

 [image: http://cloud.github.com/downloads/ask/celery/celery_128.png]

Celery Integration for Django

Contents:

	django-celery - Celery Integration for Django
	Using django-celery

	Documentation

	Installation

	Getting Help

	Bug tracker

	Wiki

	Contributing

	License

	Getting Started
	First steps with Django

	Frequently Asked Questions
	Generating a template in a task doesn’t seem to respect my i18n settings?

	The celery test-suite is failing

	Cookbook
	Unit Testing

	API Reference
	App - djcelery.app

	Views - djcelery.views

	URLs - djcelery.urls

	Django Models - celery.models

	Managers - djcelery.managers

	Celery Loaders - djcelery.loaders

	Periodic Task Schedulers - djcelery.schedulers

	Event Snapshots - djcelery.snapshot

	Database Backend - djcelery.backends.database

	Cache Backend - djcelery.backends.cache

	Contrib: Test Runner - djcelery.contrib.test_runner

	Humanize utils - djcelery.humanize

	Utilities - djcelery.utils

	Change history
	2.5.3

	2.5.2

	2.5.1

	2.5.0

	2.4.2

	2.4.1

	2.4.0

	2.3.3

	2.3.2

	2.3.1

	2.3.0

	2.2.4

	2.2.3

	2.2.2

	2.2.1

	2.2.0

	2.1.1

	2.1.0

	2.0.2

	2.0.0

Indices and tables

	Index

	Module Index

	Search Page

django-celery - Celery Integration for Django

[image: http://cloud.github.com/downloads/ask/celery/celery_128.png]

	Version:	2.5.3

	Web:	http://celeryproject.org/

	Download:	http://pypi.python.org/pypi/django-celery/

	Source:	http://github.com/ask/django-celery/

	Keywords:	celery, task queue, job queue, asynchronous, rabbitmq, amqp, redis,
python, django, webhooks, queue, distributed

–

django-celery provides Celery integration for Django; Using the Django ORM
and cache backend for storing results, autodiscovery of task modules
for applications listed in INSTALLED_APPS, and more.

	Using django-celery
	Special note for mod_wsgi users

	Documentation

	Installation
	Downloading and installing from source

	Using the development version

	Getting Help
	Mailing list

	IRC

	Bug tracker

	Wiki

	Contributing

	License

Using django-celery

To enable django-celery for your project you need to add djcelery to
INSTALLED_APPS:

INSTALLED_APPS += ("djcelery",)

then add the following lines to your settings.py:

import djcelery
djcelery.setup_loader()

Everything works the same as described in the Celery User Manual [http://docs.celeryproject.org/], except you
need to invoke the programs through manage.py:

	Program
	Replace with

	celeryd
	python manage.py celeryd

	celeryctl
	python manage.py celeryctl

	celerybeat
	python manage.py celerybeat

	camqadm
	python manage.py camqadm

	celeryev
	python manage.py celeryev

	celeryd-multi
	python manage.py celeryd_multi

The other main difference is that configuration values are stored in
your Django projects’ settings.py module rather than in
celeryconfig.py.

If you’re trying celery for the first time you should start by reading
Getting started with django-celery [http://django-celery.readthedocs.org/en/latest/getting-started/first-steps-with-django.html]

Special note for mod_wsgi users

If you’re using mod_wsgi to deploy your Django application you need to
include the following in your .wsgi module:

import djcelery
djcelery.setup_loader()

Documentation

The Celery User Manual [http://docs.celeryproject.org/] contains user guides, tutorials and an API
reference. Also the django-celery documentation [http://django-celery.readthedocs.org/], contains information
about the Django integration.

Installation

You can install django-celery either via the Python Package Index (PyPI)
or from source.

To install using pip,:

$ pip install django-celery

To install using easy_install,:

$ easy_install django-celery

You will then want to create the necessary tables. If you are using south [http://pypi.python.org/pypi/South/]
for schema migrations, you’ll want to:

$ python manage.py migrate djcelery

For those who are not using south, a normal syncdb will work:

$ python manage.py syncdb

Downloading and installing from source

Download the latest version of django-celery from
http://pypi.python.org/pypi/django-celery/

You can install it by doing the following,:

$ tar xvfz django-celery-0.0.0.tar.gz
$ cd django-celery-0.0.0
python setup.py install # as root

Using the development version

You can clone the git repository by doing the following:

$ git clone git://github.com/ask/django-celery.git

Getting Help

Mailing list

For discussions about the usage, development, and future of celery,
please join the celery-users [http://groups.google.com/group/celery-users/] mailing list.

IRC

Come chat with us on IRC. The #celery channel is located at the Freenode [http://freenode.net]
network.

Bug tracker

If you have any suggestions, bug reports or annoyances please report them
to our issue tracker at http://github.com/ask/django-celery/issues/

Wiki

http://wiki.github.com/ask/celery/

Contributing

Development of django-celery happens at Github:
http://github.com/ask/django-celery

You are highly encouraged to participate in the development.
If you don’t like Github (for some reason) you’re welcome
to send regular patches.

License

This software is licensed under the New BSD License. See the LICENSE
file in the top distribution directory for the full license text.

Getting Started

	First steps with Django

First steps with Django

This document has been moved into the main Celery documentation,
you can find it at:;

http://ask.github.com/celery/django/first-steps-with-django.html

Frequently Asked Questions

Generating a template in a task doesn’t seem to respect my i18n settings?

Answer: To enable the Django translation machinery you need to activate
it with a language. Note: Be sure to reset to the previous language when
done.

>>> from django.utils import translation

>>> prev_language = translation.get_language()
>>> translation.activate(language)
>>> try:
... render_template()
... finally:
 translation.activate(prev_language)

The common pattern here would be for the task to take a language
argument:

from celery.decorators import task

from django.utils import translation
from django.template.loader import render_to_string

@task()
def generate_report(template="report.html", language=None):
 prev_language = translation.get_language()
 language and translation.activate(language)
 try:
 report = render_to_string(template)
 finally:
 translation.activate(prev_language)
 save_report_somewhere(report)

The celery test-suite is failing

Answer: If you’re running tests from your Django project, and the celery
test suite is failing in that context, then follow the steps below. If the
celery tests are failing in another context, please report an issue to our
issue tracker at GitHub:

http://github.com/ask/celery/issues/

That Django is running tests for all applications in INSTALLED_APPS
by default is a pet peeve for many. You should use a test runner that either

	Explicitly lists the apps you want to run tests for, or

	Make a test runner that skips tests for apps you don’t want to run.

For example the test runner that celery is using:

http://github.com/ask/celery/blob/f90491fe0194aa472b5aecdefe5cc83289e65e69/celery/tests/runners.py

To use this test runner, add the following to your settings.py:

TEST_RUNNER = "djcelery.tests.runners.CeleryTestSuiteRunner",
TEST_APPS = (
 "app1",
 "app2",
 "app3",
 "app4",
)

Or, if you just want to skip the celery tests:

INSTALLED_APPS = (.....)
TEST_RUNNER = "djcelery.tests.runners.CeleryTestSuiteRunner",
TEST_APPS = filter(lambda k: k != "celery", INSTALLED_APPS)

Cookbook

	Unit Testing
	Testing with Django

	Using a custom test runner to test with celery

This page contains common recipes and techniques.

Unit Testing

Testing with Django

The first problem you’ll run in to when trying to write a test that runs a
task is that Django’s test runner doesn’t use the same database as your celery
daemon is using. If you’re using the database backend, this means that your
tombstones won’t show up in your test database and you won’t be able to
get the return value or check the status of your tasks.

There are two ways to get around this. You can either take advantage of
CELERY_ALWAYS_EAGER = True to skip the daemon, or you can avoid testing
anything that needs to check the status or result of a task.

Using a custom test runner to test with celery

If you’re going the CELERY_ALWAYS_EAGER route, which is probably better than
just never testing some parts of your app, a custom Django test runner does the
trick. Celery provides a simple test runner, but it’s easy enough to roll your
own if you have other things that need to be done.
http://docs.djangoproject.com/en/dev/topics/testing/#defining-a-test-runner

For this example, we’ll use the djcelery.contrib.test_runner to test the
add task from the User Guide: Tasks [http://docs.celeryq.org/en/latest/userguide/tasks.html] examples in the Celery
documentation.

To enable the test runner, set the following settings:

TEST_RUNNER = 'djcelery.contrib.test_runner.CeleryTestSuiteRunner'

Then we can put the tests in a tests.py somewhere:

from django.test import TestCase
from myapp.tasks import add

class AddTestCase(TestCase):

 def testNoError(self):
 """Test that the ``add`` task runs with no errors,
 and returns the correct result."""
 result = add.delay(8, 8)

 self.assertEquals(result.get(), 16)
 self.assertTrue(result.successful())

This test assumes that you put your example add task in maypp.tasks
so adjust the import for wherever you put the class.

API Reference

	Release:	2.5

	Date:	Sep 27, 2017

	App - djcelery.app

	Views - djcelery.views

	URLs - djcelery.urls

	Django Models - celery.models

	Managers - djcelery.managers

	Celery Loaders - djcelery.loaders

	Periodic Task Schedulers - djcelery.schedulers

	Event Snapshots - djcelery.snapshot

	Database Backend - djcelery.backends.database

	Cache Backend - djcelery.backends.cache

	Contrib: Test Runner - djcelery.contrib.test_runner

	Humanize utils - djcelery.humanize

	Utilities - djcelery.utils

App - djcelery.app

	
djcelery.app.app = None

	The Django-Celery app instance.

Views - djcelery.views

URLs - djcelery.urls

Django Models - celery.models

	
TASK_STATUS_PENDING

	The string status of a pending task.

	
TASK_STATUS_RETRY

	The string status of a task which is to be retried.

	
TASK_STATUS_FAILURE

	The string status of a failed task.

	
TASK_STATUS_DONE

	The string status of a task that was successfully executed.

	
TASK_STATUSES

	List of possible task statuses.

	
TASK_STATUSES_CHOICES

	Django tuple of possible values for the task statuses, for usage in
model/form fields choices argument.

	
class TaskMeta

	Model for storing the result and status of a task.

Note Only used if you’re running the database backend.

	
task_id

	The unique task id.

	
status

	The current status for this task.

	
result

	The result after successful/failed execution. If the task failed,
this contains the execption it raised.

	
date_done

	The date this task changed status.

	
class PeriodicTaskMeta

	Metadata model for periodic tasks.

	
name

	The name of this task, as registered in the task registry.

	
last_run_at

	The date this periodic task was last run. Used to find out
when it should be run next.

	
total_run_count

	The number of times this periodic task has been run.

	
task

	The class/function for this task.

	
delay()

	
Delay the execution of a periodic task, and increment its total

	
run count.

	

Managers - djcelery.managers

Celery Loaders - djcelery.loaders

Periodic Task Schedulers - djcelery.schedulers

Event Snapshots - djcelery.snapshot

Database Backend - djcelery.backends.database

Cache Backend - djcelery.backends.cache

Contrib: Test Runner - djcelery.contrib.test_runner

Humanize utils - djcelery.humanize

Utilities - djcelery.utils

	
djcelery.utils.make_aware(value)

	

	
djcelery.utils.make_naive(value)

	

	
djcelery.utils.now()

	

Change history

	2.5.3

	2.5.2

	2.5.1
	Fixes

	2.5.0
	Important Notes

	News

	2.4.2

	2.4.1

	2.4.0
	Important Notes

	News

	Upgrading for south users

	2.3.3

	2.3.2

	2.3.1

	2.3.0

	2.2.4

	2.2.3

	2.2.2

	2.2.1

	2.2.0

	2.1.1

	2.1.0
	Important Notes

	News

	Fixes

	2.0.2
	Important notes

	News

	2.0.0

2.5.3

	release-date:	2012-04-13 06:16 P.M GMT

	by:	Ask Solem

	2.5.2 release broke installation because of an import in the package.

Fixed by not having setup.py import the djcelery module anymore,
but rather parsing the package file for metadata.

2.5.2

	release-date:	2012-04-13 05:00 P.M GMT

	by:	Ask Solem

	PeriodicTask admin now lists the enabled field in the list view

Contributed by Gabe Jackson.

	Fixed a compatibility issue with Django < 1.3

Fix contributed by Roman Barczyski

	Admin monitor now properly escapes args and kwargs.

Fix contributed by Serj Zavadsky

	PeriodicTask admin now gives error if no schedule set (or both set)
(Issue #126).

	examples/demoproject has been updated to use the Django 1.4 template.

	Database connection is no longer closed for eager tasks (Issue #116).

Fix contributed by Mark Lavin.

	The first-steps document for django-celery has been moved to the main
Celery documentation.

	djcelerymon command no longer worked properly, this has now been fixed
(Issue #123).

2.5.1

	release-date:	2012-03-01 01:00 P.M GMT

	by:	Ask Solem

Fixes

	Now depends on Celery 2.5.1

	Fixed problem with recursive imports when USE_I18N was enabled
(Issue #109).

	The CELERY_DB_REUSE_MAX setting was not honored.

	The djcelerymon command no longer runs with DEBUG.

To enable debug you can set the DJCELERYMON_DEBUG
environment variable.

	Fixed eventlet/gevent compatability with Django 1.4’s new thread
sharing detection.

	Now depends on django-picklefield 0.2.0 or greater.

Previous versions would not work correctly with Django 1.4.

2.5.0

	release-date:	2012-02-24 02:00 P.M GMT

	by:	Ask Solem

Important Notes

	Now depends on Celery 2.5.

	Database schema has been updated.

After upgrading you need migrate using South, or migrate manually
as described below.

These changes means that expiring results will be faster and
take less memory than before.

In addition a description field to the PeriodicTask model has
been added so that the purpose of a periodic task
in the database can be documented via the Admin interface.

South Migration

To migrate using South execute the following command:

$ python manage.py migrate djcelery

If this is a new project that is also using South then you need
to fake the migration:

$ python manage.y migrate djcelery –fake

Manual Migration

To manually add the new fields,

using PostgreSQL:

using MySQL:

ALTER TABLE celery_taskmeta
 ADD hidden TINYINT NOT NULL DEFAULT 0;

ALTER TABLE celery_tasksetmeta
 ADD hidden TINYINT NOT NULL DEFAULT 0;

ALTER TABLE djcelery_periodictask
 ADD description TEXT NOT NULL DEFAULT "";

using SQLite:

ALTER TABLE celery_taskmeta
 ADD hidden BOOL NOT NULL DEFAULT FALSE;
ALTER TABLE celery_tasksetmeta
 ADD hidden BOOL NOT NULL DEFAULT FALSE;
ALTER TABLE djcelery_periodictask
 ADD description VARCHAR(200) NOT NULL DEFAULT "";

News

	Auto-discovered task modules now works with the new auto-reloader
functionality.

	The database periodic task scheduler now tried to recover from
operational database errors.

	The periodic task schedule entry now accepts both int and
timedelta (Issue #100).

	‘Connection already closed’ errors occurring while closing
the database connection are now ignored (Issue #93).

	The djcelerymon command used to start a Django admin monitor
instance outside of Django projects now starts without a celery
config module.

	Should now work with Django 1.4’s new timezone support.

Contributed by Jannis Leidel and Donald Stufft.

	South migrations did not work properly.

Fix contributed by Christopher Grebs.

	celeryd-multi now preserves django-related arguments,
like --settings (Issue #94).

	Migrations now work with Django < 1.3 (Issue #92).

Fix contributed by Jude Nagurney.

	The expiry of the database result backend can now be an int (Issue #84).

2.4.2

	release-date:	2011-11-14 12:00 P.M GMT

	Fixed syntax error in South migrations code (Issue #88).

Fix contributed by Olivier Tabone.

2.4.1

	release-date:	2011-11-07 06:00 P.M GMT

	by:	Ask Solem

	Management commands was missing command line arguments because of recent
changes to Celery.

	Management commands now supports the --broker|-b option.

	South migrations now ignores errors when tables already exist.

2.4.0

	release-date:	2011-11-04 04:00 P.M GMT

	by:	Ask Solem

Important Notes

This release adds South [http://pypi.python.org/pypi/South/] migrations, which well assist users in automatically
updating their database schemas with each django-celery release.

News

	Now depends on Celery 2.4.0 or higher.

	South migrations have been added.

Migration 0001 is a snapshot from the previous stable release (2.3.3).
For those who do not use South, no action is required.
South users will want to read the Upgrading for south users section
below.

Contributed by Greg Taylor.

	Test runner now compatible with Django 1.4.

Test runners are now classes instead of functions,
so you have to change the TEST_RUNNER setting to read:

TEST_RUNNER = "djcelery.contrib.test_runner.CeleryTestSuiteRunner"

Contributed by Jonas Haag.

Upgrading for south users

For those that are already using django-celery 2.3.x, you’ll need to fake the
newly added migration 0001, since your database already has the current
djcelery_* and celery_* tables:

$ python manage.py migrate djcelery 0001 --fake

If you’re upgrading from the 2.2.x series, you’ll want to drop/reset your
celery_* and djcelery_* tables and run the migration:

$ python manage.py migrate djcelery

2.3.3

	release-date:	2011-08-22 12:00 AM BST

	Precedence issue caused database backend tables to not be
created (Issue #62).

2.3.2

	release-date:	2011-08-20 12:00 AM BST

	Fixes circular import of DatabaseBackend.

2.3.1

	release-date:	2011-08-11 12:00 PM BST

	Django database result backend tables were not created.

If you are having troubles because of this, be sure you do a syncdb
after upgrading, that should resolve the issue.

2.3.0

	release-date:	2011-08-05 12:00 PM BST

	Now depends on Celery 2.3.0

Please read the Celery 2.3.0 changelog!

2.2.4

	celerybeat: DatabaseScheduler would not react to changes when using MySQL and
the default transaction isolation level REPEATABLE-READ (Issue #41).

It is still recommended that you use isolation level READ-COMMITTED
(see the Celery FAQ).

2.2.3

	release-date:	2011-02-12 16:00 PM CET

	celerybeat: DatabaseScheduler did not respect the disabled setting after restart.

	celeryevcam: Expiring objects now works on PostgreSQL.

	Now requires Celery 2.2.3

2.2.2

	release-date:	2011-02-03 16:00 PM CET

	Now requires Celery 2.2.2

	Periodic Task Admin broke if the CELERYBEAT_SCHEDULE setting was not set.

	DatabaseScheduler No longer creates duplicate interval models.

	The djcelery admin templates were not included in the distribution.

2.2.1

	release-date:	2011-02-02 16:00 PM CET

	Should now work with Django versions previous to 1.2.

2.2.0

	release-date:	2011-02-01 10:00 AM CET

	Now depends on Celery v2.2.0

	djceleryadm: Adds task actions Kill and Terminate task

	celerycam: Django’s queryset.delete() fetches everything in
memory THEN deletes, so we need to use raw SQL to expire objects.

	djcelerymon: Added Command.stdout + Command.stderr (Issue #23).

	Need to close any open database connection after any embedded
celerybeat process forks.

	Added contrib/requirements/py25.txt

	Demoproject now does djcelery.setup_loader in settings.py.

2.1.1

	release-date:	2010-10-14 02:00 PM CEST

	Now depends on Celery v2.1.1.

	Snapshots: Fixed bug with losing events.

	Snapshots: Limited the number of worker timestamp updates to once every second.

	Snapshot: Handle transaction manually and commit every 100 task updates.

	snapshots: Can now configure when to expire task events.

New settings:

	CELERYCAM_EXPIRE_SUCCESS (default 1 day),

	CELERYCAM_EXPIRE_ERROR (default 3 days), and

	CELERYCAM_EXPIRE_PENDING (default 5 days).

	Snapshots: TaskState.args and TaskState.kwargs are now
represented as TextField instead of CharField.

If you need to represent arguments larger than 200 chars you have
to migrate the table.

	transaction.commit_manually doesn’t accept arguments on older
Django version.

Should now work with Django versions previous to v1.2.

	The tests doesn’t need unittest2 anymore if running on Python 2.7.

2.1.0

	release-date:	2010-10-08 12:00 PM CEST

Important Notes

This release depends on Celery version 2.1.0.
Be sure to read the Celery changelog before you upgrade:
http://ask.github.com/celery/changelog.html#version-2-1-0

News

	The periodic task schedule can now be stored in the database and edited via
the Django Admin interface.

To use the new database schedule you need to start celerybeat with the
following argument:

$ python manage.py celerybeat -S djcelery.schedulers.DatabaseScheduler

Note that you need to add your old periodic tasks to the database manually
(using the Django admin interface for example).

	New Celery monitor for the Django Admin interface.

To start monitoring your workers you have to start your workers
in event mode:

$ python manage.py celeryd -E

(you can do this without restarting the server too:

>>> from celery.task.control import broadcast
>>> broadcast("enable_events")

You need to do a syncdb to create the new tables:

python manage.py syncdb

Then you need to start the snapshot camera:

$ python manage.py celerycam -f 2.0

This will take a snapshot of the events every 2 seconds and store it in
the database.

Fixes

	database backend: Now shows warning if polling results with transaction isolation level
repeatable-read on MySQL.

See http://github.com/ask/django-celery/issues/issue/6

	database backend: get result does no longer store the default result to
database.

See http://github.com/ask/django-celery/issues/issue/6

2.0.2

Important notes

	Due to some applications loading the Django models lazily, it is recommended
that you add the following lines to your settings.py:

 import djcelery
 djcelery.setup_loader()

This will ensure the Django celery loader is set even though the
model modules haven't been imported yet.

News

	djcelery.views.registered_tasks: Added a view to list currently known
tasks.

2.0.0

	release-date:	2010-07-02 02:30 P.M CEST

	Initial release

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 djcelery	

 	
 	
 djcelery.app	

 	
 	
 djcelery.utils	

Index

 A
 | D
 | E
 | L
 | M
 | N
 | P
 | R
 | S
 | T

A

 	
 	app (in module djcelery.app)

D

 	
 	date_done (TaskMeta attribute)

 	delay() (PeriodicTaskMeta method)

 	
 	djcelery.app (module)

 	djcelery.utils (module)

 	DJCELERYMON_DEBUG

E

 	
 	
 environment variable

 	DJCELERYMON_DEBUG

L

 	
 	last_run_at (PeriodicTaskMeta attribute)

M

 	
 	make_aware() (in module djcelery.utils)

 	
 	make_naive() (in module djcelery.utils)

N

 	
 	name (PeriodicTaskMeta attribute)

 	
 	now() (in module djcelery.utils)

P

 	
 	PeriodicTaskMeta (built-in class)

R

 	
 	result (TaskMeta attribute)

S

 	
 	status (TaskMeta attribute)

T

 	
 	task (PeriodicTaskMeta attribute)

 	task_id (TaskMeta attribute)

 	TASK_STATUS_DONE (built-in variable)

 	TASK_STATUS_FAILURE (built-in variable)

 	TASK_STATUS_PENDING (built-in variable)

 	
 	TASK_STATUS_RETRY (built-in variable)

 	TASK_STATUSES (built-in variable)

 	TASK_STATUSES_CHOICES (built-in variable)

 	TaskMeta (built-in class)

 	total_run_count (PeriodicTaskMeta attribute)

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Celery Integration for Django

 		django-celery - Celery Integration for Django

 		Using django-celery

 		Special note for mod_wsgi users

 		Documentation

 		Installation

 		Downloading and installing from source

 		Using the development version

 		Getting Help

 		Mailing list

 		IRC

 		Bug tracker

 		Wiki

 		Contributing

 		License

 		Getting Started

 		First steps with Django

 		Frequently Asked Questions

 		Generating a template in a task doesn't seem to respect my i18n settings?

 		The celery test-suite is failing

 		Cookbook

 		Unit Testing

 		Testing with Django

 		Using a custom test runner to test with celery

 		API Reference

 		App - djcelery.app

 		Views - djcelery.views

 		URLs - djcelery.urls

 		Django Models - celery.models

 		Managers - djcelery.managers

 		Celery Loaders - djcelery.loaders

 		Periodic Task Schedulers - djcelery.schedulers

 		Event Snapshots - djcelery.snapshot

 		Database Backend - djcelery.backends.database

 		Cache Backend - djcelery.backends.cache

 		Contrib: Test Runner - djcelery.contrib.test_runner

 		Humanize utils - djcelery.humanize

 		Utilities - djcelery.utils

 		Change history

 		2.5.3

 		2.5.2

 		2.5.1

 		Fixes

 		2.5.0

 		Important Notes

 		News

 		2.4.2

 		2.4.1

 		2.4.0

 		Important Notes

 		News

 		Upgrading for south users

 		2.3.3

 		2.3.2

 		2.3.1

 		2.3.0

 		2.2.4

 		2.2.3

 		2.2.2

 		2.2.1

 		2.2.0

 		2.1.1

 		2.1.0

 		Important Notes

 		News

 		Fixes

 		2.0.2

 		Important notes

 		News

 		2.0.0

