Kombu Documentation
Release 4.2.1

Ask Solem
contributors

May 30, 2018

Contents

1 Getting Started 3
LT AbOUt . . . o e e e e e 3
1.2 Features. e e e e e 3
1.3 Transport COompariSON v v v vttt e e e e e e e e e e e e e e e e e e e 4
1.4 Terminology o o v i i i e e e e e e 6
1.5 Installation e e e 6
1.6 Getting Help e e e e 7
1.7 Bugtracker e e e e e e e 7
1.8 Contributing e e e e e e e e e e e 7
1.9 License o o i e e e 7
2 User Guide 9
2.1 Introduction e e e e e e e e e e e 9
2.2 Connections and tranSPOItS o v v v vttt e e e e e e e e e e e e e e e 10
2.3 ProduCers e e e e 13
24 CONSUMETS .+« v v v v v e e e et e e e e e e e e e e e e e e e 16
2.5 Exampleso e e e e e e e e e e 21
2.6 SimpleInterface L e e e e e e 24
2.7 Connection and Producer Pools 26
2.8 Serialization e e e e e 28
3 Frequently Asked Questions 31
3.1 QUESHONS & . . v v e e e e e e e 31
4 API Reference 33
4.1 Kombu-kombu e e e e e e e e 33
4.2 Common Utilities - Kombu . COmmOn v v v ittt e e e e e e 53
4.3 Mixin Classes - Kombu . MIXINS . . v v v v v v v i e e e e e e e e e e e e e e e e e e 54
4.4 Simple Messaging APl - kombu.simple ot vt e e e e e 56
4.5 Logical Clocks and Synchronization - kombu.clocks, 58
4.6 Carrot Compatibility - kombu.compat 60
47 Pidbox - kombu.pidboX . . . v . i e e e e e e e e e e e e e e e e 66
4.8 Exceptions - kombu.exCeptions v v v v v v i e e e e e e e e e e e e 68
49 Logging - KombuU.1Og . . v v v v vt e 69
4.10 Connection - kombu.CONNECTION « . v v v v v v v v bt e e et e e e e e e e e e e 69
4.11 Message Objects - kKombU.MESSATGE .+« . . v v v v v vttt et e e e e e 77
4.12 Message Compression - kombu.COmMPressSion . . .« v v v v vt v v i ittt 79

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
431
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66

Connection/Producer Pools - kombu . pools o v i i it it e e e e e e e e 80
Abstract Classes - kombu.abstract e 82
Resource Management - Kombu.XE€SOUTCE . . v v v v v v v v v vt e b e e e e e e e e 82
Event Loop - kombu.asynchronous 83
Event Loop Implementation - kombu.asynchronous.hub 84
Semaphores - kombu.asynchronous.semaphore 85
Timer - kombu.asynchronousS.tImer v v v v i v it e e e e e e e e e e e e e 86
Event Loop Debugging Utils - kombu.asynchronous.debug 88
Async HTTP Client - kombu.asynchronous.http 88
Async HTTP Client Interface - kombu.asynchronous.http.base 91
Async pyCurl HTTP Client - kombu.asynchronous.http.curl 94
Async Amazon AWS Client - kombu.asynchronous.awso 94
Amazon AWS Connection - kombu.asynchronous.aws.connection 95
Async Amazon SQS Client - kombu.asynchronous.aws.sSqs . . « . v v v v v v v v v v v o 97
SQS Connection - kombu.asynchronous.aws.sqgs.connection 97
SQS Messages - kombu.asynchronous.aws.sgs.MeSSage « .« v v v v v v v v e v v v v u o 98
SQS Queues - kombu.asynchronous.aws.SAS.QUEUE « « v v v v v v v v v v v e v e e e e o 99
Built-in Transports - kombu . transport . . .« . v v v v v i e e e e e e e e e e e e 100
Pure-python AMQP Transport - kombu.transport .pyamap . . « « « v v v v v v v v o v v v o 100
librabbitmq AMQP transport - kombu.transport.librabbitmg 124
Apache QPid Transport - kombu.transport.gpid oo 129
In-memory Transport - kombu.transSport .memory v v v v v vt vt 162
Redis Transport - kombu.transport.redis . . v v v v v v v v vt e e e e e e 163
MongoDB Transport - kombu.transport.mongodb 167
Consul Transport - kombu.transport.consul 169
Etcd Transport - kombu.transport.etcd oL oo o 170
Zookeeper Transport - kombu.transport.zookeepero 171
File-system Transport - kombu.transport.filesystem 173
SQLAIchemy Transport Model - kombu.transport.sqlalchemy 174
SQLAIchemy Transport Model - kombu.transport.sglalchemy.models 174
Amazon SQS Transport - kombu.transport.SOS oo i e 174
SLMQ Transport - kombu.transport .SLMO vt v v vttt it e e e e 176
Pyro Transport - Kombu . Lransport .PYTO « v v v v v v v bt i e e e e e e e e e e 178
Transport Base Class - kombu.transport.base« v v v v v vt v v i i v i i e e 179
Virtual Transport Base Class - kombu.transport.virtual 181
Virtual AMQ Exchange Implementation - kombu.transport.virtual.exchange 186
Message Serialization - kombu Ll e e e e e 188
Generic RabbitMQ manager - kombu.utils.amg manager 189
Custom Collections - kombu.utils.collections v v v i v .. 189
Python Compatibility - kombu.utils.compat o v v v v v vt ittt et 190
Debugging Utilities - kombu.utils.debug o o 190
Div Utilities - kombu.utils.div o 0 e e 190
String Encoding Utilities - kombu.utils.encodingo 190
Async I/O Selectors - kombu.utils.eventio i oo n e 191
Functional-style Utilities - kombu.utils.functional 191
Module Importing Utilities - kombu.utils.imports 192
JSON Utilities - kombu .Ut 11S.JSON . . v v v v i v e e e e e e e e e e e e e e e e e e e 193
Rate limiting - kombu.utils.limits oottt 193
Object/Property Utilities - kombu.utils.objects oo 194
Consumer Scheduling - kombu.utils.scheduling. v i 195
Text utilitites - kombu.utils.text e 196
Time Utilities - kombu.utils.time 0 L o 196
URL Utilities - kombu.utils.url o oottt e e e e e 196

UUID Utilities - kombu.utils.uuld v v v v it e e e e e e e e e e e e 197

4.67 Python 2 to Python 3 utilities - kombu.five e 197
Change history 205
S0 420 e 205
52 420 .o e e 205
53 4.0 e e 206
54 0 402 e e 208
55 401 o 208
56 4.0 .o 209
57 3.0.37 o 213
58 3.0.30 . . . e 213
5.9 30035 L e e 213
500 3.0.34 . . e e 214
501 3.0.33 L o e 214
502 3.0.32 . o e 214
503 3.0.31 ¢ o o e e e 215
504 3.030 . . o e e e e 215
505 3.0.29 . o e 215
506 3.0.28 . . . e 216
507 3.027 o e e e 216
508 3.0.26 . . o L e e 217
509 3.0.25 . e e 217
520 3.0.24 . L e e 218
521 3.0.23 . e e 218
522 3.0.22 . e 218
523 3.021 . L e e 219
524 3.020 . . L. e e e 219
525 3.0.19 . L e 219
526 3.0.18 . L L e 220
527 3.007 o e 220
528 3.0.16 . . . e 220
529 3.0.05 . L e 220
530 3.0.14 . L e 221
531 3.0.13 . o e 222
532 3.0.012 . L e 222
533 3001 . oo 223
534 3.0.00 . .. e e 223
535 3.0.9 L 223
536 3.0.8 . e e 224
537 3.0.7 oo e 225
538 3.0.6 . . e 225
539 3.0.5 L e 225
540 3.04 e e e 226
541 3.0.3 e e e e 226
542 3.0.2 o 226
543 3.0.1 L e 226
544 3.0.0 . L e e 227
545 2506 . e e e 229
546 2505 0 e e 229
SAT 2504 .« e e e 229
548 2.5.13 L L 229
549 2502 0 e e 230
550 2501 ¢ oo e e 230
551 2500 . ¢ o o e e 231

552 259 Lo e 232

553 258 232
554 2577 Lo 232
555 2.5.6 L 233
556 255 e 233
557 254 Lo e 233
5.58 253 234
559 252 234
560 252 234
561 2.5.1 Lo 234
5.62 2.5.0 Lo e 234
563 2400 . . 236
564 249 o 236
S5.65 248 o 237
5.60 2477 Lo e 237
5.67 2.4.6 . .. 238
5.68 245 Lo e 238
5.69 244 L 238
570 243 238
ST 242 L o e 238
572 2401 Lo 239
573 2.4.0 Lo e e 239
ST4 232 o 239
STS 231 o 239
576 23.0 .. 240
STT 22.6 .« oo 241
S8 225 Lo e 241
579 224 e 241
580 223 o 241
S8BL 222 L 242
5.82 221 Lo 242
5.83 22,0 .o 243
5.84 218 Lo e 246
585 217 o 246
586 2.1.6 .. 247
587 215 oo e 247
5.88 214 247
5.89 213 Lo e 248
590 2.1.2 248
SOL 211 o 248
592 2.1.0 L 248
593 2.0.0 ..o 249
594 151 oo e 250
595 1.5.0 .o e 251
596 143 252
SOT 142 o 252
598 LA .o 252
599 1.4.0 .. 252
S.000 13,5 o o o e 253
S0 1.3.4 o 253
5002 1.3.3 o o 254
5003 1.3.2 o o e 254
S04 131 oo o 254

S.05 1.3.0 .o oo 254

5006 1.2.1 o 256

5007 1.2.0 o o o o e e e e 257
5008 1.1.6 . . o o e e e e e e e 257
5100 115 . o e 257
5010 114 o o e 258
SA11 113 o e 258
SA12 112 o e e e 258
5013 LLL1 o e e e e e e e e 259
5014 1.1.0 . o e e e e e e 259
5015 1.0.7 . o o e 260
5016 1.0.6 . . o o e e 260
5017 105 o e e 261
5018 104 . . e e e e e e 261
5019 1.0.3 . o e e e e 262
5020 1.0.2 . o e 262
521 TO1 o o e 262
5022 1.0.0 . o e 262
5023 0.1.0 . . e e e 262
6 Indices and tables 263
Python Module Index 265

vi

Kombu Documentation, Release 4.2.1

Contents:

Contents 1

Kombu Documentation, Release 4.2.1

2 Contents

CHAPTER 1

Getting Started

Version 4.2.1

Web http://kombu.me/

Download http://pypi.python.org/pypi/kombu/
Source https://github.com/celery/kombu/

Keywords messaging, amqp, rabbitmgq, redis, mongodb, python, queue

1.1 About

Kombu is a messaging library for Python.

The aim of Kombu is to make messaging in Python as easy as possible by providing an idiomatic high-level interface
for the AMQ protocol, and also provide proven and tested solutions to common messaging problems.

AMAQP is the Advanced Message Queuing Protocol, an open standard protocol for message orientation, queuing,
routing, reliability and security, for which the RabbitMQ messaging server is the most popular implementation.

1.2 Features

» Allows application authors to support several message server solutions by using pluggable transports.
— AMAQP transport using the py-amgqp, librabbitmg, or gqpid-python libraries.
— High performance AMQP transport written in C - when using librabbitmq

This is automatically enabled if librabbitmgq is installed:

$ pip install librabbitmg

— Virtual transports makes it really easy to add support for non-AMQP transports. There is already built-in
support for Redis, Amazon SQS, ZooKeeper, SoftLayer MQ and Pyro.

http://kombu.me/
http://pypi.python.org/pypi/kombu/
https://github.com/celery/kombu/
https://amqp.org
https://www.rabbitmq.com/
https://pypi.python.org/pypi/amqp/
http://pypi.python.org/pypi/librabbitmq
https://pypi.python.org/pypi/qpid-python/
http://pypi.python.org/pypi/librabbitmq
https://redis.io/
https://aws.amazon.com/sqs/
https://zookeeper.apache.org/
http://www.softlayer.com/services/additional/message-queue
http://pythonhosted.org/Pyro4/

Kombu Documentation, Release 4.2.1

— In-memory transport for unit testing.

» Supports automatic encoding, serialization and compression of message payloads.

» Consistent exception handling across transports.

The ability to ensure that an operation is performed by gracefully handling connection and channel errors.

» Several annoyances with amqplib has been fixed, like supporting timeouts and the ability to wait for events on

more than one channel.

* Projects already using carrot can easily be ported by using a compatibility layer.

For an introduction to AMQP you should read the article Rabbits and warrens, and the Wikipedia article about AMQP.

1.3 Transport Comparison

Client Type Direct | Topic | Fanout Priority | TTL
amgp Native | Yes Yes Yes Yes® Yes®
gpid Native | Yes Yes Yes No No
redis Virtual | Yes Yes Yes (PUB/SUB) | Yes No
mongodb Virtual | Yes Yes Yes Yes Yes
SOS Virtual | Yes Yes' | Yes’ No No
zookeeper | Virtual | Yes Yes! | No Yes No
in-memory | Virtual | Yes Yes! | No No No
SLMQ Virtual | Yes Yes! | No No No

1.3.1 Documentation

Kombu is using Sphinx, and the latest documentation can be found here:

https://kombu.readthedocs.io/

1.3.2 Quick overview

from kombu import Connection, Exchange, Queue

media_exchange = Exchange('media', 'direct', durable=True)

video_queue = Queue('video', exchange=media_exchange, routing_key='video')

def process_media (body, message):
print body
message.ack ()

connections

with Connection('amgp://guest:guest@localhost//') as conn:

produce

3 AMQP Message priority support depends on broker implementation.
4 AMQP Message/Queue TTL support depends on broker implementation.

(continues on next page)

! Declarations only kept in memory, so exchanges/queues must be declared by all clients that needs them.
2 Fanout supported via storing routing tables in SimpleDB. Disabled by default, but can be enabled by using the supports_fanout transport

option.

Chapter 1. Getting Started

http://barryp.org/software/py-amqplib/
http://pypi.python.org/pypi/carrot/
http://web.archive.org/web/20160323134044/http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/
http://en.wikipedia.org/wiki/AMQP
https://kombu.readthedocs.io/

Kombu Documentation, Release 4.2.1

(continued from previous page)

producer = conn.Producer (serializer='json')

producer.publish ({'name': '/tmp/lolcatl.avi', 'size': 1301013},
exchange=media_exchange, routing_key='video',
declare=[video_queue])

=+

the declare above, makes sure the video queue is declared

+

so that the messages can be delivered.
It's a !

consumers

S a
es

t practice in Kombu to have both publishers and

yre the

H= o

declare the queue. You can also

+

queue manually using:

=+

video_queue (conn) .declare ()
consume
with conn.Consumer (video_queue, callbacks=[process_media]) as consumer:
Process messages and handle events on al channels
while True:
conn.drain_events ()

Consume from several queues on the same channel:
video_gueue = Queue('video', exchange=media_exchange, key='video')
image_queue = Queue ('image', exchange=media_exchange, key='image')

with connection.Consumer ([video_queue, image_queue],
callbacks=[process_media]) as consumer:
while True:
connection.drain_events ()

Or handle channels manually:

with connection.channel () as channel:
producer = Producer (channel, ...)
consumer = Producer (channel)

All objects can be used outside of with statements too, just remember to close the objects after use:

from kombu import Connection, Consumer, Producer

connection = Connection ()
E:

connection.release ()

consumer = Consumer (channel_or_connection, ...)
consumer.register_callback (my_callback)

consumer .consume ()
E:

consumer.cancel ()

Exchange and Queue are simply declarations that can be pickled and used in configuration files etc.
They also support operations, but to do so they need to be bound to a channel.

Binding exchanges and queues to a connection will make it use that connections default channel.

>>> exchange = Exchange('tasks', 'direct')

>>> connection = Connection ()
>>> bound_exchange = exchange (connection)

(continues on next page)

1.3. Transport Comparison 5

Kombu Documentation, Release 4.2.1

(continued from previous page)

>>> pbound_exchange.delete ()

the original exchange is not affected, and stays unbound.
>>> exchange.delete ()
raise NotBoundError: Can't call delete on Exchange not bound to

a channel.

1.4 Terminology

There are some concepts you should be familiar with before starting:
* Producers
Producers sends messages to an exchange.
* Exchanges

Messages are sent to exchanges. Exchanges are named and can be configured to use one of several
routing algorithms. The exchange routes the messages to consumers by matching the routing key in
the message with the routing key the consumer provides when binding to the exchange.

» Consumers

Consumers declares a queue, binds it to a exchange and receives messages from it.
* Queues

Queues receive messages sent to exchanges. The queues are declared by consumers.
* Routing keys

Every message has a routing key. The interpretation of the routing key depends on the exchange
type. There are four default exchange types defined by the AMQP standard, and vendors can define
custom types (so see your vendors manual for details).

These are the default exchange types defined by AMQP/0.8:
— Direct exchange

Matches if the routing key property of the message and the routing_key attribute of the
consumer are identical.

— Fan-out exchange
Always matches, even if the binding does not have a routing key.
— Topic exchange

Matches the routing key property of the message by a primitive pattern matching
scheme. The message routing key then consists of words separated by dots (“.”,
like domain names), and two special characters are available; star (“*”) and hash
(“#”). The star matches any word, and the hash matches zero or more words. For
example “*.stock.#” matches the routing keys “usd.stock” and “eur.stock.db” but not

“stock.nasdaq”.

1.5 Installation

You can install Kombu either via the Python Package Index (PyPI) or from source.

6 Chapter 1. Getting Started

Kombu Documentation, Release 4.2.1

To install using pip,:

’$ pip install kombu

To install using easy_install,:

’$ easy_install kombu

If you have downloaded a source tarball you can install it by doing the following,:

$ python setup.py build
python setup.py install # as root

1.6 Getting Help

1.6.1 Mailing list

Join the carrot-users mailing list.

1.7 Bug tracker

If you have any suggestions, bug reports or annoyances please report them to our issue tracker at http://github.com/
celery/kombu/issues/

1.8 Contributing

Development of Kombu happens at Github: http://github.com/celery/kombu

You are highly encouraged to participate in the development. If you don’t like Github (for some reason) you’re
welcome to send regular patches.

1.9 License

This software is licensed under the New BSD License. See the LICENSE file in the top distribution directory for the
full license text.

1.6. Getting Help 7

http://groups.google.com/group/carrot-users/
http://github.com/celery/kombu/issues/
http://github.com/celery/kombu/issues/
http://github.com/celery/kombu

Kombu Documentation, Release 4.2.1

8 Chapter 1. Getting Started

CHAPTER 2

User Guide

Release 4.2
Date May 30, 2018

2.1 Introduction

2.1.1 What is messaging?

In times long ago people didn’t have email. They had the postal service, which with great courage would deliver mail
from hand to hand all over the globe. Soldiers deployed at wars far away could only communicate with their families
through the postal service, and posting a letter would mean that the recipient wouldn’t actually receive the letter until
weeks or months, sometimes years later.

It’s hard to imagine this today when people are expected to be available for phone calls every minute of the day.
So humans need to communicate with each other, this shouldn’t be news to anyone, but why would applications?

One example is banks. When you transfer money from one bank to another, your bank sends a message to a central
clearinghouse. The clearinghouse then records and coordinates the transaction. Banks need to send and receive
millions and millions of messages every day, and losing a single message would mean either losing your money (bad)
or the banks money (very bad)

Another example is the stock exchanges, which also have a need for very high message throughputs and have strict
reliability requirements.

Email is a great way for people to communicate. It is much faster than using the postal service, but still using email
as a means for programs to communicate would be like the soldier above, waiting for signs of life from his girlfriend
back home.

2.1.2 Messaging Scenarios

* Request/Reply

Kombu Documentation, Release 4.2.1

The request/reply pattern works like the postal service example. A message is addressed to a single recipient,
with a return address printed on the back. The recipient may or may not reply to the message by sending it back
to the original sender.

Request-Reply is achieved using direct exchanges.

* Broadcast
In a broadcast scenario a message is sent to all parties. This could be none, one or many recipients.
Broadcast is achieved using fanout exchanges.

¢ Publish/Subscribe

In a publish/subscribe scenario producers publish messages to topics, and consumers subscribe to the topics they
are interested in.

If no consumers subscribe to the topic, then the message will not be delivered to anyone. If several consumers
subscribe to the topic, then the message will be delivered to all of them.

Pub-sub is achieved using topic exchanges.

2.1.3 Reliability

For some applications reliability is very important. Losing a message is a critical situation that must never happen.
For other applications losing a message is fine, it can maybe recover in other ways, or the message is resent anyway
as periodic updates.

AMQP defines two built-in delivery modes:
e persistent
Messages are written to disk and survives a broker restart.
* transient

Messages may or may not be written to disk, as the broker sees fit to optimize memory contents. The
messages won’t survive a broker restart.

Transient messaging is by far the fastest way to send and receive messages, so having persistent messages comes with
a price, but for some applications this is a necessary cost.

2.2 Connections and transports

2.2.1 Basics

To send and receive messages you need a transport and a connection. There are several transports to choose from
(amgp, librabbitmgq, redis, qpid, in-memory, etc.), and you can even create your own. The default transport is amqp.

Create a connection using the default transport:

>>> from kombu import Connection
>>> connection = Connection ('amgp://guest:guest@localhost:5672//")

The connection will not be established yet, as the connection is established when needed. If you want to explicitly
establish the connection you have to call the connect () method:

>>> connection.connect ()

10 Chapter 2. User Guide

Kombu Documentation, Release 4.2.1

You can also check whether the connection is connected:

>>> connection.connected
True

Connections must always be closed after use:

’>>> connection.close ()

But best practice is to release the connection instead, this will release the resource if the connection is associated with
a connection pool, or close the connection if not, and makes it easier to do the transition to connection pools later:

’>>> connection.release ()

See also:
Connection and Producer Pools

Of course, the connection can be used as a context, and you are encouraged to do so as it makes it harder to forget
releasing open resources:

with Connection () as connection:
work with connection

2.2.2 URLs

Connection parameters can be provided as a URL in the format:

transport://userid:password@hostname:port/virtual_host

All of these are valid URLs:

Specifies using the amgp transport only, default values
are taken from the keyword arguments.
amgp://

Using Redis
redis://localhost:6379/

Using Redis over a Unix socket
redis+socket:///tmp/redis.sock

Using Qpid
gpid://localhost/

Using virtual host '/foo'
amgp://localhost//foo

Using virtual host 'foo'
amgp://localhost/foo

The query part of the URL can also be used to set options, e.g.:

amgp://localhost/myvhost?ssl=1

See Keyword arguments for a list of supported options.

2.2. Connections and transports 11

Kombu Documentation, Release 4.2.1

A connection without options will use the default connection settings, which is using the localhost host, default port,
user name guest, password guest and virtual host “/”. A connection without arguments is the same as:

>>> Connection('amgp://guest:guest@localhost:5672//")

The default port is transport specific, for AMQP this is 5672.

Other fields may also have different meaning depending on the transport used. For example, the Redis transport uses
the virtual_host argument as the redis database number.

2.2.3 Keyword arguments

The Connect ion class supports additional keyword arguments, these are:
hostname Default host name if not provided in the URL.
userid Default user name if not provided in the URL.
password Default password if not provided in the URL.
virtual_host Default virtual host if not provided in the URL.
port Default port if not provided in the URL.

transport Default transport if not provided in the URL. Can be a string specifying the path to the
class. (e.g. kombu.transport.pyamgp:Transport), or one of the aliases: pyamagp,
librabbitmg, redis, gpid, memory, and so on.

ssl Use SSL to connect to the server. Default is False. Only supported by the amqp and qpid transports.
insist Insist on connecting to a server. No longer supported, relic from AMQP 0.8

connect_timeout Timeout in seconds for connecting to the server. May not be supported by the specified
transport.

transport_options A dict of additional connection arguments to pass to alternate kombu channel imple-
mentations. Consult the transport documentation for available options.

2.2.4 AMQP Transports

There are 4 transports available for AMQP use.
1. pyamgp uses the pure Python library amgp, automatically installed with Kombu.

2. librabbitmg uses the high performance transport written in C. This requires the 1ibrabbitmg Python
package to be installed, which automatically compiles the C library.

3. amgp tries to use 1ibrabbitmqg but falls back to pyamgp.

4. gpid uses the pure Python library qpid.messaging, automatically installed with Kombu. The Qpid library
uses AMQP, but uses custom extensions specifically supported by the Apache Qpid Broker.

For the highest performance, you should install the 1ibrabbitmg package. To ensure librabbitmq is used, you can
explicitly specify it in the transport URL, or use amgp to have the fallback.

12 Chapter 2. User Guide

Kombu Documentation, Release 4.2.1

2.2.5 Transport Comparison

Client Type Direct | Topic | Fanout Priority
amgp Native | Yes Yes Yes Yes®
qpid Native | Yes Yes Yes No

redis Virtual | Yes Yes Yes (PUB/SUB) | Yes
SOS Virtual | Yes Yes' Yes’ No
zookeeper | Virtual | Yes Yes! | No Yes
in-memory | Virtual | Yes Yes! No No
SLMQ Virtual | Yes Yes! | No No

2.3 Producers

2.3.1 Basics

You can create a producer using a Connection:

>>> producer = connection.Producer ()

You can also instantiate Producer directly, it takes a channel or a connection as an argument:

>>> with Connection('amgp://') as conn:
with conn.channel () as channel:
producer = Producer (channel)

Having a producer instance you can publish messages:

Mostly you will be getting a connection from a connection pool, and this connection can be stale, or you could lose
the connection in the middle of sending the message. Using retries is a good way to handle these intermittent failures:

>>> producer.publish({'hello': 'world', ..., retry=True})

In addition a retry policy can be specified, which is a dictionary of parameters supported by the
retry_over_time () function

>>> producer.publish (
{'hello': 'world'}, ...,
retry=True,
retry_policy={

'interval_start': 0, # 7 immediately,
'interval_step': 2, ff by 2s for
'interval_max': 30, # 30 o s
'max_retries': 30, # gix tries

The declare argument lets you pass a list of entities that must be declared before sending the message. This is
especially important when using the retry flag, since the broker may actually restart during a retry in which case
non-durable entities are removed.

3 AMQP Message priority support depends on broker implementation.

! Declarations only kept in memory, so exchanges/queues must be declared by all clients that needs them.

2 Fanout supported via storing routing tables in SimpleDB. Disabled by default, but can be enabled by using the supports_fanout transport
option.

2.3. Producers 13

Kombu Documentation, Release 4.2.1

Say you are writing a task queue, and the workers may have not started yet so the queues aren’t declared. In this case
you need to define both the exchange, and the declare the queue so that the message is delivered to the queue while
the workers are offline:

>>> from kombu import Exchange, Queue
>>> task_qgqueue = Queue('tasks', Exchange('tasks'), routing_key="'tasks')

>>> producer.publish (
{'hello': 'world'}, ...,
retry=True,
exchange=task_qgueue.exchange,
routing_key=task_queue.routing_key,
declare=[task_gueue], # declares exchange, queue and binds.

Bypassing routing by using the anon-exchange

You may deliver to a queue directly, bypassing the brokers routing mechanisms, by using the “anon-exchange”: set
the exchange parameter to the empty string, and set the routing key to be the name of the queue:

>>> producer.publish (
{'hello': 'world'},
exchange="",
routing_key=task_gueue.name,

2.3.2 Serialization

Json is the default serializer when a non-string object is passed to publish, but you can also specify a different serializer:

>>> producer.publish({'hello': 'world'}, serializer='pickle'")

See Serialization for more information.

2.3.3 Reference

class kombu.Producer (channel, exchange=None, routing_key=None, serializer=None,
auto_declare=None, compression=None, on_return=None)
Message Producer.

Parameters
e channel (kombu.Connection, ChannelT)— Connection or channel.
* exchange (Exchange, str)— Optional default exchange.
* routing_ key (str)— Optional default routing key.
e serializer (str)— Default serializer. Default is “json”.
* compression (str)— Default compression method. Default is no compression.

* auto_declare (bool) — Automatically declare the default exchange at instantiation.
Default is True.

14 Chapter 2. User Guide

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

* on_return (Callable)— Callback to call for undeliverable messages, when the manda-
tory or immediate arguments to publish () is used. This callback needs the following
signature: (exception, exchange, routing_key, message). Note that the producer needs to
drain events to use this feature.

auto_declare = True
By default, if a defualt exchange is set, that exchange will be declare when publishing a message.

compression = None
Default compression method. Disabled by default.

declare ()
Declare the exchange.

Note: This happens automatically at instantiation when the auto_declare flag is enabled.

exchange = None
Default exchange

maybe_declare (entity, retry=>False, **retry_policy)
Declare exchange if not already declared during this session.

on_return = None
Basic return callback.

publish (body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, prior-
ity=0, content_type=None, content_encoding=None, serializer=None, headers=None, com-
pression=None, exchange=None, retry=False, retry_policy=None, declare=None, expira-
tion=None, **properties)
Publish message to the specified exchange.

Parameters
* body (Any) — Message body.
* routing_key (st r)— Message routing key.
* delivery_mode (enum)— See delivery_mode.
* mandatory (bool) — Currently not supported.
* immediate (bool) — Currently not supported.
e priority (int)— Message priority. A number between 0 and 9.
* content_type (str)— Content type. Default is auto-detect.
* content_encoding (st r)— Content encoding. Default is auto-detect.
e serializer (str)— Serializer to use. Default is auto-detect.
e compression (st r)— Compression method to use. Default is none.
* headers (Dict)— Mapping of arbitrary headers to pass along with the message body.

¢ exchange (Exchange, str)— Override the exchange. Note that this exchange must
have been declared.

* declare (Sequence [EntityT]) — Optional list of required entities that must have
been declared before publishing the message. The entities will be declared using
maybe _declare ().

e retry (bool)— Retry publishing, or declaring entities if the connection is lost.

2.3. Producers 15

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

* retry_policy (Dict) — Retry configuration, this is the keywords supported by
ensure ().

* expiration (float)— A TTL in seconds can be specified per message. Default is no
expiration.

* xxproperties (Any)— Additional message properties, see AMQP spec.

revive (channel)
Revive the producer after connection loss.

routing key = u''
Default routing key.

serializer = None
Default serializer to use. Default is JSON.

2.4 Consumers

2.4.1 Basics

The Consumer takes a connection (or channel) and a list of queues to consume from. Several consumers can be
mixed to consume from different channels, as they all bind to the same connection, and drain_events will drain
events from all channels on that connection.

Note: Kombu since 3.0 will only accept json/binary or text messages by default, to allow deserialization of other
formats you have to specify them in the accept argument (in addition to setting the right content type for your
messages):

Consumer (conn, accept=['json', 'pickle', 'msgpack', 'yaml'])

Draining events from a single consumer:

with Consumer (connection, queues, accept=['json']):
connection.drain_events (timeout=1)

Draining events from several consumers:

from kombu.utils.compat import nested

with connection.channel (), connection.channel () as (channell, channel2):
with nested(Consumer (channell, queuesl, accept=['json'l]),
Consumer (channel2, queues2, accept=['json'])):

connection.drain_events (timeout=1)

Or using ConsumerMixin:

from kombu.mixins import ConsumerMixin
class C(ConsumerMixin) :

def _ init_ (self, connection):
self.connection = connection

(continues on next page)

16 Chapter 2. User Guide

https://docs.python.org/dev/library/functions.html#float

Kombu Documentation, Release 4.2.1

(continued from previous page)

def get_consumers (self, Consumer, channel):
return [
Consumer (queues, callbacks=[self.on_message], accept=['json']),

def on_message(self, body, message):
print ('RECEIVED MESSAGE: {0!r}'.format (body))
message.ack ()

C (connection) .run ()

and with multiple channels again:

from kombu import Consumer
from kombu.mixins import ConsumerMixin

class C(ConsumerMixin) :
channel?2 = None

def _ init_ (self, connection):
self.connection = connection

def get_consumers (self, _, default_channel):
self.channel2 = default_channel.connection.channel ()

return [Consumer (default_channel, queuesl,
callbacks=[self.on_message],
accept=['json']),
Consumer (self.channel2, queues2,
callbacks=[self.on_special_message],
accept=["'json'])]

def on_consumer_end(self, connection, default_channel) :
if self.channel2:

self.channel2.close()

C (connection) .run ()

There’s also a ConsumerProducerMixin for consumers that need to also publish messages on a separate connec-
tion (e.g. sending rpc replies, streaming results):

from kombu import Producer, Queue
from kombu.mixins import ConsumerProducerMixin

rpc_gqueue = Queue ('rpc_qgqueue')
class Worker (ConsumerProducerMixin) :

def init (self, connection):
self.connection = connection

def get_consumers (self, Consumer, channel):
return [Consumer (
queues=[rpc_queue],
on_message=self.on_request,
accept={'application/json'},
prefetch_count=1,

(continues on next page)

2.4. Consumers 17

Kombu Documentation, Release 4.2.1

(continued from previous page)

)]

def on_request (self, message):
n = message.payload['n']
print (' [.] fib({0})'.format (n))
result = fib (n)

self.producer.publish (
{'result': result},
exchange="'"', routing_key=message.properties['reply_to'],
correlation_id=message.properties|['correlation_id'],
serializer="'json',
retry=True,

)

message.ack ()

See also:

examples/rpc-tut6/ in the Github repository.

2.4.2 Advanced Topics
RabbitMQ

Consumer Priorities

RabbitMQ defines a consumer priority extension to the amqgp protocol, that can be enabled by setting the
x-priority argument to basic.consume.

In kombu you can specify this argument on the Queue, like this:

queue = Queue ('name', Exchange ('exchange_name', type='direct'),
consumer_arguments={'x-priority': 10})

Read more about consumer priorities here: https://www.rabbitmq.com/consumer-priority.html

2.4.3 Reference

class kombu.Consumer (channel, queues=None, no_ack=None, auto_declare=None, call-
backs=None, on_decode_error=None, on_message=None, accept=None,

prefetch_count=None, tag_prefix=None)
Message consumer.

Parameters
* channel (kombu.Connection, ChannelT)-see channel.
* queues (Sequence [kombu.Queue]) — see queues.
* no_ack (bool)—see no_ack.
* auto_declare (bool)—-see auto _declare
* callbacks (Sequence[Callable])—see callbacks.

* on_message (Callable)— See on_message

18 Chapter 2. User Guide

https://www.rabbitmq.com/consumer-priority.html
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

* on_decode_error (Callable)—see on_decode_error.
* prefetch_count (int)—see prefetch_count.

exception ContentDisallowed
Consumer does not allow this content-type.

accept = None
List of accepted content-types.

An exception will be raised if the consumer receives a message with an untrusted content type. By de-
fault all content-types are accepted, but not if kombu.disable_untrusted_serializers () was
called, in which case only json is allowed.

add_queue (queue)
Add a queue to the list of queues to consume from.

Note: This will not start consuming from the queue, for that you will have to call consume () after.

auto_declare = True
By default all entities will be declared at instantiation, if you want to handle this manually you can set this
toFalse.

callbacks = None
List of callbacks called in order when a message is received.

The signature of the callbacks must take two arguments: (body, message), which is the decoded message
body and the Me s sage instance.

cancel ()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not send any more
messages for this consumer.

cancel_by_queue (queue)
Cancel consumer by queue name.

channel = None
The connection/channel to use for this consumer.

close ()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not send any more
messages for this consumer.

consume (no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues added since the last
call, it will not cancel consuming from removed queues (use cancel_ by queue ()).

Parameters no_ack (bool) - See no_ack.

consuming_from (queue)
Return True if currently consuming from queue’.

24,

Consumers 19

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

declare ()
Declare queues, exchanges and bindings.

Note: This is done automatically at instantiation when auto_declare is set.

flow (active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content (if any), and
then wait until flow is reactivated.

no_ack = None
Flag for automatic message acknowledgment. If enabled the messages are automatically acknowledged
by the broker. This can increase performance but means that you have no control of when the message is
removed.

Disabled by default.

on_decode_error = None
Callback called when a message can’t be decoded.

The signature of the callback must take two arguments: (message, exc), which is the message that can’t be
decoded and the exception that occurred while trying to decode it.

on_message = None
Optional function called whenever a message is received.

When defined this function will be called instead of the receive () method, and callbacks will be
disabled.

So this can be used as an alternative to callbacks when you don’t want the body to be automatically
decoded. Note that the message will still be decompressed if the message has the compression header
set.

The signature of the callback must take a single argument, which is the Message object.

Also note that the me ssage . body attribute, which is the raw contents of the message body, may in some
cases be a read-only buf fer object.

prefetch_count = None
Initial prefetch count

If set, the consumer will set the prefetch_count QoS value at startup. Can also be changed using gos ().

purge ()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

qos (prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes processing
a message, the following message is already held locally, rather than needing to be sent down the channel.
Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.

20

Chapter 2. User Guide

Kombu Documentation, Release 4.2.1

Parameters

* prefetch_size (int)- Specify the prefetch window in octets. The server will send a
message in advance if it is equal to or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply.

* prefetch_count (int) — Specify the prefetch window in terms of whole messages.
* apply_global (bool)— Apply new settings globally on all channels.

queues
A single Queue, or a list of queues to consume from.

receive (body, message)
Method called when a message is received.

This dispatches to the registered callbacks.
Parameters
* body (Any) — The decoded message body.
* message (Message) — The message instance.
Raises Not ImplementedError —If no consumer callbacks have been registered.

recover (requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.

Parameters requeue (bool) — By default the messages will be redelivered to the original
recipient. With requeue set to true, the server will attempt to requeue the message, potentially
then delivering it to an alternative subscriber.

register_ callback (callback)
Register a new callback to be called when a message is received.

Note: The signature of the callback needs to accept two arguments: (body, message), which is the decoded
message body and the Message instance.

revive (channel)
Revive consumer after connection loss.

2.5 Examples

2.5.1 Hello World Example

Below example uses Simple Interface to send helloworld message through message broker (rabbitmq) and print re-
ceived message

hello_publisher.py:

from _ future import absolute_import, unicode_literals

import datetime

(continues on next page)

2.5. Examples 21

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#NotImplementedError
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

(continued from previous page)

from kombu import Connection

with Connection ('amgp://guest:guest@localhost:5672//') as conn:
simple_queue = conn.SimpleQueue ('simple_qgueue')
message = 'helloworld, sent at {0}'.format (datetime.datetime.today())
simple_qgueue.put (message)
print ('Sent: {0}'.format (message))
simple_qgueue.close ()

hello_consumer.py:

from _ future_ import absolute_import, unicode_literals, print_function

from kombu import Connection # noga

with Connection('amgp://guest:guest@localhost:5672//"') as conn:
simple_gueue = conn.SimpleQueue ('simple_queue')
message = simple_queue.get (block=True, timeout=1)
print ('Received: {0}'.format (message.payload))
message.ack ()
simple_queue.close ()

2.5.2 Task Queue Example

Very simple task queue using pickle, with primitive support for priorities using different queues.

queues.py:

from _ future import absolute_import, unicode_literals
from kombu import Exchange, Queue

task_exchange = Exchange ('tasks', type='direct')

task_queues = [Queue('hipri', task_exchange, routing_key='hipri'),
Queue ('midpri', task_exchange, routing_key='midpri'),
Queue ('lopri', task_exchange, routing_key='lopri')]

worker.py:

from _ future import absolute_import, unicode_literals
from kombu.mixins import ConsumerMixin

from kombu.log import get_logger

from kombu.utils.functional import reprcall

from .queues import task_gueues

logger = get_logger (__name__)

class Worker (ConsumerMixin) :

def _ init_ (self, connection):

(continues on next page)

22 Chapter 2. User Guide

Kombu Documentation, Release 4.2.1

(continued from previous page)

self.connection = connection

def get_consumers (self, Consumer, channel):
return [Consumer (queues=task_queues,
accept=['pickle', 'json'],
callbacks=[self.process_task])]

def process_task(self, body, message):
fun = body['fun']
args = body['args']
kwargs = body['kwargs']
logger.info ('Got task: %s', reprcall(fun.__name__, args, kwargs))
try:
fun (xargs, =**kwargs)
except Exception as exc:
logger.error ('task raised exception: %r', exc)
message.ack ()

if _ name_ == '_ _main_ ':
from kombu import Connection
from kombu.utils.debug import setup_logging
setup root logger
setup_logging (loglevel="INFO', loggers=[''])

with Connection ('amgp://guest:guest@localhost:5672//') as conn:
try:
worker = Worker (conn)
worker.run ()
except KeyboardInterrupt:
print ('bye bye')

tasks.py:

from _ future import absolute_import, unicode_literals

def hello_ task (who='world') :
print ('Hello {0}'.format (who))

client.py:

from _ future import absolute_import, unicode_literals
from kombu.pools import producers
from .queues import task_exchange

priority_to_routing_key = {

'high': 'hipri',
'mid': 'midpri',
'low': 'lopri',
}
def send_as_task (connection, fun, args=(), kwargs={}, priority='mid'):
payload = {'fun': fun, 'args': args, 'kwargs': kwargs}

routing_key = priority_to_routing_ key[priority]

(continues on next page)

2.5. Examples 23

Kombu Documentation, Release 4.2.1

(continued from previous page)

with producers[connection].acquire (block=True) as producer:
producer.publish (payload,
serializer="pickle',
compression="bzip2',
exchange=task_exchange,
declare=[task_exchange],
routing_key=routing_key)

if name == '__main__ ':
from kombu import Connection
from .tasks import hello_task

connection = Connection ('amgp://guest:guest@localhost:5672//")
send_as_task (connection, fun=hello_task, args=('Kombu',), kwargs={},
priority='high')

2.6 Simple Interface

» Sending and receiving messages

kombu.simple is a simple interface to AMQP queueing. It is only slightly different from the Queue class in the
Python Standard Library, which makes it excellent for users with basic messaging needs.

Instead of defining exchanges and queues, the simple classes only requires two arguments, a connection channel and
a name. The name is used as the queue, exchange and routing key. If the need arises, you can specify a Queue as the
name argument instead.

In addition, the Connect ion comes with shortcuts to create simple queues using the current connection:

>>> queue = connection.SimpleQueue ('myqueue')
>>> # ... do something with queue
>>> queue.close ()

This is equivalent to:

>>> from kombu.simple import SimpleQueue, SimpleBuffer

>>> channel = connection.channel ()
>>> queue = SimpleBuffer (channel)
>>> # ... do something with queue

>>> channel.close()
>>> queue.close ()

2.6.1 Sending and receiving messages

The simple interface defines two classes; SimpleQueue, and SimpleBuffer. The former is used for persistent
messages, and the latter is used for transient, buffer-like queues. They both have the same interface, so you can use
them interchangeably.

Here is an example using the SimpleQueue class to produce and consume logging messages:

24 Chapter 2. User Guide

Kombu Documentation, Release 4.2.1

import socket

import datetime

from time import time

from kombu import Connection

class Logger (object) :

def _ init__ (self, connection, queue_name='log_dgueue',
serializer="'"json', compression=None) :
self.queue = connection.SimpleQueue (queue_name)
self.serializer = serializer

self.compression = compression

def log(self, message, level='INFO', context={}):
self.queue.put ({ 'message': message,

'level': level,
'context': context,
'hostname': socket.gethostname(),

'timestamp': time ()},
serializer=self.serializer,
compression=self.compression)

def process(self, callback, n=1, timeout=1):
for i in xrange (n):
log_message = self.queue.get (block=True, timeout=1)
entry = log_message.payload # deserialized data.
callback (entry)
log_message.ack () # remove message from queue

def close(self):
self.queue.close ()

if name == '__main_ ':

from contextlib import closing

with Connection('amgp://guest:guest@localhost:5672//') as conn:
with closing(Logger (conn)) as logger:
Send message
logger.log('Error happened while encoding video',
level="ERROR',
context={"'filename': 'cutekitten.mpg'})

Consume and process message
This i1s the callback called when a log message is

received.
def dump_entry(entry):

date = datetime.datetime.fromtimestamp (entry['timestamp'])
print (' [%s %s %$s] %s %r' % (date,
entry['hostname'],
entry['level'],
entry['message'],
entry['context']))

(continues on next page)

2.6. Simple Interface 25

Kombu Documentation, Release 4.2.1

(continued from previous page)

Process a single message using the callback above.

logger.process (dump_entry, n=1)

2.7 Connection and Producer Pools

2.7.1 Default Pools

Kombu ships with two global pools: one connection pool, and one producer pool.

These are convenient and the fact that they are global may not be an issue as connections should often be limited at the
process level, rather than per thread/application and so on, but if you need custom pools per thread see Custom Pool
Groups.

The connection pool group

The connection pools are available as kombu.pools.connections. This is a pool group, which means you give
it a connection instance, and you get a pool instance back. We have one pool per connection instance to support
multiple connections in the same app. All connection instances with the same connection parameters will get the same
pool:

>>> from kombu import Connection
>>> from kombu.pools import connections

>>> connections[Connection('redis://localhost:6379")]
<kombu.connection.ConnectionPool object at 0x101805650>
>>> connections[Connection('redis://localhost:6379")]
<kombu.connection.ConnectionPool object at 0x101805650>

Let’s acquire and release a connection:

from kombu import Connection
from kombu.pools import connections

connection = Connection('redis://localhost:6379")

with connections[connection].acquire (block=True) as conn:
print ('Got connection: {0!r}'.format (connection.as_uri()))

Note: The block=True here means that the acquire call will block until a connection is available in the pool. Note
that this will block forever in case there is a deadlock in your code where a connection is not released. There is a
timeout argument you can use to safeguard against this (see kombu.connection.Resource.acquire ()).

If blocking is disabled and there aren’t any connections left in the pool an kombu.exceptions.
ConnectionLimitExceeded exception will be raised.

That’s about it. If you need to connect to multiple brokers at once you can do that too:

from kombu import Connection
from kombu.pools import connections

(continues on next page)

26 Chapter 2. User Guide

Kombu Documentation, Release 4.2.1

(continued from previous page)

cl = Connection('amgp://")
c2 Connection('redis://")

with connections[cl].acquire (block=True) as connl:
with connections[c2].acquire(block=True) as conn2:

#
it

2.7.2 The producer pool group

This is a pool group just like the connections, except that it manages Producer instances used to publish messages.

Here is an example using the producer pool to publish a message to the news exchange:

from kombu import Connection, Exchange
from kombu.pools import producers

The exchange we send our news articles to.

news_exchange = Exchange ('news')

The article we want to send

article = {'title': 'No cellular coverage on the tube for 2012',
'ingress': 'yvadda yadda yadda'}
The broker where our exchange is.

connection = Connection ('amgp://guest:guest@localhost:5672//")

with producers[connection].acquire (block=True) as producer:
producer.publish (
article,
exchange=new_exchange,
routing_key='domestic',
declare=[news_exchange],
serializer="'"json',
compression="zlib"')

Setting pool limits

By default every connection instance has a limit of 200 connections. You can change this limit using kombu . pools.
set_limit (). You are able to grow the pool at runtime, but you can’t shrink it, so it is best to set the limit as early
as possible after your application starts:

>>> from kombu import pools
>>> pools.set_limit ()

Resetting all pools

You can close all active connections and reset all pool groups by using the kombu.pools. reset () function. Note
that this will not respect anything currently using these connections, so will just drag the connections away from under
their feet: you should be very careful before you use this.

Kombu will reset the pools if the process is forked, so that forked processes start with clean pool groups.

2.7. Connection and Producer Pools 27

Kombu Documentation, Release 4.2.1

2.7.3 Custom Pool Groups

To maintain your own pool groups you should create your own Connections and kombu.pools.Producers
instances:

from kombu import pools
from kombu import Connection

connections = pools.Connections (1imit=100)
producers = pools.Producers (limit=connections.limit)

connection = Connection ('amgp://guest:guest@localhost:5672//")

with connections[connection].acquire (block=True) :

i

If you want to use the global limit that can be set with set_1imit () you can use a special value as the 1imit
argument:

from kombu import pools

connections = pools.Connections (limit=pools.use_default_limit)

2.8 Serialization

2.8.1 Serializers

By default every message is encoded using JSON, so sending Python data structures like dictionaries and lists works.
YAML, msgpack and Python’s built-in pickle module is also supported, and if needed you can register any custom
serialization scheme you want to use.

By default Kombu will only load JSON messages, so if you want to use other serialization format you must explicitly
enable them in your consumer by using the accept argument:

Consumer (conn, [queue], accept=['json', 'pickle', 'msgpack'])

The accept argument can also include MIME-types.
Each option has its advantages and disadvantages.

Jjson — JSON is supported in many programming languages, is now a standard part of Python (since 2.6), and is
fairly fast to decode using the modern Python libraries such as cjson or simplejson.

The primary disadvantage to JSON is that it limits you to the following data types: strings, Unicode, floats,
boolean, dictionaries, and lists. Decimals and dates are notably missing.

Also, binary data will be transferred using Base64 encoding, which will cause the transferred data to be around
34% larger than an encoding which supports native binary types.

However, if your data fits inside the above constraints and you need cross-language support, the default setting
of JSON is probably your best choice.

pickle — If you have no desire to support any language other than Python, then using the pickle encoding will gain
you the support of all built-in Python data types (except class instances), smaller messages when sending binary
files, and a slight speedup over JSON processing.

28 Chapter 2. User Guide

http://www.json.org/
http://yaml.org/
https://msgpack.org/

Kombu Documentation, Release 4.2.1

Pickle and Security

The pickle format is very convenient as it can serialize and deserialize almost any object, but this is also a
concern for security.

Carefully crafted pickle payloads can do almost anything a regular Python program can do, so if you let your
consumer automatically decode pickled objects you must make sure to limit access to the broker so that untrusted
parties do not have the ability to send messages!

By default Kombu uses pickle protocol 2, but this can be changed using the PTCKLE_PROTOCOL environment
variable or by changing the global kombu.serialization.pickle_protocol flag.

yaml — YAML has many of the same characteristics as json, except that it natively supports more data types (in-
cluding dates, recursive references, etc.)

However, the Python libraries for YAML are a good bit slower than the libraries for JSON.

If you need a more expressive set of data types and need to maintain cross-language compatibility, then YAML
may be a better fit than the above.

To instruct Kombu to use an alternate serialization method, use one of the following options.

1. Set the serialization option on a per-producer basis:

>>> producer = Producer (channel,
exchange=exchange,
serializer="yaml')

2. Set the serialization option per message:

>>> producer.publish (message, routing_key=rkey,
serializer="pickle')

Note that a Consumer do not need the serialization method specified. They can auto-detect the serialization method as
the content-type is sent as a message header.

2.8.2 Sending raw data without Serialization

In some cases, you don’t need your message data to be serialized. If you pass in a plain string or Unicode object as
your message and a custom content_type, then Kombu will not waste cycles serializing/deserializing the data.

You can optionally specify a content_encoding for the raw data:

>>> with open('~/my_picture.jpg', 'rb') as fh:
producer.publish (fh.read(),

/ S ec

content_type="image/
content_encoding='binary',

routing_key=rkey)

The Message object returned by the Consumer class will have a content_type and content_encoding attribute.

2.8.3 Creating extensions using Setuptools entry-points

A package can also register new serializers using Setuptools entry-points.

The entry-point must provide the name of the serializer along with the path to a tuple providing the rest of the args:
encoder_function, decoder_function, content_type, content_encoding.

2.8. Serialization 29

Kombu Documentation, Release 4.2.1

An example entrypoint could be:

from setuptools import setup

setup (
entry_points={
'kombu.serializers': [
'my_serializer = my_module.serializer:register_args'

Then the module my_module.serializer would look like:

register_args = (my_encoder, my_decoder, 'application/x-mimetype', 'utf-8")

When this package is installed the new ‘my_serializer’ serializer will be supported by Kombu.

Buffer Objects
The decoder function of custom serializer must support both strings and Python’s old-style buffer objects.

Python pickle and json modules usually don’t do this via its 1 oads function, but you can easily add support by making
a wrapper around the 1oad function that takes file objects instead of strings.

Here’s an example wrapping pickle. loads () in such a way:

import pickle
from io import BytesIO
from kombu import serialization

def loads(s):
return pickle.load (BytesIO(s))

serialization.register (
'my_pickle', pickle.dumps, loads,
content_type='application/x-pickle2"',
content_encoding='binary',

30 Chapter 2. User Guide

https://docs.python.org/dev/library/pickle.html#pickle.loads

CHAPTER 3

Frequently Asked Questions

3.1 Questions

3.1.1 Q: Message.reject doesn’t work?

Answer: Earlier versions of RabbitMQ did not implement basic.reject, so make sure your version is recent
enough to support it.

3.1.2 Q: Message.requeue doesn’t work?

Answer: See Message.reject doesn’t work?

31

Kombu Documentation, Release 4.2.1

32

Chapter 3. Frequently Asked Questions

CHAPTER 4

API Reference

Release 4.2
Date May 30, 2018

4.1 Kombu - kombu

e Connection
* Exchange
* Queue

* Message Producer

* Message Consumer

Messaging library for Python.

kombu.enable_insecure_serializers (choices=[u’pickle’, u’yaml’, uw'msgpack’])
Enable serializers that are considered to be unsafe.

Note: Will enable pickle, yaml and msgpack by default, but you can also specify a list of serializers (by
name or content type) to enable.

kombu.disable_insecure_serializers (allowed=[u’json’])
Disable untrusted serializers.

Will disable all serializers except json or you can specify a list of deserializers to allow.

33

Kombu Documentation, Release 4.2.1

Note:

Producers will still be able to serialize data in these formats, but consumers will not accept incoming

data using the untrusted content types.

4.1.1 Connection

class kombu.Connection (hostname=u’localhost’, userid=None, password=None, virtual_host=None,

port=None, insist=False, ssl=False, transport=None, connect_timeout=>5,
transport_options=None, login_method=None, uri_prefix=None, heart-
beat=0, failover_strategy=u’round-robin’, alternates=None, **kwargs)

A connection to the broker.

Example

>>> Connection('amgp://guest:guest@localhost:5672//")
>>> Connection ('amgp://foo;amgp://bar’,
c. failover_strategy='round-robin')
>>> Connection('redis://', transport_options={
'visibility_timeout': 3000,
1)
>>> import ssl
>>> Connection('amgp://', login_method='EXTERNAL', ssl={

'ca_certs': '/etc/pki/tls/certs/something.crt',
'keyfile': '/etc/something/system.key',
'certfile': '/etc/something/system.cert',

'cert_reqgs': ssl.CERT_REQUIRED,
1)

Note: SSL currently only works with the py-amqp, and qgpid transports. For other transports you can use

stunn

el.

Parameters URL (str, Sequence)— Broker URL, or a list of URLs.
Keyword Arguments

* ssl (bool)— Use SSL to connect to the server. Default is False. May not be supported
by the specified transport.

* transport (Transport)— Default transport if not specified in the URL.

* connect_timeout (float)-Timeout in seconds for connecting to the server. May not
be supported by the specified transport.

* transport_options (Dict)— A dict of additional connection arguments to pass to al-
ternate kombu channel implementations. Consult the transport documentation for available
options.

* heartbeat (f1oat) - Heartbeat interval in int/float seconds. Note that if heartbeats are
enabled then the heartbeat_check () method must be called regularly, around once
per second.

34

Chapter 4. API Reference

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float

Kombu Documentation, Release 4.2.1

Note: The connection is established lazily when needed. If you need the connection to be established, then
force it by calling connect ():

>>> conn = Connection('amgp://")
>>> conn.connect ()

and always remember to close the connection:

>>> conn.release()

These options have been replaced by the URL argument, but are still supported for backwards compatibility:
Keyword Arguments

* hostname — Host name/address. NOTE: You cannot specify both the URL argument and
use the hostname keyword argument at the same time.

* userid — Default user name if not provided in the URL.
* password — Default password if not provided in the URL.
* virtual_host — Default virtual host if not provided in the URL.

* port — Default port if not provided in the URL.

Attributes
hostname = None
port = None
userid = None

password = None

virtual host u'/’
ssl = None
login_method = None

failover_ strategy = u'round-robin'
Strategy used to select new hosts when reconnecting after connection failure. One of “round-robin”,
“shuffle” or any custom iterator constantly yielding new URLS to try.

connect_timeout = 5

heartbeat = None
Heartbeat value, currently only supported by the py-amqp transport.

default_ channel
Default channel.

Created upon access and closed when the connection is closed.

Note: Can be used for automatic channel handling when you only need one channel, and also it is the
channel implicitly used if a connection is passed instead of a channel, to functions that require a channel.

connected
Return true if the connection has been established.

4.1. Kombu - kombu 35

Kombu Documentation, Release 4.2.1

recoverable connection_errors
Recoverable connection errors.

List of connection related exceptions that can be recovered from, but where the connection must be closed
and re-established first.

recoverable channel errors
Recoverable channel errors.

List of channel related exceptions that can be automatically recovered from without re-establishing the
connection.

connection_errors
List of exceptions that may be raised by the connection.

channel_errors
List of exceptions that may be raised by the channel.

transport

connection
The underlying connection object.

Warning: This instance is transport specific, so do not depend on the interface of this object.

uri_prefix = None

declared _entities = None
The cache of declared entities is per connection, in case the server loses data.

cycle = None
Iterator returning the next broker URL to try in the event of connection failure (initialized by
failover_ strategy).

host
The host as a host name/port pair separated by colon.

manager
AMQP Management APL.

Experimental manager that can be used to manage/monitor the broker instance.
Not available for all transports.
supports_heartbeats

is_evented

Methods

as_uri (include_password=False, mask=u’**’, getfields=<operator.itemgetter object>)
Convert connection parameters to URL form.

connect ()
Establish connection to server immediately.

channel ()
Create and return a new channel.

drain_events (**kwargs)
Wait for a single event from the server.

36

Chapter 4. API Reference

Kombu Documentation, Release 4.2.1

Parameters timeout (float)— Timeout in seconds before we give up.
Raises socket.timeout —if the timeout is exceeded.

release ()
Close the connection (if open).

autoretry (fun, channel=None, **ensure_options)
Decorator for functions supporting a channel keyword argument.

The resulting callable will retry calling the function if it raises connection or channel related errors. The
return value will be a tuple of (retval, last_created_channel).

If a channel is not provided, then one will be automatically acquired (remember to close it afterwards).
See also:

ensure () for the full list of supported keyword arguments.

Example

>>> channel = connection.channel ()
>>> try:
ret, channel = connection.autoretry(
publish_messages, channel)
finally:
channel.close ()

ensure_connection (errback=None, max_retries=None, interval_start=2, interval_step=2, inter-

val_max=30, callback=None, reraise_as_library_errors=True)
Ensure we have a connection to the server.

If not retry establishing the connection with the settings specified.
Parameters

* errback (Callable) — Optional callback called each time the connection can’t be
established. Arguments provided are the exception raised and the interval that will be
slept (exc, interval).

* max_retries (int)- Maximum number of times to retry. If this limit is exceeded the
connection error will be re-raised.

e interval_start (f1oat)— The number of seconds we start sleeping for.
* interval_step (float)- How many seconds added to the interval for each retry.
e interval_max (float)— Maximum number of seconds to sleep between each retry.

* callback (Callable)— Optional callback that is called for every internal iteration (1
S).

ensure (0bj, fun, errback=None, max_retries=None, interval_start=1, interval_step=1, inter-

val_max=1, on_revive=None)
Ensure operation completes.

Regardless of any channel/connection errors occurring.
Retries by establishing the connection, and reapplying the function.
Parameters

e fun (Callable)- Method to apply.

4.1.

Kombu - kombu 37

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/socket.html#socket.timeout
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float

Kombu Documentation, Release 4.2.1

* errback (Callable) — Optional callback called each time the connection can’t be
established. Arguments provided are the exception raised and the interval that will be
slept (exc, interval).

* max_retries (int)-— Maximum number of times to retry. If this limit is exceeded the
connection error will be re-raised.

e interval_start (float)— The number of seconds we start sleeping for.
* interval_step (float)— How many seconds added to the interval for each retry.

* interval_max (float)— Maximum number of seconds to sleep between each retry.

Examples

>>> from kombu import Connection, Producer
>>> conn = Connection('amgp://")
>>> producer = Producer (conn)

>>> def errback (exc, interval):
logger.error ('Error: %$r', exc, exc_info=1)
logger.info('Retry in %s seconds.', interval)

>>> publish = conn.ensure (producer, producer.publish,
Ce errback=errback, max_retries=3)
>>> publish({'hello': 'world'}, routing_key='dest')

revive (new_channel)
Revive connection after connection re-established.

create_transport ()

get_transport_cls ()
Get the currently used transport class.

clone (**kwargs)
Create a copy of the connection with same settings.

info ()
Get connection info.

switch (url)
Switch connection parameters to use a new URL.

Note: Does not reconnect!

maybe_switch_next ()
Switch to next URL given by the current failover strategy.

heartbeat_check (rate=2)
Check heartbeats.

Allow the transport to perform any periodic tasks required to make heartbeats work. This should be called
approximately every second.

If the current transport does not support heartbeats then this is a noop operation.

38 Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float

Kombu Documentation, Release 4.2.1

Parameters rate (int)— Rate is how often the tick is called compared to the actual heartbeat
value. E.g. if the heartbeat is set to 3 seconds, and the tick is called every 3 / 2 seconds, then
the rate is 2. This value is currently unused by any transports.

maybe_close_channel (channel)
Close given channel, but ignore connection and channel errors.

register_ with_event_loop (loop)

close ()
Close the connection (if open).

_close ()
Really close connection, even if part of a connection pool.

completes_cycle (retries)
Return true if the cycle is complete after number of retries.

get_manager (*args, **kwargs)

Producer (channel=None, *args, **kwargs)
Create new kombu.Producer instance.

Consumer (queues=None, channel=None, *args, **kwargs)
Create new kombu . Consumer instance.

Pool (limit=None, **kwargs)
Pool of connections.

See also:

ConnectionPool.

Parameters limit (int)— Maximum number of active connections. Default is no limit.

Example

>>> connection = Connection('amgp://")
>>> pool = connection.Pool (2)

>>> cl = pool.acquire ()

>>> c2 pool.acquire ()

>>> c3 = pool.acquire()

>>> cl.release()

>>> c3 = pool.acquire()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "kombu/connection.py", line 354, in acquire
raise ConnectionlLimitExceeded (self.limit)
kombu.exceptions.ConnectionLimitExceeded: 2

ChannelPool (limit=None, **kwargs)
Pool of channels.

See also:

ChannelPool.

Parameters limit (int)-— Maximum number of active channels. Default is no limit.

4.1.

Kombu - kombu 39

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 4.2.1

Example

>>> connection = Connection ('amgp://")

>>> pool = connection.ChannelPool (2)
>>> cl = pool.acquire ()
>>> c2 = pool.acquire()

>>> ¢3 = pool.acquire ()
>>> cl.release()

>>> c3 = pool.acquire()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "kombu/connection.py", line 354, in acquire

raise ChannellLimitExceeded(self.limit)
kombu.connection.ChannellLimitExceeded: 2

SimpleQueue (name, no_ack=None, queue_opts=None, exchange_opts=None, channel=None,
**kwargs)
Simple persistent queue API.

Create new SimpleQueue, using a channel from this connection.

If name is a string, a queue and exchange will be automatically created using that name as the name of the
queue and exchange, also it will be used as the default routing key.

Parameters
* name (str, kombu.Queue)— Name of the queue/or a queue.
* no_ack (bool) — Disable acknowledgments. Default is false.

* queue_opts (Dict) — Additional keyword arguments passed to the constructor of the
automatically created Queue.

* exchange_opts (Dict) — Additional keyword arguments passed to the constructor of
the automatically created Exchange.

* channel (ChannelT) - Custom channel to use. If not specified the connection default
channel is used.

SimpleBuffer (name, no_ack=None, queue_opts=None, exchange_opts=None, channel=None,
**kwargs)
Simple ephemeral queue APIL

Create new SimpleQueue using a channel from this connection.
See also:

Same as SimpleQueue (), but configured with buffering semantics. The resulting queue and exchange
will not be durable, also auto delete is enabled. Messages will be transient (not persistent), and acknowl-
edgments are disabled (no_ack).

4.1.2 Exchange

Example creating an exchange declaration:

>>> news_exchange = Exchange ('news', type='topic')

For now news_exchange is just a declaration, you can’t perform actions on it. It just describes the name and options
for the exchange.

40 Chapter 4. API Reference

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

The exchange can be bound or unbound. Bound means the exchange is associated with a channel and operations can
be performed on it. To bind the exchange you call the exchange with the channel as argument:

>>>

bound_exchange = news_exchange (channel)

Now you can perform operations like declare () or delete ():

>>>
>>>

>>>
>>>

>>>

Declare exchange manually

bound_exchange.declare ()

Publish raw string message using low-level exchange
bound_exchange.publish (
'Cure for cancer found!',
routing_key='news.science',

bound_exchange.delete ()

class kombu.Exchange (name=u’", type=u’, channel=None, **kwargs)

An Exchange declaration.
Parameters

e name (str)— See name.
* type (str)—See type.
¢ channel (kombu.Connection, ChannelT)- See channel.
e durable (bool)—See durable.
* auto_delete (bool)—See auto_delete.
* delivery mode (enum)— See delivery_mode.
* arguments (Dict)— See arguments.
* no_declare (bool)—See no_declare

name
str — Name of the exchange. Default is no name (the default exchange).

type
str — This description of AMQP exchange types was shamelessly stolen from the blog post ‘AMQP in 10
minutes: Part 4°_ by Rajith Attapattu. Reading this article is recommended if you're new to amgp.

“AMQP defines four default exchange types (routing algorithms) that covers most of the common messag-
ing use cases. An AMQP broker can also define additional exchange types, so see your broker manual for
more information about available exchange types.

* direct (default)

Direct match between the routing key in the message, and the routing criteria used when
a queue is bound to this exchange.
* topic

Wildcard match between the routing key and the routing pattern specified in the ex-
change/queue binding. The routing key is treated as zero or more words delimited
by “.” and supports special wildcard characters. “*” matches a single word and “#”
matches zero or more words.

* fanout

4.1.

Kombu - kombu 41

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

Queues are bound to this exchange with no arguments. Hence any message sent to this
exchange will be forwarded to all queues bound to this exchange.

e headers

Queues are bound to this exchange with a table of arguments containing headers and
values (optional). A special argument named “x-match” determines the matching algo-
rithm, where “all” implies an AND (all pairs must match) and “any” implies OR (at
least one pair must match).

argument s is used to specify the arguments.

channel
ChannelT — The channel the exchange is bound to (if bound).

durable

bool — Durable exchanges remain active when a server restarts. Non-durable exchanges (transient ex-

changes) are purged when a server restarts. Default is True.

auto_delete
bool — If set, the exchange is deleted when all queues have finished using it. Default is False.

delivery_mode
enum — The default delivery mode used for messages. The value is an integer, or alias string.

e 1 or “transient”

The message is transient. Which means it is stored in memory only, and is lost if the server
dies or restarts.

* 2 or “persistent” (default) The message is persistent. Which means the message is stored both in-

memory, and on disk, and therefore preserved if the server dies or restarts.
The default value is 2 (persistent).

arguments
Dict — Additional arguments to specify when the exchange is declared.

no_declare
bool — Never declare this exchange (declare () does nothing).

maybe_bind (channel)
Bind instance to channel if not already bound.

Message (body, delivery_mode=None, properties=None, **kwargs)
Create message instance to be sent with publish ().

Parameters
* body (Any) — Message body.
* delivery_mode (bool) — Set custom delivery mode. Defaults to de1ivery mode.

e priority (int)— Message priority, O to broker configured max priority, where higher
is better.

* content_type (str) — The messages content_type. If content_type is set, no seri-
alization occurs as it is assumed this is either a binary object, or you’ve done your own
serialization. Leave blank if using built-in serialization as our library properly sets con-
tent_type.

* content_encoding (str) — The character set in which this object is encoded. Use
“binary” if sending in raw binary objects. Leave blank if using built-in serialization as our
library properly sets content_encoding.

42 Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 4.2.1

* properties (Dict)— Message properties.
* headers (Dict) — Message headers.
PERSISTENT DELIVERY_ MODE = 2
TRANSIENT DELIVERY MODE = 1
attrs = ((u'name', None), (u'type', None), (u'arguments', None), (u'durable’',
auto_delete = False

bind_to (exchange=u”, routing_key=u", arguments=None, nowait=False, channel=None, **kwargs)
Bind the exchange to another exchange.

Parameters nowait (bool) — If set the server will not respond, and the call will not block
waiting for a response. Default is False.

binding (routing_key=u”, arguments=None, unbind_arguments=None)
can_cache_declaration

declare (nowait=False, passive=None, channel=None)
Declare the exchange.

Creates the exchange on the broker, unless passive is set in which case it will only assert that the exchange
exists.

Argument:

nowait (bool): If set the server will not respond, and a response will not be waited for. Default is
False.

delete (if_unused=False, nowait=False)
Delete the exchange declaration on server.

Parameters
* if unused (bool) - Delete only if the exchange has no bindings. Default is False.

* nowait (bool)-If set the server will not respond, and a response will not be waited for.
Defaultis False.

delivery_mode = None
durable = True

name = u''
no_declare = False
passive = False

publish (message, routing_key=None, mandatory=False, immediate=False, exchange=None)
Publish message.

Parameters
* message (Union[kombu.Message, str, bytes])—Message to publish.
* routing_key (st r)— Message routing key.
* mandatory (bool) — Currently not supported.
e immediate (bool) — Currently not supported.

type = u'direct'’

4.1.

Kombu - kombu 43

<type

b

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#bytes
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

unbind_from (source=u", routing_key=u", nowait=False, arguments=None, channel=None)

Delete previously created exchange binding from the server.

4.1.3 Queue

Example creating a queue using our exchange in the Exchange example:

>>> gscience_news = Queue ('science_news',
exchange=news_exchange,
routing_key='news.science')

For now science_news is just a declaration, you can’t perform actions on it. It just describes the name and options for

the queue.

The queue can be bound or unbound. Bound means the queue is associated with a channel and operations can be
performed on it. To bind the queue you call the queue instance with the channel as an argument:

>>> bound_science_news = science_news (channel)

Now you can perform operations like declare () or purge ():

>>> bound_science_news.declare ()
>>> bound_science_news.purge ()
>>> bound_science_news.delete ()

class kombu.Queue (name=u", exchange=None, routing key=u’,

on_declared=None, **kwargs)
A Queue declaration.

Parameters
* name (str)— See name.
* exchange (Exchange, str)-See exchange.

* routing key (str)—See routing key.

channel=None, bindings=None,

e channel (kombu.Connection, ChannelT)- See channel.

e durable (bool) - See durable.
¢ exclusive (bool)—See exclusive.

¢ auto_delete (bool)—See auto_delete.

* queue_arguments (Dict)— See queue_arguments.

* binding arguments (Dict)- See binding_arguments.

* consumer_arguments (Dict)— See consumer_arguments.

* no_declare (bool)—See no_declare.

* on_declared (Callable)—See on_declared.
* expires (float)—See expires.

* message_ttl (float)— See message_ttl.

* max_length (int)— See max_length.

* max_length_bytes (int)—See max_length_bytes.

* max_priority (int)-See max_priority.

44

Chapter 4. API Reference

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 4.2.1

name
str — Name of the queue. Default is no name (default queue destination).

exchange
Exchange — The Exchange the queue binds to.

routing_ key
str — The routing key (if any), also called binding key.
The interpretation of the routing key depends on the Exchange. type.

e direct exchange

Matches if the routing key property of the message and the routing key attribute are
identical.

* fanout exchange
Always matches, even if the binding does not have a key.
* topic exchange

Matches the routing key property of the message by a primitive pattern matching scheme. The
message routing key then consists of words separated by dots (“.”, like domain names), and
two special characters are available; star (“*”) and hash (“#”). The star matches any word,
and the hash matches zero or more words. For example “*.stock.#” matches the routing keys
“usd.stock” and “eur.stock.db” but not “stock.nasdaq” .
channel
ChannelT — The channel the Queue is bound to (if bound).

durable

bool — Durable queues remain active when a server restarts. Non-durable queues (transient queues) are
purged if/when a server restarts. Note that durable queues do not necessarily hold persistent messages,
although it does not make sense to send persistent messages to a transient queue.

Default is True.

exclusive
bool — Exclusive queues may only be consumed from by the current connection. Setting the ‘exclusive’
flag always implies ‘auto-delete’.
Defaultis False.

auto_delete

bool — If set, the queue is deleted when all consumers have finished using it. Last consumer can be canceled

either explicitly or because its channel is closed. If there was no consumer ever on the queue, it won’t be
deleted.

expires
float — Set the expiry time (in seconds) for when this queue should expire.

The expiry time decides how long the queue can stay unused before it’s automatically deleted. Unused
means the queue has no consumers, the queue has not been redeclared, and Queue . get has not been
invoked for a duration of at least the expiration period.

See https://www.rabbitmq.com/ttl.html#queue-ttl
RabbitMQ extension: Only available when using RabbitMQ.

message_ttl
float — Message time to live in seconds.

4.1.

Kombu - kombu 45

https://www.rabbitmq.com/ttl.html#queue-ttl

Kombu Documentation, Release 4.2.1

This setting controls how long messages can stay in the queue unconsumed. If the expiry time passes
before a message consumer has received the message, the message is deleted and no consumer will see the
message.

See https://www.rabbitmq.com/ttl.html#per-queue-message-ttl
RabbitMQ extension: Only available when using RabbitMQ.

max_length
int — Set the maximum number of messages that the queue can hold.

If the number of messages in the queue size exceeds this limit, new messages will be dropped (or dead-
lettered if a dead letter exchange is active).

See https://www.rabbitmq.com/maxlength.html
RabbitMQ extension: Only available when using RabbitMQ.

max_length bytes
int — Set the max size (in bytes) for the total of messages in the queue.

If the total size of all the messages in the queue exceeds this limit, new messages will be dropped (or
dead-lettered if a dead letter exchange is active).

RabbitMQ extension: Only available when using RabbitMQ.

max_priority
int — Set the highest priority number for this queue.

For example if the value is 10, then messages can delivered to this queue can have a priority value
between 0 and 10, where 10 is the highest priority.

RabbitMQ queues without a max priority set will ignore the priority field in the message, so if you want
priorities you need to set the max priority field to declare the queue as a priority queue.

RabbitMQ extension: Only available when using RabbitMQ.

queue_arguments
Dict — Additional arguments used when declaring the queue. Can be used to to set the arguments value for
RabbitMQ/AMQP’s queue .declare.

binding_arguments
Dict — Additional arguments used when binding the queue. Can be used to to set the arguments value for
RabbitMQ/AMQP’s queue .declare.

consumer_arguments
Dict — Additional arguments used when consuming from this queue. Can be used to to set the arguments
value for RabbitMQ/AMQP’s basic.consume.

alias
str — Unused in Kombu, but applications can take advantage of this, for example to give alternate names to
queues with utomatically generated queue names.

on_declared
Callable — Optional callback to be applied when the queue has been declared (the queue_declare
operation is complete). This must be a function with a signature that accepts at least 3 positional arguments:
(name, messages, consumers).

no_declare
bool — Never declare this queue, nor related entities (declare () does nothing).

maybe_bind (channel)
Bind instance to channel if not already bound.

46

Chapter 4. API Reference

https://www.rabbitmq.com/ttl.html#per-queue-message-ttl
https://www.rabbitmq.com/maxlength.html

Kombu Documentation, Release 4.2.1

exception ContentDisallowed
Consumer does not allow this content-type.

as_dict (recurse=False)

attrs = ((u'name', None), (u'exchange', None), (u'routing_key', None), (u'queue_argume
auto_delete = False

bind (channel)

bind_to (exchange=u”, routing_key=u", arguments=None, nowait=False, channel=None)

can_cache_declaration

cancel (consumer_tag)
Cancel a consumer by consumer tag.

consume (consumer_tag=u", callback=None, no_ack=None, nowait=False)
Start a queue consumer.

Consumers last as long as the channel they were created on, or until the client cancels them.
Parameters

* consumer_tag (str)— Unique identifier for the consumer. The consumer tag is local
to a connection, so two clients can use the same consumer tags. If this field is empty the
server will generate a unique tag.

* no_ack (bool) - If enabled the broker will automatically ack messages.
* nowait (bool) - Do not wait for a reply.
* callback (Callable) - callback called for each delivered message.

declare (nowait=False, channel=None)
Declare queue and exchange then binds queue to exchange.

delete (if_unused=False, if_empty=False, nowait=False)
Delete the queue.

Parameters

* if unused (bool) - If set, the server will only delete the queue if it has no consumers.
A channel error will be raised if the queue has consumers.

* if empty (bool)—If set, the server will only delete the queue if it is empty. If it is not
empty a channel error will be raised.

* nowait (bool) - Do not wait for a reply.
durable = True
exchange = <unbound Exchange u'' (direct)>
exclusive = False
classmethod from_ dict (queue, **options)

get (no_ack=None, accept=None)
Poll the server for a new message.

This method provides direct access to the messages in a queue using a synchronous dialogue, designed for
specific types of applications where synchronous functionality is more important than performance.

Returns

if a message was available, or None otherwise.

4.1. Kombu - kombu 47

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

Return type Message
Parameters
* no_ack (bool)—If enabled the broker will automatically ack messages.
* accept (Set [str])— Custom list of accepted content types.
name = u''
no_ack = False

purge (nowait=False)
Remove all ready messages from the queue.

queue_bind (nowait=False, channel=None)
Create the queue binding on the server.

queue_declare (nowait=False, passive=False, channel=None)
Declare queue on the server.

Parameters
* nowait (bool) - Do not wait for a reply.

* passive (bool) - If set, the server will not create the queue. The client can use this to
check whether a queue exists without modifying the server state.

queue_unbind (arguments=None, nowait=False, channel=None)
routing key = u''

unbind_from (exchange=u", routing_key=u", arguments=None, nowait=False, channel=None)
Unbind queue by deleting the binding from the server.

when_bound ()

4.1.4 Message Producer

class kombu.Producer (channel, exchange=None, routing_key=None, serializer=None,

auto_declare=None, compression=None, on_return=None)
Message Producer.

Parameters
* channel (kombu.Connection, ChannelT)—- Connection or channel.
* exchange (Exchange, str)— Optional default exchange.
* routing_key (str)— Optional default routing key.
* serializer (str)— Default serializer. Default is “json”.
* compression (str)— Default compression method. Default is no compression.

* auto_declare (bool) — Automatically declare the default exchange at instantiation.
Default is True.

* on_return (Callable)- Callback to call for undeliverable messages, when the manda-
tory or immediate arguments to publish () is used. This callback needs the following
signature: (exception, exchange, routing_key, message). Note that the producer needs to
drain events to use this feature.

channel

48 Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

exchange = None
Default exchange

routing key = u''
Default routing key.

serializer = None
Default serializer to use. Default is JSON.

compression = None
Default compression method. Disabled by default.

auto_declare = True
By default, if a defualt exchange is set, that exchange will be declare when publishing a message.

on_return = None
Basic return callback.

connection

declare ()
Declare the exchange.

Note: This happens automatically at instantiation when the auto_declare flag is enabled.

maybe_declare (entity, retry=False, **retry_policy)
Declare exchange if not already declared during this session.

publish (body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, prior-
ity=0, content_type=None, content_encoding=None, serializer=None, headers=None, com-
pression=None, exchange=None, retry=False, retry_policy=None, declare=None, expira-
tion=None, **properties)
Publish message to the specified exchange.

Parameters
* body (Any) — Message body.
* routing_ key (str)— Message routing key.
* delivery_mode (enum)— See delivery_mode.
* mandatory (bool) — Currently not supported.
e immediate (bool) — Currently not supported.
* priority (int)— Message priority. A number between 0 and 9.
* content_type (str)— Content type. Default is auto-detect.
* content_encoding (st r)— Content encoding. Default is auto-detect.
e serializer (str)— Serializer to use. Default is auto-detect.
* compression (str)— Compression method to use. Default is none.
* headers (Dict) — Mapping of arbitrary headers to pass along with the message body.

* exchange (Exchange, str)— Override the exchange. Note that this exchange must
have been declared.

* declare (Sequence [EntityT]) — Optional list of required entities that must have
been declared before publishing the message. The entities will be declared using
maybe_declare ().

4.1. Kombu - kombu

49

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 4.2.1

* retry (bool)— Retry publishing, or declaring entities if the connection is lost.

* retry policy (Dict) — Retry configuration, this is the keywords supported by
ensure ().

e expiration (float)— A TTL in seconds can be specified per message. Default is no
expiration.

* xxproperties (Any)— Additional message properties, see AMQP spec.

revive (channel)
Revive the producer after connection loss.

4.1.5 Message Consumer

class kombu.Consumer (channel, queues=None, no_ack=None, auto_declare=None, call-

backs=None, on_decode_error=None, on_message=None, accept=None,

prefetch_count=None, tag_prefix=None)
Message consumer.

Parameters
* channel (kombu.Connection, ChannelT)-see channel.
* queues (Sequence [kombu.Queue]) —see queues.
* no_ack (bool)—see no_ack.
* auto_declare (bool)-see auto_declare
* callbacks (Sequence[Callable])—see callbacks.
* on_message (Callable)—See on_message
* on_decode_error (Callable)—see on_decode_error.
* prefetch_count (int)—see prefetch_count.

channel = None
The connection/channel to use for this consumer.

queues
A single Queue, or a list of queues to consume from.

no_ack = None
Flag for automatic message acknowledgment. If enabled the messages are automatically acknowledged
by the broker. This can increase performance but means that you have no control of when the message is
removed.

Disabled by default.

auto_declare = True
By default all entities will be declared at instantiation, if you want to handle this manually you can set this
toFalse.

callbacks = None
List of callbacks called in order when a message is received.

The signature of the callbacks must take two arguments: (body, message), which is the decoded message
body and the Me s sage instance.

on_message = None
Optional function called whenever a message is received.

50

Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 4.2.1

When defined this function will be called instead of the receive () method, and callbacks will be
disabled.

So this can be used as an alternative to callbacks when you don’t want the body to be automatically
decoded. Note that the message will still be decompressed if the message has the compression header
set.

The signature of the callback must take a single argument, which is the Message object.

Also note that the message . body attribute, which is the raw contents of the message body, may in some
cases be a read-only buf fer object.

on_decode_error = None
Callback called when a message can’t be decoded.

The signature of the callback must take two arguments: (message, exc), which is the message that can’t be
decoded and the exception that occurred while trying to decode it.

connection

declare ()
Declare queues, exchanges and bindings.

Note: This is done automatically at instantiation when auto_declare is set.

register_callback (callback)
Register a new callback to be called when a message is received.

Note: The signature of the callback needs to accept two arguments: (body, message), which is the decoded
message body and the Me s sage instance.

add_queue (queue)
Add a queue to the list of queues to consume from.

Note: This will not start consuming from the queue, for that you will have to call consume () after.

consume (no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues added since the last
call, it will not cancel consuming from removed queues (use cancel_ by _queue ()).

Parameters no_ack (bool)—See no_ack.

cancel ()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not send any more
messages for this consumer.

cancel_by_queue (queue)
Cancel consumer by queue name.

consuming_from (queue)
Return True if currently consuming from queue’.

4.1.

Kombu - kombu 51

https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

purge ()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

flow (active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content (if any), and
then wait until flow is reactivated.

qgos (prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes processing
a message, the following message is already held locally, rather than needing to be sent down the channel.
Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.
Parameters

* prefetch_size (int)- Specify the prefetch window in octets. The server will send a
message in advance if it is equal to or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply.

* prefetch_count (int) - Specify the prefetch window in terms of whole messages.
* apply global (bool)— Apply new settings globally on all channels.

recover (requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.

Parameters requeue (bool) — By default the messages will be redelivered to the original
recipient. With requeue set to true, the server will attempt to requeue the message, potentially
then delivering it to an alternative subscriber.

receive (body, message)

Method called when a message is received.
This dispatches to the registered callbacks.
Parameters
* body (Any) — The decoded message body.
* message (Message) — The message instance.

Raises Not ImplementedError —If no consumer callbacks have been registered.

revive (channel)

Revive consumer after connection loss.

52

Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#NotImplementedError

Kombu Documentation, Release 4.2.1

4.2 Common Utilities - kombu . common

Common Utilities.

class kombu.common.Broadcast (name=None, queue=None, auto_delete=True, exchange=None,

alias=None, **kwargs)
Broadcast queue.

Convenience class used to define broadcast queues.
Every queue instance will have a unique name, and both the queue and exchange is configured with auto deletion.
Parameters
* name (str)— This is used as the name of the exchange.

* queue (str)— By default a unique id is used for the queue name for every consumer. You
can specify a custom queue name here.

* xxkwargs (Any)— See Queue for a list of additional keyword arguments supported.

attrs = ((u'name', None), (u'exchange', None), (u'routing key', None), (u'queue_argume:

kombu.common .maybe_declare (entity, channel=None, retry=False, **retry_policy)
Declare entity (cached).

kombu . common .uuid (_uuid=<function uuid4>)
Generate unique id in UUID4 format.

See also:
For now this is provided by uuid.uuid4 ().

kombu.common.itermessages (conn, channel, queue, limit=1I, timeout=None, callbacks=None,

**kwargs)
Iterator over messages.

kombu.common.send_reply (exchange, req, msg, producer=None, retry=False, retry_policy=None,

**props)
Send reply for request.

Parameters
* exchange (kombu.Exchange, str)—Reply exchange
* req (Message) — Original request, a message with a reply_to property.
* producer (kombu.Producer) — Producer instance
* retry (bool) - If true must retry according to the reply_policy argument.
* retry_policy (Dict)— Retry settings.
* xxprops (Any) — Extra properties.

kombu.common.collect_replies (conn, channel, queue, *args, **kwargs)
Generator collecting replies from queue.

kombu . common . insured (pool, fun, args, kwargs, errback=None, on_revive=None, **opts)
Function wrapper to handle connection errors.

Ensures function performing broker commands completes despite intermittent connection failures.

kombu.common.drain_consumer (consumer, limit=1, timeout=None, callbacks=None)
Drain messages from consumer instance.

4.2. Common Utilities - kombu . common 53

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/uuid.html#uuid.uuid4
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

kombu . common . eventloop (conn, limit=None, timeout=None, ignore_timeouts=False)
Best practice generator wrapper around Connection.drain_events.

Able to drain events forever, with a limit, and optionally ignoring timeout errors (a timeout of 1 is often used in
environments where the socket can get “stuck”, and is a best practice for Kombu consumers).

eventloop is a generator.

Examples

>>> from kombu.common import eventloop

>>> def run(conn):

it = eventloop(conn, timeout=1, ignore_timeouts=True)

next (it) # one event consumed, or timed out

for _ in eventloop(conn, timeout=1, ignore_timeouts=True) :
pass # loop forever.

It also takes an optional limit parameter, and timeout errors are propagated by default:

for _ in eventloop (connection, limit=1, timeout=1):
pass

See also:

itermessages (), which is an event loop bound to one or more consumers, that yields any messages re-
ceived.

4.3 Mixin Classes - kombu.mixins

Mixins.

class kombu.mixins.ConsumerMixin
Convenience mixin for implementing consumer programs.

It can be used outside of threads, with threads, or greenthreads (eventlet/gevent) too.

The basic class would need a connection attribute which must be a Connect ion instance, and define a
get_consumers () method that returns a list of kombu. Consumer instances to use. Supporting multiple
consumers is important so that multiple channels can be used for different QoS requirements.

Example

class Worker (ConsumerMixin) :
task_qgqueue = Queue ('tasks', Exchange('tasks'), 'tasks')

def _ init_ (self, connection):
self.connection = None

def get_consumers (self, Consumer, channel):
return [Consumer (queues=[self.task_queue],
callbacks=[self.on_task])]

(continues on next page)

54 Chapter 4. API Reference

http://docs.celeryproject.org/en/master/userguide/extending.html#connection

Kombu Documentation, Release 4.2.1

(continued from previous page)

def on_task(self, body, message):
print ('Got task: {0'!r}'.format (body))
message.ack ()

* :meth: extra_context’
Optional extra context manager that will be entered after the connection and consumers have been set up.

Takes arguments (connection, channel).

* :meth: on_connection_error’
Handler called if the connection is lost/ or is unavailable.

Takes arguments (exc, interval), where interval is the time in seconds when the connection will be
retried.

The default handler will log the exception.

* :meth: on_connection_revived'
Handler called as soon as the connection is re-established after connection failure.

Takes no arguments.

* :meth: on_consume_ready’
Handler called when the consumer is ready to accept messages.

Takes arguments (connection, channel, consumers). Also keyword arguments to consume
are forwarded to this handler.

* :meth: on_consume_end’
Handler called after the consumers are canceled. Takes arguments (connection, channel).

* :meth: on_iteration’
Handler called for every iteration while draining events.

Takes no arguments.

* :meth: on_decode_error’
Handler called if a consumer was unable to decode the body of a message.

Takes arguments (message, exc) where message is the original message object.

The default handler will log the error and acknowledge the message, so if you override make sure to call
super, or perform these steps yourself.

Consumer (**kwds)
channel errors

connect_max retries = None
maximum number of retries trying to re-establish the connection, if the connection is lost/unavailable.

connection_errors

consume (limit=None, timeout=None, safety_interval=1, **kwargs)
consumer_context (**kwds)

create_connection ()

establish connection (**kwds)

extra_context (**kwds)

get_consumers (Consumer, channel)

4.3.

Mixin Classes - kombu.mixins 55

Kombu Documentation, Release 4.2.1

maybe_conn_error (fun)
Use kombu.common.ignore_errors () instead.

on_connection_error (exc, interval)

on_connection_ revived()

on_consume_end (connection, channel)

on_consume_ready (connection, channel, consumers, **kwargs)
on_decode_error (message, exc)

on_iteration ()

restart_limit

run (_tokens=1, **kwargs)

should_stop = False
When this is set to true the consumer should stop consuming and return, so that it can be joined if it is the
implementation of a thread.

class kombu.mixins.ConsumerProducerMixin
Consumer and Producer mixin.

Version of ConsumerMixin having separate connection for also publishing messages.

Example

class Worker (ConsumerProducerMixin) :

def _ init (self, connection):
self.connection = connection

def get_consumers (self, Consumer, channel):
return [Consumer (queues=Queue('foo'),
on_message=self.handle_message,
accept="application/json',
prefetch_count=10)]

def handle_message(self, message):
self.producer.publish (
{'message': 'hello to you'},
exchange="",
routing_key=message.properties|'reply_to'],
correlation_id=message.properties|'correlation_id'],
retry=True,

on_consume_end (connection, channel)
producer

producer_connection

4.4 Simple Messaging API - kombu.simple

Simple messaging interface.

56 Chapter 4. API Reference

Kombu Documentation, Release 4.2.1

e Persistent

* Buffer

4.4.1 Persistent

class kombu.simple.SimpleQueue (channel, name, no_ack=None, queue_opts=None, ex-
change_opts=None, serializer=None, compression=None,
**kwargs)
Simple API for persistent queues.

channel
Current channel

producer
Producer used to publish messages.

consumer
Consumer used to receive messages.

no_ack
flag to enable/disable acknowledgments.

queue
Queue to consume from (if consuming).

queue_opts
Additional options for the queue declaration.

exchange_opts
Additional options for the exchange declaration.

get (block=True, timeout=None)

get_nowait ()

put (message, serializer=None, headers=None, compression=None, routing_key=None, **kwargs)
clear ()

len__ ()
len(self) -> self.qsize().

gsize ()

close ()

4.4.2 Buffer

class kombu.simple.SimpleBuffer (channel, name, no_ack=None, queue_opts=None, ex-
change_opts=None, serializer=None, compression=None,
**kwargs)
Simple API for ephemeral queues.

channel
Current channel

4.4. Simple Messaging API - kombu. simple 57

Kombu Documentation, Release 4.2.1

producer
Producer used to publish messages.

consumer
Consumer used to receive messages.

no_ack
flag to enable/disable acknowledgments.

queue
Queue to consume from (if consuming).

queue_opts
Additional options for the queue declaration.

exchange_opts
Additional options for the exchange declaration.

get (block=True, timeout=None)

get_nowait ()

put (message, serializer=None, headers=None, compression=None, routing_key=None, **kwargs)
clear ()

len_ ()
len(self) -> self.qsize().

gsize ()

close ()

4.5 Logical Clocks and Synchronization - kombu.clocks

Logical Clocks and Synchronization.

class kombu.clocks.LamportClock (initial_value=0, Lock=<built-in function allocate_lock>)

Lamport’s logical clock.
From Wikipedia:

A Lamport logical clock is a monotonically incrementing software counter maintained in each process. It
follows some simple rules:

* A process increments its counter before each event in that process;
* When a process sends a message, it includes its counter value with the message;

* On receiving a message, the receiver process sets its counter to be greater than the maximum of its own
value and the received value before it considers the message received.

Conceptually, this logical clock can be thought of as a clock that only has meaning in relation to messages
moving between processes. When a process receives a message, it resynchronizes its logical clock with the
sender.

See also:

* Lamport timestamps

e Lamports distributed mutex

58

Chapter 4. API Reference

https://en.wikipedia.org/wiki/Lamport_timestamps
https://bit.ly/p99ybE

Kombu Documentation, Release 4.2.1

Usage

When sending a message use forward () to increment the clock, when receiving a message use ad just ()
to sync with the time stamp of the incoming message.

adjust (other)
forward ()

sort_heap (h)
Sort heap of events.

List of tuples containing at least two elements, representing an event, where the first element is the
event’s scalar clock value, and the second element is the id of the process (usually "hostname:pid"):
sh([(clock, processid, ...?2), (...)1])

The list must already be sorted, which is why we refer to it as a heap.
The tuple will not be unpacked, so more than two elements can be present.
Will return the latest event.

value = 0
The clocks current value.

class kombu.clocks.timetuple

Tuple of event clock information.
Can be used as part of a heap to keep events ordered.
Parameters
* clock (int)— Event clock value.
* timestamp (f1oat)— Event UNIX timestamp value.
* id(str)—Event hostid (e.g. hostname:pid).
* obj (Any) — Optional obj to associate with this event.

clock
itemgetter(item, ...) —> itemgetter object

Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the call f(r)
returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

id
itemgetter(item, ...) —> itemgetter object
Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the call f(r)
returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

obj
itemgetter(item, ...) —> itemgetter object
Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the call f(r)
returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

timestamp

itemgetter(item, ...) —> itemgetter object

Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the call f(r)
returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

4.5.

Logical Clocks and Synchronization - kombu. clocks 59

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 4.2.1

4.6 Carrot Compatibility - kombu . compat

Carrot compatibility interface.

See https://pypi.python.org/pypi/carrot for documentation.

e Publisher

e Consumer

e ConsumerSet

4.6.1 Publisher

Replace with kombu. Producer.

class kombu.compat .Publisher (connection, exchange=None, routing_key=None, ex-
change_type=None, durable=None, auto_delete=None, chan-
nel=None, **kwargs)
Carrot compatible producer.

auto_declare = True
auto_delete = False
backend

channel

close ()

compression = None
connection

declare ()
Declare the exchange.

Note: This happens automatically at instantiation when the auto_declare flag is enabled.

durable = True
exchange = u''’
exchange_type = u'direct'

maybe_declare (entity, retry=>False, **retry_policy)
Declare exchange if not already declared during this session.

on_return = None

publish (body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, prior-
ity=0, content_type=None, content_encoding=None, serializer=None, headers=None, com-
pression=None, exchange=None, retry=False, retry_policy=None, declare=None, expira-
tion=None, **properties)
Publish message to the specified exchange.

Parameters

60 Chapter 4. API Reference

https://pypi.python.org/pypi/carrot

Kombu Documentation, Release 4.2.1

* body (Any) — Message body.

* routing_ key (str)— Message routing key.

* delivery_mode (enum)— See delivery_mode.

* mandatory (bool) — Currently not supported.

e immediate (bool) — Currently not supported.

e priority (int)— Message priority. A number between 0 and 9.

* content_type (str) - Content type. Default is auto-detect.

* content_encoding (st r) — Content encoding. Default is auto-detect.
e serializer (str)— Serializer to use. Default is auto-detect.

* compression (str)— Compression method to use. Default is none.

* headers (Dict) — Mapping of arbitrary headers to pass along with the message body.

* exchange (Exchange, str)— Override the exchange. Note that this exchange must
have been declared.

* declare (Sequence [EntityT]) — Optional list of required entities that must have
been declared before publishing the message. The entities will be declared using
maybe_declare ().

* retry (bool)— Retry publishing, or declaring entities if the connection is lost.

* retry policy (Dict) — Retry configuration, this is the keywords supported by
ensure ().

e expiration (float)— A TTL in seconds can be specified per message. Default is no
expiration.

* xxproperties (Any)— Additional message properties, see AMQP spec.
release ()

revive (channel)
Revive the producer after connection loss.

routing key = u''
send (*args, **kwargs)

serializer = None

4.6.2 Consumer

Replace with kombu. Consumer.

class kombu.compat .Consumer (connection, queue=None, exchange=None, routing_key=None,
exchange_type=None, durable=None, exclusive=None,

auto_delete=None, **kwargs)
Carrot compatible consumer.

exception ContentDisallowed
Consumer does not allow this content-type.

args

message

4.6. Carrot Compatibility - kombu . compat 61

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float

Kombu Documentation, Release 4.2.1

accept = None

add_queue (queue)
Add a queue to the list of queues to consume from.

Note: This will not start consuming from the queue, for that you will have to call consume () after.

auto_declare = True
auto_delete = False
callbacks = None

cancel ()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not send any more
messages for this consumer.

cancel_ by_queue (queue)
Cancel consumer by queue name.

channel = None
close ()
connection

consume (no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues added since the last
call, it will not cancel consuming from removed queues (use cancel by queue ()).

Parameters no_ack (bool)-See no_ack.

consuming_from (queue)
Return True if currently consuming from queue’.

declare ()
Declare queues, exchanges and bindings.

Note: This is done automatically at instantiation when auto_declare is set.

discard_all (filterfunc=None)

durable = True

exchange = u''

exchange_type = u'direct'
exclusive = False

fetch (no_ack=None, enable_callbacks=False)

flow (active)
Enable/disable flow from peer.

62

Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content (if any), and
then wait until flow is reactivated.

iterconsume (limit=None, no_ack=None)
iterqueue (limit=None, infinite=False)
no_ack = None

on_decode_error = None
on_message = None
prefetch_count = None
process_next ()

purge ()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

qos (prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes processing
a message, the following message is already held locally, rather than needing to be sent down the channel.
Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.
Parameters

* prefetch_size (int)— Specify the prefetch window in octets. The server will send a
message in advance if it is equal to or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply.

* prefetch_count (int) — Specify the prefetch window in terms of whole messages.
* apply_global (bool)— Apply new settings globally on all channels.

queue = u''

queues

receive (body, message)
Method called when a message is received.

This dispatches to the registered callbacks.
Parameters
* body (Any) — The decoded message body.
* message (Message) — The message instance.

Raises Not ImplementedError — If no consumer callbacks have been registered.

4.6. Carrot Compatibility - kombu . compat 63

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#NotImplementedError

Kombu Documentation, Release 4.2.1

recover (requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.

Parameters requeue (bool) — By default the messages will be redelivered to the original
recipient. With requeue set to true, the server will attempt to requeue the message, potentially
then delivering it to an alternative subscriber.

register_ callback (callback)
Register a new callback to be called when a message is received.

Note: The signature of the callback needs to accept two arguments: (body, message), which is the decoded
message body and the Message instance.

revive (channel)
routing key = u''

wait (limit=None)

4.6.3 ConsumerSet

Replace with kombu. Consumer.

class kombu.compat .ConsumerSet (connection, from_dict=None, consumers=None, channel=None,
**kwargs)

exception ContentDisallowed
Consumer does not allow this content-type.

args
message
accept = None
add_consumer (consumer)
add_consumer_from_dict (queue, **options)

add_queue (queue)
Add a queue to the list of queues to consume from.

Note: This will not start consuming from the queue, for that you will have to call consume () after.

auto_declare = True
callbacks = None

cancel ()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not send any more
messages for this consumer.

64 Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

cancel_by_queue (queue)
Cancel consumer by queue name.

channel = None
close ()
connection

consume (no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues added since the last
call, it will not cancel consuming from removed queues (use cancel_by_ queue ()).

Parameters no_ack (bool) - See no_ack.

consuming_from (queue)
Return True if currently consuming from queue’.

declare ()
Declare queues, exchanges and bindings.

Note: This is done automatically at instantiation when auto_declare is set.

discard all ()

flow (active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content (if any), and
then wait until flow is reactivated.

iterconsume (limit=None, no_ack=False)
no_ack = None

on_decode_error = None
on_message = None
prefetch_count = None

purge ()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

qgos (prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes processing
a message, the following message is already held locally, rather than needing to be sent down the channel.
Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.

Parameters

4.6. Carrot Compatibility - kombu . compat 65

https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

* prefetch_size (int)— Specify the prefetch window in octets. The server will send a
message in advance if it is equal to or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply.

* prefetch_count (int) - Specify the prefetch window in terms of whole messages.

* apply_global (bool)— Apply new settings globally on all channels.

queues

receive (body, message)
Method called when a message is received.

This dispatches to the registered callbacks.
Parameters
* body (Any) — The decoded message body.
* message (Message) — The message instance.

Raises Not ImplementedError — If no consumer callbacks have been registered.

recover (requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.

Parameters requeue (bool) — By default the messages will be redelivered to the original
recipient. With requeue set to true, the server will attempt to requeue the message, potentially
then delivering it to an alternative subscriber.

register_callback (callback)
Register a new callback to be called when a message is received.

Note: The signature of the callback needs to accept two arguments: (body, message), which is the decoded
message body and the Me s sage instance.

revive (channel)

4.7 Pidbox - kombu.pidbox

Generic process mailbox.

* Introduction
— Creating the applications Mailbox
— Example Node
— Example Client

* Mailbox

e Node

66 Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#NotImplementedError
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

4.7.1 Introduction

Creating the applications Mailbox

>>>

>>>

>>>

>>>
>>>

mailbox = pidbox.Mailbox ('celerybeat', type='direct')

@mailbox.handler
def reload_ schedule (state, =**kwargs):
state['beat'].reload_schedule ()

@mailbox.handler
def connection_info(state, *xkwargs):
return {'connection': state['connection'].info()}

Example Node

>>>
>>>

>>>
>>>

connection = kombu.Connection ()
state = {'beat': beat,
'connection': connection}
consumer = mailbox (connection) .Node (hostname) .listen ()
try:

while True:
connection.drain_events (timeout=1)
finally:
consumer.cancel ()

Example Client

>>> mailbox.cast ('reload_schedule') # cast is async.

>>> info = celerybeat.call('connection_info', timeout=1l)

4.7.2 Mailbox

class kombu.pidbox.Mailbox (namespace, type=u’direct’, connection=None, clock=None,
accept=None, serializer=None, producer_pool=None,
queue_ttl=None, queue_expires=None, reply_queue_ttl=None,

reply_queue_expires=10.0)
Process Mailbox.

namespace = None
Name of application.

connection = None
Connection (if bound).
type = u'direct'
Exchange type (usually direct, or fanout for broadcast).

exchange = None
mailbox exchange (init by constructor).

reply exchange = None
exchange to send replies to.

4.7.

Pidbox - kombu . pidbox

67

Kombu Documentation, Release 4.2.1

Node (hostname=None, state=None, channel=None, handlers=None)

call (destination, command, kwargs={}, timeout=None, callback=None, channel=None)
cast (destination, command, kwargs={})

abcast (command, kwargs={})

multi_call (command, kwargs={}, timeout=1, limit=None, callback=None, channel=None)
get_reply queue ()

get_queue (hostname)

4.7.3 Node
class kombu.pidbox.Node (hostname, state=None, channel=None, handlers=None, mailbox=None)
Mailbox node.

hostname = None
hostname of the node.

mailbox = None
the Mailbox this is a node for.

handlers = None
map of method name/handlers.

state = None
current context (passed on to handlers)

channel = None
current channel.

Consumer (channel=None, no_ack=True, accept=None, **options)

handler (fun)

listen (channel=None, callback=None)

dispatch (method, arguments=None, reply_to=None, ticket=None, **kwargs)
dispatch_from_message (body, message=None)

handle_call (method, arguments)

handle_cast (method, arguments)

handle (method, arguments={})

handle_message (body, message=None)

reply (data, exchange, routing_key, ticket, **kwargs)

4.8 Exceptions - kombu.exceptions

Exceptions.

exception kombu.exceptions.NotBoundError
Trying to call channel dependent method on unbound entity.

exception kombu.exceptions.MessageStateError
The message has already been acknowledged.

68 Chapter 4. API Reference

Kombu Documentation, Release 4.2.1

kombu.exceptions.TimeoutError
alias of socket .timeout

exception kombu.exceptions.LimitExceeded
Limit exceeded.

exception kombu.exceptions.ConnectionLimitExceeded
Maximum number of simultaneous connections exceeded.

exception kombu.exceptions.ChannelLimitExceeded
Maximum number of simultaneous channels exceeded.

4.9 Logging - kombu. log

Logging Utilities.

class kombu.log.LogMixin
Mixin that adds severity methods to any class.

annotate (rext)

critical (*args, ¥*kwargs)
debug (*args, **kwargs)
error (*args, **kwargs)
get_logger ()
get_loglevel (level)
info (*args, **kwargs)
is_enabled for (level)
log (severity, *args, **kwargs)
logger

logger_name

warn (*args, **kwargs)

kombu.log.get_loglevel (level)
Get loglevel by name.

kombu.log.setup_logging (loglevel=None, logfile=None)
Setup logging.

4.10 Connection - kombu. connection

Client (Connection).

e Connection

e Pools

4.9. Logging - kombu. log 69

https://docs.python.org/dev/library/socket.html#socket.timeout

Kombu Documentation, Release 4.2.1

4.10.1 Connection

class kombu.connection.Connection (hostname=u’localhost’, userid=None, password=None, vir-

tual_host=None, port=None, insist=False, ssl=False, trans-
port=None, connect_timeout=>5, transport_options=None,
login_method=None, uri_prefix=None, heartbeat=0,
failover_strategy=u’round-robin’, alternates=None,

**kwargs)
A connection to the broker.

Example

>>> Connection('amgp://guest:guest@localhost:5672//")
>>> Connection ('amgp://foo;amgp://bar’,
ce failover_strategy='round-robin')
>>> Connection('redis://', transport_options={
'visibility_timeout': 3000,
1)

>>> import ssl
>>> Connection('amgp://', login_method='EXTERNAL', ssl={

'ca_certs': '/etc/pki/tls/certs/something.crt’',
'keyfile': '/etc/something/system.key',
'certfile': '/etc/something/system.cert',

'cert_reqgs': ssl.CERT_REQUIRED,
1)

Note: SSL currently only works with the py-amqp, and qpid transports. For other transports you can use

stunnel.

Parameters URL (str, Sequence)— Broker URL, or a list of URLs.
Keyword Arguments

* ssl (bool)— Use SSL to connect to the server. Default is False. May not be supported
by the specified transport.

* transport (Transport)— Default transport if not specified in the URL.

* connect_timeout (fIloat)- Timeout in seconds for connecting to the server. May not
be supported by the specified transport.

* transport_options (Dict)— A dict of additional connection arguments to pass to al-
ternate kombu channel implementations. Consult the transport documentation for available
options.

* heartbeat (f1oat)— Heartbeat interval in int/float seconds. Note that if heartbeats are
enabled then the heartbeat_check () method must be called regularly, around once
per second.

Note: The connection is established lazily when needed. If you need the connection to be established,
force it by calling connect ():

then

70

Chapter 4. API Reference

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float

Kombu Documentation, Release 4.2.1

>>> conn = Connection('amgp://")
>>> conn.connect ()

and always remember to close the connection:

>>> conn.release()

These options have been replaced by the URL argument, but are still supported for backwards compatibility:
Keyword Arguments

* hostname — Host name/address. NOTE: You cannot specify both the URL argument and
use the hostname keyword argument at the same time.

* userid — Default user name if not provided in the URL.

* password — Default password if not provided in the URL.

* virtual_host — Default virtual host if not provided in the URL.
* port — Default port if not provided in the URL.

ChannelPool (limit=None, **kwargs)
Pool of channels.

See also:

ChannelPool.

Parameters limit (int)-— Maximum number of active channels. Default is no limit.

Example

>>> connection = Connection('amgp://")

>>> pool = connection.ChannelPool (2)

>>> cl = pool.acquire()

>>> c2 = pool.acquire()

>>> c¢3 = pool.acquire()

>>> cl.release()

>>> c3 = pool.acquire()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "kombu/connection.py", line 354, in acquire
raise ChannellimitExceeded(self.limit)

kombu.connection.ChannellLimitExceeded: 2

Consumer (queues=None, channel=None, *args, **kwargs)
Create new kombu.Consumer instance.

Pool (limit=None, **kwargs)
Pool of connections.

See also:

ConnectionPool.

Parameters limit (int)— Maximum number of active connections. Default is no limit.

4.10. Connection - kombu.connection 71

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 4.2.1

Example

>>> connection = Connection ('amgp://")

>>> pool = connection.Pool (2)
>>> cl = pool.acquire ()
>>> c2 = pool.acquire()

>>> ¢3 = pool.acquire ()
>>> cl.release()

>>> c3 = pool.acquire ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "kombu/connection.py", line 354, in acquire

raise ConnectionlLimitExceeded(self.limit)
kombu.exceptions.ConnectionLimitExceeded: 2

Producer (channel=None, *args, **kwargs)
Create new kombu.Producer instance.

SimpleBuffer (name, no_ack=None, queue_opts=None, exchange_opts=None, channel=None,
*rkwargs)
Simple ephemeral queue APIL

Create new SimpleQueue using a channel from this connection.
See also:

Same as SimpleQueue (), but configured with buffering semantics. The resulting queue and exchange
will not be durable, also auto delete is enabled. Messages will be transient (not persistent), and acknowl-
edgments are disabled (no_ack).

SimpleQueue (name, no_ack=None, queue_opts=None, exchange_opts=None, channel=None,
*Ekwargs)
Simple persistent queue API.

Create new SimpleQueue, using a channel from this connection.

If name is a string, a queue and exchange will be automatically created using that name as the name of the
queue and exchange, also it will be used as the default routing key.

Parameters
* name (str, kombu.Queue)-— Name of the queue/or a queue.
* no_ack (bool) - Disable acknowledgments. Default is false.

* queue_opts (Dict) — Additional keyword arguments passed to the constructor of the
automatically created Queue.

* exchange_opts (Dict) — Additional keyword arguments passed to the constructor of
the automatically created Exchange.

* channel (ChannelT) - Custom channel to use. If not specified the connection default
channel is used.

as_uri (include_password=False, mask=u’**’, getfields=<operator.itemgetter object>)
Convert connection parameters to URL form.

autoretry (fun, channel=None, **ensure_options)
Decorator for functions supporting a channel keyword argument.

The resulting callable will retry calling the function if it raises connection or channel related errors. The
return value will be a tuple of (retval, last_created_channel).

72 Chapter 4. API Reference

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

If a channel is not provided, then one will be automatically acquired (remember to close it afterwards).
See also:

ensure () for the full list of supported keyword arguments.

Example

>>> channel = connection.channel ()
>>> try:
ret, channel = connection.autoretry(
publish_messages, channel)
finally:
channel.close ()

channel ()
Create and return a new channel.

channel_errors
List of exceptions that may be raised by the channel.

clone (**kwargs)
Create a copy of the connection with same settings.

close ()
Close the connection (if open).

collect (socket_timeout=None)

completes_cycle (retries)
Return true if the cycle is complete after number of retries.

connect ()
Establish connection to server immediately.

connect_timeout = 5

connected
Return true if the connection has been established.

connection
The underlying connection object.

Warning: This instance is transport specific, so do not depend on the interface of this object.

connection_errors
List of exceptions that may be raised by the connection.

create_transport ()

cycle = None
Iterator returning the next broker URL to try in the event of connection failure (initialized by
failover strategy).

declared_entities = None
The cache of declared entities is per connection, in case the server loses data.

default_channel
Default channel.

4.10. Connection - kombu.connection 73

Kombu Documentation, Release 4.2.1

Created upon access and closed when the connection is closed.

Note: Can be used for automatic channel handling when you only need one channel, and also it is the
channel implicitly used if a connection is passed instead of a channel, to functions that require a channel.

drain_events (**kwargs)
Wait for a single event from the server.

Parameters timeout (float) - Timeout in seconds before we give up.
Raises socket.timeout — if the timeout is exceeded.

ensure (obj, fun, errback=None, max_retries=None, interval_start=1, interval_step=1I, inter-

val_max=1, on_revive=None)
Ensure operation completes.

Regardless of any channel/connection errors occurring.
Retries by establishing the connection, and reapplying the function.
Parameters
e fun (Callable)— Method to apply.

* errback (Callable) — Optional callback called each time the connection can’t be
established. Arguments provided are the exception raised and the interval that will be
slept (exc, interval).

* max_retries (int)— Maximum number of times to retry. If this limit is exceeded the
connection error will be re-raised.

* interval_start (float) - The number of seconds we start sleeping for.
e interval_step (f1oat)—- How many seconds added to the interval for each retry.

e interval_max (f1loat)— Maximum number of seconds to sleep between each retry.

Examples

>>> from kombu import Connection, Producer
>>> conn = Connection ('amgp://")
>>> producer = Producer (conn)

>>> def errback (exc, interval)
logger.error ('Error: %r', exc, exc_info=1)
logger.info('Retry in %s seconds.', interval)

>>> publish = conn.ensure (producer, producer.publish,
S errback=errback, max_retries=3)
>>> publish({'hello': 'world'}, routing_key='dest')

ensure_connection (errback=None, max_retries=None, interval_start=2, interval_step=2, inter-

val_max=30, callback=None, reraise_as_library_errors=True)
Ensure we have a connection to the server.

If not retry establishing the connection with the settings specified.

Parameters

74 Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/socket.html#socket.timeout
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float

Kombu Documentation, Release 4.2.1

* errback (Callable) — Optional callback called each time the connection can’t be
established. Arguments provided are the exception raised and the interval that will be
slept (exc, interval).

* max_retries (int)-— Maximum number of times to retry. If this limit is exceeded the
connection error will be re-raised.

e interval_start (float)— The number of seconds we start sleeping for.
* interval_step (float)— How many seconds added to the interval for each retry.
* interval_max (float)— Maximum number of seconds to sleep between each retry.

* callback (Callable)— Optional callback that is called for every internal iteration (1
S).

failover_ strategies = {u'round-robin': <type 'itertools.cycle'>, u'shuffle': <functi

failover_ strategy = u'round-robin'
Strategy used to select new hosts when reconnecting after connection failure. One of “round-robin”,
“shuffle” or any custom iterator constantly yielding new URLS to try.

get_heartbeat_interval ()
get_manager (*args, **kwargs)

get_transport_cls ()
Get the currently used transport class.

heartbeat = None
Heartbeat value, currently only supported by the py-amqp transport.

heartbeat_check (rate=2)
Check heartbeats.

Allow the transport to perform any periodic tasks required to make heartbeats work. This should be called
approximately every second.

If the current transport does not support heartbeats then this is a noop operation.

Parameters rate (int)— Rate is how often the tick is called compared to the actual heartbeat
value. E.g. if the heartbeat is set to 3 seconds, and the tick is called every 3 / 2 seconds, then
the rate is 2. This value is currently unused by any transports.

host
The host as a host name/port pair separated by colon.

hostname = None

info ()
Get connection info.

is_evented
login_method = None

manager
AMQP Management APL.

Experimental manager that can be used to manage/monitor the broker instance.
Not available for all transports.

maybe_close_channel (channel)
Close given channel, but ignore connection and channel errors.

4.10. Connection - kombu.connection 75

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 4.2.1

maybe_switch_next ()
Switch to next URL given by the current failover strategy.

password = None
port = None
gos_semantics_matches_spec

recoverable channel_errors
Recoverable channel errors.

List of channel related exceptions that can be automatically recovered from without re-establishing the
connection.

recoverable connection_errors
Recoverable connection errors.

List of connection related exceptions that can be recovered from, but where the connection must be closed
and re-established first.

register with_event_loop (loop)

release ()
Close the connection (if open).

resolve_aliases = {u'librabbitmq': u'amqgp', u'pyamgp': u'amqgp'}

revive (new_channel)
Revive connection after connection re-established.

ssl = None
supports_exchange_type (exchange_type)
supports_heartbeats

switch (url)
Switch connection parameters to use a new URL.

Note: Does not reconnect!

transport

transport_options = None
Additional transport specific options, passed on to the transport instance.

uri_prefix = None
userid = None

virtual_host = u'/'

4.10.2 Pools

See also:

The shortcut methods Connection.Pool () and Connection.ChannelPool () is the recommended way to
instantiate these classes.

class kombu.connection.ConnectionPool (connection, limit=None, **kwargs)
Pool of connections.

76 Chapter 4. API Reference

Kombu Documentation, Release 4.2.1

LimitExceeded = <class 'kombu.exceptions.ConnectionLimitExceeded'>

acquire (block=False, timeout=None)
Acquire resource.

Parameters
¢ block (bool) - If the limit is exceeded, then block until there is an available item.
e timeout (f1oat) - Timeout to wait if block is true. Default is None (forever).

Raises LimitExceeded —if block is false and the limit has been exceeded.

release (resource)

force_close_all()
Close and remove all resources in the pool (also those in use).

Used to close resources from parent processes after fork (e.g. sockets/connections).

class kombu.connection.ChannelPool (connection, limit=None, **kwargs)
Pool of channels.

LimitExceeded = <class 'kombu.exceptions.ChannellLimitExceeded'>

acquire (block=False, timeout=None)
Acquire resource.

Parameters
e block (bool)— If the limit is exceeded, then block until there is an available item.
e timeout (float) - Timeout to wait if block is true. Default is None (forever).

Raises LimitExceeded — if block is false and the limit has been exceeded.

release (resource)

force_close_all()
Close and remove all resources in the pool (also those in use).

Used to close resources from parent processes after fork (e.g. sockets/connections).

4.11 Message Objects - kombu.message

Message class.

class kombu.message.Message (body=None, delivery_tag=None, content_type=None, con-
tent_encoding=None, delivery_info={}, properties=None, head-
ers=None, postencode=None, accept=None, channel=None,
*rkwargs)
Base class for received messages.
Keyword Arguments

* channel (ChannelT) — If message was received, this should be the channel that the
message was received on.

* body (st r)— Message body.
* delivery_mode (bool)— Set custom delivery mode. Defaults to delivery_mode.

* priority (int)— Message priority, O to broker configured max priority, where higher is
better.

4.11. Message Objects - kombu.message 77

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 4.2.1

* content_type (str)— The messages content_type. If content_type is set, no serializa-
tion occurs as it is assumed this is either a binary object, or you’ve done your own serializa-
tion. Leave blank if using built-in serialization as our library properly sets content_type.

* content_encoding (str) — The character set in which this object is encoded. Use
“binary” if sending in raw binary objects. Leave blank if using built-in serialization as our

library properly sets content_encoding.

* properties (Dict)— Message properties.

* headers (Dict) — Message headers.

exception MessageStateError
The message has already been acknowledged.

accept

ack (multiple=False)
Acknowledge this message as being processed.

This will remove the message from the queue.

Raises MessageStateError — If the
edged/requeued/rejected.

ack_log_error (logger, errors, multiple=False)

acknowledged
Set to true if the message has been acknowledged.

body

channel
content_encoding
content_type

decode ()
Deserialize the message body.

message has already been acknowl-

Returning the original python structure sent by the publisher.

Note: The return value is memoized, use _decode to force re-evaluation.

delivery_info
delivery_tag
errors = None
headers

payload
The decoded message body.

properties

reject (requeue=False)
Reject this message.

The message will be discarded by the server.

Raises MessageStateError — If the
edged/requeued/rejected.

message has already been acknowl-

78

Chapter 4. API Reference

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 4.2.1

reject_log_error (logger, errors, requeue="False)

requeue ()
Reject this message and put it back on the queue.

Warning: You must not use this method as a means of selecting messages to process.

Raises MessageStateError — If the message has already been acknowl-
edged/requeued/rejected.

4.12 Message Compression - kombu.compression

Compression utilities.

» Encoding/decoding

* Registry

4.12.1 Encoding/decoding
kombu.compression.compress (body, content_type)
Compress text.
Parameters
* body (AnyStr)— The text to compress.
* content_type (str)— mime-type of compression method to use.

kombu.compression.decompress (body, content_type)
Decompress compressed text.

Parameters
* body (AnyStr)— Previously compressed text to uncompress.

* content_type (str)— mime-type of compression method used.

4.12.2 Registry

kombu.compression.encoders ()
Return a list of available compression methods.

kombu.compression.get_encoder (1)
Get encoder by alias name.

kombu.compression.get_decoder (1)
Get decoder by alias name.

kombu.compression.register (encoder, decoder, content_type, aliases=[])
Register new compression method.

Parameters

4.12. Message Compression - kombu . compression 79

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 4.2.1

* encoder (Callable)— Function used to compress text.
* decoder (Callable)— Function used to decompress previously compressed text.
* content_type (str) - The mime type this compression method identifies as.

* aliases (Sequence[str]) — A list of names to associate with this compression
method.

4.13 Connection/Producer Pools - kombu.pools

Public resource pools.

class kombu.pools.ProducerPool (connections, *args, **kwargs)
Pool of kombu . Producer instances.

class Producer (channel, exchange=None, routing_key=None, serializer=None,

auto_declare=None, compression=None, on_return=None)
Message Producer.

Parameters
¢ channel (kombu.Connection, ChannelT)- Connection or channel.
* exchange (Exchange, str)— Optional default exchange.
* routing_ key (str)— Optional default routing key.
e serializer (str)— Default serializer. Default is “json”.
* compression (st r)— Default compression method. Default is no compression.

* auto_declare (bool) — Automatically declare the default exchange at instantiation.
Default is True.

* on_return (Callable) — Callback to call for undeliverable messages, when the
mandatory or immediate arguments to publish () is used. This callback needs the fol-
lowing signature: (exception, exchange, routing_key, message). Note that the producer
needs to drain events to use this feature.

auto_declare = True
channel

close ()

compression = None
connection

declare ()
Declare the exchange.

Note: This happens automatically at instantiation when the auto_declare flag is enabled.

exchange = None

maybe_declare (entity, retry=False, **retry_policy)
Declare exchange if not already declared during this session.

on_return = None

80 Chapter 4. API Reference

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

publish (body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False,
priority=0, content_type=None, content_encoding=None, serializer=None, head-
ers=None, compression=None, exchange=None, retry=False, retry_policy=None, de-
clare=None, expiration=None, **properties)
Publish message to the specified exchange.
Parameters

* body (Any) — Message body.

* routing_ key (str)— Message routing key.

* delivery_mode (enum) - See delivery_mode.

* mandatory (bool) — Currently not supported.

* immediate (bool)— Currently not supported.

* priority (int)— Message priority. A number between 0 and 9.

* content_type (str)— Content type. Default is auto-detect.

* content_encoding (st r)— Content encoding. Default is auto-detect.

e serializer (str)— Serializer to use. Default is auto-detect.

* compression (str)— Compression method to use. Default is none.

* headers (Dict)— Mapping of arbitrary headers to pass along with the message body.

* exchange (Exchange, str) — Override the exchange. Note that this exchange
must have been declared.

* declare (Sequence[EntityT]) — Optional list of required entities that must
have been declared before publishing the message. The entities will be declared using
maybe_declare ().

* retry (bool)— Retry publishing, or declaring entities if the connection is lost.

* retry_policy (Dict) — Retry configuration, this is the keywords supported by
ensure ().

* expiration (float)— A TTL in seconds can be specified per message. Default is
no expiration.

* xxproperties (Any)— Additional message properties, see AMQP spec.

release ()

revive (channel)
Revive the producer after connection loss.

routing key = u''
serializer = None
close_after fork = True
close_resource (resource)
create_producer ()

new ()
prepare (p)
release (resource)
setup ()

class kombu.pools.PoolGroup (limit=None, close_after_fork=True)
Collection of resource pools.

create (resource, limit)

kombu.pools.register_group (group)
Register group (can be used as decorator).

kombu.pools.get_1limit ()
Get current connection pool limit.

4.13. Connection/Producer Pools - kombu.pools 81

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float

Kombu Documentation, Release 4.2.1

kombu.pools.set_limit (limit, force=False, reset_after=False, ignore_errors=False)
Set new connection pool limit.

kombu.pools.reset (*args, **kwargs)
Reset all pools by closing open resources.

4.14 Abstract Classes - kombu.abstract

Object utilities.

class kombu.abstract .MaybeChannelBound (*args, **kwargs)
Micxin for classes that can be bound to an AMQP channel.

bind (channel)
Create copy of the instance that is bound to a channel.

can_cache_declaration = False
Defines whether maybe_declare can skip declaring this entity twice.

channel
Current channel if the object is bound.

is _bound
Flag set if the channel is bound.

maybe_bind (channel)
Bind instance to channel if not already bound.

revive (channel)
Revive channel after the connection has been re-established.

Used by ensure ().

when_bound ()
Callback called when the class is bound.

4.15 Resource Management - kombu. resource

Generic resource pool implementation.

class kombu.resource.LifoQueue (maxsize=0)
Last in first out version of Queue.

class kombu.resource.Resource (limit=None, preload=None, close_after_fork=None)
Pool of resources.

exception LimitExceeded
Limit exceeded.

acquire (block=False, timeout=None)
Acquire resource.

Parameters
e block (bool) - If the limit is exceeded, then block until there is an available item.
* timeout (float) - Timeout to wait if block is true. Default is None (forever).

Raises LimitExceeded — if block is false and the limit has been exceeded.

82 Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float

Kombu Documentation, Release 4.2.1

close_after fork = False
close_resource (resource)
collect_resource (resource)

force_close_all ()
Close and remove all resources in the pool (also those in use).

Used to close resources from parent processes after fork (e.g. sockets/connections).
limit
prepare (resource)
release (resource)
release_resource (resource)

replace (resource)
Replace existing resource with a new instance.

This can be used in case of defective resources.
resize (limit, force=False, ignore_errors=False, reset=False)

setup ()

4.16 Event Loop - kombu.asynchronous

Event loop.

class kombu.asynchronous.Hub (timer=None)
Event loop object.

Parameters timer (kombu.asynchronous. Timer) — Specify custom timer instance.

ERR = 24
Flag set on error, and the fd should be read from asap.

READ = 1
Flag set if reading from an fd will not block.

WRITE = 4
Flag set if writing to an fd will not block.

add (fd, callback, flags, args=(), consolidate=False)
add_reader (fds, callback, *args)

add_writer (fds, callback, *args)

call_at (when, callback, *args)

call_later (delay, callback, *args)
call_repeatedly (delay, callback, *args)
call_soon (callback, *args)

close (*args)

create_loop (generator=<type 'generator’>, sleep=<built-in function sleep>, min=<built-in func-
tion min>, next=<built-in function next>, Empty=<class 'Queue.Empty’>, Stoplt-
eration=<type ’exceptions.Stoplteration’>, KeyError=<type ’'exceptions.KeyError’>,
READ=1, WRITE=4, ERR=24)

4.16. Event Loop - kombu.asynchronous 83

Kombu Documentation, Release 4.2.1

fire_ timers (min_delay=1, max_delay=10, max_timers=10, propagate=())
loop
on_callback_error (callback, exc)

on_close = None
List of callbacks to be called when the loop is exiting, applied with the hub instance as sole argument.

remove (fd)
remove_reader (fd)
remove_writer (fd)
repr_active ()
repr_events (events)
reset ()
run_forever ()
run_once ()
scheduler

stop ()

kombu.asynchronous.get_event_loop ()
Get current event loop object.

kombu.asynchronous.set_event_loop (loop)
Set the current event loop object.

4.17 Event Loop Implementation - kombu.asynchronous . hub

Event loop implementation.

class kombu.asynchronous.hub.Hub (timer=None)
Event loop object.

Parameters timer (kombu.asynchronous. Timer) — Specify custom timer instance.

ERR = 24
Flag set on error, and the fd should be read from asap.

READ =1
Flag set if reading from an fd will not block.

WRITE = 4
Flag set if writing to an fd will not block.

add (fd, callback, flags, args=(), consolidate=False)
add_reader (fds, callback, *args)

add_writer (fds, callback, *args)

call_at (when, callback, *args)

call_later (delay, callback, *args)
call_repeatedly (delay, callback, *args)

call_soon (callback, *args)

84 Chapter 4. API Reference

Kombu Documentation, Release 4.2.1

close (*args)

create_loop (generator=<type 'generator’>, sleep=<built-in function sleep>, min=<built-in func-
tion min>, next=<built-in function next>, Empty=<class 'Queue.Empty’>, Stoplt-
eration=<type ’exceptions.Stoplteration’>, KeyError=<type ’'exceptions.KeyError’>,
READ=1, WRITE=4, ERR=24)

fire_timers (min_delay=1, max_delay=10, max_timers=10, propagate=())
loop
on_callback_error (callback, exc)

on_close = None
List of callbacks to be called when the loop is exiting, applied with the hub instance as sole argument.

remove (fd)
remove_reader (fd)
remove_writer (fd)
repr_active ()
repr_events (events)
reset ()
run_forever ()
run_once ()
scheduler

stop ()

kombu.asynchronous.hub.get_event_loop ()
Get current event loop object.

kombu.asynchronous.hub.set_event_loop (loop)
Set the current event loop object.

4.18 Semaphores - kombu.asynchronous . semaphore

Semaphores and concurrency primitives.

class kombu.asynchronous.semaphore.DummyLock
Pretending to be a lock.

class kombu.asynchronous.semaphore.LaxBoundedSemaphore (value)
Asynchronous Bounded Semaphore.

Lax means that the value will stay within the specified range even if released more times than it was acquired.

Example

>>> from future import print_statement as printf
~ ignore: just fooling stupid pyflakes

>>> x = LaxBoundedSemaphore (2)

4.18. Semaphores - kombu.asynchronous . semaphore 85

Kombu Documentation, Release 4.2.1

>>> x.acquire (printf, 'HELLO 1"')
HELLO 1

>>> x.acquire (printf, 'HELLO 2')
HELLO 2

>>> x.acquire (printf, 'HELLO 3')
>>> X._ wailters # private, do not access directly

[print, ('HELLO 3',)]

>>> x.release()
HELLO 3

acquire (callback, *partial_args, **partial_kwargs)
Acquire semaphore.

This will immediately apply callback if the resource is available, otherwise the callback is suspended
until the semaphore is released.

Parameters
* callback (Callable)— The callback to apply.
* xpartial_args (Any) — partial arguments to callback.

clear ()
Reset the semaphore, which also wipes out any waiting callbacks.

grow (n=1)
Change the size of the semaphore to accept more users.

release ()
Release semaphore.

Note: If there are any waiters this will apply the first waiter that is waiting for the resource (FIFO order).

shrink (n=1)
Change the size of the semaphore to accept less users.

4.19 Timer - kombu.asynchronous.timer

Timer scheduling Python callbacks.

class kombu.asynchronous.timer.Entry (fun, args=None, kwargs=None)
Schedule Entry.

args
cancel ()

canceled
cancelled
fun

kwargs

86 Chapter 4. API Reference

Kombu Documentation, Release 4.2.1

tref

class kombu.asynchronous.timer.Timer (max_interval=None, on_error=None, **kwargs)
Async timer implementation.

class Entry (fun, args=None, kwargs=None)
Schedule Entry.

args

cancel ()

canceled

cancelled

fun

kwargs

tref
apply_entry (entry)
call_after (secs, fun, args=(), kwargs={}, priority=0)
call_at (eta, fun, args=(), kwargs={}, priority=0)
call_repeatedly (secs, fun, args=(), kwargs={}, priority=0)
cancel (tref)
clear ()
enter_after (secs, entry, priority=0, time=<function _monotonic>)

enter_at (entry, eta=None, priority=0, time=<function _monotonic>)
Enter function into the scheduler.

Parameters
* entry (Entry) — Item to enter.
e eta (datetime.datetime)— Scheduled time.
* priority (int)— Unused.
handle_error (exc_info)
on_error = None

queue
Snapshot of underlying datastructure.

schedule
stop ()

kombu.asynchronous.timer.to_timestamp (d, default_timezone=<UTC>, time=<function

_monotonic>)
Convert datetime to timestamp.

If d’ is already a timestamp, then that will be used.

4.19. Timer - kombu.asynchronous.timer 87

https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 4.2.1

4.20 Event Loop Debugging Utils - kombu.asynchronous.debug

Event-loop debugging tools.

kombu.asynchronous.debug.callback_for (A, fd, flag, *default)
Return the callback used for hub+fd+flag.

kombu.asynchronous.debug.repr_active (h)
Return description of active readers and writers.

kombu.asynchronous.debug.repr_events (h, events)
Return description of events returned by poll.

kombu.asynchronous.debug.repr_£flag (flag)
Return description of event loop flag.

kombu.asynchronous.debug.repr_readers (h)
Return description of pending readers.

kombu.asynchronous.debug.repr_writers (h)
Return description of pending writers.

4.21 Async HTTP Client - kombu.asynchronous.http

kombu.asynchronous.http.Client (hub=None, **kwargs)
Create new HTTP client.

class kombu.asynchronous.http.Headers
Represents a mapping of HTTP headers.

complete = False
Set when all of the headers have been read.

class kombu.asynchronous.http.Response (request, code, headers=None, buffer=None, effec-

tive_url=None, error=None, status=None)
HTTP Response.

Parameters
* request (Request)— See request.
* code (int) - See code.
¢ headers (Headers)— See headers.
* buffer (bytes)—See buffer
e effective_url (str)—See effective url.
* status (str)—See status.

request
~kombu.asynchronous.http.Request — object used to get this response.

code
int — HTTP response code (e.g. 200, 404, or 500).

headers
~kombu.asynchronous.http.Headers — HTTP headers for this response.

buffer
bytes — Socket read buffer.

88 Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#bytes
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 4.2.1

effective url
str — The destination url for this request after following redirects.

error
Exception — Error instance if the request resulted in a HTTP error code.

status
str — Human equivalent of code, e.g. OK, Not found, or ‘Internal Server Error’.

body
The full contents of the response body.

Note: Accessing this propery will evaluate the buffer and subsequent accesses will be cached.

buffer

code

content
effective_url
error

headers

raise for error ()
Raise if the request resulted in an HTTP error code.

Raises HttpError
request
status

status_code

class kombu.asynchronous.http.Request (url, method=u’GET", on_ready=None,
on_timeout=None, on_stream=None,
on_prepare=None, on_header=None, headers=None,
**kwargs)
A HTTP Request.
Parameters

* url (str)— The URL to request.
* method (st r)— The HTTP method to use (defaults to GET).
Keyword Arguments
* headers (Dict, Headers)— Optional headers for this request
* body (st r)— Optional body for this request.
* connect_timeout (float)— Connection timeout in float seconds Default is 30.0.
* timeout (float) - Time in float seconds before the request times out Default is 30.0.

* follow_redirects (bool) — Specify if the client should follow redirects Enabled by
default.

* max_redirects (int)- Maximum number of redirects (default 6).

* use_gzip (bool)— Allow the server to use gzip compression. Enabled by default.

4.21. Async HTTP Client - kombu.asynchronous.http

89

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 4.2.1

e validate_cert (bool) — Set to true if the server certificate should be verified when
performing https: // requests. Enabled by default.

* auth_username (st r)— Username for HTTP authentication.

* auth_password (st r) — Password for HTTP authentication.

* auth_mode (st r)— Type of HTTP authentication (basic or digest).
* user_agent (str)— Custom user agent for this request.

* network_interace (str)— Network interface to use for this request.

* on_ready (Callable) — Callback to be called when the response has been received.
Must accept single response argument.

* on_stream (Callable) — Optional callback to be called every time body content has
been read from the socket. If specified then the response body and buffer attributes will not
be available.

* on_timeout (callable)— Optional callback to be called if the request times out.

* on_header (Callable) — Optional callback to be called for every header line re-
ceived from the server. The signature is (headers, line) and note that if you want
response.headers to be populated then your callback needs to also call client.
on_header (headers, line).

* on_prepare (Callable)— Optional callback that is implementation specific (e.g. curl
client will pass the curl instance to this callback).

* proxy_host (str)— Optional proxy host. Note that a proxy_port must also be pro-
vided or a ValueError will be raised.

* proxy_username (st r)— Optional username to use when logging in to the proxy.

* proxy_password (str)— Optional password to use when authenticating with the proxy
Server.

e ca_certs (str)— Custom CA certificates file to use.

* client_key (str)— Optional filename for client SSL key.

* client_cert (str)— Optional filename for client SSL certificate.
auth_mode = None
auth_password = None

auth_username = None

body = None

ca_certs = None
client_cert = None
client_key = None
connect_timeout = 30.0
follow_redirects = True
headers

max_redirects = 6

method

90 Chapter 4. API Reference

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#callable
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 4.2.1

network_ interface = None
on_header

on_prepare

on_ready

on_stream

on_timeout

proxy_host = None
proxy_password = None
proxy_port = None
proxy_username = None
request_timeout = 30.0
then (callback, errback=None)
url

use_gzip = True
user_agent = None

validate_cert = True

base

Base async HTTP client implementation.

class kombu.asynchronous.http.base.Headers

Represents a mapping of HTTP headers.

complete = False
Set when all of the headers have been read.

class kombu.asynchronous.http.base.Response (request, code, headers=None, buffer=None,
effective_url=None,
tus=None)

HTTP Response.
Parameters

* request (Request)— See request.
e code (int)— See code.
* headers (Headers)— See headers.
* buffer (bytes)—See buffer
e effective_url (str)-See effective url.
e status (str)—See status.

request

~kombu.asynchronous.http.Request — object used to get this response.

error=None,

4.22 Async HTTP Client Interface - kombu.asynchronous.http.

4.22. Async HTTP Client Interface - kombu.asynchronous.http.base

91

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#bytes
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 4.2.1

code
int — HTTP response code (e.g. 200, 404, or 500).

headers
~kombu.asynchronous.http.Headers — HTTP headers for this response.

buffer
bytes — Socket read buffer.

effective_url
str — The destination url for this request after following redirects.

error
Exception — Error instance if the request resulted in a HTTP error code.

status
str — Human equivalent of code, e.g. OK, Not found, or ‘Internal Server Error’.

body
The full contents of the response body.

Note: Accessing this propery will evaluate the buffer and subsequent accesses will be cached.

buffer

code

content
effective url
error

headers

raise_for_error()
Raise if the request resulted in an HTTP error code.

Raises HttpError
request
status
status_code

class kombu.asynchronous.http.base.Request (url, method=u’GET’, on_ready=None,
on_timeout=None, on_stream=None,
on_prepare=None, on_header=None, head-

ers=None, **kwargs)
A HTTP Request.

Parameters
* url (str) - The URL to request.
e method (st r)— The HTTP method to use (defaults to GET).
Keyword Arguments
* headers (Dict, Headers)— Optional headers for this request
* body (st r) - Optional body for this request.

e connect_timeout (f1oat)— Connection timeout in float seconds Default is 30.0.

92 Chapter 4. API Reference

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#float

Kombu Documentation, Release 4.2.1

* timeout (float)— Time in float seconds before the request times out Default is 30.0.

* follow_redirects (bool) — Specify if the client should follow redirects Enabled by
default.

* max_redirects (int)- Maximum number of redirects (default 6).
* use_gzip (bool)— Allow the server to use gzip compression. Enabled by default.

e validate_cert (bool) — Set to true if the server certificate should be verified when
performing https:// requests. Enabled by default.

e auth_username (str)— Username for HTTP authentication.

* auth_password (st r) — Password for HTTP authentication.

* auth_mode (str) — Type of HTTP authentication (basic or digest).
* user_agent (str)— Custom user agent for this request.

* network_interace (str)— Network interface to use for this request.

* on_ready (Callable) — Callback to be called when the response has been received.
Must accept single response argument.

* on_stream (Callable) — Optional callback to be called every time body content has
been read from the socket. If specified then the response body and buffer attributes will not
be available.

* on_timeout (callable) - Optional callback to be called if the request times out.

* on_header (Callable) — Optional callback to be called for every header line re-
ceived from the server. The signature is (headers, line) and note that if you want
response.headers to be populated then your callback needs to also call client.
on_header (headers, line).

* on_prepare (Callable)— Optional callback that is implementation specific (e.g. curl
client will pass the curl instance to this callback).

* proxy_host (str)— Optional proxy host. Note that a proxy_port must also be pro-
vided or a ValueError will be raised.

* proxy_username (st r)— Optional username to use when logging in to the proxy.

* proxy_password (st r)— Optional password to use when authenticating with the proxy
Server.

¢ ca_certs (str)— Custom CA certificates file to use.

* client_key (st r)— Optional filename for client SSL key.

* client_cert (str)— Optional filename for client SSL certificate.
auth_mode = None

auth_password = None

auth_username = None
body = None

ca_certs = None
client_cert = None
client_key = None

connect_timeout = 30.0

4.22. Async HTTP Client Interface - kombu.asynchronous.http.base 93

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#callable
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 4.2.1

follow_redirects = True
headers

max_redirects = 6
method

network_ interface = None
on_header

on_prepare

on_ready

on_stream

on_timeout

proxy_host = None
proxy_password = None
proxy_port = None

proxy username = None
request_timeout = 30.0
then (callback, errback=None)
url

use_gzip = True
user_agent = None

validate_cert = True

4.23 Async pyCurl HTTP Client - kombu . asynchronous.http.curl

HTTP Client using pyCurl.

class kombu.asynchronous.http.curl.CurlClient (hub=None, max_clients=10)
Curl HTTP Client.

Curl = None

add_request (request)
close ()
on_readable (fd, _pycurl=None)
on_writable (fd, _pycurl=None)

4.24 Async Amazon AWS Client - kombu.asynchronous. aws

kombu.asynchronous.aws.connect_sgs (aws_access_key_id=None, aws_secret_access_key=None,
**kwargs)
Return async connection to Amazon SQS.

94 Chapter 4. API Reference

Kombu Documentation, Release 4.2.1

4.25 Amazon AWS Connection - kombu.asynchronous.aws.
connection

Amazon AWS Connection.

class kombu.asynchronous.aws.connection.AsyncHTTPSConnection (strict=None,
timeout=20.0,

http_client=None)
Async HTTP Connection.

class Request (url, method=u’GET’, on_ready=None, on_timeout=None, on_stream=None,

on_prepare=None, on_header=None, headers=None, **kwargs)
A HTTP Request.

Parameters
e url (str)—The URL to request.
* method (st r)— The HTTP method to use (defaults to GET).
Keyword Arguments
* headers (Dict, Headers)— Optional headers for this request
* body (st r)— Optional body for this request.
e connect_timeout (float) - Connection timeout in float seconds Default is 30.0.
* timeout (float)— Time in float seconds before the request times out Default is 30.0.

* follow_redirects (bool)— Specify if the client should follow redirects Enabled by
default.

* max_ redirects (int) - Maximum number of redirects (default 6).
* use_gzip (bool)— Allow the server to use gzip compression. Enabled by default.

e validate_cert (bool) — Set to true if the server certificate should be verified when
performing https:// requests. Enabled by default.

¢ auth_username (str)— Username for HTTP authentication.

* auth_password (st r) — Password for HTTP authentication.

* auth_mode (st r)— Type of HTTP authentication (basic or digest).
* user_agent (str)— Custom user agent for this request.

* network_interace (str)— Network interface to use for this request.

* on_ready (Callable) — Callback to be called when the response has been received.
Must accept single response argument.

* on_stream (Callable)— Optional callback to be called every time body content has
been read from the socket. If specified then the response body and buffer attributes will
not be available.

* on_timeout (callable)— Optional callback to be called if the request times out.

* on_header (Callable) — Optional callback to be called for every header line re-
ceived from the server. The signature is (headers, line) and note that if you want
response.headers to be populated then your callback needs to also call client.
on_header (headers, line).

4.25. Am