

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-celery 2.4.1 documentation

 [image: http://cloud.github.com/downloads/ask/celery/celery_128.png]

Celery Integration for Django

Contents:

	django-celery - Celery Integration for Django
	Using django-celery

	Documentation

	Installation

	Getting Help

	Bug tracker

	Wiki

	Contributing

	License

	Getting Started
	First steps with Django

	Frequently Asked Questions
	Generating a template in a task doesn’t seem to respect my i18n settings?

	The celery test-suite is failing

	Cookbook
	Unit Testing

	API Reference
	App - djcelery.app

	Views - djcelery.views

	URLs - djcelery.urls

	Django Models - celery.models

	Managers - djcelery.managers

	Celery Loaders - djcelery.loaders

	Periodic Task Schedulers - djcelery.schedulers

	Event Snapshots - djcelery.snapshot

	Database Backend - djcelery.backends.database

	Cache Backend - djcelery.backends.cache

	Contrib: Test Runner - djcelery.contrib.test_runner

	Utilities - djcelery.utils

	Change history
	2.4.1

	2.4.0

	2.3.3

	2.3.2

	2.3.1

	2.3.0

	2.2.4

	2.2.3

	2.2.2

	2.2.1

	2.2.0

	2.1.1

	2.1.0

	2.0.2

	2.0.0

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 django-celery - Celery Integration for Django

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

django-celery - Celery Integration for Django

[image: http://cloud.github.com/downloads/ask/celery/celery_128.png]

	Version:	2.4.1

	Web:	http://celeryproject.org/

	Download:	http://pypi.python.org/pypi/django-celery/

	Source:	http://github.com/ask/django-celery/

	Keywords:	celery, task queue, job queue, asynchronous, rabbitmq, amqp, redis,
python, django, webhooks, queue, distributed

–

django-celery provides Celery integration for Django; Using the Django ORM
and cache backend for storing results, autodiscovery of task modules
for applications listed in INSTALLED_APPS, and more.

Celery [http://celeryproject.org/] is a task queue/job queue based on distributed message passing.
It is focused on real-time operation, but supports scheduling as well.

The execution units, called tasks, are executed concurrently on a single or
more worker servers. Tasks can execute asynchronously (in the background) or
synchronously (wait until ready).

Celery is already used in production to process millions of tasks a day.

Celery is written in Python, but the protocol can be implemented in any
language. It can also operate with other languages using webhooks [http://ask.github.com/celery/userguide/remote-tasks.html].

The recommended message broker is RabbitMQ [http://www.rabbitmq.com/], but support for Redis [http://code.google.com/p/redis/] and
databases (SQLAlchemy [http://www.sqlalchemy.org/] / Django [http://www.djangoproject.org/]) is also available.

	Using django-celery
	Special note for mod_wsgi users

	Documentation

	Installation
	Downloading and installing from source

	Using the development version

	Getting Help
	Mailing list

	IRC

	Bug tracker

	Wiki

	Contributing

	License

Using django-celery

To enable django-celery for your project you need to add djcelery to
INSTALLED_APPS:

INSTALLED_APPS += ("djcelery",)

then add the following lines to your settings.py:

import djcelery
djcelery.setup_loader()

Everything works the same as described in the Celery User Manual [http://docs.celeryproject.org/], except you
need to invoke the programs through manage.py:

	Program
	Replace with

	celeryd
	python manage.py celeryd

	celerybeat
	python manage.py celerybeat

	camqadm
	python manage.py camqadm

	celeryev
	python manage.py celeryev

The other main difference is that configuration values are stored in
your Django projects’ settings.py module rather than in
celeryconfig.py.

If you’re trying celery for the first time you should start by reading
Getting started with django-celery [http://django-celery.readthedocs.org/en/latest/getting-started/first-steps-with-django.html]

Special note for mod_wsgi users

If you’re using mod_wsgi to deploy your Django application you need to
include the following in your .wsgi module:

import os
os.environ["CELERY_LOADER"] = "django"

Documentation

The Celery User Manual [http://docs.celeryproject.org/] contains user guides, tutorials and an API
reference. Also the django-celery documentation [http://django-celery.readthedocs.org/], contains information
about the Django integration.

Installation

You can install django-celery either via the Python Package Index (PyPI)
or from source.

To install using pip,:

$ pip install django-celery

To install using easy_install,:

$ easy_install django-celery

You will then want to create the necessary tables. If you are using south [http://pypi.python.org/pypi/South/]
for schema migrations, you’ll want to:

$ python manage.py migrate djcelery

For those who are not using south, a normal syncdb will work:

$ python manage.py syncdb

Downloading and installing from source

Download the latest version of django-celery from
http://pypi.python.org/pypi/django-celery/

You can install it by doing the following,:

$ tar xvfz django-celery-0.0.0.tar.gz
$ cd django-celery-0.0.0
$ python setup.py build
python setup.py install # as root

Using the development version

You can clone the git repository by doing the following:

$ git clone git://github.com/ask/django-celery.git

Getting Help

Mailing list

For discussions about the usage, development, and future of celery,
please join the celery-users [http://groups.google.com/group/celery-users/] mailing list.

IRC

Come chat with us on IRC. The #celery channel is located at the Freenode [http://freenode.net]
network.

Bug tracker

If you have any suggestions, bug reports or annoyances please report them
to our issue tracker at http://github.com/ask/django-celery/issues/

Wiki

http://wiki.github.com/ask/celery/

Contributing

Development of django-celery happens at Github:
http://github.com/ask/django-celery

You are highly encouraged to participate in the development
of celery. If you don’t like Github (for some reason) you’re welcome
to send regular patches.

License

This software is licensed under the New BSD License. See the LICENSE
file in the top distribution directory for the full license text.

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Getting Started

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

Getting Started

	First steps with Django
	Configuring your Django project to use Celery

	Running the celery worker server

	Defining and executing tasks

	Where to go from here

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 First steps with Django

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	Getting Started

First steps with Django

Configuring your Django project to use Celery

You need three simple steps to use celery with your Django project.

	Add djcelery to INSTALLED_APPS.

	Add the following lines to settings.py:

import djcelery
djcelery.setup_loader()

	Create the celery database tables:

$ python manage.py syncdb

	Configure the broker settings, by adding the following to your
settings.py:

BROKER_HOST = "localhost"
BROKER_PORT = 5672
BROKER_USER = "guest"
BROKER_PASSWORD = "guest"
BROKER_VHOST = "/"

Note that we use the guest account here. For production use you probably
want to set up a custom account and virtual host for your instance.

That’s it.

There are more options available, like how many processes you want to
work in parallel (the CELERY_CONCURRENCY setting). You can also
configure the backend used for storing task statuses. For now though,
this should do. For all of the options available, please see the
configuration directive reference [http://docs.celeryq.org/en/latest/configuration.html]. Note that when using django-celery,
all configurations listed there should be added to settings.py.

Note: If you’re using SQLite as the Django database back-end,
celeryd will only be able to process one task at a time, this is
because SQLite doesn’t allow concurrent writes.

Special note for mod_wsgi users

If you’re using mod_wsgi to deploy your Django application you need to
include the following in your .wsgi module:

import os
os.environ["CELERY_LOADER"] = "django"

Running the celery worker server

To test this we’ll be running the worker server in the foreground, so we can
see what’s going on without consulting the logfile:

$ python manage.py celeryd -l info

However, in production you probably want to run the worker in the
background as a daemon. To do this you need to use the tools provided by your
platform. See Running Celery as a daemon [http://docs.celeryq.org/en/latest/cookbook/daemonizing.html].

For a complete listing of the command line options available, use the help command:

$ python manage.py help celeryd

Defining and executing tasks

Please note: All the tasks have to be stored in a real module, they can’t
be defined in the python shell or ipython/bpython. This is because the celery
worker server needs access to the task function to be able to run it.
Put them in the tasks module of your Django application. The
worker server will automatically load any tasks.py file for all
of the applications listed in settings.INSTALLED_APPS.
Executing tasks using delay and apply_async can be done from the
python shell, but keep in mind that since arguments are pickled, you can’t
use custom classes defined in the shell session.

This is a task that adds two numbers:

from celery.decorators import task

@task()
def add(x, y):
 return x + y

To execute this task, we can use the delay method of the task class.
This is a handy shortcut to the apply_async method which gives
greater control of the task execution.
See Executing Tasks [http://docs.celeryq.org/en/latest/userguide/executing.html] for more information.

>>> from myapp.tasks import MyTask
>>> MyTask.delay(some_arg="foo")

At this point, the task has been sent to the message broker. The message
broker will hold on to the task until a celery worker server has successfully
picked it up.

Note: If everything is just hanging when you execute delay, check
that RabbitMQ is running, and that the user/password has access to the virtual
host you configured earlier.

Right now we have to check the celery worker log files to know what happened
with the task. This is because we didn’t keep the AsyncResult object
returned by delay.

The AsyncResult lets us find the state of the task, wait for the task to
finish and get its return value (or exception if the task failed).

So, let’s execute the task again, but this time we’ll keep track of the task:

>>> result = add.delay(4, 4)
>>> result.ready() # returns True if the task has finished processing.
False
>>> result.result # task is not ready, so no return value yet.
None
>>> result.get() # Waits until the task is done and returns the retval.
8
>>> result.result # direct access to result, doesn't re-raise errors.
8
>>> result.successful() # returns True if the task didn't end in failure.
True

If the task raises an exception, the return value of result.successful()
will be False, and result.result will contain the exception instance
raised by the task.

Where to go from here

To learn more you should read the Celery User Guide [http://docs.celeryproject.org/en/latest/userguide/], and the
Celery Documentation [http://docs.celeryproject.org/] in general

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Frequently Asked Questions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

Frequently Asked Questions

Generating a template in a task doesn’t seem to respect my i18n settings?

Answer: To enable the Django translation machinery you need to activate
it with a language. Note: Be sure to reset to the previous language when
done.

>>> from django.utils import translation

>>> prev_language = translation.get_language()
>>> translation.activate(language)
>>> try:
... render_template()
... finally:
 translation.activate(prev_language)

The common pattern here would be for the task to take a language
argument:

from celery.decorators import task

from django.utils import translation
from django.template.loader import render_to_string

@task()
def generate_report(template="report.html", language=None):
 prev_language = translation.get_language()
 language and translation.activate(language)
 try:
 report = render_to_string(template)
 finally:
 translation.activate(prev_language)
 save_report_somewhere(report)

The celery test-suite is failing

Answer: If you’re running tests from your Django project, and the celery
test suite is failing in that context, then follow the steps below. If the
celery tests are failing in another context, please report an issue to our
issue tracker at GitHub:

http://github.com/ask/celery/issues/

That Django is running tests for all applications in INSTALLED_APPS
by default is a pet peeve for many. You should use a test runner that either

	Explicitly lists the apps you want to run tests for, or

	Make a test runner that skips tests for apps you don’t want to run.

For example the test runner that celery is using:

http://github.com/ask/celery/blob/f90491fe0194aa472b5aecdefe5cc83289e65e69/celery/tests/runners.py

To use this test runner, add the following to your settings.py:

TEST_RUNNER = "djcelery.tests.runners.CeleryTestSuiteRunner",
TEST_APPS = (
 "app1",
 "app2",
 "app3",
 "app4",
)

Or, if you just want to skip the celery tests:

INSTALLED_APPS = (.....)
TEST_RUNNER = "djcelery.tests.runners.CeleryTestSuiteRunner",
TEST_APPS = filter(lambda k: k != "celery", INSTALLED_APPS)

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Cookbook

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

Cookbook

	Unit Testing
	Testing with Django

	Using a custom test runner to test with celery

This page contains common recipes and techniques.

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Unit Testing

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	Cookbook

Unit Testing

Testing with Django

The first problem you’ll run in to when trying to write a test that runs a
task is that Django’s test runner doesn’t use the same database as your celery
daemon is using. If you’re using the database backend, this means that your
tombstones won’t show up in your test database and you won’t be able to
get the return value or check the status of your tasks.

There are two ways to get around this. You can either take advantage of
CELERY_ALWAYS_EAGER = True to skip the daemon, or you can avoid testing
anything that needs to check the status or result of a task.

Using a custom test runner to test with celery

If you’re going the CELERY_ALWAYS_EAGER route, which is probably better than
just never testing some parts of your app, a custom Django test runner does the
trick. Celery provides a simple test runner, but it’s easy enough to roll your
own if you have other things that need to be done.
http://docs.djangoproject.com/en/dev/topics/testing/#defining-a-test-runner

For this example, we’ll use the djcelery.contrib.test_runner to test the
add task from the User Guide: Tasks [http://docs.celeryq.org/en/latest/userguide/tasks.html] examples in the Celery
documentation.

To enable the test runner, set the following settings:

TEST_RUNNER = 'djcelery.contrib.test_runner.CeleryTestSuiteRunner'

Then we can put the tests in a tests.py somewhere:

from django.test import TestCase
from myapp.tasks import add

class AddTestCase(TestCase):

 def testNoError(self):
 """Test that the ``add`` task runs with no errors,
 and returns the correct result."""
 result = add.delay(8, 8)

 self.assertEquals(result.get(), 16)
 self.assertTrue(result.successful())

This test assumes that you put your example add task in maypp.tasks
so adjust the import for wherever you put the class.

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 API Reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

API Reference

	Release:	2.4

	Date:	July 02, 2012

	App - djcelery.app

	Views - djcelery.views

	URLs - djcelery.urls

	Django Models - celery.models

	Managers - djcelery.managers

	Celery Loaders - djcelery.loaders

	Periodic Task Schedulers - djcelery.schedulers

	Event Snapshots - djcelery.snapshot

	Database Backend - djcelery.backends.database

	Cache Backend - djcelery.backends.cache

	Contrib: Test Runner - djcelery.contrib.test_runner

	Utilities - djcelery.utils

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 App - djcelery.app

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	API Reference

App - djcelery.app

	
djcelery.app.app = <Celery: default:0x31f0450>

	The Django-Celery app instance.

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Views - djcelery.views

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	API Reference

Views - djcelery.views

	
djcelery.views.JsonResponse(response)

	

	
djcelery.views.apply(request, task_name)

	View applying a task.

	Note: Please use this with caution. Preferably you shouldn’t make this

	publicly accessible without ensuring your code is safe!

	
djcelery.views.is_task_successful(request, task_id)

	Returns task execute status in JSON format.

	
djcelery.views.registered_tasks(request)

	A view returning all defined tasks as a JSON object.

	
djcelery.views.task_status(request, task_id)

	Returns task status and result in JSON format.

	
djcelery.views.task_view(task)

	Decorator turning any task into a view that applies the task
asynchronously. Keyword arguments (via URLconf, etc.) will
supercede GET or POST parameters when there are conflicts.

	Returns a JSON dictionary containing the keys ok, and

	task_id.

	
djcelery.views.task_webhook(fun)

	Decorator turning a function into a task webhook.

If an exception is raised within the function, the decorated
function catches this and returns an error JSON response, otherwise
it returns the result as a JSON response.

Example:

@task_webhook
def add(request):
 x = int(request.GET["x"])
 y = int(request.GET["y"])
 return x + y

>>> response = add(request)
>>> response.content
'{"status": "success", "retval": 100}'

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 URLs - djcelery.urls

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	API Reference

URLs - djcelery.urls

URLs defined for celery.

	/$task_id/done/

URL to is_successful().

	/$task_id/status/

URL to task_status().

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Django Models - celery.models

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	API Reference

Django Models - celery.models

	
TASK_STATUS_PENDING

	The string status of a pending task.

	
TASK_STATUS_RETRY

	The string status of a task which is to be retried.

	
TASK_STATUS_FAILURE

	The string status of a failed task.

	
TASK_STATUS_DONE

	The string status of a task that was successfully executed.

	
TASK_STATUSES

	List of possible task statuses.

	
TASK_STATUSES_CHOICES

	Django tuple of possible values for the task statuses, for usage in
model/form fields choices argument.

	
class TaskMeta

	Model for storing the result and status of a task.

Note Only used if you’re running the database backend.

	
task_id

	The unique task id.

	
status

	The current status for this task.

	
result

	The result after successful/failed execution. If the task failed,
this contains the execption it raised.

	
date_done

	The date this task changed status.

	
class PeriodicTaskMeta

	Metadata model for periodic tasks.

	
name

	The name of this task, as registered in the task registry.

	
last_run_at

	The date this periodic task was last run. Used to find out
when it should be run next.

	
total_run_count

	The number of times this periodic task has been run.

	
task

	The class/function for this task.

	
delay()

	
Delay the execution of a periodic task, and increment its total

	
run count.

	

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Managers - djcelery.managers

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	API Reference

Managers - djcelery.managers

	
class djcelery.managers.ExtendedManager

	
	
connection_for_read()

	

	
connection_for_write()

	

	
current_engine()

	

	
get_query_set()

	

	
update_or_create(**kwargs)

	

	
class djcelery.managers.ExtendedQuerySet(model=None, query=None, using=None)

	
	
update_or_create(**kwargs)

	

	
class djcelery.managers.PeriodicTaskManager

	
	
enabled()

	

	
class djcelery.managers.ResultManager

	
	
delete_expired(expires)

	Delete all expired taskset results.

	
get_all_expired(expires)

	Get all expired task results.

	
class djcelery.managers.TaskManager

	Manager for celery.models.Task models.

	
get_task(task_id)

	Get task meta for task by task_id.

	Parameters:	exception_retry_count – How many times to retry by
transaction rollback on exception. This could theoretically
happen in a race condition if another worker is trying to
create the same task. The default is to retry once.

	
store_result(*args, **kwargs)

	Store the result and status of a task.

	Parameters:	
	task_id – task id

	result – The return value of the task, or an exception
instance raised by the task.

	status – Task status. See
celery.result.AsyncResult.get_status() for a list of
possible status values.

	traceback – The traceback at the point of exception (if the
task failed).

	exception_retry_count – How many times to retry by
transaction rollback on exception. This could theoretically
happen in a race condition if another worker is trying to
create the same task. The default is to retry twice.

	
warn_if_repeatable_read()

	

	
class djcelery.managers.TaskSetManager

	Manager for celery.models.TaskSet models.

	
delete_taskset(taskset_id)

	Delete a saved taskset result.

	
restore_taskset(taskset_id)

	Get the async result instance by taskset id.

	
store_result(*args, **kwargs)

	Store the async result instance of a taskset.

	Parameters:	
	taskset_id – task set id

	result – The return value of the taskset

	
class djcelery.managers.TaskStateManager

	
	
active()

	

	
expire_by_states(states, expires)

	

	
expired(states, expires, nowfun=<built-in method now of type object at 0x7f088f59e760>)

	

	
purge()

	

	
exception djcelery.managers.TxIsolationWarning

	

	
djcelery.managers.transaction_retry(max_retries=1)

	Decorator for methods doing database operations.

If the database operation fails, it will retry the operation
at most max_retries times.

	
djcelery.managers.update_model_with_dict(obj, fields)

	

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Celery Loaders - djcelery.loaders

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	API Reference

Celery Loaders - djcelery.loaders

	
class djcelery.loaders.DjangoLoader(*args, **kwargs)

	The Django loader.

	
close_cache()

	

	
close_database(**kwargs)

	

	
mail_admins(subject, body, fail_silently=False, **kwargs)

	

	
on_process_cleanup()

	Does everything necessary for Django to work in a long-living,
multiprocessing environment.

	
on_task_init(*args, **kwargs)

	Called before every task.

	
on_worker_init()

	Called when the worker starts.

Automatically discovers any tasks.py files in the applications
listed in INSTALLED_APPS.

	
on_worker_process_init()

	

	
override_backends = {'cache': 'djcelery.backends.cache.CacheBackend', 'database': 'djcelery.backends.database.DatabaseBackend'}

	

	
read_configuration()

	Load configuration from Django settings.

	
djcelery.loaders.autodiscover()

	Include tasks for all applications in INSTALLED_APPS.

	
djcelery.loaders.find_related_module(app, related_name)

	Given an application name and a module name, tries to find that
module in the application.

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Periodic Task Schedulers - djcelery.schedulers

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	API Reference

Periodic Task Schedulers - djcelery.schedulers

	
class djcelery.schedulers.DatabaseScheduler(*args, **kwargs)

	
	
Changes

	alias of PeriodicTasks

	
Entry

	alias of ModelEntry

	
Model

	alias of PeriodicTask

	
all_as_schedule()

	

	
get_schedule()

	

	
reserve(entry)

	

	
schedule_changed()

	

	
setup_schedule()

	

	
sync(*args, **kwargs)

	

	
update_from_dict(dict_)

	

	
class djcelery.schedulers.ModelEntry(model)

	
	
classmethod from_entry(name, skip_fields=('relative', 'options'), **entry)

	

	
is_due()

	

	
model_schedules = ((<class 'celery.schedules.crontab'>, <class 'djcelery.models.CrontabSchedule'>, 'crontab'), (<class 'celery.schedules.schedule'>, <class 'djcelery.models.IntervalSchedule'>, 'interval'))

	

	
next()

	

	
save()

	

	
save_fields = ['last_run_at', 'total_run_count', 'no_changes']

	

	
classmethod to_model_schedule(schedule)

	

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Event Snapshots - djcelery.snapshot

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	API Reference

Event Snapshots - djcelery.snapshot

	
class djcelery.snapshot.Camera(*args, **kwargs)

	
	
class TaskState(*args, **kwargs)

	TaskState(id, state, task_id, name, tstamp, args, kwargs, eta, expires, result, traceback, runtime, retries, worker_id, hidden)

	
exception DoesNotExist

	

	
exception Camera.TaskState.MultipleObjectsReturned

	

	
Camera.TaskState.get_next_by_tstamp(*moreargs, **morekwargs)

	

	
Camera.TaskState.get_previous_by_tstamp(*moreargs, **morekwargs)

	

	
Camera.TaskState.get_state_display(*moreargs, **morekwargs)

	

	
Camera.TaskState.objects = <djcelery.managers.TaskStateManager object at 0x39bf210>

	

	
Camera.TaskState.worker

	

	
class Camera.WorkerState(*args, **kwargs)

	WorkerState(id, hostname, last_heartbeat)

	
exception DoesNotExist

	

	
exception Camera.WorkerState.MultipleObjectsReturned

	

	
Camera.WorkerState.heartbeat_timestamp

	

	
Camera.WorkerState.is_alive()

	

	
Camera.WorkerState.objects = <djcelery.managers.ExtendedManager object at 0x39bd290>

	

	
Camera.WorkerState.taskstate_set

	

	
Camera.clear_after = True

	

	
Camera.expire_states = {frozenset(['SUCCESS']): datetime.timedelta(1), frozenset(['STARTED', 'RECEIVED', 'RETRY', 'PENDING']): datetime.timedelta(5), frozenset(['FAILURE', 'RETRY', 'REVOKED']): datetime.timedelta(3)}

	

	
Camera.get_heartbeat(worker)

	

	
Camera.handle_task((uuid, task), worker=None)

	

	
Camera.handle_worker((hostname, worker))

	

	
Camera.on_cleanup()

	

	
Camera.on_shutter(*args, **kwargs)

	

	
Camera.update_task(state, **kwargs)

	

	
Camera.worker_update_freq = 60

	

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Database Backend - djcelery.backends.database

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	API Reference

Database Backend - djcelery.backends.database

	
class djcelery.backends.database.DatabaseBackend(*args, **kwargs)

	The database backend.

Using Django models to store task state.

	
TaskModel

	alias of TaskMeta

	
TaskSetModel

	alias of TaskSetMeta

	
cleanup()

	Delete expired metadata.

	
create_django_tables = True

	

	
expires = datetime.timedelta(1)

	

	
subpolling_interval = 0.5

	

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Cache Backend - djcelery.backends.cache

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-celery 2.4.1 documentation

 	API Reference

Cache Backend - djcelery.backends.cache

celery.backends.cache

	
class djcelery.backends.cache.CacheBackend(*args, **kwargs)

	Backend using the Django cache framework to store task metadata.

	
delete(key)

	

	
get(key)

	

	
set(key, value)

	

	
class djcelery.backends.cache.DjangoMemcacheWrapper(cache)

	Wrapper class to django’s memcache backend class, that overrides the
get() method in order to remove the forcing of unicode strings
since it may cause binary or pickled data to break.

	
get(key, default=None)

	

	
set(key, value, timeout=0)

	

 Copyright 2009-2011, Ask Solem.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	v2.5.3

 	2.5

 	v2.4.2

 	2.4

 Contrib: Test Runner - djcelery.contrib.test_runner

 Navigation

 	
 index

 	
 modules |

 	
 next |

