend if so wanted. But if you look closely at the back
there’s a lid revealing loads of sliders, dials, and buttons: this is the configuration.

The default configuration should be good enough for most uses, but there are
many things to tweak so Celery works just the way you want it to.
Reading about the options available is a good idea to get familiar with what
can be configured. You can read about the options in the
Configuration and defaults reference.

The configuration can be set on the app directly or by using a dedicated
configuration module.
As an example you can configure the default serializer used for serializing
task payloads by changing the task_serializer setting:

app.conf.task_serializer = 'json'

If you’re configuring many settings at once you can use update:

app.conf.update(
 task_serializer='json',
 accept_content=['json'], # Ignore other content
 result_serializer='json',
 timezone='Europe/Oslo',
 enable_utc=True,
)

For larger projects using a dedicated configuration module is useful,
in fact you’re discouraged from hard coding
periodic task intervals and task routing options, as it’s much
better to keep this in a centralized location, and especially for libraries
it makes it possible for users to control how they want your tasks to behave,
you can also imagine your SysAdmin making simple changes to the configuration
in the event of system trouble.

You can tell your Celery instance to use a configuration module,
by calling the app.config_from_object() method:

app.config_from_object('celeryconfig')

This module is often called “celeryconfig”, but you can use any
module name.

A module named celeryconfig.py must then be available to load from the
current directory or on the Python path, it could look like this:

celeryconfig.py:

broker_url = 'pyamqp://'
result_backend = 'rpc://'

task_serializer = 'json'
result_serializer = 'json'
accept_content = ['json']
timezone = 'Europe/Oslo'
enable_utc = True

To verify that your configuration file works properly, and doesn’t
contain any syntax errors, you can try to import it:

$ python -m celeryconfig

For a complete reference of configuration options, see Configuration and defaults.

To demonstrate the power of configuration files, this is how you’d
route a misbehaving task to a dedicated queue:

celeryconfig.py:

task_routes = {
 'tasks.add': 'low-priority',
}

Or instead of routing it you could rate limit the task
instead, so that only 10 tasks of this type can be processed in a minute
(10/m):

celeryconfig.py:

task_annotations = {
 'tasks.add': {'rate_limit': '10/m'}
}

If you’re using RabbitMQ or Redis as the
broker then you can also direct the workers to set a new rate limit
for the task at runtime:

$ celery -A tasks control rate_limit tasks.add 10/m
worker@example.com: OK
 new rate limit set successfully

See Routing Tasks to read more about task routing,
and the task_annotations setting for more about annotations,
or Monitoring and Management Guide for more about remote control commands,
and how to monitor what your workers are doing.

Where to go from here

If you want to learn more you should continue to the
Next Steps tutorial, and after that you
can study the User Guide.

Troubleshooting

There’s also a troubleshooting section in the Frequently Asked Questions.

Worker doesn’t start: Permission Error

	If you’re using Debian, Ubuntu or other Debian-based distributions:

Debian recently renamed the /dev/shm special file
to /run/shm.

A simple workaround is to create a symbolic link:

ln -s /run/shm /dev/shm

	Others:

If you provide any of the --pidfile,
--logfile or
--statedb arguments, then you must
make sure that they point to a file/directory that’s writable and
readable by the user starting the worker.

Result backend doesn’t work or tasks are always in PENDING state

All tasks are PENDING by default, so the state would’ve been
better named “unknown”. Celery doesn’t update any state when a task
is sent, and any task with no history is assumed to be pending (you know
the task id after all).

	Make sure that the task doesn’t have ignore_result enabled.

Enabling this option will force the worker to skip updating
states.

	Make sure the task_ignore_result setting isn’t enabled.

	Make sure that you don’t have any old workers still running.

It’s easy to start multiple workers by accident, so make sure
that the previous worker is properly shutdown before you start a new one.

An old worker that aren’t configured with the expected result backend
may be running and is hijacking the tasks.

The --pidfile argument can be set to
an absolute path to make sure this doesn’t happen.

	Make sure the client is configured with the right backend.

If for some reason the client is configured to use a different backend
than the worker, you won’t be able to receive the result,
so make sure the backend is correct by inspecting it:

>>> result = task.delay()
>>> print(result.backend)

 Next Steps

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Next Steps

The First Steps with Celery guide is intentionally minimal. In this guide
I’ll demonstrate what Celery offers in more detail, including
how to add Celery support for your application and library.

This document doesn’t document all of Celery’s features and
best practices, so it’s recommended that you also read the
User Guide

	Using Celery in your Application

	Calling Tasks

	Canvas: Designing Work-flows

	Routing

	Remote Control

	Timezone

	Optimization

	What to do now?

Using Celery in your Application

Our Project

Project layout:

proj/__init__.py
 /celery.py
 /tasks.py

proj/celery.py

from __future__ import absolute_import, unicode_literals
from celery import Celery

app = Celery('proj',
 broker='amqp://',
 backend='amqp://',
 include=['proj.tasks'])

Optional configuration, see the application user guide.
app.conf.update(
 result_expires=3600,
)

if __name__ == '__main__':
 app.start()

In this module you created our Celery instance (sometimes
referred to as the app). To use Celery within your project
you simply import this instance.

	The broker argument specifies the URL of the broker to use.

See Choosing a Broker for more information.

	The backend argument specifies the result backend to use,

It’s used to keep track of task state and results.
While results are disabled by default I use the RPC result backend here
because I demonstrate how retrieving results work later, you may want to use
a different backend for your application. They all have different
strengths and weaknesses. If you don’t need results it’s better
to disable them. Results can also be disabled for individual tasks
by setting the @task(ignore_result=True) option.

See Keeping Results for more information.

	The include argument is a list of modules to import when
the worker starts. You need to add our tasks module here so
that the worker is able to find our tasks.

proj/tasks.py

from __future__ import absolute_import, unicode_literals
from .celery import app

@app.task
def add(x, y):
 return x + y

@app.task
def mul(x, y):
 return x * y

@app.task
def xsum(numbers):
 return sum(numbers)

Starting the worker

The celery program can be used to start the worker (you need to run the worker in the directory above proj):

$ celery -A proj worker -l info

When the worker starts you should see a banner and some messages:

-------------- celery@halcyon.local v4.0 (latentcall)
---- **** -----
--- * *** * -- [Configuration]
-- * - **** --- . broker: amqp://guest@localhost:5672//
- ** ---------- . app: __main__:0x1012d8590
- ** ---------- . concurrency: 8 (processes)
- ** ---------- . events: OFF (enable -E to monitor this worker)
- ** ----------
- *** --- * --- [Queues]
-- ******* ---- . celery: exchange:celery(direct) binding:celery
--- ***** -----

[2012-06-08 16:23:51,078: WARNING/MainProcess] celery@halcyon.local has started.

– The broker is the URL you specified in the broker argument in our celery
module, you can also specify a different broker on the command-line by using
the -b option.

– Concurrency is the number of prefork worker process used
to process your tasks concurrently, when all of these are busy doing work
new tasks will have to wait for one of the tasks to finish before
it can be processed.

The default concurrency number is the number of CPU’s on that machine
(including cores), you can specify a custom number using
the celery worker -c option.
There’s no recommended value, as the optimal number depends on a number of
factors, but if your tasks are mostly I/O-bound then you can try to increase
it, experimentation has shown that adding more than twice the number
of CPU’s is rarely effective, and likely to degrade performance
instead.

Including the default prefork pool, Celery also supports using
Eventlet, Gevent, and running in a single thread (see Concurrency).

– Events is an option that when enabled causes Celery to send
monitoring messages (events) for actions occurring in the worker.
These can be used by monitor programs like celery events,
and Flower - the real-time Celery monitor, that you can read about in
the Monitoring and Management guide.

– Queues is the list of queues that the worker will consume
tasks from. The worker can be told to consume from several queues
at once, and this is used to route messages to specific workers
as a means for Quality of Service, separation of concerns,
and prioritization, all described in the Routing Guide.

You can get a complete list of command-line arguments
by passing in the --help flag:

$ celery worker --help

These options are described in more detailed in the Workers Guide.

Stopping the worker

To stop the worker simply hit Control-c. A list of signals supported
by the worker is detailed in the Workers Guide.

In the background

In production you’ll want to run the worker in the background, this is
described in detail in the daemonization tutorial.

The daemonization scripts uses the celery multi command to
start one or more workers in the background:

$ celery multi start w1 -A proj -l info
celery multi v4.0.0 (latentcall)
> Starting nodes...
 > w1.halcyon.local: OK

You can restart it too:

$ celery multi restart w1 -A proj -l info
celery multi v4.0.0 (latentcall)
> Stopping nodes...
 > w1.halcyon.local: TERM -> 64024
> Waiting for 1 node.....
 > w1.halcyon.local: OK
> Restarting node w1.halcyon.local: OK
celery multi v4.0.0 (latentcall)
> Stopping nodes...
 > w1.halcyon.local: TERM -> 64052

or stop it:

$ celery multi stop w1 -A proj -l info

The stop command is asynchronous so it won’t wait for the
worker to shutdown. You’ll probably want to use the stopwait command
instead, this ensures all currently executing tasks is completed
before exiting:

$ celery multi stopwait w1 -A proj -l info

Note

celery multi doesn’t store information about workers
so you need to use the same command-line arguments when
restarting. Only the same pidfile and logfile arguments must be
used when stopping.

By default it’ll create pid and log files in the current directory,
to protect against multiple workers launching on top of each other
you’re encouraged to put these in a dedicated directory:

$ mkdir -p /var/run/celery
$ mkdir -p /var/log/celery
$ celery multi start w1 -A proj -l info --pidfile=/var/run/celery/%n.pid \
 --logfile=/var/log/celery/%n%I.log

With the multi command you can start multiple workers, and there’s a powerful
command-line syntax to specify arguments for different workers too,
for example:

$ celery multi start 10 -A proj -l info -Q:1-3 images,video -Q:4,5 data \
 -Q default -L:4,5 debug

For more examples see the multi module in the API
reference.

About the --app argument

The --app argument specifies the Celery app instance
to use, it must be in the form of module.path:attribute

But it also supports a shortcut form If only a package name is specified,
where it’ll try to search for the app instance, in the following order:

With --app=proj:

	an attribute named proj.app, or

	an attribute named proj.celery, or

	any attribute in the module proj where the value is a Celery
application, or

If none of these are found it’ll try a submodule named proj.celery:

	an attribute named proj.celery.app, or

	an attribute named proj.celery.celery, or

	Any attribute in the module proj.celery where the value is a Celery
application.

This scheme mimics the practices used in the documentation – that is,
proj:app for a single contained module, and proj.celery:app
for larger projects.

Calling Tasks

You can call a task using the delay() method:

>>> add.delay(2, 2)

This method is actually a star-argument shortcut to another method called
apply_async():

>>> add.apply_async((2, 2))

The latter enables you to specify execution options like the time to run
(countdown), the queue it should be sent to, and so on:

>>> add.apply_async((2, 2), queue='lopri', countdown=10)

In the above example the task will be sent to a queue named lopri and the
task will execute, at the earliest, 10 seconds after the message was sent.

Applying the task directly will execute the task in the current process,
so that no message is sent:

>>> add(2, 2)
4

These three methods - delay(), apply_async(), and applying
(__call__), represents the Celery calling API, that’s also used for
signatures.

A more detailed overview of the Calling API can be found in the
Calling User Guide.

Every task invocation will be given a unique identifier (an UUID), this
is the task id.

The delay and apply_async methods return an AsyncResult
instance, that can be used to keep track of the tasks execution state.
But for this you need to enable a result backend so that
the state can be stored somewhere.

Results are disabled by default because of the fact that there’s no result
backend that suits every application, so to choose one you need to consider
the drawbacks of each individual backend. For many tasks
keeping the return value isn’t even very useful, so it’s a sensible default to
have. Also note that result backends aren’t used for monitoring tasks and workers,
for that Celery uses dedicated event messages (see Monitoring and Management Guide).

If you have a result backend configured you can retrieve the return
value of a task:

>>> res = add.delay(2, 2)
>>> res.get(timeout=1)
4

You can find the task’s id by looking at the id attribute:

>>> res.id
d6b3aea2-fb9b-4ebc-8da4-848818db9114

You can also inspect the exception and traceback if the task raised an
exception, in fact result.get() will propagate any errors by default:

>>> res = add.delay(2)
>>> res.get(timeout=1)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/devel/celery/celery/result.py", line 113, in get
 interval=interval)
File "/opt/devel/celery/celery/backends/rpc.py", line 138, in wait_for
 raise meta['result']
TypeError: add() takes exactly 2 arguments (1 given)

If you don’t wish for the errors to propagate then you can disable that
by passing the propagate argument:

>>> res.get(propagate=False)
TypeError('add() takes exactly 2 arguments (1 given)',)

In this case it’ll return the exception instance raised instead,
and so to check whether the task succeeded or failed you’ll have to
use the corresponding methods on the result instance:

>>> res.failed()
True

>>> res.successful()
False

So how does it know if the task has failed or not? It can find out by looking
at the tasks state:

>>> res.state
'FAILURE'

A task can only be in a single state, but it can progress through several
states. The stages of a typical task can be:

PENDING -> STARTED -> SUCCESS

The started state is a special state that’s only recorded if the
task_track_started setting is enabled, or if the
@task(track_started=True) option is set for the task.

The pending state is actually not a recorded state, but rather
the default state for any task id that’s unknown: this you can see
from this example:

>>> from proj.celery import app

>>> res = app.AsyncResult('this-id-does-not-exist')
>>> res.state
'PENDING'

If the task is retried the stages can become even more complex.
To demonstrate, for a task that’s retried two times the stages would be:

PENDING -> STARTED -> RETRY -> STARTED -> RETRY -> STARTED -> SUCCESS

To read more about task states you should see the States section
in the tasks user guide.

Calling tasks is described in detail in the
Calling Guide.

Canvas: Designing Work-flows

You just learned how to call a task using the tasks delay method,
and this is often all you need, but sometimes you may want to pass the
signature of a task invocation to another process or as an argument to another
function, for this Celery uses something called signatures.

A signature wraps the arguments and execution options of a single task
invocation in a way such that it can be passed to functions or even serialized
and sent across the wire.

You can create a signature for the add task using the arguments (2, 2),
and a countdown of 10 seconds like this:

>>> add.signature((2, 2), countdown=10)
tasks.add(2, 2)

There’s also a shortcut using star arguments:

>>> add.s(2, 2)
tasks.add(2, 2)

And there’s that calling API again…

Signature instances also supports the calling API: meaning they
have the delay and apply_async methods.

But there’s a difference in that the signature may already have
an argument signature specified. The add task takes two arguments,
so a signature specifying two arguments would make a complete signature:

>>> s1 = add.s(2, 2)
>>> res = s1.delay()
>>> res.get()
4

But, you can also make incomplete signatures to create what we call
partials:

incomplete partial: add(?, 2)
>>> s2 = add.s(2)

s2 is now a partial signature that needs another argument to be complete,
and this can be resolved when calling the signature:

resolves the partial: add(8, 2)
>>> res = s2.delay(8)
>>> res.get()
10

Here you added the argument 8 that was prepended to the existing argument 2
forming a complete signature of add(8, 2).

Keyword arguments can also be added later, these are then merged with any
existing keyword arguments, but with new arguments taking precedence:

>>> s3 = add.s(2, 2, debug=True)
>>> s3.delay(debug=False) # debug is now False.

As stated signatures supports the calling API: meaning that;

	sig.apply_async(args=(), kwargs={}, **options)

Calls the signature with optional partial arguments and partial
keyword arguments. Also supports partial execution options.

	sig.delay(*args, **kwargs)

Star argument version of apply_async. Any arguments will be prepended
to the arguments in the signature, and keyword arguments is merged with any
existing keys.

So this all seems very useful, but what can you actually do with these?
To get to that I must introduce the canvas primitives…

The Primitives

	
	group

	chain

	chord

	
	map

	starmap

	chunks

These primitives are signature objects themselves, so they can be combined
in any number of ways to compose complex work-flows.

Note

These examples retrieve results, so to try them out you need
to configure a result backend. The example project
above already does that (see the backend argument to Celery).

Let’s look at some examples:

Groups

A group calls a list of tasks in parallel,
and it returns a special result instance that lets you inspect the results
as a group, and retrieve the return values in order.

>>> from celery import group
>>> from proj.tasks import add

>>> group(add.s(i, i) for i in xrange(10))().get()
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

	Partial group

>>> g = group(add.s(i) for i in xrange(10))
>>> g(10).get()
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Chains

Tasks can be linked together so that after one task returns the other
is called:

>>> from celery import chain
>>> from proj.tasks import add, mul

(4 + 4) * 8
>>> chain(add.s(4, 4) | mul.s(8))().get()
64

or a partial chain:

>>> # (? + 4) * 8
>>> g = chain(add.s(4) | mul.s(8))
>>> g(4).get()
64

Chains can also be written like this:

>>> (add.s(4, 4) | mul.s(8))().get()
64

Chords

A chord is a group with a callback:

>>> from celery import chord
>>> from proj.tasks import add, xsum

>>> chord((add.s(i, i) for i in xrange(10)), xsum.s())().get()
90

A group chained to another task will be automatically converted
to a chord:

>>> (group(add.s(i, i) for i in xrange(10)) | xsum.s())().get()
90

Since these primitives are all of the signature type they
can be combined almost however you want, for example:

>>> upload_document.s(file) | group(apply_filter.s() for filter in filters)

Be sure to read more about work-flows in the Canvas user
guide.

Routing

Celery supports all of the routing facilities provided by AMQP,
but it also supports simple routing where messages are sent to named queues.

The task_routes setting enables you to route tasks by name
and keep everything centralized in one location:

app.conf.update(
 task_routes = {
 'proj.tasks.add': {'queue': 'hipri'},
 },
)

You can also specify the queue at runtime
with the queue argument to apply_async:

>>> from proj.tasks import add
>>> add.apply_async((2, 2), queue='hipri')

You can then make a worker consume from this queue by
specifying the celery worker -Q option:

$ celery -A proj worker -Q hipri

You may specify multiple queues by using a comma separated list,
for example you can make the worker consume from both the default
queue, and the hipri queue, where
the default queue is named celery for historical reasons:

$ celery -A proj worker -Q hipri,celery

The order of the queues doesn’t matter as the worker will
give equal weight to the queues.

To learn more about routing, including taking use of the full
power of AMQP routing, see the Routing Guide.

Remote Control

If you’re using RabbitMQ (AMQP), Redis, or Qpid as the broker then
you can control and inspect the worker at runtime.

For example you can see what tasks the worker is currently working on:

$ celery -A proj inspect active

This is implemented by using broadcast messaging, so all remote
control commands are received by every worker in the cluster.

You can also specify one or more workers to act on the request
using the --destination option.
This is a comma separated list of worker host names:

$ celery -A proj inspect active --destination=celery@example.com

If a destination isn’t provided then every worker will act and reply
to the request.

The celery inspect command contains commands that
doesn’t change anything in the worker, it only replies information
and statistics about what’s going on inside the worker.
For a list of inspect commands you can execute:

$ celery -A proj inspect --help

Then there’s the celery control command, that contains
commands that actually changes things in the worker at runtime:

$ celery -A proj control --help

For example you can force workers to enable event messages (used
for monitoring tasks and workers):

$ celery -A proj control enable_events

When events are enabled you can then start the event dumper
to see what the workers are doing:

$ celery -A proj events --dump

or you can start the curses interface:

$ celery -A proj events

when you’re finished monitoring you can disable events again:

$ celery -A proj control disable_events

The celery status command also uses remote control commands
and shows a list of online workers in the cluster:

$ celery -A proj status

You can read more about the celery command and monitoring
in the Monitoring Guide.

Timezone

All times and dates, internally and in messages uses the UTC timezone.

When the worker receives a message, for example with a countdown set it
converts that UTC time to local time. If you wish to use
a different timezone than the system timezone then you must
configure that using the timezone setting:

app.conf.timezone = 'Europe/London'

Optimization

The default configuration isn’t optimized for throughput by default,
it tries to walk the middle way between many short tasks and fewer long
tasks, a compromise between throughput and fair scheduling.

If you have strict fair scheduling requirements, or want to optimize
for throughput then you should read the Optimizing Guide.

If you’re using RabbitMQ then you can install the librabbitmq [https://pypi.python.org/pypi/librabbitmq/]
module: this is an AMQP client implemented in C:

$ pip install librabbitmq

What to do now?

Now that you have read this document you should continue
to the User Guide.

There’s also an API reference if you’re so inclined.

 Resources

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Resources

	Getting Help
	Mailing list

	IRC

	Bug tracker

	Wiki

	Contributing

	License

Getting Help

Mailing list

For discussions about the usage, development, and future of Celery,
please join the celery-users [http://groups.google.com/group/celery-users/] mailing list.

IRC

Come chat with us on IRC. The #celery channel is located at the Freenode [http://freenode.net]
network.

Bug tracker

If you have any suggestions, bug reports, or annoyances please report them
to our issue tracker at https://github.com/celery/celery/issues/

Wiki

http://wiki.github.com/celery/celery/

Contributing

Development of celery happens at GitHub: https://github.com/celery/celery

You’re highly encouraged to participate in the development
of celery. If you don’t like GitHub (for some reason) you’re welcome
to send regular patches.

Be sure to also read the Contributing to Celery [http://docs.celeryproject.org/en/master/contributing.html] section in the
documentation.

License

This software is licensed under the New BSD License. See the LICENSE
file in the top distribution directory for the full license text.

 User Guide

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

User Guide

	Release:	4.0

	Date:	Dec 15, 2016

	Application

	Tasks

	Calling Tasks

	Canvas: Designing Work-flows

	Workers Guide

	Daemonization

	Periodic Tasks

	Routing Tasks

	Monitoring and Management Guide

	Security

	Optimizing

	Debugging

	Concurrency

	Signals

	Testing with Celery

	Extensions and Bootsteps

	Configuration and defaults

 Application

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Application

	Main Name

	Configuration

	Laziness

	Breaking the chain

	Abstract Tasks

The Celery library must be instantiated before use, this instance
is called an application (or app for short).

The application is thread-safe so that multiple Celery applications
with different configurations, components, and tasks can co-exist in the
same process space.

Let’s create one now:

>>> from celery import Celery
>>> app = Celery()
>>> app
<Celery __main__:0x100469fd0>

The last line shows the textual representation of the application:
including the name of the app class (Celery), the name of the
current main module (__main__), and the memory address of the object
(0x100469fd0).

Main Name

Only one of these is important, and that’s the main module name.
Let’s look at why that is.

When you send a task message in Celery, that message won’t contain
any source code, but only the name of the task you want to execute.
This works similarly to how host names work on the internet: every worker
maintains a mapping of task names to their actual functions, called the task
registry.

Whenever you define a task, that task will also be added to the local registry:

>>> @app.task
... def add(x, y):
... return x + y

>>> add
<@task: __main__.add>

>>> add.name
__main__.add

>>> app.tasks['__main__.add']
<@task: __main__.add>

and there you see that __main__ again; whenever Celery isn’t able
to detect what module the function belongs to, it uses the main module
name to generate the beginning of the task name.

This is only a problem in a limited set of use cases:

	If the module that the task is defined in is run as a program.

	If the application is created in the Python shell (REPL).

For example here, where the tasks module is also used to start a worker
with app.worker_main():

tasks.py:

from celery import Celery
app = Celery()

@app.task
def add(x, y): return x + y

if __name__ == '__main__':
 app.worker_main()

When this module is executed the tasks will be named starting with “__main__”,
but when the module is imported by another process, say to call a task,
the tasks will be named starting with “tasks” (the real name of the module):

>>> from tasks import add
>>> add.name
tasks.add

You can specify another name for the main module:

>>> app = Celery('tasks')
>>> app.main
'tasks'

>>> @app.task
... def add(x, y):
... return x + y

>>> add.name
tasks.add

See also

Names

Configuration

There are several options you can set that’ll change how
Celery works. These options can be set directly on the app instance,
or you can use a dedicated configuration module.

The configuration is available as app.conf:

>>> app.conf.timezone
'Europe/London'

where you can also set configuration values directly:

>>> app.conf.enable_utc = True

or update several keys at once by using the update method:

>>> app.conf.update(
... enable_utc=True,
... timezone='Europe/London',
...)

The configuration object consists of multiple dictionaries
that are consulted in order:

	Changes made at run-time.

	The configuration module (if any)

	The default configuration (celery.app.defaults).

You can even add new default sources by using the app.add_defaults()
method.

See also

Go to the Configuration reference for a complete
listing of all the available settings, and their default values.

config_from_object

The app.config_from_object() method loads configuration
from a configuration object.

This can be a configuration module, or any object with configuration attributes.

Note that any configuration that was previously set will be reset when
config_from_object() is called. If you want to set additional
configuration you should do so after.

Example 1: Using the name of a module

The app.config_from_object() method can take the fully qualified
name of a Python module, or even the name of a Python attribute,
for example: "celeryconfig", "myproj.config.celery", or
"myproj.config:CeleryConfig":

from celery import Celery

app = Celery()
app.config_from_object('celeryconfig')

The celeryconfig module may then look like this:

celeryconfig.py:

enable_utc = True
timezone = 'Europe/London'

and the app will be able to use it as long as import celeryconfig is
possible.

Example 2: Passing an actual module object

You can also pass an already imported module object, but this
isn’t always recommended.

Tip

Using the name of a module is recommended as this means the module does
not need to be serialized when the prefork pool is used. If you’re
experiencing configuration problems or pickle errors then please
try using the name of a module instead.

import celeryconfig

from celery import Celery

app = Celery()
app.config_from_object(celeryconfig)

Example 3: Using a configuration class/object

from celery import Celery

app = Celery()

class Config:
 enable_utc = True
 timezone = 'Europe/London'

app.config_from_object(Config)
or using the fully qualified name of the object:
app.config_from_object('module:Config')

config_from_envvar

The app.config_from_envvar() takes the configuration module name
from an environment variable

For example – to load configuration from a module specified in the
environment variable named CELERY_CONFIG_MODULE:

import os
from celery import Celery

#: Set default configuration module name
os.environ.setdefault('CELERY_CONFIG_MODULE', 'celeryconfig')

app = Celery()
app.config_from_envvar('CELERY_CONFIG_MODULE')

You can then specify the configuration module to use via the environment:

$ CELERY_CONFIG_MODULE="celeryconfig.prod" celery worker -l info

Censored configuration

If you ever want to print out the configuration, as debugging information
or similar, you may also want to filter out sensitive information like
passwords and API keys.

Celery comes with several utilities useful for presenting the configuration,
one is humanize():

>>> app.conf.humanize(with_defaults=False, censored=True)

This method returns the configuration as a tabulated string. This will
only contain changes to the configuration by default, but you can include the
built-in default keys and values by enabling the with_defaults argument.

If you instead want to work with the configuration as a dictionary, you
can use the table() method:

>>> app.conf.table(with_defaults=False, censored=True)

Please note that Celery won’t be able to remove all sensitive information,
as it merely uses a regular expression to search for commonly named keys.
If you add custom settings containing sensitive information you should name
the keys using a name that Celery identifies as secret.

A configuration setting will be censored if the name contains any of
these sub-strings:

API, TOKEN, KEY, SECRET, PASS, SIGNATURE, DATABASE

Laziness

The application instance is lazy, meaning it won’t be evaluated
until it’s actually needed.

Creating a Celery instance will only do the following:

	Create a logical clock instance, used for events.

	Create the task registry.

	Set itself as the current app (but not if the set_as_current
argument was disabled)

	Call the app.on_init() callback (does nothing by default).

The app.task() decorators don’t create the tasks at the point when
the task is defined, instead it’ll defer the creation
of the task to happen either when the task is used, or after the
application has been finalized,

This example shows how the task isn’t created until
you use the task, or access an attribute (in this case repr()):

>>> @app.task
>>> def add(x, y):
... return x + y

>>> type(add)
<class 'celery.local.PromiseProxy'>

>>> add.__evaluated__()
False

>>> add # <-- causes repr(add) to happen
<@task: __main__.add>

>>> add.__evaluated__()
True

Finalization of the app happens either explicitly by calling
app.finalize() – or implicitly by accessing the app.tasks
attribute.

Finalizing the object will:

	Copy tasks that must be shared between apps

Tasks are shared by default, but if the
shared argument to the task decorator is disabled,
then the task will be private to the app it’s bound to.

	Evaluate all pending task decorators.

	Make sure all tasks are bound to the current app.

Tasks are bound to an app so that they can read default
values from the configuration.

The “default app”

Celery didn’t always have applications, it used to be that
there was only a module-based API, and for backwards compatibility
the old API is still there until the release of Celery 5.0.

Celery always creates a special app - the “default app”,
and this is used if no custom application has been instantiated.

The celery.task module is there to accommodate the old API,
and shouldn’t be used if you use a custom app. You should
always use the methods on the app instance, not the module based API.

For example, the old Task base class enables many compatibility
features where some may be incompatible with newer features, such
as task methods:

from celery.task import Task # << OLD Task base class.

from celery import Task # << NEW base class.

The new base class is recommended even if you use the old
module-based API.

Breaking the chain

While it’s possible to depend on the current app
being set, the best practice is to always pass the app instance
around to anything that needs it.

I call this the “app chain”, since it creates a chain
of instances depending on the app being passed.

The following example is considered bad practice:

from celery import current_app

class Scheduler(object):

 def run(self):
 app = current_app

Instead it should take the app as an argument:

class Scheduler(object):

 def __init__(self, app):
 self.app = app

Internally Celery uses the celery.app.app_or_default() function
so that everything also works in the module-based compatibility API

from celery.app import app_or_default

class Scheduler(object):
 def __init__(self, app=None):
 self.app = app_or_default(app)

In development you can set the CELERY_TRACE_APP
environment variable to raise an exception if the app
chain breaks:

$ CELERY_TRACE_APP=1 celery worker -l info

Evolving the API

Celery has changed a lot in the 7 years since it was initially
created.

For example, in the beginning it was possible to use any callable as
a task:

def hello(to):
 return 'hello {0}'.format(to)

>>> from celery.execute import apply_async

>>> apply_async(hello, ('world!',))

or you could also create a Task class to set
certain options, or override other behavior

from celery.task import Task
from celery.registry import tasks

class Hello(Task):
 queue = 'hipri'

 def run(self, to):
 return 'hello {0}'.format(to)
tasks.register(Hello)

>>> Hello.delay('world!')

Later, it was decided that passing arbitrary call-able’s
was an anti-pattern, since it makes it very hard to use
serializers other than pickle, and the feature was removed
in 2.0, replaced by task decorators:

from celery.task import task

@task(queue='hipri')
def hello(to):
 return 'hello {0}'.format(to)

Abstract Tasks

All tasks created using the task() decorator
will inherit from the application’s base Task class.

You can specify a different base class using the base argument:

@app.task(base=OtherTask):
def add(x, y):
 return x + y

To create a custom task class you should inherit from the neutral base
class: celery.Task.

from celery import Task

class DebugTask(Task):

 def __call__(self, *args, **kwargs):
 print('TASK STARTING: {0.name}[{0.request.id}]'.format(self))
 return super(DebugTask, self).__call__(*args, **kwargs)

Tip

If you override the tasks __call__ method, then it’s very important
that you also call super so that the base call method can set up the
default request used when a task is called directly.

The neutral base class is special because it’s not bound to any specific app
yet. Once a task is bound to an app it’ll read configuration to set default
values, and so on.

To realize a base class you need to create a task using the app.task()
decorator:

@app.task(base=DebugTask)
def add(x, y):
 return x + y

It’s even possible to change the default base class for an application
by changing its app.Task() attribute:

>>> from celery import Celery, Task

>>> app = Celery()

>>> class MyBaseTask(Task):
... queue = 'hipri'

>>> app.Task = MyBaseTask
>>> app.Task
<unbound MyBaseTask>

>>> @app.task
... def add(x, y):
... return x + y

>>> add
<@task: __main__.add>

>>> add.__class__.mro()
[<class add of <Celery __main__:0x1012b4410>>,
 <unbound MyBaseTask>,
 <unbound Task>,
 <type 'object'>]

 Tasks

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Tasks

Tasks are the building blocks of Celery applications.

A task is a class that can be created out of any callable. It performs
dual roles in that it defines both what happens when a task is
called (sends a message), and what happens when a worker receives that message.

Every task class has a unique name, and this name is referenced in messages
so the worker can find the right function to execute.

A task message is not removed from the queue
until that message has been acknowledged by a worker. A worker can reserve
many messages in advance and even if the worker is killed – by power failure
or some other reason – the message will be redelivered to another worker.

Ideally task functions should be idempotent: meaning
the function won’t cause unintended effects even if called
multiple times with the same arguments.
Since the worker cannot detect if your tasks are idempotent, the default
behavior is to acknowledge the message in advance, just before it’s executed,
so that a task invocation that already started is never executed again.

If your task is idempotent you can set the acks_late option
to have the worker acknowledge the message after the task returns
instead. See also the FAQ entry Should I use retry or acks_late?.

Note that the worker will acknowledge the message if the child process executing
the task is terminated (either by the task calling sys.exit() [https://docs.python.org/dev/library/sys.html#sys.exit], or by signal)
even when acks_late is enabled. This behavior is by purpose
as...

	We don’t want to rerun tasks that forces the kernel to send
a SIGSEGV (segmentation fault) or similar signals to the process.

	We assume that a system administrator deliberately killing the task
does not want it to automatically restart.

	A task that allocates too much memory is in danger of triggering the kernel
OOM killer, the same may happen again.

	A task that always fails when redelivered may cause a high-frequency
message loop taking down the system.

If you really want a task to be redelivered in these scenarios you should
consider enabling the task_reject_on_worker_lost setting.

Warning

A task that blocks indefinitely may eventually stop the worker instance
from doing any other work.

If you task does I/O then make sure you add timeouts to these operations,
like adding a timeout to a web request using the requests [https://pypi.python.org/pypi/requests/] library:

connect_timeout, read_timeout = 5.0, 30.0
response = requests.get(URL, timeout=(connect_timeout, read_timeout))

Time limits are convenient for making sure all
tasks return in a timely manner, but a time limit event will actually kill
the process by force so only use them to detect cases where you haven’t
used manual timeouts yet.

The default prefork pool scheduler is not friendly to long-running tasks,
so if you have tasks that run for minutes/hours make sure you enable
the -Ofair`` command-line argument to the celery worker.
See Prefork pool prefetch settings for more information, and for the
best performance route long-running and short-running tasks to
dedicated workers (Automatic routing).

If your worker hangs then please investigate what tasks are running
before submitting an issue, as most likely the hanging is caused
by one or more tasks hanging on a network operation.

–

In this chapter you’ll learn all about defining tasks,
and this is the table of contents:

	Basics

	Names

	Task Request

	Logging

	Retrying

	List of Options

	States

	Semipredicates

	Custom task classes

	How it works

	Tips and Best Practices

	Performance and Strategies

	Example

Basics

You can easily create a task from any callable by using
the task() decorator:

from .models import User

@app.task
def create_user(username, password):
 User.objects.create(username=username, password=password)

There are also many options that can be set for the task,
these can be specified as arguments to the decorator:

@app.task(serializer='json')
def create_user(username, password):
 User.objects.create(username=username, password=password)

How do I import the task decorator? And what’s “app”?

The task decorator is available on your Celery application instance,
if you don’t know what this is then please read First Steps with Celery.

If you’re using Django (see First steps with Django), or you’re the author
of a library then you probably want to use the shared_task() decorator:

from celery import shared_task

@shared_task
def add(x, y):
 return x + y

Multiple decorators

When using multiple decorators in combination with the task
decorator you must make sure that the task
decorator is applied last (oddly, in Python this means it must
be first in the list):

@app.task
@decorator2
@decorator1
def add(x, y):
 return x + y

Bound tasks

A task being bound means the first argument to the task will always
be the task instance (self), just like Python bound methods:

logger = get_task_logger(__name__)

@task(bind=True)
def add(self, x, y):
 logger.info(self.request.id)

Bound tasks are needed for retries (using app.Task.retry()),
for accessing information about the current task request, and for any
additional functionality you add to custom task base classes.

Task inheritance

The base argument to the task decorator specifies the base class of the task:

import celery

class MyTask(celery.Task):

 def on_failure(self, exc, task_id, args, kwargs, einfo):
 print('{0!r} failed: {1!r}'.format(task_id, exc)

@task(base=MyTask)
def add(x, y):
 raise KeyError()

Names

Every task must have a unique name.

If no explicit name is provided the task decorator will generate one for you,
and this name will be based on 1) the module the task is defined in, and 2)
the name of the task function.

Example setting explicit name:

>>> @app.task(name='sum-of-two-numbers')
>>> def add(x, y):
... return x + y

>>> add.name
'sum-of-two-numbers'

A best practice is to use the module name as a name-space,
this way names won’t collide if there’s already a task with that name
defined in another module.

>>> @app.task(name='tasks.add')
>>> def add(x, y):
... return x + y

You can tell the name of the task by investigating its .name attribute:

>>> add.name
'tasks.add'

The name we specified here (tasks.add) is exactly the name that would’ve
been automatically generated for us if the task was defined in a module
named tasks.py:

tasks.py:

@app.task
def add(x, y):
 return x + y

>>> from tasks import add
>>> add.name
'tasks.add'

Automatic naming and relative imports

Absolute Imports

The best practice for developers targetting Python 2 is to add the
following to the top of every module:

from __future__ import absolute_import

This will force you to always use absolute imports so you will
never have any problems with tasks using relative names.

Absolute imports are the default in Python 3 so you don’t need this
if you target that version.

Relative imports and automatic name generation don’t go well together,
so if you’re using relative imports you should set the name explicitly.

For example if the client imports the module "myapp.tasks"
as ".tasks", and the worker imports the module as "myapp.tasks",
the generated names won’t match and an NotRegistered error will
be raised by the worker.

This is also the case when using Django and using project.myapp-style
naming in INSTALLED_APPS:

INSTALLED_APPS = ['project.myapp']

If you install the app under the name project.myapp then the
tasks module will be imported as project.myapp.tasks,
so you must make sure you always import the tasks using the same name:

>>> from project.myapp.tasks import mytask # << GOOD

>>> from myapp.tasks import mytask # << BAD!!!

The second example will cause the task to be named differently
since the worker and the client imports the modules under different names:

>>> from project.myapp.tasks import mytask
>>> mytask.name
'project.myapp.tasks.mytask'

>>> from myapp.tasks import mytask
>>> mytask.name
'myapp.tasks.mytask'

For this reason you must be consistent in how you
import modules, and that is also a Python best practice.

Similarly, you shouldn’t use old-style relative imports:

from module import foo # BAD!

from proj.module import foo # GOOD!

New-style relative imports are fine and can be used:

from .module import foo # GOOD!

If you want to use Celery with a project already using these patterns
extensively and you don’t have the time to refactor the existing code
then you can consider specifying the names explicitly instead of relying
on the automatic naming:

@task(name='proj.tasks.add')
def add(x, y):
 return x + y

Changing the automatic naming behavior

New in version 4.0.

There are some cases when the default automatic naming isn’t suitable.
Consider you have many tasks within many different modules:

project/
 /__init__.py
 /celery.py
 /moduleA/
 /__init__.py
 /tasks.py
 /moduleB/
 /__init__.py
 /tasks.py

Using the default automatic naming, each task will have a generated name
like moduleA.tasks.taskA, moduleA.tasks.taskB, moduleB.tasks.test,
and so on. You may want to get rid of having tasks in all task names.
As pointed above, you can explicitly give names for all tasks, or you
can change the automatic naming behavior by overriding
app.gen_task_name(). Continuing with the example, celery.py
may contain:

from celery import Celery

class MyCelery(Celery):

 def gen_task_name(self, name, module):
 if module.endswith('.tasks'):
 module = module[:-6]
 return super(MyCelery, self).gen_task_name(name, module)

app = MyCelery('main')

So each task will have a name like moduleA.taskA, moduleA.taskB and
moduleB.test.

Warning

Make sure that your app.gen_task_name() is a pure function: meaning
that for the same input it must always return the same output.

Task Request

app.Task.request contains information and state
related to the currently executing task.

The request defines the following attributes:

	id:	The unique id of the executing task.

	group:	The unique id of the task’s group, if this task is a member.

	chord:	The unique id of the chord this task belongs to (if the task
is part of the header).

	correlation_id:	Custom ID used for things like de-duplication.

	args:	Positional arguments.

	kwargs:	Keyword arguments.

	origin:	Name of host that sent this task.

	retries:	How many times the current task has been retried.
An integer starting at 0.

	is_eager:	Set to True if the task is executed locally in
the client, not by a worker.

	eta:	The original ETA of the task (if any).
This is in UTC time (depending on the enable_utc
setting).

	expires:	The original expiry time of the task (if any).
This is in UTC time (depending on the enable_utc
setting).

	hostname:	Node name of the worker instance executing the task.

	delivery_info:	Additional message delivery information. This is a mapping
containing the exchange and routing key used to deliver this
task. Used by for example app.Task.retry()
to resend the task to the same destination queue.
Availability of keys in this dict depends on the
message broker used.

	reply-to:	Name of queue to send replies back to (used with RPC result
backend for example).

	called_directly:

	

 Calling Tasks

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Calling Tasks

	Basics

	Linking (callbacks/errbacks)

	On message

	ETA and Countdown

	Expiration

	Message Sending Retry

	Connection Error Handling

	Serializers

	Compression

	Connections

	Routing options

Basics

This document describes Celery’s uniform “Calling API”
used by task instances and the canvas.

The API defines a standard set of execution options, as well as three methods:

	apply_async(args[, kwargs[, …]])

Sends a task message.

	delay(*args, **kwargs)

Shortcut to send a task message, but doesn’t support execution
options.

	calling (__call__)

Applying an object supporting the calling API (e.g., add(2, 2))
means that the task will not be executed by a worker, but in the current
process instead (a message won’t be sent).

Quick Cheat Sheet

	
	T.delay(arg, kwarg=value)

	Star arguments shortcut to .apply_async.
(.delay(*args, **kwargs) calls .apply_async(args, kwargs)).

	T.apply_async((arg,), {'kwarg': value})

	
	T.apply_async(countdown=10)

	executes 10 seconds from now.

	
	T.apply_async(eta=now + timedelta(seconds=10))

	executes 10 seconds from now, specified using eta

	
	T.apply_async(countdown=60, expires=120)

	executes in one minute from now, but expires after 2 minutes.

	
	T.apply_async(expires=now + timedelta(days=2))

	expires in 2 days, set using datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime].

Example

The delay() method is convenient as it looks like calling a regular
function:

task.delay(arg1, arg2, kwarg1='x', kwarg2='y')

Using apply_async() instead you have to write:

task.apply_async(args=[arg1, arg2], kwargs={'kwarg1': 'x', 'kwarg2': 'y'})

Tip

If the task isn’t registered in the current process
you can use send_task() to call the task by name instead.

So delay is clearly convenient, but if you want to set additional execution
options you have to use apply_async.

The rest of this document will go into the task execution
options in detail. All examples use a task
called add, returning the sum of two arguments:

@app.task
def add(x, y):
 return x + y

There’s another way…

You’ll learn more about this later while reading about the Canvas, but signature‘s are objects used to pass around
the signature of a task invocation, (for example to send it over the
network), and they also support the Calling API:

task.s(arg1, arg2, kwarg1='x', kwargs2='y').apply_async()

Linking (callbacks/errbacks)

Celery supports linking tasks together so that one task follows another.
The callback task will be applied with the result of the parent task
as a partial argument:

add.apply_async((2, 2), link=add.s(16))

What’s s?

The add.s call used here is called a signature. If you
don’t know what they are you should read about them in the
canvas guide.
There you can also learn about chain: a simpler
way to chain tasks together.

In practice the link execution option is considered an internal
primitive, and you’ll probably not use it directly, but
use chains instead.

Here the result of the first task (4) will be sent to a new
task that adds 16 to the previous result, forming the expression
[image: (2 + 2) + 16 = 20]

You can also cause a callback to be applied if task raises an exception
(errback), but this behaves differently from a regular callback
in that it will be passed the id of the parent task, not the result.
This is because it may not always be possible to serialize
the exception raised, and so this way the error callback requires
a result backend to be enabled, and the task must retrieve the result
of the task instead.

This is an example error callback:

@app.task
def error_handler(uuid):
 result = AsyncResult(uuid)
 exc = result.get(propagate=False)
 print('Task {0} raised exception: {1!r}\n{2!r}'.format(
 uuid, exc, result.traceback))

it can be added to the task using the link_error execution
option:

add.apply_async((2, 2), link_error=error_handler.s())

In addition, both the link and link_error options can be expressed
as a list:

add.apply_async((2, 2), link=[add.s(16), other_task.s()])

The callbacks/errbacks will then be called in order, and all
callbacks will be called with the return value of the parent task
as a partial argument.

On message

Celery supports catching all states changes by setting on_message callback.

For example for long-running tasks to send task progress you can do something like this:

@app.task(bind=True)
def hello(self, a, b):
 time.sleep(1)
 self.update_state(state="PROGRESS", meta={'progress': 50})
 time.sleep(1)
 self.update_state(state="PROGRESS", meta={'progress': 90})
 time.sleep(1)
 return 'hello world: %i' % (a+b)

def on_raw_message(body):
 print(body)

r = hello.apply_async()
print(r.get(on_message=on_raw_message, propagate=False))

Will generate output like this:

{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7',
 'result': {'progress': 50},
 'children': [],
 'status': 'PROGRESS',
 'traceback': None}
{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7',
 'result': {'progress': 90},
 'children': [],
 'status': 'PROGRESS',
 'traceback': None}
{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7',
 'result': 'hello world: 10',
 'children': [],
 'status': 'SUCCESS',
 'traceback': None}
hello world: 10

ETA and Countdown

The ETA (estimated time of arrival) lets you set a specific date and time that
is the earliest time at which your task will be executed. countdown is
a shortcut to set ETA by seconds into the future.

>>> result = add.apply_async((2, 2), countdown=3)
>>> result.get() # this takes at least 3 seconds to return
20

The task is guaranteed to be executed at some time after the
specified date and time, but not necessarily at that exact time.
Possible reasons for broken deadlines may include many items waiting
in the queue, or heavy network latency. To make sure your tasks
are executed in a timely manner you should monitor the queue for congestion. Use
Munin, or similar tools, to receive alerts, so appropriate action can be
taken to ease the workload. See Munin.

While countdown is an integer, eta must be a datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]
object, specifying an exact date and time (including millisecond precision,
and timezone information):

>>> from datetime import datetime, timedelta

>>> tomorrow = datetime.utcnow() + timedelta(days=1)
>>> add.apply_async((2, 2), eta=tomorrow)

Expiration

The expires argument defines an optional expiry time,
either as seconds after task publish, or a specific date and time using
datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]:

>>> # Task expires after one minute from now.
>>> add.apply_async((10, 10), expires=60)

>>> # Also supports datetime
>>> from datetime import datetime, timedelta
>>> add.apply_async((10, 10), kwargs,
... expires=datetime.now() + timedelta(days=1)

When a worker receives an expired task it will mark
the task as REVOKED (TaskRevokedError).

Message Sending Retry

Celery will automatically retry sending messages in the event of connection
failure, and retry behavior can be configured – like how often to retry, or a maximum
number of retries – or disabled all together.

To disable retry you can set the retry execution option to False:

add.apply_async((2, 2), retry=False)

Related Settings

	
	task_publish_retry

	
	task_publish_retry_policy

Retry Policy

A retry policy is a mapping that controls how retries behave,
and can contain the following keys:

	max_retries

Maximum number of retries before giving up, in this case the
exception that caused the retry to fail will be raised.

A value of None means it will retry forever.

The default is to retry 3 times.

	interval_start

Defines the number of seconds (float or integer) to wait between
retries. Default is 0 (the first retry will be instantaneous).

	interval_step

On each consecutive retry this number will be added to the retry
delay (float or integer). Default is 0.2.

	interval_max

Maximum number of seconds (float or integer) to wait between
retries. Default is 0.2.

For example, the default policy correlates to:

add.apply_async((2, 2), retry=True, retry_policy={
 'max_retries': 3,
 'interval_start': 0,
 'interval_step': 0.2,
 'interval_max': 0.2,
})

the maximum time spent retrying will be 0.4 seconds. It’s set relatively
short by default because a connection failure could lead to a retry pile effect
if the broker connection is down – For example, many web server processes waiting
to retry, blocking other incoming requests.

Connection Error Handling

When you send a task and the message transport connection is lost, or
the connection cannot be initiated, an OperationalError
error will be raised:

>>> from proj.tasks import add
>>> add.delay(2, 2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "celery/app/task.py", line 388, in delay
 return self.apply_async(args, kwargs)
 File "celery/app/task.py", line 503, in apply_async
 **options
 File "celery/app/base.py", line 662, in send_task
 amqp.send_task_message(P, name, message, **options)
 File "celery/backends/rpc.py", line 275, in on_task_call
 maybe_declare(self.binding(producer.channel), retry=True)
 File "/opt/celery/kombu/kombu/messaging.py", line 204, in _get_channel
 channel = self._channel = channel()
 File "/opt/celery/py-amqp/amqp/connection.py", line 272, in connect
 self.transport.connect()
 File "/opt/celery/py-amqp/amqp/transport.py", line 100, in connect
 self._connect(self.host, self.port, self.connect_timeout)
 File "/opt/celery/py-amqp/amqp/transport.py", line 141, in _connect
 self.sock.connect(sa)
 kombu.exceptions.OperationalError: [Errno 61] Connection refused

If you have retries enabled this will only happen after
retries are exhausted, or when disabled immediately.

You can handle this error too:

>>> from celery.utils.log import get_logger
>>> logger = get_logger(__name__)

>>> try:
... add.delay(2, 2)
... except add.OperationalError as exc:
... logger.exception('Sending task raised: %r', exc)

Serializers

Security

The pickle module allows for execution of arbitrary functions,
please see the security guide.

Celery also comes with a special serializer that uses
cryptography to sign your messages.

Data transferred between clients and workers needs to be serialized,
so every message in Celery has a content_type header that
describes the serialization method used to encode it.

The default serializer is JSON, but you can
change this using the task_serializer setting,
or for each individual task, or even per message.

There’s built-in support for JSON, pickle [https://docs.python.org/dev/library/pickle.html#module-pickle], YAML
and msgpack, and you can also add your own custom serializers by registering
them into the Kombu serializer registry

See also

Message Serialization [http://kombu.readthedocs.io/en/master/userguide/serialization.html#guide-serialization] in the Kombu user
guide.

Each option has its advantages and disadvantages.

	json – JSON is supported in many programming languages, is now

	a standard part of Python (since 2.6), and is fairly fast to decode
using the modern Python libraries, such as simplejson [https://pypi.python.org/pypi/simplejson/].

The primary disadvantage to JSON is that it limits you to the following
data types: strings, Unicode, floats, Boolean, dictionaries, and lists.
Decimals and dates are notably missing.

Binary data will be transferred using Base64 encoding,
increasing the size of the transferred data by 34% compared to an encoding
format where native binary types are supported.

However, if your data fits inside the above constraints and you need
cross-language support, the default setting of JSON is probably your
best choice.

See http://json.org for more information.

	pickle – If you have no desire to support any language other than

	Python, then using the pickle encoding will gain you the support of
all built-in Python data types (except class instances), smaller
messages when sending binary files, and a slight speedup over JSON
processing.

See pickle [https://docs.python.org/dev/library/pickle.html#module-pickle] for more information.

	yaml – YAML has many of the same characteristics as json,

	except that it natively supports more data types (including dates,
recursive references, etc.).

However, the Python libraries for YAML are a good bit slower than the
libraries for JSON.

If you need a more expressive set of data types and need to maintain
cross-language compatibility, then YAML may be a better fit than the above.

See http://yaml.org/ for more information.

	msgpack – msgpack is a binary serialization format that’s closer to JSON

	in features. It’s very young however, and support should be considered
experimental at this point.

See http://msgpack.org/ for more information.

The encoding used is available as a message header, so the worker knows how to
deserialize any task. If you use a custom serializer, this serializer must
be available for the worker.

The following order is used to decide the serializer
used when sending a task:

	The serializer execution option.

	The Task.serializer attribute

	The task_serializer setting.

Example setting a custom serializer for a single task invocation:

>>> add.apply_async((10, 10), serializer='json')

Compression

Celery can compress the messages using either gzip, or bzip2.
You can also create your own compression schemes and register
them in the kombu compression registry [http://kombu.readthedocs.io/en/master/reference/kombu.compression.html#kombu.compression.register].

The following order is used to decide the compression scheme
used when sending a task:

	The compression execution option.

	The Task.compression attribute.

	The task_compression attribute.

Example specifying the compression used when calling a task:

>>> add.apply_async((2, 2), compression='zlib')

Connections

Automatic Pool Support

Since version 2.3 there’s support for automatic connection pools,
so you don’t have to manually handle connections and publishers
to reuse connections.

The connection pool is enabled by default since version 2.5.

See the broker_pool_limit setting for more information.

You can handle the connection manually by creating a
publisher:

results = []
with add.app.pool.acquire(block=True) as connection:
 with add.get_publisher(connection) as publisher:
 try:
 for args in numbers:
 res = add.apply_async((2, 2), publisher=publisher)
 results.append(res)
print([res.get() for res in results])

Though this particular example is much better expressed as a group:

>>> from celery import group

>>> numbers = [(2, 2), (4, 4), (8, 8), (16, 16)]
>>> res = group(add.s(i, j) for i, j in numbers).apply_async()

>>> res.get()
[4, 8, 16, 32]

Routing options

Celery can route tasks to different queues.

Simple routing (name <-> name) is accomplished using the queue option:

add.apply_async(queue='priority.high')

You can then assign workers to the priority.high queue by using
the workers -Q argument:

$ celery -A proj worker -l info -Q celery,priority.high

See also

Hard-coding queue names in code isn’t recommended, the best practice
is to use configuration routers (task_routes).

To find out more about routing, please see Routing Tasks.

Advanced Options

These options are for advanced users who want to take use of
AMQP’s full routing capabilities. Interested parties may read the
routing guide.

	exchange

Name of exchange (or a kombu.entity.Exchange) to
send the message to.

	routing_key

Routing key used to determine.

	priority

A number between 0 and 255, where 255 is the highest priority.

Supported by: RabbitMQ, Redis (priority reversed, 0 is highest).

 Canvas: Designing Work-flows

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Canvas: Designing Work-flows

	Signatures
	Partials

	Immutability

	Callbacks

	The Primitives
	Chains

	Groups

	Chords

	Map & Starmap

	Chunks

Signatures

New in version 2.0.

You just learned how to call a task using the tasks delay method
in the calling guide, and this is often all you need,
but sometimes you may want to pass the signature of a task invocation to
another process or as an argument to another function.

A signature() wraps the arguments, keyword arguments, and execution options
of a single task invocation in a way such that it can be passed to functions
or even serialized and sent across the wire.

	You can create a signature for the add task using its name like this:

>>> from celery import signature
>>> signature('tasks.add', args=(2, 2), countdown=10)
tasks.add(2, 2)

This task has a signature of arity 2 (two arguments): (2, 2),
and sets the countdown execution option to 10.

	or you can create one using the task’s signature method:

>>> add.signature((2, 2), countdown=10)
tasks.add(2, 2)

	There’s also a shortcut using star arguments:

>>> add.s(2, 2)
tasks.add(2, 2)

	Keyword arguments are also supported:

>>> add.s(2, 2, debug=True)
tasks.add(2, 2, debug=True)

	From any signature instance you can inspect the different fields:

>>> s = add.signature((2, 2), {'debug': True}, countdown=10)
>>> s.args
(2, 2)
>>> s.kwargs
{'debug': True}
>>> s.options
{'countdown': 10}

	It supports the “Calling API” of delay,
apply_async, etc., including being called directly (__call__).

Calling the signature will execute the task inline in the current process:

>>> add(2, 2)
4
>>> add.s(2, 2)()
4

delay is our beloved shortcut to apply_async taking star-arguments:

>>> result = add.delay(2, 2)
>>> result.get()
4

apply_async takes the same arguments as the
app.Task.apply_async() method:

>>> add.apply_async(args, kwargs, **options)
>>> add.signature(args, kwargs, **options).apply_async()

>>> add.apply_async((2, 2), countdown=1)
>>> add.signature((2, 2), countdown=1).apply_async()

	You can’t define options with s(), but a chaining
set call takes care of that:

>>> add.s(2, 2).set(countdown=1)
proj.tasks.add(2, 2)

Partials

With a signature, you can execute the task in a worker:

>>> add.s(2, 2).delay()
>>> add.s(2, 2).apply_async(countdown=1)

Or you can call it directly in the current process:

>>> add.s(2, 2)()
4

Specifying additional args, kwargs, or options to apply_async/delay
creates partials:

	Any arguments added will be prepended to the args in the signature:

>>> partial = add.s(2) # incomplete signature
>>> partial.delay(4) # 4 + 2
>>> partial.apply_async((4,)) # same

	Any keyword arguments added will be merged with the kwargs in the signature,
with the new keyword arguments taking precedence:

>>> s = add.s(2, 2)
>>> s.delay(debug=True) # -> add(2, 2, debug=True)
>>> s.apply_async(kwargs={'debug': True}) # same

	Any options added will be merged with the options in the signature,
with the new options taking precedence:

>>> s = add.signature((2, 2), countdown=10)
>>> s.apply_async(countdown=1) # countdown is now 1

You can also clone signatures to create derivatives:

>>> s = add.s(2)
proj.tasks.add(2)

>>> s.clone(args=(4,), kwargs={'debug': True})
proj.tasks.add(4, 2, debug=True)

Immutability

New in version 3.0.

Partials are meant to be used with callbacks, any tasks linked, or chord
callbacks will be applied with the result of the parent task.
Sometimes you want to specify a callback that doesn’t take
additional arguments, and in that case you can set the signature
to be immutable:

>>> add.apply_async((2, 2), link=reset_buffers.signature(immutable=True))

The .si() shortcut can also be used to create immutable signatures:

>>> add.apply_async((2, 2), link=reset_buffers.si())

Only the execution options can be set when a signature is immutable,
so it’s not possible to call the signature with partial args/kwargs.

Note

In this tutorial I sometimes use the prefix operator ~ to signatures.
You probably shouldn’t use it in your production code, but it’s a handy shortcut
when experimenting in the Python shell:

>>> ~sig

>>> # is the same as
>>> sig.delay().get()

Callbacks

New in version 3.0.

Callbacks can be added to any task using the link argument
to apply_async:

add.apply_async((2, 2), link=other_task.s())

The callback will only be applied if the task exited successfully,
and it will be applied with the return value of the parent task as argument.

As I mentioned earlier, any arguments you add to a signature,
will be prepended to the arguments specified by the signature itself!

If you have the signature:

>>> sig = add.s(10)

then sig.delay(result) becomes:

>>> add.apply_async(args=(result, 10))

...

Now let’s call our add task with a callback using partial
arguments:

>>> add.apply_async((2, 2), link=add.s(8))

As expected this will first launch one task calculating [image: 2 + 2], then
another task calculating [image: 4 + 8].

The Primitives

New in version 3.0.

Overview

	group

The group primitive is a signature that takes a list of tasks that should
be applied in parallel.

	chain

The chain primitive lets us link together signatures so that one is called
after the other, essentially forming a chain of callbacks.

	chord

A chord is just like a group but with a callback. A chord consists
of a header group and a body, where the body is a task that should execute
after all of the tasks in the header are complete.

	map

The map primitive works like the built-in map function, but creates
a temporary task where a list of arguments is applied to the task.
For example, task.map([1, 2]) – results in a single task
being called, applying the arguments in order to the task function so
that the result is:

res = [task(1), task(2)]

	starmap

Works exactly like map except the arguments are applied as *args.
For example add.starmap([(2, 2), (4, 4)]) results in a single
task calling:

res = [add(2, 2), add(4, 4)]

	chunks

Chunking splits a long list of arguments into parts, for example
the operation:

>>> items = zip(xrange(1000), xrange(1000)) # 1000 items
>>> add.chunks(items, 10)

will split the list of items into chunks of 10, resulting in 100
tasks (each processing 10 items in sequence).

The primitives are also signature objects themselves, so that they can be combined
in any number of ways to compose complex work-flows.

Here’s some examples:

	Simple chain

Here’s a simple chain, the first task executes passing its return value
to the next task in the chain, and so on.

>>> from celery import chain

>>> # 2 + 2 + 4 + 8
>>> res = chain(add.s(2, 2), add.s(4), add.s(8))()
>>> res.get()
16

This can also be written using pipes:

>>> (add.s(2, 2) | add.s(4) | add.s(8))().get()
16

	Immutable signatures

Signatures can be partial so arguments can be
added to the existing arguments, but you may not always want that,
for example if you don’t want the result of the previous task in a chain.

In that case you can mark the signature as immutable, so that the arguments
cannot be changed:

>>> add.signature((2, 2), immutable=True)

There’s also a .si() shortcut for this, and this is the preffered way of
creating signatures:

>>> add.si(2, 2)

Now you can create a chain of independent tasks instead:

>>> res = (add.si(2, 2) | add.si(4, 4) | add.s(8, 8))()
>>> res.get()
16

>>> res.parent.get()
8

>>> res.parent.parent.get()
4

	Simple group

You can easily create a group of tasks to execute in parallel:

>>> from celery import group
>>> res = group(add.s(i, i) for i in xrange(10))()
>>> res.get(timeout=1)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

	Simple chord

The chord primitive enables us to add a callback to be called when
all of the tasks in a group have finished executing. This is often
required for algorithms that aren’t embarrassingly parallel:

>>> from celery import chord
>>> res = chord((add.s(i, i) for i in xrange(10)), xsum.s())()
>>> res.get()
90

The above example creates 10 task that all start in parallel,
and when all of them are complete the return values are combined
into a list and sent to the xsum task.

The body of a chord can also be immutable, so that the return value
of the group isn’t passed on to the callback:

>>> chord((import_contact.s(c) for c in contacts),
... notify_complete.si(import_id)).apply_async()

Note the use of .si above; this creates an immutable signature,
meaning any new arguments passed (including to return value of the
previous task) will be ignored.

	Blow your mind by combining

Chains can be partial too:

>>> c1 = (add.s(4) | mul.s(8))

(16 + 4) * 8
>>> res = c1(16)
>>> res.get()
160

this means that you can combine chains:

((4 + 16) * 2 + 4) * 8
>>> c2 = (add.s(4, 16) | mul.s(2) | (add.s(4) | mul.s(8)))

>>> res = c2()
>>> res.get()
352

Chaining a group together with another task will automatically
upgrade it to be a chord:

>>> c3 = (group(add.s(i, i) for i in xrange(10)) | xsum.s())
>>> res = c3()
>>> res.get()
90

Groups and chords accepts partial arguments too, so in a chain
the return value of the previous task is forwarded to all tasks in the group:

>>> new_user_workflow = (create_user.s() | group(
... import_contacts.s(),
... send_welcome_email.s()))
... new_user_workflow.delay(username='artv',
... first='Art',
... last='Vandelay',
... email='art@vandelay.com')

If you don’t want to forward arguments to the group then
you can make the signatures in the group immutable:

>>> res = (add.s(4, 4) | group(add.si(i, i) for i in xrange(10)))()
>>> res.get()
<GroupResult: de44df8c-821d-4c84-9a6a-44769c738f98 [
 bc01831b-9486-4e51-b046-480d7c9b78de,
 2650a1b8-32bf-4771-a645-b0a35dcc791b,
 dcbee2a5-e92d-4b03-b6eb-7aec60fd30cf,
 59f92e0a-23ea-41ce-9fad-8645a0e7759c,
 26e1e707-eccf-4bf4-bbd8-1e1729c3cce3,
 2d10a5f4-37f0-41b2-96ac-a973b1df024d,
 e13d3bdb-7ae3-4101-81a4-6f17ee21df2d,
 104b2be0-7b75-44eb-ac8e-f9220bdfa140,
 c5c551a5-0386-4973-aa37-b65cbeb2624b,
 83f72d71-4b71-428e-b604-6f16599a9f37]>

>>> res.parent.get()
8

Chains

New in version 3.0.

Tasks can be linked together: the linked task is called when the task
returns successfully:

>>> res = add.apply_async((2, 2), link=mul.s(16))
>>> res.get()
4

The linked task will be applied with the result of its parent
task as the first argument. In the above case where the result was 4,
this will result in mul(4, 16).

The results will keep track of any subtasks called by the original task,
and this can be accessed from the result instance:

>>> res.children
[<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]

>>> res.children[0].get()
64

The result instance also has a collect() method
that treats the result as a graph, enabling you to iterate over
the results:

>>> list(res.collect())
[(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),
 (<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]

By default collect() will raise an
IncompleteStream exception if the graph isn’t fully
formed (one of the tasks hasn’t completed yet),
but you can get an intermediate representation of the graph
too:

>>> for result, value in res.collect(intermediate=True)):
....

You can link together as many tasks as you like,
and signatures can be linked too:

>>> s = add.s(2, 2)
>>> s.link(mul.s(4))
>>> s.link(log_result.s())

You can also add error callbacks using the on_error method:

>>> add.s(2, 2).on_error(log_error.s()).delay()

This will result in the following .apply_async call when the signature
is applied:

>>> add.apply_async((2, 2), link_error=log_error.s())

The worker won’t actually call the errback as a task, but will
instead call the errback function directly so that the raw request, exception
and traceback objects can be passed to it.

Here’s an example errback:

from __future__ import print_function

import os

from proj.celery import app

@app.task
def log_error(request, exc, traceback):
 with open(os.path.join('/var/errors', request.id), 'a') as fh:
 print('--\n\n{0} {1} {2}'.format(
 task_id, exc, traceback), file=fh)

To make it even easier to link tasks together there’s
a special signature called chain that lets
you chain tasks together:

>>> from celery import chain
>>> from proj.tasks import add, mul

>>> # (4 + 4) * 8 * 10
>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
proj.tasks.add(4, 4) | proj.tasks.mul(8) | proj.tasks.mul(10)

Calling the chain will call the tasks in the current process
and return the result of the last task in the chain:

>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
>>> res.get()
640

It also sets parent attributes so that you can
work your way up the chain to get intermediate results:

>>> res.parent.get()
64

>>> res.parent.parent.get()
8

>>> res.parent.parent
<AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>

Chains can also be made using the | (pipe) operator:

>>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()

Graphs

In addition you can work with the result graph as a
DependencyGraph:

>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()

>>> res.parent.parent.graph
285fa253-fcf8-42ef-8b95-0078897e83e6(1)
 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
872c3995-6fa0-46ca-98c2-5a19155afcf0(2)
 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
 463afec2-5ed4-4036-b22d-ba067ec64f52(0)

You can even convert these graphs to dot format:

>>> with open('graph.dot', 'w') as fh:
... res.parent.parent.graph.to_dot(fh)

and create images:

$ dot -Tpng graph.dot -o graph.png

[image: ../_images/result_graph.png]

Groups

New in version 3.0.

A group can be used to execute several tasks in parallel.

The group function takes a list of signatures:

>>> from celery import group
>>> from proj.tasks import add

>>> group(add.s(2, 2), add.s(4, 4))
(proj.tasks.add(2, 2), proj.tasks.add(4, 4))

If you call the group, the tasks will be applied
one after another in the current process, and a GroupResult
instance is returned that can be used to keep track of the results,
or tell how many tasks are ready and so on:

>>> g = group(add.s(2, 2), add.s(4, 4))
>>> res = g()
>>> res.get()
[4, 8]

Group also supports iterators:

>>> group(add.s(i, i) for i in xrange(100))()

A group is a signature object, so it can be used in combination
with other signatures.

Group Results

The group task returns a special result too,
this result works just like normal task results, except
that it works on the group as a whole:

>>> from celery import group
>>> from tasks import add

>>> job = group([
... add.s(2, 2),
... add.s(4, 4),
... add.s(8, 8),
... add.s(16, 16),
... add.s(32, 32),
...])

>>> result = job.apply_async()

>>> result.ready() # have all subtasks completed?
True
>>> result.successful() # were all subtasks successful?
True
>>> result.get()
[4, 8, 16, 32, 64]

The GroupResult takes a list of
AsyncResult instances and operates on them as
if it was a single task.

It supports the following operations:

	successful()

Return True if all of the subtasks finished
successfully (e.g., didn’t raise an exception).

	failed()

Return True if any of the subtasks failed.

	waiting()

Return True if any of the subtasks
isn’t ready yet.

	ready()

Return True if all of the subtasks
are ready.

	completed_count()

Return the number of completed subtasks.

	revoke()

Revoke all of the subtasks.

	join()

Gather the results of all subtasks
and return them in the same order as they were called (as a list).

Chords

New in version 2.3.

Note

Tasks used within a chord must not ignore their results. If the result
backend is disabled for any task (header or body) in your chord you
should read “Important Notes.”

A chord is a task that only executes after all of the tasks in a group have
finished executing.

Let’s calculate the sum of the expression
[image: 1 + 1 + 2 + 2 + 3 + 3 ... n + n] up to a hundred digits.

First you need two tasks, add() and tsum() (sum() [https://docs.python.org/dev/library/functions.html#sum] is
already a standard function):

@app.task
def add(x, y):
 return x + y

@app.task
def tsum(numbers):
 return sum(numbers)

Now you can use a chord to calculate each addition step in parallel, and then
get the sum of the resulting numbers:

>>> from celery import chord
>>> from tasks import add, tsum

>>> chord(add.s(i, i)
... for i in xrange(100))(tsum.s()).get()
9900

This is obviously a very contrived example, the overhead of messaging and
synchronization makes this a lot slower than its Python counterpart:

>>> sum(i + i for i in xrange(100))

The synchronization step is costly, so you should avoid using chords as much
as possible. Still, the chord is a powerful primitive to have in your toolbox
as synchronization is a required step for many parallel algorithms.

Let’s break the chord expression down:

>>> callback = tsum.s()
>>> header = [add.s(i, i) for i in range(100)]
>>> result = chord(header)(callback)
>>> result.get()
9900

Remember, the callback can only be executed after all of the tasks in the
header have returned. Each step in the header is executed as a task, in
parallel, possibly on different nodes. The callback is then applied with
the return value of each task in the header. The task id returned by
chord() is the id of the callback, so you can wait for it to complete
and get the final return value (but remember to never have a task wait
for other tasks)

Error handling

So what happens if one of the tasks raises an exception?

The chord callback result will transition to the failure state, and the error is set
to the ChordError exception:

>>> c = chord([add.s(4, 4), raising_task.s(), add.s(8, 8)])
>>> result = c()
>>> result.get()

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "*/celery/result.py", line 120, in get
 interval=interval)
 File "*/celery/backends/amqp.py", line 150, in wait_for
 raise meta['result']
celery.exceptions.ChordError: Dependency 97de6f3f-ea67-4517-a21c-d867c61fcb47
 raised ValueError('something something',)

While the traceback may be different depending on the result backend used,
you can see that the error description includes the id of the task that failed
and a string representation of the original exception. You can also
find the original traceback in result.traceback.

Note that the rest of the tasks will still execute, so the third task
(add.s(8, 8)) is still executed even though the middle task failed.
Also the ChordError only shows the task that failed
first (in time): it doesn’t respect the ordering of the header group.

To perform an action when a chord fails you can therefore attach
an errback to the chord callback:

@app.task
def on_chord_error(request, exc, traceback):
 print('Task {0!r} raised error: {1!r}'.format(request.id, exc))

>>> c = (group(add.s(i, i) for i in range(10)) |
... xsum.s().on_error(on_chord_error.s()))).delay()

Important Notes

Tasks used within a chord must not ignore their results. In practice this
means that you must enable a result_backend in order to use
chords. Additionally, if task_ignore_result is set to True
in your configuration, be sure that the individual tasks to be used within
the chord are defined with ignore_result=False. This applies to both
Task subclasses and decorated tasks.

Example Task subclass:

class MyTask(Task):
 ignore_result = False

Example decorated task:

@app.task(ignore_result=False)
def another_task(project):
 do_something()

By default the synchronization step is implemented by having a recurring task
poll the completion of the group every second, calling the signature when
ready.

Example implementation:

from celery import maybe_signature

@app.task(bind=True)
def unlock_chord(self, group, callback, interval=1, max_retries=None):
 if group.ready():
 return maybe_signature(callback).delay(group.join())
 raise self.retry(countdown=interval, max_retries=max_retries)

This is used by all result backends except Redis and Memcached: they
increment a counter after each task in the header, then applies the callback
when the counter exceeds the number of tasks in the set.

The Redis and Memcached approach is a much better solution, but not easily
implemented in other backends (suggestions welcome!).

Note

Chords don’t properly work with Redis before version 2.2; you’ll need to
upgrade to at least redis-server 2.2 to use them.

Note

If you’re using chords with the Redis result backend and also overriding
the Task.after_return() method, you need to make sure to call the
super method or else the chord callback won’t be applied.

def after_return(self, *args, **kwargs):
 do_something()
 super(MyTask, self).after_return(*args, **kwargs)

Map & Starmap

map and starmap are built-in tasks
that calls the task for every element in a sequence.

They differ from group in that

	only one task message is sent

	the operation is sequential.

For example using map:

>>> from proj.tasks import add

>>> ~xsum.map([range(10), range(100)])
[45, 4950]

is the same as having a task doing:

@app.task
def temp():
 return [xsum(range(10)), xsum(range(100))]

and using starmap:

>>> ~add.starmap(zip(range(10), range(10)))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

is the same as having a task doing:

@app.task
def temp():
 return [add(i, i) for i in range(10)]

Both map and starmap are signature objects, so they can be used as
other signatures and combined in groups etc., for example
to call the starmap after 10 seconds:

>>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)

Chunks

Chunking lets you divide an iterable of work into pieces, so that if
you have one million objects, you can create 10 tasks with hundred
thousand objects each.

Some may worry that chunking your tasks results in a degradation
of parallelism, but this is rarely true for a busy cluster
and in practice since you’re avoiding the overhead of messaging
it may considerably increase performance.

To create a chunks signature you can use app.Task.chunks():

>>> add.chunks(zip(range(100), range(100)), 10)

As with group the act of sending the messages for
the chunks will happen in the current process when called:

>>> from proj.tasks import add

>>> res = add.chunks(zip(range(100), range(100)), 10)()
>>> res.get()
[[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
 [20, 22, 24, 26, 28, 30, 32, 34, 36, 38],
 [40, 42, 44, 46, 48, 50, 52, 54, 56, 58],
 [60, 62, 64, 66, 68, 70, 72, 74, 76, 78],
 [80, 82, 84, 86, 88, 90, 92, 94, 96, 98],
 [100, 102, 104, 106, 108, 110, 112, 114, 116, 118],
 [120, 122, 124, 126, 128, 130, 132, 134, 136, 138],
 [140, 142, 144, 146, 148, 150, 152, 154, 156, 158],
 [160, 162, 164, 166, 168, 170, 172, 174, 176, 178],
 [180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]

while calling .apply_async will create a dedicated
task so that the individual tasks are applied in a worker
instead:

>>> add.chunks(zip(range(100), range(100)), 10).apply_async()

You can also convert chunks to a group:

>>> group = add.chunks(zip(range(100), range(100)), 10).group()

and with the group skew the countdown of each task by increments
of one:

>>> group.skew(start=1, stop=10)()

This means that the first task will have a countdown of one second, the second
task a countdown of two seconds, and so on.

 Workers Guide

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Workers Guide

	Starting the worker

	Stopping the worker

	Restarting the worker

	Process Signals

	Variables in file paths

	Concurrency

	Remote control

	Commands

	Time Limits

	Rate Limits

	Max tasks per child setting

	Max memory per child setting

	Autoscaling

	Queues

	Inspecting workers

	Additional Commands

	Writing your own remote control commands

Starting the worker

Daemonizing

You probably want to use a daemonization tool to start
the worker in the background. See Daemonization for help
starting the worker as a daemon using popular service managers.

You can start the worker in the foreground by executing the command:

$ celery -A proj worker -l info

For a full list of available command-line options see
worker, or simply do:

$ celery worker --help

You can start multiple workers on the same machine, but
be sure to name each individual worker by specifying a
node name with the --hostname argument:

$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker1@%h
$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker2@%h
$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker3@%h

The hostname argument can expand the following variables:

	%h: Hostname, including domain name.

	%n: Hostname only.

	%d: Domain name only.

If the current hostname is george.example.com, these will expand to:

	Variable
	Template
	Result

	%h
	worker1@%h
	worker1@george.example.com

	%n
	worker1@%n
	worker1@george

	%d
	worker1@%d
	worker1@example.com

Note for supervisor [https://pypi.python.org/pypi/supervisor/] users

The % sign must be escaped by adding a second one: %%h.

Stopping the worker

Shutdown should be accomplished using the TERM signal.

When shutdown is initiated the worker will finish all currently executing
tasks before it actually terminates. If these tasks are important, you should
wait for it to finish before doing anything drastic, like sending the KILL
signal.

If the worker won’t shutdown after considerate time, for being
stuck in an infinite-loop or similar, you can use the KILL signal to
force terminate the worker: but be aware that currently executing tasks will
be lost (i.e., unless the tasks have the acks_late
option set).

Also as processes can’t override the KILL signal, the worker will
not be able to reap its children; make sure to do so manually. This
command usually does the trick:

$ pkill -9 -f 'celery worker'

If you don’t have the pkill command on your system, you can use the slightly
longer version:

$ ps auxww | grep 'celery worker' | awk '{print $2}' | xargs kill -9

Restarting the worker

To restart the worker you should send the TERM signal and start a new
instance. The easiest way to manage workers for development
is by using celery multi:

$ celery multi start 1 -A proj -l info -c4 --pidfile=/var/run/celery/%n.pid
$ celery multi restart 1 --pidfile=/var/run/celery/%n.pid

For production deployments you should be using init-scripts or a process
supervision system (see Daemonization).

Other than stopping, then starting the worker to restart, you can also
restart the worker using the HUP signal. Note that the worker
will be responsible for restarting itself so this is prone to problems and
isn’t recommended in production:

$ kill -HUP $pid

Note

Restarting by HUP only works if the worker is running
in the background as a daemon (it doesn’t have a controlling
terminal).

HUP is disabled on macOS because of a limitation on
that platform.

Process Signals

The worker’s main process overrides the following signals:

	TERM
	Warm shutdown, wait for tasks to complete.

	QUIT
	Cold shutdown, terminate ASAP

	USR1
	Dump traceback for all active threads.

	USR2
	Remote debug, see celery.contrib.rdb.

Variables in file paths

The file path arguments for --logfile,
--pidfile, and
--statedb can contain variables that the
worker will expand:

Node name replacements

	%p: Full node name.

	%h: Hostname, including domain name.

	%n: Hostname only.

	%d: Domain name only.

	%i: Prefork pool process index or 0 if MainProcess.

	%I: Prefork pool process index with separator.

For example, if the current hostname is george@foo.example.com then
these will expand to:

	--logfile-%p.log -> george@foo.example.com.log

	--logfile=%h.log -> foo.example.com.log

	--logfile=%n.log -> george.log

	--logfile=%d -> example.com.log

Prefork pool process index

The prefork pool process index specifiers will expand into a different
filename depending on the process that’ll eventually need to open the file.

This can be used to specify one log file per child process.

Note that the numbers will stay within the process limit even if processes
exit or if autoscale/maxtasksperchild/time limits are used. That is, the number
is the process index not the process count or pid.

	%i - Pool process index or 0 if MainProcess.

Where -n worker1@example.com -c2 -f %n-%i.log will result in
three log files:

	worker1-0.log (main process)

	worker1-1.log (pool process 1)

	worker1-2.log (pool process 2)

	%I - Pool process index with separator.

Where -n worker1@example.com -c2 -f %n%I.log will result in
three log files:

	worker1.log (main process)

	worker1-1.log (pool process 1)

	worker1-2.log (pool process 2)

Concurrency

By default multiprocessing is used to perform concurrent execution of tasks,
but you can also use Eventlet. The number
of worker processes/threads can be changed using the
--concurrency argument and defaults
to the number of CPUs available on the machine.

Number of processes (multiprocessing/prefork pool)

More pool processes are usually better, but there’s a cut-off point where
adding more pool processes affects performance in negative ways.
There’s even some evidence to support that having multiple worker
instances running, may perform better than having a single worker.
For example 3 workers with 10 pool processes each. You need to experiment
to find the numbers that works best for you, as this varies based on
application, work load, task run times and other factors.

Remote control

New in version 2.0.

The celery command

The celery program is used to execute remote control
commands from the command-line. It supports all of the commands
listed below. See Management Command-line Utilities (inspect/control) for more information.

	pool support:	prefork, eventlet, gevent, blocking:solo (see note)

	broker support:	amqp, redis

Workers have the ability to be remote controlled using a high-priority
broadcast message queue. The commands can be directed to all, or a specific
list of workers.

Commands can also have replies. The client can then wait for and collect
those replies. Since there’s no central authority to know how many
workers are available in the cluster, there’s also no way to estimate
how many workers may send a reply, so the client has a configurable
timeout — the deadline in seconds for replies to arrive in. This timeout
defaults to one second. If the worker doesn’t reply within the deadline
it doesn’t necessarily mean the worker didn’t reply, or worse is dead, but
may simply be caused by network latency or the worker being slow at processing
commands, so adjust the timeout accordingly.

In addition to timeouts, the client can specify the maximum number
of replies to wait for. If a destination is specified, this limit is set
to the number of destination hosts.

Note

The solo pool supports remote control commands,
but any task executing will block any waiting control command,
so it is of limited use if the worker is very busy. In that
case you must increase the timeout waiting for replies in the client.

The broadcast() function

This is the client function used to send commands to the workers.
Some remote control commands also have higher-level interfaces using
broadcast() in the background, like
rate_limit(), and ping().

Sending the rate_limit command and keyword arguments:

>>> app.control.broadcast('rate_limit',
... arguments={'task_name': 'myapp.mytask',
... 'rate_limit': '200/m'})

This will send the command asynchronously, without waiting for a reply.
To request a reply you have to use the reply argument:

>>> app.control.broadcast('rate_limit', {
... 'task_name': 'myapp.mytask', 'rate_limit': '200/m'}, reply=True)
[{'worker1.example.com': 'New rate limit set successfully'},
 {'worker2.example.com': 'New rate limit set successfully'},
 {'worker3.example.com': 'New rate limit set successfully'}]

Using the destination argument you can specify a list of workers
to receive the command:

>>> app.control.broadcast('rate_limit', {
... 'task_name': 'myapp.mytask',
... 'rate_limit': '200/m'}, reply=True,
... destination=['worker1@example.com'])
[{'worker1.example.com': 'New rate limit set successfully'}]

Of course, using the higher-level interface to set rate limits is much
more convenient, but there are commands that can only be requested
using broadcast().

Commands

revoke: Revoking tasks

	pool support:	all, terminate only supported by prefork

	broker support:	amqp, redis

	command:	celery -A proj control revoke <task_id>

All worker nodes keeps a memory of revoked task ids, either in-memory or
persistent on disk (see Persistent revokes).

When a worker receives a revoke request it will skip executing
the task, but it won’t terminate an already executing task unless
the terminate option is set.

Note

The terminate option is a last resort for administrators when
a task is stuck. It’s not for terminating the task,
it’s for terminating the process that’s executing the task, and that
process may have already started processing another task at the point
when the signal is sent, so for this reason you must never call this
programmatically.

If terminate is set the worker child process processing the task
will be terminated. The default signal sent is TERM, but you can
specify this using the signal argument. Signal can be the uppercase name
of any signal defined in the signal [https://docs.python.org/dev/library/signal.html#module-signal] module in the Python Standard
Library.

Terminating a task also revokes it.

Example

>>> result.revoke()

>>> AsyncResult(id).revoke()

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed')

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed',
... terminate=True)

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed',
... terminate=True, signal='SIGKILL')

Revoking multiple tasks

New in version 3.1.

The revoke method also accepts a list argument, where it will revoke
several tasks at once.

Example

>>> app.control.revoke([
... '7993b0aa-1f0b-4780-9af0-c47c0858b3f2',
... 'f565793e-b041-4b2b-9ca4-dca22762a55d',
... 'd9d35e03-2997-42d0-a13e-64a66b88a618',
])

The GroupResult.revoke method takes advantage of this since
version 3.1.

Persistent revokes

Revoking tasks works by sending a broadcast message to all the workers,
the workers then keep a list of revoked tasks in memory. When a worker starts
up it will synchronize revoked tasks with other workers in the cluster.

The list of revoked tasks is in-memory so if all workers restart the list
of revoked ids will also vanish. If you want to preserve this list between
restarts you need to specify a file for these to be stored in by using the –statedb
argument to celery worker:

$ celery -A proj worker -l info --statedb=/var/run/celery/worker.state

or if you use celery multi you want to create one file per
worker instance so use the %n format to expand the current node
name:

celery multi start 2 -l info --statedb=/var/run/celery/%n.state

See also Variables in file paths

Note that remote control commands must be working for revokes to work.
Remote control commands are only supported by the RabbitMQ (amqp) and Redis
at this point.

Time Limits

New in version 2.0.

	pool support:	prefork/gevent

Soft, or hard?

The time limit is set in two values, soft and hard.
The soft time limit allows the task to catch an exception
to clean up before it is killed: the hard timeout isn’t catch-able
and force terminates the task.

A single task can potentially run forever, if you have lots of tasks
waiting for some event that’ll never happen you’ll block the worker
from processing new tasks indefinitely. The best way to defend against
this scenario happening is enabling time limits.

The time limit (–time-limit) is the maximum number of seconds a task
may run before the process executing it is terminated and replaced by a
new process. You can also enable a soft time limit (–soft-time-limit),
this raises an exception the task can catch to clean up before the hard
time limit kills it:

from myapp import app
from celery.exceptions import SoftTimeLimitExceeded

@app.task
def mytask():
 try:
 do_work()
 except SoftTimeLimitExceeded:
 clean_up_in_a_hurry()

Time limits can also be set using the task_time_limit /
task_soft_time_limit settings.

Note

Time limits don’t currently work on platforms that don’t support
the SIGUSR1 signal.

Changing time limits at run-time

New in version 2.3.

	broker support:	amqp, redis

There’s a remote control command that enables you to change both soft
and hard time limits for a task — named time_limit.

Example changing the time limit for the tasks.crawl_the_web task
to have a soft time limit of one minute, and a hard time limit of
two minutes:

>>> app.control.time_limit('tasks.crawl_the_web',
 soft=60, hard=120, reply=True)
[{'worker1.example.com': {'ok': 'time limits set successfully'}}]

Only tasks that starts executing after the time limit change will be affected.

Rate Limits

Changing rate-limits at run-time

Example changing the rate limit for the myapp.mytask task to execute
at most 200 tasks of that type every minute:

>>> app.control.rate_limit('myapp.mytask', '200/m')

The above doesn’t specify a destination, so the change request will affect
all worker instances in the cluster. If you only want to affect a specific
list of workers you can include the destination argument:

>>> app.control.rate_limit('myapp.mytask', '200/m',
... destination=['celery@worker1.example.com'])

Warning

This won’t affect workers with the
worker_disable_rate_limits setting enabled.

Max tasks per child setting

New in version 2.0.

	pool support:	prefork

With this option you can configure the maximum number of tasks
a worker can execute before it’s replaced by a new process.

This is useful if you have memory leaks you have no control over
for example from closed source C extensions.

The option can be set using the workers
--max-tasks-per-child argument
or using the worker_max_tasks_per_child setting.

Max memory per child setting

New in version 4.0.

	pool support:	prefork

With this option you can configure the maximum amount of resident
memory a worker can execute before it’s replaced by a new process.

This is useful if you have memory leaks you have no control over
for example from closed source C extensions.

The option can be set using the workers
--max-memory-per-child argument
or using the worker_max_memory_per_child setting.

Autoscaling

New in version 2.2.

	pool support:	prefork, gevent

The autoscaler component is used to dynamically resize the pool
based on load:

	
	The autoscaler adds more pool processes when there is work to do,

	
	and starts removing processes when the workload is low.

It’s enabled by the --autoscale option,
which needs two numbers: the maximum and minimum number of pool processes:

--autoscale=AUTOSCALE
 Enable autoscaling by providing
 max_concurrency,min_concurrency. Example:
 --autoscale=10,3 (always keep 3 processes, but grow to
 10 if necessary).

You can also define your own rules for the autoscaler by subclassing
Autoscaler.
Some ideas for metrics include load average or the amount of memory available.
You can specify a custom autoscaler with the worker_autoscaler setting.

Queues

A worker instance can consume from any number of queues.
By default it will consume from all queues defined in the
task_queues setting (that if not specified falls back to the
default queue named celery).

You can specify what queues to consume from at start-up, by giving a comma
separated list of queues to the -Q option:

$ celery -A proj worker -l info -Q foo,bar,baz

If the queue name is defined in task_queues it will use that
configuration, but if it’s not defined in the list of queues Celery will
automatically generate a new queue for you (depending on the
task_create_missing_queues option).

You can also tell the worker to start and stop consuming from a queue at
run-time using the remote control commands add_consumer and
cancel_consumer.

Queues: Adding consumers

The add_consumer control command will tell one or more workers
to start consuming from a queue. This operation is idempotent.

To tell all workers in the cluster to start consuming from a queue
named “foo” you can use the celery control program:

$ celery -A proj control add_consumer foo
-> worker1.local: OK
 started consuming from u'foo'

If you want to specify a specific worker you can use the
--destination argument:

$ celery -A proj control add_consumer foo -d celery@worker1.local

The same can be accomplished dynamically using the app.control.add_consumer() method:

>>> app.control.add_consumer('foo', reply=True)
[{u'worker1.local': {u'ok': u"already consuming from u'foo'"}}]

>>> app.control.add_consumer('foo', reply=True,
... destination=['worker1@example.com'])
[{u'worker1.local': {u'ok': u"already consuming from u'foo'"}}]

By now we’ve only shown examples using automatic queues,
If you need more control you can also specify the exchange, routing_key and
even other options:

>>> app.control.add_consumer(
... queue='baz',
... exchange='ex',
... exchange_type='topic',
... routing_key='media.*',
... options={
... 'queue_durable': False,
... 'exchange_durable': False,
... },
... reply=True,
... destination=['w1@example.com', 'w2@example.com'])

Queues: Canceling consumers

You can cancel a consumer by queue name using the cancel_consumer
control command.

To force all workers in the cluster to cancel consuming from a queue
you can use the celery control program:

$ celery -A proj control cancel_consumer foo

The --destination argument can be
used to specify a worker, or a list of workers, to act on the command:

$ celery -A proj control cancel_consumer foo -d celery@worker1.local

You can also cancel consumers programmatically using the
app.control.cancel_consumer() method:

>>> app.control.cancel_consumer('foo', reply=True)
[{u'worker1.local': {u'ok': u"no longer consuming from u'foo'"}}]

Queues: List of active queues

You can get a list of queues that a worker consumes from by using
the active_queues control command:

$ celery -A proj inspect active_queues
[...]

Like all other remote control commands this also supports the
--destination argument used
to specify the workers that should reply to the request:

$ celery -A proj inspect active_queues -d celery@worker1.local
[...]

This can also be done programmatically by using the
app.control.inspect.active_queues() method:

>>> app.control.inspect().active_queues()
[...]

>>> app.control.inspect(['worker1.local']).active_queues()
[...]

Inspecting workers

app.control.inspect lets you inspect running workers. It
uses remote control commands under the hood.

You can also use the celery command to inspect workers,
and it supports the same commands as the app.control interface.

>>> # Inspect all nodes.
>>> i = app.control.inspect()

>>> # Specify multiple nodes to inspect.
>>> i = app.control.inspect(['worker1.example.com',
 'worker2.example.com'])

>>> # Specify a single node to inspect.
>>> i = app.control.inspect('worker1.example.com')

Dump of registered tasks

You can get a list of tasks registered in the worker using the
registered():

>>> i.registered()
[{'worker1.example.com': ['tasks.add',
 'tasks.sleeptask']}]

Dump of currently executing tasks

You can get a list of active tasks using
active():

>>> i.active()
[{'worker1.example.com':
 [{'name': 'tasks.sleeptask',
 'id': '32666e9b-809c-41fa-8e93-5ae0c80afbbf',
 'args': '(8,)',
 'kwargs': '{}'}]}]

Dump of scheduled (ETA) tasks

You can get a list of tasks waiting to be scheduled by using
scheduled():

>>> i.scheduled()
[{'worker1.example.com':
 [{'eta': '2010-06-07 09:07:52', 'priority': 0,
 'request': {
 'name': 'tasks.sleeptask',
 'id': '1a7980ea-8b19-413e-91d2-0b74f3844c4d',
 'args': '[1]',
 'kwargs': '{}'}},
 {'eta': '2010-06-07 09:07:53', 'priority': 0,
 'request': {
 'name': 'tasks.sleeptask',
 'id': '49661b9a-aa22-4120-94b7-9ee8031d219d',
 'args': '[2]',
 'kwargs': '{}'}}]}]

Note

These are tasks with an ETA/countdown argument, not periodic tasks.

Dump of reserved tasks

Reserved tasks are tasks that have been received, but are still waiting to be
executed.

You can get a list of these using
reserved():

>>> i.reserved()
[{'worker1.example.com':
 [{'name': 'tasks.sleeptask',
 'id': '32666e9b-809c-41fa-8e93-5ae0c80afbbf',
 'args': '(8,)',
 'kwargs': '{}'}]}]

Statistics

The remote control command inspect stats (or
stats()) will give you a long list of useful (or not
so useful) statistics about the worker:

$ celery -A proj inspect stats

The output will include the following fields:

	broker

Section for broker information.

	connect_timeout

Timeout in seconds (int/float) for establishing a new connection.

	heartbeat

Current heartbeat value (set by client).

	hostname

Node name of the remote broker.

	insist

No longer used.

	login_method

Login method used to connect to the broker.

	port

Port of the remote broker.

	ssl

SSL enabled/disabled.

	transport

Name of transport used (e.g., amqp or redis)

	transport_options

Options passed to transport.

	uri_prefix

Some transports expects the host name to be a URL.

redis+socket:///tmp/redis.sock

In this example the URI-prefix will be redis.

	userid

User id used to connect to the broker with.

	virtual_host

Virtual host used.

	clock

Value of the workers logical clock. This is a positive integer and should
be increasing every time you receive statistics.

	pid

Process id of the worker instance (Main process).

	pool

Pool-specific section.

	max-concurrency

Max number of processes/threads/green threads.

	max-tasks-per-child

Max number of tasks a thread may execute before being recycled.

	processes

List of PIDs (or thread-id’s).

	put-guarded-by-semaphore

Internal

	timeouts

Default values for time limits.

	writes

Specific to the prefork pool, this shows the distribution of writes
to each process in the pool when using async I/O.

	prefetch_count

Current prefetch count value for the task consumer.

	rusage

System usage statistics. The fields available may be different
on your platform.

From getrusage(2):

	stime

Time spent in operating system code on behalf of this process.

	utime

Time spent executing user instructions.

	maxrss

The maximum resident size used by this process (in kilobytes).

	idrss

Amount of non-shared memory used for data (in kilobytes times ticks of
execution)

	isrss

Amount of non-shared memory used for stack space (in kilobytes times
ticks of execution)

	ixrss

Amount of memory shared with other processes (in kilobytes times
ticks of execution).

	inblock

Number of times the file system had to read from the disk on behalf of
this process.

	oublock

Number of times the file system has to write to disk on behalf of
this process.

	majflt

Number of page faults that were serviced by doing I/O.

	minflt

Number of page faults that were serviced without doing I/O.

	msgrcv

Number of IPC messages received.

	msgsnd

Number of IPC messages sent.

	nvcsw

Number of times this process voluntarily invoked a context switch.

	nivcsw

Number of times an involuntary context switch took place.

	nsignals

Number of signals received.

	nswap

The number of times this process was swapped entirely out of memory.

	total

Map of task names and the total number of tasks with that type
the worker has accepted since start-up.

Additional Commands

Remote shutdown

This command will gracefully shut down the worker remotely:

>>> app.control.broadcast('shutdown') # shutdown all workers
>>> app.control.broadcast('shutdown', destination='worker1@example.com')

Ping

This command requests a ping from alive workers.
The workers reply with the string ‘pong’, and that’s just about it.
It will use the default one second timeout for replies unless you specify
a custom timeout:

>>> app.control.ping(timeout=0.5)
[{'worker1.example.com': 'pong'},
 {'worker2.example.com': 'pong'},
 {'worker3.example.com': 'pong'}]

ping() also supports the destination argument,
so you can specify the workers to ping:

>>> ping(['worker2.example.com', 'worker3.example.com'])
[{'worker2.example.com': 'pong'},
 {'worker3.example.com': 'pong'}]

Enable/disable events

You can enable/disable events by using the enable_events,
disable_events commands. This is useful to temporarily monitor
a worker using celery events/celerymon.

>>> app.control.enable_events()
>>> app.control.disable_events()

Writing your own remote control commands

There are two types of remote control commands:

	Inspect command

Does not have side effects, will usually just return some value
found in the worker, like the list of currently registered tasks,
the list of active tasks, etc.

	Control command

Performs side effects, like adding a new queue to consume from.

Remote control commands are registered in the control panel and
they take a single argument: the current
ControlDispatch instance.
From there you have access to the active
Consumer if needed.

Here’s an example control command that increments the task prefetch count:

from celery.worker.control import control_command

@control_command(
 args=[('n', int)],
 signature='[N=1]', # <- used for help on the command-line.
)
def increase_prefetch_count(state, n=1):
 state.consumer.qos.increment_eventually(n)
 return {'ok': 'prefetch count incremented'}

Make sure you add this code to a module that is imported by the worker:
this could be the same module as where your Celery app is defined, or you
can add the module to the imports setting.

Restart the worker so that the control command is registered, and now you
can call your command using the celery control utility:

$ celery -A proj control increase_prefetch_count 3

You can also add actions to the celery inspect program,
for example one that reads the current prefetch count:

from celery.worker.control import inspect_command

@inspect_command
def current_prefetch_count(state):
return {'prefetch_count': state.consumer.qos.value}

After restarting the worker you can now query this value using the
celery inspect program:

$ celery -A proj inspect current_prefetch_count

 Daemonization

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Daemonization

	Generic init-scripts
	Init-script: celeryd
	Example configuration

	Using a login shell

	Example Django configuration

	Available options

	Init-script: celerybeat
	Example configuration

	Example Django configuration

	Available options

	Troubleshooting

	Usage systemd
	Service file: celery.service
	Example configuration

	Running the worker with superuser privileges (root)

	supervisor

	launchd (macOS)

Generic init-scripts

See the extra/generic-init.d/ [https://github.com/celery/celery/tree/3.1/extra/generic-init.d/] directory Celery distribution.

This directory contains generic bash init-scripts for the
celery worker program,
these should run on Linux, FreeBSD, OpenBSD, and other Unix-like platforms.

Init-script: celeryd

	Usage:	/etc/init.d/celeryd {start|stop|restart|status}

	Configuration file:

	

 Periodic Tasks

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Periodic Tasks

	Introduction

	Time Zones

	Entries
	Available Fields

	Crontab schedules

	Solar schedules

	Starting the Scheduler
	Using custom scheduler classes

Introduction

celery beat is a scheduler; It kicks off tasks at regular intervals,
that are then executed by available worker nodes in the cluster.

By default the entries are taken from the beat_schedule setting,
but custom stores can also be used, like storing the entries in a SQL database.

You have to ensure only a single scheduler is running for a schedule
at a time, otherwise you’d end up with duplicate tasks. Using
a centralized approach means the schedule doesn’t have to be synchronized,
and the service can operate without using locks.

Time Zones

The periodic task schedules uses the UTC time zone by default,
but you can change the time zone used using the timezone
setting.

An example time zone could be Europe/London:

timezone = 'Europe/London'

This setting must be added to your app, either by configuration it directly
using (app.conf.timezone = 'Europe/London'), or by adding
it to your configuration module if you have set one up using
app.config_from_object. See Configuration for
more information about configuration options.

The default scheduler (storing the schedule in the celerybeat-schedule
file) will automatically detect that the time zone has changed, and so will
reset the schedule itself, but other schedulers may not be so smart (e.g., the
Django database scheduler, see below) and in that case you’ll have to reset the
schedule manually.

Django Users

Celery recommends and is compatible with the new USE_TZ setting introduced
in Django 1.4.

For Django users the time zone specified in the TIME_ZONE setting
will be used, or you can specify a custom time zone for Celery alone
by using the timezone setting.

The database scheduler won’t reset when timezone related settings
change, so you must do this manually:

$ python manage.py shell
>>> from djcelery.models import PeriodicTask
>>> PeriodicTask.objects.update(last_run_at=None)

Entries

To call a task periodically you have to add an entry to the
beat schedule list.

from celery import Celery
from celery.schedules import crontab

app = Celery()

@app.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):
 # Calls test('hello') every 10 seconds.
 sender.add_periodic_task(10.0, test.s('hello'), name='add every 10')

 # Calls test('world') every 30 seconds
 sender.add_periodic_task(30.0, test.s('world'), expires=10)

 # Executes every Monday morning at 7:30 a.m.
 sender.add_periodic_task(
 crontab(hour=7, minute=30, day_of_week=1),
 test.s('Happy Mondays!'),
)

@app.task
def test(arg):
 print(arg)

Setting these up from within the on_after_configure handler means
that we’ll not evaluate the app at module level when using test.s().

The add_periodic_task() function will add the entry to the
beat_schedule setting behind the scenes, and the same setting
can also can be used to set up periodic tasks manually:

Example: Run the tasks.add task every 30 seconds.

app.conf.beat_schedule = {
 'add-every-30-seconds': {
 'task': 'tasks.add',
 'schedule': 30.0,
 'args': (16, 16)
 },
}
app.conf.timezone = 'UTC'

Note

If you’re wondering where these settings should go then
please see Configuration. You can either
set these options on your app directly or you can keep
a separate module for configuration.

If you want to use a single item tuple for args, don’t forget
that the constructor is a comma, and not a pair of parentheses.

Using a timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] for the schedule means the task will
be sent in 30 second intervals (the first task will be sent 30 seconds
after celery beat starts, and then every 30 seconds
after the last run).

A Crontab like schedule also exists, see the section on Crontab schedules.

Like with cron, the tasks may overlap if the first task doesn’t complete
before the next. If that’s a concern you should use a locking
strategy to ensure only one instance can run at a time (see for example
Ensuring a task is only executed one at a time).

Available Fields

	task

The name of the task to execute.

	schedule

The frequency of execution.

This can be the number of seconds as an integer, a
timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta], or a crontab.
You can also define your own custom schedule types, by extending the
interface of schedule.

	args

Positional arguments (list [https://docs.python.org/dev/library/stdtypes.html#list] or tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]).

	kwargs

Keyword arguments (dict [https://docs.python.org/dev/library/stdtypes.html#dict]).

	options

Execution options (dict [https://docs.python.org/dev/library/stdtypes.html#dict]).

This can be any argument supported by
apply_async() –
exchange, routing_key, expires, and so on.

	relative

If relative is true timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] schedules are scheduled
“by the clock.” This means the frequency is rounded to the nearest
second, minute, hour or day depending on the period of the
timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta].

By default relative is false, the frequency isn’t rounded and will be
relative to the time when celery beat was started.

Crontab schedules

If you want more control over when the task is executed, for
example, a particular time of day or day of the week, you can use
the crontab schedule type:

from celery.schedules import crontab

app.conf.beat_schedule = {
 # Executes every Monday morning at 7:30 a.m.
 'add-every-monday-morning': {
 'task': 'tasks.add',
 'schedule': crontab(hour=7, minute=30, day_of_week=1),
 'args': (16, 16),
 },
}

The syntax of these Crontab expressions are very flexible.

Some examples:

	Example
	Meaning

	crontab()
	Execute every minute.

	crontab(minute=0, hour=0)
	Execute daily at midnight.

	crontab(minute=0, hour='*/3')
	Execute every three hours:
midnight, 3am, 6am, 9am,
noon, 3pm, 6pm, 9pm.

	
	crontab(minute=0,

	hour='0,3,6,9,12,15,18,21')

	Same as previous.

	crontab(minute='*/15')
	Execute every 15 minutes.

	crontab(day_of_week='sunday')
	Execute every minute (!) at Sundays.

	
	crontab(minute='*',

	hour='*',
day_of_week='sun')

	Same as previous.

	
	crontab(minute='*/10',

	hour='3,17,22',
day_of_week='thu,fri')

	Execute every ten minutes, but only
between 3-4 am, 5-6 pm, and 10-11 pm on
Thursdays or Fridays.

	crontab(minute=0, hour='*/2,*/3')
	Execute every even hour, and every hour
divisible by three. This means:
at every hour except: 1am,
5am, 7am, 11am, 1pm, 5pm, 7pm,
11pm

	crontab(minute=0, hour='*/5')
	Execute hour divisible by 5. This means
that it is triggered at 3pm, not 5pm
(since 3pm equals the 24-hour clock
value of “15”, which is divisible by 5).

	crontab(minute=0, hour='*/3,8-17')
	Execute every hour divisible by 3, and
every hour during office hours (8am-5pm).

	crontab(0, 0, day_of_month='2')
	Execute on the second day of every month.

	
	crontab(0, 0,

	day_of_month='2-30/3')

	Execute on every even numbered day.

	
	crontab(0, 0,

	day_of_month='1-7,15-21')

	Execute on the first and third weeks of
the month.

	
	crontab(0, 0, day_of_month='11',

	month_of_year='5')

	Execute on the eleventh of May every year.

	
	crontab(0, 0,

	month_of_year='*/3')

	Execute on the first month of every
quarter.

See celery.schedules.crontab for more documentation.

Solar schedules

If you have a task that should be executed according to sunrise,
sunset, dawn or dusk, you can use the
solar schedule type:

from celery.schedules import solar

app.conf.beat_schedule = {
 # Executes at sunset in Melbourne
 'add-at-melbourne-sunset': {
 'task': 'tasks.add',
 'schedule': solar('sunset', -37.81753, 144.96715),
 'args': (16, 16),
 },
}

The arguments are simply: solar(event, latitude, longitude)

Be sure to use the correct sign for latitude and longitude:

	Sign
	Argument
	Meaning

	+
	latitude
	North

	-
	latitude
	South

	+
	longitude
	East

	-
	longitude
	West

Possible event types are:

	Event
	Meaning

	dawn_astronomical
	Execute at the moment after which the sky
is no longer completely dark. This is when
the sun is 18 degrees below the horizon.

	dawn_nautical
	Execute when there’s enough sunlight for
the horizon and some objects to be
distinguishable; formally, when the sun is
12 degrees below the horizon.

	dawn_civil
	Execute when there’s enough light for
objects to be distinguishable so that
outdoor activities can commence;
formally, when the Sun is 6 degrees below
the horizon.

	sunrise
	Execute when the upper edge of the sun
appears over the eastern horizon in the
morning.

	solar_noon
	Execute when the sun is highest above the
horizon on that day.

	sunset
	Execute when the trailing edge of the sun
disappears over the western horizon in the
evening.

	dusk_civil
	Execute at the end of civil twilight, when
objects are still distinguishable and some
stars and planets are visible. Formally,
when the sun is 6 degrees below the
horizon.

	dusk_nautical
	Execute when the sun is 12 degrees below
the horizon. Objects are no longer
distinguishable, and the horizon is no
longer visible to the naked eye.

	dusk_astronomical
	Execute at the moment after which the sky
becomes completely dark; formally, when
the sun is 18 degrees below the horizon.

All solar events are calculated using UTC, and are therefore
unaffected by your timezone setting.

In polar regions, the sun may not rise or set every day. The scheduler
is able to handle these cases (i.e., a sunrise event won’t run on a day
when the sun doesn’t rise). The one exception is solar_noon, which is
formally defined as the moment the sun transits the celestial meridian,
and will occur every day even if the sun is below the horizon.

Twilight is defined as the period between dawn and sunrise; and between
sunset and dusk. You can schedule an event according to “twilight”
depending on your definition of twilight (civil, nautical, or astronomical),
and whether you want the event to take place at the beginning or end
of twilight, using the appropriate event from the list above.

See celery.schedules.solar for more documentation.

Starting the Scheduler

To start the celery beat service:

$ celery -A proj beat

You can also embed beat inside the worker by enabling the
workers -B option, this is convenient if you’ll
never run more than one worker node, but it’s not commonly used and for that
reason isn’t recommended for production use:

$ celery -A proj worker -B

Beat needs to store the last run times of the tasks in a local database
file (named celerybeat-schedule by default), so it needs access to
write in the current directory, or alternatively you can specify a custom
location for this file:

$ celery -A proj beat -s /home/celery/var/run/celerybeat-schedule

Note

To daemonize beat see Daemonization.

Using custom scheduler classes

Custom scheduler classes can be specified on the command-line (the
-S argument).

The default scheduler is the celery.beat.PersistentScheduler,
that simply keeps track of the last run times in a local shelve [https://docs.python.org/dev/library/shelve.html#module-shelve]
database file.

There’s also the django-celery-beat [https://pypi.python.org/pypi/django-celery-beat/] extension that stores the schedule
in the Django database, and presents a convenient admin interface to manage
periodic tasks at runtime.

To install and use this extension:

	Use pip to install the package:

$ pip install django-celery-beat

	Add the django_celery_beat module to INSTALLED_APPS in your
Django project’ settings.py:

 INSTALLED_APPS = (
 ...,
 'django_celery_beat',
)

Note that there is no dash in the module name, only underscores.

	Apply Django database migrations so that the necessary tables are created:

$ python manage.py migrate

	Start the celery beat service using the django scheduler:

$ celery -A proj beat -l info -S django

	Visit the Django-Admin interface to set up some periodic tasks.

 Routing Tasks

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Routing Tasks

Note

Alternate routing concepts like topic and fanout is not
available for all transports, please consult the
transport comparison table [http://kombu.readthedocs.io/en/master/introduction.html#transport-comparison].

	Basics
	Automatic routing
	Changing the name of the default queue

	How the queues are defined

	Manual routing

	Special Routing Options
	RabbitMQ Message Priorities

	AMQP Primer
	Messages

	Producers, consumers, and brokers

	Exchanges, queues, and routing keys

	Exchange types
	Direct exchanges

	Topic exchanges

	Related API commands

	Hands-on with the API

	Routing Tasks
	Defining queues

	Specifying task destination

	Routers

	Broadcast

Basics

Automatic routing

The simplest way to do routing is to use the
task_create_missing_queues setting (on by default).

With this setting on, a named queue that’s not already defined in
task_queues will be created automatically. This makes it easy to
perform simple routing tasks.

Say you have two servers, x, and y that handles regular tasks,
and one server z, that only handles feed related tasks. You can use this
configuration:

task_routes = {'feed.tasks.import_feed': {'queue': 'feeds'}}

With this route enabled import feed tasks will be routed to the
“feeds” queue, while all other tasks will be routed to the default queue
(named “celery” for historical reasons).

Alternatively, you can use glob pattern matching, or even regular expressions,
to match all tasks in the feed.tasks name-space:

app.conf.task_routes = {'feed.tasks.*': {'queue': 'feeds'}}

If the order of matching patterns is important you should
specify the router in items format instead:

task_routes = ([
 ('feed.tasks.*': {'queue': 'feeds'}),
 ('web.tasks.*': {'queue': 'web'}),
 (re.compile(r'(video|image)\.tasks\..*'), {'queue': 'media'}),
],)

Note

The task_routes setting can either be a dictionary, or a
list of router objects, so in this case we need to specify the setting
as a tuple containing a list.

After installing the router, you can start server z to only process the feeds
queue like this:

user@z:/$ celery -A proj worker -Q feeds

You can specify as many queues as you want, so you can make this server
process the default queue as well:

user@z:/$ celery -A proj worker -Q feeds,celery

Changing the name of the default queue

You can change the name of the default queue by using the following
configuration:

app.conf.task_default_queue = 'default'

How the queues are defined

The point with this feature is to hide the complex AMQP protocol for users
with only basic needs. However – you may still be interested in how these queues
are declared.

A queue named “video” will be created with the following settings:

{'exchange': 'video',
 'exchange_type': 'direct',
 'routing_key': 'video'}

The non-AMQP backends like Redis or SQS don’t support exchanges,
so they require the exchange to have the same name as the queue. Using this
design ensures it will work for them as well.

Manual routing

Say you have two servers, x, and y that handles regular tasks,
and one server z, that only handles feed related tasks, you can use this
configuration:

from kombu import Queue

app.conf.task_default_queue = 'default'
app.conf.task_queues = (
 Queue('default', routing_key='task.#'),
 Queue('feed_tasks', routing_key='feed.#'),
)
task_default_exchange = 'tasks'
task_default_exchange_type = 'topic'
task_default_routing_key = 'task.default'

task_queues is a list of Queue
instances.
If you don’t set the exchange or exchange type values for a key, these
will be taken from the task_default_exchange and
task_default_exchange_type settings.

To route a task to the feed_tasks queue, you can add an entry in the
task_routes setting:

task_routes = {
 'feeds.tasks.import_feed': {
 'queue': 'feed_tasks',
 'routing_key': 'feed.import',
 },
}

You can also override this using the routing_key argument to
Task.apply_async(), or send_task():

>>> from feeds.tasks import import_feed
>>> import_feed.apply_async(args=['http://cnn.com/rss'],
... queue='feed_tasks',
... routing_key='feed.import')

To make server z consume from the feed queue exclusively you can
start it with the celery worker -Q option:

user@z:/$ celery -A proj worker -Q feed_tasks --hostname=z@%h

Servers x and y must be configured to consume from the default queue:

user@x:/$ celery -A proj worker -Q default --hostname=x@%h
user@y:/$ celery -A proj worker -Q default --hostname=y@%h

If you want, you can even have your feed processing worker handle regular
tasks as well, maybe in times when there’s a lot of work to do:

user@z:/$ celery -A proj worker -Q feed_tasks,default --hostname=z@%h

If you have another queue but on another exchange you want to add,
just specify a custom exchange and exchange type:

from kombu import Exchange, Queue

app.conf.task_queues = (
 Queue('feed_tasks', routing_key='feed.#'),
 Queue('regular_tasks', routing_key='task.#'),
 Queue('image_tasks', exchange=Exchange('mediatasks', type='direct'),
 routing_key='image.compress'),
)

If you’re confused about these terms, you should read up on AMQP.

See also

In addition to the AMQP Primer below, there’s
Rabbits and Warrens [http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/], an excellent blog post describing queues and
exchanges. There’s also The CloudAMQP tutorial,
For users of RabbitMQ the RabbitMQ FAQ [http://www.rabbitmq.com/faq.html]
could be useful as a source of information.

Special Routing Options

RabbitMQ Message Priorities

	supported transports:

	

 Monitoring and Management Guide

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Monitoring and Management Guide

	Introduction

	Workers
	Management Command-line Utilities (inspect/control)
	Commands

	Specifying destination nodes

	Flower: Real-time Celery web-monitor
	Features

	Usage

	celery events: Curses Monitor

	RabbitMQ
	Inspecting queues

	Redis
	Inspecting queues

	Munin

	Events
	Snapshots
	Custom Camera

	Real-time processing

	Event Reference
	Task Events
	task-sent

	task-received

	task-started

	task-succeeded

	task-failed

	task-rejected

	task-revoked

	task-retried

	Worker Events
	worker-online

	worker-heartbeat

	worker-offline

Introduction

There are several tools available to monitor and inspect Celery clusters.

This document describes some of these, as as well as
features related to monitoring, like events and broadcast commands.

Workers

Management Command-line Utilities (inspect/control)

celery can also be used to inspect
and manage worker nodes (and to some degree tasks).

To list all the commands available do:

$ celery help

or to get help for a specific command do:

$ celery <command> --help

Commands

	shell: Drop into a Python shell.

The locals will include the celery variable: this is the current app.
Also all known tasks will be automatically added to locals (unless the
--without-tasks flag is set).

Uses Ipython [https://pypi.python.org/pypi/Ipython/], bpython [https://pypi.python.org/pypi/bpython/], or regular python in that
order if installed. You can force an implementation using
--ipython,
--bpython, or
--python.

	status: List active nodes in this cluster

$ celery -A proj status

	result: Show the result of a task

$ celery -A proj result -t tasks.add 4e196aa4-0141-4601-8138-7aa33db0f577

Note that you can omit the name of the task as long as the
task doesn’t use a custom result backend.

	purge: Purge messages from all configured task queues.

This command will remove all messages from queues configured in
the CELERY_QUEUES setting:

Warning

There’s no undo for this operation, and messages will
be permanently deleted!

$ celery -A proj purge

You can also specify the queues to purge using the -Q option:

$ celery -A proj purge -Q celery,foo,bar

and exclude queues from being purged using the -X option:

$ celery -A proj purge -X celery

	inspect active: List active tasks

$ celery -A proj inspect active

These are all the tasks that are currently being executed.

	inspect scheduled: List scheduled ETA tasks

$ celery -A proj inspect scheduled

These are tasks reserved by the worker when they have an
eta or countdown argument set.

	inspect reserved: List reserved tasks

$ celery -A proj inspect reserved

This will list all tasks that have been prefetched by the worker,
and is currently waiting to be executed (doesn’t include tasks
with an ETA value set).

	inspect revoked: List history of revoked tasks

$ celery -A proj inspect revoked

	inspect registered: List registered tasks

$ celery -A proj inspect registered

	inspect stats: Show worker statistics (see Statistics)

$ celery -A proj inspect stats

	inspect query_task: Show information about task(s) by id.

Any worker having a task in this set of ids reserved/active will respond
with status and information.

$ celery -A proj inspect query_task e9f6c8f0-fec9-4ae8-a8c6-cf8c8451d4f8

You can also query for information about multiple tasks:

$ celery -A proj inspect query_task id1 id2 ... idN

	control enable_events: Enable events

$ celery -A proj control enable_events

	control disable_events: Disable events

$ celery -A proj control disable_events

	migrate: Migrate tasks from one broker to another (EXPERIMENTAL).

$ celery -A proj migrate redis://localhost amqp://localhost

This command will migrate all the tasks on one broker to another.
As this command is new and experimental you should be sure to have
a backup of the data before proceeding.

Note

All inspect and control commands supports a
--timeout argument,
This is the number of seconds to wait for responses.
You may have to increase this timeout if you’re not getting a response
due to latency.

Specifying destination nodes

By default the inspect and control commands operates on all workers.
You can specify a single, or a list of workers by using the
--destination argument:

$ celery -A proj inspect -d w1@e.com,w2@e.com reserved

$ celery -A proj control -d w1@e.com,w2@e.com enable_events

Flower: Real-time Celery web-monitor

Flower is a real-time web based monitor and administration tool for Celery.
It’s under active development, but is already an essential tool.
Being the recommended monitor for Celery, it obsoletes the Django-Admin
monitor, celerymon and the ncurses based monitor.

Flower is pronounced like “flow”, but you can also use the botanical version
if you prefer.

Features

	Real-time monitoring using Celery Events

	Task progress and history

	Ability to show task details (arguments, start time, run-time, and more)

	Graphs and statistics

	Remote Control

	View worker status and statistics

	Shutdown and restart worker instances

	Control worker pool size and autoscale settings

	View and modify the queues a worker instance consumes from

	View currently running tasks

	View scheduled tasks (ETA/countdown)

	View reserved and revoked tasks

	Apply time and rate limits

	Configuration viewer

	Revoke or terminate tasks

	HTTP API

	List workers

	Shut down a worker

	Restart worker’s pool

	Grow worker’s pool

	Shrink worker’s pool

	Autoscale worker pool

	Start consuming from a queue

	Stop consuming from a queue

	List tasks

	List (seen) task types

	Get a task info

	Execute a task

	Execute a task by name

	Get a task result

	Change soft and hard time limits for a task

	Change rate limit for a task

	Revoke a task

	OpenID authentication

Screenshots

[image: ../_images/dashboard.png]

[image: ../_images/monitor.png]

More screenshots [https://github.com/mher/flower/tree/master/docs/screenshots]:

Usage

You can use pip to install Flower:

$ pip install flower

Running the flower command will start a web-server that you can visit:

$ celery -A proj flower

The default port is http://localhost:5555, but you can change this using the
--port argument:

$ celery -A proj flower --port=5555

Broker URL can also be passed through the
--broker argument :

$ celery flower --broker=amqp://guest:guest@localhost:5672//
or
$ celery flower --broker=redis://guest:guest@localhost:6379/0

Then, you can visit flower in your web browser :

$ open http://localhost:5555

Flower has many more features than are detailed here, including
authorization options. Check out the official documentation [https://flower.readthedocs.io/en/latest/] for more
information.

celery events: Curses Monitor

New in version 2.0.

celery events is a simple curses monitor displaying
task and worker history. You can inspect the result and traceback of tasks,
and it also supports some management commands like rate limiting and shutting
down workers. This monitor was started as a proof of concept, and you
probably want to use Flower instead.

Starting:

$ celery -A proj events

You should see a screen like:

[image: ../_images/celeryevshotsm1.jpg]

celery events is also used to start snapshot cameras (see
Snapshots:

$ celery -A proj events --camera=<camera-class> --frequency=1.0

and it includes a tool to dump events to stdout:

$ celery -A proj events --dump

For a complete list of options use --help:

$ celery events --help

RabbitMQ

To manage a Celery cluster it is important to know how
RabbitMQ can be monitored.

RabbitMQ ships with the rabbitmqctl(1) [http://www.rabbitmq.com/man/rabbitmqctl.1.man.html] command,
with this you can list queues, exchanges, bindings,
queue lengths, the memory usage of each queue, as well
as manage users, virtual hosts and their permissions.

Note

The default virtual host ("/") is used in these
examples, if you use a custom virtual host you have to add
the -p argument to the command, for example:
rabbitmqctl list_queues -p my_vhost …

Inspecting queues

Finding the number of tasks in a queue:

$ rabbitmqctl list_queues name messages messages_ready \
 messages_unacknowledged

Here messages_ready is the number of messages ready
for delivery (sent but not received), messages_unacknowledged
is the number of messages that’s been received by a worker but
not acknowledged yet (meaning it is in progress, or has been reserved).
messages is the sum of ready and unacknowledged messages.

Finding the number of workers currently consuming from a queue:

$ rabbitmqctl list_queues name consumers

Finding the amount of memory allocated to a queue:

$ rabbitmqctl list_queues name memory

	Tip:	Adding the -q option to rabbitmqctl(1) [http://www.rabbitmq.com/man/rabbitmqctl.1.man.html] makes the output
easier to parse.

Redis

If you’re using Redis as the broker, you can monitor the Celery cluster using
the redis-cli(1) command to list lengths of queues.

Inspecting queues

Finding the number of tasks in a queue:

$ redis-cli -h HOST -p PORT -n DATABASE_NUMBER llen QUEUE_NAME

The default queue is named celery. To get all available queues, invoke:

$ redis-cli -h HOST -p PORT -n DATABASE_NUMBER keys *

Note

Queue keys only exists when there are tasks in them, so if a key
doesn’t exist it simply means there are no messages in that queue.
This is because in Redis a list with no elements in it is automatically
removed, and hence it won’t show up in the keys command output,
and llen for that list returns 0.

Also, if you’re using Redis for other purposes, the
output of the keys command will include unrelated values stored in
the database. The recommended way around this is to use a
dedicated DATABASE_NUMBER for Celery, you can also use
database numbers to separate Celery applications from each other (virtual
hosts), but this won’t affect the monitoring events used by for example
Flower as Redis pub/sub commands are global rather than database based.

Munin

This is a list of known Munin plug-ins that can be useful when
maintaining a Celery cluster.

	rabbitmq-munin: Munin plug-ins for RabbitMQ.

https://github.com/ask/rabbitmq-munin

	celery_tasks: Monitors the number of times each task type has
been executed (requires celerymon).

http://exchange.munin-monitoring.org/plugins/celery_tasks-2/details

	celery_task_states: Monitors the number of tasks in each state
(requires celerymon).

http://exchange.munin-monitoring.org/plugins/celery_tasks/details

Events

The worker has the ability to send a message whenever some event
happens. These events are then captured by tools like Flower,
and celery events to monitor the cluster.

Snapshots

New in version 2.1.

Even a single worker can produce a huge amount of events, so storing
the history of all events on disk may be very expensive.

A sequence of events describes the cluster state in that time period,
by taking periodic snapshots of this state you can keep all history, but
still only periodically write it to disk.

To take snapshots you need a Camera class, with this you can define
what should happen every time the state is captured; You can
write it to a database, send it by email or something else entirely.

celery events is then used to take snapshots with the camera,
for example if you want to capture state every 2 seconds using the
camera myapp.Camera you run celery events with the following
arguments:

$ celery -A proj events -c myapp.Camera --frequency=2.0

Custom Camera

Cameras can be useful if you need to capture events and do something
with those events at an interval. For real-time event processing
you should use app.events.Receiver directly, like in
Real-time processing.

Here is an example camera, dumping the snapshot to screen:

from pprint import pformat

from celery.events.snapshot import Polaroid

class DumpCam(Polaroid):
 clear_after = True # clear after flush (incl, state.event_count).

 def on_shutter(self, state):
 if not state.event_count:
 # No new events since last snapshot.
 return
 print('Workers: {0}'.format(pformat(state.workers, indent=4)))
 print('Tasks: {0}'.format(pformat(state.tasks, indent=4)))
 print('Total: {0.event_count} events, {0.task_count} tasks'.format(
 state))

See the API reference for celery.events.state to read more
about state objects.

Now you can use this cam with celery events by specifying
it with the -c option:

$ celery -A proj events -c myapp.DumpCam --frequency=2.0

Or you can use it programmatically like this:

from celery import Celery
from myapp import DumpCam

def main(app, freq=1.0):
 state = app.events.State()
 with app.connection() as connection:
 recv = app.events.Receiver(connection, handlers={'*': state.event})
 with DumpCam(state, freq=freq):
 recv.capture(limit=None, timeout=None)

if __name__ == '__main__':
 app = Celery(broker='amqp://guest@localhost//')
 main(app)

Real-time processing

To process events in real-time you need the following

	An event consumer (this is the Receiver)

	A set of handlers called when events come in.

You can have different handlers for each event type,
or a catch-all handler can be used (‘*’)

	State (optional)

app.events.State is a convenient in-memory representation
of tasks and workers in the cluster that’s updated as events come in.

It encapsulates solutions for many common things, like checking if a
worker is still alive (by verifying heartbeats), merging event fields
together as events come in, making sure time-stamps are in sync, and so on.

Combining these you can easily process events in real-time:

from celery import Celery

def my_monitor(app):
 state = app.events.State()

 def announce_failed_tasks(event):
 state.event(event)
 # task name is sent only with -received event, and state
 # will keep track of this for us.
 task = state.tasks.get(event['uuid'])

 print('TASK FAILED: %s[%s] %s' % (
 task.name, task.uuid, task.info(),))

 with app.connection() as connection:
 recv = app.events.Receiver(connection, handlers={
 'task-failed': announce_failed_tasks,
 '*': state.event,
 })
 recv.capture(limit=None, timeout=None, wakeup=True)

if __name__ == '__main__':
 app = Celery(broker='amqp://guest@localhost//')
 my_monitor(app)

Note

The wakeup argument to capture sends a signal to all workers
to force them to send a heartbeat. This way you can immediately see
workers when the monitor starts.

You can listen to specific events by specifying the handlers:

from celery import Celery

def my_monitor(app):
 state = app.events.State()

 def announce_failed_tasks(event):
 state.event(event)
 # task name is sent only with -received event, and state
 # will keep track of this for us.
 task = state.tasks.get(event['uuid'])

 print('TASK FAILED: %s[%s] %s' % (
 task.name, task.uuid, task.info(),))

 with app.connection() as connection:
 recv = app.events.Receiver(connection, handlers={
 'task-failed': announce_failed_tasks,
 })
 recv.capture(limit=None, timeout=None, wakeup=True)

if __name__ == '__main__':
 app = Celery(broker='amqp://guest@localhost//')
 my_monitor(app)

Event Reference

This list contains the events sent by the worker, and their arguments.

Task Events

task-sent

	signature:	task-sent(uuid, name, args, kwargs, retries, eta, expires,
queue, exchange, routing_key, root_id, parent_id)

Sent when a task message is published and
the task_send_sent_event setting is enabled.

task-received

	signature:	task-received(uuid, name, args, kwargs, retries, eta, hostname,
timestamp, root_id, parent_id)

Sent when the worker receives a task.

task-started

	signature:	task-started(uuid, hostname, timestamp, pid)

Sent just before the worker executes the task.

task-succeeded

	signature:	task-succeeded(uuid, result, runtime, hostname, timestamp)

Sent if the task executed successfully.

Run-time is the time it took to execute the task using the pool.
(Starting from the task is sent to the worker pool, and ending when the
pool result handler callback is called).

task-failed

	signature:	task-failed(uuid, exception, traceback, hostname, timestamp)

Sent if the execution of the task failed.

task-rejected

	signature:	task-rejected(uuid, requeued)

The task was rejected by the worker, possibly to be re-queued or moved to a
dead letter queue.

task-revoked

	signature:	task-revoked(uuid, terminated, signum, expired)

Sent if the task has been revoked (Note that this is likely
to be sent by more than one worker).

	
	terminated is set to true if the task process was terminated,

	and the signum field set to the signal used.

	expired is set to true if the task expired.

task-retried

	signature:	task-retried(uuid, exception, traceback, hostname, timestamp)

Sent if the task failed, but will be retried in the future.

Worker Events

worker-online

	signature:	worker-online(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys)

The worker has connected to the broker and is online.

	hostname: Nodename of the worker.

	timestamp: Event time-stamp.

	freq: Heartbeat frequency in seconds (float).

	sw_ident: Name of worker software (e.g., py-celery).

	sw_ver: Software version (e.g., 2.2.0).

	sw_sys: Operating System (e.g., Linux/Darwin).

worker-heartbeat

	signature:	worker-heartbeat(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys,
active, processed)

Sent every minute, if the worker hasn’t sent a heartbeat in 2 minutes,
it is considered to be offline.

	hostname: Nodename of the worker.

	timestamp: Event time-stamp.

	freq: Heartbeat frequency in seconds (float).

	sw_ident: Name of worker software (e.g., py-celery).

	sw_ver: Software version (e.g., 2.2.0).

	sw_sys: Operating System (e.g., Linux/Darwin).

	active: Number of currently executing tasks.

	processed: Total number of tasks processed by this worker.

worker-offline

	signature:	worker-offline(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys)

The worker has disconnected from the broker.

 Security

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Security

	Introduction

	Areas of Concern
	Broker

	Client

	Worker

	Serializers

	Message Signing

	Intrusion Detection
	Logs

	Tripwire

Introduction

While Celery is written with security in mind, it should be treated as an
unsafe component.

Depending on your Security Policy [https://en.wikipedia.org/wiki/Security_policy], there are
various steps you can take to make your Celery installation more secure.

Areas of Concern

Broker

It’s imperative that the broker is guarded from unwanted access, especially
if accessible to the public.
By default, workers trust that the data they get from the broker hasn’t
been tampered with. See Message Signing for information on how to make
the broker connection more trustworthy.

The first line of defense should be to put a firewall in front of the broker,
allowing only white-listed machines to access it.

Keep in mind that both firewall misconfiguration, and temporarily disabling
the firewall, is common in the real world. Solid security policy includes
monitoring of firewall equipment to detect if they’ve been disabled, be it
accidentally or on purpose.

In other words, one shouldn’t blindly trust the firewall either.

If your broker supports fine-grained access control, like RabbitMQ,
this is something you should look at enabling. See for example
http://www.rabbitmq.com/access-control.html.

If supported by your broker backend, you can enable end-to-end SSL encryption
and authentication using broker_use_ssl.

Client

In Celery, “client” refers to anything that sends messages to the
broker, for example web-servers that apply tasks.

Having the broker properly secured doesn’t matter if arbitrary messages
can be sent through a client.

[Need more text here]

Worker

The default permissions of tasks running inside a worker are the same ones as
the privileges of the worker itself. This applies to resources, such as;
memory, file-systems, and devices.

An exception to this rule is when using the multiprocessing based task pool,
which is currently the default. In this case, the task will have access to
any memory copied as a result of the fork() call,
and access to memory contents written by parent tasks in the same worker
child process.

Limiting access to memory contents can be done by launching every task
in a subprocess (fork() + execve()).

Limiting file-system and device access can be accomplished by using
chroot [https://en.wikipedia.org/wiki/Chroot], jail [https://en.wikipedia.org/wiki/FreeBSD_jail], sandboxing [https://en.wikipedia.org/wiki/Sandbox_(computer_security)], virtual machines, or other
mechanisms as enabled by the platform or additional software.

Note also that any task executed in the worker will have the
same network access as the machine on which it’s running. If the worker
is located on an internal network it’s recommended to add firewall rules for
outbound traffic.

Serializers

The default serializer is JSON since version 4.0, but since it has
only support for a restricted set of types you may want to consider
using pickle for serialization instead.

The pickle serializer is convenient as it can serialize
almost any Python object, even functions with some work,
but for the same reasons pickle is inherently insecure [*],
and should be avoided whenever clients are untrusted or
unauthenticated.

You can disable untrusted content by specifying
a white-list of accepted content-types in the accept_content
setting:

New in version 3.0.18.

Note

This setting was first supported in version 3.0.18. If you’re
running an earlier version it will simply be ignored, so make
sure you’re running a version that supports it.

accept_content = ['json']

This accepts a list of serializer names and content-types, so you could
also specify the content type for json:

accept_content = ['application/json']

Celery also comes with a special auth serializer that validates
communication between Celery clients and workers, making sure
that messages originates from trusted sources.
Using Public-key cryptography the auth serializer can verify the
authenticity of senders, to enable this read Message Signing
for more information.

Message Signing

Celery can use the pyOpenSSL [https://pypi.python.org/pypi/pyOpenSSL/] library to sign message using
Public-key cryptography, where
messages sent by clients are signed using a private key
and then later verified by the worker using a public certificate.

Optimally certificates should be signed by an official
Certificate Authority [https://en.wikipedia.org/wiki/Certificate_authority], but they can also be self-signed.

To enable this you should configure the task_serializer
setting to use the auth serializer.
Also required is configuring the
paths used to locate private keys and certificates on the file-system:
the security_key,
security_certificate, and security_cert_store
settings respectively.
With these configured it’s also necessary to call the
celery.setup_security() function. Note that this will also
disable all insecure serializers so that the worker won’t accept
messages with untrusted content types.

This is an example configuration using the auth serializer,
with the private key and certificate files located in /etc/ssl.

app = Celery()
app.conf.update(
 security_key='/etc/ssl/private/worker.key'
 security_certificate='/etc/ssl/certs/worker.pem'
 security_cert_store='/etc/ssl/certs/*.pem',
)
app.setup_security()

Note

While relative paths aren’t disallowed, using absolute paths
is recommended for these files.

Also note that the auth serializer won’t encrypt the contents of
a message, so if needed this will have to be enabled separately.

Intrusion Detection

The most important part when defending your systems against
intruders is being able to detect if the system has been compromised.

Logs

Logs are usually the first place to look for evidence
of security breaches, but they’re useless if they can be tampered with.

A good solution is to set up centralized logging with a dedicated logging
server. Access to it should be restricted.
In addition to having all of the logs in a single place, if configured
correctly, it can make it harder for intruders to tamper with your logs.

This should be fairly easy to setup using syslog (see also syslog-ng [https://en.wikipedia.org/wiki/Syslog-ng] and
rsyslog [http://www.rsyslog.com/]). Celery uses the logging [https://docs.python.org/dev/library/logging.html#module-logging] library, and already has
support for using syslog.

A tip for the paranoid is to send logs using UDP and cut the
transmit part of the logging server’s network cable :-)

Tripwire

Tripwire [http://tripwire.com/] is a (now commercial) data integrity tool, with several
open source implementations, used to keep
cryptographic hashes of files in the file-system, so that administrators
can be alerted when they change. This way when the damage is done and your
system has been compromised you can tell exactly what files intruders
have changed (password files, logs, back-doors, root-kits, and so on).
Often this is the only way you’ll be able to detect an intrusion.

Some open source implementations include:

	OSSEC [http://www.ossec.net/]

	Samhain [http://la-samhna.de/samhain/index.html]

	Open Source Tripwire [http://sourceforge.net/projects/tripwire/]

	AIDE [http://aide.sourceforge.net/]

Also, the ZFS [https://en.wikipedia.org/wiki/ZFS] file-system comes with built-in integrity checks
that can be used.

Footnotes

	[*]	https://blog.nelhage.com/2011/03/exploiting-pickle/

 Optimizing

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Optimizing

Introduction

The default configuration makes a lot of compromises. It’s not optimal for
any single case, but works well enough for most situations.

There are optimizations that can be applied based on specific use cases.

Optimizations can apply to different properties of the running environment,
be it the time tasks take to execute, the amount of memory used, or
responsiveness at times of high load.

Ensuring Operations

In the book Programming Pearls [http://www.cs.bell-labs.com/cm/cs/pearls/], Jon Bentley presents the concept of
back-of-the-envelope calculations by asking the question;

❝ How much water flows out of the Mississippi River in a day? ❞

The point of this exercise [*] is to show that there’s a limit
to how much data a system can process in a timely manner.
Back of the envelope calculations can be used as a means to plan for this
ahead of time.

In Celery; If a task takes 10 minutes to complete,
and there are 10 new tasks coming in every minute, the queue will never
be empty. This is why it’s very important
that you monitor queue lengths!

A way to do this is by using Munin.
You should set up alerts, that’ll notify you as soon as any queue has
reached an unacceptable size. This way you can take appropriate action
like adding new worker nodes, or revoking unnecessary tasks.

General Settings

librabbitmq

If you’re using RabbitMQ (AMQP) as the broker then you can install the
librabbitmq [https://pypi.python.org/pypi/librabbitmq/] module to use an optimized client written in C:

$ pip install librabbitmq

The ‘amqp’ transport will automatically use the librabbitmq module if it’s
installed, or you can also specify the transport you want directly by using
the pyamqp:// or librabbitmq:// prefixes.

Broker Connection Pools

The broker connection pool is enabled by default since version 2.5.

You can tweak the broker_pool_limit setting to minimize
contention, and the value should be based on the number of
active threads/green-threads using broker connections.

Using Transient Queues

Queues created by Celery are persistent by default. This means that
the broker will write messages to disk to ensure that the tasks will
be executed even if the broker is restarted.

But in some cases it’s fine that the message is lost, so not all tasks
require durability. You can create a transient queue for these tasks
to improve performance:

from kombu import Exchange, Queue

task_queues = (
 Queue('celery', routing_key='celery'),
 Queue('transient', Exchange('transient', delivery_mode=1),
 routing_key='transient', durable=False),
)

or by using task_routes:

task_routes = {
 'proj.tasks.add': {'queue': 'celery', 'delivery_mode': 'transient'}
}

The delivery_mode changes how the messages to this queue are delivered.
A value of one means that the message won’t be written to disk, and a value
of two (default) means that the message can be written to disk.

To direct a task to your new transient queue you can specify the queue
argument (or use the task_routes setting):

task.apply_async(args, queue='transient')

For more information see the routing guide.

Worker Settings

Prefetch Limits

Prefetch is a term inherited from AMQP that’s often misunderstood
by users.

The prefetch limit is a limit for the number of tasks (messages) a worker
can reserve for itself. If it is zero, the worker will keep
consuming messages, not respecting that there may be other
available worker nodes that may be able to process them sooner [†],
or that the messages may not even fit in memory.

The workers’ default prefetch count is the
worker_prefetch_multiplier setting multiplied by the number
of concurrency slots [‡] (processes/threads/green-threads).

If you have many tasks with a long duration you want
the multiplier value to be one: meaning it’ll only reserve one
task per worker process at a time.

However – If you have many short-running tasks, and throughput/round trip
latency is important to you, this number should be large. The worker is
able to process more tasks per second if the messages have already been
prefetched, and is available in memory. You may have to experiment to find
the best value that works for you. Values like 50 or 150 might make sense in
these circumstances. Say 64, or 128.

If you have a combination of long- and short-running tasks, the best option
is to use two worker nodes that are configured separately, and route
the tasks according to the run-time (see Routing Tasks).

Reserve one task at a time

The task message is only deleted from the queue after the task is
acknowledged, so if the worker crashes before acknowledging the task,
it can be redelivered to another worker (or the same after recovery).

When using the default of early acknowledgment, having a prefetch multiplier setting
of one, means the worker will reserve at most one extra task for every
worker process: or in other words, if the worker is started with
-c 10, the worker may reserve at most 20
tasks (10 unacknowledged tasks executing, and 10 unacknowledged reserved
tasks) at any time.

Often users ask if disabling “prefetching of tasks” is possible, but what
they really mean by that, is to have a worker only reserve as many tasks as
there are worker processes (10 unacknowledged tasks for
-c 10)

That’s possible, but not without also enabling
late acknowledgment. Using this option over the
default behavior means a task that’s already started executing will be
retried in the event of a power failure or the worker instance being killed
abruptly, so this also means the task must be idempotent

See also

Notes at Should I use retry or acks_late?.

You can enable this behavior by using the following configuration options:

task_acks_late = True
worker_prefetch_multiplier = 1

Prefork pool prefetch settings

The prefork pool will asynchronously send as many tasks to the processes
as it can and this means that the processes are, in effect, prefetching
tasks.

This benefits performance but it also means that tasks may be stuck
waiting for long running tasks to complete:

-> send task T1 to process A
A executes T1
-> send task T2 to process B
B executes T2
<- T2 complete sent by process B

-> send task T3 to process A
A still executing T1, T3 stuck in local buffer and won't start until
T1 returns, and other queued tasks won't be sent to idle processes
<- T1 complete sent by process A
A executes T3

The worker will send tasks to the process as long as the pipe buffer is
writable. The pipe buffer size varies based on the operating system: some may
have a buffer as small as 64KB but on recent Linux versions the buffer
size is 1MB (can only be changed system wide).

You can disable this prefetching behavior by enabling the
-Ofair worker option:

$ celery -A proj worker -l info -Ofair

With this option enabled the worker will only write to processes that are
available for work, disabling the prefetch behavior:

-> send task T1 to process A
A executes T1
-> send task T2 to process B
B executes T2
<- T2 complete sent by process B

-> send T3 to process B
B executes T3

<- T3 complete sent by process B
<- T1 complete sent by process A

Footnotes

	[*]	The chapter is available to read for free here:
The back of the envelope [http://books.google.com/books?id=kse_7qbWbjsC&pg=PA67]. The book is a classic text. Highly
recommended.

	[†]	RabbitMQ and other brokers deliver messages round-robin,
so this doesn’t apply to an active system. If there’s no prefetch
limit and you restart the cluster, there will be timing delays between
nodes starting. If there are 3 offline nodes and one active node,
all messages will be delivered to the active node.

	[‡]	This is the concurrency setting; worker_concurrency or the
celery worker -c option.

 Debugging

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Debugging

Debugging Tasks Remotely (using pdb)

Basics

celery.contrib.rdb is an extended version of pdb [https://docs.python.org/dev/library/pdb.html#module-pdb] that
enables remote debugging of processes that doesn’t have terminal
access.

Example usage:

from celery import task
from celery.contrib import rdb

@task()
def add(x, y):
 result = x + y
 rdb.set_trace() # <- set break-point
 return result

set_trace() sets a break-point at the current
location and creates a socket you can telnet into to remotely debug
your task.

The debugger may be started by multiple processes at the same time,
so rather than using a fixed port the debugger will search for an
available port, starting from the base port (6900 by default).
The base port can be changed using the environment variable
CELERY_RDB_PORT.

By default the debugger will only be available from the local host,
to enable access from the outside you have to set the environment
variable CELERY_RDB_HOST.

When the worker encounters your break-point it’ll log the following
information:

[INFO/MainProcess] Received task:
 tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8]
[WARNING/PoolWorker-1] Remote Debugger:6900:
 Please telnet 127.0.0.1 6900. Type `exit` in session to continue.
[2011-01-18 14:25:44,119: WARNING/PoolWorker-1] Remote Debugger:6900:
 Waiting for client...

If you telnet the port specified you’ll be presented
with a pdb shell:

$ telnet localhost 6900
Connected to localhost.
Escape character is '^]'.
> /opt/devel/demoapp/tasks.py(128)add()
-> return result
(Pdb)

Enter help to get a list of available commands,
It may be a good idea to read the Python Debugger Manual [http://docs.python.org/library/pdb.html] if
you have never used pdb before.

To demonstrate, we’ll read the value of the result variable,
change it and continue execution of the task:

(Pdb) result
4
(Pdb) result = 'hello from rdb'
(Pdb) continue
Connection closed by foreign host.

The result of our vandalism can be seen in the worker logs:

[2011-01-18 14:35:36,599: INFO/MainProcess] Task
 tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8] succeeded
 in 61.481s: 'hello from rdb'

Tips

Enabling the break-point signal

If the environment variable CELERY_RDBSIG is set, the worker
will open up an rdb instance whenever the SIGUSR2 signal is sent.
This is the case for both main and worker processes.

For example starting the worker with:

$ CELERY_RDBSIG=1 celery worker -l info

You can start an rdb session for any of the worker processes by executing:

$ kill -USR2 <pid>

 Concurrency

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Concurrency

	Release:	4.0

	Date:	Dec 15, 2016

	Concurrency with Eventlet
	Introduction

	Enabling Eventlet

	Examples

 Concurrency with Eventlet

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Concurrency with Eventlet

Introduction

The Eventlet [http://eventlet.net] homepage describes it as;
A concurrent networking library for Python that allows you to
change how you run your code, not how you write it.

	It uses epoll(4) [http://linux.die.net/man/4/epoll] or libevent [http://monkey.org/~provos/libevent/] for
highly scalable non-blocking I/O [https://en.wikipedia.org/wiki/Asynchronous_I/O#Select.28.2Fpoll.29_loops].

	Coroutines [https://en.wikipedia.org/wiki/Coroutine] ensure that the developer uses a blocking style of
programming that’s similar to threading, but provide the benefits of
non-blocking I/O.

	The event dispatch is implicit: meaning you can easily use Eventlet
from the Python interpreter, or as a small part of a larger application.

Celery supports Eventlet as an alternative execution pool implementation.
It’s in some cases superior to prefork, but you need to ensure
your tasks don’t perform blocking calls, as this will halt all
other operations in the worker until the blocking call returns.

The prefork pool can take use of multiple processes, but how many is
often limited to a few processes per CPU. With Eventlet you can efficiently
spawn hundreds, or thousands of green threads. In an informal test with a
feed hub system the Eventlet pool could fetch and process hundreds of feeds
every second, while the prefork pool spent 14 seconds processing 100
feeds. Note that this is one of the applications async I/O is especially good
at (asynchronous HTTP requests). You may want a mix of both Eventlet and
prefork workers, and route tasks according to compatibility or
what works best.

Enabling Eventlet

You can enable the Eventlet pool by using the celery worker -P
worker option.

$ celery -A proj worker -P eventlet -c 1000

Examples

See the Eventlet examples [https://github.com/celery/celery/tree/master/examples/eventlet] directory in the Celery distribution for
some examples taking use of Eventlet support.

 Signals

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Signals

	Basics

	Signals
	Task Signals
	before_task_publish

	after_task_publish

	task_prerun

	task_postrun

	task_retry

	task_success

	task_failure

	task_revoked

	task_unknown

	task_rejected

	App Signals
	import_modules

	Worker Signals
	celeryd_after_setup

	celeryd_init

	worker_init

	worker_ready

	heartbeat_sent

	worker_process_init

	worker_process_shutdown

	worker_shutdown

	Beat Signals
	beat_init

	beat_embedded_init

	Eventlet Signals
	eventlet_pool_started

	eventlet_pool_preshutdown

	eventlet_pool_postshutdown

	eventlet_pool_apply

	Logging Signals
	setup_logging

	after_setup_logger

	after_setup_task_logger

	Command signals
	user_preload_options

	Deprecated Signals
	task_sent

Signals allows decoupled applications to receive notifications when
certain actions occur elsewhere in the application.

Celery ships with many signals that your application can hook into
to augment behavior of certain actions.

Basics

Several kinds of events trigger signals, you can connect to these signals
to perform actions as they trigger.

Example connecting to the after_task_publish signal:

from celery.signals import after_task_publish

@after_task_publish.connect
def task_sent_handler(sender=None, headers=None, body=None, **kwargs):
 # information about task are located in headers for task messages
 # using the task protocol version 2.
 info = headers if 'task' in headers else body
 print('after_task_publish for task id {info[id]}'.format(
 info=info,
))

Some signals also have a sender you can filter by. For example the
after_task_publish signal uses the task name as a sender, so by
providing the sender argument to
connect you can
connect your handler to be called every time a task with name “proj.tasks.add”
is published:

@after_task_publish.connect(sender='proj.tasks.add')
def task_sent_handler(sender=None, headers=None, body=None, **kwargs):
 # information about task are located in headers for task messages
 # using the task protocol version 2.
 info = headers if 'task' in headers else body
 print('after_task_publish for task id {info[id]}'.format(
 info=info,
))

Signals use the same implementation as django.core.dispatch. As a
result other keyword parameters (e.g., signal) are passed to all signal
handlers by default.

The best practice for signal handlers is to accept arbitrary keyword
arguments (i.e., **kwargs). That way new Celery versions can add additional
arguments without breaking user code.

Signals

Task Signals

before_task_publish

New in version 3.1.

Dispatched before a task is published.
Note that this is executed in the process sending the task.

Sender is the name of the task being sent.

Provides arguments:

	body

Task message body.

This is a mapping containing the task message fields
(see Version 1).

	exchange

Name of the exchange to send to or a Exchange [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange] object.

	routing_key

Routing key to use when sending the message.

	headers

Application headers mapping (can be modified).

	properties

Message properties (can be modified)

	declare

List of entities (Exchange [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange],
Queue [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue], or binding to declare before
publishing the message. Can be modified.

	retry_policy

Mapping of retry options. Can be any argument to
kombu.Connection.ensure() [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure] and can be modified.

after_task_publish

Dispatched when a task has been sent to the broker.
Note that this is executed in the process that sent the task.

Sender is the name of the task being sent.

Provides arguments:

	headers

The task message headers, see Version 2
and Version 1.
for a reference of possible fields that can be defined.

	body

The task message body, see Version 2
and Version 1.
for a reference of possible fields that can be defined.

	exchange

Name of the exchange or Exchange [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange] object used.

	routing_key

Routing key used.

task_prerun

Dispatched before a task is executed.

Sender is the task object being executed.

Provides arguments:

	task_id

Id of the task to be executed.

	task

The task being executed.

	args

The tasks positional arguments.

	kwargs

The tasks keyword arguments.

task_postrun

Dispatched after a task has been executed.

Sender is the task object executed.

Provides arguments:

	task_id

Id of the task to be executed.

	task

The task being executed.

	args

The tasks positional arguments.

	kwargs

The tasks keyword arguments.

	retval

The return value of the task.

	state

Name of the resulting state.

task_retry

Dispatched when a task will be retried.

Sender is the task object.

Provides arguments:

	request

The current task request.

	reason

Reason for retry (usually an exception instance, but can always be
coerced to str [https://docs.python.org/dev/library/stdtypes.html#str]).

	einfo

Detailed exception information, including traceback
(a billiard.einfo.ExceptionInfo object).

task_success

Dispatched when a task succeeds.

Sender is the task object executed.

Provides arguments

	
	result

	Return value of the task.

task_failure

Dispatched when a task fails.

Sender is the task object executed.

Provides arguments:

	task_id

Id of the task.

	exception

Exception instance raised.

	args

Positional arguments the task was called with.

	kwargs

Keyword arguments the task was called with.

	traceback

Stack trace object.

	einfo

The billiard.einfo.ExceptionInfo instance.

task_revoked

Dispatched when a task is revoked/terminated by the worker.

Sender is the task object revoked/terminated.

Provides arguments:

	request

This is a Request instance, and not
task.request. When using the prefork pool this signal
is dispatched in the parent process, so task.request isn’t available
and shouldn’t be used. Use this object instead, as they share many
of the same fields.

	terminated

Set to True if the task was terminated.

	signum

Signal number used to terminate the task. If this is None and
terminated is True then TERM should be assumed.

	expired

Set to True if the task expired.

task_unknown

Dispatched when a worker receives a message for a task that’s not registered.

Sender is the worker Consumer.

Provides arguments:

	name

Name of task not found in registry.

	id

The task id found in the message.

	message

Raw message object.

	exc

The error that occurred.

task_rejected

Dispatched when a worker receives an unknown type of message to one of its
task queues.

Sender is the worker Consumer.

Provides arguments:

	message

Raw message object.

	exc

The error that occurred (if any).

App Signals

import_modules

This signal is sent when a program (worker, beat, shell) etc, asks
for modules in the include and imports
settings to be imported.

Sender is the app instance.

Worker Signals

celeryd_after_setup

This signal is sent after the worker instance is set up, but before it
calls run. This means that any queues from the celery worker -Q
option is enabled, logging has been set up and so on.

It can be used to add custom queues that should always be consumed
from, disregarding the celery worker -Q option. Here’s an example
that sets up a direct queue for each worker, these queues can then be
used to route a task to any specific worker:

from celery.signals import celeryd_after_setup

@celeryd_after_setup.connect
def setup_direct_queue(sender, instance, **kwargs):
 queue_name = '{0}.dq'.format(sender) # sender is the nodename of the worker
 instance.app.amqp.queues.select_add(queue_name)

Provides arguments:

	sender

Node name of the worker.

	instance

This is the celery.apps.worker.Worker instance to be initialized.
Note that only the app and hostname (nodename) attributes have been
set so far, and the rest of __init__ hasn’t been executed.

	conf

The configuration of the current app.

celeryd_init

This is the first signal sent when celery worker starts up.
The sender is the host name of the worker, so this signal can be used
to setup worker specific configuration:

from celery.signals import celeryd_init

@celeryd_init.connect(sender='worker12@example.com')
def configure_worker12(conf=None, **kwargs):
 conf.task_default_rate_limit = '10/m'

or to set up configuration for multiple workers you can omit specifying a
sender when you connect:

from celery.signals import celeryd_init

@celeryd_init.connect
def configure_workers(sender=None, conf=None, **kwargs):
 if sender in ('worker1@example.com', 'worker2@example.com'):
 conf.task_default_rate_limit = '10/m'
 if sender == 'worker3@example.com':
 conf.worker_prefetch_multiplier = 0

Provides arguments:

	sender

Nodename of the worker.

	instance

This is the celery.apps.worker.Worker instance to be initialized.
Note that only the app and hostname (nodename) attributes have been
set so far, and the rest of __init__ hasn’t been executed.

	conf

The configuration of the current app.

	options

Options passed to the worker from command-line arguments (including
defaults).

worker_init

Dispatched before the worker is started.

worker_ready

Dispatched when the worker is ready to accept work.

heartbeat_sent

Dispatched when Celery sends a worker heartbeat.

Sender is the celery.worker.heartbeat.Heart instance.

worker_process_init

Dispatched in all pool child processes when they start.

Note that handlers attached to this signal mustn’t be blocking
for more than 4 seconds, or the process will be killed assuming
it failed to start.

worker_process_shutdown

Dispatched in all pool child processes just before they exit.

Note: There’s no guarantee that this signal will be dispatched,
similarly to finally [https://docs.python.org/dev/reference/compound_stmts.html#finally] blocks it’s impossible to guarantee that
handlers will be called at shutdown, and if called it may be
interrupted during.

Provides arguments:

	pid

The pid of the child process that’s about to shutdown.

	exitcode

The exitcode that’ll be used when the child process exits.

worker_shutdown

Dispatched when the worker is about to shut down.

Beat Signals

beat_init

Dispatched when celery beat starts (either standalone or embedded).

Sender is the celery.beat.Service instance.

beat_embedded_init

Dispatched in addition to the beat_init signal when celery
beat is started as an embedded process.

Sender is the celery.beat.Service instance.

Eventlet Signals

eventlet_pool_started

Sent when the eventlet pool has been started.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_preshutdown

Sent when the worker shutdown, just before the eventlet pool
is requested to wait for remaining workers.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_postshutdown

Sent when the pool has been joined and the worker is ready to shutdown.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_apply

Sent whenever a task is applied to the pool.

Sender is the celery.concurrency.eventlet.TaskPool instance.

Provides arguments:

	target

The target function.

	args

Positional arguments.

	kwargs

Keyword arguments.

Logging Signals

setup_logging

Celery won’t configure the loggers if this signal is connected,
so you can use this to completely override the logging configuration
with your own.

If you’d like to augment the logging configuration setup by
Celery then you can use the after_setup_logger and
after_setup_task_logger signals.

Provides arguments:

	loglevel

The level of the logging object.

	logfile

The name of the logfile.

	format

The log format string.

	colorize

Specify if log messages are colored or not.

after_setup_logger

Sent after the setup of every global logger (not task loggers).
Used to augment logging configuration.

Provides arguments:

	logger

The logger object.

	loglevel

The level of the logging object.

	logfile

The name of the logfile.

	format

The log format string.

	colorize

Specify if log messages are colored or not.

after_setup_task_logger

Sent after the setup of every single task logger.
Used to augment logging configuration.

Provides arguments:

	logger

The logger object.

	loglevel

The level of the logging object.

	logfile

The name of the logfile.

	format

The log format string.

	colorize

Specify if log messages are colored or not.

Command signals

user_preload_options

This signal is sent after any of the Celery command line programs
are finished parsing the user preload options.

It can be used to add additional command-line arguments to the
celery umbrella command:

from celery import Celery
from celery import signals
from celery.bin.base import Option

app = Celery()
app.user_options['preload'].add(Option(
 '--monitoring', action='store_true',
 help='Enable our external monitoring utility, blahblah',
))

@signals.user_preload_options.connect
def handle_preload_options(options, **kwargs):
 if options['monitoring']:
 enable_monitoring()

Sender is the Command instance, and the value depends
on the program that was called (e.g., for the umbrella command it’ll be
a CeleryCommand) object).

Provides arguments:

	app

The app instance.

	options

Mapping of the parsed user preload options (with default values).

Deprecated Signals

task_sent

This signal is deprecated, please use after_task_publish instead.

 Testing with Celery

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Testing with Celery

Tasks and unit tests

To test task behavior in unit tests the preferred method is mocking.

Eager mode

The eager mode enabled by the task_always_eager setting
is by definition not suitable for unit tests.

When testing with eager mode you are only testing an emulation
of what happens in a worker, and there are many discrepancies
between the emulation and what happens in reality.

A Celery task is much like a web view, in that it should only
define how to perform the action in the context of being called as a task.

This means optimally tasks only handle things like serialization, message headers,
retries, and so on, with the actual logic implemented elsewhere.

Say we had a task like this:

from .models import Product

@app.task(bind=True)
def send_order(self, product_pk, quantity, price):
 price = Decimal(price) # json serializes this to string.

 # models are passed by id, not serialized.
 product = Product.objects.get(product_pk)

 try:
 product.order(quantity, price)
 except OperationalError as exc:
 raise self.retry(exc=exc)

You could write unit tests for this task, using mocking like
in this example:

from pytest import raises

from celery.exceptions import Retry

for python 2: use mock.patch from `pip install mock`.
from unittest.mock import patch

from proj.models import Product
from proj.tasks import send_order

class test_send_order:

 @patch('proj.tasks.Product.order') # < patching Product in module above
 def test_success(self, product_order):
 product = Product.objects.create(
 name='Foo',
)
 send_order(product.pk, 3, Decimal(30.3))
 product_order.assert_called_with(3, Decimal(30.3))

 @patch('proj.tasks.Product.order')
 @patch('proj.tasks.send_order.retry')
 def test_failure(send_order_retry, product_order):
 product = Product.objects.create(
 name='Foo',
)

 # set a side effect on the patched method
 # so that it raises the error we want.
 product_order.side_effect = OperationalError()

 with raises(Retry):
 send_order(product.pk, 3, Decimal(30.6))

Py.test

New in version 4.0.

Celery is also a pytest [https://pypi.python.org/pypi/pytest/] plugin that adds fixtures that you can
use in your integration (or unit) test suites.

Marks

celery - Set test app configuration.

The celery mark enables you to override the configuration
used for a single test case:

@pytest.mark.celery(result_backend='redis://')
def test_something():
 ...

or for all the test cases in a class:

@pytest.mark.celery(result_backend='redis://')
class test_something:

 def test_one(self):
 ...

 def test_two(self):
 ...

Fixtures

Function scope

celery_app - Celery app used for testing.

This fixture returns a Celery app you can use for testing.

Example:

def test_create_task(celery_app, celery_worker):
 @celery_app.task
 def mul(x, y):
 return x * y

 assert mul.delay(4, 4).get(timeout=10) == 16

celery_worker - Embed live worker.

This fixture starts a Celery worker instance that you can use
for integration tests. The worker will be started in a separate thread
and will be shutdown as soon as the test returns.

Example:

Put this in your confttest.py
@pytest.fixture(scope='session')
def celery_config():
 return {
 'broker_url': 'amqp://',
 'result_backend': 'redis://'
 }

def test_add(celery_worker):
 mytask.delay()

If you wish to override some setting in one test cases
only - you can use the ``celery`` mark:
@pytest.mark.celery(result_backend='rpc')
def test_other(celery_worker):
 ...

Session scope

celery_config - Override to setup Celery test app configuration.

You can redefine this fixture to configure the test Celery app.

The config returned by your fixture will then be used
to configure the celery_app(), and celery_session_app() fixtures.

Example:

@pytest.fixture(scope='session')
def celery_config():
 return {
 'broker_url': 'amqp://',
 'result_backend': 'rpc',
 }

celery_parameters - Override to setup Celery test app parameters.

You can redefine this fixture to change the __init__ parameters of test
Celery app. In contrast to celery_config(), these are directly passed to
when instantiating Celery.

The config returned by your fixture will then be used
to configure the celery_app(), and celery_session_app() fixtures.

Example:

@pytest.fixture(scope='session')
def celery_parameters():
 return {
 'task_cls': my.package.MyCustomTaskClass,
 'strict_typing': False,
 }

celery_worker_parameters - Override to setup Celery worker parameters.

You can redefine this fixture to change the __init__ parameters of test
Celery workers. These are directly passed to
WorkController when it is instantiated.

The config returned by your fixture will then be used
to configure the celery_worker(), and celery_session_worker()
fixtures.

Example:

@pytest.fixture(scope='session')
def celery_worker_parameters():
 return {
 'queues': ('high-prio', 'low-prio'),
 'exclude_queues': ('celery'),
 }

celery_enable_logging - Override to enable logging in embedded workers.

This is a fixture you can override to enable logging in embedded workers.

Example:

@pytest.fixture(scope='session')
def celery_enable_logging():
 return True

celery_includes - Add additional imports for embedded workers.

You can override fixture to include modules when an embedded worker starts.

You can have this return a list of module names to import,
which can be task modules, modules registering signals, and so on.

Example:

@pytest.fixture(scope='session')
def celery_includes():
 return [
 'proj.tests.tasks',
 'proj.tests.celery_signal_handlers',
]

celery_worker_pool - Override the pool used for embedded workers.

You can override fixture to configure the execution pool used for embedded
workers.

Example:

@pytest.fixture(scope='session')
def celery_worker_pool():
 return 'prefork'

Warning

You cannot use the gevent/eventlet pools, that is unless your whole test
suite is running with the monkeypatches enabled.

celery_session_worker - Embedded worker that lives throughout the session.

This fixture starts a worker that lives throughout the testing session
(it won’t be started/stopped for every test).

Example:

Add this to your conftest.py
@pytest.fixture(scope='session')
def celery_config():
 return {
 'broker_url': 'amqp://',
 'result_backend': 'rpc',
 }

Do this in your tests.
def test_add_task(celery_session_worker):
 assert add.delay(2, 2) == 4

Warning

It’s probably a bad idea to mix session and ephemeral workers...

celery_session_app - Celery app used for testing (session scope).

This can be used by other session scoped fixtures when they need to refer
to a Celery app instance.

use_celery_app_trap - Raise exception on falling back to default app.

This is a fixture you can override in your conftest.py, to enable the “app trap”:
if something tries to access the default or current_app, an exception
is raised.

Example:

@pytest.fixture(scope='session')
def use_celery_app_trap():
 return True

If a test wants to access the default app, you would have to mark it using
the depends_on_current_app fixture:

@pytest.mark.usefixtures('depends_on_current_app')
def test_something():
 something()

 Extensions and Bootsteps

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Extensions and Bootsteps

	Custom Message Consumers

	Blueprints

	Worker
	Attributes

	Example worker bootstep

	Consumer
	Attributes

	Methods

	Installing Bootsteps

	Command-line programs
	Adding new command-line options

	Adding new celery sub-commands

	Worker API
	Hub [http://kombu.readthedocs.io/en/master/reference/kombu.async.html#kombu.async.Hub] - The workers async event loop

	Timer - Scheduling events

Custom Message Consumers

You may want to embed custom Kombu consumers to manually process your messages.

For that purpose a special ConsumerStep bootstep class
exists, where you only need to define the get_consumers method, that must
return a list of kombu.Consumer [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer] objects to start
whenever the connection is established:

from celery import Celery
from celery import bootsteps
from kombu import Consumer, Exchange, Queue

my_queue = Queue('custom', Exchange('custom'), 'routing_key')

app = Celery(broker='amqp://')

class MyConsumerStep(bootsteps.ConsumerStep):

 def get_consumers(self, channel):
 return [Consumer(channel,
 queues=[my_queue],
 callbacks=[self.handle_message],
 accept=['json'])]

 def handle_message(self, body, message):
 print('Received message: {0!r}'.format(body))
 message.ack()
app.steps['consumer'].add(MyConsumerStep)

def send_me_a_message(self, who='world!', producer=None):
 with app.producer_or_acquire(producer) as producer:
 producer.publish(
 {'hello': who},
 serializer='json',
 exchange=my_queue.exchange,
 routing_key='routing_key',
 declare=[my_queue],
 retry=True,
)

if __name__ == '__main__':
 send_me_a_message('celery')

Note

Kombu Consumers can take use of two different message callback dispatching
mechanisms. The first one is the callbacks argument that accepts
a list of callbacks with a (body, message) signature,
the second one is the on_message argument that takes a single
callback with a (message,) signature. The latter won’t
automatically decode and deserialize the payload.

def get_consumers(self, channel):
 return [Consumer(channel, queues=[my_queue],
 on_message=self.on_message)]

def on_message(self, message):
 payload = message.decode()
 print(
 'Received message: {0!r} {props!r} rawlen={s}'.format(
 payload, props=message.properties, s=len(message.body),
))
 message.ack()

Blueprints

Bootsteps is a technique to add functionality to the workers.
A bootstep is a custom class that defines hooks to do custom actions
at different stages in the worker. Every bootstep belongs to a blueprint,
and the worker currently defines two blueprints: Worker, and Consumer

	Figure A: Bootsteps in the Worker and Consumer blueprints. Starting

	from the bottom up the first step in the worker blueprint
is the Timer, and the last step is to start the Consumer blueprint,
that then establishes the broker connection and starts
consuming messages.

[image: ../_images/worker_graph_full.png]

Worker

The Worker is the first blueprint to start, and with it starts major components like
the event loop, processing pool, and the timer used for ETA tasks and other
timed events.

When the worker is fully started it continues with the Consumer blueprint,
that sets up how tasks are executed, connects to the broker and starts
the message consumers.

The WorkController is the core worker implementation,
and contains several methods and attributes that you can use in your bootstep.

Attributes

	
app

	The current app instance.

	
hostname

	The workers node name (e.g., worker1@example.com)

	
blueprint

	This is the worker Blueprint.

	
hub

	Event loop object (Hub [http://kombu.readthedocs.io/en/master/reference/kombu.async.html#kombu.async.Hub]). You can use
this to register callbacks in the event loop.

This is only supported by async I/O enabled transports (amqp, redis),
in which case the worker.use_eventloop attribute should be set.

Your worker bootstep must require the Hub bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Hub'}

	
pool

	The current process/eventlet/gevent/thread pool.
See celery.concurrency.base.BasePool.

Your worker bootstep must require the Pool bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Pool'}

	
timer

	Timer [http://kombu.readthedocs.io/en/master/reference/kombu.async.timer.html#kombu.async.timer.Timer] used to schedule functions.

Your worker bootstep must require the Timer bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Timer'}

	
statedb

	Database <celery.worker.state.Persistent>` to persist state between
worker restarts.

This is only defined if the statedb argument is enabled.

Your worker bootstep must require the Statedb bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Statedb'}

	
autoscaler

	Autoscaler used to automatically grow
and shrink the number of processes in the pool.

This is only defined if the autoscale argument is enabled.

Your worker bootstep must require the Autoscaler bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker.autoscaler:Autoscaler',)

	
autoreloader

	Autoreloader used to automatically
reload use code when the file-system changes.

This is only defined if the autoreload argument is enabled.
Your worker bootstep must require the Autoreloader bootstep to use this;

class WorkerStep(bootsteps.StartStopStep):
 requires = ('celery.worker.autoreloader:Autoreloader',)

Example worker bootstep

An example Worker bootstep could be:

from celery import bootsteps

class ExampleWorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Pool'}

 def __init__(self, worker, **kwargs):
 print('Called when the WorkController instance is constructed')
 print('Arguments to WorkController: {0!r}'.format(kwargs))

 def create(self, worker):
 # this method can be used to delegate the action methods
 # to another object that implements ``start`` and ``stop``.
 return self

 def start(self, worker):
 print('Called when the worker is started.')

 def stop(self, worker):
 print('Called when the worker shuts down.')

 def terminate(self, worker):
 print('Called when the worker terminates')

Every method is passed the current WorkController instance as the first
argument.

Another example could use the timer to wake up at regular intervals:

from celery import bootsteps

class DeadlockDetection(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Timer'}

 def __init__(self, worker, deadlock_timeout=3600):
 self.timeout = deadlock_timeout
 self.requests = []
 self.tref = None

 def start(self, worker):
 # run every 30 seconds.
 self.tref = worker.timer.call_repeatedly(
 30.0, self.detect, (worker,), priority=10,
)

 def stop(self, worker):
 if self.tref:
 self.tref.cancel()
 self.tref = None

 def detect(self, worker):
 # update active requests
 for req in worker.active_requests:
 if req.time_start and time() - req.time_start > self.timeout:
 raise SystemExit()

Consumer

The Consumer blueprint establishes a connection to the broker, and
is restarted every time this connection is lost. Consumer bootsteps
include the worker heartbeat, the remote control command consumer, and
importantly, the task consumer.

When you create consumer bootsteps you must take into account that it must
be possible to restart your blueprint. An additional ‘shutdown’ method is
defined for consumer bootsteps, this method is called when the worker is
shutdown.

Attributes

	
app

	The current app instance.

	
controller

	The parent WorkController object that created this consumer.

	
hostname

	The workers node name (e.g., worker1@example.com)

	
blueprint

	This is the worker Blueprint.

	
hub

	Event loop object (Hub [http://kombu.readthedocs.io/en/master/reference/kombu.async.html#kombu.async.Hub]). You can use
this to register callbacks in the event loop.

This is only supported by async I/O enabled transports (amqp, redis),
in which case the worker.use_eventloop attribute should be set.

Your worker bootstep must require the Hub bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
 requires = {'celery.worker.components:Hub'}

	
connection

	The current broker connection (kombu.Connection [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection]).

A consumer bootstep must require the ‘Connection’ bootstep
to use this:

class Step(bootsteps.StartStopStep):
 requires = {'celery.worker.consumer.connection:Connection'}

	
event_dispatcher

	A app.events.Dispatcher object that can be used to send events.

A consumer bootstep must require the Events bootstep to use this.

class Step(bootsteps.StartStopStep):
 requires = {'celery.worker.consumer.events:Events'}

	
gossip

	Worker to worker broadcast communication
(Gossip).

A consumer bootstep must require the Gossip bootstep to use this.

class RatelimitStep(bootsteps.StartStopStep):
 """Rate limit tasks based on the number of workers in the
 cluster."""
 requires = {'celery.worker.consumer.gossip:Gossip'}

 def start(self, c):
 self.c = c
 self.c.gossip.on.node_join.add(self.on_cluster_size_change)
 self.c.gossip.on.node_leave.add(self.on_cluster_size_change)
 self.c.gossip.on.node_lost.add(self.on_node_lost)
 self.tasks = [
 self.app.tasks['proj.tasks.add']
 self.app.tasks['proj.tasks.mul']
]
 self.last_size = None

 def on_cluster_size_change(self, worker):
 cluster_size = len(list(self.c.gossip.state.alive_workers()))
 if cluster_size != self.last_size:
 for task in self.tasks:
 task.rate_limit = 1.0 / cluster_size
 self.c.reset_rate_limits()
 self.last_size = cluster_size

 def on_node_lost(self, worker):
 # may have processed heartbeat too late, so wake up soon
 # in order to see if the worker recovered.
 self.c.timer.call_after(10.0, self.on_cluster_size_change)

Callbacks

	<set> gossip.on.node_join

Called whenever a new node joins the cluster, providing a
Worker instance.

	<set> gossip.on.node_leave

Called whenever a new node leaves the cluster (shuts down),
providing a Worker instance.

	<set> gossip.on.node_lost

Called whenever heartbeat was missed for a worker instance in the
cluster (heartbeat not received or processed in time),
providing a Worker instance.

This doesn’t necessarily mean the worker is actually offline, so use a time
out mechanism if the default heartbeat timeout isn’t sufficient.

	
pool

	The current process/eventlet/gevent/thread pool.
See celery.concurrency.base.BasePool.

	
timer

	Timer <celery.utils.timer2.Schedule used to schedule functions.

	
heart

	Responsible for sending worker event heartbeats
(Heart).

Your consumer bootstep must require the Heart bootstep to use this:

class Step(bootsteps.StartStopStep):
 requires = {'celery.worker.consumer.heart:Heart'}

	
task_consumer

	The kombu.Consumer [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer] object used to consume task messages.

Your consumer bootstep must require the Tasks bootstep to use this:

class Step(bootsteps.StartStopStep):
 requires = {'celery.worker.consumer.tasks:Tasks'}

	
strategies

	Every registered task type has an entry in this mapping,
where the value is used to execute an incoming message of this task type
(the task execution strategy). This mapping is generated by the Tasks
bootstep when the consumer starts:

for name, task in app.tasks.items():
 strategies[name] = task.start_strategy(app, consumer)
 task.__trace__ = celery.app.trace.build_tracer(
 name, task, loader, hostname
)

Your consumer bootstep must require the Tasks bootstep to use this:

class Step(bootsteps.StartStopStep):
 requires = {'celery.worker.consumer.tasks:Tasks'}

	
task_buckets

	A defaultdict [https://docs.python.org/dev/library/collections.html#collections.defaultdict] used to look-up the rate limit for
a task by type.
Entries in this dict may be None (for no limit) or a
TokenBucket [http://kombu.readthedocs.io/en/master/reference/kombu.utils.limits.html#kombu.utils.limits.TokenBucket] instance implementing
consume(tokens) and expected_time(tokens).

TokenBucket implements the token bucket algorithm [https://en.wikipedia.org/wiki/Token_bucket], but any algorithm
may be used as long as it conforms to the same interface and defines the
two methods above.

	
qos

	The QoS object can be used to change the
task channels current prefetch_count value:

increment at next cycle
consumer.qos.increment_eventually(1)
decrement at next cycle
consumer.qos.decrement_eventually(1)
consumer.qos.set(10)

Methods

	
consumer.reset_rate_limits()

	Updates the task_buckets mapping for all registered task types.

	
consumer.bucket_for_task(type, Bucket=TokenBucket)

	Creates rate limit bucket for a task using its task.rate_limit
attribute.

	
consumer.add_task_queue(name, exchange=None, exchange_type=None,

	
routing_key=None, **options):

	Adds new queue to consume from. This will persist on connection restart.

	
consumer.cancel_task_queue(name)

	Stop consuming from queue by name. This will persist on connection
restart.

	
apply_eta_task(request)

	Schedule ETA task to execute based on the request.eta attribute.
(Request)

Installing Bootsteps

app.steps['worker'] and app.steps['consumer'] can be modified
to add new bootsteps:

>>> app = Celery()
>>> app.steps['worker'].add(MyWorkerStep) # < add class, don't instantiate
>>> app.steps['consumer'].add(MyConsumerStep)

>>> app.steps['consumer'].update([StepA, StepB])

>>> app.steps['consumer']
{step:proj.StepB{()}, step:proj.MyConsumerStep{()}, step:proj.StepA{()}

The order of steps isn’t important here as the order is decided by the
resulting dependency graph (Step.requires).

To illustrate how you can install bootsteps and how they work, this is an example step that
prints some useless debugging information.
It can be added both as a worker and consumer bootstep:

from celery import Celery
from celery import bootsteps

class InfoStep(bootsteps.Step):

 def __init__(self, parent, **kwargs):
 # here we can prepare the Worker/Consumer object
 # in any way we want, set attribute defaults, and so on.
 print('{0!r} is in init'.format(parent))

 def start(self, parent):
 # our step is started together with all other Worker/Consumer
 # bootsteps.
 print('{0!r} is starting'.format(parent))

 def stop(self, parent):
 # the Consumer calls stop every time the consumer is
 # restarted (i.e., connection is lost) and also at shutdown.
 # The Worker will call stop at shutdown only.
 print('{0!r} is stopping'.format(parent))

 def shutdown(self, parent):
 # shutdown is called by the Consumer at shutdown, it's not
 # called by Worker.
 print('{0!r} is shutting down'.format(parent))

 app = Celery(broker='amqp://')
 app.steps['worker'].add(InfoStep)
 app.steps['consumer'].add(InfoStep)

Starting the worker with this step installed will give us the following
logs:

<Worker: w@example.com (initializing)> is in init
<Consumer: w@example.com (initializing)> is in init
[2013-05-29 16:18:20,544: WARNING/MainProcess]
 <Worker: w@example.com (running)> is starting
[2013-05-29 16:18:21,577: WARNING/MainProcess]
 <Consumer: w@example.com (running)> is starting
<Consumer: w@example.com (closing)> is stopping
<Worker: w@example.com (closing)> is stopping
<Consumer: w@example.com (terminating)> is shutting down

The print statements will be redirected to the logging subsystem after
the worker has been initialized, so the “is starting” lines are time-stamped.
You may notice that this does no longer happen at shutdown, this is because
the stop and shutdown methods are called inside a signal handler,
and it’s not safe to use logging inside such a handler.
Logging with the Python logging module isn’t reentrant:
meaning you cannot interrupt the function then
call it again later. It’s important that the stop and shutdown methods
you write is also reentrant.

Starting the worker with --loglevel=debug
will show us more information about the boot process:

[2013-05-29 16:18:20,509: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2013-05-29 16:18:20,511: DEBUG/MainProcess] | Worker: Building graph...
<celery.apps.worker.Worker object at 0x101ad8410> is in init
[2013-05-29 16:18:20,511: DEBUG/MainProcess] | Worker: New boot order:
 {Hub, Pool, Timer, StateDB, Autoscaler, InfoStep, Beat, Consumer}
[2013-05-29 16:18:20,514: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2013-05-29 16:18:20,514: DEBUG/MainProcess] | Consumer: Building graph...
<celery.worker.consumer.Consumer object at 0x101c2d8d0> is in init
[2013-05-29 16:18:20,515: DEBUG/MainProcess] | Consumer: New boot order:
 {Connection, Mingle, Events, Gossip, InfoStep, Agent,
 Heart, Control, Tasks, event loop}
[2013-05-29 16:18:20,522: DEBUG/MainProcess] | Worker: Starting Hub
[2013-05-29 16:18:20,522: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,522: DEBUG/MainProcess] | Worker: Starting Pool
[2013-05-29 16:18:20,542: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,543: DEBUG/MainProcess] | Worker: Starting InfoStep
[2013-05-29 16:18:20,544: WARNING/MainProcess]
 <celery.apps.worker.Worker object at 0x101ad8410> is starting
[2013-05-29 16:18:20,544: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,544: DEBUG/MainProcess] | Worker: Starting Consumer
[2013-05-29 16:18:20,544: DEBUG/MainProcess] | Consumer: Starting Connection
[2013-05-29 16:18:20,559: INFO/MainProcess] Connected to amqp://guest@127.0.0.1:5672//
[2013-05-29 16:18:20,560: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,560: DEBUG/MainProcess] | Consumer: Starting Mingle
[2013-05-29 16:18:20,560: INFO/MainProcess] mingle: searching for neighbors
[2013-05-29 16:18:21,570: INFO/MainProcess] mingle: no one here
[2013-05-29 16:18:21,570: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,571: DEBUG/MainProcess] | Consumer: Starting Events
[2013-05-29 16:18:21,572: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,572: DEBUG/MainProcess] | Consumer: Starting Gossip
[2013-05-29 16:18:21,577: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,577: DEBUG/MainProcess] | Consumer: Starting InfoStep
[2013-05-29 16:18:21,577: WARNING/MainProcess]
 <celery.worker.consumer.Consumer object at 0x101c2d8d0> is starting
[2013-05-29 16:18:21,578: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,578: DEBUG/MainProcess] | Consumer: Starting Heart
[2013-05-29 16:18:21,579: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,579: DEBUG/MainProcess] | Consumer: Starting Control
[2013-05-29 16:18:21,583: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,583: DEBUG/MainProcess] | Consumer: Starting Tasks
[2013-05-29 16:18:21,606: DEBUG/MainProcess] basic.qos: prefetch_count->80
[2013-05-29 16:18:21,606: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,606: DEBUG/MainProcess] | Consumer: Starting event loop
[2013-05-29 16:18:21,608: WARNING/MainProcess] celery@example.com ready.

Command-line programs

Adding new command-line options

Command-specific options

You can add additional command-line options to the worker, beat, and
events commands by modifying the user_options attribute of the
application instance.

Celery commands uses the argparse [https://docs.python.org/dev/library/argparse.html#module-argparse] module to parse command-line
arguments, and so to add custom arguments you need to specify a callback
that takes a argparse.ArgumentParser [https://docs.python.org/dev/library/argparse.html#argparse.ArgumentParser] instance - and adds arguments.
Please see the argparse [https://docs.python.org/dev/library/argparse.html#module-argparse] documentation to read about the fields supported.

Example adding a custom option to the celery worker command:

from celery import Celery

app = Celery(broker='amqp://')

def add_worker_arguments(parser):
 parser.add_argument(
 '--enable-my-option', action='store_true', default=False,
 help='Enable custom option.',
),
app.user_options['worker'].add(add_worker_arguments)

All bootsteps will now receive this argument as a keyword argument to
Bootstep.__init__:

from celery import bootsteps

class MyBootstep(bootsteps.Step):

 def __init__(self, worker, enable_my_option=False, **options):
 if enable_my_option:
 party()

app.steps['worker'].add(MyBootstep)

Preload options

The celery umbrella command supports the concept of ‘preload
options’. These are special options passed to all sub-commands and parsed
outside of the main parsing step.

The list of default preload options can be found in the API reference:
celery.bin.base.

You can add new preload options too, for example to specify a configuration
template:

from celery import Celery
from celery import signals
from celery.bin import Option

app = Celery()

def add_preload_options(parser):
 parser.add_argument(
 '-Z', '--template', default='default',
 help='Configuration template to use.',
)
app.user_options['preload'].add(add_preload_options)

@signals.user_preload_options.connect
def on_preload_parsed(options, **kwargs):
 use_template(options['template'])

Adding new celery sub-commands

New commands can be added to the celery umbrella command by using
setuptools entry-points [http://reinout.vanrees.org/weblog/2010/01/06/zest-releaser-entry-points.html].

Entry-points is special meta-data that can be added to your packages setup.py program,
and then after installation, read from the system using the pkg_resources module.

Celery recognizes celery.commands entry-points to install additional
sub-commands, where the value of the entry-point must point to a valid subclass
of celery.bin.base.Command. There’s limited documentation,
unfortunately, but you can find inspiration from the various commands in the
celery.bin package.

This is how the Flower [https://pypi.python.org/pypi/Flower/] monitoring extension adds the celery flower command,
by adding an entry-point in setup.py:

setup(
 name='flower',
 entry_points={
 'celery.commands': [
 'flower = flower.command:FlowerCommand',
],
 }
)

The command definition is in two parts separated by the equal sign, where the
first part is the name of the sub-command (flower), then the second part is
the fully qualified symbol path to the class that implements the command:

flower.command:FlowerCommand

The module path and the name of the attribute should be separated by colon
as above.

In the module flower/command.py, the command class is defined
something like this:

from celery.bin.base import Command

class FlowerCommand(Command):

 def add_arguments(self, parser):
 parser.add_argument(
 '--port', default=8888, type='int',
 help='Webserver port',
),
 parser.add_argument(
 '--debug', action='store_true',
)

 def run(self, port=None, debug=False, **kwargs):
 print('Running our command')

Worker API

Hub [http://kombu.readthedocs.io/en/master/reference/kombu.async.html#kombu.async.Hub] - The workers async event loop

	supported transports:

	

 Configuration and defaults

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Configuration and defaults

This document describes the configuration options available.

If you’re using the default loader, you must create the celeryconfig.py
module and make sure it’s available on the Python path.

	Example configuration file

	New lowercase settings

	Configuration Directives
	General settings

	Time and date settings

	Task settings

	Task execution settings

	Task result backend settings

	Database backend settings

	RPC backend settings

	Cache backend settings

	Redis backend settings

	Cassandra backend settings

	Elasticsearch backend settings

	Riak backend settings

	IronCache backend settings

	Couchbase backend settings

	CouchDB backend settings

	File-system backend settings

	Consul K/V store backend settings

	Message Routing

	Broker Settings

	Worker

	Events

	Remote Control Commands

	Logging

	Security

	Custom Component Classes (advanced)

	Beat Settings (celery beat)

Example configuration file

This is an example configuration file to get you started.
It should contain all you need to run a basic Celery set-up.

Broker settings.
broker_url = 'amqp://guest:guest@localhost:5672//'

List of modules to import when the Celery worker starts.
imports = ('myapp.tasks',)

Using the database to store task state and results.
result_backend = 'db+sqlite:///results.db'

task_annotations = {'tasks.add': {'rate_limit': '10/s'}}

New lowercase settings

Version 4.0 introduced new lower case settings and setting organization.

The major difference between previous versions, apart from the lower case
names, are the renaming of some prefixes, like celerybeat_ to beat_,
celeryd_ to worker_, and most of the top level celery_ settings
have been moved into a new task_ prefix.

Celery will still be able to read old configuration files, so there’s no
rush in moving to the new settings format.

	Setting name
	Replace with

	CELERY_ACCEPT_CONTENT
	accept_content

	CELERY_ENABLE_UTC
	enable_utc

	CELERY_IMPORTS
	imports

	CELERY_INCLUDE
	include

	CELERY_TIMEZONE
	timezone

	CELERYBEAT_MAX_LOOP_INTERVAL
	beat_max_loop_interval

	CELERYBEAT_SCHEDULE
	beat_schedule

	CELERYBEAT_SCHEDULER
	beat_scheduler

	CELERYBEAT_SCHEDULE_FILENAME
	beat_schedule_filename

	CELERYBEAT_SYNC_EVERY
	beat_sync_every

	BROKER_URL
	broker_url

	BROKER_TRANSPORT
	broker_transport

	BROKER_TRANSPORT_OPTIONS
	broker_transport_options

	BROKER_CONNECTION_TIMEOUT
	broker_connection_timeout

	BROKER_CONNECTION_RETRY
	broker_connection_retry

	BROKER_CONNECTION_MAX_RETRIES
	broker_connection_max_retries

	BROKER_FAILOVER_STRATEGY
	broker_failover_strategy

	BROKER_HEARTBEAT
	broker_heartbeat

	BROKER_LOGIN_METHOD
	broker_login_method

	BROKER_POOL_LIMIT
	broker_pool_limit

	BROKER_USE_SSL
	broker_use_ssl

	CELERY_CACHE_BACKEND
	cache_backend

	CELERY_CACHE_BACKEND_OPTIONS
	cache_backend_options

	CASSANDRA_COLUMN_FAMILY
	cassandra_table

	CASSANDRA_ENTRY_TTL
	cassandra_entry_ttl

	CASSANDRA_KEYSPACE
	cassandra_keyspace

	CASSANDRA_PORT
	cassandra_port

	CASSANDRA_READ_CONSISTENCY
	cassandra_read_consistency

	CASSANDRA_SERVERS
	cassandra_servers

	CASSANDRA_WRITE_CONSISTENCY
	cassandra_write_consistency

	CELERY_COUCHBASE_BACKEND_SETTINGS
	couchbase_backend_settings

	CELERY_MONGODB_BACKEND_SETTINGS
	mongodb_backend_settings

	CELERY_EVENT_QUEUE_EXPIRES
	event_queue_expires

	CELERY_EVENT_QUEUE_TTL
	event_queue_ttl

	CELERY_EVENT_QUEUE_PREFIX
	event_queue_prefix

	CELERY_EVENT_SERIALIZER
	event_serializer

	CELERY_REDIS_DB
	redis_db

	CELERY_REDIS_HOST
	redis_host

	CELERY_REDIS_MAX_CONNECTIONS
	redis_max_connections

	CELERY_REDIS_PASSWORD
	redis_password

	CELERY_REDIS_PORT
	redis_port

	CELERY_RESULT_BACKEND
	result_backend

	CELERY_MAX_CACHED_RESULTS
	result_cache_max

	CELERY_MESSAGE_COMPRESSION
	result_compression

	CELERY_RESULT_EXCHANGE
	result_exchange

	CELERY_RESULT_EXCHANGE_TYPE
	result_exchange_type

	CELERY_TASK_RESULT_EXPIRES
	result_expires

	CELERY_RESULT_PERSISTENT
	result_persistent

	CELERY_RESULT_SERIALIZER
	result_serializer

	CELERY_RESULT_DBURI
	Use result_backend instead.

	CELERY_RESULT_ENGINE_OPTIONS
	database_engine_options

	[...]_DB_SHORT_LIVED_SESSIONS
	database_short_lived_sessions

	CELERY_RESULT_DB_TABLE_NAMES
	database_db_names

	CELERY_SECURITY_CERTIFICATE
	security_certificate

	CELERY_SECURITY_CERT_STORE
	security_cert_store

	CELERY_SECURITY_KEY
	security_key

	CELERY_ACKS_LATE
	task_acks_late

	CELERY_ALWAYS_EAGER
	task_always_eager

	CELERY_ANNOTATIONS
	task_annotations

	CELERY_MESSAGE_COMPRESSION
	task_compression

	CELERY_CREATE_MISSING_QUEUES
	task_create_missing_queues

	CELERY_DEFAULT_DELIVERY_MODE
	task_default_delivery_mode

	CELERY_DEFAULT_EXCHANGE
	task_default_exchange

	CELERY_DEFAULT_EXCHANGE_TYPE
	task_default_exchange_type

	CELERY_DEFAULT_QUEUE
	task_default_queue

	CELERY_DEFAULT_RATE_LIMIT
	task_default_rate_limit

	CELERY_DEFAULT_ROUTING_KEY
	task_default_routing_key

	[...]_EAGER_PROPAGATES_EXCEPTIONS
	task_eager_propagates

	CELERY_IGNORE_RESULT
	task_ignore_result

	CELERY_TASK_PUBLISH_RETRY
	task_publish_retry

	CELERY_TASK_PUBLISH_RETRY_POLICY
	task_publish_retry_policy

	CELERY_QUEUES
	task_queues

	CELERY_ROUTES
	task_routes

	CELERY_SEND_TASK_SENT_EVENT
	task_send_sent_event

	CELERY_TASK_SERIALIZER
	task_serializer

	CELERYD_TASK_SOFT_TIME_LIMIT
	task_soft_time_limit

	CELERYD_TASK_TIME_LIMIT
	task_time_limit

	CELERY_TRACK_STARTED
	task_track_started

	CELERYD_AGENT
	worker_agent

	CELERYD_AUTOSCALER
	worker_autoscaler

	CELERYD_CONCURRENCY
	worker_concurrency

	CELERYD_CONSUMER
	worker_consumer

	CELERY_WORKER_DIRECT
	worker_direct

	CELERY_DISABLE_RATE_LIMITS
	worker_disable_rate_limits

	CELERY_ENABLE_REMOTE_CONTROL
	worker_enable_remote_control

	CELERYD_HIJACK_ROOT_LOGGER
	worker_hijack_root_logger

	CELERYD_LOG_COLOR
	worker_log_color

	CELERYD_LOG_FORMAT
	worker_log_format

	CELERYD_WORKER_LOST_WAIT
	worker_lost_wait

	CELERYD_MAX_TASKS_PER_CHILD
	worker_max_tasks_per_child

	CELERYD_POOL
	worker_pool

	CELERYD_POOL_PUTLOCKS
	worker_pool_putlocks

	CELERYD_POOL_RESTARTS
	worker_pool_restarts

	CELERYD_PREFETCH_MULTIPLIER
	worker_prefetch_multiplier

	CELERYD_REDIRECT_STDOUTS
	worker_redirect_stdouts

	CELERYD_REDIRECT_STDOUTS_LEVEL
	worker_redirect_stdouts_level

	CELERYD_SEND_EVENTS
	worker_send_task_events

	CELERYD_STATE_DB
	worker_state_db

	CELERYD_TASK_LOG_FORMAT
	worker_task_log_format

	CELERYD_TIMER
	worker_timer

	CELERYD_TIMER_PRECISION
	worker_timer_precision

Configuration Directives

General settings

accept_content

Default: {'json'} (set, list, or tuple).

A white-list of content-types/serializers to allow.

If a message is received that’s not in this list then
the message will be discarded with an error.

By default any content type is enabled, including pickle and yaml,
so make sure untrusted parties don’t have access to your broker.
See Security for more.

Example:

using serializer name
accept_content = ['json']

or the actual content-type (MIME)
accept_content = ['application/json']

Time and date settings

enable_utc

New in version 2.5.

Default: Enabled by default since version 3.0.

If enabled dates and times in messages will be converted to use
the UTC timezone.

Note that workers running Celery versions below 2.5 will assume a local
timezone for all messages, so only enable if all workers have been
upgraded.

timezone

New in version 2.5.

Default: "UTC".

Configure Celery to use a custom time zone.
The timezone value can be any time zone supported by the pytz [https://pypi.python.org/pypi/pytz/]
library.

If not set the UTC timezone is used. For backwards compatibility
there’s also a enable_utc setting, and this is set
to false the system local timezone is used instead.

Task settings

task_annotations

New in version 2.5.

Default: None.

This setting can be used to rewrite any task attribute from the
configuration. The setting can be a dict, or a list of annotation
objects that filter for tasks and return a map of attributes
to change.

This will change the rate_limit attribute for the tasks.add
task:

task_annotations = {'tasks.add': {'rate_limit': '10/s'}}

or change the same for all tasks:

task_annotations = {'*': {'rate_limit': '10/s'}}

You can change methods too, for example the on_failure handler:

def my_on_failure(self, exc, task_id, args, kwargs, einfo):
 print('Oh no! Task failed: {0!r}'.format(exc))

task_annotations = {'*': {'on_failure': my_on_failure}}

If you need more flexibility then you can use objects
instead of a dict to choose the tasks to annotate:

class MyAnnotate(object):

 def annotate(self, task):
 if task.name.startswith('tasks.'):
 return {'rate_limit': '10/s'}

task_annotations = (MyAnnotate(), {other,})

task_compression

Default: None

Default compression used for task messages.
Can be gzip, bzip2 (if available), or any custom
compression schemes registered in the Kombu compression registry.

The default is to send uncompressed messages.

task_protocol

Default: 2 (since 4.0).

Set the default task message protocol version used to send tasks.
Supports protocols: 1 and 2.

Protocol 2 is supported by 3.1.24 and 4.x+.

task_serializer

Default: "json" (since 4.0, earlier: pickle).

A string identifying the default serialization method to use. Can be
json (default), pickle, yaml, msgpack, or any custom serialization
methods that have been registered with kombu.serialization.registry.

See also

Serializers.

task_publish_retry

New in version 2.2.

Default: Enabled.

Decides if publishing task messages will be retried in the case
of connection loss or other connection errors.
See also task_publish_retry_policy.

task_publish_retry_policy

New in version 2.2.

Default: See Message Sending Retry.

Defines the default policy when retrying publishing a task message in
the case of connection loss or other connection errors.

Task execution settings

task_always_eager

Default: Disabled.

If this is True, all tasks will be executed locally by blocking until
the task returns. apply_async() and Task.delay() will return
an EagerResult instance, that emulates the API
and behavior of AsyncResult, except the result
is already evaluated.

That is, tasks will be executed locally instead of being sent to
the queue.

task_eager_propagates

Default: Disabled.

If this is True, eagerly executed tasks (applied by task.apply(),
or when the task_always_eager setting is enabled), will
propagate exceptions.

It’s the same as always running apply() with throw=True.

task_remote_tracebacks

Default: Disabled.

If enabled task results will include the workers stack when re-raising
task errors.

This requires the tblib [https://pypi.python.org/pypi/tblib/] library, that can be installed using
pip:

$ pip install celery[tblib]

See Bundles for information on combining multiple extension
requirements.

task_ignore_result

Default: Disabled.

Whether to store the task return values or not (tombstones).
If you still want to store errors, just not successful return values,
you can set task_store_errors_even_if_ignored.

task_store_errors_even_if_ignored

Default: Disabled.

If set, the worker stores all task errors in the result store even if
Task.ignore_result is on.

task_track_started

Default: Disabled.

If True the task will report its status as ‘started’ when the
task is executed by a worker. The default value is False as
the normal behavior is to not report that level of granularity. Tasks
are either pending, finished, or waiting to be retried. Having a ‘started’
state can be useful for when there are long running tasks and there’s a
need to report what task is currently running.

task_time_limit

Default: No time limit.

Task hard time limit in seconds. The worker processing the task will
be killed and replaced with a new one when this is exceeded.

task_soft_time_limit

Default: No soft time limit.

Task soft time limit in seconds.

The SoftTimeLimitExceeded exception will be
raised when this is exceeded. For example, the task can catch this to
clean up before the hard time limit comes:

from celery.exceptions import SoftTimeLimitExceeded

@app.task
def mytask():
 try:
 return do_work()
 except SoftTimeLimitExceeded:
 cleanup_in_a_hurry()

task_acks_late

Default: Disabled.

Late ack means the task messages will be acknowledged after the task
has been executed, not just before (the default behavior).

See also

FAQ: Should I use retry or acks_late?.

task_reject_on_worker_lost

Default: Disabled.

Even if task_acks_late is enabled, the worker will
acknowledge tasks when the worker process executing them abruptly
exits or is signaled (e.g., KILL/INT, etc).

Setting this to true allows the message to be re-queued instead,
so that the task will execute again by the same worker, or another
worker.

Warning

Enabling this can cause message loops; make sure you know
what you’re doing.

task_default_rate_limit

Default: No rate limit.

The global default rate limit for tasks.

This value is used for tasks that doesn’t have a custom rate limit

See also

The setting:worker_disable_rate_limits setting can
disable all rate limits.

Task result backend settings

result_backend

Default: No result backend enabled by default.

The backend used to store task results (tombstones).
Can be one of the following:

	
	rpc

	Send results back as AMQP messages
See RPC backend settings.

	
	database

	Use a relational database supported by SQLAlchemy [http://sqlalchemy.org].
See Database backend settings.

	
	redis

	Use Redis [http://redis.io] to store the results.
See Redis backend settings.

	
	cache

	Use Memcached [http://memcached.org] to store the results.
See Cache backend settings.

	
	cassandra

	Use Cassandra [http://cassandra.apache.org/] to store the results.
See Cassandra backend settings.

	
	elasticsearch

	Use Elasticsearch [https://aws.amazon.com/elasticsearch-service/] to store the results.
See Elasticsearch backend settings.

	
	ironcache

	Use IronCache [http://www.iron.io/cache] to store the results.
See IronCache backend settings.

	
	couchbase

	Use Couchbase [http://www.couchbase.com/] to store the results.
See Couchbase backend settings.

	
	couchdb

	Use CouchDB [http://www.couchdb.com/] to store the results.
See CouchDB backend settings.

	
	filesystem

	Use a shared directory to store the results.
See File-system backend settings.

	
	consul

	Use the Consul [http://consul.io/] K/V store to store the results
See Consul K/V store backend settings.

result_serializer

Default: json since 4.0 (earlier: pickle).

Result serialization format.

See Serializers for information about supported
serialization formats.

result_compression

Default: No compression.

Optional compression method used for task results.
Supports the same options as the task_serializer setting.

result_expires

Default: Expire after 1 day.

Time (in seconds, or a timedelta [https://docs.python.org/dev/library/datetime.html#datetime.timedelta] object) for when after
stored task tombstones will be deleted.

A built-in periodic task will delete the results after this time
(celery.backend_cleanup), assuming that celery beat is
enabled. The task runs daily at 4am.

A value of None or 0 means results will never expire (depending
on backend specifications).

Note

For the moment this only works with the AMQP, database, cache,
and Redis backends.

When using the database backend, celery beat must be
running for the results to be expired.

result_cache_max

Default: Disabled by default.

Enables client caching of results.

This can be useful for the old deprecated
‘amqp’ backend where the result is unavailable as soon as one result instance
consumes it.

This is the total number of results to cache before older results are evicted.
A value of 0 or None means no limit, and a value of -1
will disable the cache.

Disabled by default.

Database backend settings

Database URL Examples

To use the database backend you have to configure the
result_backend setting with a connection URL and the db+
prefix:

result_backend = 'db+scheme://user:password@host:port/dbname'

Examples:

sqlite (filename)
result_backend = 'db+sqlite:///results.sqlite'

mysql
result_backend = 'db+mysql://scott:tiger@localhost/foo'

postgresql
result_backend = 'db+postgresql://scott:tiger@localhost/mydatabase'

oracle
result_backend = 'db+oracle://scott:tiger@127.0.0.1:1521/sidname'

Please see Supported Databases [http://www.sqlalchemy.org/docs/core/engines.html#supported-databases] for a table of supported databases,
and Connection String [http://www.sqlalchemy.org/docs/core/engines.html#database-urls] for more information about connection
strings (this is the part of the URI that comes after the db+ prefix).

database_engine_options

Default: {} (empty mapping).

To specify additional SQLAlchemy database engine options you can use
the sqlalchmey_engine_options setting:

echo enables verbose logging from SQLAlchemy.
app.conf.database_engine_options = {'echo': True}

database_short_lived_sessions

Default: Disabled by default.

Short lived sessions are disabled by default. If enabled they can drastically reduce
performance, especially on systems processing lots of tasks. This option is useful
on low-traffic workers that experience errors as a result of cached database connections
going stale through inactivity. For example, intermittent errors like
(OperationalError) (2006, ‘MySQL server has gone away’) can be fixed by enabling
short lived sessions. This option only affects the database backend.

database_table_names

Default: {} (empty mapping).

When SQLAlchemy is configured as the result backend, Celery automatically
creates two tables to store result meta-data for tasks. This setting allows
you to customize the table names:

use custom table names for the database result backend.
database_table_names = {
 'task': 'myapp_taskmeta',
 'group': 'myapp_groupmeta',
}

RPC backend settings

result_persistent

Default: Disabled by default (transient messages).

If set to True, result messages will be persistent. This means the
messages won’t be lost after a broker restart.

Example configuration

result_backend = 'rpc://'
result_persistent = False

Cache backend settings

Note

The cache backend supports the pylibmc [https://pypi.python.org/pypi/pylibmc/] and python-memcached [https://pypi.python.org/pypi/python-memcached/]
libraries. The latter is used only if pylibmc [https://pypi.python.org/pypi/pylibmc/] isn’t installed.

Using a single Memcached server:

result_backend = 'cache+memcached://127.0.0.1:11211/'

Using multiple Memcached servers:

result_backend = """
 cache+memcached://172.19.26.240:11211;172.19.26.242:11211/
""".strip()

The “memory” backend stores the cache in memory only:

result_backend = 'cache'
cache_backend = 'memory'

cache_backend_options

Default: {} (empty mapping).

You can set pylibmc [https://pypi.python.org/pypi/pylibmc/] options using the cache_backend_options
setting:

cache_backend_options = {
 'binary': True,
 'behaviors': {'tcp_nodelay': True},
}

cache_backend

This setting is no longer used as it’s now possible to specify
the cache backend directly in the result_backend setting.

Redis backend settings

Configuring the backend URL

Note

The Redis backend requires the redis [https://pypi.python.org/pypi/redis/] library.

To install this package use pip:

$ pip install celery[redis]

See Bundles for information on combining multiple extension
requirements.

This backend requires the result_backend
setting to be set to a Redis URL:

result_backend = 'redis://:password@host:port/db'

For example:

result_backend = 'redis://localhost/0'

is the same as:

result_backend = 'redis://'

The fields of the URL are defined as follows:

	password

Password used to connect to the database.

	host

Host name or IP address of the Redis server (e.g., localhost).

	port

Port to the Redis server. Default is 6379.

	db

Database number to use. Default is 0.
The db can include an optional leading slash.

redis_max_connections

Default: No limit.

Maximum number of connections available in the Redis connection
pool used for sending and retrieving results.

redis_socket_connect_timeout

New in version 5.0.1.

Default: None

Socket timeout for connections to Redis from the result backend
in seconds (int/float)

redis_socket_timeout

Default: 5.0 seconds.

Socket timeout for reading/writing operations to the Redis server
in seconds (int/float), used by the redis result backend.

Cassandra backend settings

Note

This Cassandra backend driver requires cassandra-driver [https://pypi.python.org/pypi/cassandra-driver/].

To install, use pip:

$ pip install celery[cassandra]

See Bundles for information on combining multiple extension
requirements.

This backend requires the following configuration directives to be set.

cassandra_servers

Default: [] (empty list).

List of host Cassandra servers. For example:

cassandra_servers = ['localhost']

cassandra_port

Default: 9042.

Port to contact the Cassandra servers on.

cassandra_keyspace

Default: None.

The key-space in which to store the results. For example:

cassandra_keyspace = 'tasks_keyspace'

cassandra_table

Default: None.

The table (column family) in which to store the results. For example:

cassandra_table = 'tasks'

cassandra_read_consistency

Default: None.

The read consistency used. Values can be ONE, TWO, THREE, QUORUM, ALL,
LOCAL_QUORUM, EACH_QUORUM, LOCAL_ONE.

cassandra_write_consistency

Default: None.

The write consistency used. Values can be ONE, TWO, THREE, QUORUM, ALL,
LOCAL_QUORUM, EACH_QUORUM, LOCAL_ONE.

cassandra_entry_ttl

Default: None.

Time-to-live for status entries. They will expire and be removed after that many seconds
after adding. A value of None (default) means they will never expire.

cassandra_auth_provider

Default: None.

AuthProvider class within cassandra.auth module to use. Values can be
PlainTextAuthProvider or SaslAuthProvider.

cassandra_auth_kwargs

Default: {} (empty mapping).

Named arguments to pass into the authentication provider. For example:

cassandra_auth_kwargs = {
 username: 'cassandra',
 password: 'cassandra'
}

Example configuration

cassandra_servers = ['localhost']
cassandra_keyspace = 'celery'
cassandra_table = 'tasks'
cassandra_read_consistency = 'ONE'
cassandra_write_consistency = 'ONE'
cassandra_entry_ttl = 86400

Elasticsearch backend settings

To use Elasticsearch [https://aws.amazon.com/elasticsearch-service/] as the result backend you simply need to
configure the result_backend setting with the correct URL.

Example configuration

result_backend = 'elasticsearch://example.com:9200/index_name/doc_type'

Riak backend settings

Note

The Riak backend requires the riak [https://pypi.python.org/pypi/riak/] library.

To install the this package use pip:

$ pip install celery[riak]

See Bundles for information on combining multiple extension
requirements.

This backend requires the result_backend
setting to be set to a Riak URL:

result_backend = 'riak://host:port/bucket'

For example:

result_backend = 'riak://localhost/celery

is the same as:

result_backend = 'riak://'

The fields of the URL are defined as follows:

	host

Host name or IP address of the Riak server (e.g., ‘localhost’).

	port

Port to the Riak server using the protobuf protocol. Default is 8087.

	bucket

Bucket name to use. Default is celery.
The bucket needs to be a string with ASCII characters only.

Alternatively, this backend can be configured with the following configuration directives.

riak_backend_settings

Default: {} (empty mapping).

This is a dict supporting the following keys:

	host

The host name of the Riak server. Defaults to "localhost".

	port

The port the Riak server is listening to. Defaults to 8087.

	bucket

The bucket name to connect to. Defaults to “celery”.

	protocol

The protocol to use to connect to the Riak server. This isn’t configurable
via result_backend

IronCache backend settings

Note

The IronCache backend requires the iron_celery [https://pypi.python.org/pypi/iron_celery/] library:

To install this package use pip:

$ pip install iron_celery

IronCache is configured via the URL provided in result_backend, for example:

result_backend = 'ironcache://project_id:token@'

Or to change the cache name:

ironcache:://project_id:token@/awesomecache

For more information, see: https://github.com/iron-io/iron_celery

Couchbase backend settings

Note

The Couchbase backend requires the couchbase [https://pypi.python.org/pypi/couchbase/] library.

To install this package use pip:

$ pip install celery[couchbase]

See Bundles for instructions how to combine multiple extension
requirements.

This backend can be configured via the result_backend
set to a Couchbase URL:

result_backend = 'couchbase://username:password@host:port/bucket'

couchbase_backend_settings

Default: {} (empty mapping).

This is a dict supporting the following keys:

	host

Host name of the Couchbase server. Defaults to localhost.

	port

The port the Couchbase server is listening to. Defaults to 8091.

	bucket

The default bucket the Couchbase server is writing to.
Defaults to default.

	username

User name to authenticate to the Couchbase server as (optional).

	password

Password to authenticate to the Couchbase server (optional).

CouchDB backend settings

Note

The CouchDB backend requires the pycouchdb [https://pypi.python.org/pypi/pycouchdb/] library:

To install this Couchbase package use pip:

$ pip install celery[couchdb]

See Bundles for information on combining multiple extension
requirements.

This backend can be configured via the result_backend
set to a CouchDB URL:

result_backend = 'couchdb://username:password@host:port/container'

The URL is formed out of the following parts:

	username

User name to authenticate to the CouchDB server as (optional).

	password

Password to authenticate to the CouchDB server (optional).

	host

Host name of the CouchDB server. Defaults to localhost.

	port

The port the CouchDB server is listening to. Defaults to 8091.

	container

The default container the CouchDB server is writing to.
Defaults to default.

File-system backend settings

This backend can be configured using a file URL, for example:

CELERY_RESULT_BACKEND = 'file:///var/celery/results'

The configured directory needs to be shared and writable by all servers using
the backend.

If you’re trying Celery on a single system you can simply use the backend
without any further configuration. For larger clusters you could use NFS,
GlusterFS [http://www.gluster.org/], CIFS, HDFS [http://hadoop.apache.org/] (using FUSE), or any other file-system.

Consul K/V store backend settings

The Consul backend can be configured using a URL, for example:

CELERY_RESULT_BACKEND = ‘consul://localhost:8500/’

The backend will storage results in the K/V store of Consul
as individual keys.

The backend supports auto expire of results using TTLs in Consul.

Message Routing

task_queues

Default: None (queue taken from default queue settings).

Most users will not want to specify this setting and should rather use
the automatic routing facilities.

If you really want to configure advanced routing, this setting should
be a list of kombu.Queue [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] objects the worker will consume from.

Note that workers can be overridden this setting via the
-Q option, or individual queues from this
list (by name) can be excluded using the -X
option.

Also see Basics for more information.

The default is a queue/exchange/binding key of celery, with
exchange type direct.

See also task_routes

task_routes

Default: None.

A list of routers, or a single router used to route tasks to queues.
When deciding the final destination of a task the routers are consulted
in order.

A router can be specified as either:

	A function with the signature (name, args, kwargs,
options, task=None, **kwargs)

	A string providing the path to a router function.

	
	A dict containing router specification:

	Will be converted to a celery.routes.MapRoute instance.

	
	A list of (pattern, route) tuples:

	Will be converted to a celery.routes.MapRoute instance.

Examples:

task_routes = {
 'celery.ping': 'default',
 'mytasks.add': 'cpu-bound',
 'feed.tasks.*': 'feeds', # <-- glob pattern
 re.compile(r'(image|video)\.tasks\..*'): 'media', # <-- regex
 'video.encode': {
 'queue': 'video',
 'exchange': 'media'
 'routing_key': 'media.video.encode',
 },
}

task_routes = ('myapp.tasks.route_task', {'celery.ping': 'default})

Where myapp.tasks.route_task could be:

def route_task(self, name, args, kwargs, options, task=None, **kw):
 if task == 'celery.ping':
 return {'queue': 'default'}

route_task may return a string or a dict. A string then means
it’s a queue name in task_queues, a dict means it’s a custom route.

When sending tasks, the routers are consulted in order. The first
router that doesn’t return None is the route to use. The message options
is then merged with the found route settings, where the routers settings
have priority.

Example if apply_async() has these arguments:

Task.apply_async(immediate=False, exchange='video',
 routing_key='video.compress')

and a router returns:

{'immediate': True, 'exchange': 'urgent'}

the final message options will be:

immediate=True, exchange='urgent', routing_key='video.compress'

(and any default message options defined in the
Task class)

Values defined in task_routes have precedence over values defined in
task_queues when merging the two.

With the follow settings:

task_queues = {
 'cpubound': {
 'exchange': 'cpubound',
 'routing_key': 'cpubound',
 },
}

task_routes = {
 'tasks.add': {
 'queue': 'cpubound',
 'routing_key': 'tasks.add',
 'serializer': 'json',
 },
}

The final routing options for tasks.add will become:

{'exchange': 'cpubound',
 'routing_key': 'tasks.add',
 'serializer': 'json'}

See Routers for more examples.

task_queue_ha_policy

	brokers:	RabbitMQ

Default: None.

This will set the default HA policy for a queue, and the value
can either be a string (usually all):

task_queue_ha_policy = 'all'

Using ‘all’ will replicate the queue to all current nodes,
Or you can give it a list of nodes to replicate to:

task_queue_ha_policy = ['rabbit@host1', 'rabbit@host2']

Using a list will implicitly set x-ha-policy to ‘nodes’ and
x-ha-policy-params to the given list of nodes.

See http://www.rabbitmq.com/ha.html for more information.

task_queue_max_priority

	brokers:	RabbitMQ

Default: None.

See RabbitMQ Message Priorities.

worker_direct

Default: Disabled.

This option enables so that every worker has a dedicated queue,
so that tasks can be routed to specific workers.

The queue name for each worker is automatically generated based on
the worker hostname and a .dq suffix, using the C.dq exchange.

For example the queue name for the worker with node name w1@example.com
becomes:

w1@example.com.dq

Then you can route the task to the task by specifying the hostname
as the routing key and the C.dq exchange:

task_routes = {
 'tasks.add': {'exchange': 'C.dq', 'routing_key': 'w1@example.com'}
}

task_create_missing_queues

Default: Enabled.

If enabled (default), any queues specified that aren’t defined in
task_queues will be automatically created. See
Automatic routing.

task_default_queue

Default: "celery".

The name of the default queue used by .apply_async if the message has
no route or no custom queue has been specified.

This queue must be listed in task_queues.
If task_queues isn’t specified then it’s automatically
created containing one queue entry, where this name is used as the name of
that queue.

See also

Changing the name of the default queue

task_default_exchange

Default: "celery".

Name of the default exchange to use when no custom exchange is
specified for a key in the task_queues setting.

task_default_exchange_type

Default: "direct".

Default exchange type used when no custom exchange type is specified
for a key in the task_queues setting.

task_default_routing_key

Default: "celery".

The default routing key used when no custom routing key
is specified for a key in the task_queues setting.

task_default_delivery_mode

Default: "persistent".

Can be transient (messages not written to disk) or persistent (written to
disk).

Broker Settings

broker_url

Default: "amqp://"

Default broker URL. This must be a URL in the form of:

transport://userid:password@hostname:port/virtual_host

Only the scheme part (transport://) is required, the rest
is optional, and defaults to the specific transports default values.

The transport part is the broker implementation to use, and the
default is amqp, (uses librabbitmq if installed or falls back to
pyamqp). There are also other choices available, including;
redis://, sqs://, and qpid://.

The scheme can also be a fully qualified path to your own transport
implementation:

broker_url = 'proj.transports.MyTransport://localhost'

More than one broker URL, of the same transport, can also be specified.
The broker URLs can be passed in as a single string that’s semicolon delimited:

broker_url = 'transport://userid:password@hostname:port//;transport://userid:password@hostname:port//'

Or as a list:

broker_url = [
 'transport://userid:password@localhost:port//',
 'transport://userid:password@hostname:port//'
]

The brokers will then be used in the broker_failover_strategy.

See URLs [http://kombu.readthedocs.io/en/master/userguide/connections.html#connection-urls] in the Kombu documentation for more
information.

broker_read_url / broker_write_url

Default: Taken from broker_url.

These settings can be configured, instead of broker_url to specify
different connection parameters for broker connections used for consuming and
producing.

Example:

broker_read_url = 'amqp://user:pass@broker.example.com:56721'
broker_write_url = 'amqp://user:pass@broker.example.com:56722'

Both options can also be specified as a list for failover alternates, see
broker_url for more information.

broker_failover_strategy

Default: "round-robin".

Default failover strategy for the broker Connection object. If supplied,
may map to a key in ‘kombu.connection.failover_strategies’, or be a reference
to any method that yields a single item from a supplied list.

Example:

Random failover strategy
def random_failover_strategy(servers):
 it = list(it) # don't modify callers list
 shuffle = random.shuffle
 for _ in repeat(None):
 shuffle(it)
 yield it[0]

broker_failover_strategy = random_failover_strategy

broker_heartbeat

	transports supported:

	

 Django

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Django

	Release:	4.0

	Date:	Dec 15, 2016

	First steps with Django
	Using Celery with Django

	Extensions

	Starting the worker process

	Where to go from here

 First steps with Django

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

First steps with Django

Using Celery with Django

Note

Previous versions of Celery required a separate library to work with Django,
but since 3.1 this is no longer the case. Django is supported out of the
box now so this document only contains a basic way to integrate Celery and
Django. You’ll use the same API as non-Django users so you’re recommended
to read the First Steps with Celery tutorial
first and come back to this tutorial. When you have a working example you can
continue to the Next Steps guide.

Note

Celery 4.0 supports Django 1.8 and newer versions. Please use Celery 3.1
for versions older than Django 1.8.

To use Celery with your Django project you must first define
an instance of the Celery library (called an “app”)

If you have a modern Django project layout like:

- proj/
 - proj/__init__.py
 - proj/settings.py
 - proj/urls.py
- manage.py

then the recommended way is to create a new proj/proj/celery.py module
that defines the Celery instance:

	file:	proj/proj/celery.py

from __future__ import absolute_import, unicode_literals
import os
from celery import Celery

set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')

app = Celery('proj')

Using a string here means the worker don't have to serialize
the configuration object to child processes.
- namespace='CELERY' means all celery-related configuration keys
should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')

Load task modules from all registered Django app configs.
app.autodiscover_tasks()

@app.task(bind=True)
def debug_task(self):
 print('Request: {0!r}'.format(self.request))

Then you need to import this app in your proj/proj/__init__.py
module. This ensures that the app is loaded when Django starts
so that the @shared_task decorator (mentioned later) will use it:

proj/proj/__init__.py:

from __future__ import absolute_import, unicode_literals

This will make sure the app is always imported when
Django starts so that shared_task will use this app.
from .celery import app as celery_app

__all__ = ['celery_app']

Note that this example project layout is suitable for larger projects,
for simple projects you may use a single contained module that defines
both the app and tasks, like in the First Steps with Celery tutorial.

Let’s break down what happens in the first module,
first we import absolute imports from the future, so that our
celery.py module won’t clash with the library:

from __future__ import absolute_import

Then we set the default DJANGO_SETTINGS_MODULE [http://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE] environment variable
for the celery command-line program:

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')

You don’t need this line, but it saves you from always passing in the
settings module to the celery program. It must always come before
creating the app instances, as is what we do next:

app = Celery('proj')

This is our instance of the library, you can have many instances
but there’s probably no reason for that when using Django.

We also add the Django settings module as a configuration source
for Celery. This means that you don’t have to use multiple
configuration files, and instead configure Celery directly
from the Django settings; but you can also separate them if wanted.

The uppercase name-space means that all Celery configuration options
must be specified in uppercase instead of lowercase, and start with
CELERY_, so for example the task_always_eager` setting
becomes CELERY_TASK_ALWAYS_EAGER, and the broker_url
setting becomes CELERY_BROKER_URL.

You can pass the object directly here, but using a string is better since
then the worker doesn’t have to serialize the object.

app.config_from_object('django.conf:settings', namespace='CELERY')

Next, a common practice for reusable apps is to define all tasks
in a separate tasks.py module, and Celery does have a way to
auto-discover these modules:

app.autodiscover_tasks()

With the line above Celery will automatically discover tasks from all
of your installed apps, following the tasks.py convention:

- app1/
 - tasks.py
 - models.py
- app2/
 - tasks.py
 - models.py

This way you don’t have to manually add the individual modules
to the CELERY_IMPORTS setting.

Finally, the debug_task example is a task that dumps
its own request information. This is using the new bind=True task option
introduced in Celery 3.1 to easily refer to the current task instance.

Using the @shared_task decorator

The tasks you write will probably live in reusable apps, and reusable
apps cannot depend on the project itself, so you also cannot import your app
instance directly.

The @shared_task decorator lets you create tasks without having any
concrete app instance:

demoapp/tasks.py:

Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task

@shared_task
def add(x, y):
 return x + y

@shared_task
def mul(x, y):
 return x * y

@shared_task
def xsum(numbers):
 return sum(numbers)

See also

You can find the full source code for the Django example project at:
https://github.com/celery/celery/tree/master/examples/django/

Relative Imports

You have to be consistent in how you import the task module.
For example, if you have project.app in INSTALLED_APPS, then you
must also import the tasks from project.app or else the names
of the tasks will end up being different.

See Automatic naming and relative imports

Extensions

django-celery-results - Using the Django ORM/Cache as a result backend

The django-celery-results [https://pypi.python.org/pypi/django-celery-results/] extension provides result backends
using either the Django ORM, or the Django Cache framework.

To use this with your project you need to follow these steps:

	Install the django-celery-results [https://pypi.python.org/pypi/django-celery-results/] library:

$ pip install django-celery-results

	Add django_celery_results to INSTALLED_APPS.

Note that there’s no dashes in this name, only underscores.

	Create the Celery database tables by performing a database migrations:

$ python manage.py migrate django_celery_results

	Configure Celery to use the django-celery-results [https://pypi.python.org/pypi/django-celery-results/] backend.

Assuming you are using Django’s settings.py to also configure
Celery, add the following settings:

CELERY_RESULT_BACKEND = 'django-db'

For the cache backend you can use:

CELERY_RESULT_BACKEND = 'django-cache'

django-celery-beat - Database-backed Periodic Tasks with Admin interface.

See Using custom scheduler classes for more information.

Starting the worker process

In a production environment you’ll want to run the worker in the background
as a daemon - see Daemonization - but for testing and
development it is useful to be able to start a worker instance by using the
celery worker manage command, much as you’d use Django’s
manage.py runserver:

$ celery -A proj worker -l info

For a complete listing of the command-line options available,
use the help command:

$ celery help

Where to go from here

If you want to learn more you should continue to the
Next Steps tutorial, and after that you
can study the User Guide.

 Contributing

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Contributing

Welcome!

This document is fairly extensive and you aren’t really expected
to study this in detail for small contributions;

The most important rule is that contributing must be easy
and that the community is friendly and not nitpicking on details,
such as coding style.

If you’re reporting a bug you should read the Reporting bugs section
below to ensure that your bug report contains enough information
to successfully diagnose the issue, and if you’re contributing code
you should try to mimic the conventions you see surrounding the code
you’re working on, but in the end all patches will be cleaned up by
the person merging the changes so don’t worry too much.

	Community Code of Conduct
	Be considerate

	Be respectful

	Be collaborative

	When you disagree, consult others

	When you’re unsure, ask for help

	Step down considerately

	Reporting Bugs
	Security

	Other bugs

	Issue Trackers

	Contributors guide to the code base

	Versions

	Branches
	dev branch

	Maintenance branches

	Archived branches

	Feature branches

	Tags

	Working on Features & Patches
	Forking and setting up the repository

	Running the unit test suite

	Creating pull requests
	Calculating test coverage
	Code coverage in HTML format

	Code coverage in XML (Cobertura-style)

	Running the tests on all supported Python versions

	Building the documentation

	Verifying your contribution
	pyflakes & PEP-8

	API reference

	Coding Style

	Contributing features requiring additional libraries

	Contacts
	Committers
	Ask Solem

	Asif Saif Uddin

	Dmitry Malinovsky

	Ionel Cristian Mărieș

	Mher Movsisyan

	Omer Katz

	Steeve Morin

	Website
	Mauro Rocco

	Jan Henrik Helmers

	Packages
	celery

	kombu

	amqp

	vine

	billiard

	django-celery-beat

	django-celery-results

	librabbitmq

	cell

	cyme

	Deprecated

	Release Procedure
	Updating the version number

	Releasing

Community Code of Conduct

The goal is to maintain a diverse community that’s pleasant for everyone.
That’s why we would greatly appreciate it if everyone contributing to and
interacting with the community also followed this Code of Conduct.

The Code of Conduct covers our behavior as members of the community,
in any forum, mailing list, wiki, website, Internet relay chat (IRC), public
meeting or private correspondence.

The Code of Conduct is heavily based on the Ubuntu Code of Conduct [http://www.ubuntu.com/community/conduct], and
the Pylons Code of Conduct [http://docs.pylonshq.com/community/conduct.html].

Be considerate

Your work will be used by other people, and you in turn will depend on the
work of others. Any decision you take will affect users and colleagues, and
we expect you to take those consequences into account when making decisions.
Even if it’s not obvious at the time, our contributions to Celery will impact
the work of others. For example, changes to code, infrastructure, policy,
documentation and translations during a release may negatively impact
others work.

Be respectful

The Celery community and its members treat one another with respect. Everyone
can make a valuable contribution to Celery. We may not always agree, but
disagreement is no excuse for poor behavior and poor manners. We might all
experience some frustration now and then, but we cannot allow that frustration
to turn into a personal attack. It’s important to remember that a community
where people feel uncomfortable or threatened isn’t a productive one. We
expect members of the Celery community to be respectful when dealing with
other contributors as well as with people outside the Celery project and with
users of Celery.

Be collaborative

Collaboration is central to Celery and to the larger free software community.
We should always be open to collaboration. Your work should be done
transparently and patches from Celery should be given back to the community
when they’re made, not just when the distribution releases. If you wish
to work on new code for existing upstream projects, at least keep those
projects informed of your ideas and progress. It many not be possible to
get consensus from upstream, or even from your colleagues about the correct
implementation for an idea, so don’t feel obliged to have that agreement
before you begin, but at least keep the outside world informed of your work,
and publish your work in a way that allows outsiders to test, discuss, and
contribute to your efforts.

When you disagree, consult others

Disagreements, both political and technical, happen all the time and
the Celery community is no exception. It’s important that we resolve
disagreements and differing views constructively and with the help of the
community and community process. If you really want to go a different
way, then we encourage you to make a derivative distribution or alternate
set of packages that still build on the work we’ve done to utilize as common
of a core as possible.

When you’re unsure, ask for help

Nobody knows everything, and nobody is expected to be perfect. Asking
questions avoids many problems down the road, and so questions are
encouraged. Those who are asked questions should be responsive and helpful.
However, when asking a question, care must be taken to do so in an appropriate
forum.

Step down considerately

Developers on every project come and go and Celery is no different. When you
leave or disengage from the project, in whole or in part, we ask that you do
so in a way that minimizes disruption to the project. This means you should
tell people you’re leaving and take the proper steps to ensure that others
can pick up where you leave off.

Reporting Bugs

Security

You must never report security related issues, vulnerabilities or bugs
including sensitive information to the bug tracker, or elsewhere in public.
Instead sensitive bugs must be sent by email to security@celeryproject.org.

If you’d like to submit the information encrypted our PGP key is:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.15 (Darwin)

mQENBFJpWDkBCADFIc9/Fpgse4owLNvsTC7GYfnJL19XO0hnL99sPx+DPbfr+cSE
9wiU+Wp2TfUX7pCLEGrODiEP6ZCZbgtiPgId+JYvMxpP6GXbjiIlHRw1EQNH8RlX
cVxy3rQfVv8PGGiJuyBBjxzvETHW25htVAZ5TI1+CkxmuyyEYqgZN2fNd0wEU19D
+c10G1gSECbCQTCbacLSzdpngAt1Gkrc96r7wGHBBSvDaGDD2pFSkVuTLMbIRrVp
lnKOPMsUijiip2EMr2DvfuXiUIUvaqInTPNWkDynLoh69ib5xC19CSVLONjkKBsr
Pe+qAY29liBatatpXsydY7GIUzyBT3MzgMJlABEBAAG0MUNlbGVyeSBTZWN1cml0
eSBUZWFtIDxzZWN1cml0eUBjZWxlcnlwcm9qZWN0Lm9yZz6JATgEEwECACIFAlJp
WDkCGwMGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJEOArFOUDCicIw1IH/26f
CViDC7/P13jr+srRdjAsWvQztia9HmTlY8cUnbmkR9w6b6j3F2ayw8VhkyFWgYEJ
wtPBv8mHKADiVSFARS+0yGsfCkia5wDSQuIv6XqRlIrXUyqJbmF4NUFTyCZYoh+C
ZiQpN9xGhFPr5QDlMx2izWg1rvWlG1jY2Es1v/xED3AeCOB1eUGvRe/uJHKjGv7J
rj0pFcptZX+WDF22AN235WYwgJM6TrNfSu8sv8vNAQOVnsKcgsqhuwomSGsOfMQj
LFzIn95MKBBU1G5wOs7JtwiV9jefGqJGBO2FAvOVbvPdK/saSnB+7K36dQcIHqms
5hU4Xj0RIJiod5idlRC5AQ0EUmlYOQEIAJs8OwHMkrdcvy9kk2HBVbdqhgAREMKy
gmphDp7prRL9FqSY/dKpCbG0u82zyJypdb7QiaQ5pfPzPpQcd2dIcohkkh7G3E+e
hS2L9AXHpwR26/PzMBXyr2iNnNc4vTksHvGVDxzFnRpka6vbI/hrrZmYNYh9EAiv
uhE54b3/XhXwFgHjZXb9i8hgJ3nsO0pRwvUAM1bRGMbvf8e9F+kqgV0yWYNnh6QL
4Vpl1+epqp2RKPHyNQftbQyrAHXT9kQF9pPlx013MKYaFTADscuAp4T3dy7xmiwS
crqMbZLzfrxfFOsNxTUGE5vmJCcm+mybAtRo4aV6ACohAO9NevMx8pUAEQEAAYkB
HwQYAQIACQUCUmlYOQIbDAAKCRDgKxTlAwonCNFbB/9esir/f7TufE+isNqErzR/
aZKZo2WzZR9c75kbqo6J6DYuUHe6xI0OZ2qZ60iABDEZAiNXGulysFLCiPdatQ8x
8zt3DF9BMkEck54ZvAjpNSern6zfZb1jPYWZq3TKxlTs/GuCgBAuV4i5vDTZ7xK/
aF+OFY5zN7ciZHkqLgMiTZ+RhqRcK6FhVBP/Y7d9NlBOcDBTxxE1ZO1ute6n7guJ
ciw4hfoRk8qNN19szZuq3UU64zpkM2sBsIFM9tGF2FADRxiOaOWZHmIyVZriPFqW
RUwjSjs7jBVNq0Vy4fCu/5+e+XLOUBOoqtM5W7ELt0t1w9tXebtPEetV86in8fU2
=0chn
-----END PGP PUBLIC KEY BLOCK-----

Other bugs

Bugs can always be described to the Mailing list, but the best
way to report an issue and to ensure a timely response is to use the
issue tracker.

	Create a GitHub account.

You need to create a GitHub account [https://github.com/signup/free] to be able to create new issues
and participate in the discussion.

	Determine if your bug is really a bug.

You shouldn’t file a bug if you’re requesting support. For that you can use
the Mailing list, or IRC.

	Make sure your bug hasn’t already been reported.

Search through the appropriate Issue tracker. If a bug like yours was found,
check if you have new information that could be reported to help
the developers fix the bug.

	Check if you’re using the latest version.

A bug could be fixed by some other improvements and fixes - it might not have an
existing report in the bug tracker. Make sure you’re using the latest releases of
celery, billiard, kombu, amqp, and vine.

	Collect information about the bug.

To have the best chance of having a bug fixed, we need to be able to easily
reproduce the conditions that caused it. Most of the time this information
will be from a Python traceback message, though some bugs might be in design,
spelling or other errors on the website/docs/code.

	If the error is from a Python traceback, include it in the bug report.

	We also need to know what platform you’re running (Windows, macOS, Linux,
etc.), the version of your Python interpreter, and the version of Celery,
and related packages that you were running when the bug occurred.

	If you’re reporting a race condition or a deadlock, tracebacks can be
hard to get or might not be that useful. Try to inspect the process to
get more diagnostic data. Some ideas:

	Enable Celery’s breakpoint signal and use it
to inspect the process’s state. This will allow you to open a
pdb [https://docs.python.org/dev/library/pdb.html#module-pdb] session.

	Collect tracing data using strace`_(Linux),
:command:`dtruss (macOS), and ktrace (BSD),
ltrace [https://en.wikipedia.org/wiki/Ltrace], and lsof [https://en.wikipedia.org/wiki/Lsof].

	Include the output from the celery report command:

$ celery -A proj report

This will also include your configuration settings and it try to
remove values for keys known to be sensitive, but make sure you also
verify the information before submitting so that it doesn’t contain
confidential information like API tokens and authentication
credentials.

	Submit the bug.

By default GitHub [https://github.com] will email you to let you know when new comments have
been made on your bug. In the event you’ve turned this feature off, you
should check back on occasion to ensure you don’t miss any questions a
developer trying to fix the bug might ask.

Issue Trackers

Bugs for a package in the Celery ecosystem should be reported to the relevant
issue tracker.

	celery [https://pypi.python.org/pypi/celery/]: https://github.com/celery/celery/issues/

	kombu [https://pypi.python.org/pypi/kombu/]: https://github.com/celery/kombu/issues

	amqp [https://pypi.python.org/pypi/amqp/]: https://github.com/celery/py-amqp/issues

	vine [https://pypi.python.org/pypi/vine/]: https://github.com/celery/vine/issues

	librabbitmq [https://pypi.python.org/pypi/librabbitmq/]: https://github.com/celery/librabbitmq/issues

	django-celery-beat [https://pypi.python.org/pypi/django-celery-beat/]: https://github.com/celery/django-celery-beat/issues

	django-celery-results [https://pypi.python.org/pypi/django-celery-results/]: https://github.com/celery/django-celery-results/issues

If you’re unsure of the origin of the bug you can ask the
Mailing list, or just use the Celery issue tracker.

Contributors guide to the code base

There’s a separate section for internal details,
including details about the code base and a style guide.

Read Contributors Guide to the Code for more!

Versions

Version numbers consists of a major version, minor version and a release number.
Since version 2.1.0 we use the versioning semantics described by
SemVer: http://semver.org.

Stable releases are published at PyPI
while development releases are only available in the GitHub git repository as tags.
All version tags starts with “v”, so version 0.8.0 is the tag v0.8.0.

Branches

Current active version branches:

	dev (which git calls “master”) (https://github.com/celery/celery/tree/master)

	3.1 (https://github.com/celery/celery/tree/3.1)

	3.0 (https://github.com/celery/celery/tree/3.0)

You can see the state of any branch by looking at the Changelog:

https://github.com/celery/celery/blob/master/Changelog

If the branch is in active development the topmost version info should
contain meta-data like:

2.4.0
======
:release-date: TBA
:status: DEVELOPMENT
:branch: dev (git calls this master)

The status field can be one of:

	PLANNING

The branch is currently experimental and in the planning stage.

	DEVELOPMENT

The branch is in active development, but the test suite should
be passing and the product should be working and possible for users to test.

	FROZEN

The branch is frozen, and no more features will be accepted.
When a branch is frozen the focus is on testing the version as much
as possible before it is released.

dev branch

The dev branch (called “master” by git), is where development of the next
version happens.

Maintenance branches

Maintenance branches are named after the version – for example,
the maintenance branch for the 2.2.x series is named 2.2.

Previously these were named releaseXX-maint.

The versions we currently maintain is:

	3.1

This is the current series.

	3.0

This is the previous series, and the last version to support Python 2.5.

Archived branches

Archived branches are kept for preserving history only,
and theoretically someone could provide patches for these if they depend
on a series that’s no longer officially supported.

An archived version is named X.Y-archived.

Our currently archived branches are:

	GitHub branch2.5-archived [https://github.com/celery/celery/tree/2.5-archived]

	GitHub branch2.4-archived [https://github.com/celery/celery/tree/2.4-archived]

	GitHub branch2.3-archived [https://github.com/celery/celery/tree/2.3-archived]

	GitHub branch2.1-archived [https://github.com/celery/celery/tree/2.1-archived]

	GitHub branch2.0-archived [https://github.com/celery/celery/tree/2.0-archived]

	GitHub branch1.0-archived [https://github.com/celery/celery/tree/1.0-archived]

Feature branches

Major new features are worked on in dedicated branches.
There’s no strict naming requirement for these branches.

Feature branches are removed once they’ve been merged into a release branch.

Tags

	Tags are used exclusively for tagging releases. A release tag is
named with the format vX.Y.Z – for example v2.3.1.

	Experimental releases contain an additional identifier vX.Y.Z-id –
for example v3.0.0-rc1.

	Experimental tags may be removed after the official release.

Working on Features & Patches

Note

Contributing to Celery should be as simple as possible,
so none of these steps should be considered mandatory.

You can even send in patches by email if that’s your preferred
work method. We won’t like you any less, any contribution you make
is always appreciated!

However following these steps may make maintainers life easier,
and may mean that your changes will be accepted sooner.

Forking and setting up the repository

First you need to fork the Celery repository, a good introduction to this
is in the GitHub Guide: Fork a Repo [http://help.github.com/fork-a-repo/].

After you have cloned the repository you should checkout your copy
to a directory on your machine:

$ git clone git@github.com:username/celery.git

When the repository is cloned enter the directory to set up easy access
to upstream changes:

$ cd celery
$ git remote add upstream git://github.com/celery/celery.git
$ git fetch upstream

If you need to pull in new changes from upstream you should
always use the --rebase option to git pull:

git pull --rebase upstream master

With this option you don’t clutter the history with merging
commit notes. See Rebasing merge commits in git [http://notes.envato.com/developers/rebasing-merge-commits-in-git/].
If you want to learn more about rebasing see the Rebase [http://help.github.com/rebase/]
section in the GitHub guides.

If you need to work on a different branch than the one git calls master, you can
fetch and checkout a remote branch like this:

git checkout --track -b 3.0-devel origin/3.0-devel

Running the unit test suite

To run the Celery test suite you need to install a few dependencies.
A complete list of the dependencies needed are located in
requirements/test.txt.

If you’re working on the development version, then you need to
install the development requirements first:

$ pip install -U -r requirements/dev.txt

THIS REQUIREMENT FILE MAY NOT BE PRESENT, SKIP IF NOT FOUND.

Both the stable and the development version have testing related
dependencies, so install these next:

$ pip install -U -r requirements/test.txt
$ pip install -U -r requirements/default.txt

After installing the dependencies required, you can now execute
the test suite by calling py.test <pytest [https://pypi.python.org/pypi/py.test <pytest/]:

$ py.test

Some useful options to py.test are:

	-x

Stop running the tests at the first test that fails.

	-s

Don’t capture output

	-v

Run with verbose output.

If you want to run the tests for a single test file only
you can do so like this:

$ py.test t/unit/worker/test_worker_job.py

Creating pull requests

When your feature/bugfix is complete you may want to submit
a pull requests so that it can be reviewed by the maintainers.

Creating pull requests is easy, and also let you track the progress
of your contribution. Read the Pull Requests [http://help.github.com/send-pull-requests/] section in the GitHub
Guide to learn how this is done.

You can also attach pull requests to existing issues by following
the steps outlined here: http://bit.ly/koJoso

Calculating test coverage

To calculate test coverage you must first install the pytest-cov [https://pypi.python.org/pypi/pytest-cov/] module.

Installing the pytest-cov [https://pypi.python.org/pypi/pytest-cov/] module:

$ pip install -U pytest-cov

Code coverage in HTML format

	Run py.test with the --cov-report=html argument enabled:

$ py.test --cov=celery --cov-report=html

	The coverage output will then be located in the htmlcov/ directory:

$ open htmlcov/index.html

Code coverage in XML (Cobertura-style)

	Run py.test with the --cov-report=xml argument enabled:

$ py.test --cov=celery --cov-report=xml

	The coverage XML output will then be located in the coverage.xml file.

Running the tests on all supported Python versions

There’s a tox [https://pypi.python.org/pypi/tox/] configuration file in the top directory of the
distribution.

To run the tests for all supported Python versions simply execute:

$ tox

Use the tox -e option if you only want to test specific Python versions:

$ tox -e 2.7

Building the documentation

To build the documentation you need to install the dependencies
listed in requirements/docs.txt:

$ pip install -U -r requirements/docs.txt

After these dependencies are installed you should be able to
build the docs by running:

$ cd docs
$ rm -rf _build
$ make html

Make sure there are no errors or warnings in the build output.
After building succeeds the documentation is available at _build/html.

Verifying your contribution

To use these tools you need to install a few dependencies. These dependencies
can be found in requirements/pkgutils.txt.

Installing the dependencies:

$ pip install -U -r requirements/pkgutils.txt

pyflakes & PEP-8

To ensure that your changes conform to PEP 8 [https://www.python.org/dev/peps/pep-0008] and to run pyflakes
execute:

$ make flakecheck

To not return a negative exit code when this command fails use
the flakes target instead:

$ make flakes§

API reference

To make sure that all modules have a corresponding section in the API
reference please execute:

$ make apicheck
$ make indexcheck

If files are missing you can add them by copying an existing reference file.

If the module is internal it should be part of the internal reference
located in docs/internals/reference/. If the module is public
it should be located in docs/reference/.

For example if reference is missing for the module celery.worker.awesome
and this module is considered part of the public API, use the following steps:

Use an existing file as a template:

$ cd docs/reference/
$ cp celery.schedules.rst celery.worker.awesome.rst

Edit the file using your favorite editor:

$ vim celery.worker.awesome.rst

 # change every occurrence of ``celery.schedules`` to
 # ``celery.worker.awesome``

Edit the index using your favorite editor:

$ vim index.rst

 # Add ``celery.worker.awesome`` to the index.

Commit your changes:

Add the file to git
$ git add celery.worker.awesome.rst
$ git add index.rst
$ git commit celery.worker.awesome.rst index.rst \
 -m "Adds reference for celery.worker.awesome"

Coding Style

You should probably be able to pick up the coding style
from surrounding code, but it is a good idea to be aware of the
following conventions.

	All Python code must follow the PEP 8 [https://www.python.org/dev/peps/pep-0008] guidelines.

pep8 [https://pypi.python.org/pypi/pep8/] is a utility you can use to verify that your code
is following the conventions.

	Docstrings must follow the PEP 257 [https://www.python.org/dev/peps/pep-0257] conventions, and use the following
style.

Do this:

def method(self, arg):
 """Short description.

 More details.

 """

or:

def method(self, arg):
 """Short description."""

but not this:

def method(self, arg):
 """
 Short description.
 """

	Lines shouldn’t exceed 78 columns.

You can enforce this in vim by setting the textwidth option:

set textwidth=78

If adhering to this limit makes the code less readable, you have one more
character to go on. This means 78 is a soft limit, and 79 is the hard
limit :)

	Import order

	Python standard library (import xxx)

	Python standard library (‘from xxx import`)

	Third-party packages.

	Other modules from the current package.

or in case of code using Django:

	Python standard library (import xxx)

	Python standard library (‘from xxx import`)

	Third-party packages.

	Django packages.

	Other modules from the current package.

Within these sections the imports should be sorted by module name.

Example:

import threading
import time

from collections import deque
from Queue import Queue, Empty

from .platforms import Pidfile
from .five import zip_longest, items, range
from .utils.time import maybe_timedelta

	Wild-card imports must not be used (from xxx import *).

	For distributions where Python 2.5 is the oldest support version
additional rules apply:

	Absolute imports must be enabled at the top of every module:

from __future__ import absolute_import

	If the module uses the with [https://docs.python.org/dev/reference/compound_stmts.html#with] statement and must be compatible
with Python 2.5 (celery isn’t) then it must also enable that:

from __future__ import with_statement

	Every future import must be on its own line, as older Python 2.5
releases didn’t support importing multiple features on the
same future import line:

Good
from __future__ import absolute_import
from __future__ import with_statement

Bad
from __future__ import absolute_import, with_statement

(Note that this rule doesn’t apply if the package doesn’t include
support for Python 2.5)

	Note that we use “new-style` relative imports when the distribution
doesn’t support Python versions below 2.5

This requires Python 2.5 or later:

from . import submodule

Contributing features requiring additional libraries

Some features like a new result backend may require additional libraries
that the user must install.

We use setuptools extra_requires for this, and all new optional features
that require third-party libraries must be added.

	Add a new requirements file in requirements/extras

For the Cassandra backend this is
requirements/extras/cassandra.txt, and the file looks like this:

pycassa

These are pip requirement files so you can have version specifiers and
multiple packages are separated by newline. A more complex example could
be:

pycassa 2.0 breaks Foo
pycassa>=1.0,<2.0
thrift

	Modify setup.py

After the requirements file is added you need to add it as an option
to setup.py in the extras_require section:

extra['extras_require'] = {
 # ...
 'cassandra': extras('cassandra.txt'),
}

	Document the new feature in docs/includes/installation.txt

You must add your feature to the list in the Bundles section
of docs/includes/installation.txt.

After you’ve made changes to this file you need to render
the distro README file:

$ pip install -U requirements/pkgutils.txt
$ make readme

That’s all that needs to be done, but remember that if your feature
adds additional configuration options then these needs to be documented
in docs/configuration.rst. Also all settings need to be added to the
celery/app/defaults.py module.

Result backends require a separate section in the docs/configuration.rst
file.

Contacts

This is a list of people that can be contacted for questions
regarding the official git repositories, PyPI packages
Read the Docs pages.

If the issue isn’t an emergency then it’s better
to report an issue.

Committers

Ask Solem

	github:	https://github.com/ask

	twitter:	http://twitter.com/#!/asksol

Asif Saif Uddin

	github:	https://github.com/auvipy

	twitter:	https://twitter.com/#!/auvipy

Dmitry Malinovsky

	github:	https://github.com/malinoff

	twitter:	https://twitter.com/__malinoff__

Ionel Cristian Mărieș

	github:	https://github.com/ionelmc

	twitter:	https://twitter.com/ionelmc

Mher Movsisyan

	github:	https://github.com/mher

	twitter:	http://twitter.com/#!/movsm

Omer Katz

	github:	https://github.com/thedrow

	twitter:	https://twitter.com/the_drow

Steeve Morin

	github:	https://github.com/steeve

	twitter:	http://twitter.com/#!/steeve

Website

The Celery Project website is run and maintained by

Mauro Rocco

	github:	https://github.com/fireantology

	twitter:	https://twitter.com/#!/fireantology

with design by:

Jan Henrik Helmers

	web:	http://www.helmersworks.com

	twitter:	http://twitter.com/#!/helmers

Packages

celery

	git:	https://github.com/celery/celery

	CI:	http://travis-ci.org/#!/celery/celery

	Windows-CI:	https://ci.appveyor.com/project/ask/celery

	PyPI:	celery [https://pypi.python.org/pypi/celery/]

	docs:	http://docs.celeryproject.org

kombu

Messaging library.

	git:	https://github.com/celery/kombu

	CI:	http://travis-ci.org/#!/celery/kombu

	Windows-CI:	https://ci.appveyor.com/project/ask/kombu

	PyPI:	kombu [https://pypi.python.org/pypi/kombu/]

	docs:	https://kombu.readthedocs.io

amqp

Python AMQP 0.9.1 client.

	git:	https://github.com/celery/py-amqp

	CI:	http://travis-ci.org/#!/celery/py-amqp

	Windows-CI:	https://ci.appveyor.com/project/ask/py-amqp

	PyPI:	amqp [https://pypi.python.org/pypi/amqp/]

	docs:	https://amqp.readthedocs.io

vine

Promise/deferred implementation.

	git:	https://github.com/celery/vine/

	CI:	http://travis-ci.org/#!/celery/vine/

	Windows-CI:	https://ci.appveyor.com/project/ask/vine

	PyPI:	vine [https://pypi.python.org/pypi/vine/]

	docs:	https://vine.readthedocs.io

billiard

Fork of multiprocessing containing improvements
that’ll eventually be merged into the Python stdlib.

	git:	https://github.com/celery/billiard

	CI:	http://travis-ci.org/#!/celery/billiard/

	Windows-CI:	https://ci.appveyor.com/project/ask/billiard

	PyPI:	billiard [https://pypi.python.org/pypi/billiard/]

django-celery-beat

Database-backed Periodic Tasks with admin interface using the Django ORM.

	git:	https://github.com/celery/django-celery-beat

	CI:	http://travis-ci.org/#!/celery/django-celery-beat

	Windows-CI:	https://ci.appveyor.com/project/ask/django-celery-beat

	PyPI:	django-celery-beat [https://pypi.python.org/pypi/django-celery-beat/]

django-celery-results

Store task results in the Django ORM, or using the Django Cache Framework.

	git:	https://github.com/celery/django-celery-results

	CI:	http://travis-ci.org/#!/celery/django-celery-results

	Windows-CI:	https://ci.appveyor.com/project/ask/django-celery-results

	PyPI:	django-celery-results [https://pypi.python.org/pypi/django-celery-results/]

librabbitmq

Very fast Python AMQP client written in C.

	git:	https://github.com/celery/librabbitmq

	PyPI:	librabbitmq [https://pypi.python.org/pypi/librabbitmq/]

cell

Actor library.

	git:	https://github.com/celery/cell

	PyPI:	cell [https://pypi.python.org/pypi/cell/]

cyme

Distributed Celery Instance manager.

	git:	https://github.com/celery/cyme

	PyPI:	cyme [https://pypi.python.org/pypi/cyme/]

	docs:	https://cyme.readthedocs.io/

Deprecated

	django-celery

	git:	https://github.com/celery/django-celery

	PyPI:	django-celery [https://pypi.python.org/pypi/django-celery/]

	docs:	http://docs.celeryproject.org/en/latest/django

	Flask-Celery

	git:	https://github.com/ask/Flask-Celery

	PyPI:	Flask-Celery [https://pypi.python.org/pypi/Flask-Celery/]

	celerymon

	git:	https://github.com/celery/celerymon

	PyPI:	celerymon [https://pypi.python.org/pypi/celerymon/]

	carrot

	git:	https://github.com/ask/carrot

	PyPI:	carrot [https://pypi.python.org/pypi/carrot/]

	ghettoq

	git:	https://github.com/ask/ghettoq

	PyPI:	ghettoq [https://pypi.python.org/pypi/ghettoq/]

	kombu-sqlalchemy

	git:	https://github.com/ask/kombu-sqlalchemy

	PyPI:	kombu-sqlalchemy [https://pypi.python.org/pypi/kombu-sqlalchemy/]

	django-kombu

	git:	https://github.com/ask/django-kombu

	PyPI:	django-kombu [https://pypi.python.org/pypi/django-kombu/]

	pylibrabbitmq

Old name for librabbitmq [https://pypi.python.org/pypi/librabbitmq/].

	git:	None

	PyPI:	pylibrabbitmq [https://pypi.python.org/pypi/pylibrabbitmq/]

Release Procedure

Updating the version number

The version number must be updated two places:

	celery/__init__.py

	docs/include/introduction.txt

After you have changed these files you must render
the README files. There’s a script to convert sphinx syntax
to generic reStructured Text syntax, and the make target readme
does this for you:

$ make readme

Now commit the changes:

$ git commit -a -m "Bumps version to X.Y.Z"

and make a new version tag:

$ git tag vX.Y.Z
$ git push --tags

Releasing

Commands to make a new public stable release:

$ make distcheck # checks pep8, autodoc index, runs tests and more
$ make dist # NOTE: Runs git clean -xdf and removes files not in the repo.
$ python setup.py sdist upload --sign --identity='Celery Security Team'
$ python setup.py bdist_wheel upload --sign --identity='Celery Security Team'

If this is a new release series then you also need to do the
following:

	
	Go to the Read The Docs management interface at:

	http://readthedocs.org/projects/celery/?fromdocs=celery

	Enter “Edit project”

Change default branch to the branch of this series, for example, use
the 2.4 branch for the 2.4 series.

	Also add the previous version under the “versions” tab.

 Community Resources

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Community Resources

This is a list of external blog posts, tutorials, and slides related
to Celery. If you have a link that’s missing from this list, please
contact the mailing-list or submit a patch.

	Resources
	Who’s using Celery

	Wiki

	Celery questions on Stack Overflow

	Mailing-list Archive: celery-users

	News

Resources

Who’s using Celery

http://wiki.github.com/celery/celery/using

Wiki

http://wiki.github.com/celery/celery/

Celery questions on Stack Overflow

http://stackoverflow.com/search?q=celery&tab=newest

Mailing-list Archive: celery-users

http://blog.gmane.org/gmane.comp.python.amqp.celery.user

News

This section has moved to the Celery homepage:
http://celeryproject.org/community/

 Tutorials

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Tutorials

	Release:	4.0

	Date:	Dec 15, 2016

	Task Cookbook
	Ensuring a task is only executed one at a time

 Task Cookbook

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Task Cookbook

	Ensuring a task is only executed one at a time

Ensuring a task is only executed one at a time

You can accomplish this by using a lock.

In this example we’ll be using the cache framework to set a lock that’s
accessible for all workers.

It’s part of an imaginary RSS feed importer called djangofeeds.
The task takes a feed URL as a single argument, and imports that feed into
a Django model called Feed. We ensure that it’s not possible for two or
more workers to import the same feed at the same time by setting a cache key
consisting of the MD5 check-sum of the feed URL.

The cache key expires after some time in case something unexpected happens,
and something always will...

For this reason your tasks run-time shouldn’t exceed the timeout.

Note

In order for this to work correctly you need to be using a cache
backend where the .add operation is atomic. memcached is known
to work well for this purpose.

from celery import task
from celery.five import monotonic
from celery.utils.log import get_task_logger
from contextlib import contextmanager
from django.core.cache import cache
from hashlib import md5
from djangofeeds.models import Feed

logger = get_task_logger(__name__)

LOCK_EXPIRE = 60 * 10 # Lock expires in 10 minutes

@contextmanager
def memcache_lock(lock_id, oid):
 timeout_at = monotonic() + LOCK_EXPIRE - 3
 # cache.add fails if the key already exists
 status = cache.add(lock_id, oid, LOCK_EXPIRE)
 try:
 yield status
 finally:
 # memcache delete is very slow, but we have to use it to take
 # advantage of using add() for atomic locking
 if monotonic() < timeout_at:
 # don't release the lock if we exceeded the timeout
 # to lessen the chance of releasing an expired lock
 # owned by someone else.
 cache.delete(lock_id)

@task(bind=True)
def import_feed(self, feed_url):
 # The cache key consists of the task name and the MD5 digest
 # of the feed URL.
 feed_url_hexdigest = md5(feed_url).hexdigest()
 lock_id = '{0}-lock-{1}'.format(self.name, feed_url_hexdigest)
 logger.debug('Importing feed: %s', feed_url)
 with memcache_lock(lock_id, self.app.oid) as acquired:
 if acquired:
 return Feed.objects.import_feed(feed_url).url
 logger.debug(
 'Feed %s is already being imported by another worker', feed_url)

 Frequently Asked Questions

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Frequently Asked Questions

	General
	What kinds of things should I use Celery for?

	Misconceptions
	Does Celery really consist of 50.000 lines of code?

	Does Celery have many dependencies?
	celery

	kombu

	Is Celery heavy-weight?

	Is Celery dependent on pickle?

	Is Celery for Django only?

	Do I have to use AMQP/RabbitMQ?

	Is Celery multilingual?

	Troubleshooting
	MySQL is throwing deadlock errors, what can I do?

	The worker isn’t doing anything, just hanging

	Task results aren’t reliably returning

	Why is Task.delay/apply*/the worker just hanging?

	Does it work on FreeBSD?

	I’m having IntegrityError: Duplicate Key errors. Why?

	Why aren’t my tasks processed?

	Why won’t my Task run?

	Why won’t my periodic task run?

	How do I purge all waiting tasks?

	I’ve purged messages, but there are still messages left in the queue?

	Results
	How do I get the result of a task if I have the ID that points there?

	Security
	Isn’t using pickle a security concern?

	Can messages be encrypted?

	Is it safe to run celery worker as root?

	Brokers
	Why is RabbitMQ crashing?

	Can I use Celery with ActiveMQ/STOMP?

	What features aren’t supported when not using an AMQP broker?

	Tasks
	How can I reuse the same connection when calling tasks?

	sudo in a subprocess [https://docs.python.org/dev/library/subprocess.html#module-subprocess] returns None

	Why do workers delete tasks from the queue if they’re unable to process them?

	Can I call a task by name?

	Can I get the task id of the current task?

	Can I specify a custom task_id?

	Can I use decorators with tasks?

	Can I use natural task ids?

	Can I run a task once another task has finished?

	Can I cancel the execution of a task?

	Why aren’t my remote control commands received by all workers?

	Can I send some tasks to only some servers?

	Can I disable prefetching of tasks?

	Can I change the interval of a periodic task at runtime?

	Does Celery support task priorities?

	Should I use retry or acks_late?

	Can I schedule tasks to execute at a specific time?

	Can I safely shut down the worker?

	Can I run the worker in the background on [platform]?

	Django
	What purpose does the database tables created by django-celery-beat have?

	What purpose does the database tables created by django-celery-results have?

	Windows
	Does Celery support Windows?

General

What kinds of things should I use Celery for?

Answer: Queue everything and delight everyone [http://decafbad.com/blog/2008/07/04/queue-everything-and-delight-everyone] is a good article
describing why you’d use a queue in a web context.

These are some common use cases:

	Running something in the background. For example, to finish the web request
as soon as possible, then update the users page incrementally.
This gives the user the impression of good performance and “snappiness”, even
though the real work might actually take some time.

	Running something after the web request has finished.

	Making sure something is done, by executing it asynchronously and using
retries.

	Scheduling periodic work.

And to some degree:

	Distributed computing.

	Parallel execution.

Misconceptions

Does Celery really consist of 50.000 lines of code?

Answer: No, this and similarly large numbers have
been reported at various locations.

The numbers as of this writing are:

	core: 7,141 lines of code.

	tests: 14,209 lines.

	backends, contrib, compat utilities: 9,032 lines.

Lines of code isn’t a useful metric, so
even if Celery did consist of 50k lines of code you wouldn’t
be able to draw any conclusions from such a number.

Does Celery have many dependencies?

A common criticism is that Celery uses too many dependencies.
The rationale behind such a fear is hard to imagine, especially considering
code reuse as the established way to combat complexity in modern software
development, and that the cost of adding dependencies is very low now
that package managers like pip and PyPI makes the hassle of installing
and maintaining dependencies a thing of the past.

Celery has replaced several dependencies along the way, and
the current list of dependencies are:

celery

	kombu [https://pypi.python.org/pypi/kombu/]

Kombu is part of the Celery ecosystem and is the library used
to send and receive messages. It’s also the library that enables
us to support many different message brokers. It’s also used by the
OpenStack project, and many others, validating the choice to separate
it from the Celery code-base.

	billiard [https://pypi.python.org/pypi/billiard/]

Billiard is a fork of the Python multiprocessing module containing
many performance and stability improvements. It’s an eventual goal
that these improvements will be merged back into Python one day.

It’s also used for compatibility with older Python versions
that don’t come with the multiprocessing module.

	pytz [https://pypi.python.org/pypi/pytz/]

The pytz module provides timezone definitions and related tools.

kombu

Kombu depends on the following packages:

	amqp [https://pypi.python.org/pypi/amqp/]

The underlying pure-Python amqp client implementation. AMQP being the default
broker this is a natural dependency.

Note

To handle the dependencies for popular configuration
choices Celery defines a number of “bundle” packages,
see Bundles.

Is Celery heavy-weight?

Celery poses very little overhead both in memory footprint and
performance.

But please note that the default configuration isn’t optimized for time nor
space, see the Optimizing guide for more information.

Is Celery dependent on pickle?

Answer: No, Celery can support any serialization scheme.

We have built-in support for JSON, YAML, Pickle, and msgpack.
Every task is associated with a content type, so you can even send one task using pickle,
another using JSON.

The default serialization support used to be pickle, but since 4.0 the default
is now JSON. If you require sending complex Python objects as task arguments,
you can use pickle as the serialization format, but see notes in
Serializers.

If you need to communicate with other languages you should use
a serialization format suited to that task, which pretty much means any
serializer that’s not pickle.

You can set a global default serializer, the default serializer for a
particular Task, or even what serializer to use when sending a single task
instance.

Is Celery for Django only?

Answer: No, you can use Celery with any framework, web or otherwise.

Do I have to use AMQP/RabbitMQ?

Answer: No, although using RabbitMQ is recommended you can also
use Redis, SQS, or Qpid.

See Brokers for more information.

Redis as a broker won’t perform as well as
an AMQP broker, but the combination RabbitMQ as broker and Redis as a result
store is commonly used. If you have strict reliability requirements you’re
encouraged to use RabbitMQ or another AMQP broker. Some transports also uses
polling, so they’re likely to consume more resources. However, if you for
some reason aren’t able to use AMQP, feel free to use these alternatives.
They will probably work fine for most use cases, and note that the above
points are not specific to Celery; If using Redis/database as a queue worked
fine for you before, it probably will now. You can always upgrade later
if you need to.

Is Celery multilingual?

Answer: Yes.

worker is an implementation of Celery in Python. If the
language has an AMQP client, there shouldn’t be much work to create a worker
in your language. A Celery worker is just a program connecting to the broker
to process messages.

Also, there’s another way to be language independent, and that’s to use REST
tasks, instead of your tasks being functions, they’re URLs. With this
information you can even create simple web servers that enable preloading of
code. Simply expose an endpoint that performs an operation, and create a task
that just performs an HTTP request to that endpoint.

Troubleshooting

MySQL is throwing deadlock errors, what can I do?

Answer: MySQL has default isolation level set to REPEATABLE-READ,
if you don’t really need that, set it to READ-COMMITTED.
You can do that by adding the following to your my.cnf:

[mysqld]
transaction-isolation = READ-COMMITTED

For more information about InnoDB`s transaction model see MySQL - The InnoDB
Transaction Model and Locking [http://dev.mysql.com/doc/refman/5.1/en/innodb-transaction-model.html] in the MySQL user manual.

(Thanks to Honza Kral and Anton Tsigularov for this solution)

The worker isn’t doing anything, just hanging

	Answer: See MySQL is throwing deadlock errors, what can I do?.

	or Why is Task.delay/apply* just hanging?.

Task results aren’t reliably returning

Answer: If you’re using the database backend for results, and in particular
using MySQL, see MySQL is throwing deadlock errors, what can I do?.

Why is Task.delay/apply*/the worker just hanging?

Answer: There’s a bug in some AMQP clients that’ll make it hang if
it’s not able to authenticate the current user, the password doesn’t match or
the user doesn’t have access to the virtual host specified. Be sure to check
your broker logs (for RabbitMQ that’s /var/log/rabbitmq/rabbit.log on
most systems), it usually contains a message describing the reason.

Does it work on FreeBSD?

Answer: Depends;

When using the RabbitMQ (AMQP) and Redis transports it should work
out of the box.

For other transports the compatibility prefork pool is
used and requires a working POSIX semaphore implementation,
this is enabled in FreeBSD by default since FreeBSD 8.x.
For older version of FreeBSD, you have to enable
POSIX semaphores in the kernel and manually recompile billiard.

Luckily, Viktor Petersson has written a tutorial to get you started with
Celery on FreeBSD here:
http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/

I’m having IntegrityError: Duplicate Key errors. Why?

Answer: See MySQL is throwing deadlock errors, what can I do?.
Thanks to @@howsthedotcom [https://github.com/@howsthedotcom/].

Why aren’t my tasks processed?

Answer: With RabbitMQ you can see how many consumers are currently
receiving tasks by running the following command:

$ rabbitmqctl list_queues -p <myvhost> name messages consumers
Listing queues ...
celery 2891 2

This shows that there’s 2891 messages waiting to be processed in the task
queue, and there are two consumers processing them.

One reason that the queue is never emptied could be that you have a stale
worker process taking the messages hostage. This could happen if the worker
wasn’t properly shut down.

When a message is received by a worker the broker waits for it to be
acknowledged before marking the message as processed. The broker won’t
re-send that message to another consumer until the consumer is shut down
properly.

If you hit this problem you have to kill all workers manually and restart
them:

$ pkill 'celery worker'

$ # - If you don't have pkill use:
$ # ps auxww | grep 'celery worker' | awk '{print $2}' | xargs kill

You may have to wait a while until all workers have finished executing
tasks. If it’s still hanging after a long time you can kill them by force
with:

$ pkill -9 'celery worker'

$ # - If you don't have pkill use:
$ # ps auxww | grep 'celery worker' | awk '{print $2}' | xargs kill -9

Why won’t my Task run?

Answer: There might be syntax errors preventing the tasks module being imported.

You can find out if Celery is able to run the task by executing the
task manually:

>>> from myapp.tasks import MyPeriodicTask
>>> MyPeriodicTask.delay()

Watch the workers log file to see if it’s able to find the task, or if some
other error is happening.

Why won’t my periodic task run?

Answer: See Why won’t my Task run?.

How do I purge all waiting tasks?

Answer: You can use the celery purge command to purge
all configured task queues:

$ celery -A proj purge

or programmatically:

>>> from proj.celery import app
>>> app.control.purge()
1753

If you only want to purge messages from a specific queue
you have to use the AMQP API or the celery amqp utility:

$ celery -A proj amqp queue.purge <queue name>

The number 1753 is the number of messages deleted.

You can also start the worker with the
--purge option enabled to purge messages
when the worker starts.

I’ve purged messages, but there are still messages left in the queue?

Answer: Tasks are acknowledged (removed from the queue) as soon
as they’re actually executed. After the worker has received a task, it will
take some time until it’s actually executed, especially if there are a lot
of tasks already waiting for execution. Messages that aren’t acknowledged are
held on to by the worker until it closes the connection to the broker (AMQP
server). When that connection is closed (e.g., because the worker was stopped)
the tasks will be re-sent by the broker to the next available worker (or the
same worker when it has been restarted), so to properly purge the queue of
waiting tasks you have to stop all the workers, and then purge the tasks
using celery.control.purge().

Results

How do I get the result of a task if I have the ID that points there?

Answer: Use task.AsyncResult:

>>> result = my_task.AsyncResult(task_id)
>>> result.get()

This will give you a AsyncResult instance
using the tasks current result backend.

If you need to specify a custom result backend, or you want to use
the current application’s default backend you can use
app.AsyncResult:

>>> result = app.AsyncResult(task_id)
>>> result.get()

Security

Isn’t using pickle a security concern?

Answer: Indeed, since Celery 4.0 the default serializer is now JSON
to make sure people are choosing serializers consciously and aware of this concern.

It’s essential that you protect against unauthorized
access to your broker, databases and other services transmitting pickled
data.

Note that this isn’t just something you should be aware of with Celery, for
example also Django uses pickle for its cache client.

For the task messages you can set the task_serializer
setting to “json” or “yaml” instead of pickle.

Similarly for task results you can set result_serializer.

For more details of the formats used and the lookup order when
checking what format to use for a task see Serializers

Can messages be encrypted?

Answer: Some AMQP brokers supports using SSL (including RabbitMQ).
You can enable this using the broker_use_ssl setting.

It’s also possible to add additional encryption and security to messages,
if you have a need for this then you should contact the Mailing list.

Is it safe to run celery worker as root?

Answer: No!

We’re not currently aware of any security issues, but it would
be incredibly naive to assume that they don’t exist, so running
the Celery services (celery worker, celery beat,
celeryev, etc) as an unprivileged user is recommended.

Brokers

Why is RabbitMQ crashing?

Answer: RabbitMQ will crash if it runs out of memory. This will be fixed in a
future release of RabbitMQ. please refer to the RabbitMQ FAQ:
http://www.rabbitmq.com/faq.html#node-runs-out-of-memory

Note

This is no longer the case, RabbitMQ versions 2.0 and above
includes a new persister, that’s tolerant to out of memory
errors. RabbitMQ 2.1 or higher is recommended for Celery.

If you’re still running an older version of RabbitMQ and experience
crashes, then please upgrade!

Misconfiguration of Celery can eventually lead to a crash
on older version of RabbitMQ. Even if it doesn’t crash, this
can still consume a lot of resources, so it’s
important that you’re aware of the common pitfalls.

	Events.

Running worker with the -E
option will send messages for events happening inside of the worker.

Events should only be enabled if you have an active monitor consuming them,
or if you purge the event queue periodically.

	AMQP backend results.

When running with the AMQP result backend, every task result will be sent
as a message. If you don’t collect these results, they will build up and
RabbitMQ will eventually run out of memory.

This result backend is now deprecated so you shouldn’t be using it.
Use either the RPC backend for rpc-style calls, or a persistent backend
if you need multi-consumer access to results.

Results expire after 1 day by default. It may be a good idea
to lower this value by configuring the result_expires
setting.

If you don’t use the results for a task, make sure you set the
ignore_result option:

@app.task(ignore_result=True)
def mytask():
 pass

class MyTask(Task):
 ignore_result = True

Can I use Celery with ActiveMQ/STOMP?

Answer: No. It used to be supported by Carrot [https://pypi.python.org/pypi/Carrot/] (our old messaging library)
but isn’t currently supported in Kombu [https://pypi.python.org/pypi/Kombu/] (our new messaging library).

What features aren’t supported when not using an AMQP broker?

This is an incomplete list of features not available when
using the virtual transports:

	Remote control commands (supported only by Redis).

	Monitoring with events may not work in all virtual transports.

	
	The header and fanout exchange types

	(fanout is supported by Redis).

Tasks

How can I reuse the same connection when calling tasks?

Answer: See the broker_pool_limit setting.
The connection pool is enabled by default since version 2.5.

sudo in a subprocess [https://docs.python.org/dev/library/subprocess.html#module-subprocess] returns None

There’s a sudo configuration option that makes it illegal
for process without a tty to run sudo:

Defaults requiretty

If you have this configuration in your /etc/sudoers file then
tasks won’t be able to call sudo when the worker is
running as a daemon. If you want to enable that, then you need to remove
the line from /etc/sudoers.

See: http://timelordz.com/wiki/Apache_Sudo_Commands

Why do workers delete tasks from the queue if they’re unable to process them?

Answer:

The worker rejects unknown tasks, messages with encoding errors and messages
that don’t contain the proper fields (as per the task message protocol).

If it didn’t reject them they could be redelivered again and again,
causing a loop.

Recent versions of RabbitMQ has the ability to configure a dead-letter
queue for exchange, so that rejected messages is moved there.

Can I call a task by name?

Answer: Yes, use app.send_task().

You can also call a task by name, from any language,
using an AMQP client:

>>> app.send_task('tasks.add', args=[2, 2], kwargs={})
<AsyncResult: 373550e8-b9a0-4666-bc61-ace01fa4f91d>

Can I get the task id of the current task?

Answer: Yes, the current id and more is available in the task request:

@app.task(bind=True)
def mytask(self):
 cache.set(self.request.id, "Running")

For more information see Task Request.

If you don’t have a reference to the task instance you can use
app.current_task:

>>> app.current_task.request.id

But note that this will be any task, be it one executed by the worker, or a
task called directly by that task, or a task called eagerly.

To get the current task being worked on specifically, use
current_worker_task:

>>> app.current_worker_task.request.id

Note

Both current_task, and current_worker_task can be
None.

Can I specify a custom task_id?

Answer: Yes, use the task_id argument to Task.apply_async():

>>> task.apply_async(args, kwargs, task_id='…')

Can I use decorators with tasks?

Answer: Yes, but please see note in the sidebar at Basics.

Can I use natural task ids?

Answer: Yes, but make sure it’s unique, as the behavior
for two tasks existing with the same id is undefined.

The world will probably not explode, but they can
definitely overwrite each others results.

Can I run a task once another task has finished?

Answer: Yes, you can safely launch a task inside a task.

A common pattern is to add callbacks to tasks:

from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)

@app.task
def add(x, y):
 return x + y

@app.task(ignore_result=True)
def log_result(result):
 logger.info("log_result got: %r", result)

Invocation:

>>> (add.s(2, 2) | log_result.s()).delay()

See Canvas: Designing Work-flows for more information.

Can I cancel the execution of a task?

Answer: Yes, Use result.revoke():

>>> result = add.apply_async(args=[2, 2], countdown=120)
>>> result.revoke()

or if you only have the task id:

>>> from proj.celery import app
>>> app.control.revoke(task_id)

The latter also support passing a list of task-ids as argument.

Why aren’t my remote control commands received by all workers?

Answer: To receive broadcast remote control commands, every worker node
creates a unique queue name, based on the nodename of the worker.

If you have more than one worker with the same host name, the
control commands will be received in round-robin between them.

To work around this you can explicitly set the nodename for every worker
using the -n argument to
worker:

$ celery -A proj worker -n worker1@%h
$ celery -A proj worker -n worker2@%h

where %h expands into the current hostname.

Can I send some tasks to only some servers?

Answer: Yes, you can route tasks to one or more workers,
using different message routing topologies, and a worker instance
can bind to multiple queues.

See Routing Tasks for more information.

Can I disable prefetching of tasks?

Answer: Maybe! The AMQP term “prefetch” is confusing, as it’s only used
to describe the task prefetching limit. There’s no actual prefetching involved.

Disabling the prefetch limits is possible, but that means the worker will
consume as many tasks as it can, as fast as possible.

A discussion on prefetch limits, and configuration settings for a worker
that only reserves one task at a time is found here:
Prefetch Limits.

Can I change the interval of a periodic task at runtime?

Answer: Yes, you can use the Django database scheduler, or you can
create a new schedule subclass and override
is_due():

from celery.schedules import schedule

class my_schedule(schedule):

 def is_due(self, last_run_at):
 return run_now, next_time_to_check

Does Celery support task priorities?

Answer: Yes, RabbitMQ supports priorities since version 3.5.0,
and the Redis transport emulates priority support.

You can also prioritize work by routing high priority tasks
to different workers. In the real world this usually works better
than per message priorities. You can use this in combination with rate
limiting, and per message priorities to achieve a responsive system.

Should I use retry or acks_late?

Answer: Depends. It’s not necessarily one or the other, you may want
to use both.

Task.retry is used to retry tasks, notably for expected errors that
is catch-able with the try [https://docs.python.org/dev/reference/compound_stmts.html#try] block. The AMQP transaction isn’t used
for these errors: if the task raises an exception it’s still acknowledged!

The acks_late setting would be used when you need the task to be
executed again if the worker (for some reason) crashes mid-execution.
It’s important to note that the worker isn’t known to crash, and if
it does it’s usually an unrecoverable error that requires human
intervention (bug in the worker, or task code).

In an ideal world you could safely retry any task that’s failed, but
this is rarely the case. Imagine the following task:

@app.task
def process_upload(filename, tmpfile):
 # Increment a file count stored in a database
 increment_file_counter()
 add_file_metadata_to_db(filename, tmpfile)
 copy_file_to_destination(filename, tmpfile)

If this crashed in the middle of copying the file to its destination
the world would contain incomplete state. This isn’t a critical
scenario of course, but you can probably imagine something far more
sinister. So for ease of programming we have less reliability;
It’s a good default, users who require it and know what they
are doing can still enable acks_late (and in the future hopefully
use manual acknowledgment).

In addition Task.retry has features not available in AMQP
transactions: delay between retries, max retries, etc.

So use retry for Python errors, and if your task is idempotent
combine that with acks_late if that level of reliability
is required.

Can I schedule tasks to execute at a specific time?

Answer: Yes. You can use the eta argument of Task.apply_async().

See also Periodic Tasks.

Can I safely shut down the worker?

Answer: Yes, use the TERM signal.

This will tell the worker to finish all currently
executing jobs and shut down as soon as possible. No tasks should be lost
even with experimental transports as long as the shutdown completes.

You should never stop worker with the KILL signal
(kill -9), unless you’ve tried TERM a few times and waited a few
minutes to let it get a chance to shut down.

Also make sure you kill the main worker process only, not any of its child
processes. You can direct a kill signal to a specific child process if
you know the process is currently executing a task the worker shutdown
is depending on, but this also means that a WorkerLostError state will
be set for the task so the task won’t run again.

Identifying the type of process is easier if you have installed the
setproctitle [https://pypi.python.org/pypi/setproctitle/] module:

$ pip install setproctitle

With this library installed you’ll be able to see the type of process in
ps listings, but the worker must be restarted for this to take effect.

See also

Stopping the worker

Can I run the worker in the background on [platform]?

Answer: Yes, please see Daemonization.

Django

What purpose does the database tables created by django-celery-beat have?

When the database-backed schedule is used the periodic task
schedule is taken from the PeriodicTask model, there are
also several other helper tables (IntervalSchedule,
CrontabSchedule, PeriodicTasks).

What purpose does the database tables created by django-celery-results have?

The Django database result backend extension requires
two extra models: TaskResult and GroupResult.

Windows

Does Celery support Windows?

Answer: No.

Since Celery 4.x, Windows is no longer supported due to lack of resources.

But it may still work and we are happy to accept patches.

 Change history

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

Change history

This document contains change notes for bugfix releases in
the 4.0.x series (latentcall), please see What’s new in Celery 4.0 (latentcall) for
an overview of what’s new in Celery 4.0.

4.0.2

	release-date:	2016-12-15 03:40 PM PST

	release-by:	Ask Solem

	Requirements

	Now depends on Kombu 4.0.2 [http://kombu.readthedocs.io/en/master/changelog.html#version-4-0-2].

	
	Tasks: Fixed problem with JSON serialization of group (``keys must be

	string`` error, Issue #3688 [https://github.com/celery/celery/issues/3688]).

	Worker: Fixed JSON serialization issue when using inspect active
and friends (Issue #3667 [https://github.com/celery/celery/issues/3667]).

	App: Fixed saferef errors when using signals (Issue #3670 [https://github.com/celery/celery/issues/3670]).

	Prefork: Fixed bug with pack requiring bytes argument
on Python 2.7.5 and earlier (Issue #3674 [https://github.com/celery/celery/issues/3674]).

	Tasks: Saferepr did not handle unicode in bytestrings on Python 2
(Issue #3676 [https://github.com/celery/celery/issues/3676]).

	Testing: Added new celery_worker_paremeters fixture.

Contributed by Michael Howitz.

	Tasks: Added new app argument to GroupResult.restore
(Issue #3669 [https://github.com/celery/celery/issues/3669]).

This makes the restore method behave the same way as the GroupResult
constructor.

Contributed by Andreas Pelme.

	Tasks: Fixed type checking crash when task takes *args on Python 3
(Issue #3678 [https://github.com/celery/celery/issues/3678]).

	Documentation and examples improvements by:

	BLAGA Razvan-Paul

	Michael Howitz

	@paradox41 [https://github.com/paradox41/]

4.0.1

	release-date:	2016-12-08 05:22 PM PST

	release-by:	Ask Solem

	[Security: CELERYSA-0003 [https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0003.txt]] Insecure default configuration

The default accept_content setting was set to allow
deserialization of pickled messages in Celery 4.0.0.

The insecure default has been fixed in 4.0.1, and you can also
configure the 4.0.0 version to explicitly only allow json serialized
messages:

app.conf.accept_content = ['json']

	Tasks: Added new method to register class-based tasks (Issue #3615 [https://github.com/celery/celery/issues/3615]).

To register a class based task you should now call app.register_task:

from celery import Celery, Task

app = Celery()

class CustomTask(Task):

 def run(self):
 return 'hello'

app.register_task(CustomTask())

	Tasks: Argument checking now supports keyword-only arguments on Python3
(Issue #3658 [https://github.com/celery/celery/issues/3658]).

Contributed by @sww [https://github.com/sww/].

	Tasks: The task-sent event was not being sent even if
configured to do so (Issue #3646 [https://github.com/celery/celery/issues/3646]).

	Worker: Fixed AMQP heartbeat support for eventlet/gevent pools
(Issue #3649 [https://github.com/celery/celery/issues/3649]).

	App: app.conf.humanize() would not work if configuration
not finalized (Issue #3652 [https://github.com/celery/celery/issues/3652]).

	Utils: saferepr attempted to show iterables as lists
and mappings as dicts.

	Utils: saferepr did not handle unicode-errors
when attempting to format bytes on Python 3 (Issue #3610 [https://github.com/celery/celery/issues/3610]).

	Utils: saferepr should now properly represent byte strings
with non-ascii characters (Issue #3600 [https://github.com/celery/celery/issues/3600]).

	Results: Fixed bug in elasticsearch where _index method missed
the body argument (Issue #3606 [https://github.com/celery/celery/issues/3606]).

Fix contributed by 何翔宇 (Sean Ho).

	Canvas: Fixed ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError] in chord with single task header
(Issue #3608 [https://github.com/celery/celery/issues/3608]).

Fix contributed by Viktor Holmqvist.

	Task: Ensure class-based task has name prior to registration
(Issue #3616 [https://github.com/celery/celery/issues/3616]).

Fix contributed by Rick Wargo.

	Beat: Fixed problem with strings in shelve (Issue #3644 [https://github.com/celery/celery/issues/3644]).

Fix contributed by Alli.

	Worker: Fixed KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] in inspect stats when -O argument
set to something other than fast or fair (Issue #3621 [https://github.com/celery/celery/issues/3621]).

	Task: Retried tasks were no longer sent to the original queue
(Issue #3622 [https://github.com/celery/celery/issues/3622]).

	Worker: Python 3: Fixed None/int type comparison in
apps/worker.py (Issue #3631 [https://github.com/celery/celery/issues/3631]).

	Results: Redis has a new redis_socket_connect_timeout
setting.

	Results: Redis result backend passed the socket_connect_timeout
argument to UNIX socket based connections by mistake, causing a crash.

	Worker: Fixed missing logo in worker splash screen when running on
Python 3.x (Issue #3627 [https://github.com/celery/celery/issues/3627]).

Fix contributed by Brian Luan.

	Deps: Fixed celery[redis] bundle installation (Issue #3643 [https://github.com/celery/celery/issues/3643]).

Fix contributed by Rémi Marenco.

	Deps: Bundle celery[sqs] now also requires pycurl [https://pypi.python.org/pypi/pycurl/]
(Issue #3619 [https://github.com/celery/celery/issues/3619]).

	Worker: Hard time limits were no longer being respected (Issue #3618 [https://github.com/celery/celery/issues/3618]).

	Worker: Soft time limit log showed Trues instead of the number
of seconds.

	App: registry_cls argument no longer had any effect (Issue #3613 [https://github.com/celery/celery/issues/3613]).

	Worker: Event producer now uses connection_for_Write (Issue #3525 [https://github.com/celery/celery/issues/3525]).

	Results: Redis/memcache backends now uses result_expires
to expire chord counter (Issue #3573 [https://github.com/celery/celery/issues/3573]).

Contributed by Tayfun Sen.

	Django: Fixed command for upgrading settings with Django (Issue #3563 [https://github.com/celery/celery/issues/3563]).

Fix contributed by François Voron.

	Testing: Added a celery_parameters test fixture to be able to use
customized Celery init parameters. (#3626)

Contributed by Steffen Allner.

	Documentation improvements contributed by

	@csfeathers [https://github.com/csfeathers/]

	Moussa Taifi

	Yuhannaa

	Laurent Peuch

	Christian

	Bruno Alla

	Steven Johns

	@tnir [https://github.com/tnir/]

	GDR!

4.0.0

	release-date:	2016-11-04 02:00 P.M PDT

	release-by:	Ask Solem

See What’s new in Celery 4.0 (latentcall) (in docs/whatsnew-4.0.rst).

4.0.0rc7

	release-date:	2016-11-02 01:30 P.M PDT

Important notes

	Database result backend related setting names changed from
sqlalchemy_* -> database_*.

The sqlalchemy_ named settings won’t work at all in this
version so you need to rename them. This is a last minute change,
and as they were not supported in 3.1 we will not be providing
aliases.

	chain(A, B, C) now works the same way as A | B | C.

This means calling chain() might not actually return a chain,
it can return a group or any other type depending on how the
workflow can be optimized.

 What’s new in Celery 4.0 (latentcall)

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

What’s new in Celery 4.0 (latentcall)

	Author:	Ask Solem (ask at celeryproject.org)

Change history

What’s new documents describe the changes in major versions,
we also have a Change history that lists the changes in bugfix
releases (0.0.x), while older series are archived under the History
section.

Celery is a simple, flexible, and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

This version is officially supported on CPython 2.7, 3.4, and 3.5.
and also supported on PyPy.

Table of Contents

Make sure you read the important notes before upgrading to this version.

	Preface
	Wall of Contributors

	Upgrading from Celery 3.1
	Step 1: Upgrade to Celery 3.1.25

	Step 2: Update your configuration with the new setting names

	Step 3: Read the important notes in this document

	Step 4: Upgrade to Celery 4.0

	Important Notes
	Dropped support for Python 2.6

	Last major version to support Python 2

	Django support

	Removed features
	Features removed for simplicity

	Features removed for lack of funding

	New Task Message Protocol

	Lowercase setting names

	Json is now the default serializer

	The Task base class no longer automatically register tasks

	Task argument checking

	Redis Events not backward compatible

	Redis Priorities Reversed

	Django: Auto-discover now supports Django app configurations

	Worker direct queues no longer use auto-delete

	Old command-line programs removed

	News
	New protocol highlights

	Prefork Pool Improvements
	Tasks now log from the child process

	-Ofair is now the default scheduling strategy

	Limit child process resident memory size

	One log-file per child process

	Transports
	RabbitMQ priority queue support

	Configure broker URL for read/write separately

	RabbitMQ queue extensions support

	Amazon SQS transport now officially supported

	Apache QPid transport now officially supported

	Redis: Support for Sentinel

	Tasks
	Task Auto-retry Decorator

	Task.replace Improvements

	Remote Task Tracebacks

	Handling task connection errors

	Gevent/Eventlet: Dedicated thread for consuming results

	AsyncResult.then(on_success, on_error)

	New Task Router API

	Canvas Refactor

	Periodic Tasks
	New API for configuring periodic tasks

	Optimized Beat implementation

	Schedule tasks based on sunrise, sunset, dawn and dusk

	Result Backends
	RPC Result Backend matured

	Redis: Result backend optimizations

	New Riak result backend introduced

	New CouchDB result backend introduced

	New Consul result backend introduced

	Brand new Cassandra result backend

	New Elasticsearch result backend introduced

	New File-system result backend introduced

	Event Batching

	In Other News...
	Requirements

	Tasks

	Beat

	App

	Logging

	Execution Pools

	Testing
	Transports

	Programs

	Worker

	Debugging Utilities

	Signals

	Events

	Deployment

	Result Backends

	Documentation Improvements

	Reorganization, Deprecations, and Removals
	Incompatible changes

	Unscheduled Removals

	Reorganization Deprecations

	Scheduled Removals
	Modules

	Result

	TaskSet

	Events

	Magic keyword arguments

	Removed Settings
	Logging Settings

	Task Settings

	Changes to internal API

	Deprecation Time-line Changes

Preface

Welcome to Celery 4!

This is a massive release with over two years of changes.
Not only does it come with many new features, but it also fixes
a massive list of bugs, so in many ways you could call it
our “Snow Leopard” release.

The next major version of Celery will support Python 3.5 only, were
we are planning to take advantage of the new asyncio library.

This release would not have been possible without the support
of my employer, Robinhood [http://robinhood.com] (we’re hiring!).

	Ask Solem

Dedicated to Sebastian “Zeb” Bjørnerud (RIP),
with special thanks to Ty Wilkins [http://tywilkins.com], for designing our new logo,
all the contributors who help make this happen, and my colleagues
at Robinhood [http://robinhood.com].

Wall of Contributors

Aaron McMillin, Adam Chainz, Adam Renberg, Adriano Martins de Jesus,
Adrien Guinet, Ahmet Demir, Aitor Gómez-Goiri, Alan Justino,
Albert Wang, Alex Koshelev, Alex Rattray, Alex Williams, Alexander Koshelev,
Alexander Lebedev, Alexander Oblovatniy, Alexey Kotlyarov, Ali Bozorgkhan,
Alice Zoë Bevan–McGregor, Allard Hoeve, Alman One, Amir Rustamzadeh,
Andrea Rabbaglietti, Andrea Rosa, Andrei Fokau, Andrew Rodionoff,
Andrew Stewart, Andriy Yurchuk, Aneil Mallavarapu, Areski Belaid,
Armenak Baburyan, Arthur Vuillard, Artyom Koval, Asif Saifuddin Auvi,
Ask Solem, Balthazar Rouberol, Batiste Bieler, Berker Peksag,
Bert Vanderbauwhede, Brendan Smithyman, Brian Bouterse, Bryce Groff,
Cameron Will, ChangBo Guo, Chris Clark, Chris Duryee, Chris Erway,
Chris Harris, Chris Martin, Chillar Anand, Colin McIntosh, Conrad Kramer,
Corey Farwell, Craig Jellick, Cullen Rhodes, Dallas Marlow, Daniel Devine,
Daniel Wallace, Danilo Bargen, Davanum Srinivas, Dave Smith, David Baumgold,
David Harrigan, David Pravec, Dennis Brakhane, Derek Anderson,
Dmitry Dygalo, Dmitry Malinovsky, Dongweiming, Dudás Ádám,
Dustin J. Mitchell, Ed Morley, Edward Betts, Éloi Rivard, Emmanuel Cazenave,
Fahad Siddiqui, Fatih Sucu, Feanil Patel, Federico Ficarelli, Felix Schwarz,
Felix Yan, Fernando Rocha, Flavio Grossi, Frantisek Holop, Gao Jiangmiao,
George Whewell, Gerald Manipon, Gilles Dartiguelongue, Gino Ledesma, Greg Wilbur,
Guillaume Seguin, Hank John, Hogni Gylfason, Ilya Georgievsky,
Ionel Cristian Mărieș, Ivan Larin, James Pulec, Jared Lewis, Jason Veatch,
Jasper Bryant-Greene, Jeff Widman, Jeremy Tillman, Jeremy Zafran,
Jocelyn Delalande, Joe Jevnik, Joe Sanford, John Anderson, John Barham,
John Kirkham, John Whitlock, Jonathan Vanasco, Joshua Harlow, João Ricardo,
Juan Carlos Ferrer, Juan Rossi, Justin Patrin, Kai Groner, Kevin Harvey,
Kevin Richardson, Komu Wairagu, Konstantinos Koukopoulos, Kouhei Maeda,
Kracekumar Ramaraju, Krzysztof Bujniewicz, Latitia M. Haskins, Len Buckens,
Lev Berman, lidongming, Lorenzo Mancini, Lucas Wiman, Luke Pomfrey,
Luyun Xie, Maciej Obuchowski, Manuel Kaufmann, Marat Sharafutdinov,
Marc Sibson, Marcio Ribeiro, Marin Atanasov Nikolov, Mathieu Fenniak,
Mark Parncutt, Mauro Rocco, Maxime Beauchemin, Maxime Vdb, Mher Movsisyan,
Michael Aquilina, Michael Duane Mooring, Michael Permana, Mickaël Penhard,
Mike Attwood, Mitchel Humpherys, Mohamed Abouelsaoud, Morris Tweed, Morton Fox,
Môshe van der Sterre, Nat Williams, Nathan Van Gheem, Nicolas Unravel,
Nik Nyby, Omer Katz, Omer Korner, Ori Hoch, Paul Pearce, Paulo Bu,
Pavlo Kapyshin, Philip Garnero, Pierre Fersing, Piotr Kilczuk,
Piotr Maślanka, Quentin Pradet, Radek Czajka, Raghuram Srinivasan,
Randy Barlow, Raphael Michel, Rémy Léone, Robert Coup, Robert Kolba,
Rockallite Wulf, Rodolfo Carvalho, Roger Hu, Romuald Brunet, Rongze Zhu,
Ross Deane, Ryan Luckie, Rémy Greinhofer, Samuel Giffard, Samuel Jaillet,
Sergey Azovskov, Sergey Tikhonov, Seungha Kim, Simon Peeters,
Spencer E. Olson, Srinivas Garlapati, Stephen Milner, Steve Peak, Steven Sklar,
Stuart Axon, Sukrit Khera, Tadej Janež, Taha Jahangir, Takeshi Kanemoto,
Tayfun Sen, Tewfik Sadaoui, Thomas French, Thomas Grainger, Tomas Machalek,
Tobias Schottdorf, Tocho Tochev, Valentyn Klindukh, Vic Kumar,
Vladimir Bolshakov, Vladimir Gorbunov, Wayne Chang, Wieland Hoffmann,
Wido den Hollander, Wil Langford, Will Thompson, William King, Yury Selivanov,
Vytis Banaitis, Zoran Pavlovic, Xin Li, 許邱翔, @allenling [https://github.com/allenling/],
@alzeih [https://github.com/alzeih/], @bastb [https://github.com/bastb/], @bee-keeper [https://github.com/bee-keeper/],
@ffeast [https://github.com/ffeast/], @firefly4268 [https://github.com/firefly4268/],
@flyingfoxlee [https://github.com/flyingfoxlee/], @gdw2 [https://github.com/gdw2/], @gitaarik [https://github.com/gitaarik/],
@hankjin [https://github.com/hankjin/], @lvh [https://github.com/lvh/], @m-vdb [https://github.com/m-vdb/],
@kindule [https://github.com/kindule/], @mdk [https://github.com/mdk/]:, @michael-k [https://github.com/michael-k/],
@mozillazg [https://github.com/mozillazg/], @nokrik [https://github.com/nokrik/], @ocean1 [https://github.com/ocean1/],
@orlo666 [https://github.com/orlo666/], @raducc [https://github.com/raducc/], @wanglei [https://github.com/wanglei/],
@worldexception [https://github.com/worldexception/], @xBeAsTx [https://github.com/xBeAsTx/].

Note

This wall was automatically generated from git history,
so sadly it doesn’t not include the people who help with more important
things like answering mailing-list questions.

Upgrading from Celery 3.1

Step 1: Upgrade to Celery 3.1.25

If you haven’t already, the first step is to upgrade to Celery 3.1.25.

This version adds forward compatibility to the new message protocol,
so that you can incrementally upgrade from 3.1 to 4.0.

Deploy the workers first by upgrading to 3.1.25, this means these
workers can process messages sent by clients using both 3.1 and 4.0.

After the workers are upgraded you can upgrade the clients (e.g. web servers).

Step 2: Update your configuration with the new setting names

This version radically changes the configuration setting names,
to be more consistent.

The changes are fully backwards compatible, so you have the option to wait
until the old setting names are deprecated, but to ease the transition
we have included a command-line utility that rewrites your settings
automatically.

See Lowercase setting names for more information.

Step 3: Read the important notes in this document

Make sure you are not affected by any of the important upgrade notes
mentioned in the following section.

An especially important note is that Celery now checks the arguments
you send to a task by matching it to the signature (Task argument checking).

Step 4: Upgrade to Celery 4.0

At this point you can upgrade your workers and clients with the new version.

Important Notes

Dropped support for Python 2.6

Celery now requires Python 2.7 or later,
and also drops support for Python 3.3 so supported versions are:

	CPython 2.7

	CPython 3.4

	CPython 3.5

	PyPy 5.4 (pypy2)

	PyPy 5.5-alpha (pypy3)

Last major version to support Python 2

Starting from Celery 5.0 only Python 3.5+ will be supported.

To make sure you’re not affected by this change you should pin
the Celery version in your requirements file, either to a specific
version: celery==4.0.0, or a range: celery>=4.0,<5.0.

Dropping support for Python 2 will enable us to remove massive
amounts of compatibility code, and going with Python 3.5 allows
us to take advantage of typing, async/await, asyncio, and similar
concepts there’s no alternative for in older versions.

Celery 4.x will continue to work on Python 2.7, 3.4, 3.5; just as Celery 3.x
still works on Python 2.6.

Django support

Celery 4.x requires Django 1.8 or later, but we really recommend
using at least Django 1.9 for the new transaction.on_commit feature.

A common problem when calling tasks from Django is when the task is related
to a model change, and you wish to cancel the task if the transaction is
rolled back, or ensure the task is only executed after the changes have been
written to the database.

transaction.atomic enables you to solve this problem by adding
the task as a callback to be called only when the transaction is committed.

Example usage:

from functools import partial
from django.db import transaction

from .models import Article, Log
from .tasks import send_article_created_notification

def create_article(request):
 with transaction.atomic():
 article = Article.objects.create(**request.POST)
 # send this task only if the rest of the transaction succeeds.
 transaction.on_commit(partial(
 send_article_created_notification.delay, article_id=article.pk))
 Log.objects.create(type=Log.ARTICLE_CREATED, object_pk=article.pk)

Removed features

	Microsoft Windows is no longer supported.

The test suite is passing, and Celery seems to be working with Windows,
but we make no guarantees as we are unable to diagnose issues on this
platform. If you are a company requiring support on this platform,
please get in touch.

	Jython is no longer supported.

Features removed for simplicity

	Webhook task machinery (celery.task.http) has been removed.

Nowadays it’s easy to use the requests [https://pypi.python.org/pypi/requests/] module to write
webhook tasks manually. We would love to use requests but we
are simply unable to as there’s a very vocal ‘anti-dependency’
mob in the Python community

If you need backwards compatibility
you can simply copy + paste the 3.1 version of the module and make sure
it’s imported by the worker:
https://github.com/celery/celery/blob/3.1/celery/task/http.py

	Tasks no longer sends error emails.

This also removes support for app.mail_admins, and any functionality
related to sending emails.

	celery.contrib.batches has been removed.

This was an experimental feature, so not covered by our deprecation
timeline guarantee.

You can copy and pase the existing batches code for use within your projects:
https://github.com/celery/celery/blob/3.1/celery/contrib/batches.py

Features removed for lack of funding

We announced with the 3.1 release that some transports were
moved to experimental status, and that there’d be no official
support for the transports.

As this subtle hint for the need of funding failed
we’ve removed them completely, breaking backwards compatibility.

	Using the Django ORM as a broker is no longer supported.

You can still use the Django ORM as a result backend:
see django-celery-results - Using the Django ORM/Cache as a result backend section for more information.

	Using SQLAlchemy as a broker is no longer supported.

You can still use SQLAlchemy as a result backend.

	Using CouchDB as a broker is no longer supported.

You can still use CouchDB as a result backend.

	Using IronMQ as a broker is no longer supported.

	Using Beanstalk as a broker is no longer supported.

In addition some features have been removed completely so that
attempting to use them will raise an exception:

	The --autoreload feature has been removed.

This was an experimental feature, and not covered by our deprecation
timeline guarantee. The flag is removed completely so the worker
will crash at startup when present. Luckily this
flag isn’t used in production systems.

	The experimental threads pool is no longer supported and has been removed.

	The force_execv feature is no longer supported.

The celery worker command now ignores the --no-execv,
--force-execv, and the CELERYD_FORCE_EXECV setting.

This flag will be removed completely in 5.0 and the worker
will raise an error.

	The old legacy “amqp” result backend has been deprecated, and will
be removed in Celery 5.0.

Please use the rpc result backend for RPC-style calls, and a
persistent result backend for multi-consumer results.

We think most of these can be fixed without considerable effort, so if you’re
interested in getting any of these features back, please get in touch.

Now to the good news...

New Task Message Protocol

This version introduces a brand new task message protocol,
the first major change to the protocol since the beginning of the project.

The new protocol is enabled by default in this version and since the new
version isn’t backwards compatible you have to be careful when upgrading.

The 3.1.25 version was released to add compatibility with the new protocol
so the easiest way to upgrade is to upgrade to that version first, then
upgrade to 4.0 in a second deployment.

If you wish to keep using the old protocol you may also configure
the protocol version number used:

app = Celery()
app.conf.task_protocol = 1

Read more about the features available in the new protocol in the news
section found later in this document.

Lowercase setting names

In the pursuit of beauty all settings are now renamed to be in all
lowercase and some setting names have been renamed for consistency.

This change is fully backwards compatible so you can still use the uppercase
setting names, but we would like you to upgrade as soon as possible and
you can do this automatically using the celery upgrade settings
command:

$ celery upgrade settings proj/settings.py

This command will modify your module in-place to use the new lower-case
names (if you want uppercase with a “CELERY” prefix see block below),
and save a backup in proj/settings.py.orig.

For Django users and others who want to keep uppercase names

If you’re loading Celery configuration from the Django settings module
then you’ll want to keep using the uppercase names.

You also want to use a CELERY_ prefix so that no Celery settings
collide with Django settings used by other apps.

To do this, you’ll first need to convert your settings file
to use the new consistent naming scheme, and add the prefix to all
Celery related settings:

$ celery upgrade settings proj/settings.py --django

After upgrading the settings file, you need to set the prefix explicitly
in your proj/celery.py module:

app.config_from_object('django.conf:settings', namespace='CELERY')

You can find the most up to date Django Celery integration example
here: First steps with Django.

Note

This will also add a prefix to settings that didn’t previously
have one, for example BROKER_URL should be written
CELERY_BROKER_URL with a namespace of CELERY
CELERY_BROKER_URL.

Luckily you don’t have to manually change the files, as
the celery upgrade settings --django program should do the
right thing.

The loader will try to detect if your configuration is using the new format,
and act accordingly, but this also means you’re not allowed to mix and
match new and old setting names, that’s unless you provide a value for both
alternatives.

The major difference between previous versions, apart from the lower case
names, are the renaming of some prefixes, like celerybeat_ to beat_,
celeryd_ to worker_.

The celery_ prefix has also been removed, and task related settings
from this name-space is now prefixed by task_, worker related settings
with worker_.

Apart from this most of the settings will be the same in lowercase, apart from
a few special ones:

	Setting name
	Replace with

	CELERY_MAX_CACHED_RESULTS
	result_cache_max

	CELERY_MESSAGE_COMPRESSION
	result_compression/task_compression.

	CELERY_TASK_RESULT_EXPIRES
	result_expires

	CELERY_RESULT_DBURI
	result_backend

	CELERY_RESULT_ENGINE_OPTIONS
	database_engine_options

	-*-_DB_SHORT_LIVED_SESSIONS
	database_short_lived_sessions

	CELERY_RESULT_DB_TABLE_NAMES
	database_db_names

	CELERY_ACKS_LATE
	task_acks_late

	CELERY_ALWAYS_EAGER
	task_always_eager

	CELERY_ANNOTATIONS
	task_annotations

	CELERY_MESSAGE_COMPRESSION
	task_compression

	CELERY_CREATE_MISSING_QUEUES
	task_create_missing_queues

	CELERY_DEFAULT_DELIVERY_MODE
	task_default_delivery_mode

	CELERY_DEFAULT_EXCHANGE
	task_default_exchange

	CELERY_DEFAULT_EXCHANGE_TYPE
	task_default_exchange_type

	CELERY_DEFAULT_QUEUE
	task_default_queue

	CELERY_DEFAULT_RATE_LIMIT
	task_default_rate_limit

	CELERY_DEFAULT_ROUTING_KEY
	task_default_routing_key

	-"-_EAGER_PROPAGATES_EXCEPTIONS
	task_eager_propagates

	CELERY_IGNORE_RESULT
	task_ignore_result

	CELERY_TASK_PUBLISH_RETRY
	task_publish_retry

	CELERY_TASK_PUBLISH_RETRY_POLICY
	task_publish_retry_policy

	CELERY_QUEUES
	task_queues

	CELERY_ROUTES
	task_routes

	CELERY_SEND_TASK_SENT_EVENT
	task_send_sent_event

	CELERY_TASK_SERIALIZER
	task_serializer

	CELERYD_TASK_SOFT_TIME_LIMIT
	task_soft_time_limit

	CELERYD_TASK_TIME_LIMIT
	task_time_limit

	CELERY_TRACK_STARTED
	task_track_started

	CELERY_DISABLE_RATE_LIMITS
	worker_disable_rate_limits

	CELERY_ENABLE_REMOTE_CONTROL
	worker_enable_remote_control

	CELERYD_SEND_EVENTS
	worker_send_task_events

You can see a full table of the changes in New lowercase settings.

Json is now the default serializer

The time has finally come to end the reign of pickle [https://docs.python.org/dev/library/pickle.html#module-pickle] as the default
serialization mechanism, and json is the default serializer starting from this
version.

This change was announced with the release of Celery 3.1.

If you’re still depending on pickle [https://docs.python.org/dev/library/pickle.html#module-pickle] being the default serializer,
then you have to configure your app before upgrading to 4.0:

task_serializer = 'pickle'
result_serializer = 'pickle'
accept_content = {'pickle'}

The Json serializer now also supports some additional types:

	datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime], time [https://docs.python.org/dev/library/datetime.html#datetime.time], date [https://docs.python.org/dev/library/datetime.html#datetime.date]

Converted to json text, in ISO-8601 format.

	Decimal [https://docs.python.org/dev/library/decimal.html#decimal.Decimal]

Converted to json text.

	django.utils.functional.Promise

Django only: Lazy strings used for translation etc., are evaluated
and conversion to a json type is attempted.

	uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]

Converted to json text.

You can also define a __json__ method on your custom classes to support
JSON serialization (must return a json compatible type):

class Person:
 first_name = None
 last_name = None
 address = None

 def __json__(self):
 return {
 'first_name': self.first_name,
 'last_name': self.last_name,
 'address': self.address,
 }

The Task base class no longer automatically register tasks

The Task class is no longer using a special meta-class
that automatically registers the task in the task registry.

Instead this is now handled by the app.task decorators.

If you’re still using class based tasks, then you need to register
these manually:

class CustomTask(Task):
 def run(self):
 print('running')
app.register_task(CustomTask())

The best practice is to use custom task classes only for overriding
general behavior, and then using the task decorator to realize the task:

@app.task(bind=True, base=CustomTask)
def custom(self):
 print('running')

This change also means that the abstract attribute of the task
no longer has any effect.

Task argument checking

The arguments of the task are now verified when calling the task,
even asynchronously:

>>> @app.task
... def add(x, y):
... return x + y

>>> add.delay(8, 8)
<AsyncResult: f59d71ca-1549-43e0-be41-4e8821a83c0c>

>>> add.delay(8)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "celery/app/task.py", line 376, in delay
 return self.apply_async(args, kwargs)
 File "celery/app/task.py", line 485, in apply_async
 check_arguments(*(args or ()), **(kwargs or {}))
TypeError: add() takes exactly 2 arguments (1 given)

You can disable the argument checking for any task by setting its
typing attribute to False:

>>> @app.task(typing=False)
... def add(x, y):
... return x + y

Or if you would like to disable this completely for all tasks
you can pass strict_typing=False when creating the app:

app = Celery(..., strict_typing=False)

Redis Events not backward compatible

The Redis fanout_patterns and fanout_prefix transport
options are now enabled by default.

Workers/monitors without these flags enabled won’t be able to
see workers with this flag disabled. They can still execute tasks,
but they cannot receive each others monitoring messages.

You can upgrade in a backward compatible manner by first configuring
your 3.1 workers and monitors to enable the settings, before the final
upgrade to 4.0:

BROKER_TRANSPORT_OPTIONS = {
 'fanout_patterns': True,
 'fanout_prefix': True,
}

Redis Priorities Reversed

Priority 0 is now lowest, 9 is highest.

This change was made to make priority support consistent with how
it works in AMQP.

Contributed by Alex Koshelev.

Django: Auto-discover now supports Django app configurations

The autodiscover_tasks() function can now be called without arguments,
and the Django handler will automatically find your installed apps:

app.autodiscover_tasks()

The Django integration example in the documentation has been updated to use the argument-less call.

This also ensures compatibility with the new, ehm, AppConfig stuff
introduced in recent Django versions.

Worker direct queues no longer use auto-delete

Workers/clients running 4.0 will no longer be able to send
worker direct messages to workers running older versions, and vice versa.

If you’re relying on worker direct messages you should upgrade
your 3.x workers and clients to use the new routing settings first,
by replacing celery.utils.worker_direct() with this implementation:

from kombu import Exchange, Queue

worker_direct_exchange = Exchange('C.dq2')

def worker_direct(hostname):
 return Queue(
 '{hostname}.dq2'.format(hostname),
 exchange=worker_direct_exchange,
 routing_key=hostname,
)

This feature closed Issue #2492 [https://github.com/celery/celery/issues/2492].

Old command-line programs removed

Installing Celery will no longer install the celeryd,
celerybeat and celeryd-multi programs.

This was announced with the release of Celery 3.1, but you may still
have scripts pointing to the old names, so make sure you update these
to use the new umbrella command:

	Program
	New Status
	Replacement

	celeryd
	REMOVED
	celery worker

	celerybeat
	REMOVED
	celery beat

	celeryd-multi
	REMOVED
	celery multi

News

New protocol highlights

The new protocol fixes many problems with the old one, and enables
some long-requested features:

	Most of the data are now sent as message headers, instead of being
serialized with the message body.

In version 1 of the protocol the worker always had to deserialize
the message to be able to read task meta-data like the task id,
name, etc. This also meant that the worker was forced to double-decode
the data, first deserializing the message on receipt, serializing
the message again to send to child process, then finally the child process
deserializes the message again.

Keeping the meta-data fields in the message headers means the worker
doesn’t actually have to decode the payload before delivering
the task to the child process, and also that it’s now possible
for the worker to reroute a task written in a language different
from Python to a different worker.

	A new lang message header can be used to specify the programming
language the task is written in.

	Worker stores results for internal errors like ContentDisallowed,
and other deserialization errors.

	Worker stores results and sends monitoring events for unregistered
task errors.

	Worker calls callbacks/errbacks even when the result is sent by the
parent process (e.g., WorkerLostError when a child process
terminates, deserialization errors, unregistered tasks).

	A new origin header contains information about the process sending
the task (worker node-name, or PID and host-name information).

	A new shadow header allows you to modify the task name used in logs.

This is useful for dispatch like patterns, like a task that calls
any function using pickle (don’t do this at home):

from celery import Task
from celery.utils.imports import qualname

class call_as_task(Task):

 def shadow_name(self, args, kwargs, options):
 return 'call_as_task:{0}'.format(qualname(args[0]))

 def run(self, fun, *args, **kwargs):
 return fun(*args, **kwargs)
call_as_task = app.register_task(call_as_task())

	New argsrepr and kwargsrepr fields contain textual representations
of the task arguments (possibly truncated) for use in logs, monitors, etc.

This means the worker doesn’t have to deserialize the message payload
to display the task arguments for informational purposes.

	Chains now use a dedicated chain field enabling support for chains
of thousands and more tasks.

	New parent_id and root_id headers adds information about
a tasks relationship with other tasks.

	parent_id is the task id of the task that called this task

	root_id is the first task in the work-flow.

These fields can be used to improve monitors like flower to group
related messages together (like chains, groups, chords, complete
work-flows, etc).

	app.TaskProducer replaced by app.amqp.create_task_message() and
app.amqp.send_task_message().

Dividing the responsibilities into creating and sending means that
people who want to send messages using a Python AMQP client directly,
doesn’t have to implement the protocol.

The app.amqp.create_task_message() method calls either
app.amqp.as_task_v2(), or app.amqp.as_task_v1() depending
on the configured task protocol, and returns a special
task_message tuple containing the
headers, properties and body of the task message.

See also

The new task protocol is documented in full here:
Version 2.

Prefork Pool Improvements

Tasks now log from the child process

Logging of task success/failure now happens from the child process
executing the task. As a result logging utilities,
like Sentry can get full information about tasks, including
variables in the traceback stack.

-Ofair is now the default scheduling strategy

To re-enable the default behavior in 3.1 use the -Ofast command-line
option.

There’s been lots of confusion about what the -Ofair command-line option
does, and using the term “prefetch” in explanations have probably not helped
given how confusing this terminology is in AMQP.

When a Celery worker using the prefork pool receives a task, it needs to
delegate that task to a child process for execution.

The prefork pool has a configurable number of child processes
(--concurrency) that can be used to execute tasks, and each child process
uses pipes/sockets to communicate with the parent process:

	inqueue (pipe/socket): parent sends task to the child process

	outqueue (pipe/socket): child sends result/return value to the parent.

In Celery 3.1 the default scheduling mechanism was simply to send
the task to the first inqueue that was writable, with some heuristics
to make sure we round-robin between them to ensure each child process
would receive the same amount of tasks.

This means that in the default scheduling strategy, a worker may send
tasks to the same child process that is already executing a task. If that
task is long running, it may block the waiting task for a long time. Even
worse, hundreds of short-running tasks may be stuck behind a long running task
even when there are child processes free to do work.

The -Ofair scheduling strategy was added to avoid this situation,
and when enabled it adds the rule that no task should be sent to the a child
process that is already executing a task.

The fair scheduling strategy may perform slightly worse if you have only
short running tasks.

Limit child process resident memory size

You can now limit the maximum amount of memory allocated per prefork
pool child process by setting the worker
--max-memory-per-child option,
or the worker_max_memory_per_child setting.

The limit is for RSS/resident memory size and is specified in kilobytes.

A child process having exceeded the limit will be terminated and replaced
with a new process after the currently executing task returns.

See Max memory per child setting for more information.

Contributed by Dave Smith.

One log-file per child process

Init-scrips and celery multi now uses the %I log file format
option (e.g., /var/log/celery/%n%I.log).

This change was necessary to ensure each child
process has a separate log file after moving task logging
to the child process, as multiple processes writing to the same
log file can cause corruption.

You’re encouraged to upgrade your init-scripts and
celery multi arguments to use this new option.

Transports

RabbitMQ priority queue support

See RabbitMQ Message Priorities for more information.

Contributed by Gerald Manipon.

Configure broker URL for read/write separately

New broker_read_url and broker_write_url settings
have been added so that separate broker URLs can be provided
for connections used for consuming/publishing.

In addition to the configuration options, two new methods have been
added the app API:

	app.connection_for_read()

	app.connection_for_write()

These should now be used in place of app.connection() to specify
the intent of the required connection.

Note

Two connection pools are available: app.pool (read), and
app.producer_pool (write). The latter doesn’t actually give connections
but full kombu.Producer [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer] instances.

def publish_some_message(app, producer=None):
 with app.producer_or_acquire(producer) as producer:
 ...

def consume_messages(app, connection=None):
 with app.connection_or_acquire(connection) as connection:
 ...

RabbitMQ queue extensions support

Queue declarations can now set a message TTL and queue expiry time directly,
by using the message_ttl and expires arguments

New arguments have been added to Queue [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] that lets
you directly and conveniently configure RabbitMQ queue extensions
in queue declarations:

	Queue(expires=20.0)

Set queue expiry time in float seconds.

See kombu.Queue.expires [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.expires].

	Queue(message_ttl=30.0)

Set queue message time-to-live float seconds.

See kombu.Queue.message_ttl [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.message_ttl].

	Queue(max_length=1000)

Set queue max length (number of messages) as int.

See kombu.Queue.max_length [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.max_length].

	Queue(max_length_bytes=1000)

Set queue max length (message size total in bytes) as int.

See kombu.Queue.max_length_bytes [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.max_length_bytes].

	Queue(max_priority=10)

Declare queue to be a priority queue that routes messages
based on the priority field of the message.

See kombu.Queue.max_priority [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.max_priority].

Amazon SQS transport now officially supported

The SQS broker transport has been rewritten to use async I/O and as such
joins RabbitMQ, Redis and QPid as officially supported transports.

The new implementation also takes advantage of long polling,
and closes several issues related to using SQS as a broker.

This work was sponsored by Nextdoor.

Apache QPid transport now officially supported

Contributed by Brian Bouterse.

Redis: Support for Sentinel

You can point the connection to a list of sentinel URLs like:

sentinel://0.0.0.0:26379;sentinel://0.0.0.0:26380/...

where each sentinel is separated by a ;. Multiple sentinels are handled
by kombu.Connection [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection] constructor, and placed in the alternative
list of servers to connect to in case of connection failure.

Contributed by Sergey Azovskov, and Lorenzo Mancini.

Tasks

Task Auto-retry Decorator

Writing custom retry handling for exception events is so common
that we now have built-in support for it.

For this a new autoretry_for argument is now supported by
the task decorators, where you can specify a tuple of exceptions
to automatically retry for:

from twitter.exceptions import FailWhaleError

@app.task(autoretry_for=(FailWhaleError,))
def refresh_timeline(user):
 return twitter.refresh_timeline(user)

See Automatic retry for known exceptions for more information.

Contributed by Dmitry Malinovsky.

Task.replace Improvements

	self.replace(signature) can now replace any task, chord or group,
and the signature to replace with can be a chord, group or any other
type of signature.

	No longer inherits the callbacks and errbacks of the existing task.

If you replace a node in a tree, then you wouldn’t expect the new node to
inherit the children of the old node.

	Task.replace_in_chord has been removed, use .replace instead.

	If the replacement is a group, that group will be automatically converted
to a chord, where the callback “accumulates” the results of the group tasks.

A new built-in task (celery.accumulate was added for this purpose)

Contributed by Steeve Morin, and Ask Solem.

Remote Task Tracebacks

The new task_remote_tracebacks will make task tracebacks more
useful by injecting the stack of the remote worker.

This feature requires the additional tblib [https://pypi.python.org/pypi/tblib/] library.

Contributed by Ionel Cristian Mărieș.

Handling task connection errors

Connection related errors occuring while sending a task is now re-raised
as a kombu.exceptions.OperationalError error:

>>> try:
... add.delay(2, 2)
... except add.OperationalError as exc:
... print('Could not send task %r: %r' % (add, exc))

See Connection Error Handling for more information.

Gevent/Eventlet: Dedicated thread for consuming results

When using gevent [https://pypi.python.org/pypi/gevent/], or eventlet [https://pypi.python.org/pypi/eventlet/] there is now a single
thread responsible for consuming events.

This means that if you have many calls retrieving results, there will be
a dedicated thread for consuming them:

result = add.delay(2, 2)

this call will delegate to the result consumer thread:
once the consumer thread has received the result this greenlet can
continue.
value = result.get(timeout=3)

This makes performing RPC calls when using gevent/eventlet perform much
better.

AsyncResult.then(on_success, on_error)

The AsyncResult API has been extended to support the promise protocol.

This currently only works with the RPC (amqp) and Redis result backends, but
lets you attach callbacks to when tasks finish:

import gevent.monkey
monkey.patch_all()

import time
from celery import Celery

app = Celery(broker='amqp://', backend='rpc')

@app.task
def add(x, y):
 return x + y

def on_result_ready(result):
 print('Received result for id %r: %r' % (result.id, result.result,))

add.delay(2, 2).then(on_result_ready)

time.sleep(3) # run gevent event loop for a while.

Demonstrated using gevent [https://pypi.python.org/pypi/gevent/] here, but really this is an API that’s more
useful in callback-based event loops like twisted [https://pypi.python.org/pypi/twisted/], or tornado [https://pypi.python.org/pypi/tornado/].

New Task Router API

The task_routes setting can now hold functions, and map routes
now support glob patterns and regexes.

Instead of using router classes you can now simply define a function:

def route_for_task(name, args, kwargs, options, task=None, **kwargs):
 from proj import tasks

 if name == tasks.add.name:
 return {'queue': 'hipri'}

If you don’t need the arguments you can use start arguments, just make
sure you always also accept star arguments so that we have the ability
to add more features in the future:

def route_for_task(name, *args, **kwargs):
 from proj import tasks
 if name == tasks.add.name:
 return {'queue': 'hipri', 'priority': 9}

Both the options argument and the new task keyword argument
are new to the function-style routers, and will make it easier to write
routers based on execution options, or properties of the task.

The optional task keyword argument won’t be set if a task is called
by name using app.send_task().

For more examples, including using glob/regexes in routers please see
task_routes and Automatic routing.

Canvas Refactor

The canvas/work-flow implementation have been heavily refactored
to fix some long outstanding issues.

	Error callbacks can now take real exception and traceback instances
(Issue #2538 [https://github.com/celery/celery/issues/2538]).

>>> add.s(2, 2).on_error(log_error.s()).delay()

Where log_error could be defined as:

@app.task
def log_error(request, exc, traceback):
 with open(os.path.join('/var/errors', request.id), 'a') as fh:
 print('--\n\n{0} {1} {2}'.format(
 task_id, exc, traceback), file=fh)

See Canvas: Designing Work-flows for more examples.

	chain(a, b, c) now works the same as a | b | c.

This means chain may no longer return an instance of chain,
instead it may optimize the workflow so that e.g. two groups
chained together becomes one group.

	Now unrolls groups within groups into a single group (Issue #1509 [https://github.com/celery/celery/issues/1509]).

	chunks/map/starmap tasks now routes based on the target task

	chords and chains can now be immutable.

	Fixed bug where serialized signatures weren’t converted back into
signatures (Issue #2078 [https://github.com/celery/celery/issues/2078])

Fix contributed by Ross Deane.

	Fixed problem where chains and groups didn’t work when using JSON
serialization (Issue #2076 [https://github.com/celery/celery/issues/2076]).

Fix contributed by Ross Deane.

	Creating a chord no longer results in multiple values for keyword
argument ‘task_id’ (Issue #2225 [https://github.com/celery/celery/issues/2225]).

Fix contributed by Aneil Mallavarapu.

	Fixed issue where the wrong result is returned when a chain
contains a chord as the penultimate task.

Fix contributed by Aneil Mallavarapu.

	Special case of group(A.s() | group(B.s() | C.s())) now works.

	Chain: Fixed bug with incorrect id set when a subtask is also a chain.

	group | group is now flattened into a single group (Issue #2573 [https://github.com/celery/celery/issues/2573]).

	Fixed issue where group | task wasn’t upgrading correctly
to chord (Issue #2922 [https://github.com/celery/celery/issues/2922]).

	Chords now properly sets result.parent links.

	chunks/map/starmap are now routed based on the target task.

	
	Signature.link now works when argument is scalar (not a list)

	(Issue #2019 [https://github.com/celery/celery/issues/2019]).

	group() now properly forwards keyword arguments (Issue #3426 [https://github.com/celery/celery/issues/3426]).

Fix contributed by Samuel Giffard.

	A chord where the header group only consists of a single task
is now turned into a simple chain.

	Passing a link argument to group.apply_async() now raises an error
(Issue #3508 [https://github.com/celery/celery/issues/3508]).

	chord | sig now attaches to the chord callback (Issue #3356 [https://github.com/celery/celery/issues/3356]).

Periodic Tasks

New API for configuring periodic tasks

This new API enables you to use signatures when defining periodic tasks,
removing the chance of mistyping task names.

An example of the new API is here.

Optimized Beat implementation

The celery beat implementation has been optimized
for millions of periodic tasks by using a heap to schedule entries.

Contributed by Ask Solem and Alexander Koshelev.

Schedule tasks based on sunrise, sunset, dawn and dusk

See Solar schedules for more information.

Contributed by Mark Parncutt.

Result Backends

RPC Result Backend matured

Lots of bugs in the previously experimental RPC result backend have been fixed
and can now be considered to production use.

Contributed by Ask Solem, Morris Tweed.

Redis: Result backend optimizations

result.get() is now using pub/sub for streaming task results

Calling result.get() when using the Redis result backend
used to be extremely expensive as it was using polling to wait
for the result to become available. A default polling
interval of 0.5 seconds didn’t help performance, but was
necessary to avoid a spin loop.

The new implementation is using Redis Pub/Sub mechanisms to
publish and retrieve results immediately, greatly improving
task round-trip times.

Contributed by Yaroslav Zhavoronkov and Ask Solem.

New optimized chord join implementation

This was an experimental feature introduced in Celery 3.1,
that could only be enabled by adding ?new_join=1 to the
result backend URL configuration.

We feel that the implementation has been tested thoroughly enough
to be considered stable and enabled by default.

The new implementation greatly reduces the overhead of chords,
and especially with larger chords the performance benefit can be massive.

New Riak result backend introduced

See Riak backend settings for more information.

Contributed by Gilles Dartiguelongue, Alman One and NoKriK.

New CouchDB result backend introduced

See CouchDB backend settings for more information.

Contributed by Nathan Van Gheem.

New Consul result backend introduced

Add support for Consul as a backend using the Key/Value store of Consul.

Consul has an HTTP API where through you can store keys with their values.

The backend extends KeyValueStoreBackend and implements most of the methods.

Mainly to set, get and remove objects.

This allows Celery to store Task results in the K/V store of Consul.

Consul also allows to set a TTL on keys using the Sessions from Consul. This way
the backend supports auto expiry of Task results.

For more information on Consul visit http://consul.io/

The backend uses python-consul [https://pypi.python.org/pypi/python-consul/] for talking to the HTTP API.
This package is fully Python 3 compliant just as this backend is:

$ pip install python-consul

That installs the required package to talk to Consul’s HTTP API from Python.

You can also specify consul as an extension in your dependency on Celery:

$ pip install celery[consul]

See Bundles for more information.

Contributed by Wido den Hollander.

Brand new Cassandra result backend

A brand new Cassandra backend utilizing the new cassandra-driver [https://pypi.python.org/pypi/cassandra-driver/]
library is replacing the old result backend using the older
pycassa [https://pypi.python.org/pypi/pycassa/] library.

See Cassandra backend settings for more information.

To depend on Celery with Cassandra as the result backend use:

$ pip install celery[cassandra]

You can also combine multiple extension requirements,
please see Bundles for more information.

New Elasticsearch result backend introduced

See Elasticsearch backend settings for more information.

To depend on Celery with Elasticsearch as the result bakend use:

$ pip install celery[elasticsearch]

You can also combine multiple extension requirements,
please see Bundles for more information.

Contributed by Ahmet Demir.

New File-system result backend introduced

See File-system backend settings for more information.

Contributed by Môshe van der Sterre.

Event Batching

Events are now buffered in the worker and sent as a list, reducing
the overhead required to send monitoring events.

For authors of custom event monitors there will be no action
required as long as you’re using the Python Celery
helpers (Receiver) to implement your monitor.

However, if you’re parsing raw event messages you must now account
for batched event messages, as they differ from normal event messages
in the following way:

	The routing key for a batch of event messages will be set to
<event-group>.multi where the only batched event group
is currently task (giving a routing key of task.multi).

	The message body will be a serialized list-of-dictionaries instead
of a dictionary. Each item in the list can be regarded
as a normal event message body.

In Other News...

Requirements

	Now depends on Kombu 4.0 [http://kombu.readthedocs.io/en/master/changelog.html#version-4-0].

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] version 3.5.

	No longer depends on anyjson [https://pypi.python.org/pypi/anyjson/]. Good-bye old friend :(

Tasks

	The “anon-exchange” is now used for simple name-name direct routing.

This increases performance as it completely bypasses the routing table,
in addition it also improves reliability for the Redis broker transport.

	An empty ResultSet now evaluates to True.

Fix contributed by Colin McIntosh.

	The default routing key and exchange name is now taken from the
task_default_queue setting.

This means that to change the name of the default queue, you now
only have to set a single setting.

	New task_reject_on_worker_lost setting, and
reject_on_worker_lost task attribute decides what happens
when the child worker process executing a late ack task is terminated.

Contributed by Michael Permana.

	Task.subtask renamed to Task.signature with alias.

	Task.subtask_from_request renamed to
Task.signature_from_request with alias.

	The delivery_mode attribute for kombu.Queue [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] is now
respected (Issue #1953 [https://github.com/celery/celery/issues/1953]).

	Routes in task-routes can now specify a
Queue [http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue] instance directly.

Example:

task_routes = {'proj.tasks.add': {'queue': Queue('add')}}

	AsyncResult now raises ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError] if task_id is None.
(Issue #1996 [https://github.com/celery/celery/issues/1996]).

	Retried tasks didn’t forward expires setting (Issue #3297 [https://github.com/celery/celery/issues/3297]).

	result.get() now supports an on_message argument to set a
callback to be called for every message received.

	New abstract classes added:

	CallableTask

Looks like a task.

	CallableSignature

Looks like a task signature.

	Task.replace now properly forwards callbacks (Issue #2722 [https://github.com/celery/celery/issues/2722]).

Fix contributed by Nicolas Unravel.

	Task.replace: Append to chain/chord (Closes #3232)

Fixed issue #3232 [https://github.com/celery/celery/issues/3232], adding the signature to the chain (if there’s any).
Fixed the chord suppress if the given signature contains one.

Fix contributed by @honux [https://github.com/honux/].

	Task retry now also throws in eager mode.

Fix contributed by Feanil Patel.

Beat

	Fixed crontab infinite loop with invalid date.

When occurrence can never be reached (example, April, 31th), trying
to reach the next occurrence would trigger an infinite loop.

Try fixing that by raising a RuntimeError [https://docs.python.org/dev/library/exceptions.html#RuntimeError] after 2,000 iterations

(Also added a test for crontab leap years in the process)

Fix contributed by Romuald Brunet.

	Now ensures the program exits with a non-zero exit code when an
exception terminates the service.

Fix contributed by Simon Peeters.

App

	Dates are now always timezone aware even if
enable_utc is disabled (Issue #943 [https://github.com/celery/celery/issues/943]).

Fix contributed by Omer Katz.

	Config: App preconfiguration is now also pickled with the configuration.

Fix contributed by Jeremy Zafran.

	
	The application can now change how task names are generated using

	the gen_task_name() method.

Contributed by Dmitry Malinovsky.

	App has new app.current_worker_task property that
returns the task that’s currently being worked on (or None).
(Issue #2100 [https://github.com/celery/celery/issues/2100]).

Logging

	get_task_logger() now raises an exception
if trying to use the name “celery” or “celery.task” (Issue #3475 [https://github.com/celery/celery/issues/3475]).

Execution Pools

	Eventlet/Gevent: now enables AMQP heartbeat (Issue #3338 [https://github.com/celery/celery/issues/3338]).

	Eventlet/Gevent: Fixed race condition leading to “simultaneous read”
errors (Issue #2755 [https://github.com/celery/celery/issues/2755]).

	Prefork: Prefork pool now uses poll instead of select where
available (Issue #2373 [https://github.com/celery/celery/issues/2373]).

	Prefork: Fixed bug where the pool would refuse to shut down the
worker (Issue #2606 [https://github.com/celery/celery/issues/2606]).

	Eventlet: Now returns pool size in celery inspect stats
command.

Contributed by Alexander Oblovatniy.

Testing

	Celery is now a pytest [https://pypi.python.org/pypi/pytest/] plugin, including fixtures
useful for unit and integration testing.

See the testing user guide for more information.

Transports

	amqps:// can now be specified to require SSL.

	Redis Transport: The Redis transport now supports the
broker_use_ssl option.

Contributed by Robert Kolba.

	JSON serializer now calls obj.__json__ for unsupported types.

This means you can now define a __json__ method for custom
types that can be reduced down to a built-in json type.

Example:

class Person:
 first_name = None
 last_name = None
 address = None

 def __json__(self):
 return {
 'first_name': self.first_name,
 'last_name': self.last_name,
 'address': self.address,
 }

	JSON serializer now handles datetime’s, Django promise, UUID and Decimal.

	New Queue.consumer_arguments can be used for the ability to
set consumer priority via x-priority.

See https://www.rabbitmq.com/consumer-priority.html

Example:

consumer = Consumer(channel, consumer_arguments={'x-priority': 3})

	Queue/Exchange: no_declare option added (also enabled for
internal amq. exchanges).

Programs

	Celery is now using argparse [https://docs.python.org/dev/library/argparse.html#module-argparse], instead of optparse [https://docs.python.org/dev/library/optparse.html#module-optparse].

	All programs now disable colors if the controlling terminal is not a TTY.

	celery worker: The -q argument now disables the startup
banner.

	celery worker: The “worker ready” message is now logged
using severity info, instead of warn.

	celery multi: %n format for is now synonym with
%N to be consistent with celery worker.

	celery inspect/celery control: now supports a new
--json option to give output in json format.

	celery inspect registered: now ignores built-in tasks.

	celery purge now takes -Q and -X options
used to specify what queues to include and exclude from the purge.

	New celery logtool: Utility for filtering and parsing
celery worker log-files

	celery multi: now passes through %i and %I log
file formats.

	General: %p can now be used to expand to the full worker node-name
in log-file/pid-file arguments.

	
	A new command line option

	--executable is now
available for daemonizing programs (celery worker and
celery beat).

Contributed by Bert Vanderbauwhede.

	celery worker: supports new
--prefetch-multiplier option.

Contributed by Mickaël Penhard.

	The --loader argument is now always effective even if an app argument is
set (Issue #3405 [https://github.com/celery/celery/issues/3405]).

	inspect/control now takes commands from registry

This means user remote-control commands can also be used from the
command-line.

Note that you need to specify the arguments/and type of arguments
for the arguments to be correctly passed on the command-line.

There are now two decorators, which use depends on the type of
command: @inspect_command + @control_command:

from celery.worker.control import control_command

@control_command(
 args=[('n', int)]
 signature='[N=1]',
)
def something(state, n=1, **kwargs):
 ...

Here args is a list of args supported by the command.
The list must contain tuples of (argument_name, type).

signature is just the command-line help used in e.g.
celery -A proj control --help.

Commands also support variadic arguments, which means that any
arguments left over will be added to a single variable. Here demonstrated
by the terminate command which takes a signal argument and a variable
number of task_ids:

from celery.worker.control import control_command

@control_command(
 args=[('signal', str)],
 signature='<signal> [id1, [id2, [..., [idN]]]]',
 variadic='ids',
)
def terminate(state, signal, ids, **kwargs):
 ...

This command can now be called using:

$ celery -A proj control terminate SIGKILL id1 id2 id3`

See Writing your own remote control commands for more information.

Worker

	Improvements and fixes for LimitedSet.

Getting rid of leaking memory + adding minlen size of the set:
the minimal residual size of the set after operating for some time.
minlen items are kept, even if they should’ve been expired.

Problems with older and even more old code:

	Heap would tend to grow in some scenarios
(like adding an item multiple times).

	Adding many items fast wouldn’t clean them soon enough (if ever).

	When talking to other workers, revoked._data was sent, but
it was processed on the other side as iterable.
That means giving those keys new (current)
time-stamp. By doing this workers could recycle
items forever. Combined with 1) and 2), this means that in
large set of workers, you’re getting out of memory soon.

All those problems should be fixed now.

This should fix issues #3095, #3086.

Contributed by David Pravec.

	New settings to control remote control command queues.

	control_queue_expires

Set queue expiry time for both remote control command queues,
and remote control reply queues.

	control_queue_ttl

Set message time-to-live for both remote control command queues,
and remote control reply queues.

Contributed by Alan Justino.

	The worker_shutdown signal is now always called during shutdown.

Previously it would not be called if the worker instance was collected
by gc first.

	Worker now only starts the remote control command consumer if the
broker transport used actually supports them.

	Gossip now sets x-message-ttl for event queue to heartbeat_interval s.
(Issue #2005 [https://github.com/celery/celery/issues/2005]).

	Now preserves exit code (Issue #2024 [https://github.com/celery/celery/issues/2024]).

	Now rejects messages with an invalid ETA value (instead of ack, which means
they will be sent to the dead-letter exchange if one is configured).

	Fixed crash when the -purge argument was used.

	Log–level for unrecoverable errors changed from error to
critical.

	Improved rate limiting accuracy.

	Account for missing timezone information in task expires field.

Fix contributed by Albert Wang.

	
	The worker no longer has a Queues bootsteps, as it is now

	superfluous.

	Now emits the “Received task” line even for revoked tasks.
(Issue #3155 [https://github.com/celery/celery/issues/3155]).

	Now respects broker_connection_retry setting.

Fix contributed by Nat Williams.

	New control_queue_ttl and control_queue_expires
settings now enables you to configure remote control command
message TTLs, and queue expiry time.

Contributed by Alan Justino.

	New celery.worker.state.requests enables O(1) loookup
of active/reserved tasks by id.

	Auto-scale didn’t always update keep-alive when scaling down.

Fix contributed by Philip Garnero.

	Fixed typo options_list -> option_list.

Fix contributed by Greg Wilbur.

	Some worker command-line arguments and Worker() class arguments have
been renamed for consistency.

All of these have aliases for backward compatibility.

	--send-events -> --task-events

	--schedule -> --schedule-filename

	--maxtasksperchild -> --max-tasks-per-child

	Beat(scheduler_cls=) -> Beat(scheduler=)

	Worker(send_events=True) -> Worker(task_events=True)

	Worker(task_time_limit=) -> Worker(time_limit=)

	Worker(task_soft_time_limit=) -> Worker(soft_time_limit=)

	Worker(state_db=) -> Worker(statedb=)

	Worker(working_directory=) -> Worker(workdir=)

Debugging Utilities

	celery.contrib.rdb: Changed remote debugger banner so that you can copy and paste
the address easily (no longer has a period in the address).

Contributed by Jonathan Vanasco.

	Fixed compatibility with recent psutil [https://pypi.python.org/pypi/psutil/] versions (Issue #3262 [https://github.com/celery/celery/issues/3262]).

Signals

	App: New signals for app configuration/finalization:

	app.on_configure

	app.on_after_configure

	app.on_after_finalize

	Task: New task signals for rejected task messages:

	celery.signals.task_rejected.

	celery.signals.task_unknown.

	Worker: New signal for when a heartbeat event is sent.

	celery.signals.heartbeat_sent

Contributed by Kevin Richardson.

Events

	Event messages now uses the RabbitMQ x-message-ttl option
to ensure older event messages are discarded.

The default is 5 seconds, but can be changed using the
event_queue_ttl setting.

	Task.send_event now automatically retries sending the event
on connection failure, according to the task publish retry settings.

	Event monitors now sets the event_queue_expires
setting by default.

The queues will now expire after 60 seconds after the monitor stops
consuming from it.

	Fixed a bug where a None value wasn’t handled properly.

Fix contributed by Dongweiming.

	New event_queue_prefix setting can now be used
to change the default celeryev queue prefix for event receiver queues.

Contributed by Takeshi Kanemoto.

	State.tasks_by_type and State.tasks_by_worker can now be
used as a mapping for fast access to this information.

Deployment

	Generic init-scripts now support
CELERY_SU and CELERYD_SU_ARGS environment variables
to set the path and arguments for su (su(1)).

	Generic init-scripts now better support FreeBSD and other BSD
systems by searching /usr/local/etc/ for the configuration file.

Contributed by Taha Jahangir.

	Generic init-script: Fixed strange bug for celerybeat where
restart didn’t always work (Issue #3018 [https://github.com/celery/celery/issues/3018]).

	The systemd init script now uses a shell when executing
services.

Contributed by Tomas Machalek.

Result Backends

	Redis: Now has a default socket timeout of 120 seconds.

The default can be changed using the new redis_socket_timeout
setting.

Contributed by Raghuram Srinivasan.

	RPC Backend result queues are now auto delete by default (Issue #2001 [https://github.com/celery/celery/issues/2001]).

	RPC Backend: Fixed problem where exception
wasn’t deserialized properly with the json serializer (Issue #2518 [https://github.com/celery/celery/issues/2518]).

Fix contributed by Allard Hoeve.

	CouchDB: The backend used to double-json encode results.

Fix contributed by Andrew Stewart.

	CouchDB: Fixed typo causing the backend to not be found
(Issue #3287 [https://github.com/celery/celery/issues/3287]).

Fix contributed by Andrew Stewart.

	MongoDB: Now supports setting the result_serialzier setting
to bson to use the MongoDB libraries own serializer.

Contributed by Davide Quarta.

	
	MongoDB: URI handling has been improved to use

	database name, user and password from the URI if provided.

Contributed by Samuel Jaillet.

	SQLAlchemy result backend: Now ignores all result
engine options when using NullPool (Issue #1930 [https://github.com/celery/celery/issues/1930]).

	SQLAlchemy result backend: Now sets max char size to 155 to deal
with brain damaged MySQL Unicode implementation (Issue #1748 [https://github.com/celery/celery/issues/1748]).

	General: All Celery exceptions/warnings now inherit from common
CeleryError/CeleryWarning.
(Issue #2643 [https://github.com/celery/celery/issues/2643]).

Documentation Improvements

Contributed by:

	Adam Chainz

	Amir Rustamzadeh

	Arthur Vuillard

	Batiste Bieler

	Berker Peksag

	Bryce Groff

	Daniel Devine

	Edward Betts

	Jason Veatch

	Jeff Widman

	Maciej Obuchowski

	Manuel Kaufmann

	Maxime Beauchemin

	Mitchel Humpherys

	Pavlo Kapyshin

	Pierre Fersing

	Rik

	Steven Sklar

	Tayfun Sen

	Wieland Hoffmann

Reorganization, Deprecations, and Removals

Incompatible changes

	Prefork: Calling result.get() or joining any result from within a task
now raises RuntimeError [https://docs.python.org/dev/library/exceptions.html#RuntimeError].

In previous versions this would emit a warning.

	celery.worker.consumer is now a package, not a module.

	Module celery.worker.job renamed to celery.worker.request.

	Beat: Scheduler.Publisher/.publisher renamed to
.Producer/.producer.

	Result: The task_name argument/attribute of app.AsyncResult was
removed.

This was historically a field used for pickle [https://docs.python.org/dev/library/pickle.html#module-pickle] compatibility,
but is no longer needed.

	Backends: Arguments named status renamed to state.

	Backends: backend.get_status() renamed to backend.get_state().

	Backends: backend.maybe_reraise() renamed to .maybe_throw()

The promise API uses .throw(), so this change was made to make it more
consistent.

There’s an alias available, so you can still use maybe_reraise until
Celery 5.0.

Unscheduled Removals

	The experimental celery.contrib.methods feature has been removed,
as there were far many bugs in the implementation to be useful.

	The CentOS init-scripts have been removed.

These didn’t really add any features over the generic init-scripts,
so you’re encouraged to use them instead, or something like
supervisor [https://pypi.python.org/pypi/supervisor/].

Reorganization Deprecations

These symbols have been renamed, and while there’s an alias available in this
version for backward compatibility, they will be removed in Celery 5.0, so
make sure you rename these ASAP to make sure it won’t break for that release.

Chances are that you’ll only use the first in this list, but you never
know:

	celery.utils.worker_direct ->
celery.utils.nodenames.worker_direct().

	celery.utils.nodename -> celery.utils.nodenames.nodename().

	celery.utils.anon_nodename ->
celery.utils.nodenames.anon_nodename().

	celery.utils.nodesplit -> celery.utils.nodenames.nodesplit().

	celery.utils.default_nodename ->
celery.utils.nodenames.default_nodename().

	celery.utils.node_format -> celery.utils.nodenames.node_format().

	celery.utils.host_format -> celery.utils.nodenames.host_format().

Scheduled Removals

Modules

	Module celery.worker.job has been renamed to celery.worker.request.

This was an internal module so shouldn’t have any effect.
It’s now part of the public API so must not change again.

	Module celery.task.trace has been renamed to celery.app.trace
as the celery.task package is being phased out. The module
will be removed in version 5.0 so please change any import from:

from celery.task.trace import X

to:

from celery.app.trace import X

	Old compatibility aliases in the celery.loaders module
has been removed.

	Removed celery.loaders.current_loader(), use: current_app.loader

	Removed celery.loaders.load_settings(), use: current_app.conf

Result

	
	AsyncResult.serializable() and celery.result.from_serializable

	has been removed:

Use instead:

>>> tup = result.as_tuple()
>>> from celery.result import result_from_tuple
>>> result = result_from_tuple(tup)

	Removed BaseAsyncResult, use AsyncResult for instance checks
instead.

	Removed TaskSetResult, use GroupResult instead.

	TaskSetResult.total -> len(GroupResult)

	TaskSetResult.taskset_id -> GroupResult.id

	Removed ResultSet.subtasks, use ResultSet.results instead.

TaskSet

TaskSet has been removed, as it was replaced by the group construct in
Celery 3.0.

If you have code like this:

>>> from celery.task import TaskSet

>>> TaskSet(add.subtask((i, i)) for i in xrange(10)).apply_async()

You need to replace that with:

>>> from celery import group
>>> group(add.s(i, i) for i in xrange(10))()

Events

	Removals for class celery.events.state.Worker:

	Worker._defaults attribute.

Use {k: getattr(worker, k) for k in worker._fields}.

	Worker.update_heartbeat

Use Worker.event(None, timestamp, received)

	Worker.on_online

Use Worker.event('online', timestamp, received, fields)

	Worker.on_offline

Use Worker.event('offline', timestamp, received, fields)

	Worker.on_heartbeat

Use Worker.event('heartbeat', timestamp, received, fields)

	Removals for class celery.events.state.Task:

	Task._defaults attribute.

Use {k: getattr(task, k) for k in task._fields}.

	Task.on_sent

Use Worker.event('sent', timestamp, received, fields)

	Task.on_received

Use Task.event('received', timestamp, received, fields)

	Task.on_started

Use Task.event('started', timestamp, received, fields)

	Task.on_failed

Use Task.event('failed', timestamp, received, fields)

	Task.on_retried

Use Task.event('retried', timestamp, received, fields)

	Task.on_succeeded

Use Task.event('succeeded', timestamp, received, fields)

	Task.on_revoked

Use Task.event('revoked', timestamp, received, fields)

	Task.on_unknown_event

Use Task.event(short_type, timestamp, received, fields)

	Task.update

Use Task.event(short_type, timestamp, received, fields)

	Task.merge

Contact us if you need this.

Magic keyword arguments

Support for the very old magic keyword arguments accepted by tasks is
finally removed in this version.

If you’re still using these you have to rewrite any task still
using the old celery.decorators module and depending
on keyword arguments being passed to the task,
for example:

from celery.decorators import task

@task()
def add(x, y, task_id=None):
 print('My task id is %r' % (task_id,))

should be rewritten into:

from celery import task

@task(bind=True)
def add(self, x, y):
 print('My task id is {0.request.id}'.format(self))

Removed Settings

The following settings have been removed, and is no longer supported:

Logging Settings

	Setting name
	Replace with

	CELERYD_LOG_LEVEL
	celery worker --loglevel

	CELERYD_LOG_FILE
	celery worker --logfile

	CELERYBEAT_LOG_LEVEL
	celery beat --loglevel

	CELERYBEAT_LOG_FILE
	celery beat --loglevel

	CELERYMON_LOG_LEVEL
	celerymon is deprecated, use flower

	CELERYMON_LOG_FILE
	celerymon is deprecated, use flower

	CELERYMON_LOG_FORMAT
	celerymon is deprecated, use flower

Task Settings

	Setting name
	Replace with

	CELERY_CHORD_PROPAGATES
	N/A

Changes to internal API

	Module celery.datastructures renamed to celery.utils.collections.

	Module celery.utils.timeutils renamed to celery.utils.time.

	celery.utils.datastructures.DependencyGraph moved to
celery.utils.graph.

	celery.utils.jsonify is now celery.utils.serialization.jsonify().

	celery.utils.strtobool is now
celery.utils.serialization.strtobool().

	celery.utils.is_iterable has been removed.

Instead use:

isinstance(x, collections.Iterable)

	celery.utils.lpmerge is now celery.utils.collections.lpmerge().

	celery.utils.cry is now celery.utils.debug.cry().

	celery.utils.isatty is now celery.platforms.isatty().

	celery.utils.gen_task_name is now
celery.utils.imports.gen_task_name().

	celery.utils.deprecated is now celery.utils.deprecated.Callable()

	celery.utils.deprecated_property is now
celery.utils.deprecated.Property().

	celery.utils.warn_deprecated is now celery.utils.deprecated.warn()

Deprecation Time-line Changes

See the Celery Deprecation Time-line.

 What’s new in Celery 3.1 (Cipater)

 This document describes the current stable version of Celery (4.0).
 For development docs,
 go here.

What’s new in Celery 3.1 (Cipater)

	Author:	Ask Solem (ask at celeryproject.org)

Change history

What’s new documents describe the changes in major versions,
we also have a Change history that lists the changes in bugfix
releases (0.0.x), while older series are archived under the History
section.

Celery is a simple, flexible, and reliable distributed system to
process vast amounts of messages, while providing operations with
the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also
supporting task scheduling.

Celery has a large and diverse community of users and contributors,
you should come join us on IRC
or our mailing-list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions
it’s important that you read the following section.

This version is officially supported on CPython 2.6, 2.7, and 3.3,
and also supported on PyPy.

Table of Contents

Make sure you read the important notes before upgrading to this version.

	Preface

	Important Notes
	Dropped support for Python 2.5

	Last version to enable Pickle by default

	Old command-line programs removed and deprecated

	News
	Prefork Pool Improvements

	Django supported out of the box

	Events are now ordered using logical time

	New worker node name format (name@host)

	Bound tasks

	Mingle: Worker synchronization

	Gossip: Worker <-> Worker communication

	Bootsteps: Extending the worker

	New RPC result backend

	Time limits can now be set by the client

	Redis: Broadcast messages and virtual hosts

	pytz replaces python-dateutil dependency

	Support for setuptools extra requirements

	subtask.__call__() now executes the task directly

	In Other News

	Scheduled Removals

	Deprecation Time-line Changes

	Fixes

	Internal changes

Preface

Deadlocks have long plagued our workers, and while uncommon they’re
not acceptable. They’re also infamous for being extremely hard to diagnose
and reproduce, so to make this job easier I wrote a stress test suite that
bombards the worker with different tasks in an attempt to break it.

What happens if thousands of worker child processes are killed every
second? what if we also kill the broker connection every 10
seconds? These are examples of what the stress test suite will do to the
worker, and it reruns these tests using different configuration combinations
to find edge case bugs.

The end result was that I had to rewrite the prefork pool to avoid the use
of the POSIX semaphore. This was extremely challenging, but after
months of hard work the worker now finally passes the stress test suite.

There’s probably more bugs to find, but the good news is
that we now have a tool to reproduce them, so should you be so unlucky to
experience a bug then we’ll write a test for it and squash it!

Note that I’ve also moved many broker transports into experimental status:
the only transports recommended for production use today is RabbitMQ and
Redis.

I don’t have the resources to maintain all of them, so bugs are left
unresolved. I wish that someone will step up and take responsibility for
these transports or donate resources to improve them, but as the situation
is now I don’t think the quality is up to date with the rest of the code-base
so I cannot recommend them for production use.

The next version of Celery 4.0 will focus on performance and removing
rarely used parts of the library. Work has also started on a new message
protocol, supporting multiple languages and more. The initial draft can
be found here.

This has probably been the hardest release I’ve worked on, so no
introduction to this changelog would be complete without a massive
thank you to everyone who contributed and helped me test it!

Thank you for your support!

— Ask Solem

Important Notes

Dropped support for Python 2.5

Celery now requires Python 2.6 or later.

The new dual code base runs on both Python 2 and 3, without
requiring the 2to3 porting tool.

Note

This is also the last version to support Python 2.6! From Celery 4.0 and
on-wards Python 2.7 or later will be required.

Last version to enable Pickle by default

Starting from Celery 4.0 the default serializer will be json.

If you depend on pickle being accepted you should be prepared
for this change by explicitly allowing your worker
to consume pickled messages using the CELERY_ACCEPT_CONTENT
setting:

CELERY_ACCEPT_CONTENT = ['pickle', 'json', 'msgpack', 'yaml']

Make sure you only select the serialization formats you’ll actually be using,
and make sure you’ve properly secured your broker from unwanted access
(see the Security Guide).

The worker will emit a deprecation warning if you don’t define this setting.

for Kombu users

Kombu 3.0 no longer accepts pickled messages by default, so if you
use Kombu directly then you have to configure your consumers:
see the Kombu 3.0 Changelog [http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-0] for more
information.

Old command-line programs removed and deprecated

Everyone should move to the new celery umbrella
command, so we’re incrementally deprecating the old command names.

In this version we’ve removed all commands that aren’t used
in init-scripts. The rest will be removed in 4.0.

	Program
	New Status
	Replacement

	celeryd
	DEPRECATED
	celery worker

	celerybeat
	DEPRECATED
	celery beat

	celeryd-multi
	DEPRECATED
	celery multi

	celeryctl
	REMOVED
	celery inspect|control

	celeryev
	REMOVED
	celery events

	camqadm
	REMOVED
	celery amqp

If this isn’t a new installation then you may want to remove the old
commands:

$ pip uninstall celery
$ # repeat until it fails
...
$ pip uninstall celery
$ pip install celery

Please run celery --help for help using the umbrella command.

News

Prefork Pool Improvements

These improvements are only active if you use an async capable
transport. This means only RabbitMQ (AMQP) and Redis are supported
at this point and other transports will still use the thread-based fallback
implementation.

	Pool is now using one IPC queue per child process.

Previously the pool shared one queue between all child processes,
using a POSIX semaphore as a mutex to achieve exclusive read and write
access.

The POSIX semaphore has now been removed and each child process
gets a dedicated queue. This means that the worker will require more
file descriptors (two descriptors per process), but it also means
that performance is improved and we can send work to individual child
processes.

POSIX semaphores aren’t released when a process is killed, so killing
processes could lead to a deadlock if it happened while the semaphore was
acquired. There’s no good solution to fix this, so the best option
was to remove the semaphore.

	Asynchronous write operations

The pool now uses async I/O to send work to the child processes.

	Lost process detection is now immediate.

If a child process is killed or exits mysteriously the pool previously
had to wait for 30 seconds before marking the task with a
WorkerLostError. It had to do this because
the out-queue was shared between all processes, and the pool couldn’t
be certain whether the process completed the task or not. So an arbitrary
timeout of 30 seconds was chosen, as it was believed that the out-queue
would’ve been drained by this point.

This timeout is no longer necessary, and so the task can be marked as
failed as soon as the pool gets the notification that the process exited.

	Rare race conditions fixed

Most of these bugs were never reported to us, but were discovered while
running the new stress test suite.

Caveats

Long running tasks

The new pool will send tasks to a child process as long as the process
in-queue is writable, and since the socket is buffered this means
that the processes are, in effect, prefetching tasks.

This benefits performance but it also means that other tasks may be stuck
waiting for a long running task to complete:

-> send T1 to Process A
A executes T1
-> send T2 to Process B
B executes T2
<- T2 complete

-> send T3 to Process A
A still executing T1, T3 stuck in local buffer and
won't start until T1 returns

The buffer size varies based on the operating system: some may
have a buffer as small as 64KB but on recent Linux versions the buffer
size is 1MB (can only be changed system wide).

You can disable this prefetching behavior by enabling the
-Ofair worker option:

$ celery -A proj worker -l info -Ofair

With this option enabled the worker will only write to workers that are
available for work, disabling the prefetch behavior.

Max tasks per child

If a process exits and pool prefetch is enabled the worker may have
already written many tasks to the process in-queue, and these tasks
must then be moved back and rewritten to a new process.

This is very expensive if you have the
--max-tasks-per-child
option set to a low value (e.g., less than 10), you should not be
using the -Ofast scheduler option.

Django supported out of the box

Celery 3.0 introduced a shiny new API, but unfortunately didn’t
have a solution for Django users.

The situation changes with this version as Django is now supported
in core and new Django users coming to Celery are now expected
to use the new API directly.

The Django community has a convention where there’s a separate
django-x package for every library, acting like a bridge between
Django and the library.

Having a separate project for Django users has been a pain for Celery,
with multiple issue trackers and multiple documentation
sources, and then lastly since 3.0 we even had different APIs.

With this version we challenge that convention and Django users will
use the same library, the same API and the same documentation as
everyone else.

There’s no rush to port your existing code to use the new API,
but if you’d like to experiment with it you should know that:

	You need to use a Celery application instance.

The new Celery API introduced in 3.0 requires users to instantiate the
library by creating an application:

from celery import Celery

app = Celery()

	You need to explicitly integrate Celery with Django

Celery won’t automatically use the Django settings, so you can
either configure Celery separately or you can tell it to use the Django
settings with:

app.config_from_object('django.conf:settings')

Neither will it automatically traverse your installed apps to find task
modules. If you want this behavior, you must explicitly pass a list of
Django instances to the Celery app:

from django.conf import settings
app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

	You no longer use manage.py

Instead you use the celery command directly:

$ celery -A proj worker -l info

For this to work your app module must store the DJANGO_SETTINGS_MODULE [http://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE]
environment variable, see the example in the Django
guide.

To get started with the new API you should first read the First Steps with Celery
tutorial, and then you should read the Django-specific instructions in
First steps with Django.

The fixes and improvements applied by the django-celery [https://pypi.python.org/pypi/django-celery/] library
are now automatically applied by core Celery when it detects that
the DJANGO_SETTINGS_MODULE [http://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE] environment variable is set.

The distribution ships with a new example project using Django
in examples/django:

https://github.com/celery/celery/tree/3.1/examples/django

Some features still require the django-celery [https://pypi.python.org/pypi/django-celery/] library:

	Celery doesn’t implement the Django database or cache result backends.

	
	Celery doesn’t ship with the database-based periodic task

	scheduler.

Note

If you’re still using the old API when you upgrade to Celery 3.1
then you must make sure that your settings module contains
the djcelery.setup_loader() line, since this will
no longer happen as a side-effect of importing the django-celery [https://pypi.python.org/pypi/django-celery/]
module.

New users (or if you’ve ported to the new API) don’t need the setup_loader
line anymore, and must make sure to remove it.

Events are now ordered using logical time

Keeping physical clocks in perfect sync is impossible, so using
time-stamps to order events in a distributed system isn’t reliable.

Celery event messages have included a logical clock value for some time,
but starting with this version that field is also used to order them.

Also, events now record timezone information
by including a new utcoffset field in the event message.
This is a signed integer telling the difference from UTC time in hours,
so for example, an event sent from the Europe/London timezone in daylight savings
time will have an offset of 1.

app.events.Receiver will automatically convert the time-stamps
to the local timezone.

Note

The logical clock is synchronized with other nodes
in the same cluster (neighbors), so this means that the logical
epoch will start at the point when the first worker in the cluster
starts.

If all of the workers are shutdown the clock value will be lost
and reset to 0. To protect against this, you should specify the
celery worker --statedb option such that the worker can
persist the clock value at shutdown.

You may notice that the logical clock is an integer value and
increases very rapidly. Don’t worry about the value overflowing
though, as even in the most busy clusters it may take several
millennium before the clock exceeds a 64 bits value.

New worker node name format (name@host)

Node names are now constructed by two elements: name and host-name
separated by ‘@’.

This change was made to more easily identify multiple instances running
on the same machine.

If a custom name isn’t specified then the
worker will use the name ‘celery’ by default, resulting in a
fully qualified node name of 'celery@hostname‘:

$ celery worker -n example.com
celery@example.com

To also set the name you must include the @:

$ celery worker -n worker1@example.com
worker1@example.com

The worker will identify itself using the fully qualified
node name in events and broadcast messages, so where before
a worker would identify itself as ‘worker1.example.com’, it’ll now
use 'celery@worker1.example.com‘.

Remember that the -n argument also supports
simple variable substitutions, so if the current host-name
is george.example.com then the %h macro will expand into that:

$ celery worker -n worker1@%h
worker1@george.example.com

The available substitutions are as follows:

	Variable
	Substitution

	%h
	Full host-name (including domain name)

	%d
	Domain name only

	%n
	Host-name only (without domain name)

	%%
	The character %

Bound tasks

The task decorator can now create “bound tasks”, which means that the
task will receive the self argument.

@app.task(bind=True)
def send_twitter_status(self, oauth, tweet):
 try:
 twitter = Twitter(oauth)
 twitter.update_status(tweet)
 except (Twitter.FailWhaleError, Twitter.LoginError) as exc:
 raise self.retry(exc=exc)

Using bound tasks is now the recommended approach whenever
you need access to the task instance or request context.
Previously one would’ve to refer to the name of the task
instead (send_twitter_status.retry), but this could lead to problems
in some configurations.

Mingle: Worker synchronization

The worker will now attempt to synchronize with other workers in
the same cluster.

Synchronized data currently includes revoked tasks and logical clock.

This only happens at start-up and causes a one second start-up delay
to collect broadcast responses from other workers.

You can disable this bootstep using the
celery worker --without-mingle option.

Gossip: Worker <-> Worker communication

Workers are now passively subscribing to worker related events like
heartbeats.

This means that a worker knows what other workers are doing and
can detect if they go offline. Currently this is only used for clock
synchronization, but there are many possibilities for future additions
and you can write extensions that take advantage of this already.

Some ideas include consensus protocols, reroute task to best worker (based on
resource usage or data locality) or restarting workers when they crash.

We believe that although this is a small addition, it opens
amazing possibilities.

You can disable this bootstep using the
celery worker --without-gossip option.

Bootsteps: Extending the worker

By writing bootsteps you can now easily extend the consumer part
of the worker to add additional features, like custom message consumers.

The worker has been using bootsteps for some time, but these were never
documented. In this version the consumer part of the worker
has also been rewritten to use bootsteps and the new Extensions and Bootsteps
guide documents examples extending the worker, including adding
custom message consumers.

See the Extensions and Bootsteps guide for more information.

Note

Bootsteps written for older versions won’t be compatible
with this version, as the API has changed significantly.

The old API was experimental and internal but should you be so unlucky
to use it then please contact the mailing-list and we’ll help you port
the bootstep to the new API.

New RPC result backend

This new experimental version of the amqp result backend is a good
alternative to use in classical RPC scenarios, where the process that initiates
the task is always the process to retrieve the result.

It uses Kombu to send and retrieve results, and each client
uses a unique queue for replies to be sent to. This avoids
the significant overhead of the original amqp result backend which creates
one queue per task.

By default results sent using this backend won’t persist, so they won’t
survive a broker restart. You can enable
the CELERY_RESULT_PERSISTENT setting to change that.

CELERY_RESULT_BACKEND = 'rpc'
CELERY_RESULT_PERSISTENT = True

Note that chords are currently not supported by the RPC backend.

Time limits can now be set by the client

Two new options have been added to the Calling API: time_limit and
soft_time_limit:

>>> res = add.apply_async((2, 2), time_limit=10, soft_time_limit=8)

>>> res = add.subtask((2, 2), time_limit=10, soft_time_limit=8).delay()

>>> res = add.s(2, 2).set(time_limit=10, soft_time_limit=8).delay()

Contributed by Mher Movsisyan.

Redis: Broadcast messages and virtual hosts

Broadcast messages are currently seen by all virtual hosts when
using the Redis transport. You can now fix this by enabling a prefix to all channels
so that the messages are separated:

BROKER_TRANSPORT_OPTIONS = {'fanout_prefix': True}

Note that you’ll not be able to communicate with workers running older
versions or workers that doesn’t have this setting enabled.

This setting will be the default in a future version.

Related to Issue #1490 [https://github.com/celery/celery/issues/1490].

pytz [https://pypi.python.org/pypi/pytz/] replaces python-dateutil [https://pypi.python.org/pypi/python-dateutil/] dependency

Celery no longer depends on the python-dateutil [https://pypi.python.org/pypi/python-dateutil/] library,
but instead a new dependency on the pytz [https://pypi.python.org/pypi/pytz/] library was added.

The pytz [https://pypi.python.org/pypi/pytz/] library was already recommended for accurate timezone support.

This also means that dependencies are the same for both Python 2 and
Python 3, and that the requirements/default-py3k.txt file has
been removed.

Support for setuptools [https://pypi.python.org/pypi/setuptools/] extra requirements

Pip now supports the setuptools [https://pypi.python.org/pypi/setuptools/] extra requirements format,
so we’ve removed the old bundles concept, and instead specify
setuptools extras.

You install extras by specifying them inside brackets:

$ pip install celery[redis,mongodb]

The above will install the dependencies for Redis and MongoDB. You can list
as many extras as you want.

Warning

You can’t use the celery-with-* packages anymore, as these won’t be
updated to use Celery 3.1.

	Extension
	Requirement entry
	Type

	Redis
	celery[redis]
	transport, result backend

	MongoDB
	celery[mongodb]
	transport, result backend

	CouchDB
	celery[couchdb]
	transport

	Beanstalk
	celery[beanstalk]
	transport

	ZeroMQ
	celery[zeromq]
	transport

	Zookeeper
	celery[zookeeper]
	transport

	SQLAlchemy
	celery[sqlalchemy]
	transport, result backend

	librabbitmq
	celery[librabbitmq]
	transport (C amqp client)

The complete list with examples is found in the Bundles section.

subtask.__call__() now executes the task directly

A misunderstanding led to Signature.__call__ being an alias of
.delay but this doesn’t conform to the calling API of Task which
calls the underlying task method.

This means that:

@app.task
def add(x, y):
 return x + y

add.s(2, 2)()

now does the same as calling the task directly:

>>> add(2, 2)

In Other News

	Now depends on Kombu 3.0 [http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-0].

	Now depends on billiard [https://pypi.python.org/pypi/billiard/] version 3.3.

	Worker will now crash if running as the root user with pickle enabled.

	Canvas: group.apply_async and chain.apply_async no longer starts
separate task.

That the group and chord primitives supported the “calling API” like other
subtasks was a nice idea, but it was useless in practice and often
confused users. If you still want this behavior you can define a
task to do it for you.

	New method Signature.freeze() can be used to “finalize”
signatures/subtask.

Regular signature:

>>> s = add.s(2, 2)
>>> result = s.freeze()
>>> result
<AsyncResult: ffacf44b-f8a1-44e9-80a3-703150151ef2>
>>> s.delay()
<AsyncResult: ffacf44b-f8a1-44e9-80a3-703150151ef2>

Group:

>>> g = group(add.s(2, 2), add.s(4, 4))
>>> result = g.freeze()
<GroupResult: e1094b1d-08fc-4e14-838e-6d601b99da6d [
 70c0fb3d-b60e-4b22-8df7-aa25b9abc86d,
 58fcd260-2e32-4308-a2ea-f5be4a24f7f4]>
>>> g()
<GroupResult: e1094b1d-08fc-4e14-838e-6d601b99da6d [70c0fb3d-b60e-4b22-8df7-aa25b9abc86d, 58fcd260-2e32-4308-a2ea-f5be4a24f7f4]>

	Chord exception behavior defined (Issue #1172 [https://github.com/celery/celery/issues/1172]).

From this version the chord callback will change state to FAILURE
when a task part of a chord raises an exception.

See more at Error handling.

	New ability to specify additional command line options
to the worker and beat programs.

The app.user_options attribute can be used
to add additional command-line arguments, and expects
optparse [https://docs.python.org/dev/library/optparse.html#module-optparse]-style options:

from celery import Celery
from celery.bin import Option

app = Celery()
app.user_options['worker'].add(
 Option('--my-argument'),
)

See the Extensions and Bootsteps guide for more information.

	All events now include a pid field, which is the process id of the
process that sent the event.

	Event heartbeats are now calculated based on the time when the event
was received by the monitor, and not the time reported by the worker.

This means that a worker with an out-of-sync clock will no longer
show as ‘Offline’ in monitors.

A warning is now emitted if the difference between the senders
time and the internal time is greater than 15 seconds, suggesting
that the clocks are out of sync.

	Monotonic clock support.

A monotonic clock is now used for timeouts and scheduling.

The monotonic clock function is built-in starting from Python 3.4,
but we also have fallback implementations for Linux and macOS.

	celery worker now supports a new
--detach argument to start
the worker as a daemon in the background.

	app.events.Receiver now sets a local_received field for incoming
events, which is set to the time of when the event was received.

	app.events.Dispatcher now accepts a groups argument
which decides a white-list of event groups that’ll be sent.

The type of an event is a string separated by ‘-‘, where the part
before the first ‘-‘ is the group. Currently there are only
two groups: worker and task.

A dispatcher instantiated as follows:

>>> app.events.Dispatcher(connection, groups=['worker'])

will only send worker related events and silently drop any attempts
to send events related to any other group.

	New BROKER_FAILOVER_STRATEGY setting.

This setting can be used to change the transport fail-over strategy,
can either be a callable returning an iterable or the name of a
Kombu built-in failover strategy. Default is “round-robin”.

Contributed by Matt Wise.

	Result.revoke will no longer wait for replies.

You can add the reply=True argument if you really want to wait for
responses from the workers.

	Better support for link and link_error tasks for chords.

Contributed by Steeve Morin.

	Worker: Now emits warning if the CELERYD_POOL setting is set
to enable the eventlet/gevent pools.

The -P option should always be used to select the eventlet/gevent pool
to ensure that the patches are applied as early as possible.

If you start the worker in a wrapper (like Django’s manage.py)
then you must apply the patches manually, for example by creating an alternative
wrapper that monkey patches at the start of the program before importing
any other modules.

	There’s a now an ‘inspect clock’ command which will collect the current
logical clock value from workers.

	celery inspect stats now contains the process id of the worker’s main
process.

Contributed by Mher Movsisyan.

	New remote control command to dump a workers configuration.

Example:

$ celery inspect conf

Configuration values will be converted to values supported by JSON
where possible.

Contributed by Mher Movsisyan.

	New settings CELERY_EVENT_QUEUE_TTL and
CELERY_EVENT_QUEUE_EXPIRES.

These control when a monitors event queue is deleted, and for how long
events published to that queue will be visible. Only supported on
RabbitMQ.

	New Couchbase result backend.

This result backend enables you to store and retrieve task results
using Couchbase [http://www.couchbase.com].

See Couchbase backend settings for more information
about configuring this result backend.

Contributed by Alain Masiero.

	CentOS init-script now supports starting multiple worker instances.

See the script header for details.

Contributed by Jonathan Jordan.

	AsyncResult.iter_native now sets default interval parameter to 0.5

Fix contributed by Idan Kamara

	New setting BROKER_LOGIN_METHOD.

This setting can be used to specify an alternate login method
for the AMQP transports.

Contributed by Adrien Guinet

	The dump_conf remote control command will now give the string
representation for types that aren’t JSON compatible.

	Function celery.security.setup_security is now app.setup_security().

	Task retry now propagates the message expiry value (Issue #980 [https://github.com/celery/celery/issues/980]).

The value is forwarded at is, so the expiry time won’t change.
To update the expiry time you’d’ve to pass a new expires
argument to retry().

	Worker now crashes if a channel error occurs.

Channel errors are transport specific and is the list of exceptions
returned by Connection.channel_errors.
For RabbitMQ this means that Celery will crash if the equivalence
checks for one of the queues in CELERY_QUEUES mismatches, which
makes sense since this is a scenario where manual intervention is
required.

	Calling AsyncResult.get() on a chain now propagates errors for previous
tasks (Issue #1014 [https://github.com/celery/celery/issues/1014]).

	The parent attribute of AsyncResult is now reconstructed when using JSON
serialization (Issue #1014 [https://github.com/celery/celery/issues/1014]).

	Worker disconnection logs are now logged with severity warning instead of
error.

Contributed by Chris Adams.

	events.State no longer crashes when it receives unknown event types.

	SQLAlchemy Result Backend: New CELERY_RESULT_DB_TABLENAMES
setting can be used to change the name of the database tables used.

Contributed by Ryan Petrello.

	
	SQLAlchemy Result Backend: Now calls enginge.dispose after fork

	(Issue #1564 [https://github.com/celery/celery/issues/1564]).

If you create your own SQLAlchemy engines then you must also
make sure that these are closed after fork in the worker:

from multiprocessing.util import register_after_fork

engine = create_engine(*engine_args)
register_after_fork(engine, engine.dispose)

	A stress test suite for the Celery worker has been written.

This is located in the funtests/stress directory in the git
repository. There’s a README file there to get you started.

	The logger named celery.concurrency has been renamed to celery.pool.

	New command line utility celery graph.

This utility creates graphs in GraphViz dot format.

You can create graphs from the currently installed bootsteps:

Create graph of currently installed bootsteps in both the worker
and consumer name-spaces.
$ celery graph bootsteps | dot -T png -o steps.png

Graph of the consumer name-space only.
$ celery graph bootsteps consumer | dot -T png -o consumer_only.png

Graph of the worker name-space only.
$ celery graph bootsteps worker | dot -T png -o worker_only.png

Or graphs of workers in a cluster:

Create graph from the current cluster
$ celery graph workers | dot -T png -o workers.png

Create graph from a specified list of workers
$ celery graph workers nodes:w1,w2,w3 | dot -T png workers.png

also specify the number of threads in each worker
$ celery graph workers nodes:w1,w2,w3 threads:2,4,6

…also specify the broker and backend URLs shown in the graph
$ celery graph workers broker:amqp:// backend:redis://

…also specify the max number of workers/threads shown (wmax/tmax),
enumerating anything that exceeds that number.
$ celery graph workers wmax:10 tmax:3

	Changed the way that app instances are pickled.

Apps can now define a __reduce_keys__ method that’s used instead
of the old AppPickler attribute. For example, if your app defines a custom
‘foo’ attribute that needs to be preserved when pickling you can define
a __reduce_keys__ as such:

import celery

class Celery(celery.Celery):

 def __init__(self, *args, **kwargs):
 super(Celery, self).__init__(*args, **kwargs)
 self.foo = kwargs.get('foo')

 def __reduce_keys__(self):
 return super(Celery, self).__reduce_keys__().update(
 foo=self.foo,
)

This is a much more convenient way to add support for pickling custom
attributes. The old AppPickler is still supported but its use is
discouraged and we would like to remove it in a future version.

	Ability to trace imports for debugging purposes.

The C_IMPDEBUG can be set to trace imports as they
occur:

$ C_IMDEBUG=1 celery worker -l info

$ C_IMPDEBUG=1 celery shell

	Message headers now available as part of the task request.

Example adding and retrieving a header value:

@app.task(bind=True)
def t(self):
 return self.request.headers.get('sender')

>>> t.apply_async(headers={'sender': 'George Costanza'})

	New before_task_publish signal dispatched before a task message
is sent and can be used to modify the final message fields (Issue #1281 [https://github.com/celery/celery/issues/1281]).

	New after_task_publish signal replaces the old task_sent
signal.

The task_sent signal is now deprecated and shouldn’t be used.

	New worker_process_shutdown signal is dispatched in the
prefork pool child processes as they exit.

Contributed by Daniel M Taub.

	celery.platforms.PIDFile renamed to celery.platforms.Pidfile.

	MongoDB Backend: Can now be configured using a URL:

	MongoDB Backend: No longer using deprecated pymongo.Connection.

	MongoDB Backend: Now disables auto_start_request.

	MongoDB Backend: Now enables use_greenlets when eventlet/gevent is used.

	subtask() / maybe_subtask() renamed to
signature()/maybe_signature().

Aliases still available for backwards compatibility.

	The correlation_id message property is now automatically set to the
id of the task.

	The task message eta and expires fields now includes timezone
information.

	All result backends store_result/mark_as_* methods must now accept
a request keyword argument.

	Events now emit warning if the broken yajl library is used.

	The celeryd_init signal now takes an extra keyword argument:
option.

This is the mapping of parsed command line arguments, and can be used to
prepare new preload arguments (app.user_options['preload']).

	New callback: app.on_configure().

This callback is called when an app is about to be configured (a
configuration key is required).

	Worker: No longer forks on HUP.

This means that the worker will reuse the same pid for better
support with external process supervisors.

Contributed by Jameel Al-Aziz.

	Worker: The log message Got task from broker … was changed to
Received task ….

	Worker: The log message Skipping revoked task … was changed
to Discarding revoked task ….

	Optimization: Improved performance of ResultSet.join_native().

Contributed by Stas Rudakou.

	The task_revoked signal now accepts new request argument
(Issue #1555 [https://github.com/celery/celery/issues/1555]).

The revoked signal is dispatched after the task request is removed from
the stack, so it must instead use the
Request object to get information
about the task.

	Worker: New -X command line argument to
exclude queues (Issue #1399 [https://github.com/celery/celery/issues/1399]).

The -X argument is the inverse of the
-Q argument and accepts a list of queues
to exclude (not consume from):

Consume from all queues in CELERY_QUEUES, but not the 'foo' queue.
$ celery worker -A proj -l info -X foo

	Adds C_FAKEFORK environment variable for simple
init-script/celery multi debugging.

This means that you can now do:

$ C_FAKEFORK=1 celery multi start 10

or:

$ C_FAKEFORK=1 /etc/init.d/celeryd start

to avoid the daemonization step to see errors that aren’t visible
due to missing stdout/stderr.

A dryrun command has been added to the generic init-script that
enables this option.

	New public API to push and pop from the current task stack:

celery.app.push_current_task() and
celery.app.pop_current_task`().

	RetryTaskError has been renamed to Retry.

The old name is still available for backwards compatibility.

	New semi-predicate exception Reject.

This exception can be raised to reject/requeue the task message,
see Reject for examples.

	Semipredicates documented: (Retry/Ignore/Reject).

Scheduled Removals

	The BROKER_INSIST setting and the insist argument
to ~@connection is no longer supported.

	The CELERY_AMQP_TASK_RESULT_CONNECTION_MAX setting is no longer
supported.

Use BROKER_POOL_LIMIT instead.

	The CELERY_TASK_ERROR_WHITELIST setting is no longer supported.

You should set the ErrorMail attribute
of the task class instead. You can also do this using
CELERY_ANNOTATIONS:

from celery import Celery
from celery.utils.mail import ErrorMail

class MyErrorMail(ErrorMail):
 whitelist = (KeyError, ImportError)

 def should_send(self, context, exc):
 return isinstance(exc, self.whitelist)

app = Celery()
app.conf.CELERY_ANNOTATIONS = {
 '*': {
 'ErrorMail': MyErrorMails,
 }
}

	Functions that creates a broker connections no longer
supports the connect_timeout argument.

This can now only be set using the BROKER_CONNECTION_TIMEOUT
setting. This is because functions no longer create connections
directly, but instead get them from the connection pool.

	The CELERY_AMQP_TASK_RESULT_EXPIRES setting is no longer supported.

Use CELERY_TASK_RESULT_EXPIRES instead.

Deprecation Time-line Changes

See the Celery Deprecation Time-line.

Fixes

	AMQP Backend: join didn’t convert exceptions when using the json
serializer.

	Non-abstract task classes are now shared between apps (Issue #1150 [https://github.com/celery/celery/issues/1150]).

Note that non-abstract task classes shouldn’t be used in the
new API. You should only create custom task classes when you
use them as a base class in the @task decorator.

This fix ensure backwards compatibility with older Celery versions
so that non-abstract task classes works even if a module is imported
multiple times so that the app is also instantiated multiple times.

	Worker: Workaround for Unicode errors in logs (Issue #427 [https://github.com/celery/celery/issues/427]).

	Task methods: .apply_async now works properly if args list is None
(Issue #1459 [https://github.com/celery/celery/issues/1459]).

	Eventlet/gevent/solo/threads pools now properly handles BaseException [https://docs.python.org/dev/library/exceptions.html#BaseException]
errors raised by tasks.

	autoscale and pool_grow/pool_shrink remote
control commands will now also automatically increase and decrease the
consumer prefetch count.

Fix contributed by Daniel M. Taub.

	celery control pool_ commands didn’t coerce string arguments to int.

	Redis/Cache chords: Callback result is now set to failure if the group
disappeared from the database (Issue #1094 [https://github.com/celery/celery/issues/1094]).

	Worker: Now makes sure that the shutdown process isn’t initiated more
than once.

	Programs: celery multi now properly handles both -f and
--logfile options (Issue #1541 [https://github.com/celery/celery/issues/1541]).

Internal changes

	Module celery.task.trace has been renamed to celery.app.trace.

	Module celery.concurrency.processes has been renamed to
celery.concurrency.prefork.

	Classes that no longer fall back to using the default app:

	Result backends (celery.backends.base.BaseBackend)

	celery.worker.WorkController

	celery.worker.Consumer

	celery.worker.request.Request

This means that you have to pass a specific app when instantiating
these classes.

	EventDispatcher.copy_buffer renamed to
app.events.Dispatcher.extend_buffer().

	Removed unused and never documented global instance
celery.events.state.state.

	app.events.Receiver is now a kombu.mixins.ConsumerMixin [http://kombu.readthedocs.io/en/master/reference/kombu.mixins.html#kombu.mixins.ConsumerMixin]
subclass.

	celery.apps.worker.Worker has been refactored as a subclass of
celery.worker.WorkController.

This removes a lot of duplicate functionality.

	The Celery.with_default_connection method has been removed in favor
of with app.connection_or_acquire (app.connection_or_acquire())

	The celery.results.BaseDictBackend class has been removed and is replaced by
celery.results.BaseBackend.

 API Reference

