
Celery Documentation
Release 4.1.0

Ask Solem
contributors

Jul 24, 2017

Contents

1 Getting Started 3

2 Contents 5

3 Indices and tables 659

Bibliography 661

Python Module Index 663

i

ii

Celery Documentation, Release 4.1.0

Celery is a simple, flexible, and reliable distributed system to process vast amounts of messages, while providing
operations with the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also supporting task scheduling.

Celery has a large and diverse community of users and contributors, you should come join us on IRC or our mailing-
list.

Celery is Open Source and licensed under the BSD License.

Contents 1

http://www.opensource.org/licenses/BSD-3-Clause

Celery Documentation, Release 4.1.0

2 Contents

CHAPTER 1

Getting Started

• If you’re new to Celery you can get started by following the First Steps with Celery tutorial.

• You can also check out the FAQ.

3

Celery Documentation, Release 4.1.0

4 Chapter 1. Getting Started

CHAPTER 2

Contents

Copyright

Celery User Manual

by Ask Solem

Copyright © 2009-2016, Ask Solem.

All rights reserved. This material may be copied or distributed only subject to the terms and conditions set forth
in the Creative Commons Attribution-ShareAlike 4.0 International <https://creativecommons.org/licenses/by-sa/4.0/
legalcode>‘_ license.

You may share and adapt the material, even for commercial purposes, but you must give the original author credit. If
you alter, transform, or build upon this work, you may distribute the resulting work only under the same license or a
license compatible to this one.

Note: While the Celery documentation is offered under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional license the Celery software is offered under the BSD License (3 Clause)

Getting Started

Release 4.1

Date Jul 24, 2017

Introduction to Celery

5

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
http://www.opensource.org/licenses/BSD-3-Clause

Celery Documentation, Release 4.1.0

• What’s a Task Queue?

• What do I need?

• Get Started

• Celery is. . .

• Features

• Framework Integration

• Quick Jump

• Installation

What’s a Task Queue?

Task queues are used as a mechanism to distribute work across threads or machines.

A task queue’s input is a unit of work called a task. Dedicated worker processes constantly monitor task queues for
new work to perform.

Celery communicates via messages, usually using a broker to mediate between clients and workers. To initiate a task
the client adds a message to the queue, the broker then delivers that message to a worker.

A Celery system can consist of multiple workers and brokers, giving way to high availability and horizontal scaling.

Celery is written in Python, but the protocol can be implemented in any language. In addition to Python there’s
node-celery for Node.js, and a PHP client.

Language interoperability can also be achieved exposing an HTTP endpoint and having a task that requests it (web-
hooks).

What do I need?

Version Requirements

Celery version 4.0 runs on

• Python 2.7, 3.4, 3.5

• PyPy 5.4, 5.5

This is the last version to support Python 2.7, and from the next version (Celery 5.x) Python 3.5 or newer is required.

If you’re running an older version of Python, you need to be running an older version of Celery:

• Python 2.6: Celery series 3.1 or earlier.

• Python 2.5: Celery series 3.0 or earlier.

• Python 2.4 was Celery series 2.2 or earlier.

Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues
related to that platform.

6 Chapter 2. Contents

https://github.com/mher/node-celery
https://github.com/gjedeer/celery-php

Celery Documentation, Release 4.1.0

Celery requires a message transport to send and receive messages. The RabbitMQ and Redis broker transports are
feature complete, but there’s also support for a myriad of other experimental solutions, including using SQLite for
local development.

Celery can run on a single machine, on multiple machines, or even across data centers.

Get Started

If this is the first time you’re trying to use Celery, or if you haven’t kept up with development in the 3.1 version and
are coming from previous versions, then you should read our getting started tutorials:

• First Steps with Celery

• Next Steps

Celery is. . .

• Simple

Celery is easy to use and maintain, and it doesn’t need configuration files.

It has an active, friendly community you can talk to for support, including a mailing-list and an
IRC channel.

Here’s one of the simplest applications you can make:

from celery import Celery

app = Celery('hello', broker='amqp://guest@localhost//')

@app.task
def hello():

return 'hello world'

• Highly Available

Workers and clients will automatically retry in the event of connection loss or failure, and some
brokers support HA in way of Primary/Primary or Primary/Replica replication.

• Fast

A single Celery process can process millions of tasks a minute, with sub-millisecond round-trip
latency (using RabbitMQ, librabbitmq, and optimized settings).

• Flexible

Almost every part of Celery can be extended or used on its own, Custom pool implementations,
serializers, compression schemes, logging, schedulers, consumers, producers, broker transports,
and much more.

It supports

• Brokers
• RabbitMQ, Redis,
• Amazon SQS, and more. . .

2.2. Getting Started 7

https://groups.google.com/group/celery-users

Celery Documentation, Release 4.1.0

• Concurrency
• prefork (multiprocessing),
• Eventlet, gevent
• solo (single threaded)
• Result Stores
• AMQP, Redis
• Memcached,
• SQLAlchemy, Django ORM
• Apache Cassandra, Elasticsearch
• Serialization
• pickle, json, yaml, msgpack.
• zlib, bzip2 compression.
• Cryptographic message signing.

Features

• Monitoring
A stream of monitoring events is emitted by workers and is used by built-in and external tools to
tell you what your cluster is doing – in real-time.
Read more. . . .

• Work-flows
Simple and complex work-flows can be composed using a set of powerful primitives we call the
“canvas”, including grouping, chaining, chunking, and more.
Read more. . . .

• Time & Rate Limits
You can control how many tasks can be executed per second/minute/hour, or how long a task can
be allowed to run, and this can be set as a default, for a specific worker or individually for each
task type.
Read more. . . .

• Scheduling
You can specify the time to run a task in seconds or a datetime, or or you can use periodic tasks
for recurring events based on a simple interval, or Crontab expressions supporting minute, hour,
day of week, day of month, and month of year.
Read more. . . .

• Resource Leak Protection
The --max-tasks-per-child option is used for user tasks leaking resources, like memory
or file descriptors, that are simply out of your control.
Read more. . . .

• User Components
Each worker component can be customized, and additional components can be defined by the user.
The worker is built up using “bootsteps” — a dependency graph enabling fine grained control of
the worker’s internals.

Framework Integration

Celery is easy to integrate with web frameworks, some of them even have integration packages:

8 Chapter 2. Contents

http://eventlet.net/
http://gevent.org/
https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.1.0

Pyramid pyramid_celery
Pylons celery-pylons
Flask not needed
web2py web2py-celery
Tornado tornado-celery

For Django see First steps with Django.

The integration packages aren’t strictly necessary, but they can make development easier, and sometimes they add
important hooks like closing database connections at fork(2).

Quick Jump

I want to

• get the return value of a task
• use logging from my task
• learn about best practices
• create a custom task base class
• add a callback to a group of tasks
• split a task into several chunks
• optimize the worker
• see a list of built-in task states
• create custom task states
• set a custom task name
• track when a task starts
• retry a task when it fails
• get the id of the current task
• know what queue a task was delivered to
• see a list of running workers
• purge all messages
• inspect what the workers are doing
• see what tasks a worker has registered
• migrate tasks to a new broker
• see a list of event message types
• contribute to Celery
• learn about available configuration settings
• get a list of people and companies using Celery
• write my own remote control command
• change worker queues at runtime

Jump to

• Brokers
• Applications
• Tasks
• Calling
• Workers
• Daemonizing
• Monitoring
• Optimizing

2.2. Getting Started 9

http://docs.pylonsproject.org/en/latest/docs/pyramid.html
https://pypi.python.org/pypi/pyramid_celery/
http://pylonshq.com/
https://pypi.python.org/pypi/celery-pylons/
http://flask.pocoo.org/
http://web2py.com/
https://pypi.python.org/pypi/web2py-celery/
http://www.tornadoweb.org/
https://pypi.python.org/pypi/tornado-celery/
https://djangoproject.com/

Celery Documentation, Release 4.1.0

• Security
• Routing
• Configuration
• Django
• Contributing
• Signals
• FAQ
• API Reference

Installation

You can install Celery either via the Python Package Index (PyPI) or from source.

To install using pip:

$ pip install -U Celery

Bundles

Celery also defines a group of bundles that can be used to install Celery and the dependencies for a given feature.

You can specify these in your requirements or on the pip command-line by using brackets. Multiple bundles can be
specified by separating them by commas.

$ pip install "celery[librabbitmq]"

$ pip install "celery[librabbitmq,redis,auth,msgpack]"

The following bundles are available:

Serializers

celery[auth] for using the auth security serializer.

celery[msgpack] for using the msgpack serializer.

celery[yaml] for using the yaml serializer.

Concurrency

celery[eventlet] for using the eventlet pool.

celery[gevent] for using the gevent pool.

Transports and Backends

celery[librabbitmq] for using the librabbitmq C library.

celery[redis] for using Redis as a message transport or as a result backend.

celery[sqs] for using Amazon SQS as a message transport (experimental).

10 Chapter 2. Contents

https://pypi.python.org/pypi/eventlet/
https://pypi.python.org/pypi/gevent/

Celery Documentation, Release 4.1.0

celery[tblib] for using the task_remote_tracebacks feature.

celery[memcache] for using Memcached as a result backend (using pylibmc)

celery[pymemcache] for using Memcached as a result backend (pure-Python implementation).

celery[cassandra] for using Apache Cassandra as a result backend with DataStax driver.

celery[couchbase] for using Couchbase as a result backend.

celery[elasticsearch] for using Elasticsearch as a result backend.

celery[riak] for using Riak as a result backend.

celery[dynamodb] for using AWS DynamoDB as a result backend.

celery[zookeeper] for using Zookeeper as a message transport.

celery[sqlalchemy] for using SQLAlchemy as a result backend (supported).

celery[pyro] for using the Pyro4 message transport (experimental).

celery[slmq] for using the SoftLayer Message Queue transport (experimental).

celery[consul] for using the Consul.io Key/Value store as a message transport or result backend
(experimental).

celery[django] specifies the lowest version possible for Django support.

You should probably not use this in your requirements, it’s here for informational purposes only.

Downloading and installing from source

Download the latest version of Celery from PyPI:

https://pypi.python.org/pypi/celery/

You can install it by doing the following,:

$ tar xvfz celery-0.0.0.tar.gz
$ cd celery-0.0.0
$ python setup.py build
python setup.py install

The last command must be executed as a privileged user if you aren’t currently using a virtualenv.

Using the development version

With pip

The Celery development version also requires the development versions of kombu, amqp, billiard, and vine.

You can install the latest snapshot of these using the following pip commands:

$ pip install https://github.com/celery/celery/zipball/master#egg=celery
$ pip install https://github.com/celery/billiard/zipball/master#egg=billiard
$ pip install https://github.com/celery/py-amqp/zipball/master#egg=amqp
$ pip install https://github.com/celery/kombu/zipball/master#egg=kombu
$ pip install https://github.com/celery/vine/zipball/master#egg=vine

2.2. Getting Started 11

https://pypi.python.org/pypi/pylibmc/
https://pypi.python.org/pypi/celery/
https://pypi.python.org/pypi/kombu/
https://pypi.python.org/pypi/amqp/
https://pypi.python.org/pypi/billiard/
https://pypi.python.org/pypi/vine/

Celery Documentation, Release 4.1.0

With git

Please the Contributing section.

Brokers

Release 4.1

Date Jul 24, 2017

Celery supports several message transport alternatives.

Broker Instructions

Using RabbitMQ

• Installation & Configuration

• Installing the RabbitMQ Server

– Setting up RabbitMQ

– Installing RabbitMQ on macOS

* Configuring the system host name

* Starting/Stopping the RabbitMQ server

Installation & Configuration

RabbitMQ is the default broker so it doesn’t require any additional dependencies or initial configuration, other than
the URL location of the broker instance you want to use:

broker_url = 'amqp://myuser:mypassword@localhost:5672/myvhost'

For a description of broker URLs and a full list of the various broker configuration options available to Celery, see
Broker Settings, and see below for setting up the username, password and vhost.

Installing the RabbitMQ Server

See Installing RabbitMQ over at RabbitMQ’s website. For macOS see Installing RabbitMQ on macOS.

Note: If you’re getting nodedown errors after installing and using rabbitmqctl then this blog post can help you
identify the source of the problem:

http://www.somic.org/2009/02/19/on-rabbitmqctl-and-badrpcnodedown/

12 Chapter 2. Contents

http://www.rabbitmq.com/install.html
http://www.somic.org/2009/02/19/on-rabbitmqctl-and-badrpcnodedown/

Celery Documentation, Release 4.1.0

Setting up RabbitMQ

To use Celery we need to create a RabbitMQ user, a virtual host and allow that user access to that virtual host:

$ sudo rabbitmqctl add_user myuser mypassword

$ sudo rabbitmqctl add_vhost myvhost

$ sudo rabbitmqctl set_user_tags myuser mytag

$ sudo rabbitmqctl set_permissions -p myvhost myuser ".*" ".*" ".*"

Substitute in appropriate values for myuser, mypassword and myvhost above.

See the RabbitMQ Admin Guide for more information about access control.

Installing RabbitMQ on macOS

The easiest way to install RabbitMQ on macOS is using Homebrew the new and shiny package management system
for macOS.

First, install Homebrew using the one-line command provided by the Homebrew documentation:

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Finally, we can install RabbitMQ using brew:

$ brew install rabbitmq

After you’ve installed RabbitMQ with brew you need to add the following to your path to be able to start and stop
the broker: add it to the start-up file for your shell (e.g., .bash_profile or .profile).

PATH=$PATH:/usr/local/sbin

Configuring the system host name

If you’re using a DHCP server that’s giving you a random host name, you need to permanently configure the host
name. This is because RabbitMQ uses the host name to communicate with nodes.

Use the scutil command to permanently set your host name:

$ sudo scutil --set HostName myhost.local

Then add that host name to /etc/hosts so it’s possible to resolve it back into an IP address:

127.0.0.1 localhost myhost myhost.local

If you start the rabbitmq-server, your rabbit node should now be rabbit@myhost, as verified by rabbitmqctl:

$ sudo rabbitmqctl status
Status of node rabbit@myhost ...
[{running_applications,[{rabbit,"RabbitMQ","1.7.1"},

{mnesia,"MNESIA CXC 138 12","4.4.12"},
{os_mon,"CPO CXC 138 46","2.2.4"},

2.2. Getting Started 13

http://www.rabbitmq.com/admin-guide.html
http://www.rabbitmq.com/admin-guide.html#access-control
https://github.com/mxcl/homebrew/
https://github.com/Homebrew/homebrew/wiki/Installation

Celery Documentation, Release 4.1.0

{sasl,"SASL CXC 138 11","2.1.8"},
{stdlib,"ERTS CXC 138 10","1.16.4"},
{kernel,"ERTS CXC 138 10","2.13.4"}]},

{nodes,[rabbit@myhost]},
{running_nodes,[rabbit@myhost]}]
...done.

This is especially important if your DHCP server gives you a host name starting with an IP address, (e.g.,
23.10.112.31.comcast.net). In this case RabbitMQ will try to use rabbit@23: an illegal host name.

Starting/Stopping the RabbitMQ server

To start the server:

$ sudo rabbitmq-server

you can also run it in the background by adding the -detached option (note: only one dash):

$ sudo rabbitmq-server -detached

Never use kill (kill(1)) to stop the RabbitMQ server, but rather use the rabbitmqctl command:

$ sudo rabbitmqctl stop

When the server is running, you can continue reading Setting up RabbitMQ.

Using Redis

Installation

For the Redis support you have to install additional dependencies. You can install both Celery and these dependencies
in one go using the celery[redis] bundle:

$ pip install -U "celery[redis]"

Configuration

Configuration is easy, just configure the location of your Redis database:

app.conf.broker_url = 'redis://localhost:6379/0'

Where the URL is in the format of:

redis://:password@hostname:port/db_number

all fields after the scheme are optional, and will default to localhost on port 6379, using database 0.

If a Unix socket connection should be used, the URL needs to be in the format:

redis+socket:///path/to/redis.sock

Specifying a different database number when using a Unix socket is possible by adding the virtual_host param-
eter to the URL:

14 Chapter 2. Contents

Celery Documentation, Release 4.1.0

redis+socket:///path/to/redis.sock?virtual_host=db_number

Visibility Timeout

The visibility timeout defines the number of seconds to wait for the worker to acknowledge the task before the message
is redelivered to another worker. Be sure to see Caveats below.

This option is set via the broker_transport_options setting:

app.conf.broker_transport_options = {'visibility_timeout': 3600} # 1 hour.

The default visibility timeout for Redis is 1 hour.

Results

If you also want to store the state and return values of tasks in Redis, you should configure these settings:

app.conf.result_backend = 'redis://localhost:6379/0'

For a complete list of options supported by the Redis result backend, see Redis backend settings

Caveats

Fanout prefix

Broadcast messages will be seen by all virtual hosts by default.

You have to set a transport option to prefix the messages so that they will only be received by the active virtual host:

app.conf.broker_transport_options = {'fanout_prefix': True}

Note that you won’t be able to communicate with workers running older versions or workers that doesn’t have this
setting enabled.

This setting will be the default in the future, so better to migrate sooner rather than later.

Fanout patterns

Workers will receive all task related events by default.

To avoid this you must set the fanout_patterns fanout option so that the workers may only subscribe to worker
related events:

app.conf.broker_transport_options = {'fanout_patterns': True}

Note that this change is backward incompatible so all workers in the cluster must have this option enabled, or else they
won’t be able to communicate.

This option will be enabled by default in the future.

2.2. Getting Started 15

Celery Documentation, Release 4.1.0

Visibility timeout

If a task isn’t acknowledged within the Visibility Timeout the task will be redelivered to another worker and executed.

This causes problems with ETA/countdown/retry tasks where the time to execute exceeds the visibility timeout; in fact
if that happens it will be executed again, and again in a loop.

So you have to increase the visibility timeout to match the time of the longest ETA you’re planning to use.

Note that Celery will redeliver messages at worker shutdown, so having a long visibility timeout will only delay the
redelivery of ‘lost’ tasks in the event of a power failure or forcefully terminated workers.

Periodic tasks won’t be affected by the visibility timeout, as this is a concept separate from ETA/countdown.

You can increase this timeout by configuring a transport option with the same name:

app.conf.broker_transport_options = {'visibility_timeout': 43200}

The value must be an int describing the number of seconds.

Key eviction

Redis may evict keys from the database in some situations

If you experience an error like:

InconsistencyError: Probably the key ('_kombu.binding.celery') has been
removed from the Redis database.

then you may want to configure the redis-server to not evict keys by setting the timeout parameter to 0 in the
redis configuration file.

Using Amazon SQS

Installation

For the Amazon SQS support you have to install the boto library using pip:

$ pip install -U boto

Configuration

You have to specify SQS in the broker URL:

broker_url = 'sqs://ABCDEFGHIJKLMNOPQRST:ZYXK7NiynGlTogH8Nj+P9nlE73sq3@'

where the URL format is:

sqs://aws_access_key_id:aws_secret_access_key@

you must remember to include the “@” at the end.

The login credentials can also be set using the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY, in that case the broker URL may only be sqs://.

16 Chapter 2. Contents

https://pypi.python.org/pypi/boto/

Celery Documentation, Release 4.1.0

If you are using IAM roles on instances, you can set the BROKER_URL to: sqs:// and kombu will attempt to
retrieve access tokens from the instance metadata.

Note: If you specify AWS credentials in the broker URL, then please keep in mind that the secret access key may
contain unsafe characters that need to be URL encoded.

Options

Region

The default region is us-east-1 but you can select another region by configuring the
broker_transport_options setting:

broker_transport_options = {'region': 'eu-west-1'}

See also:

An overview of Amazon Web Services regions can be found here:

http://aws.amazon.com/about-aws/globalinfrastructure/

Visibility Timeout

The visibility timeout defines the number of seconds to wait for the worker to acknowledge the task before the message
is redelivered to another worker. Also see caveats below.

This option is set via the broker_transport_options setting:

broker_transport_options = {'visibility_timeout': 3600} # 1 hour.

The default visibility timeout is 30 seconds.

Polling Interval

The polling interval decides the number of seconds to sleep between unsuccessful polls. This value can be either an
int or a float. By default the value is one second: this means the worker will sleep for one second when there’s no
more messages to read.

You must note that more frequent polling is also more expensive, so increasing the polling interval can save you
money.

The polling interval can be set via the broker_transport_options setting:

broker_transport_options = {'polling_interval': 0.3}

Very frequent polling intervals can cause busy loops, resulting in the worker using a lot of CPU time. If you need sub-
millisecond precision you should consider using another transport, like RabbitMQ <broker-amqp>, or Redis <broker-
redis>.

2.2. Getting Started 17

http://aws.amazon.com/about-aws/globalinfrastructure/

Celery Documentation, Release 4.1.0

Queue Prefix

By default Celery won’t assign any prefix to the queue names, If you have other services using SQS you can configure
it do so using the broker_transport_options setting:

broker_transport_options = {'queue_name_prefix': 'celery-'}

Caveats

• If a task isn’t acknowledged within the visibility_timeout, the task will be redelivered to another worker
and executed.

This causes problems with ETA/countdown/retry tasks where the time to execute exceeds the visibil-
ity timeout; in fact if that happens it will be executed again, and again in a loop.

So you have to increase the visibility timeout to match the time of the longest ETA you’re planning
to use.

Note that Celery will redeliver messages at worker shutdown, so having a long visibility timeout
will only delay the redelivery of ‘lost’ tasks in the event of a power failure or forcefully terminated
workers.

Periodic tasks won’t be affected by the visibility timeout, as it is a concept separate from
ETA/countdown.

The maximum visibility timeout supported by AWS as of this writing is 12 hours (43200 seconds):

broker_transport_options = {'visibility_timeout': 43200}

• SQS doesn’t yet support worker remote control commands.

• SQS doesn’t yet support events, and so cannot be used with celery events, celerymon, or the Django
Admin monitor.

Results

Multiple products in the Amazon Web Services family could be a good candidate to store or publish results with, but
there’s no such result backend included at this point.

Warning: Don’t use the amqp result backend with SQS.

It will create one queue for every task, and the queues will not be collected. This could cost you money that would
be better spent contributing an AWS result store backend back to Celery :)

Broker Overview

This is comparison table of the different transports supports, more information can be found in the documentation for
each individual transport (see Broker Instructions).

Name Status Monitoring Remote Control
RabbitMQ Stable Yes Yes
Redis Stable Yes Yes
Amazon SQS Stable No No
Zookeeper Experimental No No

18 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Experimental brokers may be functional but they don’t have dedicated maintainers.

Missing monitor support means that the transport doesn’t implement events, and as such Flower, celery events, celery-
mon and other event-based monitoring tools won’t work.

Remote control means the ability to inspect and manage workers at runtime using the celery inspect and celery control
commands (and other tools using the remote control API).

First Steps with Celery

Celery is a task queue with batteries included. It’s easy to use so that you can get started without learning the full
complexities of the problem it solves. It’s designed around best practices so that your product can scale and integrate
with other languages, and it comes with the tools and support you need to run such a system in production.

In this tutorial you’ll learn the absolute basics of using Celery.

Learn about;

• Choosing and installing a message transport (broker).

• Installing Celery and creating your first task.

• Starting the worker and calling tasks.

• Keeping track of tasks as they transition through different states, and inspecting return values.

Celery may seem daunting at first - but don’t worry - this tutorial will get you started in no time. It’s deliberately
kept simple, so as to not confuse you with advanced features. After you have finished this tutorial, it’s a good idea to
browse the rest of the documentation. For example the Next Steps tutorial will showcase Celery’s capabilities.

• Choosing a Broker

– RabbitMQ

– Redis

– Other brokers

• Installing Celery

• Application

• Running the Celery worker server

• Calling the task

• Keeping Results

• Configuration

• Where to go from here

• Troubleshooting

– Worker doesn’t start: Permission Error

– Result backend doesn’t work or tasks are always in PENDING state

2.2. Getting Started 19

Celery Documentation, Release 4.1.0

Choosing a Broker

Celery requires a solution to send and receive messages; usually this comes in the form of a separate service called a
message broker.

There are several choices available, including:

RabbitMQ

RabbitMQ is feature-complete, stable, durable and easy to install. It’s an excellent choice for a production environ-
ment. Detailed information about using RabbitMQ with Celery:

Using RabbitMQ

If you’re using Ubuntu or Debian install RabbitMQ by executing this command:

$ sudo apt-get install rabbitmq-server

When the command completes, the broker will already be running in the background, ready to move messages for
you: Starting rabbitmq-server: SUCCESS.

Don’t worry if you’re not running Ubuntu or Debian, you can go to this website to find similarly simple installation
instructions for other platforms, including Microsoft Windows:

http://www.rabbitmq.com/download.html

Redis

Redis is also feature-complete, but is more susceptible to data loss in the event of abrupt termination or power failures.
Detailed information about using Redis:

Using Redis

Other brokers

In addition to the above, there are other experimental transport implementations to choose from, including Amazon
SQS.

See Broker Overview for a full list.

Installing Celery

Celery is on the Python Package Index (PyPI), so it can be installed with standard Python tools like pip or
easy_install:

$ pip install celery

Application

The first thing you need is a Celery instance. We call this the Celery application or just app for short. As this instance
is used as the entry-point for everything you want to do in Celery, like creating tasks and managing workers, it must
be possible for other modules to import it.

20 Chapter 2. Contents

http://www.rabbitmq.com/
http://www.rabbitmq.com/download.html
https://redis.io/

Celery Documentation, Release 4.1.0

In this tutorial we keep everything contained in a single module, but for larger projects you want to create a dedicated
module.

Let’s create the file tasks.py:

from celery import Celery

app = Celery('tasks', broker='pyamqp://guest@localhost//')

@app.task
def add(x, y):

return x + y

The first argument to Celery is the name of the current module. This is only needed so that names can be automati-
cally generated when the tasks are defined in the __main__ module.

The second argument is the broker keyword argument, specifying the URL of the message broker you want to use.
Here using RabbitMQ (also the default option).

See Choosing a Broker above for more choices – for RabbitMQ you can use amqp://localhost, or for Redis you
can use redis://localhost.

You defined a single task, called add, returning the sum of two numbers.

Running the Celery worker server

You can now run the worker by executing our program with the worker argument:

$ celery -A tasks worker --loglevel=info

Note: See the Troubleshooting section if the worker doesn’t start.

In production you’ll want to run the worker in the background as a daemon. To do this you need to use the tools
provided by your platform, or something like supervisord (see Daemonization for more information).

For a complete listing of the command-line options available, do:

$ celery worker --help

There are also several other commands available, and help is also available:

$ celery help

Calling the task

To call our task you can use the delay() method.

This is a handy shortcut to the apply_async() method that gives greater control of the task execution (see Calling
Tasks):

>>> from tasks import add
>>> add.delay(4, 4)

The task has now been processed by the worker you started earlier. You can verify this by looking at the worker’s
console output.

2.2. Getting Started 21

http://supervisord.org

Celery Documentation, Release 4.1.0

Calling a task returns an AsyncResult instance. This can be used to check the state of the task, wait for the task to
finish, or get its return value (or if the task failed, to get the exception and traceback).

Results are not enabled by default. In order to do remote procedure calls or keep track of task results in a database,
you will need to configure Celery to use a result backend. This is described in the next section.

Keeping Results

If you want to keep track of the tasks’ states, Celery needs to store or send the states somewhere. There are several
built-in result backends to choose from: SQLAlchemy/Django ORM, Memcached, Redis, RPC (RabbitMQ/AMQP),
and – or you can define your own.

For this example we use the rpc result backend, that sends states back as transient messages. The backend is specified
via the backend argument to Celery , (or via the result_backend setting if you choose to use a configuration
module):

app = Celery('tasks', backend='rpc://', broker='pyamqp://')

Or if you want to use Redis as the result backend, but still use RabbitMQ as the message broker (a popular combina-
tion):

app = Celery('tasks', backend='redis://localhost', broker='pyamqp://')

To read more about result backends please see Result Backends.

Now with the result backend configured, let’s call the task again. This time you’ll hold on to the AsyncResult
instance returned when you call a task:

>>> result = add.delay(4, 4)

The ready() method returns whether the task has finished processing or not:

>>> result.ready()
False

You can wait for the result to complete, but this is rarely used since it turns the asynchronous call into a synchronous
one:

>>> result.get(timeout=1)
8

In case the task raised an exception, get() will re-raise the exception, but you can override this by specifying the
propagate argument:

>>> result.get(propagate=False)

If the task raised an exception, you can also gain access to the original traceback:

>>> result.traceback
?

See celery.result for the complete result object reference.

22 Chapter 2. Contents

http://www.sqlalchemy.org/
http://djangoproject.com
http://memcached.org
https://redis.io/
http://www.rabbitmq.com/

Celery Documentation, Release 4.1.0

Configuration

Celery, like a consumer appliance, doesn’t need much configuration to operate. It has an input and an output. The
input must be connected to a broker, and the output can be optionally connected to a result backend. However, if you
look closely at the back, there’s a lid revealing loads of sliders, dials, and buttons: this is the configuration.

The default configuration should be good enough for most use cases, but there are many options that can be configured
to make Celery work exactly as needed. Reading about the options available is a good idea to familiarize yourself with
what can be configured. You can read about the options in the Configuration and defaults reference.

The configuration can be set on the app directly or by using a dedicated configuration module. As an example you can
configure the default serializer used for serializing task payloads by changing the task_serializer setting:

app.conf.task_serializer = 'json'

If you’re configuring many settings at once you can use update:

app.conf.update(
task_serializer='json',
accept_content=['json'], # Ignore other content
result_serializer='json',
timezone='Europe/Oslo',
enable_utc=True,

)

For larger projects, a dedicated configuration module is recommended. Hard coding periodic task intervals and task
routing options is discouraged. It is much better to keep these in a centralized location. This is especially true
for libraries, as it enables users to control how their tasks behave. A centralized configuration will also allow your
SysAdmin to make simple changes in the event of system trouble.

You can tell your Celery instance to use a configuration module by calling the app.config_from_object()
method:

app.config_from_object('celeryconfig')

This module is often called “celeryconfig”, but you can use any module name.

In the above case, a module named celeryconfig.py must be available to load from the current directory or on
the Python path. It could look something like this:

celeryconfig.py:

broker_url = 'pyamqp://'
result_backend = 'rpc://'

task_serializer = 'json'
result_serializer = 'json'
accept_content = ['json']
timezone = 'Europe/Oslo'
enable_utc = True

To verify that your configuration file works properly and doesn’t contain any syntax errors, you can try to import it:

$ python -m celeryconfig

For a complete reference of configuration options, see Configuration and defaults.

To demonstrate the power of configuration files, this is how you’d route a misbehaving task to a dedicated queue:

celeryconfig.py:

2.2. Getting Started 23

Celery Documentation, Release 4.1.0

task_routes = {
'tasks.add': 'low-priority',

}

Or instead of routing it you could rate limit the task instead, so that only 10 tasks of this type can be processed in a
minute (10/m):

celeryconfig.py:

task_annotations = {
'tasks.add': {'rate_limit': '10/m'}

}

If you’re using RabbitMQ or Redis as the broker then you can also direct the workers to set a new rate limit for the
task at runtime:

$ celery -A tasks control rate_limit tasks.add 10/m
worker@example.com: OK

new rate limit set successfully

See Routing Tasks to read more about task routing, and the task_annotations setting for more about annotations,
or Monitoring and Management Guide for more about remote control commands and how to monitor what your
workers are doing.

Where to go from here

If you want to learn more you should continue to the Next Steps tutorial, and after that you can read the User Guide.

Troubleshooting

There’s also a troubleshooting section in the Frequently Asked Questions.

Worker doesn’t start: Permission Error

• If you’re using Debian, Ubuntu or other Debian-based distributions:

Debian recently renamed the /dev/shm special file to /run/shm.

A simple workaround is to create a symbolic link:

ln -s /run/shm /dev/shm

• Others:

If you provide any of the --pidfile, --logfile or --statedb arguments, then you must
make sure that they point to a file or directory that’s writable and readable by the user starting the
worker.

Result backend doesn’t work or tasks are always in PENDING state

All tasks are PENDING by default, so the state would’ve been better named “unknown”. Celery doesn’t update the
state when a task is sent, and any task with no history is assumed to be pending (you know the task id, after all).

1. Make sure that the task doesn’t have ignore_result enabled.

24 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Enabling this option will force the worker to skip updating states.

2. Make sure the task_ignore_result setting isn’t enabled.

3. Make sure that you don’t have any old workers still running.

It’s easy to start multiple workers by accident, so make sure that the previous worker is properly shut
down before you start a new one.

An old worker that isn’t configured with the expected result backend may be running and is hijacking
the tasks.

The --pidfile argument can be set to an absolute path to make sure this doesn’t happen.

4. Make sure the client is configured with the right backend.

If, for some reason, the client is configured to use a different backend than the worker, you won’t be
able to receive the result. Make sure the backend is configured correctly:

>>> result = task.delay()
>>> print(result.backend)

Next Steps

The First Steps with Celery guide is intentionally minimal. In this guide I’ll demonstrate what Celery offers in more
detail, including how to add Celery support for your application and library.

This document doesn’t document all of Celery’s features and best practices, so it’s recommended that you also read
the User Guide

• Using Celery in your Application

• Calling Tasks

• Canvas: Designing Work-flows

• Routing

• Remote Control

• Timezone

• Optimization

• What to do now?

Using Celery in your Application

Our Project

Project layout:

proj/__init__.py
/celery.py
/tasks.py

2.2. Getting Started 25

Celery Documentation, Release 4.1.0

proj/celery.py

from __future__ import absolute_import, unicode_literals
from celery import Celery

app = Celery('proj',
broker='amqp://',
backend='amqp://',
include=['proj.tasks'])

Optional configuration, see the application user guide.
app.conf.update(

result_expires=3600,
)

if __name__ == '__main__':
app.start()

In this module you created our Celery instance (sometimes referred to as the app). To use Celery within your project
you simply import this instance.

• The broker argument specifies the URL of the broker to use.

See Choosing a Broker for more information.

• The backend argument specifies the result backend to use,

It’s used to keep track of task state and results. While results are disabled by default I use the RPC
result backend here because I demonstrate how retrieving results work later, you may want to use
a different backend for your application. They all have different strengths and weaknesses. If you
don’t need results it’s better to disable them. Results can also be disabled for individual tasks by
setting the @task(ignore_result=True) option.

See Keeping Results for more information.

• The include argument is a list of modules to import when the worker starts. You need to add our tasks module
here so that the worker is able to find our tasks.

proj/tasks.py

from __future__ import absolute_import, unicode_literals
from .celery import app

@app.task
def add(x, y):

return x + y

@app.task
def mul(x, y):

return x * y

@app.task
def xsum(numbers):

return sum(numbers)

26 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Starting the worker

The celery program can be used to start the worker (you need to run the worker in the directory above proj):

$ celery -A proj worker -l info

When the worker starts you should see a banner and some messages:

-------------- celery@halcyon.local v4.0 (latentcall)
---- **** -----
--- * *** * -- [Configuration]
-- * - **** --- . broker: amqp://guest@localhost:5672//
- ** ---------- . app: __main__:0x1012d8590
- ** ---------- . concurrency: 8 (processes)
- ** ---------- . events: OFF (enable -E to monitor this worker)
- ** ----------
- *** --- * --- [Queues]
-- ******* ---- . celery: exchange:celery(direct) binding:celery
--- ***** -----

[2012-06-08 16:23:51,078: WARNING/MainProcess] celery@halcyon.local has started.

– The broker is the URL you specified in the broker argument in our celery module, you can also specify a different
broker on the command-line by using the -b option.

– Concurrency is the number of prefork worker process used to process your tasks concurrently, when all of these are
busy doing work new tasks will have to wait for one of the tasks to finish before it can be processed.

The default concurrency number is the number of CPU’s on that machine (including cores), you can specify a custom
number using the celery worker -c option. There’s no recommended value, as the optimal number depends on
a number of factors, but if your tasks are mostly I/O-bound then you can try to increase it, experimentation has shown
that adding more than twice the number of CPU’s is rarely effective, and likely to degrade performance instead.

Including the default prefork pool, Celery also supports using Eventlet, Gevent, and running in a single thread (see
Concurrency).

– Events is an option that when enabled causes Celery to send monitoring messages (events) for actions occurring
in the worker. These can be used by monitor programs like celery events, and Flower - the real-time Celery
monitor, that you can read about in the Monitoring and Management guide.

– Queues is the list of queues that the worker will consume tasks from. The worker can be told to consume from several
queues at once, and this is used to route messages to specific workers as a means for Quality of Service, separation of
concerns, and prioritization, all described in the Routing Guide.

You can get a complete list of command-line arguments by passing in the --help flag:

$ celery worker --help

These options are described in more detailed in the Workers Guide.

Stopping the worker

To stop the worker simply hit Control-c. A list of signals supported by the worker is detailed in the Workers Guide.

In the background

In production you’ll want to run the worker in the background, this is described in detail in the daemonization tutorial.

2.2. Getting Started 27

Celery Documentation, Release 4.1.0

The daemonization scripts uses the celery multi command to start one or more workers in the background:

$ celery multi start w1 -A proj -l info
celery multi v4.0.0 (latentcall)
> Starting nodes...

> w1.halcyon.local: OK

You can restart it too:

$ celery multi restart w1 -A proj -l info
celery multi v4.0.0 (latentcall)
> Stopping nodes...

> w1.halcyon.local: TERM -> 64024
> Waiting for 1 node.....

> w1.halcyon.local: OK
> Restarting node w1.halcyon.local: OK
celery multi v4.0.0 (latentcall)
> Stopping nodes...

> w1.halcyon.local: TERM -> 64052

or stop it:

$ celery multi stop w1 -A proj -l info

The stop command is asynchronous so it won’t wait for the worker to shutdown. You’ll probably want to use the
stopwait command instead, this ensures all currently executing tasks is completed before exiting:

$ celery multi stopwait w1 -A proj -l info

Note: celery multi doesn’t store information about workers so you need to use the same command-line argu-
ments when restarting. Only the same pidfile and logfile arguments must be used when stopping.

By default it’ll create pid and log files in the current directory, to protect against multiple workers launching on top of
each other you’re encouraged to put these in a dedicated directory:

$ mkdir -p /var/run/celery
$ mkdir -p /var/log/celery
$ celery multi start w1 -A proj -l info --pidfile=/var/run/celery/%n.pid \

--logfile=/var/log/celery/%n%I.log

With the multi command you can start multiple workers, and there’s a powerful command-line syntax to specify
arguments for different workers too, for example:

$ celery multi start 10 -A proj -l info -Q:1-3 images,video -Q:4,5 data \
-Q default -L:4,5 debug

For more examples see the multi module in the API reference.

About the --app argument

The --app argument specifies the Celery app instance to use, it must be in the form of module.path:attribute

But it also supports a shortcut form If only a package name is specified, where it’ll try to search for the app instance,
in the following order:

With --app=proj:

28 Chapter 2. Contents

Celery Documentation, Release 4.1.0

1. an attribute named proj.app, or

2. an attribute named proj.celery, or

3. any attribute in the module proj where the value is a Celery application, or

If none of these are found it’ll try a submodule named proj.celery:

4. an attribute named proj.celery.app, or

5. an attribute named proj.celery.celery, or

6. Any attribute in the module proj.celery where the value is a Celery application.

This scheme mimics the practices used in the documentation – that is, proj:app for a single contained module, and
proj.celery:app for larger projects.

Calling Tasks

You can call a task using the delay() method:

>>> add.delay(2, 2)

This method is actually a star-argument shortcut to another method called apply_async():

>>> add.apply_async((2, 2))

The latter enables you to specify execution options like the time to run (countdown), the queue it should be sent to,
and so on:

>>> add.apply_async((2, 2), queue='lopri', countdown=10)

In the above example the task will be sent to a queue named lopri and the task will execute, at the earliest, 10
seconds after the message was sent.

Applying the task directly will execute the task in the current process, so that no message is sent:

>>> add(2, 2)
4

These three methods - delay(), apply_async(), and applying (__call__), represents the Celery calling API,
that’s also used for signatures.

A more detailed overview of the Calling API can be found in the Calling User Guide.

Every task invocation will be given a unique identifier (an UUID), this is the task id.

The delay and apply_async methods return an AsyncResult instance, that can be used to keep track of the
tasks execution state. But for this you need to enable a result backend so that the state can be stored somewhere.

Results are disabled by default because of the fact that there’s no result backend that suits every application, so to
choose one you need to consider the drawbacks of each individual backend. For many tasks keeping the return value
isn’t even very useful, so it’s a sensible default to have. Also note that result backends aren’t used for monitoring tasks
and workers, for that Celery uses dedicated event messages (see Monitoring and Management Guide).

If you have a result backend configured you can retrieve the return value of a task:

>>> res = add.delay(2, 2)
>>> res.get(timeout=1)
4

2.2. Getting Started 29

Celery Documentation, Release 4.1.0

You can find the task’s id by looking at the id attribute:

>>> res.id
d6b3aea2-fb9b-4ebc-8da4-848818db9114

You can also inspect the exception and traceback if the task raised an exception, in fact result.get() will propa-
gate any errors by default:

>>> res = add.delay(2)
>>> res.get(timeout=1)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/devel/celery/celery/result.py", line 113, in get

interval=interval)
File "/opt/devel/celery/celery/backends/rpc.py", line 138, in wait_for

raise meta['result']
TypeError: add() takes exactly 2 arguments (1 given)

If you don’t wish for the errors to propagate then you can disable that by passing the propagate argument:

>>> res.get(propagate=False)
TypeError('add() takes exactly 2 arguments (1 given)',)

In this case it’ll return the exception instance raised instead, and so to check whether the task succeeded or failed
you’ll have to use the corresponding methods on the result instance:

>>> res.failed()
True

>>> res.successful()
False

So how does it know if the task has failed or not? It can find out by looking at the tasks state:

>>> res.state
'FAILURE'

A task can only be in a single state, but it can progress through several states. The stages of a typical task can be:

PENDING -> STARTED -> SUCCESS

The started state is a special state that’s only recorded if the task_track_started setting is enabled, or if the
@task(track_started=True) option is set for the task.

The pending state is actually not a recorded state, but rather the default state for any task id that’s unknown: this you
can see from this example:

>>> from proj.celery import app

>>> res = app.AsyncResult('this-id-does-not-exist')
>>> res.state
'PENDING'

If the task is retried the stages can become even more complex. To demonstrate, for a task that’s retried two times the
stages would be:

30 Chapter 2. Contents

Celery Documentation, Release 4.1.0

PENDING -> STARTED -> RETRY -> STARTED -> RETRY -> STARTED -> SUCCESS

To read more about task states you should see the States section in the tasks user guide.

Calling tasks is described in detail in the Calling Guide.

Canvas: Designing Work-flows

You just learned how to call a task using the tasks delay method, and this is often all you need, but sometimes you
may want to pass the signature of a task invocation to another process or as an argument to another function, for this
Celery uses something called signatures.

A signature wraps the arguments and execution options of a single task invocation in a way such that it can be passed
to functions or even serialized and sent across the wire.

You can create a signature for the add task using the arguments (2, 2), and a countdown of 10 seconds like this:

>>> add.signature((2, 2), countdown=10)
tasks.add(2, 2)

There’s also a shortcut using star arguments:

>>> add.s(2, 2)
tasks.add(2, 2)

And there’s that calling API again. . .

Signature instances also supports the calling API: meaning they have the delay and apply_async methods.

But there’s a difference in that the signature may already have an argument signature specified. The add task takes
two arguments, so a signature specifying two arguments would make a complete signature:

>>> s1 = add.s(2, 2)
>>> res = s1.delay()
>>> res.get()
4

But, you can also make incomplete signatures to create what we call partials:

incomplete partial: add(?, 2)
>>> s2 = add.s(2)

s2 is now a partial signature that needs another argument to be complete, and this can be resolved when calling the
signature:

resolves the partial: add(8, 2)
>>> res = s2.delay(8)
>>> res.get()
10

Here you added the argument 8 that was prepended to the existing argument 2 forming a complete signature of add(8,
2).

Keyword arguments can also be added later, these are then merged with any existing keyword arguments, but with new
arguments taking precedence:

2.2. Getting Started 31

Celery Documentation, Release 4.1.0

>>> s3 = add.s(2, 2, debug=True)
>>> s3.delay(debug=False) # debug is now False.

As stated signatures supports the calling API: meaning that;

• sig.apply_async(args=(), kwargs={}, **options)

Calls the signature with optional partial arguments and partial keyword arguments. Also supports
partial execution options.

• sig.delay(*args, **kwargs)

Star argument version of apply_async. Any arguments will be prepended to the arguments in the signature,
and keyword arguments is merged with any existing keys.

So this all seems very useful, but what can you actually do with these? To get to that I must introduce the canvas
primitives. . .

The Primitives

• group
• chain
• chord
• map
• starmap
• chunks

These primitives are signature objects themselves, so they can be combined in any number of ways to compose
complex work-flows.

Note: These examples retrieve results, so to try them out you need to configure a result backend. The example project
above already does that (see the backend argument to Celery).

Let’s look at some examples:

Groups

A group calls a list of tasks in parallel, and it returns a special result instance that lets you inspect the results as a
group, and retrieve the return values in order.

>>> from celery import group
>>> from proj.tasks import add

>>> group(add.s(i, i) for i in xrange(10))().get()
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

• Partial group

>>> g = group(add.s(i) for i in xrange(10))
>>> g(10).get()
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

32 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Chains

Tasks can be linked together so that after one task returns the other is called:

>>> from celery import chain
>>> from proj.tasks import add, mul

(4 + 4) * 8
>>> chain(add.s(4, 4) | mul.s(8))().get()
64

or a partial chain:

>>> # (? + 4) * 8
>>> g = chain(add.s(4) | mul.s(8))
>>> g(4).get()
64

Chains can also be written like this:

>>> (add.s(4, 4) | mul.s(8))().get()
64

Chords

A chord is a group with a callback:

>>> from celery import chord
>>> from proj.tasks import add, xsum

>>> chord((add.s(i, i) for i in xrange(10)), xsum.s())().get()
90

A group chained to another task will be automatically converted to a chord:

>>> (group(add.s(i, i) for i in xrange(10)) | xsum.s())().get()
90

Since these primitives are all of the signature type they can be combined almost however you want, for example:

>>> upload_document.s(file) | group(apply_filter.s() for filter in filters)

Be sure to read more about work-flows in the Canvas user guide.

Routing

Celery supports all of the routing facilities provided by AMQP, but it also supports simple routing where messages are
sent to named queues.

The task_routes setting enables you to route tasks by name and keep everything centralized in one location:

app.conf.update(
task_routes = {

'proj.tasks.add': {'queue': 'hipri'},

2.2. Getting Started 33

Celery Documentation, Release 4.1.0

},
)

You can also specify the queue at runtime with the queue argument to apply_async:

>>> from proj.tasks import add
>>> add.apply_async((2, 2), queue='hipri')

You can then make a worker consume from this queue by specifying the celery worker -Q option:

$ celery -A proj worker -Q hipri

You may specify multiple queues by using a comma separated list, for example you can make the worker consume
from both the default queue, and the hipri queue, where the default queue is named celery for historical reasons:

$ celery -A proj worker -Q hipri,celery

The order of the queues doesn’t matter as the worker will give equal weight to the queues.

To learn more about routing, including taking use of the full power of AMQP routing, see the Routing Guide.

Remote Control

If you’re using RabbitMQ (AMQP), Redis, or Qpid as the broker then you can control and inspect the worker at
runtime.

For example you can see what tasks the worker is currently working on:

$ celery -A proj inspect active

This is implemented by using broadcast messaging, so all remote control commands are received by every worker in
the cluster.

You can also specify one or more workers to act on the request using the --destination option. This is a comma
separated list of worker host names:

$ celery -A proj inspect active --destination=celery@example.com

If a destination isn’t provided then every worker will act and reply to the request.

The celery inspect command contains commands that doesn’t change anything in the worker, it only replies
information and statistics about what’s going on inside the worker. For a list of inspect commands you can execute:

$ celery -A proj inspect --help

Then there’s the celery control command, that contains commands that actually changes things in the worker
at runtime:

$ celery -A proj control --help

For example you can force workers to enable event messages (used for monitoring tasks and workers):

$ celery -A proj control enable_events

When events are enabled you can then start the event dumper to see what the workers are doing:

34 Chapter 2. Contents

Celery Documentation, Release 4.1.0

$ celery -A proj events --dump

or you can start the curses interface:

$ celery -A proj events

when you’re finished monitoring you can disable events again:

$ celery -A proj control disable_events

The celery status command also uses remote control commands and shows a list of online workers in the cluster:

$ celery -A proj status

You can read more about the celery command and monitoring in the Monitoring Guide.

Timezone

All times and dates, internally and in messages uses the UTC timezone.

When the worker receives a message, for example with a countdown set it converts that UTC time to local time. If you
wish to use a different timezone than the system timezone then you must configure that using the timezone setting:

app.conf.timezone = 'Europe/London'

Optimization

The default configuration isn’t optimized for throughput by default, it tries to walk the middle way between many
short tasks and fewer long tasks, a compromise between throughput and fair scheduling.

If you have strict fair scheduling requirements, or want to optimize for throughput then you should read the Optimizing
Guide.

If you’re using RabbitMQ then you can install the librabbitmq module: this is an AMQP client implemented in C:

$ pip install librabbitmq

What to do now?

Now that you have read this document you should continue to the User Guide.

There’s also an API reference if you’re so inclined.

Resources

• Getting Help

– Mailing list

– IRC

• Bug tracker

2.2. Getting Started 35

https://pypi.python.org/pypi/librabbitmq/

Celery Documentation, Release 4.1.0

• Wiki

• Contributing

• License

Getting Help

Mailing list

For discussions about the usage, development, and future of Celery, please join the celery-users mailing list.

IRC

Come chat with us on IRC. The #celery channel is located at the Freenode network.

Bug tracker

If you have any suggestions, bug reports, or annoyances please report them to our issue tracker at https://github.com/
celery/celery/issues/

Wiki

https://wiki.github.com/celery/celery/

Contributing

Development of celery happens at GitHub: https://github.com/celery/celery

You’re highly encouraged to participate in the development of celery. If you don’t like GitHub (for some reason)
you’re welcome to send regular patches.

Be sure to also read the Contributing to Celery section in the documentation.

License

This software is licensed under the New BSD License. See the LICENSE file in the top distribution directory for the
full license text.

User Guide

Release 4.1

Date Jul 24, 2017

36 Chapter 2. Contents

https://groups.google.com/group/celery-users/
https://freenode.net
https://github.com/celery/celery/issues/
https://github.com/celery/celery/issues/
https://wiki.github.com/celery/celery/
https://github.com/celery/celery
http://docs.celeryproject.org/en/master/contributing.html

Celery Documentation, Release 4.1.0

Application

• Main Name

• Configuration

• Laziness

• Breaking the chain

• Abstract Tasks

The Celery library must be instantiated before use, this instance is called an application (or app for short).

The application is thread-safe so that multiple Celery applications with different configurations, components, and tasks
can co-exist in the same process space.

Let’s create one now:

>>> from celery import Celery
>>> app = Celery()
>>> app
<Celery __main__:0x100469fd0>

The last line shows the textual representation of the application: including the name of the app class (Celery), the
name of the current main module (__main__), and the memory address of the object (0x100469fd0).

Main Name

Only one of these is important, and that’s the main module name. Let’s look at why that is.

When you send a task message in Celery, that message won’t contain any source code, but only the name of the task
you want to execute. This works similarly to how host names work on the internet: every worker maintains a mapping
of task names to their actual functions, called the task registry.

Whenever you define a task, that task will also be added to the local registry:

>>> @app.task
... def add(x, y):
... return x + y

>>> add
<@task: __main__.add>

>>> add.name
__main__.add

>>> app.tasks['__main__.add']
<@task: __main__.add>

and there you see that __main__ again; whenever Celery isn’t able to detect what module the function belongs to, it
uses the main module name to generate the beginning of the task name.

This is only a problem in a limited set of use cases:

1. If the module that the task is defined in is run as a program.

2. If the application is created in the Python shell (REPL).

2.3. User Guide 37

Celery Documentation, Release 4.1.0

For example here, where the tasks module is also used to start a worker with app.worker_main():

tasks.py:

from celery import Celery
app = Celery()

@app.task
def add(x, y): return x + y

if __name__ == '__main__':
app.worker_main()

When this module is executed the tasks will be named starting with “__main__”, but when the module is imported
by another process, say to call a task, the tasks will be named starting with “tasks” (the real name of the module):

>>> from tasks import add
>>> add.name
tasks.add

You can specify another name for the main module:

>>> app = Celery('tasks')
>>> app.main
'tasks'

>>> @app.task
... def add(x, y):
... return x + y

>>> add.name
tasks.add

See also:

Names

Configuration

There are several options you can set that’ll change how Celery works. These options can be set directly on the app
instance, or you can use a dedicated configuration module.

The configuration is available as app.conf:

>>> app.conf.timezone
'Europe/London'

where you can also set configuration values directly:

>>> app.conf.enable_utc = True

or update several keys at once by using the update method:

>>> app.conf.update(
... enable_utc=True,
... timezone='Europe/London',
...)

38 Chapter 2. Contents

Celery Documentation, Release 4.1.0

The configuration object consists of multiple dictionaries that are consulted in order:

1. Changes made at run-time.

2. The configuration module (if any)

3. The default configuration (celery.app.defaults).

You can even add new default sources by using the app.add_defaults() method.

See also:

Go to the Configuration reference for a complete listing of all the available settings, and their default values.

config_from_object

The app.config_from_object() method loads configuration from a configuration object.

This can be a configuration module, or any object with configuration attributes.

Note that any configuration that was previously set will be reset when config_from_object() is called. If you
want to set additional configuration you should do so after.

Example 1: Using the name of a module

The app.config_from_object() method can take the fully qualified name of a Python module, or even the
name of a Python attribute, for example: "celeryconfig", "myproj.config.celery", or "myproj.
config:CeleryConfig":

from celery import Celery

app = Celery()
app.config_from_object('celeryconfig')

The celeryconfig module may then look like this:

celeryconfig.py:

enable_utc = True
timezone = 'Europe/London'

and the app will be able to use it as long as import celeryconfig is possible.

Example 2: Passing an actual module object

You can also pass an already imported module object, but this isn’t always recommended.

Tip: Using the name of a module is recommended as this means the module does not need to be serialized when the
prefork pool is used. If you’re experiencing configuration problems or pickle errors then please try using the name of
a module instead.

import celeryconfig

from celery import Celery

2.3. User Guide 39

Celery Documentation, Release 4.1.0

app = Celery()
app.config_from_object(celeryconfig)

Example 3: Using a configuration class/object

from celery import Celery

app = Celery()

class Config:
enable_utc = True
timezone = 'Europe/London'

app.config_from_object(Config)
or using the fully qualified name of the object:
app.config_from_object('module:Config')

config_from_envvar

The app.config_from_envvar() takes the configuration module name from an environment variable

For example – to load configuration from a module specified in the environment variable named
CELERY_CONFIG_MODULE:

import os
from celery import Celery

#: Set default configuration module name
os.environ.setdefault('CELERY_CONFIG_MODULE', 'celeryconfig')

app = Celery()
app.config_from_envvar('CELERY_CONFIG_MODULE')

You can then specify the configuration module to use via the environment:

$ CELERY_CONFIG_MODULE="celeryconfig.prod" celery worker -l info

Censored configuration

If you ever want to print out the configuration, as debugging information or similar, you may also want to filter out
sensitive information like passwords and API keys.

Celery comes with several utilities useful for presenting the configuration, one is humanize():

>>> app.conf.humanize(with_defaults=False, censored=True)

This method returns the configuration as a tabulated string. This will only contain changes to the configuration by
default, but you can include the built-in default keys and values by enabling the with_defaults argument.

If you instead want to work with the configuration as a dictionary, you can use the table() method:

>>> app.conf.table(with_defaults=False, censored=True)

40 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Please note that Celery won’t be able to remove all sensitive information, as it merely uses a regular expression to
search for commonly named keys. If you add custom settings containing sensitive information you should name the
keys using a name that Celery identifies as secret.

A configuration setting will be censored if the name contains any of these sub-strings:

API, TOKEN, KEY, SECRET, PASS, SIGNATURE, DATABASE

Laziness

The application instance is lazy, meaning it won’t be evaluated until it’s actually needed.

Creating a Celery instance will only do the following:

1. Create a logical clock instance, used for events.

2. Create the task registry.

3. Set itself as the current app (but not if the set_as_current argument was disabled)

4. Call the app.on_init() callback (does nothing by default).

The app.task() decorators don’t create the tasks at the point when the task is defined, instead it’ll defer the creation
of the task to happen either when the task is used, or after the application has been finalized,

This example shows how the task isn’t created until you use the task, or access an attribute (in this case repr()):

>>> @app.task
>>> def add(x, y):
... return x + y

>>> type(add)
<class 'celery.local.PromiseProxy'>

>>> add.__evaluated__()
False

>>> add # <-- causes repr(add) to happen
<@task: __main__.add>

>>> add.__evaluated__()
True

Finalization of the app happens either explicitly by calling app.finalize() – or implicitly by accessing the app.
tasks attribute.

Finalizing the object will:

1. Copy tasks that must be shared between apps

Tasks are shared by default, but if the shared argument to the task decorator is disabled, then the
task will be private to the app it’s bound to.

2. Evaluate all pending task decorators.

3. Make sure all tasks are bound to the current app.

Tasks are bound to an app so that they can read default values from the configuration.

2.3. User Guide 41

Celery Documentation, Release 4.1.0

The “default app”

Celery didn’t always have applications, it used to be that there was only a module-based API, and for backwards
compatibility the old API is still there until the release of Celery 5.0.

Celery always creates a special app - the “default app”, and this is used if no custom application has been instanti-
ated.

The celery.task module is there to accommodate the old API, and shouldn’t be used if you use a custom app.
You should always use the methods on the app instance, not the module based API.

For example, the old Task base class enables many compatibility features where some may be incompatible with
newer features, such as task methods:

from celery.task import Task # << OLD Task base class.

from celery import Task # << NEW base class.

The new base class is recommended even if you use the old module-based API.

Breaking the chain

While it’s possible to depend on the current app being set, the best practice is to always pass the app instance around
to anything that needs it.

I call this the “app chain”, since it creates a chain of instances depending on the app being passed.

The following example is considered bad practice:

from celery import current_app

class Scheduler(object):

def run(self):
app = current_app

Instead it should take the app as an argument:

class Scheduler(object):

def __init__(self, app):
self.app = app

Internally Celery uses the celery.app.app_or_default() function so that everything also works in the
module-based compatibility API

from celery.app import app_or_default

class Scheduler(object):
def __init__(self, app=None):

self.app = app_or_default(app)

In development you can set the CELERY_TRACE_APP environment variable to raise an exception if the app chain
breaks:

$ CELERY_TRACE_APP=1 celery worker -l info

42 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Evolving the API

Celery has changed a lot in the 7 years since it was initially created.

For example, in the beginning it was possible to use any callable as a task:

def hello(to):
return 'hello {0}'.format(to)

>>> from celery.execute import apply_async

>>> apply_async(hello, ('world!',))

or you could also create a Task class to set certain options, or override other behavior

from celery.task import Task
from celery.registry import tasks

class Hello(Task):
queue = 'hipri'

def run(self, to):
return 'hello {0}'.format(to)

tasks.register(Hello)

>>> Hello.delay('world!')

Later, it was decided that passing arbitrary call-able’s was an anti-pattern, since it makes it very hard to use serial-
izers other than pickle, and the feature was removed in 2.0, replaced by task decorators:

from celery.task import task

@task(queue='hipri')
def hello(to):

return 'hello {0}'.format(to)

Abstract Tasks

All tasks created using the task() decorator will inherit from the application’s base Task class.

You can specify a different base class using the base argument:

@app.task(base=OtherTask):
def add(x, y):

return x + y

To create a custom task class you should inherit from the neutral base class: celery.Task.

from celery import Task

class DebugTask(Task):

def __call__(self, *args, **kwargs):
print('TASK STARTING: {0.name}[{0.request.id}]'.format(self))
return super(DebugTask, self).__call__(*args, **kwargs)

Tip: If you override the tasks __call__ method, then it’s very important that you also call super so that the base

2.3. User Guide 43

Celery Documentation, Release 4.1.0

call method can set up the default request used when a task is called directly.

The neutral base class is special because it’s not bound to any specific app yet. Once a task is bound to an app it’ll
read configuration to set default values, and so on.

To realize a base class you need to create a task using the app.task() decorator:

@app.task(base=DebugTask)
def add(x, y):

return x + y

It’s even possible to change the default base class for an application by changing its app.Task() attribute:

>>> from celery import Celery, Task

>>> app = Celery()

>>> class MyBaseTask(Task):
... queue = 'hipri'

>>> app.Task = MyBaseTask
>>> app.Task
<unbound MyBaseTask>

>>> @app.task
... def add(x, y):
... return x + y

>>> add
<@task: __main__.add>

>>> add.__class__.mro()
[<class add of <Celery __main__:0x1012b4410>>,
<unbound MyBaseTask>,
<unbound Task>,
<type 'object'>]

Tasks

Tasks are the building blocks of Celery applications.

A task is a class that can be created out of any callable. It performs dual roles in that it defines both what happens
when a task is called (sends a message), and what happens when a worker receives that message.

Every task class has a unique name, and this name is referenced in messages so the worker can find the right function
to execute.

A task message is not removed from the queue until that message has been acknowledged by a worker. A worker
can reserve many messages in advance and even if the worker is killed – by power failure or some other reason – the
message will be redelivered to another worker.

Ideally task functions should be idempotent: meaning the function won’t cause unintended effects even if called
multiple times with the same arguments. Since the worker cannot detect if your tasks are idempotent, the default
behavior is to acknowledge the message in advance, just before it’s executed, so that a task invocation that already
started is never executed again.

If your task is idempotent you can set the acks_late option to have the worker acknowledge the message after the
task returns instead. See also the FAQ entry Should I use retry or acks_late?.

44 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Note that the worker will acknowledge the message if the child process executing the task is terminated (either by the
task calling sys.exit(), or by signal) even when acks_late is enabled. This behavior is by purpose as...

1. We don’t want to rerun tasks that forces the kernel to send a SIGSEGV (segmentation fault) or similar signals
to the process.

2. We assume that a system administrator deliberately killing the task does not want it to automatically restart.

3. A task that allocates too much memory is in danger of triggering the kernel OOM killer, the same may happen
again.

4. A task that always fails when redelivered may cause a high-frequency message loop taking down the system.

If you really want a task to be redelivered in these scenarios you should consider enabling the
task_reject_on_worker_lost setting.

Warning: A task that blocks indefinitely may eventually stop the worker instance from doing any other work.

If you task does I/O then make sure you add timeouts to these operations, like adding a timeout to a web request
using the requests library:

connect_timeout, read_timeout = 5.0, 30.0
response = requests.get(URL, timeout=(connect_timeout, read_timeout))

Time limits are convenient for making sure all tasks return in a timely manner, but a time limit event will actually
kill the process by force so only use them to detect cases where you haven’t used manual timeouts yet.

The default prefork pool scheduler is not friendly to long-running tasks, so if you have tasks that run for min-
utes/hours make sure you enable the -Ofair command-line argument to the celery worker. See Prefork
pool prefetch settings for more information, and for the best performance route long-running and short-running
tasks to dedicated workers (Automatic routing).

If your worker hangs then please investigate what tasks are running before submitting an issue, as most likely the
hanging is caused by one or more tasks hanging on a network operation.

–

In this chapter you’ll learn all about defining tasks, and this is the table of contents:

• Basics

• Names

• Task Request

• Logging

• Retrying

• List of Options

• States

• Semipredicates

• Custom task classes

• How it works

• Tips and Best Practices

• Performance and Strategies

2.3. User Guide 45

https://docs.python.org/dev/library/sys.html#sys.exit
https://pypi.python.org/pypi/requests/

Celery Documentation, Release 4.1.0

• Example

Basics

You can easily create a task from any callable by using the task() decorator:

from .models import User

@app.task
def create_user(username, password):

User.objects.create(username=username, password=password)

There are also many options that can be set for the task, these can be specified as arguments to the decorator:

@app.task(serializer='json')
def create_user(username, password):

User.objects.create(username=username, password=password)

How do I import the task decorator? And what’s “app”?

The task decorator is available on your Celery application instance, if you don’t know what this is then please
read First Steps with Celery.

If you’re using Django (see First steps with Django), or you’re the author of a library then you probably want to use
the shared_task() decorator:

from celery import shared_task

@shared_task
def add(x, y):

return x + y

Multiple decorators

When using multiple decorators in combination with the task decorator you must make sure that the task decorator
is applied last (oddly, in Python this means it must be first in the list):

@app.task
@decorator2
@decorator1
def add(x, y):

return x + y

Bound tasks

A task being bound means the first argument to the task will always be the task instance (self), just like Python
bound methods:

logger = get_task_logger(__name__)

@task(bind=True)

46 Chapter 2. Contents

Celery Documentation, Release 4.1.0

def add(self, x, y):
logger.info(self.request.id)

Bound tasks are needed for retries (using app.Task.retry()), for accessing information about the current task
request, and for any additional functionality you add to custom task base classes.

Task inheritance

The base argument to the task decorator specifies the base class of the task:

import celery

class MyTask(celery.Task):

def on_failure(self, exc, task_id, args, kwargs, einfo):
print('{0!r} failed: {1!r}'.format(task_id, exc))

@task(base=MyTask)
def add(x, y):

raise KeyError()

Names

Every task must have a unique name.

If no explicit name is provided the task decorator will generate one for you, and this name will be based on 1) the
module the task is defined in, and 2) the name of the task function.

Example setting explicit name:

>>> @app.task(name='sum-of-two-numbers')
>>> def add(x, y):
... return x + y

>>> add.name
'sum-of-two-numbers'

A best practice is to use the module name as a name-space, this way names won’t collide if there’s already a task with
that name defined in another module.

>>> @app.task(name='tasks.add')
>>> def add(x, y):
... return x + y

You can tell the name of the task by investigating its .name attribute:

>>> add.name
'tasks.add'

The name we specified here (tasks.add) is exactly the name that would’ve been automatically generated for us if
the task was defined in a module named tasks.py:

tasks.py:

2.3. User Guide 47

Celery Documentation, Release 4.1.0

@app.task
def add(x, y):

return x + y

>>> from tasks import add
>>> add.name
'tasks.add'

Automatic naming and relative imports

Absolute Imports

The best practice for developers targetting Python 2 is to add the following to the top of every module:

from __future__ import absolute_import

This will force you to always use absolute imports so you will never have any problems with tasks using relative
names.

Absolute imports are the default in Python 3 so you don’t need this if you target that version.

Relative imports and automatic name generation don’t go well together, so if you’re using relative imports you should
set the name explicitly.

For example if the client imports the module "myapp.tasks" as ".tasks", and the worker imports the module as
"myapp.tasks", the generated names won’t match and an NotRegistered error will be raised by the worker.

This is also the case when using Django and using project.myapp-style naming in INSTALLED_APPS:

INSTALLED_APPS = ['project.myapp']

If you install the app under the name project.myapp then the tasks module will be imported as project.
myapp.tasks, so you must make sure you always import the tasks using the same name:

>>> from project.myapp.tasks import mytask # << GOOD

>>> from myapp.tasks import mytask # << BAD!!!

The second example will cause the task to be named differently since the worker and the client imports the modules
under different names:

>>> from project.myapp.tasks import mytask
>>> mytask.name
'project.myapp.tasks.mytask'

>>> from myapp.tasks import mytask
>>> mytask.name
'myapp.tasks.mytask'

For this reason you must be consistent in how you import modules, and that is also a Python best practice.

Similarly, you shouldn’t use old-style relative imports:

48 Chapter 2. Contents

Celery Documentation, Release 4.1.0

from module import foo # BAD!

from proj.module import foo # GOOD!

New-style relative imports are fine and can be used:

from .module import foo # GOOD!

If you want to use Celery with a project already using these patterns extensively and you don’t have the time to refactor
the existing code then you can consider specifying the names explicitly instead of relying on the automatic naming:

@task(name='proj.tasks.add')
def add(x, y):

return x + y

Changing the automatic naming behavior

New in version 4.0.

There are some cases when the default automatic naming isn’t suitable. Consider you have many tasks within many
different modules:

project/
/__init__.py
/celery.py
/moduleA/

/__init__.py
/tasks.py

/moduleB/
/__init__.py
/tasks.py

Using the default automatic naming, each task will have a generated name like moduleA.tasks.taskA, mod-
uleA.tasks.taskB, moduleB.tasks.test, and so on. You may want to get rid of having tasks in all task names. As pointed
above, you can explicitly give names for all tasks, or you can change the automatic naming behavior by overriding
app.gen_task_name(). Continuing with the example, celery.py may contain:

from celery import Celery

class MyCelery(Celery):

def gen_task_name(self, name, module):
if module.endswith('.tasks'):

module = module[:-6]
return super(MyCelery, self).gen_task_name(name, module)

app = MyCelery('main')

So each task will have a name like moduleA.taskA, moduleA.taskB and moduleB.test.

Warning: Make sure that your app.gen_task_name() is a pure function: meaning that for the same input it
must always return the same output.

2.3. User Guide 49

Celery Documentation, Release 4.1.0

Task Request

app.Task.request contains information and state related to the currently executing task.

The request defines the following attributes:

id The unique id of the executing task.

group The unique id of the task’s group, if this task is a member.

chord The unique id of the chord this task belongs to (if the task is part of the header).

correlation_id Custom ID used for things like de-duplication.

args Positional arguments.

kwargs Keyword arguments.

origin Name of host that sent this task.

retries How many times the current task has been retried. An integer starting at 0.

is_eager Set to True if the task is executed locally in the client, not by a worker.

eta The original ETA of the task (if any). This is in UTC time (depending on the enable_utc setting).

expires The original expiry time of the task (if any). This is in UTC time (depending on the
enable_utc setting).

hostname Node name of the worker instance executing the task.

delivery_info Additional message delivery information. This is a mapping containing the exchange and
routing key used to deliver this task. Used by for example app.Task.retry() to resend the task
to the same destination queue. Availability of keys in this dict depends on the message broker used.

reply-to Name of queue to send replies back to (used with RPC result backend for example).

called_directly This flag is set to true if the task wasn’t executed by the worker.

timelimit A tuple of the current (soft, hard) time limits active for this task (if any).

callbacks A list of signatures to be called if this task returns successfully.

errback A list of signatures to be called if this task fails.

utc Set to true the caller has UTC enabled (enable_utc).

New in version 3.1.

headers Mapping of message headers sent with this task message (may be None).

reply_to Where to send reply to (queue name).

correlation_id Usually the same as the task id, often used in amqp to keep track of what a reply is for.

New in version 4.0.

root_id The unique id of the first task in the workflow this task is part of (if any).

parent_id The unique id of the task that called this task (if any).

chain Reversed list of tasks that form a chain (if any). The last item in this list will be the next task
to succeed the current task. If using version one of the task protocol the chain tasks will be in
request.callbacks instead.

50 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Example

An example task accessing information in the context is:

@app.task(bind=True)
def dump_context(self, x, y):

print('Executing task id {0.id}, args: {0.args!r} kwargs: {0.kwargs!r}'.format(
self.request))

The bind argument means that the function will be a “bound method” so that you can access attributes and methods
on the task type instance.

Logging

The worker will automatically set up logging for you, or you can configure logging manually.

A special logger is available named “celery.task”, you can inherit from this logger to automatically get the task name
and unique id as part of the logs.

The best practice is to create a common logger for all of your tasks at the top of your module:

from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)

@app.task
def add(x, y):

logger.info('Adding {0} + {1}'.format(x, y))
return x + y

Celery uses the standard Python logger library, and the documentation can be found here.

You can also use print(), as anything written to standard out/-err will be redirected to the logging system (you can
disable this, see worker_redirect_stdouts).

Note: The worker won’t update the redirection if you create a logger instance somewhere in your task or task module.

If you want to redirect sys.stdout and sys.stderr to a custom logger you have to enable this manually, for
example:

import sys

logger = get_task_logger(__name__)

@app.task(bind=True)
def add(self, x, y):

old_outs = sys.stdout, sys.stderr
rlevel = self.app.conf.worker_redirect_stdouts_level
try:

self.app.log.redirect_stdouts_to_logger(logger, rlevel)
print('Adding {0} + {1}'.format(x, y))
return x + y

finally:
sys.stdout, sys.stderr = old_outs

2.3. User Guide 51

https://docs.python.org/dev/library/logging.html#module-logging
https://docs.python.org/dev/library/functions.html#print

Celery Documentation, Release 4.1.0

Argument checking

New in version 4.0.

Celery will verify the arguments passed when you call the task, just like Python does when calling a normal function:

>>> @app.task
... def add(x, y):
... return x + y

Calling the task with two arguments works:
>>> add.delay(8, 8)
<AsyncResult: f59d71ca-1549-43e0-be41-4e8821a83c0c>

Calling the task with only one argument fails:
>>> add.delay(8)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "celery/app/task.py", line 376, in delay
return self.apply_async(args, kwargs)

File "celery/app/task.py", line 485, in apply_async
check_arguments(*(args or ()), **(kwargs or {}))

TypeError: add() takes exactly 2 arguments (1 given)

You can disable the argument checking for any task by setting its typing attribute to False:

>>> @app.task(typing=False)
... def add(x, y):
... return x + y

Works locally, but the worker reciving the task will raise an error.
>>> add.delay(8)
<AsyncResult: f59d71ca-1549-43e0-be41-4e8821a83c0c>

Hiding sensitive information in arguments

New in version 4.0.

When using task_protocol 2 or higher (default since 4.0), you can override how positional arguments and key-
word arguments are represented in logs and monitoring events using the argsrepr and kwargsrepr calling argu-
ments:

>>> add.apply_async((2, 3), argsrepr='(<secret-x>, <secret-y>)')

>>> charge.s(account, card='1234 5678 1234 5678').set(
... kwargsrepr=repr({'card': '**** **** **** 5678'})
...).delay()

Warning: Sensitive information will still be accessible to anyone able to read your task message from the broker,
or otherwise able intercept it.

For this reason you should probably encrypt your message if it contains sensitive information, or in this example
with a credit card number the actual number could be stored encrypted in a secure store that you retrieve and
decrypt in the task itself.

52 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Retrying

app.Task.retry() can be used to re-execute the task, for example in the event of recoverable errors.

When you call retry it’ll send a new message, using the same task-id, and it’ll take care to make sure the message
is delivered to the same queue as the originating task.

When a task is retried this is also recorded as a task state, so that you can track the progress of the task using the result
instance (see States).

Here’s an example using retry:

@app.task(bind=True)
def send_twitter_status(self, oauth, tweet):

try:
twitter = Twitter(oauth)
twitter.update_status(tweet)

except (Twitter.FailWhaleError, Twitter.LoginError) as exc:
raise self.retry(exc=exc)

Note: The app.Task.retry() call will raise an exception so any code after the retry won’t be reached. This is
the Retry exception, it isn’t handled as an error but rather as a semi-predicate to signify to the worker that the task is
to be retried, so that it can store the correct state when a result backend is enabled.

This is normal operation and always happens unless the throw argument to retry is set to False.

The bind argument to the task decorator will give access to self (the task type instance).

The exc method is used to pass exception information that’s used in logs, and when storing task results. Both the
exception and the traceback will be available in the task state (if a result backend is enabled).

If the task has a max_retries value the current exception will be re-raised if the max number of retries has been
exceeded, but this won’t happen if:

• An exc argument wasn’t given.

In this case the MaxRetriesExceededError exception will be raised.

• There’s no current exception

If there’s no original exception to re-raise the exc argument will be used instead, so:

self.retry(exc=Twitter.LoginError())

will raise the exc argument given.

Using a custom retry delay

When a task is to be retried, it can wait for a given amount of time before doing so, and the default delay is defined by
the default_retry_delay attribute. By default this is set to 3 minutes. Note that the unit for setting the delay is
in seconds (int or float).

You can also provide the countdown argument to retry() to override this default.

@app.task(bind=True, default_retry_delay=30 * 60) # retry in 30 minutes.
def add(self, x, y):

try:
something_raising()

2.3. User Guide 53

Celery Documentation, Release 4.1.0

except Exception as exc:
overrides the default delay to retry after 1 minute
raise self.retry(exc=exc, countdown=60)

Automatic retry for known exceptions

New in version 4.0.

Sometimes you just want to retry a task whenever a particular exception is raised.

Fortunately, you can tell Celery to automatically retry a task using autoretry_for argument in ~@Celery.task decorator:

from twitter.exceptions import FailWhaleError

@app.task(autoretry_for=(FailWhaleError,))
def refresh_timeline(user):

return twitter.refresh_timeline(user)

If you want to specify custom arguments for internal ~@Task.retry call, pass retry_kwargs argument to ~@Celery.task
decorator:

@app.task(autoretry_for=(FailWhaleError,),
retry_kwargs={'max_retries': 5})

def refresh_timeline(user):
return twitter.refresh_timeline(user)

This is provided as an alternative to manually handling the exceptions, and the example above will do the same as
wrapping the task body in a try ... except statement:

@app.task
def refresh_timeline(user):

try:
twitter.refresh_timeline(user)

except FailWhaleError as exc:
raise div.retry(exc=exc, max_retries=5)

If you want to automatically retry on any error, simply use:

@app.task(autoretry_for=(Exception,))
def x():

...

List of Options

The task decorator can take a number of options that change the way the task behaves, for example you can set the rate
limit for a task using the rate_limit option.

Any keyword argument passed to the task decorator will actually be set as an attribute of the resulting task class, and
this is a list of the built-in attributes.

General

Task.name
The name the task is registered as.

54 Chapter 2. Contents

https://docs.python.org/dev/reference/compound_stmts.html#try
https://docs.python.org/dev/reference/compound_stmts.html#except

Celery Documentation, Release 4.1.0

You can set this name manually, or a name will be automatically generated using the module and class name.

See also Names.

Task.request
If the task is being executed this will contain information about the current request. Thread local storage is used.

See Task Request.

Task.max_retries
Only applies if the task calls self.retry or if the task is decorated with the autoretry_for argument.

The maximum number of attempted retries before giving up. If the number of retries exceeds this value a
MaxRetriesExceededError exception will be raised.

Note: You have to call retry() manually, as it won’t automatically retry on exception..

The default is 3. A value of None will disable the retry limit and the task will retry forever until it succeeds.

Task.throws
Optional tuple of expected error classes that shouldn’t be regarded as an actual error.

Errors in this list will be reported as a failure to the result backend, but the worker won’t log the event as an
error, and no traceback will be included.

Example:

@task(throws=(KeyError, HttpNotFound)):
def get_foo():

something()

Error types:

•Expected errors (in Task.throws)

Logged with severity INFO, traceback excluded.

•Unexpected errors

Logged with severity ERROR, with traceback included.

Task.default_retry_delay
Default time in seconds before a retry of the task should be executed. Can be either int or float. Default is
a three minute delay.

Task.rate_limit
Set the rate limit for this task type (limits the number of tasks that can be run in a given time frame). Tasks will
still complete when a rate limit is in effect, but it may take some time before it’s allowed to start.

If this is None no rate limit is in effect. If it is an integer or float, it is interpreted as “tasks per second”.

The rate limits can be specified in seconds, minutes or hours by appending “/s”, “/m” or “/h” to the value.
Tasks will be evenly distributed over the specified time frame.

Example: “100/m” (hundred tasks a minute). This will enforce a minimum delay of 600ms between starting
two tasks on the same worker instance.

Default is the task_default_rate_limit setting: if not specified means rate limiting for tasks is disabled
by default.

Note that this is a per worker instance rate limit, and not a global rate limit. To enforce a global rate limit (e.g.,
for an API with a maximum number of requests per second), you must restrict to a given queue.

2.3. User Guide 55

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.1.0

Note: This attribute is ignored if the task is requested with an ETA.

Task.time_limit
The hard time limit, in seconds, for this task. When not set the workers default is used.

Task.soft_time_limit
The soft time limit for this task. When not set the workers default is used.

Task.ignore_result
Don’t store task state. Note that this means you can’t use AsyncResult to check if the task is ready, or get its
return value.

Task.store_errors_even_if_ignored
If True, errors will be stored even if the task is configured to ignore results.

Task.serializer
A string identifying the default serialization method to use. Defaults to the task_serializer setting.
Can be pickle, json, yaml, or any custom serialization methods that have been registered with kombu.
serialization.registry.

Please see Serializers for more information.

Task.compression
A string identifying the default compression scheme to use.

Defaults to the task_compression setting. Can be gzip, or bzip2, or any custom compression schemes that
have been registered with the kombu.compression registry.

Please see Compression for more information.

Task.backend
The result store backend to use for this task. An instance of one of the backend classes in celery.backends.
Defaults to app.backend, defined by the result_backend setting.

Task.acks_late
If set to True messages for this task will be acknowledged after the task has been executed, not just before (the
default behavior).

Note: This means the task may be executed multiple times should the worker crash in the middle of execution.
Make sure your tasks are idempotent.

The global default can be overridden by the task_acks_late setting.

Task.track_started
If True the task will report its status as “started” when the task is executed by a worker. The default value is
False as the normal behavior is to not report that level of granularity. Tasks are either pending, finished, or
waiting to be retried. Having a “started” status can be useful for when there are long running tasks and there’s a
need to report what task is currently running.

The host name and process id of the worker executing the task will be available in the state meta-data (e.g.,
result.info[’pid’])

The global default can be overridden by the task_track_started setting.

See also:

The API reference for Task.

56 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.compression.html#module-kombu.compression

Celery Documentation, Release 4.1.0

States

Celery can keep track of the tasks current state. The state also contains the result of a successful task, or the exception
and traceback information of a failed task.

There are several result backends to choose from, and they all have different strengths and weaknesses (see Result
Backends).

During its lifetime a task will transition through several possible states, and each state may have arbitrary meta-data
attached to it. When a task moves into a new state the previous state is forgotten about, but some transitions can be
deducted, (e.g., a task now in the FAILED state, is implied to have been in the STARTED state at some point).

There are also sets of states, like the set of FAILURE_STATES, and the set of READY_STATES.

The client uses the membership of these sets to decide whether the exception should be re-raised
(PROPAGATE_STATES), or whether the state can be cached (it can if the task is ready).

You can also define Custom states.

Result Backends

If you want to keep track of tasks or need the return values, then Celery must store or send the states somewhere so
that they can be retrieved later. There are several built-in result backends to choose from: SQLAlchemy/Django ORM,
Memcached, RabbitMQ/QPid (rpc), and Redis – or you can define your own.

No backend works well for every use case. You should read about the strengths and weaknesses of each backend, and
choose the most appropriate for your needs.

See also:

Task result backend settings

RPC Result Backend (RabbitMQ/QPid)

The RPC result backend (rpc://) is special as it doesn’t actually store the states, but rather sends them as messages.
This is an important difference as it means that a result can only be retrieved once, and only by the client that initiated
the task. Two different processes can’t wait for the same result.

Even with that limitation, it is an excellent choice if you need to receive state changes in real-time. Using messaging
means the client doesn’t have to poll for new states.

The messages are transient (non-persistent) by default, so the results will disappear if the broker restarts. You can
configure the result backend to send persistent messages using the result_persistent setting.

Database Result Backend

Keeping state in the database can be convenient for many, especially for web applications with a database already in
place, but it also comes with limitations.

• Polling the database for new states is expensive, and so you should increase the polling intervals of operations,
such as result.get().

• Some databases use a default transaction isolation level that isn’t suitable for polling tables for changes.

In MySQL the default transaction isolation level is REPEATABLE-READ: meaning the transaction won’t see
changes made by other transactions until the current transaction is committed.

Changing that to the READ-COMMITTED isolation level is recommended.

2.3. User Guide 57

Celery Documentation, Release 4.1.0

Built-in States

PENDING

Task is waiting for execution or unknown. Any task id that’s not known is implied to be in the pending state.

STARTED

Task has been started. Not reported by default, to enable please see app.Task.track_started.

meta-data pid and hostname of the worker process executing the task.

SUCCESS

Task has been successfully executed.

meta-data result contains the return value of the task.

propagates Yes

ready Yes

FAILURE

Task execution resulted in failure.

meta-data result contains the exception occurred, and traceback contains the backtrace of the stack at
the point when the exception was raised.

propagates Yes

RETRY

Task is being retried.

meta-data result contains the exception that caused the retry, and traceback contains the backtrace of the
stack at the point when the exceptions was raised.

propagates No

REVOKED

Task has been revoked.

propagates Yes

Custom states

You can easily define your own states, all you need is a unique name. The name of the state is usually an uppercase
string. As an example you could have a look at the abortable tasks which defines a custom ABORTED state.

Use update_state() to update a task’s state:.

58 Chapter 2. Contents

Celery Documentation, Release 4.1.0

@app.task(bind=True)
def upload_files(self, filenames):

for i, file in enumerate(filenames):
if not self.request.called_directly:

self.update_state(state='PROGRESS',
meta={'current': i, 'total': len(filenames)})

Here I created the state “PROGRESS”, telling any application aware of this state that the task is currently in progress,
and also where it is in the process by having current and total counts as part of the state meta-data. This can then be
used to create progress bars for example.

Creating pickleable exceptions

A rarely known Python fact is that exceptions must conform to some simple rules to support being serialized by the
pickle module.

Tasks that raise exceptions that aren’t pickleable won’t work properly when Pickle is used as the serializer.

To make sure that your exceptions are pickleable the exception MUST provide the original arguments it was in-
stantiated with in its .args attribute. The simplest way to ensure this is to have the exception call Exception.
__init__.

Let’s look at some examples that work, and one that doesn’t:

OK:
class HttpError(Exception):

pass

BAD:
class HttpError(Exception):

def __init__(self, status_code):
self.status_code = status_code

OK:
class HttpError(Exception):

def __init__(self, status_code):
self.status_code = status_code
Exception.__init__(self, status_code) # <-- REQUIRED

So the rule is: For any exception that supports custom arguments *args, Exception.__init__(self,
*args) must be used.

There’s no special support for keyword arguments, so if you want to preserve keyword arguments when the exception
is unpickled you have to pass them as regular args:

class HttpError(Exception):

def __init__(self, status_code, headers=None, body=None):
self.status_code = status_code
self.headers = headers
self.body = body

super(HttpError, self).__init__(status_code, headers, body)

2.3. User Guide 59

Celery Documentation, Release 4.1.0

Semipredicates

The worker wraps the task in a tracing function that records the final state of the task. There are a number of exceptions
that can be used to signal this function to change how it treats the return of the task.

Ignore

The task may raise Ignore to force the worker to ignore the task. This means that no state will be recorded for the
task, but the message is still acknowledged (removed from queue).

This can be used if you want to implement custom revoke-like functionality, or manually store the result of a task.

Example keeping revoked tasks in a Redis set:

from celery.exceptions import Ignore

@app.task(bind=True)
def some_task(self):

if redis.ismember('tasks.revoked', self.request.id):
raise Ignore()

Example that stores results manually:

from celery import states
from celery.exceptions import Ignore

@app.task(bind=True)
def get_tweets(self, user):

timeline = twitter.get_timeline(user)
if not self.request.called_directly:

self.update_state(state=states.SUCCESS, meta=timeline)
raise Ignore()

Reject

The task may raise Reject to reject the task message using AMQPs basic_reject method. This won’t have any
effect unless Task.acks_late is enabled.

Rejecting a message has the same effect as acking it, but some brokers may implement additional functionality that
can be used. For example RabbitMQ supports the concept of Dead Letter Exchanges where a queue can be configured
to use a dead letter exchange that rejected messages are redelivered to.

Reject can also be used to re-queue messages, but please be very careful when using this as it can easily result in an
infinite message loop.

Example using reject when a task causes an out of memory condition:

import errno
from celery.exceptions import Reject

@app.task(bind=True, acks_late=True)
def render_scene(self, path):

file = get_file(path)
try:

renderer.render_scene(file)

60 Chapter 2. Contents

http://www.rabbitmq.com/dlx.html

Celery Documentation, Release 4.1.0

if the file is too big to fit in memory
we reject it so that it's redelivered to the dead letter exchange
and we can manually inspect the situation.
except MemoryError as exc:

raise Reject(exc, requeue=False)
except OSError as exc:

if exc.errno == errno.ENOMEM:
raise Reject(exc, requeue=False)

For any other error we retry after 10 seconds.
except Exception as exc:

raise self.retry(exc, countdown=10)

Example re-queuing the message:

from celery.exceptions import Reject

@app.task(bind=True, acks_late=True)
def requeues(self):

if not self.request.delivery_info['redelivered']:
raise Reject('no reason', requeue=True)

print('received two times')

Consult your broker documentation for more details about the basic_reject method.

Retry

The Retry exception is raised by the Task.retry method to tell the worker that the task is being retried.

Custom task classes

All tasks inherit from the app.Task class. The run() method becomes the task body.

As an example, the following code,

@app.task
def add(x, y):

return x + y

will do roughly this behind the scenes:

class _AddTask(app.Task):

def run(self, x, y):
return x + y

add = app.tasks[_AddTask.name]

Instantiation

A task is not instantiated for every request, but is registered in the task registry as a global instance.

This means that the __init__ constructor will only be called once per process, and that the task class is semantically
closer to an Actor.

If you have a task,

2.3. User Guide 61

Celery Documentation, Release 4.1.0

from celery import Task

class NaiveAuthenticateServer(Task):

def __init__(self):
self.users = {'george': 'password'}

def run(self, username, password):
try:

return self.users[username] == password
except KeyError:

return False

And you route every request to the same process, then it will keep state between requests.

This can also be useful to cache resources, For example, a base Task class that caches a database connection:

from celery import Task

class DatabaseTask(Task):
_db = None

@property
def db(self):

if self._db is None:
self._db = Database.connect()

return self._db

that can be added to tasks like this:

@app.task(base=DatabaseTask)
def process_rows():

for row in process_rows.db.table.all():
process_row(row)

The db attribute of the process_rows task will then always stay the same in each process.

Handlers

after_return(self, status, retval, task_id, args, kwargs, einfo)
Handler called after the task returns.

Parameters

• status – Current task state.

• retval – Task return value/exception.

• task_id – Unique id of the task.

• args – Original arguments for the task that returned.

• kwargs – Original keyword arguments for the task that returned.

Keyword Arguments einfo – ExceptionInfo instance, containing the traceback (if any).

The return value of this handler is ignored.

on_failure(self, exc, task_id, args, kwargs, einfo)
This is run by the worker when the task fails.

62 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Parameters

• exc – The exception raised by the task.

• task_id – Unique id of the failed task.

• args – Original arguments for the task that failed.

• kwargs – Original keyword arguments for the task that failed.

Keyword Arguments einfo – ExceptionInfo instance, containing the traceback.

The return value of this handler is ignored.

on_retry(self, exc, task_id, args, kwargs, einfo)
This is run by the worker when the task is to be retried.

Parameters

• exc – The exception sent to retry().

• task_id – Unique id of the retried task.

• args – Original arguments for the retried task.

• kwargs – Original keyword arguments for the retried task.

Keyword Arguments einfo – ExceptionInfo instance, containing the traceback.

The return value of this handler is ignored.

on_success(self, retval, task_id, args, kwargs)
Run by the worker if the task executes successfully.

Parameters

• retval – The return value of the task.

• task_id – Unique id of the executed task.

• args – Original arguments for the executed task.

• kwargs – Original keyword arguments for the executed task.

The return value of this handler is ignored.

How it works

Here come the technical details. This part isn’t something you need to know, but you may be interested.

All defined tasks are listed in a registry. The registry contains a list of task names and their task classes. You can
investigate this registry yourself:

>>> from proj.celery import app
>>> app.tasks
{'celery.chord_unlock':

<@task: celery.chord_unlock>,
'celery.backend_cleanup':

<@task: celery.backend_cleanup>,
'celery.chord':

<@task: celery.chord>}

This is the list of tasks built-in to Celery. Note that tasks will only be registered when the module they’re defined in is
imported.

The default loader imports any modules listed in the imports setting.

2.3. User Guide 63

Celery Documentation, Release 4.1.0

The app.task() decorator is responsible for registering your task in the applications task registry.

When tasks are sent, no actual function code is sent with it, just the name of the task to execute. When the worker then
receives the message it can look up the name in its task registry to find the execution code.

This means that your workers should always be updated with the same software as the client. This is a drawback, but
the alternative is a technical challenge that’s yet to be solved.

Tips and Best Practices

Ignore results you don’t want

If you don’t care about the results of a task, be sure to set the ignore_result option, as storing results wastes time
and resources.

@app.task(ignore_result=True)
def mytask():

something()

Results can even be disabled globally using the task_ignore_result setting.

More optimization tips

You find additional optimization tips in the Optimizing Guide.

Avoid launching synchronous subtasks

Having a task wait for the result of another task is really inefficient, and may even cause a deadlock if the worker pool
is exhausted.

Make your design asynchronous instead, for example by using callbacks.

Bad:

@app.task
def update_page_info(url):

page = fetch_page.delay(url).get()
info = parse_page.delay(url, page).get()
store_page_info.delay(url, info)

@app.task
def fetch_page(url):

return myhttplib.get(url)

@app.task
def parse_page(url, page):

return myparser.parse_document(page)

@app.task
def store_page_info(url, info):

return PageInfo.objects.create(url, info)

Good:

64 Chapter 2. Contents

Celery Documentation, Release 4.1.0

def update_page_info(url):
fetch_page -> parse_page -> store_page
chain = fetch_page.s(url) | parse_page.s() | store_page_info.s(url)
chain()

@app.task()
def fetch_page(url):

return myhttplib.get(url)

@app.task()
def parse_page(page):

return myparser.parse_document(page)

@app.task(ignore_result=True)
def store_page_info(info, url):

PageInfo.objects.create(url=url, info=info)

Here I instead created a chain of tasks by linking together different signature()‘s. You can read about chains and
other powerful constructs at Canvas: Designing Work-flows.

By default celery will not enable you to run tasks within task synchronously in rare or extreme cases you might have
to do so. WARNING: enabling subtasks run synchronously is not recommended!

@app.task
def update_page_info(url):

page = fetch_page.delay(url).get(disable_sync_subtasks=False)
info = parse_page.delay(url, page).get(disable_sync_subtasks=False)
store_page_info.delay(url, info)

@app.task
def fetch_page(url):

return myhttplib.get(url)

@app.task
def parse_page(url, page):

return myparser.parse_document(page)

@app.task
def store_page_info(url, info):

return PageInfo.objects.create(url, info)

Performance and Strategies

Granularity

The task granularity is the amount of computation needed by each subtask. In general it is better to split the problem
up into many small tasks rather than have a few long running tasks.

With smaller tasks you can process more tasks in parallel and the tasks won’t run long enough to block the worker
from processing other waiting tasks.

However, executing a task does have overhead. A message needs to be sent, data may not be local, etc. So if the tasks
are too fine-grained the overhead added probably removes any benefit.

See also:

The book Art of Concurrency has a section dedicated to the topic of task granularity [AOC1].

2.3. User Guide 65

http://oreilly.com/catalog/9780596521547

Celery Documentation, Release 4.1.0

Data locality

The worker processing the task should be as close to the data as possible. The best would be to have a copy in memory,
the worst would be a full transfer from another continent.

If the data is far away, you could try to run another worker at location, or if that’s not possible - cache often used data,
or preload data you know is going to be used.

The easiest way to share data between workers is to use a distributed cache system, like memcached.

See also:

The paper Distributed Computing Economics by Jim Gray is an excellent introduction to the topic of data locality.

State

Since celery is a distributed system, you can’t know which process, or on what machine the task will be executed. You
can’t even know if the task will run in a timely manner.

The ancient async sayings tells us that “asserting the world is the responsibility of the task”. What this means is that
the world view may have changed since the task was requested, so the task is responsible for making sure the world is
how it should be; If you have a task that re-indexes a search engine, and the search engine should only be re-indexed
at maximum every 5 minutes, then it must be the tasks responsibility to assert that, not the callers.

Another gotcha is Django model objects. They shouldn’t be passed on as arguments to tasks. It’s almost always better
to re-fetch the object from the database when the task is running instead, as using old data may lead to race conditions.

Imagine the following scenario where you have an article and a task that automatically expands some abbreviations in
it:

class Article(models.Model):
title = models.CharField()
body = models.TextField()

@app.task
def expand_abbreviations(article):

article.body.replace('MyCorp', 'My Corporation')
article.save()

First, an author creates an article and saves it, then the author clicks on a button that initiates the abbreviation task:

>>> article = Article.objects.get(id=102)
>>> expand_abbreviations.delay(article)

Now, the queue is very busy, so the task won’t be run for another 2 minutes. In the meantime another author makes
changes to the article, so when the task is finally run, the body of the article is reverted to the old version because the
task had the old body in its argument.

Fixing the race condition is easy, just use the article id instead, and re-fetch the article in the task body:

@app.task
def expand_abbreviations(article_id):

article = Article.objects.get(id=article_id)
article.body.replace('MyCorp', 'My Corporation')
article.save()

>>> expand_abbreviations.delay(article_id)

There might even be performance benefits to this approach, as sending large messages may be expensive.

66 Chapter 2. Contents

http://memcached.org/
http://research.microsoft.com/pubs/70001/tr-2003-24.pdf

Celery Documentation, Release 4.1.0

Database transactions

Let’s have a look at another example:

from django.db import transaction

@transaction.commit_on_success
def create_article(request):

article = Article.objects.create()
expand_abbreviations.delay(article.pk)

This is a Django view creating an article object in the database, then passing the primary key to a task. It uses the
commit_on_success decorator, that will commit the transaction when the view returns, or roll back if the view raises
an exception.

There’s a race condition if the task starts executing before the transaction has been committed; The database object
doesn’t exist yet!

The solution is to use the on_commit callback to launch your celery task once all transactions have been committed
successfully.

from django.db.transaction import on_commit

def create_article(request):
article = Article.objects.create()
on_commit(lambda: expand_abbreviations.delay(article.pk))

Note: on_commit is available in Django 1.9 and above, if you are using a version prior to that then the django-
transaction-hooks library adds support for this.

Example

Let’s take a real world example: a blog where comments posted need to be filtered for spam. When the comment is
created, the spam filter runs in the background, so the user doesn’t have to wait for it to finish.

I have a Django blog application allowing comments on blog posts. I’ll describe parts of the models/views and tasks
for this application.

blog/models.py

The comment model looks like this:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class Comment(models.Model):
name = models.CharField(_('name'), max_length=64)
email_address = models.EmailField(_('email address'))
homepage = models.URLField(_('home page'),

blank=True, verify_exists=False)
comment = models.TextField(_('comment'))
pub_date = models.DateTimeField(_('Published date'),

editable=False, auto_add_now=True)

2.3. User Guide 67

https://github.com/carljm/django-transaction-hooks
https://github.com/carljm/django-transaction-hooks

Celery Documentation, Release 4.1.0

is_spam = models.BooleanField(_('spam?'),
default=False, editable=False)

class Meta:
verbose_name = _('comment')
verbose_name_plural = _('comments')

In the view where the comment is posted, I first write the comment to the database, then I launch the spam filter task
in the background.

blog/views.py

from django import forms
from django.http import HttpResponseRedirect
from django.template.context import RequestContext
from django.shortcuts import get_object_or_404, render_to_response

from blog import tasks
from blog.models import Comment

class CommentForm(forms.ModelForm):

class Meta:
model = Comment

def add_comment(request, slug, template_name='comments/create.html'):
post = get_object_or_404(Entry, slug=slug)
remote_addr = request.META.get('REMOTE_ADDR')

if request.method == 'post':
form = CommentForm(request.POST, request.FILES)
if form.is_valid():

comment = form.save()
Check spam asynchronously.
tasks.spam_filter.delay(comment_id=comment.id,

remote_addr=remote_addr)
return HttpResponseRedirect(post.get_absolute_url())

else:
form = CommentForm()

context = RequestContext(request, {'form': form})
return render_to_response(template_name, context_instance=context)

To filter spam in comments I use Akismet, the service used to filter spam in comments posted to the free blog platform
Wordpress. Akismet is free for personal use, but for commercial use you need to pay. You have to sign up to their
service to get an API key.

To make API calls to Akismet I use the akismet.py library written by Michael Foord.

68 Chapter 2. Contents

http://akismet.com/faq/
http://akismet.com/faq/
http://akismet.com/faq/
http://www.voidspace.org.uk/downloads/akismet.py
http://www.voidspace.org.uk/

Celery Documentation, Release 4.1.0

blog/tasks.py

from celery import Celery

from akismet import Akismet

from django.core.exceptions import ImproperlyConfigured
from django.contrib.sites.models import Site

from blog.models import Comment

app = Celery(broker='amqp://')

@app.task
def spam_filter(comment_id, remote_addr=None):

logger = spam_filter.get_logger()
logger.info('Running spam filter for comment %s', comment_id)

comment = Comment.objects.get(pk=comment_id)
current_domain = Site.objects.get_current().domain
akismet = Akismet(settings.AKISMET_KEY, 'http://{0}'.format(domain))
if not akismet.verify_key():

raise ImproperlyConfigured('Invalid AKISMET_KEY')

is_spam = akismet.comment_check(user_ip=remote_addr,
comment_content=comment.comment,
comment_author=comment.name,
comment_author_email=comment.email_address)

if is_spam:
comment.is_spam = True
comment.save()

return is_spam

Calling Tasks

• Basics

• Linking (callbacks/errbacks)

• On message

• ETA and Countdown

• Expiration

• Message Sending Retry

• Connection Error Handling

• Serializers

• Compression

2.3. User Guide 69

Celery Documentation, Release 4.1.0

• Connections

• Routing options

Basics

This document describes Celery’s uniform “Calling API” used by task instances and the canvas.

The API defines a standard set of execution options, as well as three methods:

• apply_async(args[, kwargs[, ...]])

Sends a task message.

• delay(*args, **kwargs)

Shortcut to send a task message, but doesn’t support execution options.

• calling (__call__)

Applying an object supporting the calling API (e.g., add(2, 2)) means that the task will not be
executed by a worker, but in the current process instead (a message won’t be sent).

Quick Cheat Sheet

• T.delay(arg, kwarg=value) Star arguments shortcut to .apply_async. (.delay(*args,
**kwargs) calls .apply_async(args, kwargs)).

• T.apply_async((arg,), {'kwarg': value})

• T.apply_async(countdown=10) executes in 10 seconds from now.

• T.apply_async(eta=now + timedelta(seconds=10)) executes in 10 seconds from now,
specified using eta

• T.apply_async(countdown=60, expires=120) executes in one minute from now, but expires
after 2 minutes.

• T.apply_async(expires=now + timedelta(days=2)) expires in 2 days, set using
datetime.

Example

The delay() method is convenient as it looks like calling a regular function:

task.delay(arg1, arg2, kwarg1='x', kwarg2='y')

Using apply_async() instead you have to write:

task.apply_async(args=[arg1, arg2], kwargs={'kwarg1': 'x', 'kwarg2': 'y'})

Tip

If the task isn’t registered in the current process you can use send_task() to call the task by name instead.

70 Chapter 2. Contents

https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.1.0

So delay is clearly convenient, but if you want to set additional execution options you have to use apply_async.

The rest of this document will go into the task execution options in detail. All examples use a task called add, returning
the sum of two arguments:

@app.task
def add(x, y):

return x + y

There’s another way. . .

You’ll learn more about this later while reading about the Canvas, but signature‘s are objects used to pass
around the signature of a task invocation, (for example to send it over the network), and they also support the
Calling API:

task.s(arg1, arg2, kwarg1='x', kwargs2='y').apply_async()

Linking (callbacks/errbacks)

Celery supports linking tasks together so that one task follows another. The callback task will be applied with the
result of the parent task as a partial argument:

add.apply_async((2, 2), link=add.s(16))

What’s s?

The add.s call used here is called a signature. If you don’t know what they are you should read about them in the
canvas guide. There you can also learn about chain: a simpler way to chain tasks together.

In practice the link execution option is considered an internal primitive, and you’ll probably not use it directly,
but use chains instead.

Here the result of the first task (4) will be sent to a new task that adds 16 to the previous result, forming the expression
(2 + 2) + 16 = 20

You can also cause a callback to be applied if task raises an exception (errback), but this behaves differently from a
regular callback in that it will be passed the id of the parent task, not the result. This is because it may not always be
possible to serialize the exception raised, and so this way the error callback requires a result backend to be enabled,
and the task must retrieve the result of the task instead.

This is an example error callback:

@app.task
def error_handler(uuid):

result = AsyncResult(uuid)
exc = result.get(propagate=False)
print('Task {0} raised exception: {1!r}\n{2!r}'.format(

uuid, exc, result.traceback))

it can be added to the task using the link_error execution option:

add.apply_async((2, 2), link_error=error_handler.s())

In addition, both the link and link_error options can be expressed as a list:

2.3. User Guide 71

Celery Documentation, Release 4.1.0

add.apply_async((2, 2), link=[add.s(16), other_task.s()])

The callbacks/errbacks will then be called in order, and all callbacks will be called with the return value of the parent
task as a partial argument.

On message

Celery supports catching all states changes by setting on_message callback.

For example for long-running tasks to send task progress you can do something like this:

@app.task(bind=True)
def hello(self, a, b):

time.sleep(1)
self.update_state(state="PROGRESS", meta={'progress': 50})
time.sleep(1)
self.update_state(state="PROGRESS", meta={'progress': 90})
time.sleep(1)
return 'hello world: %i' % (a+b)

def on_raw_message(body):
print(body)

r = hello.apply_async()
print(r.get(on_message=on_raw_message, propagate=False))

Will generate output like this:

{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7',
'result': {'progress': 50},
'children': [],
'status': 'PROGRESS',
'traceback': None}

{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7',
'result': {'progress': 90},
'children': [],
'status': 'PROGRESS',
'traceback': None}

{'task_id': '5660d3a3-92b8-40df-8ccc-33a5d1d680d7',
'result': 'hello world: 10',
'children': [],
'status': 'SUCCESS',
'traceback': None}

hello world: 10

ETA and Countdown

The ETA (estimated time of arrival) lets you set a specific date and time that is the earliest time at which your task will
be executed. countdown is a shortcut to set ETA by seconds into the future.

>>> result = add.apply_async((2, 2), countdown=3)
>>> result.get() # this takes at least 3 seconds to return
20

72 Chapter 2. Contents

Celery Documentation, Release 4.1.0

The task is guaranteed to be executed at some time after the specified date and time, but not necessarily at that exact
time. Possible reasons for broken deadlines may include many items waiting in the queue, or heavy network latency.
To make sure your tasks are executed in a timely manner you should monitor the queue for congestion. Use Munin, or
similar tools, to receive alerts, so appropriate action can be taken to ease the workload. See Munin.

While countdown is an integer, eta must be a datetime object, specifying an exact date and time (including mil-
lisecond precision, and timezone information):

>>> from datetime import datetime, timedelta

>>> tomorrow = datetime.utcnow() + timedelta(days=1)
>>> add.apply_async((2, 2), eta=tomorrow)

Expiration

The expires argument defines an optional expiry time, either as seconds after task publish, or a specific date and time
using datetime:

>>> # Task expires after one minute from now.
>>> add.apply_async((10, 10), expires=60)

>>> # Also supports datetime
>>> from datetime import datetime, timedelta
>>> add.apply_async((10, 10), kwargs,
... expires=datetime.now() + timedelta(days=1)

When a worker receives an expired task it will mark the task as REVOKED (TaskRevokedError).

Message Sending Retry

Celery will automatically retry sending messages in the event of connection failure, and retry behavior can be config-
ured – like how often to retry, or a maximum number of retries – or disabled all together.

To disable retry you can set the retry execution option to False:

add.apply_async((2, 2), retry=False)

Related Settings

• task_publish_retry
• task_publish_retry_policy

Retry Policy

A retry policy is a mapping that controls how retries behave, and can contain the following keys:

• max_retries

Maximum number of retries before giving up, in this case the exception that caused the retry to fail
will be raised.

A value of None means it will retry forever.

The default is to retry 3 times.

2.3. User Guide 73

https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.1.0

• interval_start

Defines the number of seconds (float or integer) to wait between retries. Default is 0 (the first retry
will be instantaneous).

• interval_step

On each consecutive retry this number will be added to the retry delay (float or integer). Default is
0.2.

• interval_max

Maximum number of seconds (float or integer) to wait between retries. Default is 0.2.

For example, the default policy correlates to:

add.apply_async((2, 2), retry=True, retry_policy={
'max_retries': 3,
'interval_start': 0,
'interval_step': 0.2,
'interval_max': 0.2,

})

the maximum time spent retrying will be 0.4 seconds. It’s set relatively short by default because a connection failure
could lead to a retry pile effect if the broker connection is down – For example, many web server processes waiting to
retry, blocking other incoming requests.

Connection Error Handling

When you send a task and the message transport connection is lost, or the connection cannot be initiated, an
OperationalError error will be raised:

>>> from proj.tasks import add
>>> add.delay(2, 2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "celery/app/task.py", line 388, in delay

return self.apply_async(args, kwargs)
File "celery/app/task.py", line 503, in apply_async

**options
File "celery/app/base.py", line 662, in send_task
amqp.send_task_message(P, name, message, **options)

File "celery/backends/rpc.py", line 275, in on_task_call
maybe_declare(self.binding(producer.channel), retry=True)

File "/opt/celery/kombu/kombu/messaging.py", line 204, in _get_channel
channel = self._channel = channel()

File "/opt/celery/py-amqp/amqp/connection.py", line 272, in connect
self.transport.connect()

File "/opt/celery/py-amqp/amqp/transport.py", line 100, in connect
self._connect(self.host, self.port, self.connect_timeout)

File "/opt/celery/py-amqp/amqp/transport.py", line 141, in _connect
self.sock.connect(sa)

kombu.exceptions.OperationalError: [Errno 61] Connection refused

If you have retries enabled this will only happen after retries are exhausted, or when disabled immediately.

You can handle this error too:

74 Chapter 2. Contents

Celery Documentation, Release 4.1.0

>>> from celery.utils.log import get_logger
>>> logger = get_logger(__name__)

>>> try:
... add.delay(2, 2)
... except add.OperationalError as exc:
... logger.exception('Sending task raised: %r', exc)

Serializers

Security

The pickle module allows for execution of arbitrary functions, please see the security guide.

Celery also comes with a special serializer that uses cryptography to sign your messages.

Data transferred between clients and workers needs to be serialized, so every message in Celery has a
content_type header that describes the serialization method used to encode it.

The default serializer is JSON, but you can change this using the task_serializer setting, or for each individual
task, or even per message.

There’s built-in support for JSON, pickle, YAML and msgpack, and you can also add your own custom serializers
by registering them into the Kombu serializer registry

See also:

Message Serialization in the Kombu user guide.

Each option has its advantages and disadvantages.

json – JSON is supported in many programming languages, is now a standard part of Python (since 2.6), and is
fairly fast to decode using the modern Python libraries, such as simplejson.

The primary disadvantage to JSON is that it limits you to the following data types: strings, Unicode, floats,
Boolean, dictionaries, and lists. Decimals and dates are notably missing.

Binary data will be transferred using Base64 encoding, increasing the size of the transferred data by 34% com-
pared to an encoding format where native binary types are supported.

However, if your data fits inside the above constraints and you need cross-language support, the default setting
of JSON is probably your best choice.

See http://json.org for more information.

pickle – If you have no desire to support any language other than Python, then using the pickle encoding will
gain you the support of all built-in Python data types (except class instances), smaller messages when send-
ing binary files, and a slight speedup over JSON processing.

See pickle for more information.

yaml – YAML has many of the same characteristics as json, except that it natively supports more data types (in-
cluding dates, recursive references, etc.).

However, the Python libraries for YAML are a good bit slower than the libraries for JSON.

If you need a more expressive set of data types and need to maintain cross-language compatibility, then YAML
may be a better fit than the above.

See http://yaml.org/ for more information.

2.3. User Guide 75

https://docs.python.org/dev/library/pickle.html#module-pickle
http://kombu.readthedocs.io/en/master/userguide/serialization.html#guide-serialization
https://pypi.python.org/pypi/simplejson/
http://json.org
https://docs.python.org/dev/library/pickle.html#module-pickle
http://yaml.org/

Celery Documentation, Release 4.1.0

msgpack – msgpack is a binary serialization format that’s closer to JSON in features. It’s very young however,
and support should be considered experimental at this point.

See http://msgpack.org/ for more information.

The encoding used is available as a message header, so the worker knows how to deserialize any task. If you use a
custom serializer, this serializer must be available for the worker.

The following order is used to decide the serializer used when sending a task:

1. The serializer execution option.

2. The Task.serializer attribute

3. The task_serializer setting.

Example setting a custom serializer for a single task invocation:

>>> add.apply_async((10, 10), serializer='json')

Compression

Celery can compress the messages using either gzip, or bzip2. You can also create your own compression schemes and
register them in the kombu compression registry.

The following order is used to decide the compression scheme used when sending a task:

1. The compression execution option.

2. The Task.compression attribute.

3. The task_compression attribute.

Example specifying the compression used when calling a task:

>>> add.apply_async((2, 2), compression='zlib')

Connections

Automatic Pool Support

Since version 2.3 there’s support for automatic connection pools, so you don’t have to manually handle connections
and publishers to reuse connections.

The connection pool is enabled by default since version 2.5.

See the broker_pool_limit setting for more information.

You can handle the connection manually by creating a publisher:

results = []
with add.app.pool.acquire(block=True) as connection:

with add.get_publisher(connection) as publisher:
try:

for args in numbers:
res = add.apply_async((2, 2), publisher=publisher)
results.append(res)

print([res.get() for res in results])

76 Chapter 2. Contents

http://msgpack.org/
http://kombu.readthedocs.io/en/master/reference/kombu.compression.html#kombu.compression.register

Celery Documentation, Release 4.1.0

Though this particular example is much better expressed as a group:

>>> from celery import group

>>> numbers = [(2, 2), (4, 4), (8, 8), (16, 16)]
>>> res = group(add.s(i, j) for i, j in numbers).apply_async()

>>> res.get()
[4, 8, 16, 32]

Routing options

Celery can route tasks to different queues.

Simple routing (name <-> name) is accomplished using the queue option:

add.apply_async(queue='priority.high')

You can then assign workers to the priority.high queue by using the workers -Q argument:

$ celery -A proj worker -l info -Q celery,priority.high

See also:

Hard-coding queue names in code isn’t recommended, the best practice is to use configuration routers
(task_routes).

To find out more about routing, please see Routing Tasks.

Advanced Options

These options are for advanced users who want to take use of AMQP’s full routing capabilities. Interested parties may
read the routing guide.

• exchange

Name of exchange (or a kombu.entity.Exchange) to send the message to.

• routing_key

Routing key used to determine.

• priority

A number between 0 and 255, where 255 is the highest priority.

Supported by: RabbitMQ, Redis (priority reversed, 0 is highest).

Canvas: Designing Work-flows

• Signatures

– Partials

– Immutability

2.3. User Guide 77

Celery Documentation, Release 4.1.0

– Callbacks

• The Primitives

– Chains

– Groups

– Chords

– Map & Starmap

– Chunks

Signatures

New in version 2.0.

You just learned how to call a task using the tasks delay method in the calling guide, and this is often all you need,
but sometimes you may want to pass the signature of a task invocation to another process or as an argument to another
function.

A signature() wraps the arguments, keyword arguments, and execution options of a single task invocation in a
way such that it can be passed to functions or even serialized and sent across the wire.

• You can create a signature for the add task using its name like this:

>>> from celery import signature
>>> signature('tasks.add', args=(2, 2), countdown=10)
tasks.add(2, 2)

This task has a signature of arity 2 (two arguments): (2, 2), and sets the countdown execution option to 10.

• or you can create one using the task’s signature method:

>>> add.signature((2, 2), countdown=10)
tasks.add(2, 2)

• There’s also a shortcut using star arguments:

>>> add.s(2, 2)
tasks.add(2, 2)

• Keyword arguments are also supported:

>>> add.s(2, 2, debug=True)
tasks.add(2, 2, debug=True)

• From any signature instance you can inspect the different fields:

>>> s = add.signature((2, 2), {'debug': True}, countdown=10)
>>> s.args
(2, 2)
>>> s.kwargs
{'debug': True}
>>> s.options
{'countdown': 10}

• It supports the “Calling API” of delay, apply_async, etc., including being called directly (__call__).

78 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Calling the signature will execute the task inline in the current process:

>>> add(2, 2)
4
>>> add.s(2, 2)()
4

delay is our beloved shortcut to apply_async taking star-arguments:

>>> result = add.delay(2, 2)
>>> result.get()
4

apply_async takes the same arguments as the app.Task.apply_async() method:

>>> add.apply_async(args, kwargs, **options)
>>> add.signature(args, kwargs, **options).apply_async()

>>> add.apply_async((2, 2), countdown=1)
>>> add.signature((2, 2), countdown=1).apply_async()

• You can’t define options with s(), but a chaining set call takes care of that:

>>> add.s(2, 2).set(countdown=1)
proj.tasks.add(2, 2)

Partials

With a signature, you can execute the task in a worker:

>>> add.s(2, 2).delay()
>>> add.s(2, 2).apply_async(countdown=1)

Or you can call it directly in the current process:

>>> add.s(2, 2)()
4

Specifying additional args, kwargs, or options to apply_async/delay creates partials:

• Any arguments added will be prepended to the args in the signature:

>>> partial = add.s(2) # incomplete signature
>>> partial.delay(4) # 4 + 2
>>> partial.apply_async((4,)) # same

• Any keyword arguments added will be merged with the kwargs in the signature, with the new keyword arguments
taking precedence:

>>> s = add.s(2, 2)
>>> s.delay(debug=True) # -> add(2, 2, debug=True)
>>> s.apply_async(kwargs={'debug': True}) # same

• Any options added will be merged with the options in the signature, with the new options taking precedence:

>>> s = add.signature((2, 2), countdown=10)
>>> s.apply_async(countdown=1) # countdown is now 1

2.3. User Guide 79

Celery Documentation, Release 4.1.0

You can also clone signatures to create derivatives:

>>> s = add.s(2)
proj.tasks.add(2)

>>> s.clone(args=(4,), kwargs={'debug': True})
proj.tasks.add(4, 2, debug=True)

Immutability

New in version 3.0.

Partials are meant to be used with callbacks, any tasks linked, or chord callbacks will be applied with the result of the
parent task. Sometimes you want to specify a callback that doesn’t take additional arguments, and in that case you can
set the signature to be immutable:

>>> add.apply_async((2, 2), link=reset_buffers.signature(immutable=True))

The .si() shortcut can also be used to create immutable signatures:

>>> add.apply_async((2, 2), link=reset_buffers.si())

Only the execution options can be set when a signature is immutable, so it’s not possible to call the signature with
partial args/kwargs.

Note: In this tutorial I sometimes use the prefix operator ~ to signatures. You probably shouldn’t use it in your
production code, but it’s a handy shortcut when experimenting in the Python shell:

>>> ~sig

>>> # is the same as
>>> sig.delay().get()

Callbacks

New in version 3.0.

Callbacks can be added to any task using the link argument to apply_async:

add.apply_async((2, 2), link=other_task.s())

The callback will only be applied if the task exited successfully, and it will be applied with the return value of the
parent task as argument.

As I mentioned earlier, any arguments you add to a signature, will be prepended to the arguments specified by the
signature itself!

If you have the signature:

>>> sig = add.s(10)

then sig.delay(result) becomes:

80 Chapter 2. Contents

Celery Documentation, Release 4.1.0

>>> add.apply_async(args=(result, 10))

...

Now let’s call our add task with a callback using partial arguments:

>>> add.apply_async((2, 2), link=add.s(8))

As expected this will first launch one task calculating 2 + 2, then another task calculating 4 + 8.

The Primitives

New in version 3.0.

Overview

• group

The group primitive is a signature that takes a list of tasks that should be applied in parallel.

• chain

The chain primitive lets us link together signatures so that one is called after the other, essentially
forming a chain of callbacks.

• chord

A chord is just like a group but with a callback. A chord consists of a header group and a body,
where the body is a task that should execute after all of the tasks in the header are complete.

• map

The map primitive works like the built-in map function, but creates a temporary task where a list
of arguments is applied to the task. For example, task.map([1, 2]) – results in a single task
being called, applying the arguments in order to the task function so that the result is:

res = [task(1), task(2)]

• starmap

Works exactly like map except the arguments are applied as *args. For example add.
starmap([(2, 2), (4, 4)]) results in a single task calling:

res = [add(2, 2), add(4, 4)]

• chunks

Chunking splits a long list of arguments into parts, for example the operation:

>>> items = zip(xrange(1000), xrange(1000)) # 1000 items
>>> add.chunks(items, 10)

will split the list of items into chunks of 10, resulting in 100 tasks (each processing 10 items in
sequence).

The primitives are also signature objects themselves, so that they can be combined in any number of ways to compose
complex work-flows.

Here’s some examples:

• Simple chain

2.3. User Guide 81

Celery Documentation, Release 4.1.0

Here’s a simple chain, the first task executes passing its return value to the next task in the chain, and
so on.

>>> from celery import chain

>>> # 2 + 2 + 4 + 8
>>> res = chain(add.s(2, 2), add.s(4), add.s(8))()
>>> res.get()
16

This can also be written using pipes:

>>> (add.s(2, 2) | add.s(4) | add.s(8))().get()
16

• Immutable signatures

Signatures can be partial so arguments can be added to the existing arguments, but you may not
always want that, for example if you don’t want the result of the previous task in a chain.

In that case you can mark the signature as immutable, so that the arguments cannot be changed:

>>> add.signature((2, 2), immutable=True)

There’s also a .si() shortcut for this, and this is the preffered way of creating signatures:

>>> add.si(2, 2)

Now you can create a chain of independent tasks instead:

>>> res = (add.si(2, 2) | add.si(4, 4) | add.s(8, 8))()
>>> res.get()
16

>>> res.parent.get()
8

>>> res.parent.parent.get()
4

• Simple group

You can easily create a group of tasks to execute in parallel:

>>> from celery import group
>>> res = group(add.s(i, i) for i in xrange(10))()
>>> res.get(timeout=1)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

• Simple chord

The chord primitive enables us to add a callback to be called when all of the tasks in a group have
finished executing. This is often required for algorithms that aren’t embarrassingly parallel:

>>> from celery import chord
>>> res = chord((add.s(i, i) for i in xrange(10)), xsum.s())()
>>> res.get()
90

82 Chapter 2. Contents

Celery Documentation, Release 4.1.0

The above example creates 10 task that all start in parallel, and when all of them are complete the
return values are combined into a list and sent to the xsum task.

The body of a chord can also be immutable, so that the return value of the group isn’t passed on to
the callback:

>>> chord((import_contact.s(c) for c in contacts),
... notify_complete.si(import_id)).apply_async()

Note the use of .si above; this creates an immutable signature, meaning any new arguments passed
(including to return value of the previous task) will be ignored.

• Blow your mind by combining

Chains can be partial too:

>>> c1 = (add.s(4) | mul.s(8))

(16 + 4) * 8
>>> res = c1(16)
>>> res.get()
160

this means that you can combine chains:

((4 + 16) * 2 + 4) * 8
>>> c2 = (add.s(4, 16) | mul.s(2) | (add.s(4) | mul.s(8)))

>>> res = c2()
>>> res.get()
352

Chaining a group together with another task will automatically upgrade it to be a chord:

>>> c3 = (group(add.s(i, i) for i in xrange(10)) | xsum.s())
>>> res = c3()
>>> res.get()
90

Groups and chords accepts partial arguments too, so in a chain the return value of the previous task
is forwarded to all tasks in the group:

>>> new_user_workflow = (create_user.s() | group(
... import_contacts.s(),
... send_welcome_email.s()))
... new_user_workflow.delay(username='artv',
... first='Art',
... last='Vandelay',
... email='art@vandelay.com')

If you don’t want to forward arguments to the group then you can make the signatures in the group
immutable:

>>> res = (add.s(4, 4) | group(add.si(i, i) for i in xrange(10)))()
>>> res.get()
<GroupResult: de44df8c-821d-4c84-9a6a-44769c738f98 [

bc01831b-9486-4e51-b046-480d7c9b78de,
2650a1b8-32bf-4771-a645-b0a35dcc791b,
dcbee2a5-e92d-4b03-b6eb-7aec60fd30cf,

2.3. User Guide 83

Celery Documentation, Release 4.1.0

59f92e0a-23ea-41ce-9fad-8645a0e7759c,
26e1e707-eccf-4bf4-bbd8-1e1729c3cce3,
2d10a5f4-37f0-41b2-96ac-a973b1df024d,
e13d3bdb-7ae3-4101-81a4-6f17ee21df2d,
104b2be0-7b75-44eb-ac8e-f9220bdfa140,
c5c551a5-0386-4973-aa37-b65cbeb2624b,
83f72d71-4b71-428e-b604-6f16599a9f37]>

>>> res.parent.get()
8

Chains

New in version 3.0.

Tasks can be linked together: the linked task is called when the task returns successfully:

>>> res = add.apply_async((2, 2), link=mul.s(16))
>>> res.get()
4

The linked task will be applied with the result of its parent task as the first argument. In the above case where the
result was 4, this will result in mul(4, 16).

The results will keep track of any subtasks called by the original task, and this can be accessed from the result instance:

>>> res.children
[<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]

>>> res.children[0].get()
64

The result instance also has a collect() method that treats the result as a graph, enabling you to iterate over the
results:

>>> list(res.collect())
[(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),
(<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]

By default collect() will raise an IncompleteStream exception if the graph isn’t fully formed (one of the
tasks hasn’t completed yet), but you can get an intermediate representation of the graph too:

>>> for result, value in res.collect(intermediate=True)):
....

You can link together as many tasks as you like, and signatures can be linked too:

>>> s = add.s(2, 2)
>>> s.link(mul.s(4))
>>> s.link(log_result.s())

You can also add error callbacks using the on_error method:

>>> add.s(2, 2).on_error(log_error.s()).delay()

This will result in the following .apply_async call when the signature is applied:

84 Chapter 2. Contents

Celery Documentation, Release 4.1.0

>>> add.apply_async((2, 2), link_error=log_error.s())

The worker won’t actually call the errback as a task, but will instead call the errback function directly so that the raw
request, exception and traceback objects can be passed to it.

Here’s an example errback:

from __future__ import print_function

import os

from proj.celery import app

@app.task
def log_error(request, exc, traceback):

with open(os.path.join('/var/errors', request.id), 'a') as fh:
print('--\n\n{0} {1} {2}'.format(

task_id, exc, traceback), file=fh)

To make it even easier to link tasks together there’s a special signature called chain that lets you chain tasks together:

>>> from celery import chain
>>> from proj.tasks import add, mul

>>> # (4 + 4) * 8 * 10
>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
proj.tasks.add(4, 4) | proj.tasks.mul(8) | proj.tasks.mul(10)

Calling the chain will call the tasks in the current process and return the result of the last task in the chain:

>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
>>> res.get()
640

It also sets parent attributes so that you can work your way up the chain to get intermediate results:

>>> res.parent.get()
64

>>> res.parent.parent.get()
8

>>> res.parent.parent
<AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>

Chains can also be made using the | (pipe) operator:

>>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()

Graphs

In addition you can work with the result graph as a DependencyGraph:

>>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()

>>> res.parent.parent.graph

2.3. User Guide 85

Celery Documentation, Release 4.1.0

285fa253-fcf8-42ef-8b95-0078897e83e6(1)
463afec2-5ed4-4036-b22d-ba067ec64f52(0)

872c3995-6fa0-46ca-98c2-5a19155afcf0(2)
285fa253-fcf8-42ef-8b95-0078897e83e6(1)

463afec2-5ed4-4036-b22d-ba067ec64f52(0)

You can even convert these graphs to dot format:

>>> with open('graph.dot', 'w') as fh:
... res.parent.parent.graph.to_dot(fh)

and create images:

$ dot -Tpng graph.dot -o graph.png

Groups

New in version 3.0.

A group can be used to execute several tasks in parallel.

The group function takes a list of signatures:

>>> from celery import group
>>> from proj.tasks import add

>>> group(add.s(2, 2), add.s(4, 4))
(proj.tasks.add(2, 2), proj.tasks.add(4, 4))

If you call the group, the tasks will be applied one after another in the current process, and a GroupResult instance
is returned that can be used to keep track of the results, or tell how many tasks are ready and so on:

>>> g = group(add.s(2, 2), add.s(4, 4))
>>> res = g()
>>> res.get()
[4, 8]

86 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Group also supports iterators:

>>> group(add.s(i, i) for i in xrange(100))()

A group is a signature object, so it can be used in combination with other signatures.

Group Results

The group task returns a special result too, this result works just like normal task results, except that it works on the
group as a whole:

>>> from celery import group
>>> from tasks import add

>>> job = group([
... add.s(2, 2),
... add.s(4, 4),
... add.s(8, 8),
... add.s(16, 16),
... add.s(32, 32),
...])

>>> result = job.apply_async()

>>> result.ready() # have all subtasks completed?
True
>>> result.successful() # were all subtasks successful?
True
>>> result.get()
[4, 8, 16, 32, 64]

The GroupResult takes a list of AsyncResult instances and operates on them as if it was a single task.

It supports the following operations:

• successful()

Return True if all of the subtasks finished successfully (e.g., didn’t raise an exception).

• failed()

Return True if any of the subtasks failed.

• waiting()

Return True if any of the subtasks isn’t ready yet.

• ready()

Return True if all of the subtasks are ready.

• completed_count()

Return the number of completed subtasks.

• revoke()

Revoke all of the subtasks.

• join()

Gather the results of all subtasks and return them in the same order as they were called (as a list).

2.3. User Guide 87

Celery Documentation, Release 4.1.0

Chords

New in version 2.3.

Note: Tasks used within a chord must not ignore their results. If the result backend is disabled for any task (header
or body) in your chord you should read “Important Notes.” Chords are not currently supported with the RPC result
backend.

A chord is a task that only executes after all of the tasks in a group have finished executing.

Let’s calculate the sum of the expression 1 + 1 + 2 + 2 + 3 + 3...𝑛 + 𝑛 up to a hundred digits.

First you need two tasks, add() and tsum() (sum() is already a standard function):

@app.task
def add(x, y):

return x + y

@app.task
def tsum(numbers):

return sum(numbers)

Now you can use a chord to calculate each addition step in parallel, and then get the sum of the resulting numbers:

>>> from celery import chord
>>> from tasks import add, tsum

>>> chord(add.s(i, i)
... for i in xrange(100))(tsum.s()).get()
9900

This is obviously a very contrived example, the overhead of messaging and synchronization makes this a lot slower
than its Python counterpart:

>>> sum(i + i for i in xrange(100))

The synchronization step is costly, so you should avoid using chords as much as possible. Still, the chord is a powerful
primitive to have in your toolbox as synchronization is a required step for many parallel algorithms.

Let’s break the chord expression down:

>>> callback = tsum.s()
>>> header = [add.s(i, i) for i in range(100)]
>>> result = chord(header)(callback)
>>> result.get()
9900

Remember, the callback can only be executed after all of the tasks in the header have returned. Each step in the header
is executed as a task, in parallel, possibly on different nodes. The callback is then applied with the return value of each
task in the header. The task id returned by chord() is the id of the callback, so you can wait for it to complete and
get the final return value (but remember to never have a task wait for other tasks)

Error handling

So what happens if one of the tasks raises an exception?

88 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#sum

Celery Documentation, Release 4.1.0

The chord callback result will transition to the failure state, and the error is set to the ChordError exception:

>>> c = chord([add.s(4, 4), raising_task.s(), add.s(8, 8)])
>>> result = c()
>>> result.get()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "*/celery/result.py", line 120, in get
interval=interval)

File "*/celery/backends/amqp.py", line 150, in wait_for
raise meta['result']

celery.exceptions.ChordError: Dependency 97de6f3f-ea67-4517-a21c-d867c61fcb47
raised ValueError('something something',)

While the traceback may be different depending on the result backend used, you can see that the error description
includes the id of the task that failed and a string representation of the original exception. You can also find the
original traceback in result.traceback.

Note that the rest of the tasks will still execute, so the third task (add.s(8, 8)) is still executed even though the
middle task failed. Also the ChordError only shows the task that failed first (in time): it doesn’t respect the ordering
of the header group.

To perform an action when a chord fails you can therefore attach an errback to the chord callback:

@app.task
def on_chord_error(request, exc, traceback):

print('Task {0!r} raised error: {1!r}'.format(request.id, exc))

>>> c = (group(add.s(i, i) for i in range(10)) |
... xsum.s().on_error(on_chord_error.s()))).delay()

Important Notes

Tasks used within a chord must not ignore their results. In practice this means that you must enable a
result_backend in order to use chords. Additionally, if task_ignore_result is set to True in your con-
figuration, be sure that the individual tasks to be used within the chord are defined with ignore_result=False.
This applies to both Task subclasses and decorated tasks.

Example Task subclass:

class MyTask(Task):
ignore_result = False

Example decorated task:

@app.task(ignore_result=False)
def another_task(project):

do_something()

By default the synchronization step is implemented by having a recurring task poll the completion of the group every
second, calling the signature when ready.

Example implementation:

2.3. User Guide 89

Celery Documentation, Release 4.1.0

from celery import maybe_signature

@app.task(bind=True)
def unlock_chord(self, group, callback, interval=1, max_retries=None):

if group.ready():
return maybe_signature(callback).delay(group.join())

raise self.retry(countdown=interval, max_retries=max_retries)

This is used by all result backends except Redis and Memcached: they increment a counter after each task in the
header, then applies the callback when the counter exceeds the number of tasks in the set.

The Redis and Memcached approach is a much better solution, but not easily implemented in other backends (sugges-
tions welcome!).

Note: Chords don’t properly work with Redis before version 2.2; you’ll need to upgrade to at least redis-server 2.2
to use them.

Note: If you’re using chords with the Redis result backend and also overriding the Task.after_return()
method, you need to make sure to call the super method or else the chord callback won’t be applied.

def after_return(self, *args, **kwargs):
do_something()
super(MyTask, self).after_return(*args, **kwargs)

Map & Starmap

map and starmap are built-in tasks that calls the task for every element in a sequence.

They differ from group in that

• only one task message is sent

• the operation is sequential.

For example using map:

>>> from proj.tasks import add

>>> ~xsum.map([range(10), range(100)])
[45, 4950]

is the same as having a task doing:

@app.task
def temp():

return [xsum(range(10)), xsum(range(100))]

and using starmap:

>>> ~add.starmap(zip(range(10), range(10)))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

is the same as having a task doing:

90 Chapter 2. Contents

Celery Documentation, Release 4.1.0

@app.task
def temp():

return [add(i, i) for i in range(10)]

Both map and starmap are signature objects, so they can be used as other signatures and combined in groups etc.,
for example to call the starmap after 10 seconds:

>>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)

Chunks

Chunking lets you divide an iterable of work into pieces, so that if you have one million objects, you can create 10
tasks with hundred thousand objects each.

Some may worry that chunking your tasks results in a degradation of parallelism, but this is rarely true for a busy
cluster and in practice since you’re avoiding the overhead of messaging it may considerably increase performance.

To create a chunks signature you can use app.Task.chunks():

>>> add.chunks(zip(range(100), range(100)), 10)

As with group the act of sending the messages for the chunks will happen in the current process when called:

>>> from proj.tasks import add

>>> res = add.chunks(zip(range(100), range(100)), 10)()
>>> res.get()
[[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
[20, 22, 24, 26, 28, 30, 32, 34, 36, 38],
[40, 42, 44, 46, 48, 50, 52, 54, 56, 58],
[60, 62, 64, 66, 68, 70, 72, 74, 76, 78],
[80, 82, 84, 86, 88, 90, 92, 94, 96, 98],
[100, 102, 104, 106, 108, 110, 112, 114, 116, 118],
[120, 122, 124, 126, 128, 130, 132, 134, 136, 138],
[140, 142, 144, 146, 148, 150, 152, 154, 156, 158],
[160, 162, 164, 166, 168, 170, 172, 174, 176, 178],
[180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]

while calling .apply_async will create a dedicated task so that the individual tasks are applied in a worker instead:

>>> add.chunks(zip(range(100), range(100)), 10).apply_async()

You can also convert chunks to a group:

>>> group = add.chunks(zip(range(100), range(100)), 10).group()

and with the group skew the countdown of each task by increments of one:

>>> group.skew(start=1, stop=10)()

This means that the first task will have a countdown of one second, the second task a countdown of two seconds, and
so on.

Workers Guide

2.3. User Guide 91

Celery Documentation, Release 4.1.0

• Starting the worker

• Stopping the worker

• Restarting the worker

• Process Signals

• Variables in file paths

• Concurrency

• Remote control

• Commands

• Time Limits

• Rate Limits

• Max tasks per child setting

• Max memory per child setting

• Autoscaling

• Queues

• Inspecting workers

• Additional Commands

• Writing your own remote control commands

Starting the worker

Daemonizing

You probably want to use a daemonization tool to start the worker in the background. See Daemonization for help
starting the worker as a daemon using popular service managers.

You can start the worker in the foreground by executing the command:

$ celery -A proj worker -l info

For a full list of available command-line options see worker, or simply do:

$ celery worker --help

You can start multiple workers on the same machine, but be sure to name each individual worker by specifying a node
name with the --hostname argument:

$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker1@%h
$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker2@%h
$ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker3@%h

The hostname argument can expand the following variables:

• %h: Hostname, including domain name.

92 Chapter 2. Contents

Celery Documentation, Release 4.1.0

• %n: Hostname only.

• %d: Domain name only.

If the current hostname is george.example.com, these will expand to:

Variable Template Result
%h worker1@%h worker1@george.example.com
%n worker1@%n worker1@george
%d worker1@%d worker1@example.com

Note for supervisor users

The % sign must be escaped by adding a second one: %%h.

Stopping the worker

Shutdown should be accomplished using the TERM signal.

When shutdown is initiated the worker will finish all currently executing tasks before it actually terminates. If these
tasks are important, you should wait for it to finish before doing anything drastic, like sending the KILL signal.

If the worker won’t shutdown after considerate time, for being stuck in an infinite-loop or similar, you can use the
KILL signal to force terminate the worker: but be aware that currently executing tasks will be lost (i.e., unless the
tasks have the acks_late option set).

Also as processes can’t override the KILL signal, the worker will not be able to reap its children; make sure to do so
manually. This command usually does the trick:

$ pkill -9 -f 'celery worker'

If you don’t have the pkill command on your system, you can use the slightly longer version:

$ ps auxww | grep 'celery worker' | awk '{print $2}' | xargs kill -9

Restarting the worker

To restart the worker you should send the TERM signal and start a new instance. The easiest way to manage workers
for development is by using celery multi:

$ celery multi start 1 -A proj -l info -c4 --pidfile=/var/run/celery/%n.pid
$ celery multi restart 1 --pidfile=/var/run/celery/%n.pid

For production deployments you should be using init-scripts or a process supervision system (see Daemonization).

Other than stopping, then starting the worker to restart, you can also restart the worker using the HUP signal. Note that
the worker will be responsible for restarting itself so this is prone to problems and isn’t recommended in production:

$ kill -HUP $pid

Note: Restarting by HUP only works if the worker is running in the background as a daemon (it doesn’t have a
controlling terminal).

HUP is disabled on macOS because of a limitation on that platform.

2.3. User Guide 93

Celery Documentation, Release 4.1.0

Process Signals

The worker’s main process overrides the following signals:

TERM Warm shutdown, wait for tasks to complete.
QUIT Cold shutdown, terminate ASAP
USR1 Dump traceback for all active threads.
USR2 Remote debug, see celery.contrib.rdb.

Variables in file paths

The file path arguments for --logfile, --pidfile, and --statedb can contain variables that the worker will
expand:

Node name replacements

• %p: Full node name.

• %h: Hostname, including domain name.

• %n: Hostname only.

• %d: Domain name only.

• %i: Prefork pool process index or 0 if MainProcess.

• %I: Prefork pool process index with separator.

For example, if the current hostname is george@foo.example.com then these will expand to:

• --logfile-%p.log -> george@foo.example.com.log

• --logfile=%h.log -> foo.example.com.log

• --logfile=%n.log -> george.log

• --logfile=%d -> example.com.log

Prefork pool process index

The prefork pool process index specifiers will expand into a different filename depending on the process that’ll even-
tually need to open the file.

This can be used to specify one log file per child process.

Note that the numbers will stay within the process limit even if processes exit or if au-
toscale/maxtasksperchild/time limits are used. That is, the number is the process index not the process
count or pid.

• %i - Pool process index or 0 if MainProcess.

Where -n worker1@example.com -c2 -f %n-%i.log will result in three log files:

– worker1-0.log (main process)

– worker1-1.log (pool process 1)

– worker1-2.log (pool process 2)

• %I - Pool process index with separator.

94 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Where -n worker1@example.com -c2 -f %n%I.log will result in three log files:

– worker1.log (main process)

– worker1-1.log (pool process 1)

– worker1-2.log (pool process 2)

Concurrency

By default multiprocessing is used to perform concurrent execution of tasks, but you can also use Eventlet. The number
of worker processes/threads can be changed using the --concurrency argument and defaults to the number of
CPUs available on the machine.

Number of processes (multiprocessing/prefork pool)

More pool processes are usually better, but there’s a cut-off point where adding more pool processes affects perfor-
mance in negative ways. There’s even some evidence to support that having multiple worker instances running, may
perform better than having a single worker. For example 3 workers with 10 pool processes each. You need to exper-
iment to find the numbers that works best for you, as this varies based on application, work load, task run times and
other factors.

Remote control

New in version 2.0.

The celery command

The celery program is used to execute remote control commands from the command-line. It supports all of the
commands listed below. See Management Command-line Utilities (inspect/control) for more information.

pool support prefork, eventlet, gevent, blocking:solo (see note)

broker support amqp, redis

Workers have the ability to be remote controlled using a high-priority broadcast message queue. The commands can
be directed to all, or a specific list of workers.

Commands can also have replies. The client can then wait for and collect those replies. Since there’s no central
authority to know how many workers are available in the cluster, there’s also no way to estimate how many workers
may send a reply, so the client has a configurable timeout — the deadline in seconds for replies to arrive in. This
timeout defaults to one second. If the worker doesn’t reply within the deadline it doesn’t necessarily mean the worker
didn’t reply, or worse is dead, but may simply be caused by network latency or the worker being slow at processing
commands, so adjust the timeout accordingly.

In addition to timeouts, the client can specify the maximum number of replies to wait for. If a destination is specified,
this limit is set to the number of destination hosts.

Note: The solo pool supports remote control commands, but any task executing will block any waiting control
command, so it is of limited use if the worker is very busy. In that case you must increase the timeout waiting for
replies in the client.

2.3. User Guide 95

Celery Documentation, Release 4.1.0

The broadcast() function

This is the client function used to send commands to the workers. Some remote control commands also have higher-
level interfaces using broadcast() in the background, like rate_limit(), and ping().

Sending the rate_limit command and keyword arguments:

>>> app.control.broadcast('rate_limit',
... arguments={'task_name': 'myapp.mytask',
... 'rate_limit': '200/m'})

This will send the command asynchronously, without waiting for a reply. To request a reply you have to use the reply
argument:

>>> app.control.broadcast('rate_limit', {
... 'task_name': 'myapp.mytask', 'rate_limit': '200/m'}, reply=True)
[{'worker1.example.com': 'New rate limit set successfully'},
{'worker2.example.com': 'New rate limit set successfully'},
{'worker3.example.com': 'New rate limit set successfully'}]

Using the destination argument you can specify a list of workers to receive the command:

>>> app.control.broadcast('rate_limit', {
... 'task_name': 'myapp.mytask',
... 'rate_limit': '200/m'}, reply=True,
... destination=['worker1@example.com'])
[{'worker1.example.com': 'New rate limit set successfully'}]

Of course, using the higher-level interface to set rate limits is much more convenient, but there are commands that can
only be requested using broadcast().

Commands

revoke: Revoking tasks

pool support all, terminate only supported by prefork

broker support amqp, redis

command celery -A proj control revoke <task_id>

All worker nodes keeps a memory of revoked task ids, either in-memory or persistent on disk (see Persistent revokes).

When a worker receives a revoke request it will skip executing the task, but it won’t terminate an already executing
task unless the terminate option is set.

Note: The terminate option is a last resort for administrators when a task is stuck. It’s not for terminating the task,
it’s for terminating the process that’s executing the task, and that process may have already started processing another
task at the point when the signal is sent, so for this reason you must never call this programmatically.

If terminate is set the worker child process processing the task will be terminated. The default signal sent is TERM,
but you can specify this using the signal argument. Signal can be the uppercase name of any signal defined in the
signal module in the Python Standard Library.

Terminating a task also revokes it.

Example

96 Chapter 2. Contents

https://docs.python.org/dev/library/signal.html#module-signal

Celery Documentation, Release 4.1.0

>>> result.revoke()

>>> AsyncResult(id).revoke()

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed')

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed',
... terminate=True)

>>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed',
... terminate=True, signal='SIGKILL')

Revoking multiple tasks

New in version 3.1.

The revoke method also accepts a list argument, where it will revoke several tasks at once.

Example

>>> app.control.revoke([
... '7993b0aa-1f0b-4780-9af0-c47c0858b3f2',
... 'f565793e-b041-4b2b-9ca4-dca22762a55d',
... 'd9d35e03-2997-42d0-a13e-64a66b88a618',
])

The GroupResult.revoke method takes advantage of this since version 3.1.

Persistent revokes

Revoking tasks works by sending a broadcast message to all the workers, the workers then keep a list of revoked tasks
in memory. When a worker starts up it will synchronize revoked tasks with other workers in the cluster.

The list of revoked tasks is in-memory so if all workers restart the list of revoked ids will also vanish. If you want to
preserve this list between restarts you need to specify a file for these to be stored in by using the –statedb argument to
celery worker:

$ celery -A proj worker -l info --statedb=/var/run/celery/worker.state

or if you use celery multi you want to create one file per worker instance so use the %n format to expand the
current node name:

celery multi start 2 -l info --statedb=/var/run/celery/%n.state

See also Variables in file paths

Note that remote control commands must be working for revokes to work. Remote control commands are only sup-
ported by the RabbitMQ (amqp) and Redis at this point.

Time Limits

New in version 2.0.

pool support prefork/gevent

2.3. User Guide 97

Celery Documentation, Release 4.1.0

Soft, or hard?

The time limit is set in two values, soft and hard. The soft time limit allows the task to catch an exception to clean
up before it is killed: the hard timeout isn’t catch-able and force terminates the task.

A single task can potentially run forever, if you have lots of tasks waiting for some event that’ll never happen you’ll
block the worker from processing new tasks indefinitely. The best way to defend against this scenario happening is
enabling time limits.

The time limit (–time-limit) is the maximum number of seconds a task may run before the process executing it is
terminated and replaced by a new process. You can also enable a soft time limit (–soft-time-limit), this raises an
exception the task can catch to clean up before the hard time limit kills it:

from myapp import app
from celery.exceptions import SoftTimeLimitExceeded

@app.task
def mytask():

try:
do_work()

except SoftTimeLimitExceeded:
clean_up_in_a_hurry()

Time limits can also be set using the task_time_limit / task_soft_time_limit settings.

Note: Time limits don’t currently work on platforms that don’t support the SIGUSR1 signal.

Changing time limits at run-time

New in version 2.3.

broker support amqp, redis

There’s a remote control command that enables you to change both soft and hard time limits for a task — named
time_limit.

Example changing the time limit for the tasks.crawl_the_web task to have a soft time limit of one minute, and
a hard time limit of two minutes:

>>> app.control.time_limit('tasks.crawl_the_web',
soft=60, hard=120, reply=True)

[{'worker1.example.com': {'ok': 'time limits set successfully'}}]

Only tasks that starts executing after the time limit change will be affected.

Rate Limits

Changing rate-limits at run-time

Example changing the rate limit for the myapp.mytask task to execute at most 200 tasks of that type every minute:

98 Chapter 2. Contents

Celery Documentation, Release 4.1.0

>>> app.control.rate_limit('myapp.mytask', '200/m')

The above doesn’t specify a destination, so the change request will affect all worker instances in the cluster. If you
only want to affect a specific list of workers you can include the destination argument:

>>> app.control.rate_limit('myapp.mytask', '200/m',
... destination=['celery@worker1.example.com'])

Warning: This won’t affect workers with the worker_disable_rate_limits setting enabled.

Max tasks per child setting

New in version 2.0.

pool support prefork

With this option you can configure the maximum number of tasks a worker can execute before it’s replaced by a new
process.

This is useful if you have memory leaks you have no control over for example from closed source C extensions.

The option can be set using the workers --max-tasks-per-child argument or using the
worker_max_tasks_per_child setting.

Max memory per child setting

New in version 4.0.

pool support prefork

With this option you can configure the maximum amount of resident memory a worker can execute before it’s replaced
by a new process.

This is useful if you have memory leaks you have no control over for example from closed source C extensions.

The option can be set using the workers --max-memory-per-child argument or using the
worker_max_memory_per_child setting.

Autoscaling

New in version 2.2.

pool support prefork, gevent

The autoscaler component is used to dynamically resize the pool based on load:

• The autoscaler adds more pool processes when there is work to do,

– and starts removing processes when the workload is low.

It’s enabled by the --autoscale option, which needs two numbers: the maximum and minimum number of pool
processes:

--autoscale=AUTOSCALE
Enable autoscaling by providing
max_concurrency,min_concurrency. Example:

2.3. User Guide 99

Celery Documentation, Release 4.1.0

--autoscale=10,3 (always keep 3 processes, but grow to
10 if necessary).

You can also define your own rules for the autoscaler by subclassing Autoscaler. Some ideas for met-
rics include load average or the amount of memory available. You can specify a custom autoscaler with the
worker_autoscaler setting.

Queues

A worker instance can consume from any number of queues. By default it will consume from all queues defined in the
task_queues setting (that if not specified falls back to the default queue named celery).

You can specify what queues to consume from at start-up, by giving a comma separated list of queues to the -Q option:

$ celery -A proj worker -l info -Q foo,bar,baz

If the queue name is defined in task_queues it will use that configuration, but if it’s not defined in the list of queues
Celery will automatically generate a new queue for you (depending on the task_create_missing_queues
option).

You can also tell the worker to start and stop consuming from a queue at run-time using the remote control commands
add_consumer and cancel_consumer.

Queues: Adding consumers

The add_consumer control command will tell one or more workers to start consuming from a queue. This operation
is idempotent.

To tell all workers in the cluster to start consuming from a queue named “foo” you can use the celery control
program:

$ celery -A proj control add_consumer foo
-> worker1.local: OK

started consuming from u'foo'

If you want to specify a specific worker you can use the --destination argument:

$ celery -A proj control add_consumer foo -d celery@worker1.local

The same can be accomplished dynamically using the app.control.add_consumer() method:

>>> app.control.add_consumer('foo', reply=True)
[{u'worker1.local': {u'ok': u"already consuming from u'foo'"}}]

>>> app.control.add_consumer('foo', reply=True,
... destination=['worker1@example.com'])
[{u'worker1.local': {u'ok': u"already consuming from u'foo'"}}]

By now we’ve only shown examples using automatic queues, If you need more control you can also specify the
exchange, routing_key and even other options:

>>> app.control.add_consumer(
... queue='baz',
... exchange='ex',
... exchange_type='topic',

100 Chapter 2. Contents

Celery Documentation, Release 4.1.0

... routing_key='media.*',

... options={

... 'queue_durable': False,

... 'exchange_durable': False,

... },

... reply=True,

... destination=['w1@example.com', 'w2@example.com'])

Queues: Canceling consumers

You can cancel a consumer by queue name using the cancel_consumer control command.

To force all workers in the cluster to cancel consuming from a queue you can use the celery control program:

$ celery -A proj control cancel_consumer foo

The --destination argument can be used to specify a worker, or a list of workers, to act on the command:

$ celery -A proj control cancel_consumer foo -d celery@worker1.local

You can also cancel consumers programmatically using the app.control.cancel_consumer() method:

>>> app.control.cancel_consumer('foo', reply=True)
[{u'worker1.local': {u'ok': u"no longer consuming from u'foo'"}}]

Queues: List of active queues

You can get a list of queues that a worker consumes from by using the active_queues control command:

$ celery -A proj inspect active_queues
[...]

Like all other remote control commands this also supports the --destination argument used to specify the work-
ers that should reply to the request:

$ celery -A proj inspect active_queues -d celery@worker1.local
[...]

This can also be done programmatically by using the app.control.inspect.active_queues() method:

>>> app.control.inspect().active_queues()
[...]

>>> app.control.inspect(['worker1.local']).active_queues()
[...]

Inspecting workers

app.control.inspect lets you inspect running workers. It uses remote control commands under the hood.

You can also use the celery command to inspect workers, and it supports the same commands as the app.control
interface.

2.3. User Guide 101

Celery Documentation, Release 4.1.0

>>> # Inspect all nodes.
>>> i = app.control.inspect()

>>> # Specify multiple nodes to inspect.
>>> i = app.control.inspect(['worker1.example.com',

'worker2.example.com'])

>>> # Specify a single node to inspect.
>>> i = app.control.inspect('worker1.example.com')

Dump of registered tasks

You can get a list of tasks registered in the worker using the registered():

>>> i.registered()
[{'worker1.example.com': ['tasks.add',

'tasks.sleeptask']}]

Dump of currently executing tasks

You can get a list of active tasks using active():

>>> i.active()
[{'worker1.example.com':

[{'name': 'tasks.sleeptask',
'id': '32666e9b-809c-41fa-8e93-5ae0c80afbbf',
'args': '(8,)',
'kwargs': '{}'}]}]

Dump of scheduled (ETA) tasks

You can get a list of tasks waiting to be scheduled by using scheduled():

>>> i.scheduled()
[{'worker1.example.com':

[{'eta': '2010-06-07 09:07:52', 'priority': 0,
'request': {

'name': 'tasks.sleeptask',
'id': '1a7980ea-8b19-413e-91d2-0b74f3844c4d',
'args': '[1]',
'kwargs': '{}'}},

{'eta': '2010-06-07 09:07:53', 'priority': 0,
'request': {

'name': 'tasks.sleeptask',
'id': '49661b9a-aa22-4120-94b7-9ee8031d219d',
'args': '[2]',
'kwargs': '{}'}}]}]

Note: These are tasks with an ETA/countdown argument, not periodic tasks.

102 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Dump of reserved tasks

Reserved tasks are tasks that have been received, but are still waiting to be executed.

You can get a list of these using reserved():

>>> i.reserved()
[{'worker1.example.com':

[{'name': 'tasks.sleeptask',
'id': '32666e9b-809c-41fa-8e93-5ae0c80afbbf',
'args': '(8,)',
'kwargs': '{}'}]}]

Statistics

The remote control command inspect stats (or stats()) will give you a long list of useful (or not so useful)
statistics about the worker:

$ celery -A proj inspect stats

The output will include the following fields:

• broker

Section for broker information.

– connect_timeout

Timeout in seconds (int/float) for establishing a new connection.

– heartbeat

Current heartbeat value (set by client).

– hostname

Node name of the remote broker.

– insist

No longer used.

– login_method

Login method used to connect to the broker.

– port

Port of the remote broker.

– ssl

SSL enabled/disabled.

– transport

Name of transport used (e.g., amqp or redis)

– transport_options

Options passed to transport.

– uri_prefix

2.3. User Guide 103

Celery Documentation, Release 4.1.0

Some transports expects the host name to be a URL.

redis+socket:///tmp/redis.sock

In this example the URI-prefix will be redis.

– userid

User id used to connect to the broker with.

– virtual_host

Virtual host used.

• clock

Value of the workers logical clock. This is a positive integer and should be increasing every time you
receive statistics.

• pid

Process id of the worker instance (Main process).

• pool

Pool-specific section.

– max-concurrency

Max number of processes/threads/green threads.

– max-tasks-per-child

Max number of tasks a thread may execute before being recycled.

– processes

List of PIDs (or thread-id’s).

– put-guarded-by-semaphore

Internal

– timeouts

Default values for time limits.

– writes

Specific to the prefork pool, this shows the distribution of writes to each process in the
pool when using async I/O.

• prefetch_count

Current prefetch count value for the task consumer.

• rusage

System usage statistics. The fields available may be different on your platform.

From getrusage(2):

– stime

Time spent in operating system code on behalf of this process.

– utime

Time spent executing user instructions.

104 Chapter 2. Contents

Celery Documentation, Release 4.1.0

– maxrss

The maximum resident size used by this process (in kilobytes).

– idrss

Amount of non-shared memory used for data (in kilobytes times ticks of execution)

– isrss

Amount of non-shared memory used for stack space (in kilobytes times ticks of execu-
tion)

– ixrss

Amount of memory shared with other processes (in kilobytes times ticks of execution).

– inblock

Number of times the file system had to read from the disk on behalf of this process.

– oublock

Number of times the file system has to write to disk on behalf of this process.

– majflt

Number of page faults that were serviced by doing I/O.

– minflt

Number of page faults that were serviced without doing I/O.

– msgrcv

Number of IPC messages received.

– msgsnd

Number of IPC messages sent.

– nvcsw

Number of times this process voluntarily invoked a context switch.

– nivcsw

Number of times an involuntary context switch took place.

– nsignals

Number of signals received.

– nswap

The number of times this process was swapped entirely out of memory.

• total

Map of task names and the total number of tasks with that type the worker has accepted since start-up.

Additional Commands

Remote shutdown

This command will gracefully shut down the worker remotely:

2.3. User Guide 105

Celery Documentation, Release 4.1.0

>>> app.control.broadcast('shutdown') # shutdown all workers
>>> app.control.broadcast('shutdown', destination='worker1@example.com')

Ping

This command requests a ping from alive workers. The workers reply with the string ‘pong’, and that’s just about it.
It will use the default one second timeout for replies unless you specify a custom timeout:

>>> app.control.ping(timeout=0.5)
[{'worker1.example.com': 'pong'},
{'worker2.example.com': 'pong'},
{'worker3.example.com': 'pong'}]

ping() also supports the destination argument, so you can specify the workers to ping:

>>> ping(['worker2.example.com', 'worker3.example.com'])
[{'worker2.example.com': 'pong'},
{'worker3.example.com': 'pong'}]

Enable/disable events

You can enable/disable events by using the enable_events, disable_events commands. This is useful to temporarily
monitor a worker using celery events/celerymon.

>>> app.control.enable_events()
>>> app.control.disable_events()

Writing your own remote control commands

There are two types of remote control commands:

• Inspect command

Does not have side effects, will usually just return some value found in the worker, like the list of
currently registered tasks, the list of active tasks, etc.

• Control command

Performs side effects, like adding a new queue to consume from.

Remote control commands are registered in the control panel and they take a single argument: the current
ControlDispatch instance. From there you have access to the active Consumer if needed.

Here’s an example control command that increments the task prefetch count:

from celery.worker.control import control_command

@control_command(
args=[('n', int)],
signature='[N=1]', # <- used for help on the command-line.

)
def increase_prefetch_count(state, n=1):

state.consumer.qos.increment_eventually(n)
return {'ok': 'prefetch count incremented'}

106 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Make sure you add this code to a module that is imported by the worker: this could be the same module as where your
Celery app is defined, or you can add the module to the imports setting.

Restart the worker so that the control command is registered, and now you can call your command using the celery
control utility:

$ celery -A proj control increase_prefetch_count 3

You can also add actions to the celery inspect program, for example one that reads the current prefetch count:

from celery.worker.control import inspect_command

@inspect_command
def current_prefetch_count(state):

return {'prefetch_count': state.consumer.qos.value}

After restarting the worker you can now query this value using the celery inspect program:

$ celery -A proj inspect current_prefetch_count

Daemonization

• Generic init-scripts

– Init-script: celeryd

* Example configuration

* Using a login shell

* Example Django configuration

* Available options

– Init-script: celerybeat

* Example configuration

* Example Django configuration

* Available options

– Troubleshooting

• Usage systemd

– Service file: celery.service

* Example configuration

• Running the worker with superuser privileges (root)

• supervisor

• launchd (macOS)

Generic init-scripts

See the extra/generic-init.d/ directory Celery distribution.

2.3. User Guide 107

https://github.com/celery/celery/tree/3.1/extra/generic-init.d/

Celery Documentation, Release 4.1.0

This directory contains generic bash init-scripts for the celery worker program, these should run on Linux,
FreeBSD, OpenBSD, and other Unix-like platforms.

Init-script: celeryd

Usage /etc/init.d/celeryd {start|stop|restart|status}

Configuration file /etc/default/celeryd

To configure this script to run the worker properly you probably need to at least tell it where to change directory to
when it starts (to find the module containing your app, or your configuration module).

The daemonization script is configured by the file /etc/default/celeryd. This is a shell (sh) script where you
can add environment variables like the configuration options below. To add real environment variables affecting the
worker you must also export them (e.g., export DISPLAY=":0")

Superuser privileges required

The init-scripts can only be used by root, and the shell configuration file must also be owned by root.

Unprivileged users don’t need to use the init-script, instead they can use the celery multi utility (or celery
worker --detach):

$ celery multi start worker1 \
-A proj \
--pidfile="$HOME/run/celery/%n.pid" \
--logfile="$HOME/log/celery/%n%I.log"

$ celery multi restart worker1 \
-A proj \
--logfile="$HOME/log/celery/%n%I.log" \
--pidfile="$HOME/run/celery/%n.pid

$ celery multi stopwait worker1 --pidfile="$HOME/run/celery/%n.pid"

Example configuration

This is an example configuration for a Python project.

/etc/default/celeryd:

Names of nodes to start
most people will only start one node:
CELERYD_NODES="worker1"
but you can also start multiple and configure settings
for each in CELERYD_OPTS
#CELERYD_NODES="worker1 worker2 worker3"
alternatively, you can specify the number of nodes to start:
#CELERYD_NODES=10

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use

108 Chapter 2. Contents

Celery Documentation, Release 4.1.0

comment out this line if you don't use an app
CELERY_APP="proj"
or fully qualified:
#CELERY_APP="proj.tasks:app"

Where to chdir at start.
CELERYD_CHDIR="/opt/Myproject/"

Extra command-line arguments to the worker
CELERYD_OPTS="--time-limit=300 --concurrency=8"
Configure node-specific settings by appending node name to arguments:
#CELERYD_OPTS="--time-limit=300 -c 8 -c:worker2 4 -c:worker3 2 -Ofair:worker1"

Set logging level to DEBUG
#CELERYD_LOG_LEVEL="DEBUG"

%n will be replaced with the first part of the nodename.
CELERYD_LOG_FILE="/var/log/celery/%n%I.log"
CELERYD_PID_FILE="/var/run/celery/%n.pid"

Workers should run as an unprivileged user.
You need to create this user manually (or you can choose
a user/group combination that already exists (e.g., nobody).
CELERYD_USER="celery"
CELERYD_GROUP="celery"

If enabled pid and log directories will be created if missing,
and owned by the userid/group configured.
CELERY_CREATE_DIRS=1

Using a login shell

You can inherit the environment of the CELERYD_USER by using a login shell:

CELERYD_SU_ARGS="-l"

Note that this isn’t recommended, and that you should only use this option when absolutely necessary.

Example Django configuration

Django users now uses the exact same template as above, but make sure that the module that defines your Celery app
instance also sets a default value for DJANGO_SETTINGS_MODULE as shown in the example Django project in First
steps with Django.

Available options

• CELERY_APP

App instance to use (value for --app argument).

• CELERY_BIN

Absolute or relative path to the celery program. Examples:

– celery

2.3. User Guide 109

http://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE

Celery Documentation, Release 4.1.0

– /usr/local/bin/celery

– /virtualenvs/proj/bin/celery

– /virtualenvs/proj/bin/python -m celery

• CELERYD_NODES

List of node names to start (separated by space).

• CELERYD_OPTS

Additional command-line arguments for the worker, see celery worker –help for a list. This also
supports the extended syntax used by multi to configure settings for individual nodes. See celery
multi –help for some multi-node configuration examples.

• CELERYD_CHDIR

Path to change directory to at start. Default is to stay in the current directory.

• CELERYD_PID_FILE

Full path to the PID file. Default is /var/run/celery/%n.pid

• CELERYD_LOG_FILE

Full path to the worker log file. Default is /var/log/celery/%n%I.log Note: Using %I is important
when using the prefork pool as having multiple processes share the same log file will lead to race
conditions.

• CELERYD_LOG_LEVEL

Worker log level. Default is INFO.

• CELERYD_USER

User to run the worker as. Default is current user.

• CELERYD_GROUP

Group to run worker as. Default is current user.

• CELERY_CREATE_DIRS

Always create directories (log directory and pid file directory). Default is to only create directories
when no custom logfile/pidfile set.

• CELERY_CREATE_RUNDIR

Always create pidfile directory. By default only enabled when no custom pidfile location set.

• CELERY_CREATE_LOGDIR

Always create logfile directory. By default only enable when no custom logfile location set.

Init-script: celerybeat

Usage /etc/init.d/celerybeat {start|stop|restart}

Configuration file /etc/default/celerybeat or /etc/default/celeryd.

110 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Example configuration

This is an example configuration for a Python project:

/etc/default/celerybeat:

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use
comment out this line if you don't use an app
CELERY_APP="proj"
or fully qualified:
#CELERY_APP="proj.tasks:app"

Where to chdir at start.
CELERYBEAT_CHDIR="/opt/Myproject/"

Extra arguments to celerybeat
CELERYBEAT_OPTS="--schedule=/var/run/celery/celerybeat-schedule"

Example Django configuration

You should use the same template as above, but make sure the DJANGO_SETTINGS_MODULE variable is set (and
exported), and that CELERYD_CHDIR is set to the projects directory:

export DJANGO_SETTINGS_MODULE="settings"

CELERYD_CHDIR="/opt/MyProject"

Available options

• CELERY_APP

App instance to use (value for --app argument).

• CELERYBEAT_OPTS

Additional arguments to celery beat, see celery beat --help for a list of available op-
tions.

• CELERYBEAT_PID_FILE

Full path to the PID file. Default is /var/run/celeryd.pid.

• CELERYBEAT_LOG_FILE

Full path to the log file. Default is /var/log/celeryd.log.

• CELERYBEAT_LOG_LEVEL

Log level to use. Default is INFO.

• CELERYBEAT_USER

User to run beat as. Default is the current user.

• CELERYBEAT_GROUP

2.3. User Guide 111

Celery Documentation, Release 4.1.0

Group to run beat as. Default is the current user.

• CELERY_CREATE_DIRS

Always create directories (log directory and pid file directory). Default is to only create directories
when no custom logfile/pidfile set.

• CELERY_CREATE_RUNDIR

Always create pidfile directory. By default only enabled when no custom pidfile location set.

• CELERY_CREATE_LOGDIR

Always create logfile directory. By default only enable when no custom logfile location set.

Troubleshooting

If you can’t get the init-scripts to work, you should try running them in verbose mode:

sh -x /etc/init.d/celeryd start

This can reveal hints as to why the service won’t start.

If the worker starts with “OK” but exits almost immediately afterwards and there’s no evidence in the log file, then
there’s probably an error but as the daemons standard outputs are already closed you’ll not be able to see them any-
where. For this situation you can use the C_FAKEFORK environment variable to skip the daemonization step:

C_FAKEFORK=1 sh -x /etc/init.d/celeryd start

and now you should be able to see the errors.

Commonly such errors are caused by insufficient permissions to read from, or write to a file, and also by syntax errors
in configuration modules, user modules, third-party libraries, or even from Celery itself (if you’ve found a bug you
should report it).

Usage systemd

• extra/systemd/

Usage systemctl {start|stop|restart|status} celery.service

Configuration file /etc/conf.d/celery

Service file: celery.service

This is an example systemd file:

/etc/systemd/system/celery.service:

[Unit]
Description=Celery Service
After=network.target

[Service]
Type=forking
User=celery
Group=celery
EnvironmentFile=-/etc/conf.d/celery

112 Chapter 2. Contents

https://github.com/celery/celery/tree/3.1/extra/systemd/

Celery Documentation, Release 4.1.0

WorkingDirectory=/opt/celery
ExecStart=/bin/sh -c '${CELERY_BIN} multi start ${CELERYD_NODES} \

-A ${CELERY_APP} --pidfile=${CELERYD_PID_FILE} \
--logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'

ExecStop=/bin/sh -c '${CELERY_BIN} multi stopwait ${CELERYD_NODES} \
--pidfile=${CELERYD_PID_FILE}'

ExecReload=/bin/sh -c '${CELERY_BIN} multi restart ${CELERYD_NODES} \
-A ${CELERY_APP} --pidfile=${CELERYD_PID_FILE} \
--logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'

[Install]
WantedBy=multi-user.target

Once you’ve put that file in /etc/systemd/system, you should run systemctl daemon-reload in order
that Systemd acknowledges that file. You should also run that command each time you modify it.

To configure user, group, chdir change settings: User, Group, and WorkingDirectory defined in /etc/
systemd/system/celery.service.

You can also use systemd-tmpfiles in order to create working directories (for logs and pid).

file /etc/tmpfiles.d/celery.conf

d /var/run/celery 0755 celery celery -
d /var/log/celery 0755 celery celery -

Example configuration

This is an example configuration for a Python project:

/etc/conf.d/celery:

Name of nodes to start
here we have a single node
CELERYD_NODES="w1"
or we could have three nodes:
#CELERYD_NODES="w1 w2 w3"

Absolute or relative path to the 'celery' command:
CELERY_BIN="/usr/local/bin/celery"
#CELERY_BIN="/virtualenvs/def/bin/celery"

App instance to use
comment out this line if you don't use an app
CELERY_APP="proj"
or fully qualified:
#CELERY_APP="proj.tasks:app"

How to call manage.py
CELERYD_MULTI="multi"

Extra command-line arguments to the worker
CELERYD_OPTS="--time-limit=300 --concurrency=8"

- %n will be replaced with the first part of the nodename.
- %I will be replaced with the current child process index
and is important when using the prefork pool to avoid race conditions.

2.3. User Guide 113

Celery Documentation, Release 4.1.0

CELERYD_PID_FILE="/var/run/celery/%n.pid"
CELERYD_LOG_FILE="/var/log/celery/%n%I.log"
CELERYD_LOG_LEVEL="INFO"

Running the worker with superuser privileges (root)

Running the worker with superuser privileges is a very dangerous practice. There should always be a workaround to
avoid running as root. Celery may run arbitrary code in messages serialized with pickle - this is dangerous, especially
when run as root.

By default Celery won’t run workers as root. The associated error message may not be visible in the logs but may be
seen if C_FAKEFORK is used.

To force Celery to run workers as root use C_FORCE_ROOT.

When running as root without C_FORCE_ROOT the worker will appear to start with “OK” but exit immediately after
with no apparent errors. This problem may appear when running the project in a new development or production
environment (inadvertently) as root.

supervisor

• extra/supervisord/

launchd (macOS)

• extra/macOS

Periodic Tasks

• Introduction

• Time Zones

• Entries

– Available Fields

• Crontab schedules

• Solar schedules

• Starting the Scheduler

– Using custom scheduler classes

Introduction

celery beat is a scheduler; It kicks off tasks at regular intervals, that are then executed by available worker nodes
in the cluster.

By default the entries are taken from the beat_schedule setting, but custom stores can also be used, like storing
the entries in a SQL database.

114 Chapter 2. Contents

https://github.com/celery/celery/tree/master/extra/supervisord/
https://github.com/celery/celery/tree/master/extra/macOS/

Celery Documentation, Release 4.1.0

You have to ensure only a single scheduler is running for a schedule at a time, otherwise you’d end up with duplicate
tasks. Using a centralized approach means the schedule doesn’t have to be synchronized, and the service can operate
without using locks.

Time Zones

The periodic task schedules uses the UTC time zone by default, but you can change the time zone used using the
timezone setting.

An example time zone could be Europe/London:

timezone = 'Europe/London'

This setting must be added to your app, either by configuration it directly using (app.conf.timezone
= 'Europe/London'), or by adding it to your configuration module if you have set one up using app.
config_from_object. See Configuration for more information about configuration options.

The default scheduler (storing the schedule in the celerybeat-schedule file) will automatically detect that the
time zone has changed, and so will reset the schedule itself, but other schedulers may not be so smart (e.g., the Django
database scheduler, see below) and in that case you’ll have to reset the schedule manually.

Django Users

Celery recommends and is compatible with the new USE_TZ setting introduced in Django 1.4.

For Django users the time zone specified in the TIME_ZONE setting will be used, or you can specify a custom time
zone for Celery alone by using the timezone setting.

The database scheduler won’t reset when timezone related settings change, so you must do this manually:

$ python manage.py shell
>>> from djcelery.models import PeriodicTask
>>> PeriodicTask.objects.update(last_run_at=None)

Entries

To call a task periodically you have to add an entry to the beat schedule list.

from celery import Celery
from celery.schedules import crontab

app = Celery()

@app.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):

Calls test('hello') every 10 seconds.
sender.add_periodic_task(10.0, test.s('hello'), name='add every 10')

Calls test('world') every 30 seconds
sender.add_periodic_task(30.0, test.s('world'), expires=10)

Executes every Monday morning at 7:30 a.m.
sender.add_periodic_task(

crontab(hour=7, minute=30, day_of_week=1),
test.s('Happy Mondays!'),

2.3. User Guide 115

Celery Documentation, Release 4.1.0

)

@app.task
def test(arg):

print(arg)

Setting these up from within the on_after_configure handler means that we’ll not evaluate the app at module
level when using test.s().

The add_periodic_task() function will add the entry to the beat_schedule setting behind the scenes, and
the same setting can also be used to set up periodic tasks manually:

Example: Run the tasks.add task every 30 seconds.

app.conf.beat_schedule = {
'add-every-30-seconds': {

'task': 'tasks.add',
'schedule': 30.0,
'args': (16, 16)

},
}
app.conf.timezone = 'UTC'

Note: If you’re wondering where these settings should go then please see Configuration. You can either set these
options on your app directly or you can keep a separate module for configuration.

If you want to use a single item tuple for args, don’t forget that the constructor is a comma, and not a pair of parenthe-
ses.

Using a timedelta for the schedule means the task will be sent in 30 second intervals (the first task will be sent 30
seconds after celery beat starts, and then every 30 seconds after the last run).

A Crontab like schedule also exists, see the section on Crontab schedules.

Like with cron, the tasks may overlap if the first task doesn’t complete before the next. If that’s a concern you should
use a locking strategy to ensure only one instance can run at a time (see for example Ensuring a task is only executed
one at a time).

Available Fields

• task

The name of the task to execute.

• schedule

The frequency of execution.

This can be the number of seconds as an integer, a timedelta, or a crontab. You can also define
your own custom schedule types, by extending the interface of schedule.

• args

Positional arguments (list or tuple).

• kwargs

Keyword arguments (dict).

116 Chapter 2. Contents

https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/stdtypes.html#tuple
https://docs.python.org/dev/library/stdtypes.html#dict

Celery Documentation, Release 4.1.0

• options

Execution options (dict).

This can be any argument supported by apply_async() – exchange, routing_key, expires, and so
on.

• relative

If relative is true timedelta schedules are scheduled “by the clock.” This means the frequency is
rounded to the nearest second, minute, hour or day depending on the period of the timedelta.

By default relative is false, the frequency isn’t rounded and will be relative to the time when celery
beat was started.

Crontab schedules

If you want more control over when the task is executed, for example, a particular time of day or day of the week, you
can use the crontab schedule type:

from celery.schedules import crontab

app.conf.beat_schedule = {
Executes every Monday morning at 7:30 a.m.
'add-every-monday-morning': {

'task': 'tasks.add',
'schedule': crontab(hour=7, minute=30, day_of_week=1),
'args': (16, 16),

},
}

The syntax of these Crontab expressions are very flexible.

Some examples:

2.3. User Guide 117

https://docs.python.org/dev/library/stdtypes.html#dict
https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/datetime.html#datetime.timedelta

Celery Documentation, Release 4.1.0

Example Meaning
crontab() Execute every minute.
crontab(minute=0, hour=0) Execute daily at midnight.
crontab(minute=0, hour='*/3') Execute every three hours: midnight, 3am, 6am, 9am,

noon, 3pm, 6pm, 9pm.

crontab(minute=0, hour='0,3,6,9,12,
15,18,21')

Same as previous.

crontab(minute='*/15') Execute every 15 minutes.
crontab(day_of_week='sunday') Execute every minute (!) at Sundays.

crontab(minute='*', hour='*',
day_of_week='sun')

Same as previous.

crontab(minute='*/10', hour='3,17,
22', day_of_week='thu,fri')

Execute every ten minutes, but only between 3-4 am,
5-6 pm, and 10-11 pm on Thursdays or Fridays.

crontab(minute=0, hour='*/2,*/3') Execute every even hour, and every hour divisible by
three. This means: at every hour except: 1am, 5am,
7am, 11am, 1pm, 5pm, 7pm, 11pm

crontab(minute=0, hour='*/5') Execute hour divisible by 5. This means that it is trig-
gered at 3pm, not 5pm (since 3pm equals the 24-hour
clock value of “15”, which is divisible by 5).

crontab(minute=0, hour='*/3,8-17') Execute every hour divisible by 3, and every hour during
office hours (8am-5pm).

crontab(0, 0, day_of_month='2') Execute on the second day of every month.

crontab(0, 0, day_of_month='2-30/3')
Execute on every even numbered day.

crontab(0, 0, day_of_month='1-7,
15-21')

Execute on the first and third weeks of the month.

crontab(0, 0, day_of_month='11',
month_of_year='5')

Execute on the eleventh of May every year.

crontab(0, 0, month_of_year='*/3')
Execute on the first month of every quarter.

See celery.schedules.crontab for more documentation.

Solar schedules

If you have a task that should be executed according to sunrise, sunset, dawn or dusk, you can use the solar schedule
type:

from celery.schedules import solar

app.conf.beat_schedule = {
Executes at sunset in Melbourne
'add-at-melbourne-sunset': {

'task': 'tasks.add',
'schedule': solar('sunset', -37.81753, 144.96715),

118 Chapter 2. Contents

Celery Documentation, Release 4.1.0

'args': (16, 16),
},

}

The arguments are simply: solar(event, latitude, longitude)

Be sure to use the correct sign for latitude and longitude:

Sign Argument Meaning
+ latitude North
- latitude South
+ longitude East
- longitude West

Possible event types are:

Event Meaning
dawn_astronomicalExecute at the moment after which the sky is no longer completely dark. This is when the sun is

18 degrees below the horizon.
dawn_nauticalExecute when there’s enough sunlight for the horizon and some objects to be distinguishable;

formally, when the sun is 12 degrees below the horizon.
dawn_civil Execute when there’s enough light for objects to be distinguishable so that outdoor activities can

commence; formally, when the Sun is 6 degrees below the horizon.
sunrise Execute when the upper edge of the sun appears over the eastern horizon in the morning.
solar_noon Execute when the sun is highest above the horizon on that day.
sunset Execute when the trailing edge of the sun disappears over the western horizon in the evening.
dusk_civil Execute at the end of civil twilight, when objects are still distinguishable and some stars and

planets are visible. Formally, when the sun is 6 degrees below the horizon.
dusk_nauticalExecute when the sun is 12 degrees below the horizon. Objects are no longer distinguishable,

and the horizon is no longer visible to the naked eye.
dusk_astronomicalExecute at the moment after which the sky becomes completely dark; formally, when the sun is

18 degrees below the horizon.

All solar events are calculated using UTC, and are therefore unaffected by your timezone setting.

In polar regions, the sun may not rise or set every day. The scheduler is able to handle these cases (i.e., a sunrise
event won’t run on a day when the sun doesn’t rise). The one exception is solar_noon, which is formally defined
as the moment the sun transits the celestial meridian, and will occur every day even if the sun is below the horizon.

Twilight is defined as the period between dawn and sunrise; and between sunset and dusk. You can schedule an event
according to “twilight” depending on your definition of twilight (civil, nautical, or astronomical), and whether you
want the event to take place at the beginning or end of twilight, using the appropriate event from the list above.

See celery.schedules.solar for more documentation.

Starting the Scheduler

To start the celery beat service:

$ celery -A proj beat

You can also embed beat inside the worker by enabling the workers -B option, this is convenient if you’ll never run
more than one worker node, but it’s not commonly used and for that reason isn’t recommended for production use:

$ celery -A proj worker -B

2.3. User Guide 119

Celery Documentation, Release 4.1.0

Beat needs to store the last run times of the tasks in a local database file (named celerybeat-schedule by default), so it
needs access to write in the current directory, or alternatively you can specify a custom location for this file:

$ celery -A proj beat -s /home/celery/var/run/celerybeat-schedule

Note: To daemonize beat see Daemonization.

Using custom scheduler classes

Custom scheduler classes can be specified on the command-line (the --scheduler argument).

The default scheduler is the celery.beat.PersistentScheduler, that simply keeps track of the last run
times in a local shelve database file.

There’s also the django-celery-beat extension that stores the schedule in the Django database, and presents a convenient
admin interface to manage periodic tasks at runtime.

To install and use this extension:

1. Use pip to install the package:

$ pip install django-celery-beat

2. Add the django_celery_beat module to INSTALLED_APPS in your Django project’ settings.py:

INSTALLED_APPS = (
...,
'django_celery_beat',

)

Note that there is no dash in the module name, only underscores.

3. Apply Django database migrations so that the necessary tables are created:

$ python manage.py migrate

4. Start the celery beat service using the django_celery_beat.
schedulers:DatabaseScheduler scheduler:

$ celery -A proj beat -l info --scheduler django_celery_beat.
→˓schedulers:DatabaseScheduler

Note: You may also add this as an settings option directly.

5. Visit the Django-Admin interface to set up some periodic tasks.

Routing Tasks

Note: Alternate routing concepts like topic and fanout is not available for all transports, please consult the transport
comparison table.

120 Chapter 2. Contents

https://docs.python.org/dev/library/shelve.html#module-shelve
https://pypi.python.org/pypi/django-celery-beat/
http://kombu.readthedocs.io/en/master/introduction.html#transport-comparison
http://kombu.readthedocs.io/en/master/introduction.html#transport-comparison

Celery Documentation, Release 4.1.0

• Basics

– Automatic routing

* Changing the name of the default queue

* How the queues are defined

– Manual routing

• Special Routing Options

– RabbitMQ Message Priorities

• AMQP Primer

– Messages

– Producers, consumers, and brokers

– Exchanges, queues, and routing keys

– Exchange types

* Direct exchanges

* Topic exchanges

– Related API commands

– Hands-on with the API

• Routing Tasks

– Defining queues

– Specifying task destination

– Routers

– Broadcast

Basics

Automatic routing

The simplest way to do routing is to use the task_create_missing_queues setting (on by default).

With this setting on, a named queue that’s not already defined in task_queues will be created automatically. This
makes it easy to perform simple routing tasks.

Say you have two servers, x, and y that handles regular tasks, and one server z, that only handles feed related tasks.
You can use this configuration:

task_routes = {'feed.tasks.import_feed': {'queue': 'feeds'}}

With this route enabled import feed tasks will be routed to the “feeds” queue, while all other tasks will be routed to
the default queue (named “celery” for historical reasons).

Alternatively, you can use glob pattern matching, or even regular expressions, to match all tasks in the feed.tasks
name-space:

2.3. User Guide 121

Celery Documentation, Release 4.1.0

app.conf.task_routes = {'feed.tasks.*': {'queue': 'feeds'}}

If the order of matching patterns is important you should specify the router in items format instead:

task_routes = ([
('feed.tasks.*', {'queue': 'feeds'}),
('web.tasks.*', {'queue': 'web'}),
(re.compile(r'(video|image)\.tasks\..*'), {'queue': 'media'}),

],)

Note: The task_routes setting can either be a dictionary, or a list of router objects, so in this case we need to
specify the setting as a tuple containing a list.

After installing the router, you can start server z to only process the feeds queue like this:

user@z:/$ celery -A proj worker -Q feeds

You can specify as many queues as you want, so you can make this server process the default queue as well:

user@z:/$ celery -A proj worker -Q feeds,celery

Changing the name of the default queue

You can change the name of the default queue by using the following configuration:

app.conf.task_default_queue = 'default'

How the queues are defined

The point with this feature is to hide the complex AMQP protocol for users with only basic needs. However – you
may still be interested in how these queues are declared.

A queue named “video” will be created with the following settings:

{'exchange': 'video',
'exchange_type': 'direct',
'routing_key': 'video'}

The non-AMQP backends like Redis or SQS don’t support exchanges, so they require the exchange to have the same
name as the queue. Using this design ensures it will work for them as well.

Manual routing

Say you have two servers, x, and y that handles regular tasks, and one server z, that only handles feed related tasks,
you can use this configuration:

from kombu import Queue

app.conf.task_default_queue = 'default'
app.conf.task_queues = (

Queue('default', routing_key='task.#'),

122 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Queue('feed_tasks', routing_key='feed.#'),
)
task_default_exchange = 'tasks'
task_default_exchange_type = 'topic'
task_default_routing_key = 'task.default'

task_queues is a list of Queue instances. If you don’t set the exchange or exchange type values for a key, these
will be taken from the task_default_exchange and task_default_exchange_type settings.

To route a task to the feed_tasks queue, you can add an entry in the task_routes setting:

task_routes = {
'feeds.tasks.import_feed': {

'queue': 'feed_tasks',
'routing_key': 'feed.import',

},
}

You can also override this using the routing_key argument to Task.apply_async(), or send_task():

>>> from feeds.tasks import import_feed
>>> import_feed.apply_async(args=['http://cnn.com/rss'],
... queue='feed_tasks',
... routing_key='feed.import')

To make server z consume from the feed queue exclusively you can start it with the celery worker -Q option:

user@z:/$ celery -A proj worker -Q feed_tasks --hostname=z@%h

Servers x and y must be configured to consume from the default queue:

user@x:/$ celery -A proj worker -Q default --hostname=x@%h
user@y:/$ celery -A proj worker -Q default --hostname=y@%h

If you want, you can even have your feed processing worker handle regular tasks as well, maybe in times when there’s
a lot of work to do:

user@z:/$ celery -A proj worker -Q feed_tasks,default --hostname=z@%h

If you have another queue but on another exchange you want to add, just specify a custom exchange and exchange
type:

from kombu import Exchange, Queue

app.conf.task_queues = (
Queue('feed_tasks', routing_key='feed.#'),
Queue('regular_tasks', routing_key='task.#'),
Queue('image_tasks', exchange=Exchange('mediatasks', type='direct'),

routing_key='image.compress'),
)

If you’re confused about these terms, you should read up on AMQP.

See also:

In addition to the AMQP Primer below, there’s Rabbits and Warrens, an excellent blog post describing queues and
exchanges. There’s also The CloudAMQP tutorial, For users of RabbitMQ the RabbitMQ FAQ could be useful as a
source of information.

2.3. User Guide 123

http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/
https://www.rabbitmq.com/faq.html

Celery Documentation, Release 4.1.0

Special Routing Options

RabbitMQ Message Priorities

supported transports RabbitMQ

New in version 4.0.

Queues can be configured to support priorities by setting the x-max-priority argument:

from kombu import Exchange, Queue

app.conf.task_queues = [
Queue('tasks', Exchange('tasks'), routing_key='tasks',

queue_arguments={'x-max-priority': 10},
]

A default value for all queues can be set using the task_queue_max_priority setting:

app.conf.task_queue_max_priority = 10

AMQP Primer

Messages

A message consists of headers and a body. Celery uses headers to store the content type of the message and its content
encoding. The content type is usually the serialization format used to serialize the message. The body contains the
name of the task to execute, the task id (UUID), the arguments to apply it with and some additional meta-data – like
the number of retries or an ETA.

This is an example task message represented as a Python dictionary:

{'task': 'myapp.tasks.add',
'id': '54086c5e-6193-4575-8308-dbab76798756',
'args': [4, 4],
'kwargs': {}}

Producers, consumers, and brokers

The client sending messages is typically called a publisher, or a producer, while the entity receiving messages is called
a consumer.

The broker is the message server, routing messages from producers to consumers.

You’re likely to see these terms used a lot in AMQP related material.

Exchanges, queues, and routing keys

1. Messages are sent to exchanges.

2. An exchange routes messages to one or more queues. Several exchange types exists, providing different ways
to do routing, or implementing different messaging scenarios.

3. The message waits in the queue until someone consumes it.

124 Chapter 2. Contents

Celery Documentation, Release 4.1.0

4. The message is deleted from the queue when it has been acknowledged.

The steps required to send and receive messages are:

1. Create an exchange

2. Create a queue

3. Bind the queue to the exchange.

Celery automatically creates the entities necessary for the queues in task_queues to work (except if the queue’s
auto_declare setting is set to False).

Here’s an example queue configuration with three queues; One for video, one for images, and one default queue for
everything else:

from kombu import Exchange, Queue

app.conf.task_queues = (
Queue('default', Exchange('default'), routing_key='default'),
Queue('videos', Exchange('media'), routing_key='media.video'),
Queue('images', Exchange('media'), routing_key='media.image'),

)
app.conf.task_default_queue = 'default'
app.conf.task_default_exchange_type = 'direct'
app.conf.task_default_routing_key = 'default'

Exchange types

The exchange type defines how the messages are routed through the exchange. The exchange types defined in the stan-
dard are direct, topic, fanout and headers. Also non-standard exchange types are available as plug-ins to RabbitMQ,
like the last-value-cache plug-in by Michael Bridgen.

Direct exchanges

Direct exchanges match by exact routing keys, so a queue bound by the routing key video only receives messages with
that routing key.

Topic exchanges

Topic exchanges matches routing keys using dot-separated words, and the wild-card characters: * (matches a single
word), and # (matches zero or more words).

With routing keys like usa.news, usa.weather, norway.news, and norway.weather, bindings could be
*.news (all news), usa.# (all items in the USA), or usa.weather (all USA weather items).

Related API commands

exchange.declare(exchange_name, type, passive,
durable, auto_delete, internal)

Declares an exchange by name.

See amqp:Channel.exchange_declare.

Keyword Arguments

2.3. User Guide 125

https://github.com/squaremo/rabbitmq-lvc-plugin
http://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.exchange_declare

Celery Documentation, Release 4.1.0

• passive – Passive means the exchange won’t be created, but you can use this to check if
the exchange already exists.

• durable – Durable exchanges are persistent (i.e., they survive a broker restart).

• auto_delete – This means the queue will be deleted by the broker when there are no
more queues using it.

queue.declare(queue_name, passive, durable, exclusive, auto_delete)
Declares a queue by name.

See amqp:Channel.queue_declare

Exclusive queues can only be consumed from by the current connection. Exclusive also implies auto_delete.

queue.bind(queue_name, exchange_name, routing_key)
Binds a queue to an exchange with a routing key.

Unbound queues won’t receive messages, so this is necessary.

See amqp:Channel.queue_bind

queue.delete(name, if_unused=False, if_empty=False)
Deletes a queue and its binding.

See amqp:Channel.queue_delete

exchange.delete(name, if_unused=False)
Deletes an exchange.

See amqp:Channel.exchange_delete

Note: Declaring doesn’t necessarily mean “create”. When you declare you assert that the entity exists and that
it’s operable. There’s no rule as to whom should initially create the exchange/queue/binding, whether consumer or
producer. Usually the first one to need it will be the one to create it.

Hands-on with the API

Celery comes with a tool called celery amqp that’s used for command line access to the AMQP API, enabling
access to administration tasks like creating/deleting queues and exchanges, purging queues or sending messages. It
can also be used for non-AMQP brokers, but different implementation may not implement all commands.

You can write commands directly in the arguments to celery amqp, or just start with no arguments to start it in
shell-mode:

$ celery -A proj amqp
-> connecting to amqp://guest@localhost:5672/.
-> connected.
1>

Here 1> is the prompt. The number 1, is the number of commands you have executed so far. Type help for a list of
commands available. It also supports auto-completion, so you can start typing a command and then hit the tab key to
show a list of possible matches.

Let’s create a queue you can send messages to:

$ celery -A proj amqp
1> exchange.declare testexchange direct
ok.

126 Chapter 2. Contents

http://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_declare
http://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_bind
http://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.queue_delete
http://amqp.readthedocs.io/en/latest/reference/amqp.channel.html#amqp.channel.Channel.exchange_delete

Celery Documentation, Release 4.1.0

2> queue.declare testqueue
ok. queue:testqueue messages:0 consumers:0.
3> queue.bind testqueue testexchange testkey
ok.

This created the direct exchange testexchange, and a queue named testqueue. The queue is bound to the
exchange using the routing key testkey.

From now on all messages sent to the exchange testexchange with routing key testkey will be moved to this
queue. You can send a message by using the basic.publish command:

4> basic.publish 'This is a message!' testexchange testkey
ok.

Now that the message is sent you can retrieve it again. You can use the basic.get` command here, that polls for
new messages on the queue in a synchronous manner (this is OK for maintenance tasks, but for services you want to
use basic.consume instead)

Pop a message off the queue:

5> basic.get testqueue
{'body': 'This is a message!',
'delivery_info': {'delivery_tag': 1,

'exchange': u'testexchange',
'message_count': 0,
'redelivered': False,
'routing_key': u'testkey'},

'properties': {}}

AMQP uses acknowledgment to signify that a message has been received and processed successfully. If the message
hasn’t been acknowledged and consumer channel is closed, the message will be delivered to another consumer.

Note the delivery tag listed in the structure above; Within a connection channel, every received message has a unique
delivery tag, This tag is used to acknowledge the message. Also note that delivery tags aren’t unique across connec-
tions, so in another client the delivery tag 1 might point to a different message than in this channel.

You can acknowledge the message you received using basic.ack:

6> basic.ack 1
ok.

To clean up after our test session you should delete the entities you created:

7> queue.delete testqueue
ok. 0 messages deleted.
8> exchange.delete testexchange
ok.

Routing Tasks

Defining queues

In Celery available queues are defined by the task_queues setting.

Here’s an example queue configuration with three queues; One for video, one for images, and one default queue for
everything else:

2.3. User Guide 127

Celery Documentation, Release 4.1.0

default_exchange = Exchange('default', type='direct')
media_exchange = Exchange('media', type='direct')

app.conf.task_queues = (
Queue('default', default_exchange, routing_key='default'),
Queue('videos', media_exchange, routing_key='media.video'),
Queue('images', media_exchange, routing_key='media.image')

)
app.conf.task_default_queue = 'default'
app.conf.task_default_exchange = 'default'
app.conf.task_default_routing_key = 'default'

Here, the task_default_queue will be used to route tasks that doesn’t have an explicit route.

The default exchange, exchange type, and routing key will be used as the default routing values for tasks, and as the
default values for entries in task_queues.

Multiple bindings to a single queue are also supported. Here’s an example of two routing keys that are both bound to
the same queue:

from kombu import Exchange, Queue, binding

media_exchange = Exchange('media', type='direct')

CELERY_QUEUES = (
Queue('media', [

binding(media_exchange, routing_key='media.video'),
binding(media_exchange, routing_key='media.image'),

]),
)

Specifying task destination

The destination for a task is decided by the following (in order):

1. The Routers defined in task_routes.

2. The routing arguments to Task.apply_async().

3. Routing related attributes defined on the Task itself.

It’s considered best practice to not hard-code these settings, but rather leave that as configuration options by using
Routers; This is the most flexible approach, but sensible defaults can still be set as task attributes.

Routers

A router is a function that decides the routing options for a task.

All you need to define a new router is to define a function with the signature (name, args, kwargs,
options, task=None, **kw):

def route_task(name, args, kwargs, options, task=None, **kw):
if name == 'myapp.tasks.compress_video':

return {'exchange': 'video',
'exchange_type': 'topic',
'routing_key': 'video.compress'}

128 Chapter 2. Contents

Celery Documentation, Release 4.1.0

If you return the queue key, it’ll expand with the defined settings of that queue in task_queues:

{'queue': 'video', 'routing_key': 'video.compress'}

becomes –>

{'queue': 'video',
'exchange': 'video',
'exchange_type': 'topic',
'routing_key': 'video.compress'}

You install router classes by adding them to the task_routes setting:

task_routes = (route_task,)

Router functions can also be added by name:

task_routes = ('myapp.routers.route_task',)

For simple task name -> route mappings like the router example above, you can simply drop a dict into task_routes
to get the same behavior:

task_routes = {
'myapp.tasks.compress_video': {

'queue': 'video',
'routing_key': 'video.compress',

},
}

The routers will then be traversed in order, it will stop at the first router returning a true value, and use that as the final
route for the task.

You can also have multiple routers defined in a sequence:

task_routes = [
route_task,
{

'myapp.tasks.compress_video': {
'queue': 'video',
'routing_key': 'video.compress',

},
]

The routers will then be visited in turn, and the first to return a value will be chosen.

Broadcast

Celery can also support broadcast routing. Here is an example exchange broadcast_tasks that delivers copies of
tasks to all workers connected to it:

from kombu.common import Broadcast

app.conf.task_queues = (Broadcast('broadcast_tasks'),)
app.conf.task_routes = {

'tasks.reload_cache': {
'queue': 'broadcast_tasks',
'exchange': 'broadcast_tasks'

2.3. User Guide 129

Celery Documentation, Release 4.1.0

}
}

Now the tasks.reload_cache task will be sent to every worker consuming from this queue.

Here is another example of broadcast routing, this time with a celery beat schedule:

from kombu.common import Broadcast
from celery.schedules import crontab

app.conf.task_queues = (Broadcast('broadcast_tasks'),)

app.conf.beat_schedule = {
'test-task': {

'task': 'tasks.reload_cache',
'schedule': crontab(minute=0, hour='*/3'),
'options': {'exchange': 'broadcast_tasks'}

},
}

Broadcast & Results

Note that Celery result doesn’t define what happens if two tasks have the same task_id. If the same task is distributed
to more than one worker, then the state history may not be preserved.

It’s a good idea to set the task.ignore_result attribute in this case.

Monitoring and Management Guide

• Introduction

• Workers

– Management Command-line Utilities (inspect/control)

* Commands

* Specifying destination nodes

– Flower: Real-time Celery web-monitor

* Features

* Usage

– celery events: Curses Monitor

• RabbitMQ

– Inspecting queues

• Redis

– Inspecting queues

• Munin

• Events

130 Chapter 2. Contents

Celery Documentation, Release 4.1.0

– Snapshots

* Custom Camera

– Real-time processing

• Event Reference

– Task Events

* task-sent

* task-received

* task-started

* task-succeeded

* task-failed

* task-rejected

* task-revoked

* task-retried

– Worker Events

* worker-online

* worker-heartbeat

* worker-offline

Introduction

There are several tools available to monitor and inspect Celery clusters.

This document describes some of these, as as well as features related to monitoring, like events and broadcast com-
mands.

Workers

Management Command-line Utilities (inspect/control)

celery can also be used to inspect and manage worker nodes (and to some degree tasks).

To list all the commands available do:

$ celery help

or to get help for a specific command do:

$ celery <command> --help

Commands

• shell: Drop into a Python shell.

2.3. User Guide 131

Celery Documentation, Release 4.1.0

The locals will include the celery variable: this is the current app. Also all known tasks will be automatically
added to locals (unless the --without-tasks flag is set).

Uses Ipython, bpython, or regular python in that order if installed. You can force an implementation using
--ipython, --bpython, or --python.

• status: List active nodes in this cluster

$ celery -A proj status

• result: Show the result of a task

$ celery -A proj result -t tasks.add 4e196aa4-0141-4601-8138-7aa33db0f577

Note that you can omit the name of the task as long as the task doesn’t use a custom result backend.

• purge: Purge messages from all configured task queues.

This command will remove all messages from queues configured in the CELERY_QUEUES setting:

Warning: There’s no undo for this operation, and messages will be permanently deleted!

$ celery -A proj purge

You can also specify the queues to purge using the -Q option:

$ celery -A proj purge -Q celery,foo,bar

and exclude queues from being purged using the -X option:

$ celery -A proj purge -X celery

• inspect active: List active tasks

$ celery -A proj inspect active

These are all the tasks that are currently being executed.

• inspect scheduled: List scheduled ETA tasks

$ celery -A proj inspect scheduled

These are tasks reserved by the worker when they have an eta or countdown argument set.

• inspect reserved: List reserved tasks

$ celery -A proj inspect reserved

This will list all tasks that have been prefetched by the worker, and is currently waiting to be executed
(doesn’t include tasks with an ETA value set).

• inspect revoked: List history of revoked tasks

$ celery -A proj inspect revoked

• inspect registered: List registered tasks

132 Chapter 2. Contents

https://pypi.python.org/pypi/Ipython/
https://pypi.python.org/pypi/bpython/

Celery Documentation, Release 4.1.0

$ celery -A proj inspect registered

• inspect stats: Show worker statistics (see Statistics)

$ celery -A proj inspect stats

• inspect query_task: Show information about task(s) by id.

Any worker having a task in this set of ids reserved/active will respond with status and information.

$ celery -A proj inspect query_task e9f6c8f0-fec9-4ae8-a8c6-cf8c8451d4f8

You can also query for information about multiple tasks:

$ celery -A proj inspect query_task id1 id2 ... idN

• control enable_events: Enable events

$ celery -A proj control enable_events

• control disable_events: Disable events

$ celery -A proj control disable_events

• migrate: Migrate tasks from one broker to another (EXPERIMENTAL).

$ celery -A proj migrate redis://localhost amqp://localhost

This command will migrate all the tasks on one broker to another. As this command is new and experimental
you should be sure to have a backup of the data before proceeding.

Note: All inspect and control commands supports a --timeout argument, This is the number of seconds to
wait for responses. You may have to increase this timeout if you’re not getting a response due to latency.

Specifying destination nodes

By default the inspect and control commands operates on all workers. You can specify a single, or a list of workers by
using the --destination argument:

$ celery -A proj inspect -d w1@e.com,w2@e.com reserved

$ celery -A proj control -d w1@e.com,w2@e.com enable_events

Flower: Real-time Celery web-monitor

Flower is a real-time web based monitor and administration tool for Celery. It’s under active development, but
is already an essential tool. Being the recommended monitor for Celery, it obsoletes the Django-Admin monitor,
celerymon and the ncurses based monitor.

Flower is pronounced like “flow”, but you can also use the botanical version if you prefer.

2.3. User Guide 133

Celery Documentation, Release 4.1.0

Features

• Real-time monitoring using Celery Events

– Task progress and history

– Ability to show task details (arguments, start time, run-time, and more)

– Graphs and statistics

• Remote Control

– View worker status and statistics

– Shutdown and restart worker instances

– Control worker pool size and autoscale settings

– View and modify the queues a worker instance consumes from

– View currently running tasks

– View scheduled tasks (ETA/countdown)

– View reserved and revoked tasks

– Apply time and rate limits

– Configuration viewer

– Revoke or terminate tasks

• HTTP API

– List workers

– Shut down a worker

– Restart worker’s pool

– Grow worker’s pool

– Shrink worker’s pool

– Autoscale worker pool

– Start consuming from a queue

– Stop consuming from a queue

– List tasks

– List (seen) task types

– Get a task info

– Execute a task

– Execute a task by name

– Get a task result

– Change soft and hard time limits for a task

– Change rate limit for a task

– Revoke a task

• OpenID authentication

134 Chapter 2. Contents

Celery Documentation, Release 4.1.0

2.3. User Guide 135

Celery Documentation, Release 4.1.0

Screenshots

More screenshots:

Usage

You can use pip to install Flower:

$ pip install flower

Running the flower command will start a web-server that you can visit:

$ celery -A proj flower

The default port is http://localhost:5555, but you can change this using the --port argument:

$ celery -A proj flower --port=5555

Broker URL can also be passed through the --broker argument :

$ celery flower --broker=amqp://guest:guest@localhost:5672//
or
$ celery flower --broker=redis://guest:guest@localhost:6379/0

Then, you can visit flower in your web browser :

$ open http://localhost:5555

136 Chapter 2. Contents

https://github.com/mher/flower/tree/master/docs/screenshots
http://localhost:5555

Celery Documentation, Release 4.1.0

Flower has many more features than are detailed here, including authorization options. Check out the official docu-
mentation for more information.

celery events: Curses Monitor

New in version 2.0.

celery events is a simple curses monitor displaying task and worker history. You can inspect the result and traceback
of tasks, and it also supports some management commands like rate limiting and shutting down workers. This monitor
was started as a proof of concept, and you probably want to use Flower instead.

Starting:

$ celery -A proj events

You should see a screen like:

celery events is also used to start snapshot cameras (see Snapshots:

$ celery -A proj events --camera=<camera-class> --frequency=1.0

and it includes a tool to dump events to stdout:

$ celery -A proj events --dump

2.3. User Guide 137

https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/

Celery Documentation, Release 4.1.0

For a complete list of options use --help:

$ celery events --help

RabbitMQ

To manage a Celery cluster it is important to know how RabbitMQ can be monitored.

RabbitMQ ships with the rabbitmqctl(1) command, with this you can list queues, exchanges, bindings, queue lengths,
the memory usage of each queue, as well as manage users, virtual hosts and their permissions.

Note: The default virtual host ("/") is used in these examples, if you use a custom virtual host you have to add the
-p argument to the command, for example: rabbitmqctl list_queues -p my_vhost ...

Inspecting queues

Finding the number of tasks in a queue:

$ rabbitmqctl list_queues name messages messages_ready \
messages_unacknowledged

Here messages_ready is the number of messages ready for delivery (sent but not received), messages_unacknowledged
is the number of messages that’s been received by a worker but not acknowledged yet (meaning it is in progress, or
has been reserved). messages is the sum of ready and unacknowledged messages.

Finding the number of workers currently consuming from a queue:

$ rabbitmqctl list_queues name consumers

Finding the amount of memory allocated to a queue:

$ rabbitmqctl list_queues name memory

Tip Adding the -q option to rabbitmqctl(1) makes the output easier to parse.

Redis

If you’re using Redis as the broker, you can monitor the Celery cluster using the redis-cli(1) command to list lengths
of queues.

Inspecting queues

Finding the number of tasks in a queue:

$ redis-cli -h HOST -p PORT -n DATABASE_NUMBER llen QUEUE_NAME

The default queue is named celery. To get all available queues, invoke:

$ redis-cli -h HOST -p PORT -n DATABASE_NUMBER keys *

138 Chapter 2. Contents

http://www.rabbitmq.com/man/rabbitmqctl.1.man.html
http://www.rabbitmq.com/man/rabbitmqctl.1.man.html

Celery Documentation, Release 4.1.0

Note: Queue keys only exists when there are tasks in them, so if a key doesn’t exist it simply means there are no
messages in that queue. This is because in Redis a list with no elements in it is automatically removed, and hence it
won’t show up in the keys command output, and llen for that list returns 0.

Also, if you’re using Redis for other purposes, the output of the keys command will include unrelated values stored
in the database. The recommended way around this is to use a dedicated DATABASE_NUMBER for Celery, you can
also use database numbers to separate Celery applications from each other (virtual hosts), but this won’t affect the
monitoring events used by for example Flower as Redis pub/sub commands are global rather than database based.

Munin

This is a list of known Munin plug-ins that can be useful when maintaining a Celery cluster.

• rabbitmq-munin: Munin plug-ins for RabbitMQ.

https://github.com/ask/rabbitmq-munin

• celery_tasks: Monitors the number of times each task type has been executed (requires celerymon).

http://exchange.munin-monitoring.org/plugins/celery_tasks-2/details

• celery_task_states: Monitors the number of tasks in each state (requires celerymon).

http://exchange.munin-monitoring.org/plugins/celery_tasks/details

Events

The worker has the ability to send a message whenever some event happens. These events are then captured by tools
like Flower, and celery events to monitor the cluster.

Snapshots

New in version 2.1.

Even a single worker can produce a huge amount of events, so storing the history of all events on disk may be very
expensive.

A sequence of events describes the cluster state in that time period, by taking periodic snapshots of this state you can
keep all history, but still only periodically write it to disk.

To take snapshots you need a Camera class, with this you can define what should happen every time the state is
captured; You can write it to a database, send it by email or something else entirely.

celery events is then used to take snapshots with the camera, for example if you want to capture state every 2
seconds using the camera myapp.Camera you run celery events with the following arguments:

$ celery -A proj events -c myapp.Camera --frequency=2.0

Custom Camera

Cameras can be useful if you need to capture events and do something with those events at an interval. For real-time
event processing you should use app.events.Receiver directly, like in Real-time processing.

Here is an example camera, dumping the snapshot to screen:

2.3. User Guide 139

https://github.com/ask/rabbitmq-munin
http://exchange.munin-monitoring.org/plugins/celery_tasks-2/details
http://exchange.munin-monitoring.org/plugins/celery_tasks/details

Celery Documentation, Release 4.1.0

from pprint import pformat

from celery.events.snapshot import Polaroid

class DumpCam(Polaroid):
clear_after = True # clear after flush (incl, state.event_count).

def on_shutter(self, state):
if not state.event_count:

No new events since last snapshot.
return

print('Workers: {0}'.format(pformat(state.workers, indent=4)))
print('Tasks: {0}'.format(pformat(state.tasks, indent=4)))
print('Total: {0.event_count} events, {0.task_count} tasks'.format(

state))

See the API reference for celery.events.state to read more about state objects.

Now you can use this cam with celery events by specifying it with the -c option:

$ celery -A proj events -c myapp.DumpCam --frequency=2.0

Or you can use it programmatically like this:

from celery import Celery
from myapp import DumpCam

def main(app, freq=1.0):
state = app.events.State()
with app.connection() as connection:

recv = app.events.Receiver(connection, handlers={'*': state.event})
with DumpCam(state, freq=freq):

recv.capture(limit=None, timeout=None)

if __name__ == '__main__':
app = Celery(broker='amqp://guest@localhost//')
main(app)

Real-time processing

To process events in real-time you need the following

• An event consumer (this is the Receiver)

• A set of handlers called when events come in.

You can have different handlers for each event type, or a catch-all handler can be used (‘*’)

• State (optional)

app.events.State is a convenient in-memory representation of tasks and workers in the cluster that’s
updated as events come in.

It encapsulates solutions for many common things, like checking if a worker is still alive (by verifying heart-
beats), merging event fields together as events come in, making sure time-stamps are in sync, and so on.

Combining these you can easily process events in real-time:

140 Chapter 2. Contents

Celery Documentation, Release 4.1.0

from celery import Celery

def my_monitor(app):
state = app.events.State()

def announce_failed_tasks(event):
state.event(event)
task name is sent only with -received event, and state
will keep track of this for us.
task = state.tasks.get(event['uuid'])

print('TASK FAILED: %s[%s] %s' % (
task.name, task.uuid, task.info(),))

with app.connection() as connection:
recv = app.events.Receiver(connection, handlers={

'task-failed': announce_failed_tasks,
'*': state.event,

})
recv.capture(limit=None, timeout=None, wakeup=True)

if __name__ == '__main__':
app = Celery(broker='amqp://guest@localhost//')
my_monitor(app)

Note: The wakeup argument to capture sends a signal to all workers to force them to send a heartbeat. This way
you can immediately see workers when the monitor starts.

You can listen to specific events by specifying the handlers:

from celery import Celery

def my_monitor(app):
state = app.events.State()

def announce_failed_tasks(event):
state.event(event)
task name is sent only with -received event, and state
will keep track of this for us.
task = state.tasks.get(event['uuid'])

print('TASK FAILED: %s[%s] %s' % (
task.name, task.uuid, task.info(),))

with app.connection() as connection:
recv = app.events.Receiver(connection, handlers={

'task-failed': announce_failed_tasks,
})
recv.capture(limit=None, timeout=None, wakeup=True)

if __name__ == '__main__':
app = Celery(broker='amqp://guest@localhost//')
my_monitor(app)

2.3. User Guide 141

Celery Documentation, Release 4.1.0

Event Reference

This list contains the events sent by the worker, and their arguments.

Task Events

task-sent

signature task-sent(uuid, name, args, kwargs, retries, eta, expires,
queue, exchange, routing_key, root_id, parent_id)

Sent when a task message is published and the task_send_sent_event setting is enabled.

task-received

signature task-received(uuid, name, args, kwargs, retries, eta,
hostname, timestamp, root_id, parent_id)

Sent when the worker receives a task.

task-started

signature task-started(uuid, hostname, timestamp, pid)

Sent just before the worker executes the task.

task-succeeded

signature task-succeeded(uuid, result, runtime, hostname, timestamp)

Sent if the task executed successfully.

Run-time is the time it took to execute the task using the pool. (Starting from the task is sent to the worker pool, and
ending when the pool result handler callback is called).

task-failed

signature task-failed(uuid, exception, traceback, hostname, timestamp)

Sent if the execution of the task failed.

task-rejected

signature task-rejected(uuid, requeued)

The task was rejected by the worker, possibly to be re-queued or moved to a dead letter queue.

142 Chapter 2. Contents

Celery Documentation, Release 4.1.0

task-revoked

signature task-revoked(uuid, terminated, signum, expired)

Sent if the task has been revoked (Note that this is likely to be sent by more than one worker).

• terminated is set to true if the task process was terminated, and the signum field set to the signal used.

• expired is set to true if the task expired.

task-retried

signature task-retried(uuid, exception, traceback, hostname, timestamp)

Sent if the task failed, but will be retried in the future.

Worker Events

worker-online

signature worker-online(hostname, timestamp, freq, sw_ident, sw_ver,
sw_sys)

The worker has connected to the broker and is online.

• hostname: Nodename of the worker.

• timestamp: Event time-stamp.

• freq: Heartbeat frequency in seconds (float).

• sw_ident: Name of worker software (e.g., py-celery).

• sw_ver: Software version (e.g., 2.2.0).

• sw_sys: Operating System (e.g., Linux/Darwin).

worker-heartbeat

signature worker-heartbeat(hostname, timestamp, freq, sw_ident, sw_ver,
sw_sys, active, processed)

Sent every minute, if the worker hasn’t sent a heartbeat in 2 minutes, it is considered to be offline.

• hostname: Nodename of the worker.

• timestamp: Event time-stamp.

• freq: Heartbeat frequency in seconds (float).

• sw_ident: Name of worker software (e.g., py-celery).

• sw_ver: Software version (e.g., 2.2.0).

• sw_sys: Operating System (e.g., Linux/Darwin).

• active: Number of currently executing tasks.

• processed: Total number of tasks processed by this worker.

2.3. User Guide 143

Celery Documentation, Release 4.1.0

worker-offline

signature worker-offline(hostname, timestamp, freq, sw_ident, sw_ver,
sw_sys)

The worker has disconnected from the broker.

Security

• Introduction

• Areas of Concern

– Broker

– Client

– Worker

• Serializers

• Message Signing

• Intrusion Detection

– Logs

– Tripwire

Introduction

While Celery is written with security in mind, it should be treated as an unsafe component.

Depending on your Security Policy, there are various steps you can take to make your Celery installation more secure.

Areas of Concern

Broker

It’s imperative that the broker is guarded from unwanted access, especially if accessible to the public. By default,
workers trust that the data they get from the broker hasn’t been tampered with. See Message Signing for information
on how to make the broker connection more trustworthy.

The first line of defense should be to put a firewall in front of the broker, allowing only white-listed machines to access
it.

Keep in mind that both firewall misconfiguration, and temporarily disabling the firewall, is common in the real world.
Solid security policy includes monitoring of firewall equipment to detect if they’ve been disabled, be it accidentally or
on purpose.

In other words, one shouldn’t blindly trust the firewall either.

If your broker supports fine-grained access control, like RabbitMQ, this is something you should look at enabling. See
for example http://www.rabbitmq.com/access-control.html.

If supported by your broker backend, you can enable end-to-end SSL encryption and authentication using
broker_use_ssl.

144 Chapter 2. Contents

https://en.wikipedia.org/wiki/Security_policy
http://www.rabbitmq.com/access-control.html

Celery Documentation, Release 4.1.0

Client

In Celery, “client” refers to anything that sends messages to the broker, for example web-servers that apply tasks.

Having the broker properly secured doesn’t matter if arbitrary messages can be sent through a client.

[Need more text here]

Worker

The default permissions of tasks running inside a worker are the same ones as the privileges of the worker itself. This
applies to resources, such as; memory, file-systems, and devices.

An exception to this rule is when using the multiprocessing based task pool, which is currently the default. In this
case, the task will have access to any memory copied as a result of the fork() call, and access to memory contents
written by parent tasks in the same worker child process.

Limiting access to memory contents can be done by launching every task in a subprocess (fork() + execve()).

Limiting file-system and device access can be accomplished by using chroot, jail, sandboxing, virtual machines, or
other mechanisms as enabled by the platform or additional software.

Note also that any task executed in the worker will have the same network access as the machine on which it’s running.
If the worker is located on an internal network it’s recommended to add firewall rules for outbound traffic.

Serializers

The default serializer is JSON since version 4.0, but since it has only support for a restricted set of types you may want
to consider using pickle for serialization instead.

The pickle serializer is convenient as it can serialize almost any Python object, even functions with some work, but for
the same reasons pickle is inherently insecure*0, and should be avoided whenever clients are untrusted or unauthenti-
cated.

You can disable untrusted content by specifying a white-list of accepted content-types in the accept_content
setting:

New in version 3.0.18.

Note: This setting was first supported in version 3.0.18. If you’re running an earlier version it will simply be ignored,
so make sure you’re running a version that supports it.

accept_content = ['json']

This accepts a list of serializer names and content-types, so you could also specify the content type for json:

accept_content = ['application/json']

Celery also comes with a special auth serializer that validates communication between Celery clients and workers,
making sure that messages originates from trusted sources. Using Public-key cryptography the auth serializer can
verify the authenticity of senders, to enable this read Message Signing for more information.

0 https://blog.nelhage.com/2011/03/exploiting-pickle/

2.3. User Guide 145

https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/FreeBSD_jail
https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://blog.nelhage.com/2011/03/exploiting-pickle/

Celery Documentation, Release 4.1.0

Message Signing

Celery can use the pyOpenSSL library to sign message using Public-key cryptography, where messages sent by clients
are signed using a private key and then later verified by the worker using a public certificate.

Optimally certificates should be signed by an official Certificate Authority, but they can also be self-signed.

To enable this you should configure the task_serializer setting to use the auth serializer. Also required
is configuring the paths used to locate private keys and certificates on the file-system: the security_key ,
security_certificate, and security_cert_store settings respectively. With these configured it’s also
necessary to call the celery.setup_security() function. Note that this will also disable all insecure serializers
so that the worker won’t accept messages with untrusted content types.

This is an example configuration using the auth serializer, with the private key and certificate files located in /etc/ssl.

app = Celery()
app.conf.update(

security_key='/etc/ssl/private/worker.key'
security_certificate='/etc/ssl/certs/worker.pem'
security_cert_store='/etc/ssl/certs/*.pem',

)
app.setup_security()

Note: While relative paths aren’t disallowed, using absolute paths is recommended for these files.

Also note that the auth serializer won’t encrypt the contents of a message, so if needed this will have to be enabled
separately.

Intrusion Detection

The most important part when defending your systems against intruders is being able to detect if the system has been
compromised.

Logs

Logs are usually the first place to look for evidence of security breaches, but they’re useless if they can be tampered
with.

A good solution is to set up centralized logging with a dedicated logging server. Access to it should be restricted. In
addition to having all of the logs in a single place, if configured correctly, it can make it harder for intruders to tamper
with your logs.

This should be fairly easy to setup using syslog (see also syslog-ng and rsyslog). Celery uses the logging library,
and already has support for using syslog.

A tip for the paranoid is to send logs using UDP and cut the transmit part of the logging server’s network cable :-)

Tripwire

Tripwire is a (now commercial) data integrity tool, with several open source implementations, used to keep crypto-
graphic hashes of files in the file-system, so that administrators can be alerted when they change. This way when
the damage is done and your system has been compromised you can tell exactly what files intruders have changed
(password files, logs, back-doors, root-kits, and so on). Often this is the only way you’ll be able to detect an intrusion.

146 Chapter 2. Contents

https://pypi.python.org/pypi/pyOpenSSL/
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Syslog-ng
http://www.rsyslog.com/
https://docs.python.org/dev/library/logging.html#module-logging
http://tripwire.com/

Celery Documentation, Release 4.1.0

Some open source implementations include:

• OSSEC

• Samhain

• Open Source Tripwire

• AIDE

Also, the ZFS file-system comes with built-in integrity checks that can be used.

Optimizing

Introduction

The default configuration makes a lot of compromises. It’s not optimal for any single case, but works well enough for
most situations.

There are optimizations that can be applied based on specific use cases.

Optimizations can apply to different properties of the running environment, be it the time tasks take to execute, the
amount of memory used, or responsiveness at times of high load.

Ensuring Operations

In the book Programming Pearls, Jon Bentley presents the concept of back-of-the-envelope calculations by asking the
question;

How much water flows out of the Mississippi River in a day?

The point of this exercise*0 is to show that there’s a limit to how much data a system can process in a timely manner.
Back of the envelope calculations can be used as a means to plan for this ahead of time.

In Celery; If a task takes 10 minutes to complete, and there are 10 new tasks coming in every minute, the queue will
never be empty. This is why it’s very important that you monitor queue lengths!

A way to do this is by using Munin. You should set up alerts, that’ll notify you as soon as any queue has reached an
unacceptable size. This way you can take appropriate action like adding new worker nodes, or revoking unnecessary
tasks.

General Settings

librabbitmq

If you’re using RabbitMQ (AMQP) as the broker then you can install the librabbitmq module to use an optimized
client written in C:

$ pip install librabbitmq

The ‘amqp’ transport will automatically use the librabbitmq module if it’s installed, or you can also specify the
transport you want directly by using the pyamqp:// or librabbitmq:// prefixes.

0 The chapter is available to read for free here: The back of the envelope. The book is a classic text. Highly recommended.

2.3. User Guide 147

http://www.ossec.net/
http://la-samhna.de/samhain/index.html
http://sourceforge.net/projects/tripwire/
http://aide.sourceforge.net/
https://en.wikipedia.org/wiki/ZFS
http://www.cs.bell-labs.com/cm/cs/pearls/
https://pypi.python.org/pypi/librabbitmq/
http://books.google.com/books?id=kse_7qbWbjsC&pg=PA67

Celery Documentation, Release 4.1.0

Broker Connection Pools

The broker connection pool is enabled by default since version 2.5.

You can tweak the broker_pool_limit setting to minimize contention, and the value should be based on the
number of active threads/green-threads using broker connections.

Using Transient Queues

Queues created by Celery are persistent by default. This means that the broker will write messages to disk to ensure
that the tasks will be executed even if the broker is restarted.

But in some cases it’s fine that the message is lost, so not all tasks require durability. You can create a transient queue
for these tasks to improve performance:

from kombu import Exchange, Queue

task_queues = (
Queue('celery', routing_key='celery'),
Queue('transient', Exchange('transient', delivery_mode=1),

routing_key='transient', durable=False),
)

or by using task_routes:

task_routes = {
'proj.tasks.add': {'queue': 'celery', 'delivery_mode': 'transient'}

}

The delivery_mode changes how the messages to this queue are delivered. A value of one means that the message
won’t be written to disk, and a value of two (default) means that the message can be written to disk.

To direct a task to your new transient queue you can specify the queue argument (or use the task_routes setting):

task.apply_async(args, queue='transient')

For more information see the routing guide.

Worker Settings

Prefetch Limits

Prefetch is a term inherited from AMQP that’s often misunderstood by users.

The prefetch limit is a limit for the number of tasks (messages) a worker can reserve for itself. If it is zero, the worker
will keep consuming messages, not respecting that there may be other available worker nodes that may be able to
process them sooner†0, or that the messages may not even fit in memory.

The workers’ default prefetch count is the worker_prefetch_multiplier setting multiplied by the number of
concurrency slots‡0 (processes/threads/green-threads).

0 RabbitMQ and other brokers deliver messages round-robin, so this doesn’t apply to an active system. If there’s no prefetch limit and you restart
the cluster, there will be timing delays between nodes starting. If there are 3 offline nodes and one active node, all messages will be delivered to the
active node.

0 This is the concurrency setting; worker_concurrency or the celery worker -c option.

148 Chapter 2. Contents

Celery Documentation, Release 4.1.0

If you have many tasks with a long duration you want the multiplier value to be one: meaning it’ll only reserve one
task per worker process at a time.

However – If you have many short-running tasks, and throughput/round trip latency is important to you, this number
should be large. The worker is able to process more tasks per second if the messages have already been prefetched,
and is available in memory. You may have to experiment to find the best value that works for you. Values like 50 or
150 might make sense in these circumstances. Say 64, or 128.

If you have a combination of long- and short-running tasks, the best option is to use two worker nodes that are
configured separately, and route the tasks according to the run-time (see Routing Tasks).

Reserve one task at a time

The task message is only deleted from the queue after the task is acknowledged, so if the worker crashes before
acknowledging the task, it can be redelivered to another worker (or the same after recovery).

When using the default of early acknowledgment, having a prefetch multiplier setting of one, means the worker will
reserve at most one extra task for every worker process: or in other words, if the worker is started with -c 10, the
worker may reserve at most 20 tasks (10 unacknowledged tasks executing, and 10 unacknowledged reserved tasks) at
any time.

Often users ask if disabling “prefetching of tasks” is possible, but what they really mean by that, is to have a worker
only reserve as many tasks as there are worker processes (10 unacknowledged tasks for -c 10)

That’s possible, but not without also enabling late acknowledgment. Using this option over the default behavior means
a task that’s already started executing will be retried in the event of a power failure or the worker instance being killed
abruptly, so this also means the task must be idempotent

See also:

Notes at Should I use retry or acks_late?.

You can enable this behavior by using the following configuration options:

task_acks_late = True
worker_prefetch_multiplier = 1

Prefork pool prefetch settings

The prefork pool will asynchronously send as many tasks to the processes as it can and this means that the processes
are, in effect, prefetching tasks.

This benefits performance but it also means that tasks may be stuck waiting for long running tasks to complete:

-> send task T1 to process A
A executes T1
-> send task T2 to process B
B executes T2
<- T2 complete sent by process B

-> send task T3 to process A
A still executing T1, T3 stuck in local buffer and won't start until
T1 returns, and other queued tasks won't be sent to idle processes
<- T1 complete sent by process A
A executes T3

2.3. User Guide 149

Celery Documentation, Release 4.1.0

The worker will send tasks to the process as long as the pipe buffer is writable. The pipe buffer size varies based on
the operating system: some may have a buffer as small as 64KB but on recent Linux versions the buffer size is 1MB
(can only be changed system wide).

You can disable this prefetching behavior by enabling the -Ofair worker option:

$ celery -A proj worker -l info -Ofair

With this option enabled the worker will only write to processes that are available for work, disabling the prefetch
behavior:

-> send task T1 to process A
A executes T1
-> send task T2 to process B
B executes T2
<- T2 complete sent by process B

-> send T3 to process B
B executes T3

<- T3 complete sent by process B
<- T1 complete sent by process A

Debugging

Debugging Tasks Remotely (using pdb)

Basics

celery.contrib.rdb is an extended version of pdb that enables remote debugging of processes that doesn’t
have terminal access.

Example usage:

from celery import task
from celery.contrib import rdb

@task()
def add(x, y):

result = x + y
rdb.set_trace() # <- set break-point
return result

set_trace() sets a break-point at the current location and creates a socket you can telnet into to remotely debug
your task.

The debugger may be started by multiple processes at the same time, so rather than using a fixed port the debugger
will search for an available port, starting from the base port (6900 by default). The base port can be changed using the
environment variable CELERY_RDB_PORT.

By default the debugger will only be available from the local host, to enable access from the outside you have to set
the environment variable CELERY_RDB_HOST.

When the worker encounters your break-point it’ll log the following information:

[INFO/MainProcess] Received task:
tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8]

150 Chapter 2. Contents

https://docs.python.org/dev/library/pdb.html#module-pdb

Celery Documentation, Release 4.1.0

[WARNING/PoolWorker-1] Remote Debugger:6900:
Please telnet 127.0.0.1 6900. Type `exit` in session to continue.

[2011-01-18 14:25:44,119: WARNING/PoolWorker-1] Remote Debugger:6900:
Waiting for client...

If you telnet the port specified you’ll be presented with a pdb shell:

$ telnet localhost 6900
Connected to localhost.
Escape character is '^]'.
> /opt/devel/demoapp/tasks.py(128)add()
-> return result
(Pdb)

Enter help to get a list of available commands, It may be a good idea to read the Python Debugger Manual if you
have never used pdb before.

To demonstrate, we’ll read the value of the result variable, change it and continue execution of the task:

(Pdb) result
4
(Pdb) result = 'hello from rdb'
(Pdb) continue
Connection closed by foreign host.

The result of our vandalism can be seen in the worker logs:

[2011-01-18 14:35:36,599: INFO/MainProcess] Task
tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8] succeeded
in 61.481s: 'hello from rdb'

Tips

Enabling the break-point signal

If the environment variable CELERY_RDBSIG is set, the worker will open up an rdb instance whenever the SIGUSR2
signal is sent. This is the case for both main and worker processes.

For example starting the worker with:

$ CELERY_RDBSIG=1 celery worker -l info

You can start an rdb session for any of the worker processes by executing:

$ kill -USR2 <pid>

Concurrency

Release 4.1

Date Jul 24, 2017

2.3. User Guide 151

http://docs.python.org/library/pdb.html

Celery Documentation, Release 4.1.0

Concurrency with Eventlet

Introduction

The Eventlet homepage describes it as; A concurrent networking library for Python that allows you to change how you
run your code, not how you write it.

• It uses epoll(4) or libevent for highly scalable non-blocking I/O.

• Coroutines ensure that the developer uses a blocking style of programming that’s similar to threading, but
provide the benefits of non-blocking I/O.

• The event dispatch is implicit: meaning you can easily use Eventlet from the Python interpreter, or as a small
part of a larger application.

Celery supports Eventlet as an alternative execution pool implementation. It’s in some cases superior to prefork, but
you need to ensure your tasks don’t perform blocking calls, as this will halt all other operations in the worker until the
blocking call returns.

The prefork pool can take use of multiple processes, but how many is often limited to a few processes per CPU. With
Eventlet you can efficiently spawn hundreds, or thousands of green threads. In an informal test with a feed hub system
the Eventlet pool could fetch and process hundreds of feeds every second, while the prefork pool spent 14 seconds
processing 100 feeds. Note that this is one of the applications async I/O is especially good at (asynchronous HTTP
requests). You may want a mix of both Eventlet and prefork workers, and route tasks according to compatibility or
what works best.

Enabling Eventlet

You can enable the Eventlet pool by using the celery worker -P worker option.

$ celery -A proj worker -P eventlet -c 1000

Examples

See the Eventlet examples directory in the Celery distribution for some examples taking use of Eventlet support.

Signals

• Basics

• Signals

– Task Signals

* before_task_publish

* after_task_publish

* task_prerun

* task_postrun

* task_retry

* task_success

152 Chapter 2. Contents

http://eventlet.net
http://linux.die.net/man/4/epoll
http://monkey.org/~provos/libevent/
https://en.wikipedia.org/wiki/Asynchronous_I/O#Select.28.2Fpoll.29_loops
https://en.wikipedia.org/wiki/Coroutine
https://github.com/celery/celery/tree/master/examples/eventlet

Celery Documentation, Release 4.1.0

* task_failure

* task_revoked

* task_unknown

* task_rejected

– App Signals

* import_modules

– Worker Signals

* celeryd_after_setup

* celeryd_init

* worker_init

* worker_ready

* heartbeat_sent

* worker_shutting_down

* worker_process_init

* worker_process_shutdown

* worker_shutdown

– Beat Signals

* beat_init

* beat_embedded_init

– Eventlet Signals

* eventlet_pool_started

* eventlet_pool_preshutdown

* eventlet_pool_postshutdown

* eventlet_pool_apply

– Logging Signals

* setup_logging

* after_setup_logger

* after_setup_task_logger

– Command signals

* user_preload_options

– Deprecated Signals

* task_sent

Signals allows decoupled applications to receive notifications when certain actions occur elsewhere in the application.

Celery ships with many signals that your application can hook into to augment behavior of certain actions.

2.3. User Guide 153

Celery Documentation, Release 4.1.0

Basics

Several kinds of events trigger signals, you can connect to these signals to perform actions as they trigger.

Example connecting to the after_task_publish signal:

from celery.signals import after_task_publish

@after_task_publish.connect
def task_sent_handler(sender=None, headers=None, body=None, **kwargs):

information about task are located in headers for task messages
using the task protocol version 2.
info = headers if 'task' in headers else body
print('after_task_publish for task id {info[id]}'.format(

info=info,
))

Some signals also have a sender you can filter by. For example the after_task_publish signal uses the task
name as a sender, so by providing the sender argument to connect you can connect your handler to be called
every time a task with name “proj.tasks.add” is published:

@after_task_publish.connect(sender='proj.tasks.add')
def task_sent_handler(sender=None, headers=None, body=None, **kwargs):

information about task are located in headers for task messages
using the task protocol version 2.
info = headers if 'task' in headers else body
print('after_task_publish for task id {info[id]}'.format(

info=info,
))

Signals use the same implementation as django.core.dispatch. As a result other keyword parameters (e.g.,
signal) are passed to all signal handlers by default.

The best practice for signal handlers is to accept arbitrary keyword arguments (i.e., **kwargs). That way new Celery
versions can add additional arguments without breaking user code.

Signals

Task Signals

before_task_publish

New in version 3.1.

Dispatched before a task is published. Note that this is executed in the process sending the task.

Sender is the name of the task being sent.

Provides arguments:

• body

Task message body.

This is a mapping containing the task message fields, see Version 2 and Version 1 for a reference of
possible fields that can be defined.

• exchange

154 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Name of the exchange to send to or a Exchange object.

• routing_key

Routing key to use when sending the message.

• headers

Application headers mapping (can be modified).

• properties

Message properties (can be modified)

• declare

List of entities (Exchange, Queue, or binding to declare before publishing the message. Can be
modified.

• retry_policy

Mapping of retry options. Can be any argument to kombu.Connection.ensure() and can be
modified.

after_task_publish

Dispatched when a task has been sent to the broker. Note that this is executed in the process that sent the task.

Sender is the name of the task being sent.

Provides arguments:

• headers

The task message headers, see Version 2 and Version 1 for a reference of possible fields that can be
defined.

• body

The task message body, see Version 2 and Version 1 for a reference of possible fields that can be
defined.

• exchange

Name of the exchange or Exchange object used.

• routing_key

Routing key used.

task_prerun

Dispatched before a task is executed.

Sender is the task object being executed.

Provides arguments:

• task_id

Id of the task to be executed.

• task

The task being executed.

2.3. User Guide 155

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange

Celery Documentation, Release 4.1.0

• args

The tasks positional arguments.

• kwargs

The tasks keyword arguments.

task_postrun

Dispatched after a task has been executed.

Sender is the task object executed.

Provides arguments:

• task_id

Id of the task to be executed.

• task

The task being executed.

• args

The tasks positional arguments.

• kwargs

The tasks keyword arguments.

• retval

The return value of the task.

• state

Name of the resulting state.

task_retry

Dispatched when a task will be retried.

Sender is the task object.

Provides arguments:

• request

The current task request.

• reason

Reason for retry (usually an exception instance, but can always be coerced to str).

• einfo

Detailed exception information, including traceback (a billiard.einfo.ExceptionInfo
object).

156 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

task_success

Dispatched when a task succeeds.

Sender is the task object executed.

Provides arguments

• result Return value of the task.

task_failure

Dispatched when a task fails.

Sender is the task object executed.

Provides arguments:

• task_id

Id of the task.

• exception

Exception instance raised.

• args

Positional arguments the task was called with.

• kwargs

Keyword arguments the task was called with.

• traceback

Stack trace object.

• einfo

The billiard.einfo.ExceptionInfo instance.

task_revoked

Dispatched when a task is revoked/terminated by the worker.

Sender is the task object revoked/terminated.

Provides arguments:

• request

This is a Request instance, and not task.request. When using the prefork pool this signal is
dispatched in the parent process, so task.request isn’t available and shouldn’t be used. Use this
object instead, as they share many of the same fields.

• terminated

Set to True if the task was terminated.

• signum

Signal number used to terminate the task. If this is None and terminated is True then TERM should
be assumed.

2.3. User Guide 157

Celery Documentation, Release 4.1.0

• expired

Set to True if the task expired.

task_unknown

Dispatched when a worker receives a message for a task that’s not registered.

Sender is the worker Consumer.

Provides arguments:

• name

Name of task not found in registry.

• id

The task id found in the message.

• message

Raw message object.

• exc

The error that occurred.

task_rejected

Dispatched when a worker receives an unknown type of message to one of its task queues.

Sender is the worker Consumer.

Provides arguments:

• message

Raw message object.

• exc

The error that occurred (if any).

App Signals

import_modules

This signal is sent when a program (worker, beat, shell) etc, asks for modules in the include and imports settings
to be imported.

Sender is the app instance.

Worker Signals

158 Chapter 2. Contents

Celery Documentation, Release 4.1.0

celeryd_after_setup

This signal is sent after the worker instance is set up, but before it calls run. This means that any queues from the
celery worker -Q option is enabled, logging has been set up and so on.

It can be used to add custom queues that should always be consumed from, disregarding the celery worker -Q
option. Here’s an example that sets up a direct queue for each worker, these queues can then be used to route a task to
any specific worker:

from celery.signals import celeryd_after_setup

@celeryd_after_setup.connect
def setup_direct_queue(sender, instance, **kwargs):

queue_name = '{0}.dq'.format(sender) # sender is the nodename of the worker
instance.app.amqp.queues.select_add(queue_name)

Provides arguments:

• sender

Node name of the worker.

• instance

This is the celery.apps.worker.Worker instance to be initialized. Note that only the app
and hostname (nodename) attributes have been set so far, and the rest of __init__ hasn’t been
executed.

• conf

The configuration of the current app.

celeryd_init

This is the first signal sent when celery worker starts up. The sender is the host name of the worker, so this
signal can be used to setup worker specific configuration:

from celery.signals import celeryd_init

@celeryd_init.connect(sender='worker12@example.com')
def configure_worker12(conf=None, **kwargs):

conf.task_default_rate_limit = '10/m'

or to set up configuration for multiple workers you can omit specifying a sender when you connect:

from celery.signals import celeryd_init

@celeryd_init.connect
def configure_workers(sender=None, conf=None, **kwargs):

if sender in ('worker1@example.com', 'worker2@example.com'):
conf.task_default_rate_limit = '10/m'

if sender == 'worker3@example.com':
conf.worker_prefetch_multiplier = 0

Provides arguments:

• sender

Nodename of the worker.

2.3. User Guide 159

Celery Documentation, Release 4.1.0

• instance

This is the celery.apps.worker.Worker instance to be initialized. Note that only the app
and hostname (nodename) attributes have been set so far, and the rest of __init__ hasn’t been
executed.

• conf

The configuration of the current app.

• options

Options passed to the worker from command-line arguments (including defaults).

worker_init

Dispatched before the worker is started.

worker_ready

Dispatched when the worker is ready to accept work.

heartbeat_sent

Dispatched when Celery sends a worker heartbeat.

Sender is the celery.worker.heartbeat.Heart instance.

worker_shutting_down

Dispatched when the worker begins the shutdown process.

Provides arguments:

• sig

The POSIX signal that was received.

• how

The shutdown method, warm or cold.

• exitcode

The exitcode that will be used when the main process exits.

worker_process_init

Dispatched in all pool child processes when they start.

Note that handlers attached to this signal mustn’t be blocking for more than 4 seconds, or the process will be killed
assuming it failed to start.

160 Chapter 2. Contents

Celery Documentation, Release 4.1.0

worker_process_shutdown

Dispatched in all pool child processes just before they exit.

Note: There’s no guarantee that this signal will be dispatched, similarly to finally blocks it’s impossible to guar-
antee that handlers will be called at shutdown, and if called it may be interrupted during.

Provides arguments:

• pid

The pid of the child process that’s about to shutdown.

• exitcode

The exitcode that’ll be used when the child process exits.

worker_shutdown

Dispatched when the worker is about to shut down.

Beat Signals

beat_init

Dispatched when celery beat starts (either standalone or embedded).

Sender is the celery.beat.Service instance.

beat_embedded_init

Dispatched in addition to the beat_init signal when celery beat is started as an embedded process.

Sender is the celery.beat.Service instance.

Eventlet Signals

eventlet_pool_started

Sent when the eventlet pool has been started.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_preshutdown

Sent when the worker shutdown, just before the eventlet pool is requested to wait for remaining workers.

Sender is the celery.concurrency.eventlet.TaskPool instance.

2.3. User Guide 161

https://docs.python.org/dev/reference/compound_stmts.html#finally

Celery Documentation, Release 4.1.0

eventlet_pool_postshutdown

Sent when the pool has been joined and the worker is ready to shutdown.

Sender is the celery.concurrency.eventlet.TaskPool instance.

eventlet_pool_apply

Sent whenever a task is applied to the pool.

Sender is the celery.concurrency.eventlet.TaskPool instance.

Provides arguments:

• target

The target function.

• args

Positional arguments.

• kwargs

Keyword arguments.

Logging Signals

setup_logging

Celery won’t configure the loggers if this signal is connected, so you can use this to completely override the logging
configuration with your own.

If you’d like to augment the logging configuration setup by Celery then you can use the after_setup_logger
and after_setup_task_logger signals.

Provides arguments:

• loglevel

The level of the logging object.

• logfile

The name of the logfile.

• format

The log format string.

• colorize

Specify if log messages are colored or not.

after_setup_logger

Sent after the setup of every global logger (not task loggers). Used to augment logging configuration.

Provides arguments:

• logger

162 Chapter 2. Contents

Celery Documentation, Release 4.1.0

The logger object.

• loglevel

The level of the logging object.

• logfile

The name of the logfile.

• format

The log format string.

• colorize

Specify if log messages are colored or not.

after_setup_task_logger

Sent after the setup of every single task logger. Used to augment logging configuration.

Provides arguments:

• logger

The logger object.

• loglevel

The level of the logging object.

• logfile

The name of the logfile.

• format

The log format string.

• colorize

Specify if log messages are colored or not.

Command signals

user_preload_options

This signal is sent after any of the Celery command line programs are finished parsing the user preload options.

It can be used to add additional command-line arguments to the celery umbrella command:

from celery import Celery
from celery import signals
from celery.bin.base import Option

app = Celery()
app.user_options['preload'].add(Option(

'--monitoring', action='store_true',
help='Enable our external monitoring utility, blahblah',

))

2.3. User Guide 163

Celery Documentation, Release 4.1.0

@signals.user_preload_options.connect
def handle_preload_options(options, **kwargs):

if options['monitoring']:
enable_monitoring()

Sender is the Command instance, and the value depends on the program that was called (e.g., for the umbrella com-
mand it’ll be a CeleryCommand) object).

Provides arguments:

• app

The app instance.

• options

Mapping of the parsed user preload options (with default values).

Deprecated Signals

task_sent

This signal is deprecated, please use after_task_publish instead.

Testing with Celery

Tasks and unit tests

To test task behavior in unit tests the preferred method is mocking.

Eager mode

The eager mode enabled by the task_always_eager setting is by definition not suitable for unit tests.

When testing with eager mode you are only testing an emulation of what happens in a worker, and there are many
discrepancies between the emulation and what happens in reality.

A Celery task is much like a web view, in that it should only define how to perform the action in the context of being
called as a task.

This means optimally tasks only handle things like serialization, message headers, retries, and so on, with the actual
logic implemented elsewhere.

Say we had a task like this:

from .models import Product

@app.task(bind=True)
def send_order(self, product_pk, quantity, price):

price = Decimal(price) # json serializes this to string.

models are passed by id, not serialized.
product = Product.objects.get(product_pk)

try:

164 Chapter 2. Contents

Celery Documentation, Release 4.1.0

product.order(quantity, price)
except OperationalError as exc:

raise self.retry(exc=exc)

You could write unit tests for this task, using mocking like in this example:

from pytest import raises

from celery.exceptions import Retry

for python 2: use mock.patch from `pip install mock`.
from unittest.mock import patch

from proj.models import Product
from proj.tasks import send_order

class test_send_order:

@patch('proj.tasks.Product.order') # < patching Product in module above
def test_success(self, product_order):

product = Product.objects.create(
name='Foo',

)
send_order(product.pk, 3, Decimal(30.3))
product_order.assert_called_with(3, Decimal(30.3))

@patch('proj.tasks.Product.order')
@patch('proj.tasks.send_order.retry')
def test_failure(self, send_order_retry, product_order):

product = Product.objects.create(
name='Foo',

)

Set a side effect on the patched methods
so that they raise the errors we want.
send_order_retry.side_effect = Retry()
product_order.side_effect = OperationalError()

with raises(Retry):
send_order(product.pk, 3, Decimal(30.6))

Py.test

New in version 4.0.

Celery is also a pytest plugin that adds fixtures that you can use in your integration (or unit) test suites.

Marks

celery - Set test app configuration.

The celery mark enables you to override the configuration used for a single test case:

2.3. User Guide 165

https://pypi.python.org/pypi/pytest/

Celery Documentation, Release 4.1.0

@pytest.mark.celery(result_backend='redis://')
def test_something():

...

or for all the test cases in a class:

@pytest.mark.celery(result_backend='redis://')
class test_something:

def test_one(self):
...

def test_two(self):
...

Fixtures

Function scope

celery_app - Celery app used for testing.

This fixture returns a Celery app you can use for testing.

Example:

def test_create_task(celery_app, celery_worker):
@celery_app.task
def mul(x, y):

return x * y

assert mul.delay(4, 4).get(timeout=10) == 16

celery_worker - Embed live worker.

This fixture starts a Celery worker instance that you can use for integration tests. The worker will be started in a
separate thread and will be shutdown as soon as the test returns.

Example:

Put this in your conftest.py
@pytest.fixture(scope='session')
def celery_config():

return {
'broker_url': 'amqp://',
'result_backend': 'redis://'

}

def test_add(celery_worker):
mytask.delay()

If you wish to override some setting in one test cases
only - you can use the ``celery`` mark:
@pytest.mark.celery(result_backend='rpc')

166 Chapter 2. Contents

Celery Documentation, Release 4.1.0

def test_other(celery_worker):
...

Session scope

celery_config - Override to setup Celery test app configuration.

You can redefine this fixture to configure the test Celery app.

The config returned by your fixture will then be used to configure the celery_app(), and
celery_session_app() fixtures.

Example:

@pytest.fixture(scope='session')
def celery_config():

return {
'broker_url': 'amqp://',
'result_backend': 'rpc',

}

celery_parameters - Override to setup Celery test app parameters.

You can redefine this fixture to change the __init__ parameters of test Celery app. In contrast to
celery_config(), these are directly passed to when instantiating Celery .

The config returned by your fixture will then be used to configure the celery_app(), and
celery_session_app() fixtures.

Example:

@pytest.fixture(scope='session')
def celery_parameters():

return {
'task_cls': my.package.MyCustomTaskClass,
'strict_typing': False,

}

celery_worker_parameters - Override to setup Celery worker parameters.

You can redefine this fixture to change the __init__ parameters of test Celery workers. These are directly passed
to WorkController when it is instantiated.

The config returned by your fixture will then be used to configure the celery_worker(), and
celery_session_worker() fixtures.

Example:

@pytest.fixture(scope='session')
def celery_worker_parameters():

return {
'queues': ('high-prio', 'low-prio'),
'exclude_queues': ('celery'),

}

2.3. User Guide 167

Celery Documentation, Release 4.1.0

celery_enable_logging - Override to enable logging in embedded workers.

This is a fixture you can override to enable logging in embedded workers.

Example:

@pytest.fixture(scope='session')
def celery_enable_logging():

return True

celery_includes - Add additional imports for embedded workers.

You can override fixture to include modules when an embedded worker starts.

You can have this return a list of module names to import, which can be task modules, modules registering signals,
and so on.

Example:

@pytest.fixture(scope='session')
def celery_includes():

return [
'proj.tests.tasks',
'proj.tests.celery_signal_handlers',

]

celery_worker_pool - Override the pool used for embedded workers.

You can override fixture to configure the execution pool used for embedded workers.

Example:

@pytest.fixture(scope='session')
def celery_worker_pool():

return 'prefork'

Warning: You cannot use the gevent/eventlet pools, that is unless your whole test suite is running with the
monkeypatches enabled.

celery_session_worker - Embedded worker that lives throughout the session.

This fixture starts a worker that lives throughout the testing session (it won’t be started/stopped for every test).

Example:

Add this to your conftest.py
@pytest.fixture(scope='session')
def celery_config():

return {
'broker_url': 'amqp://',
'result_backend': 'rpc',

}

168 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Do this in your tests.
def test_add_task(celery_session_worker):

assert add.delay(2, 2) == 4

Warning: It’s probably a bad idea to mix session and ephemeral workers...

celery_session_app - Celery app used for testing (session scope).

This can be used by other session scoped fixtures when they need to refer to a Celery app instance.

use_celery_app_trap - Raise exception on falling back to default app.

This is a fixture you can override in your conftest.py, to enable the “app trap”: if something tries to access the
default or current_app, an exception is raised.

Example:

@pytest.fixture(scope='session')
def use_celery_app_trap():

return True

If a test wants to access the default app, you would have to mark it using the depends_on_current_app fixture:

@pytest.mark.usefixtures('depends_on_current_app')
def test_something():

something()

Extensions and Bootsteps

• Custom Message Consumers

• Blueprints

• Worker

– Attributes

– Example worker bootstep

• Consumer

– Attributes

– Methods

• Installing Bootsteps

• Command-line programs

– Adding new command-line options

– Adding new celery sub-commands

2.3. User Guide 169

Celery Documentation, Release 4.1.0

• Worker API

– Hub - The workers async event loop

– Timer - Scheduling events

Custom Message Consumers

You may want to embed custom Kombu consumers to manually process your messages.

For that purpose a special ConsumerStep bootstep class exists, where you only need to define the
get_consumers method, that must return a list of kombu.Consumer objects to start whenever the connection is
established:

from celery import Celery
from celery import bootsteps
from kombu import Consumer, Exchange, Queue

my_queue = Queue('custom', Exchange('custom'), 'routing_key')

app = Celery(broker='amqp://')

class MyConsumerStep(bootsteps.ConsumerStep):

def get_consumers(self, channel):
return [Consumer(channel,

queues=[my_queue],
callbacks=[self.handle_message],
accept=['json'])]

def handle_message(self, body, message):
print('Received message: {0!r}'.format(body))
message.ack()

app.steps['consumer'].add(MyConsumerStep)

def send_me_a_message(who, producer=None):
with app.producer_or_acquire(producer) as producer:

producer.publish(
{'hello': who},
serializer='json',
exchange=my_queue.exchange,
routing_key='routing_key',
declare=[my_queue],
retry=True,

)

if __name__ == '__main__':
send_me_a_message('world!')

Note: Kombu Consumers can take use of two different message callback dispatching mechanisms. The first one is the
callbacks argument that accepts a list of callbacks with a (body, message) signature, the second one is the
on_message argument that takes a single callback with a (message,) signature. The latter won’t automatically
decode and deserialize the payload.

170 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.async.html#kombu.async.Hub
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer

Celery Documentation, Release 4.1.0

def get_consumers(self, channel):
return [Consumer(channel, queues=[my_queue],

on_message=self.on_message)]

def on_message(self, message):
payload = message.decode()
print(

'Received message: {0!r} {props!r} rawlen={s}'.format(
payload, props=message.properties, s=len(message.body),

))
message.ack()

Blueprints

Bootsteps is a technique to add functionality to the workers. A bootstep is a custom class that defines hooks to do
custom actions at different stages in the worker. Every bootstep belongs to a blueprint, and the worker currently defines
two blueprints: Worker, and Consumer

Figure A: Bootsteps in the Worker and Consumer blueprints. Starting from the bottom up the first step in the
worker blueprint is the Timer, and the last step is to start the Consumer blueprint, that then establishes the
broker connection and starts consuming messages.

Worker

The Worker is the first blueprint to start, and with it starts major components like the event loop, processing pool, and
the timer used for ETA tasks and other timed events.

When the worker is fully started it continues with the Consumer blueprint, that sets up how tasks are executed, connects
to the broker and starts the message consumers.

The WorkController is the core worker implementation, and contains several methods and attributes that you can
use in your bootstep.

Attributes

app
The current app instance.

hostname
The workers node name (e.g., worker1@example.com)

blueprint
This is the worker Blueprint.

hub
Event loop object (Hub). You can use this to register callbacks in the event loop.

This is only supported by async I/O enabled transports (amqp, redis), in which case the worker.use_eventloop
attribute should be set.

Your worker bootstep must require the Hub bootstep to use this:

2.3. User Guide 171

http://kombu.readthedocs.io/en/master/reference/kombu.async.html#kombu.async.Hub

Celery Documentation, Release 4.1.0

172 Chapter 2. Contents

Celery Documentation, Release 4.1.0

class WorkerStep(bootsteps.StartStopStep):
requires = {'celery.worker.components:Hub'}

pool
The current process/eventlet/gevent/thread pool. See celery.concurrency.base.BasePool.

Your worker bootstep must require the Pool bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
requires = {'celery.worker.components:Pool'}

timer
Timer used to schedule functions.

Your worker bootstep must require the Timer bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
requires = {'celery.worker.components:Timer'}

statedb
Database <celery.worker.state.Persistent>` to persist state between worker restarts.

This is only defined if the statedb argument is enabled.

Your worker bootstep must require the Statedb bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
requires = {'celery.worker.components:Statedb'}

autoscaler
Autoscaler used to automatically grow and shrink the number of processes in the pool.

This is only defined if the autoscale argument is enabled.

Your worker bootstep must require the Autoscaler bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
requires = ('celery.worker.autoscaler:Autoscaler',)

autoreloader
Autoreloader used to automatically reload use code when the file-system changes.

This is only defined if the autoreload argument is enabled. Your worker bootstep must require the Au-
toreloader bootstep to use this;

class WorkerStep(bootsteps.StartStopStep):
requires = ('celery.worker.autoreloader:Autoreloader',)

Example worker bootstep

An example Worker bootstep could be:

from celery import bootsteps

class ExampleWorkerStep(bootsteps.StartStopStep):
requires = {'celery.worker.components:Pool'}

def __init__(self, worker, **kwargs):

2.3. User Guide 173

http://kombu.readthedocs.io/en/master/reference/kombu.async.timer.html#kombu.async.timer.Timer

Celery Documentation, Release 4.1.0

print('Called when the WorkController instance is constructed')
print('Arguments to WorkController: {0!r}'.format(kwargs))

def create(self, worker):
this method can be used to delegate the action methods
to another object that implements ``start`` and ``stop``.
return self

def start(self, worker):
print('Called when the worker is started.')

def stop(self, worker):
print('Called when the worker shuts down.')

def terminate(self, worker):
print('Called when the worker terminates')

Every method is passed the current WorkController instance as the first argument.

Another example could use the timer to wake up at regular intervals:

from celery import bootsteps

class DeadlockDetection(bootsteps.StartStopStep):
requires = {'celery.worker.components:Timer'}

def __init__(self, worker, deadlock_timeout=3600):
self.timeout = deadlock_timeout
self.requests = []
self.tref = None

def start(self, worker):
run every 30 seconds.
self.tref = worker.timer.call_repeatedly(

30.0, self.detect, (worker,), priority=10,
)

def stop(self, worker):
if self.tref:

self.tref.cancel()
self.tref = None

def detect(self, worker):
update active requests
for req in worker.active_requests:

if req.time_start and time() - req.time_start > self.timeout:
raise SystemExit()

Consumer

The Consumer blueprint establishes a connection to the broker, and is restarted every time this connection is lost.
Consumer bootsteps include the worker heartbeat, the remote control command consumer, and importantly, the task
consumer.

When you create consumer bootsteps you must take into account that it must be possible to restart your blueprint. An
additional ‘shutdown’ method is defined for consumer bootsteps, this method is called when the worker is shutdown.

174 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Attributes

app
The current app instance.

controller
The parent WorkController object that created this consumer.

hostname
The workers node name (e.g., worker1@example.com)

blueprint
This is the worker Blueprint.

hub
Event loop object (Hub). You can use this to register callbacks in the event loop.

This is only supported by async I/O enabled transports (amqp, redis), in which case the worker.use_eventloop
attribute should be set.

Your worker bootstep must require the Hub bootstep to use this:

class WorkerStep(bootsteps.StartStopStep):
requires = {'celery.worker.components:Hub'}

connection
The current broker connection (kombu.Connection).

A consumer bootstep must require the ‘Connection’ bootstep to use this:

class Step(bootsteps.StartStopStep):
requires = {'celery.worker.consumer.connection:Connection'}

event_dispatcher
A app.events.Dispatcher object that can be used to send events.

A consumer bootstep must require the Events bootstep to use this.

class Step(bootsteps.StartStopStep):
requires = {'celery.worker.consumer.events:Events'}

gossip
Worker to worker broadcast communication (Gossip).

A consumer bootstep must require the Gossip bootstep to use this.

class RatelimitStep(bootsteps.StartStopStep):
"""Rate limit tasks based on the number of workers in the
cluster."""
requires = {'celery.worker.consumer.gossip:Gossip'}

def start(self, c):
self.c = c
self.c.gossip.on.node_join.add(self.on_cluster_size_change)
self.c.gossip.on.node_leave.add(self.on_cluster_size_change)
self.c.gossip.on.node_lost.add(self.on_node_lost)
self.tasks = [

self.app.tasks['proj.tasks.add']
self.app.tasks['proj.tasks.mul']

]

2.3. User Guide 175

http://kombu.readthedocs.io/en/master/reference/kombu.async.html#kombu.async.Hub
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection

Celery Documentation, Release 4.1.0

self.last_size = None

def on_cluster_size_change(self, worker):
cluster_size = len(list(self.c.gossip.state.alive_workers()))
if cluster_size != self.last_size:

for task in self.tasks:
task.rate_limit = 1.0 / cluster_size

self.c.reset_rate_limits()
self.last_size = cluster_size

def on_node_lost(self, worker):
may have processed heartbeat too late, so wake up soon
in order to see if the worker recovered.
self.c.timer.call_after(10.0, self.on_cluster_size_change)

Callbacks

•<set> gossip.on.node_join

Called whenever a new node joins the cluster, providing a Worker instance.

•<set> gossip.on.node_leave

Called whenever a new node leaves the cluster (shuts down), providing a Worker instance.

•<set> gossip.on.node_lost

Called whenever heartbeat was missed for a worker instance in the cluster (heartbeat not received
or processed in time), providing a Worker instance.

This doesn’t necessarily mean the worker is actually offline, so use a time out mechanism if the
default heartbeat timeout isn’t sufficient.

pool
The current process/eventlet/gevent/thread pool. See celery.concurrency.base.BasePool.

timer
Timer <celery.utils.timer2.Schedule used to schedule functions.

heart
Responsible for sending worker event heartbeats (Heart).

Your consumer bootstep must require the Heart bootstep to use this:

class Step(bootsteps.StartStopStep):
requires = {'celery.worker.consumer.heart:Heart'}

task_consumer
The kombu.Consumer object used to consume task messages.

Your consumer bootstep must require the Tasks bootstep to use this:

class Step(bootsteps.StartStopStep):
requires = {'celery.worker.consumer.tasks:Tasks'}

strategies
Every registered task type has an entry in this mapping, where the value is used to execute an incoming message
of this task type (the task execution strategy). This mapping is generated by the Tasks bootstep when the
consumer starts:

176 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer

Celery Documentation, Release 4.1.0

for name, task in app.tasks.items():
strategies[name] = task.start_strategy(app, consumer)
task.__trace__ = celery.app.trace.build_tracer(

name, task, loader, hostname
)

Your consumer bootstep must require the Tasks bootstep to use this:

class Step(bootsteps.StartStopStep):
requires = {'celery.worker.consumer.tasks:Tasks'}

task_buckets
A defaultdict used to look-up the rate limit for a task by type. Entries in this dict may be None (for no
limit) or a TokenBucket instance implementing consume(tokens) and expected_time(tokens).

TokenBucket implements the token bucket algorithm, but any algorithm may be used as long as it conforms to
the same interface and defines the two methods above.

qos
The QoS object can be used to change the task channels current prefetch_count value:

increment at next cycle
consumer.qos.increment_eventually(1)
decrement at next cycle
consumer.qos.decrement_eventually(1)
consumer.qos.set(10)

Methods

consumer.reset_rate_limits()
Updates the task_buckets mapping for all registered task types.

consumer.bucket_for_task(type, Bucket=TokenBucket)
Creates rate limit bucket for a task using its task.rate_limit attribute.

consumer.add_task_queue(name, exchange=None, exchange_type=None,
routing_key=None, **options):

Adds new queue to consume from. This will persist on connection restart.

consumer.cancel_task_queue(name)
Stop consuming from queue by name. This will persist on connection restart.

apply_eta_task(request)
Schedule ETA task to execute based on the request.eta attribute. (Request)

Installing Bootsteps

app.steps['worker'] and app.steps['consumer'] can be modified to add new bootsteps:

>>> app = Celery()
>>> app.steps['worker'].add(MyWorkerStep) # < add class, don't instantiate
>>> app.steps['consumer'].add(MyConsumerStep)

>>> app.steps['consumer'].update([StepA, StepB])

2.3. User Guide 177

https://docs.python.org/dev/library/collections.html#collections.defaultdict
http://kombu.readthedocs.io/en/master/reference/kombu.utils.limits.html#kombu.utils.limits.TokenBucket
https://en.wikipedia.org/wiki/Token_bucket

Celery Documentation, Release 4.1.0

>>> app.steps['consumer']
{step:proj.StepB{()}, step:proj.MyConsumerStep{()}, step:proj.StepA{()}

The order of steps isn’t important here as the order is decided by the resulting dependency graph (Step.requires).

To illustrate how you can install bootsteps and how they work, this is an example step that prints some useless debug-
ging information. It can be added both as a worker and consumer bootstep:

from celery import Celery
from celery import bootsteps

class InfoStep(bootsteps.Step):

def __init__(self, parent, **kwargs):
here we can prepare the Worker/Consumer object
in any way we want, set attribute defaults, and so on.
print('{0!r} is in init'.format(parent))

def start(self, parent):
our step is started together with all other Worker/Consumer
bootsteps.
print('{0!r} is starting'.format(parent))

def stop(self, parent):
the Consumer calls stop every time the consumer is
restarted (i.e., connection is lost) and also at shutdown.
The Worker will call stop at shutdown only.
print('{0!r} is stopping'.format(parent))

def shutdown(self, parent):
shutdown is called by the Consumer at shutdown, it's not
called by Worker.
print('{0!r} is shutting down'.format(parent))

app = Celery(broker='amqp://')
app.steps['worker'].add(InfoStep)
app.steps['consumer'].add(InfoStep)

Starting the worker with this step installed will give us the following logs:

<Worker: w@example.com (initializing)> is in init
<Consumer: w@example.com (initializing)> is in init
[2013-05-29 16:18:20,544: WARNING/MainProcess]

<Worker: w@example.com (running)> is starting
[2013-05-29 16:18:21,577: WARNING/MainProcess]

<Consumer: w@example.com (running)> is starting
<Consumer: w@example.com (closing)> is stopping
<Worker: w@example.com (closing)> is stopping
<Consumer: w@example.com (terminating)> is shutting down

The print statements will be redirected to the logging subsystem after the worker has been initialized, so the “is
starting” lines are time-stamped. You may notice that this does no longer happen at shutdown, this is because the
stop and shutdown methods are called inside a signal handler, and it’s not safe to use logging inside such a
handler. Logging with the Python logging module isn’t reentrant: meaning you cannot interrupt the function then call
it again later. It’s important that the stop and shutdown methods you write is also reentrant.

Starting the worker with --loglevel=debug will show us more information about the boot process:

178 Chapter 2. Contents

Celery Documentation, Release 4.1.0

[2013-05-29 16:18:20,509: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2013-05-29 16:18:20,511: DEBUG/MainProcess] | Worker: Building graph...
<celery.apps.worker.Worker object at 0x101ad8410> is in init
[2013-05-29 16:18:20,511: DEBUG/MainProcess] | Worker: New boot order:

{Hub, Pool, Timer, StateDB, Autoscaler, InfoStep, Beat, Consumer}
[2013-05-29 16:18:20,514: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2013-05-29 16:18:20,514: DEBUG/MainProcess] | Consumer: Building graph...
<celery.worker.consumer.Consumer object at 0x101c2d8d0> is in init
[2013-05-29 16:18:20,515: DEBUG/MainProcess] | Consumer: New boot order:

{Connection, Mingle, Events, Gossip, InfoStep, Agent,
Heart, Control, Tasks, event loop}

[2013-05-29 16:18:20,522: DEBUG/MainProcess] | Worker: Starting Hub
[2013-05-29 16:18:20,522: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,522: DEBUG/MainProcess] | Worker: Starting Pool
[2013-05-29 16:18:20,542: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,543: DEBUG/MainProcess] | Worker: Starting InfoStep
[2013-05-29 16:18:20,544: WARNING/MainProcess]

<celery.apps.worker.Worker object at 0x101ad8410> is starting
[2013-05-29 16:18:20,544: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,544: DEBUG/MainProcess] | Worker: Starting Consumer
[2013-05-29 16:18:20,544: DEBUG/MainProcess] | Consumer: Starting Connection
[2013-05-29 16:18:20,559: INFO/MainProcess] Connected to amqp://guest@127.0.0.1:5672//
[2013-05-29 16:18:20,560: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:20,560: DEBUG/MainProcess] | Consumer: Starting Mingle
[2013-05-29 16:18:20,560: INFO/MainProcess] mingle: searching for neighbors
[2013-05-29 16:18:21,570: INFO/MainProcess] mingle: no one here
[2013-05-29 16:18:21,570: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,571: DEBUG/MainProcess] | Consumer: Starting Events
[2013-05-29 16:18:21,572: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,572: DEBUG/MainProcess] | Consumer: Starting Gossip
[2013-05-29 16:18:21,577: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,577: DEBUG/MainProcess] | Consumer: Starting InfoStep
[2013-05-29 16:18:21,577: WARNING/MainProcess]

<celery.worker.consumer.Consumer object at 0x101c2d8d0> is starting
[2013-05-29 16:18:21,578: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,578: DEBUG/MainProcess] | Consumer: Starting Heart
[2013-05-29 16:18:21,579: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,579: DEBUG/MainProcess] | Consumer: Starting Control
[2013-05-29 16:18:21,583: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,583: DEBUG/MainProcess] | Consumer: Starting Tasks
[2013-05-29 16:18:21,606: DEBUG/MainProcess] basic.qos: prefetch_count->80
[2013-05-29 16:18:21,606: DEBUG/MainProcess] ^-- substep ok
[2013-05-29 16:18:21,606: DEBUG/MainProcess] | Consumer: Starting event loop
[2013-05-29 16:18:21,608: WARNING/MainProcess] celery@example.com ready.

Command-line programs

Adding new command-line options

Command-specific options

You can add additional command-line options to the worker, beat, and events commands by modifying the
user_options attribute of the application instance.

Celery commands uses the argparse module to parse command-line arguments, and so to add custom arguments
you need to specify a callback that takes a argparse.ArgumentParser instance - and adds arguments. Please

2.3. User Guide 179

https://docs.python.org/dev/library/argparse.html#module-argparse
https://docs.python.org/dev/library/argparse.html#argparse.ArgumentParser

Celery Documentation, Release 4.1.0

see the argparse documentation to read about the fields supported.

Example adding a custom option to the celery worker command:

from celery import Celery

app = Celery(broker='amqp://')

def add_worker_arguments(parser):
parser.add_argument(

'--enable-my-option', action='store_true', default=False,
help='Enable custom option.',

),
app.user_options['worker'].add(add_worker_arguments)

All bootsteps will now receive this argument as a keyword argument to Bootstep.__init__:

from celery import bootsteps

class MyBootstep(bootsteps.Step):

def __init__(self, worker, enable_my_option=False, **options):
if enable_my_option:

party()

app.steps['worker'].add(MyBootstep)

Preload options

The celery umbrella command supports the concept of ‘preload options’. These are special options passed to all
sub-commands and parsed outside of the main parsing step.

The list of default preload options can be found in the API reference: celery.bin.base.

You can add new preload options too, for example to specify a configuration template:

from celery import Celery
from celery import signals
from celery.bin import Option

app = Celery()

def add_preload_options(parser):
parser.add_argument(

'-Z', '--template', default='default',
help='Configuration template to use.',

)
app.user_options['preload'].add(add_preload_options)

@signals.user_preload_options.connect
def on_preload_parsed(options, **kwargs):

use_template(options['template'])

Adding new celery sub-commands

New commands can be added to the celery umbrella command by using setuptools entry-points.

180 Chapter 2. Contents

https://docs.python.org/dev/library/argparse.html#module-argparse
http://reinout.vanrees.org/weblog/2010/01/06/zest-releaser-entry-points.html

Celery Documentation, Release 4.1.0

Entry-points is special meta-data that can be added to your packages setup.py program, and then after installation,
read from the system using the pkg_resources module.

Celery recognizes celery.commands entry-points to install additional sub-commands, where the value of the
entry-point must point to a valid subclass of celery.bin.base.Command. There’s limited documentation, un-
fortunately, but you can find inspiration from the various commands in the celery.bin package.

This is how the Flower monitoring extension adds the celery flower command, by adding an entry-point in
setup.py:

setup(
name='flower',
entry_points={

'celery.commands': [
'flower = flower.command:FlowerCommand',

],
}

)

The command definition is in two parts separated by the equal sign, where the first part is the name of the sub-command
(flower), then the second part is the fully qualified symbol path to the class that implements the command:

flower.command:FlowerCommand

The module path and the name of the attribute should be separated by colon as above.

In the module flower/command.py, the command class is defined something like this:

from celery.bin.base import Command

class FlowerCommand(Command):

def add_arguments(self, parser):
parser.add_argument(

'--port', default=8888, type='int',
help='Webserver port',

),
parser.add_argument(

'--debug', action='store_true',
)

def run(self, port=None, debug=False, **kwargs):
print('Running our command')

Worker API

Hub - The workers async event loop

supported transports amqp, redis

New in version 3.0.

The worker uses asynchronous I/O when the amqp or redis broker transports are used. The eventual goal is for all
transports to use the event-loop, but that will take some time so other transports still use a threading-based solution.

hub.add(fd, callback, flags)

2.3. User Guide 181

https://pypi.python.org/pypi/Flower/

Celery Documentation, Release 4.1.0

hub.add_reader(fd, callback, *args)
Add callback to be called when fd is readable.

The callback will stay registered until explicitly removed using hub.remove(fd), or the file descriptor is
automatically discarded because it’s no longer valid.

Note that only one callback can be registered for any given file descriptor at a time, so calling add a second
time will remove any callback that was previously registered for that file descriptor.

A file descriptor is any file-like object that supports the fileno method, or it can be the file descriptor number
(int).

hub.add_writer(fd, callback, *args)
Add callback to be called when fd is writable. See also notes for hub.add_reader() above.

hub.remove(fd)
Remove all callbacks for file descriptor fd from the loop.

Timer - Scheduling events

timer.call_after(secs, callback, args=(), kwargs=(),
priority=0)

timer.call_repeatedly(secs, callback, args=(), kwargs=(),
priority=0)

timer.call_at(eta, callback, args=(), kwargs=(),
priority=0)

Configuration and defaults

This document describes the configuration options available.

If you’re using the default loader, you must create the celeryconfig.py module and make sure it’s available on
the Python path.

• Example configuration file

• New lowercase settings

• Configuration Directives

– General settings

– Time and date settings

– Task settings

– Task execution settings

– Task result backend settings

– Database backend settings

– RPC backend settings

– Cache backend settings

– Redis backend settings

182 Chapter 2. Contents

Celery Documentation, Release 4.1.0

– Cassandra backend settings

– Elasticsearch backend settings

– Riak backend settings

– AWS DynamoDB backend settings

– IronCache backend settings

– Couchbase backend settings

– CouchDB backend settings

– File-system backend settings

– Consul K/V store backend settings

– Message Routing

– Broker Settings

– Worker

– Events

– Remote Control Commands

– Logging

– Security

– Custom Component Classes (advanced)

– Beat Settings (celery beat)

Example configuration file

This is an example configuration file to get you started. It should contain all you need to run a basic Celery set-up.

Broker settings.
broker_url = 'amqp://guest:guest@localhost:5672//'

List of modules to import when the Celery worker starts.
imports = ('myapp.tasks',)

Using the database to store task state and results.
result_backend = 'db+sqlite:///results.db'

task_annotations = {'tasks.add': {'rate_limit': '10/s'}}

New lowercase settings

Version 4.0 introduced new lower case settings and setting organization.

The major difference between previous versions, apart from the lower case names, are the renaming of some prefixes,
like celerybeat_ to beat_, celeryd_ to worker_, and most of the top level celery_ settings have been
moved into a new task_ prefix.

Celery will still be able to read old configuration files, so there’s no rush in moving to the new settings format.

2.3. User Guide 183

Celery Documentation, Release 4.1.0

Setting name Replace with
CELERY_ACCEPT_CONTENT accept_content
CELERY_ENABLE_UTC enable_utc
CELERY_IMPORTS imports
CELERY_INCLUDE include
CELERY_TIMEZONE timezone
CELERYBEAT_MAX_LOOP_INTERVAL beat_max_loop_interval
CELERYBEAT_SCHEDULE beat_schedule
CELERYBEAT_SCHEDULER beat_scheduler
CELERYBEAT_SCHEDULE_FILENAME beat_schedule_filename
CELERYBEAT_SYNC_EVERY beat_sync_every
BROKER_URL broker_url
BROKER_TRANSPORT broker_transport
BROKER_TRANSPORT_OPTIONS broker_transport_options
BROKER_CONNECTION_TIMEOUT broker_connection_timeout
BROKER_CONNECTION_RETRY broker_connection_retry
BROKER_CONNECTION_MAX_RETRIES broker_connection_max_retries
BROKER_FAILOVER_STRATEGY broker_failover_strategy
BROKER_HEARTBEAT broker_heartbeat
BROKER_LOGIN_METHOD broker_login_method
BROKER_POOL_LIMIT broker_pool_limit
BROKER_USE_SSL broker_use_ssl
CELERY_CACHE_BACKEND cache_backend
CELERY_CACHE_BACKEND_OPTIONS cache_backend_options
CASSANDRA_COLUMN_FAMILY cassandra_table
CASSANDRA_ENTRY_TTL cassandra_entry_ttl
CASSANDRA_KEYSPACE cassandra_keyspace
CASSANDRA_PORT cassandra_port
CASSANDRA_READ_CONSISTENCY cassandra_read_consistency
CASSANDRA_SERVERS cassandra_servers
CASSANDRA_WRITE_CONSISTENCY cassandra_write_consistency
CELERY_COUCHBASE_BACKEND_SETTINGS couchbase_backend_settings
CELERY_MONGODB_BACKEND_SETTINGS mongodb_backend_settings
CELERY_EVENT_QUEUE_EXPIRES event_queue_expires
CELERY_EVENT_QUEUE_TTL event_queue_ttl
CELERY_EVENT_QUEUE_PREFIX event_queue_prefix
CELERY_EVENT_SERIALIZER event_serializer
CELERY_REDIS_DB redis_db
CELERY_REDIS_HOST redis_host
CELERY_REDIS_MAX_CONNECTIONS redis_max_connections
CELERY_REDIS_PASSWORD redis_password
CELERY_REDIS_PORT redis_port
CELERY_RESULT_BACKEND result_backend
CELERY_MAX_CACHED_RESULTS result_cache_max
CELERY_MESSAGE_COMPRESSION result_compression
CELERY_RESULT_EXCHANGE result_exchange
CELERY_RESULT_EXCHANGE_TYPE result_exchange_type
CELERY_TASK_RESULT_EXPIRES result_expires
CELERY_RESULT_PERSISTENT result_persistent
CELERY_RESULT_SERIALIZER result_serializer
CELERY_RESULT_DBURI Use result_backend instead.

Continued on next page

184 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Table 2.1 – continued from previous page
Setting name Replace with
CELERY_RESULT_ENGINE_OPTIONS database_engine_options
[...]_DB_SHORT_LIVED_SESSIONS database_short_lived_sessions
CELERY_RESULT_DB_TABLE_NAMES database_db_names
CELERY_SECURITY_CERTIFICATE security_certificate
CELERY_SECURITY_CERT_STORE security_cert_store
CELERY_SECURITY_KEY security_key
CELERY_TASK_ACKS_LATE task_acks_late
CELERY_TASK_ALWAYS_EAGER task_always_eager
CELERY_TASK_ANNOTATIONS task_annotations
CELERY_TASK_COMPRESSION task_compression
CELERY_TASK_CREATE_MISSING_QUEUES task_create_missing_queues
CELERY_TASK_DEFAULT_DELIVERY_MODE task_default_delivery_mode
CELERY_TASK_DEFAULT_EXCHANGE task_default_exchange
CELERY_TASK_DEFAULT_EXCHANGE_TYPE task_default_exchange_type
CELERY_TASK_DEFAULT_QUEUE task_default_queue
CELERY_TASK_DEFAULT_RATE_LIMIT task_default_rate_limit
CELERY_TASK_DEFAULT_ROUTING_KEY task_default_routing_key
CELERY_TASK_EAGER_PROPAGATES task_eager_propagates
CELERY_TASK_IGNORE_RESULT task_ignore_result
CELERY_TASK_PUBLISH_RETRY task_publish_retry
CELERY_TASK_PUBLISH_RETRY_POLICY task_publish_retry_policy
CELERY_TASK_QUEUES task_queues
CELERY_TASK_ROUTES task_routes
CELERY_TASK_SEND_SENT_EVENT task_send_sent_event
CELERY_TASK_SERIALIZER task_serializer
CELERYD_TASK_SOFT_TIME_LIMIT task_soft_time_limit
CELERYD_TASK_TIME_LIMIT task_time_limit
CELERY_TRACK_STARTED task_track_started
CELERYD_AGENT worker_agent
CELERYD_AUTOSCALER worker_autoscaler
CELERYD_CONCURRENCY worker_concurrency
CELERYD_CONSUMER worker_consumer
CELERY_WORKER_DIRECT worker_direct
CELERY_DISABLE_RATE_LIMITS worker_disable_rate_limits
CELERY_ENABLE_REMOTE_CONTROL worker_enable_remote_control
CELERYD_HIJACK_ROOT_LOGGER worker_hijack_root_logger
CELERYD_LOG_COLOR worker_log_color
CELERYD_LOG_FORMAT worker_log_format
CELERYD_WORKER_LOST_WAIT worker_lost_wait
CELERYD_MAX_TASKS_PER_CHILD worker_max_tasks_per_child
CELERYD_POOL worker_pool
CELERYD_POOL_PUTLOCKS worker_pool_putlocks
CELERYD_POOL_RESTARTS worker_pool_restarts
CELERYD_PREFETCH_MULTIPLIER worker_prefetch_multiplier
CELERYD_REDIRECT_STDOUTS worker_redirect_stdouts
CELERYD_REDIRECT_STDOUTS_LEVEL worker_redirect_stdouts_level
CELERYD_SEND_EVENTS worker_send_task_events
CELERYD_STATE_DB worker_state_db
CELERYD_TASK_LOG_FORMAT worker_task_log_format

Continued on next page

2.3. User Guide 185

Celery Documentation, Release 4.1.0

Table 2.1 – continued from previous page
Setting name Replace with
CELERYD_TIMER worker_timer
CELERYD_TIMER_PRECISION worker_timer_precision

Configuration Directives

General settings

accept_content

Default: {'json'} (set, list, or tuple).

A white-list of content-types/serializers to allow.

If a message is received that’s not in this list then the message will be discarded with an error.

By default any content type is enabled, including pickle and yaml, so make sure untrusted parties don’t have access to
your broker. See Security for more.

Example:

using serializer name
accept_content = ['json']

or the actual content-type (MIME)
accept_content = ['application/json']

Time and date settings

enable_utc

New in version 2.5.

Default: Enabled by default since version 3.0.

If enabled dates and times in messages will be converted to use the UTC timezone.

Note that workers running Celery versions below 2.5 will assume a local timezone for all messages, so only enable if
all workers have been upgraded.

timezone

New in version 2.5.

Default: "UTC".

Configure Celery to use a custom time zone. The timezone value can be any time zone supported by the pytz library.

If not set the UTC timezone is used. For backwards compatibility there’s also a enable_utc setting, and this is set
to false the system local timezone is used instead.

186 Chapter 2. Contents

https://pypi.python.org/pypi/pytz/

Celery Documentation, Release 4.1.0

Task settings

task_annotations

New in version 2.5.

Default: None.

This setting can be used to rewrite any task attribute from the configuration. The setting can be a dict, or a list of
annotation objects that filter for tasks and return a map of attributes to change.

This will change the rate_limit attribute for the tasks.add task:

task_annotations = {'tasks.add': {'rate_limit': '10/s'}}

or change the same for all tasks:

task_annotations = {'*': {'rate_limit': '10/s'}}

You can change methods too, for example the on_failure handler:

def my_on_failure(self, exc, task_id, args, kwargs, einfo):
print('Oh no! Task failed: {0!r}'.format(exc))

task_annotations = {'*': {'on_failure': my_on_failure}}

If you need more flexibility then you can use objects instead of a dict to choose the tasks to annotate:

class MyAnnotate(object):

def annotate(self, task):
if task.name.startswith('tasks.'):

return {'rate_limit': '10/s'}

task_annotations = (MyAnnotate(), {other,})

task_compression

Default: None

Default compression used for task messages. Can be gzip, bzip2 (if available), or any custom compression schemes
registered in the Kombu compression registry.

The default is to send uncompressed messages.

task_protocol

Default: 2 (since 4.0).

Set the default task message protocol version used to send tasks. Supports protocols: 1 and 2.

Protocol 2 is supported by 3.1.24 and 4.x+.

2.3. User Guide 187

Celery Documentation, Release 4.1.0

task_serializer

Default: "json" (since 4.0, earlier: pickle).

A string identifying the default serialization method to use. Can be json (default), pickle, yaml, msgpack, or any
custom serialization methods that have been registered with kombu.serialization.registry.

See also:

Serializers.

task_publish_retry

New in version 2.2.

Default: Enabled.

Decides if publishing task messages will be retried in the case of connection loss or other connection errors. See also
task_publish_retry_policy .

task_publish_retry_policy

New in version 2.2.

Default: See Message Sending Retry.

Defines the default policy when retrying publishing a task message in the case of connection loss or other connection
errors.

Task execution settings

task_always_eager

Default: Disabled.

If this is True, all tasks will be executed locally by blocking until the task returns. apply_async() and Task.
delay() will return an EagerResult instance, that emulates the API and behavior of AsyncResult, except the
result is already evaluated.

That is, tasks will be executed locally instead of being sent to the queue.

task_eager_propagates

Default: Disabled.

If this is True, eagerly executed tasks (applied by task.apply(), or when the task_always_eager setting is
enabled), will propagate exceptions.

It’s the same as always running apply() with throw=True.

188 Chapter 2. Contents

Celery Documentation, Release 4.1.0

task_remote_tracebacks

Default: Disabled.

If enabled task results will include the workers stack when re-raising task errors.

This requires the tblib library, that can be installed using pip:

$ pip install celery[tblib]

See Bundles for information on combining multiple extension requirements.

task_ignore_result

Default: Disabled.

Whether to store the task return values or not (tombstones). If you still want to store errors, just not successful return
values, you can set task_store_errors_even_if_ignored.

task_store_errors_even_if_ignored

Default: Disabled.

If set, the worker stores all task errors in the result store even if Task.ignore_result is on.

task_track_started

Default: Disabled.

If True the task will report its status as ‘started’ when the task is executed by a worker. The default value is False
as the normal behavior is to not report that level of granularity. Tasks are either pending, finished, or waiting to be
retried. Having a ‘started’ state can be useful for when there are long running tasks and there’s a need to report what
task is currently running.

task_time_limit

Default: No time limit.

Task hard time limit in seconds. The worker processing the task will be killed and replaced with a new one when this
is exceeded.

task_soft_time_limit

Default: No soft time limit.

Task soft time limit in seconds.

The SoftTimeLimitExceeded exception will be raised when this is exceeded. For example, the task can catch
this to clean up before the hard time limit comes:

2.3. User Guide 189

https://pypi.python.org/pypi/tblib/

Celery Documentation, Release 4.1.0

from celery.exceptions import SoftTimeLimitExceeded

@app.task
def mytask():

try:
return do_work()

except SoftTimeLimitExceeded:
cleanup_in_a_hurry()

task_acks_late

Default: Disabled.

Late ack means the task messages will be acknowledged after the task has been executed, not just before (the default
behavior).

See also:

FAQ: Should I use retry or acks_late?.

task_reject_on_worker_lost

Default: Disabled.

Even if task_acks_late is enabled, the worker will acknowledge tasks when the worker process executing them
abruptly exits or is signaled (e.g., KILL/INT, etc).

Setting this to true allows the message to be re-queued instead, so that the task will execute again by the same worker,
or another worker.

Warning: Enabling this can cause message loops; make sure you know what you’re doing.

task_default_rate_limit

Default: No rate limit.

The global default rate limit for tasks.

This value is used for tasks that doesn’t have a custom rate limit

See also:

The setting:worker_disable_rate_limits setting can disable all rate limits.

Task result backend settings

result_backend

Default: No result backend enabled by default.

The backend used to store task results (tombstones). Can be one of the following:

• rpc Send results back as AMQP messages See RPC backend settings.

190 Chapter 2. Contents

Celery Documentation, Release 4.1.0

• database Use a relational database supported by SQLAlchemy. See Database backend settings.

• redis Use Redis to store the results. See Redis backend settings.

• cache Use Memcached to store the results. See Cache backend settings.

• cassandra Use Cassandra to store the results. See Cassandra backend settings.

• elasticsearch Use Elasticsearch to store the results. See Elasticsearch backend settings.

• ironcache Use IronCache to store the results. See IronCache backend settings.

• couchbase Use Couchbase to store the results. See Couchbase backend settings.

• couchdb Use CouchDB to store the results. See CouchDB backend settings.

• filesystem Use a shared directory to store the results. See File-system backend settings.

• consul Use the Consul K/V store to store the results See Consul K/V store backend settings.

result_serializer

Default: json since 4.0 (earlier: pickle).

Result serialization format.

See Serializers for information about supported serialization formats.

result_compression

Default: No compression.

Optional compression method used for task results. Supports the same options as the task_serializer setting.

result_expires

Default: Expire after 1 day.

Time (in seconds, or a timedelta object) for when after stored task tombstones will be deleted.

A built-in periodic task will delete the results after this time (celery.backend_cleanup), assuming that
celery beat is enabled. The task runs daily at 4am.

A value of None or 0 means results will never expire (depending on backend specifications).

Note: For the moment this only works with the AMQP, database, cache, and Redis backends.

When using the database backend, celery beat must be running for the results to be expired.

result_cache_max

Default: Disabled by default.

Enables client caching of results.

This can be useful for the old deprecated ‘amqp’ backend where the result is unavailable as soon as one result instance
consumes it.

2.3. User Guide 191

http://sqlalchemy.org
https://redis.io
http://memcached.org
http://cassandra.apache.org/
https://aws.amazon.com/elasticsearch-service/
http://www.iron.io/cache
https://www.couchbase.com/
http://www.couchdb.com/
https://consul.io/
https://docs.python.org/dev/library/datetime.html#datetime.timedelta

Celery Documentation, Release 4.1.0

This is the total number of results to cache before older results are evicted. A value of 0 or None means no limit, and
a value of -1 will disable the cache.

Disabled by default.

Database backend settings

Database URL Examples

To use the database backend you have to configure the result_backend setting with a connection URL and the
db+ prefix:

result_backend = 'db+scheme://user:password@host:port/dbname'

Examples:

sqlite (filename)
result_backend = 'db+sqlite:///results.sqlite'

mysql
result_backend = 'db+mysql://scott:tiger@localhost/foo'

postgresql
result_backend = 'db+postgresql://scott:tiger@localhost/mydatabase'

oracle
result_backend = 'db+oracle://scott:tiger@127.0.0.1:1521/sidname'

Please see Supported Databases for a table of supported databases, and Connection String for more information about
connection strings (this is the part of the URI that comes after the db+ prefix).

database_engine_options

Default: {} (empty mapping).

To specify additional SQLAlchemy database engine options you can use the sqlalchmey_engine_options
setting:

echo enables verbose logging from SQLAlchemy.
app.conf.database_engine_options = {'echo': True}

database_short_lived_sessions

Default: Disabled by default.

Short lived sessions are disabled by default. If enabled they can drastically reduce performance, especially on systems
processing lots of tasks. This option is useful on low-traffic workers that experience errors as a result of cached
database connections going stale through inactivity. For example, intermittent errors like (OperationalError) (2006,
‘MySQL server has gone away’) can be fixed by enabling short lived sessions. This option only affects the database
backend.

192 Chapter 2. Contents

http://www.sqlalchemy.org/docs/core/engines.html#supported-databases
http://www.sqlalchemy.org/docs/core/engines.html#database-urls

Celery Documentation, Release 4.1.0

database_table_names

Default: {} (empty mapping).

When SQLAlchemy is configured as the result backend, Celery automatically creates two tables to store result meta-
data for tasks. This setting allows you to customize the table names:

use custom table names for the database result backend.
database_table_names = {

'task': 'myapp_taskmeta',
'group': 'myapp_groupmeta',

}

RPC backend settings

result_persistent

Default: Disabled by default (transient messages).

If set to True, result messages will be persistent. This means the messages won’t be lost after a broker restart.

Example configuration

result_backend = 'rpc://'
result_persistent = False

Cache backend settings

Note: The cache backend supports the pylibmc and python-memcached libraries. The latter is used only if pylibmc
isn’t installed.

Using a single Memcached server:

result_backend = 'cache+memcached://127.0.0.1:11211/'

Using multiple Memcached servers:

result_backend = """
cache+memcached://172.19.26.240:11211;172.19.26.242:11211/

""".strip()

The “memory” backend stores the cache in memory only:

result_backend = 'cache'
cache_backend = 'memory'

cache_backend_options

Default: {} (empty mapping).

2.3. User Guide 193

https://pypi.python.org/pypi/pylibmc/
https://pypi.python.org/pypi/python-memcached/
https://pypi.python.org/pypi/pylibmc/

Celery Documentation, Release 4.1.0

You can set pylibmc options using the cache_backend_options setting:

cache_backend_options = {
'binary': True,
'behaviors': {'tcp_nodelay': True},

}

cache_backend

This setting is no longer used as it’s now possible to specify the cache backend directly in the result_backend
setting.

Redis backend settings

Configuring the backend URL

Note: The Redis backend requires the redis library.

To install this package use pip:

$ pip install celery[redis]

See Bundles for information on combining multiple extension requirements.

This backend requires the result_backend setting to be set to a Redis URL:

result_backend = 'redis://:password@host:port/db'

For example:

result_backend = 'redis://localhost/0'

is the same as:

result_backend = 'redis://'

The fields of the URL are defined as follows:

1. password

Password used to connect to the database.

2. host

Host name or IP address of the Redis server (e.g., localhost).

3. port

Port to the Redis server. Default is 6379.

4. db

Database number to use. Default is 0. The db can include an optional leading slash.

194 Chapter 2. Contents

https://pypi.python.org/pypi/pylibmc/
https://pypi.python.org/pypi/redis/

Celery Documentation, Release 4.1.0

redis_backend_use_ssl

Default: Disabled.

The Redis backend supports SSL. The valid values of this options are the same as broker_use_ssl.

redis_max_connections

Default: No limit.

Maximum number of connections available in the Redis connection pool used for sending and retrieving results.

redis_socket_connect_timeout

New in version 5.0.1.

Default: None

Socket timeout for connections to Redis from the result backend in seconds (int/float)

redis_socket_timeout

Default: 120.0 seconds.

Socket timeout for reading/writing operations to the Redis server in seconds (int/float), used by the redis result back-
end.

Cassandra backend settings

Note: This Cassandra backend driver requires cassandra-driver.

To install, use pip:

$ pip install celery[cassandra]

See Bundles for information on combining multiple extension requirements.

This backend requires the following configuration directives to be set.

cassandra_servers

Default: [] (empty list).

List of host Cassandra servers. For example:

cassandra_servers = ['localhost']

2.3. User Guide 195

https://pypi.python.org/pypi/cassandra-driver/

Celery Documentation, Release 4.1.0

cassandra_port

Default: 9042.

Port to contact the Cassandra servers on.

cassandra_keyspace

Default: None.

The key-space in which to store the results. For example:

cassandra_keyspace = 'tasks_keyspace'

cassandra_table

Default: None.

The table (column family) in which to store the results. For example:

cassandra_table = 'tasks'

cassandra_read_consistency

Default: None.

The read consistency used. Values can be ONE, TWO, THREE, QUORUM, ALL, LOCAL_QUORUM, EACH_QUORUM,
LOCAL_ONE.

cassandra_write_consistency

Default: None.

The write consistency used. Values can be ONE, TWO, THREE, QUORUM, ALL, LOCAL_QUORUM, EACH_QUORUM,
LOCAL_ONE.

cassandra_entry_ttl

Default: None.

Time-to-live for status entries. They will expire and be removed after that many seconds after adding. A value of
None (default) means they will never expire.

cassandra_auth_provider

Default: None.

AuthProvider class within cassandra.auth module to use. Values can be PlainTextAuthProvider or
SaslAuthProvider.

196 Chapter 2. Contents

Celery Documentation, Release 4.1.0

cassandra_auth_kwargs

Default: {} (empty mapping).

Named arguments to pass into the authentication provider. For example:

cassandra_auth_kwargs = {
username: 'cassandra',
password: 'cassandra'

}

Example configuration

cassandra_servers = ['localhost']
cassandra_keyspace = 'celery'
cassandra_table = 'tasks'
cassandra_read_consistency = 'ONE'
cassandra_write_consistency = 'ONE'
cassandra_entry_ttl = 86400

Elasticsearch backend settings

To use Elasticsearch as the result backend you simply need to configure the result_backend setting with the
correct URL.

Example configuration

result_backend = 'elasticsearch://example.com:9200/index_name/doc_type'

elasticsearch_retry_on_timeout

Default: False

Should timeout trigger a retry on different node?

elasticsearch_max_retries

Default: 3.

Maximum number of retries before an exception is propagated.

elasticsearch_timeout

Default: 10.0 seconds.

Global timeout,used by the elasticsearch result backend.

2.3. User Guide 197

https://aws.amazon.com/elasticsearch-service/

Celery Documentation, Release 4.1.0

Riak backend settings

Note: The Riak backend requires the riak library.

To install the this package use pip:

$ pip install celery[riak]

See Bundles for information on combining multiple extension requirements.

This backend requires the result_backend setting to be set to a Riak URL:

result_backend = 'riak://host:port/bucket'

For example:

result_backend = 'riak://localhost/celery

is the same as:

result_backend = 'riak://'

The fields of the URL are defined as follows:

1. host

Host name or IP address of the Riak server (e.g., ‘localhost’).

2. port

Port to the Riak server using the protobuf protocol. Default is 8087.

3. bucket

Bucket name to use. Default is celery. The bucket needs to be a string with ASCII characters only.

Alternatively, this backend can be configured with the following configuration directives.

riak_backend_settings

Default: {} (empty mapping).

This is a dict supporting the following keys:

• host

The host name of the Riak server. Defaults to "localhost".

• port

The port the Riak server is listening to. Defaults to 8087.

• bucket

The bucket name to connect to. Defaults to “celery”.

• protocol

The protocol to use to connect to the Riak server. This isn’t configurable via result_backend

198 Chapter 2. Contents

https://pypi.python.org/pypi/riak/

Celery Documentation, Release 4.1.0

AWS DynamoDB backend settings

Note: The Dynamodb backend requires the boto3 library.

To install this package use pip:

$ pip install celery[dynamodb]

See Bundles for information on combining multiple extension requirements.

This backend requires the result_backend setting to be set to a DynamoDB URL:

result_backend =
→˓'dynamodb://aws_access_key_id:aws_secret_access_key@region:port/table?read=n&write=m'

For example, specifying the AWS region and the table name:

result_backend = 'dynamodb://@us-east-1/celery_results

or retrieving AWS configuration parameters from the environment, using the default table name (celery) and speci-
fying read and write provisioned throughput:

result_backend = 'dynamodb://@/?read=5&write=5'

or using the downloadable version of DynamoDB locally:

result_backend = 'dynamodb://@localhost:8000

The fields of the URL are defined as follows:

1. aws_access_key_id & aws_secret_access_key

The credentials for accessing AWS API resources. These can also be resolved by the boto3 library
from various sources, as described here.

2. region

The AWS region, e.g. us-east-1 or localhost for the Downloadable Version. See the boto3
library documentation for definition options.

3. port

The listening port of the local DynamoDB instance, if you are using the downloadable version. If you have not
specified the region parameter as localhost, setting this parameter has no effect.

4. table

Table name to use. Default is celery. See the DynamoDB Naming Rules for information on the
allowed characters and length.

5. read & write

The Read & Write Capacity Units for the created DynamoDB table. Default is 1 for both read and
write. More details can be found in the Provisioned Throughput documentation.

IronCache backend settings

2.3. User Guide 199

https://pypi.python.org/pypi/boto3/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.Endpoint.html
https://pypi.python.org/pypi/boto3/
http://boto3.readthedocs.io/en/latest/guide/configuration.html#configuring-credentials
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://pypi.python.org/pypi/boto3/
http://boto3.readthedocs.io/en/latest/guide/configuration.html#environment-variable-configuration
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html#limits-naming-rules
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html

Celery Documentation, Release 4.1.0

Note: The IronCache backend requires the iron_celery library:

To install this package use pip:

$ pip install iron_celery

IronCache is configured via the URL provided in result_backend, for example:

result_backend = 'ironcache://project_id:token@'

Or to change the cache name:

ironcache:://project_id:token@/awesomecache

For more information, see: https://github.com/iron-io/iron_celery

Couchbase backend settings

Note: The Couchbase backend requires the couchbase library.

To install this package use pip:

$ pip install celery[couchbase]

See Bundles for instructions how to combine multiple extension requirements.

This backend can be configured via the result_backend set to a Couchbase URL:

result_backend = 'couchbase://username:password@host:port/bucket'

couchbase_backend_settings

Default: {} (empty mapping).

This is a dict supporting the following keys:

• host

Host name of the Couchbase server. Defaults to localhost.

• port

The port the Couchbase server is listening to. Defaults to 8091.

• bucket

The default bucket the Couchbase server is writing to. Defaults to default.

• username

User name to authenticate to the Couchbase server as (optional).

• password

Password to authenticate to the Couchbase server (optional).

200 Chapter 2. Contents

https://pypi.python.org/pypi/iron_celery/
https://github.com/iron-io/iron_celery
https://pypi.python.org/pypi/couchbase/

Celery Documentation, Release 4.1.0

CouchDB backend settings

Note: The CouchDB backend requires the pycouchdb library:

To install this Couchbase package use pip:

$ pip install celery[couchdb]

See Bundles for information on combining multiple extension requirements.

This backend can be configured via the result_backend set to a CouchDB URL:

result_backend = 'couchdb://username:password@host:port/container'

The URL is formed out of the following parts:

• username

User name to authenticate to the CouchDB server as (optional).

• password

Password to authenticate to the CouchDB server (optional).

• host

Host name of the CouchDB server. Defaults to localhost.

• port

The port the CouchDB server is listening to. Defaults to 8091.

• container

The default container the CouchDB server is writing to. Defaults to default.

File-system backend settings

This backend can be configured using a file URL, for example:

CELERY_RESULT_BACKEND = 'file:///var/celery/results'

The configured directory needs to be shared and writable by all servers using the backend.

If you’re trying Celery on a single system you can simply use the backend without any further configuration. For
larger clusters you could use NFS, GlusterFS, CIFS, HDFS (using FUSE), or any other file-system.

Consul K/V store backend settings

The Consul backend can be configured using a URL, for example:

CELERY_RESULT_BACKEND = ‘consul://localhost:8500/’

The backend will storage results in the K/V store of Consul as individual keys.

The backend supports auto expire of results using TTLs in Consul.

2.3. User Guide 201

https://pypi.python.org/pypi/pycouchdb/
http://www.gluster.org/
http://hadoop.apache.org/

Celery Documentation, Release 4.1.0

Message Routing

task_queues

Default: None (queue taken from default queue settings).

Most users will not want to specify this setting and should rather use the automatic routing facilities.

If you really want to configure advanced routing, this setting should be a list of kombu.Queue objects the worker
will consume from.

Note that workers can be overridden this setting via the -Q option, or individual queues from this list (by name) can
be excluded using the -X option.

Also see Basics for more information.

The default is a queue/exchange/binding key of celery, with exchange type direct.

See also task_routes

task_routes

Default: None.

A list of routers, or a single router used to route tasks to queues. When deciding the final destination of a task the
routers are consulted in order.

A router can be specified as either:

• A function with the signature (name, args, kwargs, options, task=None, **kwargs)

• A string providing the path to a router function.

• A dict containing router specification: Will be converted to a celery.routes.MapRoute instance.

• A list of (pattern, route) tuples: Will be converted to a celery.routes.MapRoute instance.

Examples:

task_routes = {
'celery.ping': 'default',
'mytasks.add': 'cpu-bound',
'feed.tasks.*': 'feeds', # <-- glob pattern
re.compile(r'(image|video)\.tasks\..*'): 'media', # <-- regex
'video.encode': {

'queue': 'video',
'exchange': 'media'
'routing_key': 'media.video.encode',

},
}

task_routes = ('myapp.tasks.route_task', {'celery.ping': 'default})

Where myapp.tasks.route_task could be:

def route_task(self, name, args, kwargs, options, task=None, **kw):
if task == 'celery.ping':

return {'queue': 'default'}

202 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue

Celery Documentation, Release 4.1.0

route_task may return a string or a dict. A string then means it’s a queue name in task_queues, a dict means
it’s a custom route.

When sending tasks, the routers are consulted in order. The first router that doesn’t return None is the route to use.
The message options is then merged with the found route settings, where the routers settings have priority.

Example if apply_async() has these arguments:

Task.apply_async(immediate=False, exchange='video',
routing_key='video.compress')

and a router returns:

{'immediate': True, 'exchange': 'urgent'}

the final message options will be:

immediate=True, exchange='urgent', routing_key='video.compress'

(and any default message options defined in the Task class)

Values defined in task_routes have precedence over values defined in task_queues when merging the two.

With the follow settings:

task_queues = {
'cpubound': {

'exchange': 'cpubound',
'routing_key': 'cpubound',

},
}

task_routes = {
'tasks.add': {

'queue': 'cpubound',
'routing_key': 'tasks.add',
'serializer': 'json',

},
}

The final routing options for tasks.add will become:

{'exchange': 'cpubound',
'routing_key': 'tasks.add',
'serializer': 'json'}

See Routers for more examples.

task_queue_ha_policy

brokers RabbitMQ

Default: None.

This will set the default HA policy for a queue, and the value can either be a string (usually all):

task_queue_ha_policy = 'all'

Using ‘all’ will replicate the queue to all current nodes, Or you can give it a list of nodes to replicate to:

2.3. User Guide 203

Celery Documentation, Release 4.1.0

task_queue_ha_policy = ['rabbit@host1', 'rabbit@host2']

Using a list will implicitly set x-ha-policy to ‘nodes’ and x-ha-policy-params to the given list of nodes.

See http://www.rabbitmq.com/ha.html for more information.

task_queue_max_priority

brokers RabbitMQ

Default: None.

See RabbitMQ Message Priorities.

worker_direct

Default: Disabled.

This option enables so that every worker has a dedicated queue, so that tasks can be routed to specific workers.

The queue name for each worker is automatically generated based on the worker hostname and a .dq suffix, using the
C.dq exchange.

For example the queue name for the worker with node name w1@example.com becomes:

w1@example.com.dq

Then you can route the task to the task by specifying the hostname as the routing key and the C.dq exchange:

task_routes = {
'tasks.add': {'exchange': 'C.dq', 'routing_key': 'w1@example.com'}

}

task_create_missing_queues

Default: Enabled.

If enabled (default), any queues specified that aren’t defined in task_queues will be automatically created. See
Automatic routing.

task_default_queue

Default: "celery".

The name of the default queue used by .apply_async if the message has no route or no custom queue has been specified.

This queue must be listed in task_queues. If task_queues isn’t specified then it’s automatically created con-
taining one queue entry, where this name is used as the name of that queue.

See also:

Changing the name of the default queue

204 Chapter 2. Contents

http://www.rabbitmq.com/ha.html

Celery Documentation, Release 4.1.0

task_default_exchange

Default: "celery".

Name of the default exchange to use when no custom exchange is specified for a key in the task_queues setting.

task_default_exchange_type

Default: "direct".

Default exchange type used when no custom exchange type is specified for a key in the task_queues setting.

task_default_routing_key

Default: "celery".

The default routing key used when no custom routing key is specified for a key in the task_queues setting.

task_default_delivery_mode

Default: "persistent".

Can be transient (messages not written to disk) or persistent (written to disk).

Broker Settings

broker_url

Default: "amqp://"

Default broker URL. This must be a URL in the form of:

transport://userid:password@hostname:port/virtual_host

Only the scheme part (transport://) is required, the rest is optional, and defaults to the specific transports default
values.

The transport part is the broker implementation to use, and the default is amqp, (uses librabbitmq if installed or
falls back to pyamqp). There are also other choices available, including; redis://, sqs://, and qpid://.

The scheme can also be a fully qualified path to your own transport implementation:

broker_url = 'proj.transports.MyTransport://localhost'

More than one broker URL, of the same transport, can also be specified. The broker URLs can be passed in as a single
string that’s semicolon delimited:

broker_url =
→˓'transport://userid:password@hostname:port//;transport://userid:password@hostname:port//'

Or as a list:

2.3. User Guide 205

Celery Documentation, Release 4.1.0

broker_url = [
'transport://userid:password@localhost:port//',
'transport://userid:password@hostname:port//'

]

The brokers will then be used in the broker_failover_strategy .

See URLs in the Kombu documentation for more information.

broker_read_url / broker_write_url

Default: Taken from broker_url.

These settings can be configured, instead of broker_url to specify different connection parameters for broker
connections used for consuming and producing.

Example:

broker_read_url = 'amqp://user:pass@broker.example.com:56721'
broker_write_url = 'amqp://user:pass@broker.example.com:56722'

Both options can also be specified as a list for failover alternates, see broker_url for more information.

broker_failover_strategy

Default: "round-robin".

Default failover strategy for the broker Connection object. If supplied, may map to a key in
‘kombu.connection.failover_strategies’, or be a reference to any method that yields a single item from a supplied
list.

Example:

Random failover strategy
def random_failover_strategy(servers):

it = list(servers) # don't modify callers list
shuffle = random.shuffle
for _ in repeat(None):

shuffle(it)
yield it[0]

broker_failover_strategy = random_failover_strategy

broker_heartbeat

transports supported pyamqp

Default: 120.0 (negotiated by server).

Note: This value is only used by the worker, clients do not use a heartbeat at the moment.

It’s not always possible to detect connection loss in a timely manner using TCP/IP alone, so AMQP defines something
called heartbeats that’s is used both by the client and the broker to detect if a connection was closed.

206 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/userguide/connections.html#connection-urls

Celery Documentation, Release 4.1.0

If the heartbeat value is 10 seconds, then the heartbeat will be monitored at the interval specified by the
broker_heartbeat_checkrate setting (by default this is set to double the rate of the heartbeat value, so for
the 10 seconds, the heartbeat is checked every 5 seconds).

broker_heartbeat_checkrate

transports supported pyamqp

Default: 2.0.

At intervals the worker will monitor that the broker hasn’t missed too many heartbeats. The rate at which this is
checked is calculated by dividing the broker_heartbeat value with this value, so if the heartbeat is 10.0 and the
rate is the default 2.0, the check will be performed every 5 seconds (twice the heartbeat sending rate).

broker_use_ssl

transports supported pyamqp, redis

Default: Disabled.

Toggles SSL usage on broker connection and SSL settings.

The valid values for this option vary by transport.

pyamqp

If True the connection will use SSL with default SSL settings. If set to a dict, will configure SSL connection according
to the specified policy. The format used is Python’s ssl.wrap_socket() options.

Note that SSL socket is generally served on a separate port by the broker.

Example providing a client cert and validating the server cert against a custom certificate authority:

import ssl

broker_use_ssl = {
'keyfile': '/var/ssl/private/worker-key.pem',
'certfile': '/var/ssl/amqp-server-cert.pem',
'ca_certs': '/var/ssl/myca.pem',
'cert_reqs': ssl.CERT_REQUIRED

}

Warning: Be careful using broker_use_ssl=True. It’s possible that your default configuration won’t
validate the server cert at all. Please read Python ssl module security considerations.

redis

The setting must be a dict the keys:

• ssl_cert_reqs (required): one of the SSLContext.verify_mode values:

– ssl.CERT_NONE

– ssl.CERT_OPTIONAL

2.3. User Guide 207

https://docs.python.org/dev/library/ssl.html#ssl.wrap_socket
https://docs.python.org/3/library/ssl.html#ssl-security

Celery Documentation, Release 4.1.0

– ssl.CERT_REQUIRED

• ssl_ca_certs (optional): path to the CA certificate

• ssl_certfile (optional): path to the client certificate

• ssl_keyfile (optional): path to the client key

broker_pool_limit

New in version 2.3.

Default: 10.

The maximum number of connections that can be open in the connection pool.

The pool is enabled by default since version 2.5, with a default limit of ten connections. This number can be tweaked
depending on the number of threads/green-threads (eventlet/gevent) using a connection. For example running eventlet
with 1000 greenlets that use a connection to the broker, contention can arise and you should consider increasing the
limit.

If set to None or 0 the connection pool will be disabled and connections will be established and closed for every use.

broker_connection_timeout

Default: 4.0.

The default timeout in seconds before we give up establishing a connection to the AMQP server. This setting is
disabled when using gevent.

broker_connection_retry

Default: Enabled.

Automatically try to re-establish the connection to the AMQP broker if lost.

The time between retries is increased for each retry, and is not exhausted before
broker_connection_max_retries is exceeded.

broker_connection_max_retries

Default: 100.

Maximum number of retries before we give up re-establishing a connection to the AMQP broker.

If this is set to 0 or None, we’ll retry forever.

broker_login_method

Default: "AMQPLAIN".

Set custom amqp login method.

208 Chapter 2. Contents

Celery Documentation, Release 4.1.0

broker_transport_options

New in version 2.2.

Default: {} (empty mapping).

A dict of additional options passed to the underlying transport.

See your transport user manual for supported options (if any).

Example setting the visibility timeout (supported by Redis and SQS transports):

broker_transport_options = {'visibility_timeout': 18000} # 5 hours

Worker

imports

Default: [] (empty list).

A sequence of modules to import when the worker starts.

This is used to specify the task modules to import, but also to import signal handlers and additional remote control
commands, etc.

The modules will be imported in the original order.

include

Default: [] (empty list).

Exact same semantics as imports, but can be used as a means to have different import categories.

The modules in this setting are imported after the modules in imports.

worker_concurrency

Default: Number of CPU cores.

The number of concurrent worker processes/threads/green threads executing tasks.

If you’re doing mostly I/O you can have more processes, but if mostly CPU-bound, try to keep it close to the number
of CPUs on your machine. If not set, the number of CPUs/cores on the host will be used.

worker_prefetch_multiplier

Default: 4.

How many messages to prefetch at a time multiplied by the number of concurrent processes. The default is 4 (four
messages for each process). The default setting is usually a good choice, however – if you have very long running
tasks waiting in the queue and you have to start the workers, note that the first worker to start will receive four times
the number of messages initially. Thus the tasks may not be fairly distributed to the workers.

To disable prefetching, set worker_prefetch_multiplier to 1. Changing that setting to 0 will allow the
worker to keep consuming as many messages as it wants.

2.3. User Guide 209

Celery Documentation, Release 4.1.0

For more on prefetching, read Prefetch Limits

Note: Tasks with ETA/countdown aren’t affected by prefetch limits.

worker_lost_wait

Default: 10.0 seconds.

In some cases a worker may be killed without proper cleanup, and the worker may have published a result before
terminating. This value specifies how long we wait for any missing results before raising a WorkerLostError
exception.

worker_max_tasks_per_child

Maximum number of tasks a pool worker process can execute before it’s replaced with a new one. Default is no limit.

worker_max_memory_per_child

Default: No limit. Type: int (kilobytes)

Maximum amount of resident memory, in kilobytes, that may be consumed by a worker before it will be replaced by
a new worker. If a single task causes a worker to exceed this limit, the task will be completed, and the worker will be
replaced afterwards.

Example:

worker_max_memory_per_child = 12000 # 12MB

worker_disable_rate_limits

Default: Disabled (rate limits enabled).

Disable all rate limits, even if tasks has explicit rate limits set.

worker_state_db

Default: None.

Name of the file used to stores persistent worker state (like revoked tasks). Can be a relative or absolute path, but be
aware that the suffix .db may be appended to the file name (depending on Python version).

Can also be set via the celery worker --statedb argument.

worker_timer_precision

Default: 1.0 seconds.

Set the maximum time in seconds that the ETA scheduler can sleep between rechecking the schedule.

Setting this value to 1 second means the schedulers precision will be 1 second. If you need near millisecond precision
you can set this to 0.1.

210 Chapter 2. Contents

Celery Documentation, Release 4.1.0

worker_enable_remote_control

Default: Enabled by default.

Specify if remote control of the workers is enabled.

Events

worker_send_task_events

Default: Disabled by default.

Send task-related events so that tasks can be monitored using tools like flower. Sets the default value for the workers
-E argument.

task_send_sent_event

New in version 2.2.

Default: Disabled by default.

If enabled, a task-sent event will be sent for every task so tasks can be tracked before they’re consumed by a
worker.

event_queue_ttl

transports supported amqp

Default: 5.0 seconds.

Message expiry time in seconds (int/float) for when messages sent to a monitor clients event queue is deleted
(x-message-ttl)

For example, if this value is set to 10 then a message delivered to this queue will be deleted after 10 seconds.

event_queue_expires

transports supported amqp

Default: 60.0 seconds.

Expiry time in seconds (int/float) for when after a monitor clients event queue will be deleted (x-expires).

event_queue_prefix

Default: "celeryev".

The prefix to use for event receiver queue names.

2.3. User Guide 211

Celery Documentation, Release 4.1.0

event_serializer

Default: "json".

Message serialization format used when sending event messages.

See also:

Serializers.

Remote Control Commands

Note: To disable remote control commands see the worker_enable_remote_control setting.

control_queue_ttl

Default: 300.0

Time in seconds, before a message in a remote control command queue will expire.

If using the default of 300 seconds, this means that if a remote control command is sent and no worker picks it up
within 300 seconds, the command is discarded.

This setting also applies to remote control reply queues.

control_queue_expires

Default: 10.0

Time in seconds, before an unused remote control command queue is deleted from the broker.

This setting also applies to remote control reply queues.

Logging

worker_hijack_root_logger

New in version 2.2.

Default: Enabled by default (hijack root logger).

By default any previously configured handlers on the root logger will be removed. If you want to customize your own
logging handlers, then you can disable this behavior by setting worker_hijack_root_logger = False.

Note: Logging can also be customized by connecting to the celery.signals.setup_logging signal.

worker_log_color

Default: Enabled if app is logging to a terminal.

Enables/disables colors in logging output by the Celery apps.

212 Chapter 2. Contents

Celery Documentation, Release 4.1.0

worker_log_format

Default:

"[%(asctime)s: %(levelname)s/%(processName)s] %(message)s"

The format to use for log messages.

See the Python logging module for more information about log formats.

worker_task_log_format

Default:

"[%(asctime)s: %(levelname)s/%(processName)s]
[%(task_name)s(%(task_id)s)] %(message)s"

The format to use for log messages logged in tasks.

See the Python logging module for more information about log formats.

worker_redirect_stdouts

Default: Enabled by default.

If enabled stdout and stderr will be redirected to the current logger.

Used by celery worker and celery beat.

worker_redirect_stdouts_level

Default: WARNING.

The log level output to stdout and stderr is logged as. Can be one of DEBUG, INFO, WARNING, ERROR, or
CRITICAL.

Security

security_key

Default: None.

New in version 2.5.

The relative or absolute path to a file containing the private key used to sign messages when Message Signing is used.

security_certificate

Default: None.

New in version 2.5.

The relative or absolute path to an X.509 certificate file used to sign messages when Message Signing is used.

2.3. User Guide 213

https://docs.python.org/dev/library/logging.html#module-logging
https://docs.python.org/dev/library/logging.html#module-logging

Celery Documentation, Release 4.1.0

security_cert_store

Default: None.

New in version 2.5.

The directory containing X.509 certificates used for Message Signing. Can be a glob with wild-cards, (for example
/etc/certs/*.pem).

Custom Component Classes (advanced)

worker_pool

Default: "prefork" (celery.concurrency.prefork:TaskPool).

Name of the pool class used by the worker.

Eventlet/Gevent

Never use this option to select the eventlet or gevent pool. You must use the -P option to celery worker instead,
to ensure the monkey patches aren’t applied too late, causing things to break in strange ways.

worker_pool_restarts

Default: Disabled by default.

If enabled the worker pool can be restarted using the pool_restart remote control command.

worker_autoscaler

New in version 2.2.

Default: "celery.worker.autoscale:Autoscaler".

Name of the autoscaler class to use.

worker_consumer

Default: "celery.worker.consumer:Consumer".

Name of the consumer class used by the worker.

worker_timer

Default: "kombu.async.hub.timer:Timer".

Name of the ETA scheduler class used by the worker. Default is or set by the pool implementation.

214 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Beat Settings (celery beat)

beat_schedule

Default: {} (empty mapping).

The periodic task schedule used by beat. See Entries.

beat_scheduler

Default: "celery.beat:PersistentScheduler".

The default scheduler class. May be set to "django_celery_beat.schedulers:DatabaseScheduler"
for instance, if used alongside django-celery-beat extension.

Can also be set via the celery beat -S argument.

beat_schedule_filename

Default: "celerybeat-schedule".

Name of the file used by PersistentScheduler to store the last run times of periodic tasks. Can be a relative or absolute
path, but be aware that the suffix .db may be appended to the file name (depending on Python version).

Can also be set via the celery beat --schedule argument.

beat_sync_every

Default: 0.

The number of periodic tasks that can be called before another database sync is issued. A value of 0 (default) means
sync based on timing - default of 3 minutes as determined by scheduler.sync_every. If set to 1, beat will call sync after
every task message sent.

beat_max_loop_interval

Default: 0.

The maximum number of seconds beat can sleep between checking the schedule.

The default for this value is scheduler specific. For the default Celery beat scheduler the value is 300 (5 minutes), but
for the django-celery-beat database scheduler it’s 5 seconds because the schedule may be changed externally, and so
it must take changes to the schedule into account.

Also when running Celery beat embedded (-B) on Jython as a thread the max interval is overridden and set to 1 so
that it’s possible to shut down in a timely manner.

Django

Release 4.1

Date Jul 24, 2017

2.4. Django 215

https://pypi.python.org/pypi/django-celery-beat/

Celery Documentation, Release 4.1.0

First steps with Django

Using Celery with Django

Note: Previous versions of Celery required a separate library to work with Django, but since 3.1 this is no longer
the case. Django is supported out of the box now so this document only contains a basic way to integrate Celery and
Django. You’ll use the same API as non-Django users so you’re recommended to read the First Steps with Celery
tutorial first and come back to this tutorial. When you have a working example you can continue to the Next Steps
guide.

Note: Celery 4.0 supports Django 1.8 and newer versions. Please use Celery 3.1 for versions older than Django 1.8.

To use Celery with your Django project you must first define an instance of the Celery library (called an “app”)

If you have a modern Django project layout like:

- proj/
- manage.py
- proj/
- __init__.py
- settings.py
- urls.py

then the recommended way is to create a new proj/proj/celery.py module that defines the Celery instance:

file proj/proj/celery.py

from __future__ import absolute_import, unicode_literals
import os
from celery import Celery

set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')

app = Celery('proj')

Using a string here means the worker doesn't have to serialize
the configuration object to child processes.
- namespace='CELERY' means all celery-related configuration keys
should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')

Load task modules from all registered Django app configs.
app.autodiscover_tasks()

@app.task(bind=True)
def debug_task(self):

print('Request: {0!r}'.format(self.request))

Then you need to import this app in your proj/proj/__init__.py module. This ensures that the app is loaded
when Django starts so that the @shared_task decorator (mentioned later) will use it:

proj/proj/__init__.py:

216 Chapter 2. Contents

Celery Documentation, Release 4.1.0

from __future__ import absolute_import, unicode_literals

This will make sure the app is always imported when
Django starts so that shared_task will use this app.
from .celery import app as celery_app

__all__ = ['celery_app']

Note that this example project layout is suitable for larger projects, for simple projects you may use a single contained
module that defines both the app and tasks, like in the First Steps with Celery tutorial.

Let’s break down what happens in the first module, first we import absolute imports from the future, so that our
celery.py module won’t clash with the library:

from __future__ import absolute_import

Then we set the default DJANGO_SETTINGS_MODULE environment variable for the celery command-line pro-
gram:

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')

You don’t need this line, but it saves you from always passing in the settings module to the celery program. It must
always come before creating the app instances, as is what we do next:

app = Celery('proj')

This is our instance of the library, you can have many instances but there’s probably no reason for that when using
Django.

We also add the Django settings module as a configuration source for Celery. This means that you don’t have to use
multiple configuration files, and instead configure Celery directly from the Django settings; but you can also separate
them if wanted.

The uppercase name-space means that all Celery configuration options must be specified in uppercase in-
stead of lowercase, and start with CELERY_, so for example the task_always_eager setting becomes
CELERY_TASK_ALWAYS_EAGER, and the broker_url setting becomes CELERY_BROKER_URL.

You can pass the object directly here, but using a string is better since then the worker doesn’t have to serialize the
object.

app.config_from_object('django.conf:settings', namespace='CELERY')

Next, a common practice for reusable apps is to define all tasks in a separate tasks.py module, and Celery does
have a way to auto-discover these modules:

app.autodiscover_tasks()

With the line above Celery will automatically discover tasks from all of your installed apps, following the tasks.py
convention:

- app1/
- tasks.py
- models.py

- app2/
- tasks.py
- models.py

This way you don’t have to manually add the individual modules to the CELERY_IMPORTS setting.

2.4. Django 217

http://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE

Celery Documentation, Release 4.1.0

Finally, the debug_task example is a task that dumps its own request information. This is using the new
bind=True task option introduced in Celery 3.1 to easily refer to the current task instance.

Using the @shared_task decorator

The tasks you write will probably live in reusable apps, and reusable apps cannot depend on the project itself, so you
also cannot import your app instance directly.

The @shared_task decorator lets you create tasks without having any concrete app instance:

demoapp/tasks.py:

Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task

@shared_task
def add(x, y):

return x + y

@shared_task
def mul(x, y):

return x * y

@shared_task
def xsum(numbers):

return sum(numbers)

See also:

You can find the full source code for the Django example project at: https://github.com/celery/celery/tree/master/
examples/django/

Relative Imports

You have to be consistent in how you import the task module. For example, if you have project.app in
INSTALLED_APPS, then you must also import the tasks from project.app or else the names of the tasks
will end up being different.

See Automatic naming and relative imports

Extensions

django-celery-results - Using the Django ORM/Cache as a result backend

The django-celery-results extension provides result backends using either the Django ORM, or the Django Cache
framework.

To use this with your project you need to follow these steps:

1. Install the django-celery-results library:

218 Chapter 2. Contents

https://github.com/celery/celery/tree/master/examples/django/
https://github.com/celery/celery/tree/master/examples/django/
https://pypi.python.org/pypi/django-celery-results/
https://pypi.python.org/pypi/django-celery-results/

Celery Documentation, Release 4.1.0

$ pip install django-celery-results

2. Add django_celery_results to INSTALLED_APPS in your Django project’s settings.py:

INSTALLED_APPS = (
...,
'django_celery_results',

)

Note that there is no dash in the module name, only underscores.

3. Create the Celery database tables by performing a database migrations:

$ python manage.py migrate django_celery_results

4. Configure Celery to use the django-celery-results backend.

Assuming you are using Django’s settings.py to also configure Celery, add the following set-
tings:

CELERY_RESULT_BACKEND = 'django-db'

For the cache backend you can use:

CELERY_RESULT_BACKEND = 'django-cache'

django-celery-beat - Database-backed Periodic Tasks with Admin interface.

See Using custom scheduler classes for more information.

Starting the worker process

In a production environment you’ll want to run the worker in the background as a daemon - see Daemonization - but
for testing and development it is useful to be able to start a worker instance by using the celery worker manage
command, much as you’d use Django’s manage.py runserver:

$ celery -A proj worker -l info

For a complete listing of the command-line options available, use the help command:

$ celery help

Where to go from here

If you want to learn more you should continue to the Next Steps tutorial, and after that you can study the User Guide.

Contributing

Welcome!

This document is fairly extensive and you aren’t really expected to study this in detail for small contributions;

2.5. Contributing 219

https://pypi.python.org/pypi/django-celery-results/

Celery Documentation, Release 4.1.0

The most important rule is that contributing must be easy and that the community is friendly and not
nitpicking on details, such as coding style.

If you’re reporting a bug you should read the Reporting bugs section below to ensure that your bug report contains
enough information to successfully diagnose the issue, and if you’re contributing code you should try to mimic the
conventions you see surrounding the code you’re working on, but in the end all patches will be cleaned up by the
person merging the changes so don’t worry too much.

• Community Code of Conduct

– Be considerate

– Be respectful

– Be collaborative

– When you disagree, consult others

– When you’re unsure, ask for help

– Step down considerately

• Reporting Bugs

– Security

– Other bugs

– Issue Trackers

• Contributors guide to the code base

• Versions

• Branches

– dev branch

– Maintenance branches

– Archived branches

– Feature branches

• Tags

• Working on Features & Patches

– Forking and setting up the repository

– Running the unit test suite

– Creating pull requests

* Calculating test coverage

· Code coverage in HTML format

· Code coverage in XML (Cobertura-style)

* Running the tests on all supported Python versions

– Building the documentation

– Verifying your contribution

* pyflakes & PEP-8

220 Chapter 2. Contents

Celery Documentation, Release 4.1.0

* API reference

• Coding Style

• Contributing features requiring additional libraries

• Contacts

– Committers

* Ask Solem

* Asif Saif Uddin

* Dmitry Malinovsky

* Ionel Cristian Măries,

* Mher Movsisyan

* Omer Katz

* Steeve Morin

– Website

* Mauro Rocco

* Jan Henrik Helmers

• Packages

– celery

– kombu

– amqp

– vine

– billiard

– django-celery-beat

– django-celery-results

– librabbitmq

– cell

– cyme

– Deprecated

• Release Procedure

– Updating the version number

– Releasing

Community Code of Conduct

The goal is to maintain a diverse community that’s pleasant for everyone. That’s why we would greatly appreciate it
if everyone contributing to and interacting with the community also followed this Code of Conduct.

The Code of Conduct covers our behavior as members of the community, in any forum, mailing list, wiki, website,
Internet relay chat (IRC), public meeting or private correspondence.

2.5. Contributing 221

Celery Documentation, Release 4.1.0

The Code of Conduct is heavily based on the Ubuntu Code of Conduct, and the Pylons Code of Conduct.

Be considerate

Your work will be used by other people, and you in turn will depend on the work of others. Any decision you take
will affect users and colleagues, and we expect you to take those consequences into account when making decisions.
Even if it’s not obvious at the time, our contributions to Celery will impact the work of others. For example, changes
to code, infrastructure, policy, documentation and translations during a release may negatively impact others work.

Be respectful

The Celery community and its members treat one another with respect. Everyone can make a valuable contribution
to Celery. We may not always agree, but disagreement is no excuse for poor behavior and poor manners. We might
all experience some frustration now and then, but we cannot allow that frustration to turn into a personal attack. It’s
important to remember that a community where people feel uncomfortable or threatened isn’t a productive one. We
expect members of the Celery community to be respectful when dealing with other contributors as well as with people
outside the Celery project and with users of Celery.

Be collaborative

Collaboration is central to Celery and to the larger free software community. We should always be open to collab-
oration. Your work should be done transparently and patches from Celery should be given back to the community
when they’re made, not just when the distribution releases. If you wish to work on new code for existing upstream
projects, at least keep those projects informed of your ideas and progress. It many not be possible to get consensus
from upstream, or even from your colleagues about the correct implementation for an idea, so don’t feel obliged to
have that agreement before you begin, but at least keep the outside world informed of your work, and publish your
work in a way that allows outsiders to test, discuss, and contribute to your efforts.

When you disagree, consult others

Disagreements, both political and technical, happen all the time and the Celery community is no exception. It’s
important that we resolve disagreements and differing views constructively and with the help of the community and
community process. If you really want to go a different way, then we encourage you to make a derivative distribution
or alternate set of packages that still build on the work we’ve done to utilize as common of a core as possible.

When you’re unsure, ask for help

Nobody knows everything, and nobody is expected to be perfect. Asking questions avoids many problems down the
road, and so questions are encouraged. Those who are asked questions should be responsive and helpful. However,
when asking a question, care must be taken to do so in an appropriate forum.

Step down considerately

Developers on every project come and go and Celery is no different. When you leave or disengage from the project,
in whole or in part, we ask that you do so in a way that minimizes disruption to the project. This means you should
tell people you’re leaving and take the proper steps to ensure that others can pick up where you leave off.

222 Chapter 2. Contents

https://www.ubuntu.com/community/conduct
http://docs.pylonshq.com/community/conduct.html

Celery Documentation, Release 4.1.0

Reporting Bugs

Security

You must never report security related issues, vulnerabilities or bugs including sensitive information to the bug tracker,
or elsewhere in public. Instead sensitive bugs must be sent by email to security@celeryproject.org.

If you’d like to submit the information encrypted our PGP key is:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.15 (Darwin)

mQENBFJpWDkBCADFIc9/Fpgse4owLNvsTC7GYfnJL19XO0hnL99sPx+DPbfr+cSE
9wiU+Wp2TfUX7pCLEGrODiEP6ZCZbgtiPgId+JYvMxpP6GXbjiIlHRw1EQNH8RlX
cVxy3rQfVv8PGGiJuyBBjxzvETHW25htVAZ5TI1+CkxmuyyEYqgZN2fNd0wEU19D
+c10G1gSECbCQTCbacLSzdpngAt1Gkrc96r7wGHBBSvDaGDD2pFSkVuTLMbIRrVp
lnKOPMsUijiip2EMr2DvfuXiUIUvaqInTPNWkDynLoh69ib5xC19CSVLONjkKBsr
Pe+qAY29liBatatpXsydY7GIUzyBT3MzgMJlABEBAAG0MUNlbGVyeSBTZWN1cml0
eSBUZWFtIDxzZWN1cml0eUBjZWxlcnlwcm9qZWN0Lm9yZz6JATgEEwECACIFAlJp
WDkCGwMGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJEOArFOUDCicIw1IH/26f
CViDC7/P13jr+srRdjAsWvQztia9HmTlY8cUnbmkR9w6b6j3F2ayw8VhkyFWgYEJ
wtPBv8mHKADiVSFARS+0yGsfCkia5wDSQuIv6XqRlIrXUyqJbmF4NUFTyCZYoh+C
ZiQpN9xGhFPr5QDlMx2izWg1rvWlG1jY2Es1v/xED3AeCOB1eUGvRe/uJHKjGv7J
rj0pFcptZX+WDF22AN235WYwgJM6TrNfSu8sv8vNAQOVnsKcgsqhuwomSGsOfMQj
LFzIn95MKBBU1G5wOs7JtwiV9jefGqJGBO2FAvOVbvPdK/saSnB+7K36dQcIHqms
5hU4Xj0RIJiod5idlRC5AQ0EUmlYOQEIAJs8OwHMkrdcvy9kk2HBVbdqhgAREMKy
gmphDp7prRL9FqSY/dKpCbG0u82zyJypdb7QiaQ5pfPzPpQcd2dIcohkkh7G3E+e
hS2L9AXHpwR26/PzMBXyr2iNnNc4vTksHvGVDxzFnRpka6vbI/hrrZmYNYh9EAiv
uhE54b3/XhXwFgHjZXb9i8hgJ3nsO0pRwvUAM1bRGMbvf8e9F+kqgV0yWYNnh6QL
4Vpl1+epqp2RKPHyNQftbQyrAHXT9kQF9pPlx013MKYaFTADscuAp4T3dy7xmiwS
crqMbZLzfrxfFOsNxTUGE5vmJCcm+mybAtRo4aV6ACohAO9NevMx8pUAEQEAAYkB
HwQYAQIACQUCUmlYOQIbDAAKCRDgKxTlAwonCNFbB/9esir/f7TufE+isNqErzR/
aZKZo2WzZR9c75kbqo6J6DYuUHe6xI0OZ2qZ60iABDEZAiNXGulysFLCiPdatQ8x
8zt3DF9BMkEck54ZvAjpNSern6zfZb1jPYWZq3TKxlTs/GuCgBAuV4i5vDTZ7xK/
aF+OFY5zN7ciZHkqLgMiTZ+RhqRcK6FhVBP/Y7d9NlBOcDBTxxE1ZO1ute6n7guJ
ciw4hfoRk8qNN19szZuq3UU64zpkM2sBsIFM9tGF2FADRxiOaOWZHmIyVZriPFqW
RUwjSjs7jBVNq0Vy4fCu/5+e+XLOUBOoqtM5W7ELt0t1w9tXebtPEetV86in8fU2
=0chn
-----END PGP PUBLIC KEY BLOCK-----

Other bugs

Bugs can always be described to the Mailing list, but the best way to report an issue and to ensure a timely response is
to use the issue tracker.

1. Create a GitHub account.

You need to create a GitHub account to be able to create new issues and participate in the discussion.

2. Determine if your bug is really a bug.

You shouldn’t file a bug if you’re requesting support. For that you can use the Mailing list, or IRC.

3. Make sure your bug hasn’t already been reported.

Search through the appropriate Issue tracker. If a bug like yours was found, check if you have new information that
could be reported to help the developers fix the bug.

4. Check if you’re using the latest version.

2.5. Contributing 223

https://github.com/signup/free

Celery Documentation, Release 4.1.0

A bug could be fixed by some other improvements and fixes - it might not have an existing report in the bug tracker.
Make sure you’re using the latest releases of celery, billiard, kombu, amqp, and vine.

5. Collect information about the bug.

To have the best chance of having a bug fixed, we need to be able to easily reproduce the conditions that caused it.
Most of the time this information will be from a Python traceback message, though some bugs might be in design,
spelling or other errors on the website/docs/code.

1. If the error is from a Python traceback, include it in the bug report.

2. We also need to know what platform you’re running (Windows, macOS, Linux, etc.), the version of your Python
interpreter, and the version of Celery, and related packages that you were running when the bug occurred.

3. If you’re reporting a race condition or a deadlock, tracebacks can be hard to get or might not be that useful. Try
to inspect the process to get more diagnostic data. Some ideas:

• Enable Celery’s breakpoint signal and use it to inspect the process’s state. This will allow you to open a
pdb session.

• Collect tracing data using strace‘_(Linux), :command:‘dtruss (macOS), and ktrace (BSD), ltrace, and
lsof.

4. Include the output from the celery report command:

$ celery -A proj report

This will also include your configuration settings and it try to remove values for keys known to be
sensitive, but make sure you also verify the information before submitting so that it doesn’t contain
confidential information like API tokens and authentication credentials.

6. Submit the bug.

By default GitHub will email you to let you know when new comments have been made on your bug. In the event
you’ve turned this feature off, you should check back on occasion to ensure you don’t miss any questions a developer
trying to fix the bug might ask.

Issue Trackers

Bugs for a package in the Celery ecosystem should be reported to the relevant issue tracker.

• celery: https://github.com/celery/celery/issues/

• kombu: https://github.com/celery/kombu/issues

• amqp: https://github.com/celery/py-amqp/issues

• vine: https://github.com/celery/vine/issues

• librabbitmq: https://github.com/celery/librabbitmq/issues

• django-celery-beat: https://github.com/celery/django-celery-beat/issues

• django-celery-results: https://github.com/celery/django-celery-results/issues

If you’re unsure of the origin of the bug you can ask the Mailing list, or just use the Celery issue tracker.

Contributors guide to the code base

There’s a separate section for internal details, including details about the code base and a style guide.

Read Contributors Guide to the Code for more!

224 Chapter 2. Contents

https://docs.python.org/dev/library/pdb.html#module-pdb
https://en.wikipedia.org/wiki/Ltrace
https://en.wikipedia.org/wiki/Lsof
https://github.com
https://pypi.python.org/pypi/celery/
https://github.com/celery/celery/issues/
https://pypi.python.org/pypi/kombu/
https://github.com/celery/kombu/issues
https://pypi.python.org/pypi/amqp/
https://github.com/celery/py-amqp/issues
https://pypi.python.org/pypi/vine/
https://github.com/celery/vine/issues
https://pypi.python.org/pypi/librabbitmq/
https://github.com/celery/librabbitmq/issues
https://pypi.python.org/pypi/django-celery-beat/
https://github.com/celery/django-celery-beat/issues
https://pypi.python.org/pypi/django-celery-results/
https://github.com/celery/django-celery-results/issues

Celery Documentation, Release 4.1.0

Versions

Version numbers consists of a major version, minor version and a release number. Since version 2.1.0 we use the
versioning semantics described by SemVer: http://semver.org.

Stable releases are published at PyPI while development releases are only available in the GitHub git repository as
tags. All version tags starts with “v”, so version 0.8.0 is the tag v0.8.0.

Branches

Current active version branches:

• dev (which git calls “master”) (https://github.com/celery/celery/tree/master)

• 4.0 (https://github.com/celery/celery/tree/4.0)

• 3.1 (https://github.com/celery/celery/tree/3.1)

• 3.0 (https://github.com/celery/celery/tree/3.0)

You can see the state of any branch by looking at the Changelog:

https://github.com/celery/celery/blob/master/Changelog

If the branch is in active development the topmost version info should contain meta-data like:

2.4.0
======
:release-date: TBA
:status: DEVELOPMENT
:branch: dev (git calls this master)

The status field can be one of:

• PLANNING

The branch is currently experimental and in the planning stage.

• DEVELOPMENT

The branch is in active development, but the test suite should be passing and the product should be
working and possible for users to test.

• FROZEN

The branch is frozen, and no more features will be accepted. When a branch is frozen the focus is on
testing the version as much as possible before it is released.

dev branch

The dev branch (called “master” by git), is where development of the next version happens.

Maintenance branches

Maintenance branches are named after the version – for example, the maintenance branch for the 2.2.x series is named
2.2.

Previously these were named releaseXX-maint.

The versions we currently maintain is:

2.5. Contributing 225

http://semver.org
https://github.com/celery/celery/tree/master
https://github.com/celery/celery/tree/4.0
https://github.com/celery/celery/tree/3.1
https://github.com/celery/celery/tree/3.0
https://github.com/celery/celery/blob/master/Changelog

Celery Documentation, Release 4.1.0

• 3.1

This is the current series.

• 3.0

This is the previous series, and the last version to support Python 2.5.

Archived branches

Archived branches are kept for preserving history only, and theoretically someone could provide patches for these if
they depend on a series that’s no longer officially supported.

An archived version is named X.Y-archived.

Our currently archived branches are:

• GitHub branch2.5-archived

• GitHub branch2.4-archived

• GitHub branch2.3-archived

• GitHub branch2.1-archived

• GitHub branch2.0-archived

• GitHub branch1.0-archived

Feature branches

Major new features are worked on in dedicated branches. There’s no strict naming requirement for these branches.

Feature branches are removed once they’ve been merged into a release branch.

Tags

• Tags are used exclusively for tagging releases. A release tag is named with the format vX.Y.Z – for example
v2.3.1.

• Experimental releases contain an additional identifier vX.Y.Z-id – for example v3.0.0-rc1.

• Experimental tags may be removed after the official release.

Working on Features & Patches

Note: Contributing to Celery should be as simple as possible, so none of these steps should be considered mandatory.

You can even send in patches by email if that’s your preferred work method. We won’t like you any less, any contri-
bution you make is always appreciated!

However following these steps may make maintainers life easier, and may mean that your changes will be accepted
sooner.

226 Chapter 2. Contents

https://github.com/celery/celery/tree/2.5-archived
https://github.com/celery/celery/tree/2.4-archived
https://github.com/celery/celery/tree/2.3-archived
https://github.com/celery/celery/tree/2.1-archived
https://github.com/celery/celery/tree/2.0-archived
https://github.com/celery/celery/tree/1.0-archived

Celery Documentation, Release 4.1.0

Forking and setting up the repository

First you need to fork the Celery repository, a good introduction to this is in the GitHub Guide: Fork a Repo.

After you have cloned the repository you should checkout your copy to a directory on your machine:

$ git clone git@github.com:username/celery.git

When the repository is cloned enter the directory to set up easy access to upstream changes:

$ cd celery
$ git remote add upstream git://github.com/celery/celery.git
$ git fetch upstream

If you need to pull in new changes from upstream you should always use the --rebase option to git pull:

git pull --rebase upstream master

With this option you don’t clutter the history with merging commit notes. See Rebasing merge commits in git. If you
want to learn more about rebasing see the Rebase section in the GitHub guides.

If you need to work on a different branch than the one git calls master, you can fetch and checkout a remote branch
like this:

git checkout --track -b 3.0-devel origin/3.0-devel

Running the unit test suite

To run the Celery test suite you need to install a few dependencies. A complete list of the dependencies needed are
located in requirements/test.txt.

If you’re working on the development version, then you need to install the development requirements first:

$ pip install -U -r requirements/dev.txt

THIS REQUIREMENT FILE MAY NOT BE PRESENT, SKIP IF NOT FOUND.

Both the stable and the development version have testing related dependencies, so install these next:

$ pip install -U -r requirements/test.txt
$ pip install -U -r requirements/default.txt

After installing the dependencies required, you can now execute the test suite by calling py.test:

$ py.test

Some useful options to py.test are:

• -x

Stop running the tests at the first test that fails.

• -s

Don’t capture output

• -v

Run with verbose output.

2.5. Contributing 227

https://help.github.com/fork-a-repo/
https://notes.envato.com/developers/rebasing-merge-commits-in-git/
https://help.github.com/rebase/
https://pypi.python.org/pypi/pytest/

Celery Documentation, Release 4.1.0

If you want to run the tests for a single test file only you can do so like this:

$ py.test t/unit/worker/test_worker_job.py

Creating pull requests

When your feature/bugfix is complete you may want to submit a pull requests so that it can be reviewed by the
maintainers.

Creating pull requests is easy, and also let you track the progress of your contribution. Read the Pull Requests section
in the GitHub Guide to learn how this is done.

You can also attach pull requests to existing issues by following the steps outlined here: https://bit.ly/koJoso

Calculating test coverage

To calculate test coverage you must first install the pytest-cov module.

Installing the pytest-cov module:

$ pip install -U pytest-cov

Code coverage in HTML format

1. Run py.test with the --cov-report=html argument enabled:

$ py.test --cov=celery --cov-report=html

2. The coverage output will then be located in the htmlcov/ directory:

$ open htmlcov/index.html

Code coverage in XML (Cobertura-style)

1. Run py.test with the --cov-report=xml argument enabled:

$ py.test --cov=celery --cov-report=xml

1. The coverage XML output will then be located in the coverage.xml file.

Running the tests on all supported Python versions

There’s a tox configuration file in the top directory of the distribution.

To run the tests for all supported Python versions simply execute:

$ tox

Use the tox -e option if you only want to test specific Python versions:

$ tox -e 2.7

228 Chapter 2. Contents

http://help.github.com/send-pull-requests/
https://bit.ly/koJoso
https://pypi.python.org/pypi/pytest-cov/
https://pypi.python.org/pypi/pytest-cov/
https://pypi.python.org/pypi/tox/

Celery Documentation, Release 4.1.0

Building the documentation

To build the documentation you need to install the dependencies listed in requirements/docs.txt and
requirements/default.txt:

$ pip install -U -r requirements/docs.txt
$ pip install -U -r requirements/default.txt

After these dependencies are installed you should be able to build the docs by running:

$ cd docs
$ rm -rf _build
$ make html

Make sure there are no errors or warnings in the build output. After building succeeds the documentation is available
at _build/html.

Verifying your contribution

To use these tools you need to install a few dependencies. These dependencies can be found in requirements/
pkgutils.txt.

Installing the dependencies:

$ pip install -U -r requirements/pkgutils.txt

pyflakes & PEP-8

To ensure that your changes conform to PEP 8 and to run pyflakes execute:

$ make flakecheck

To not return a negative exit code when this command fails use the flakes target instead:

$ make flakes

API reference

To make sure that all modules have a corresponding section in the API reference please execute:

$ make apicheck
$ make indexcheck

If files are missing you can add them by copying an existing reference file.

If the module is internal it should be part of the internal reference located in docs/internals/reference/. If
the module is public it should be located in docs/reference/.

For example if reference is missing for the module celery.worker.awesome and this module is considered part
of the public API, use the following steps:

Use an existing file as a template:

2.5. Contributing 229

https://www.python.org/dev/peps/pep-0008

Celery Documentation, Release 4.1.0

$ cd docs/reference/
$ cp celery.schedules.rst celery.worker.awesome.rst

Edit the file using your favorite editor:

$ vim celery.worker.awesome.rst

change every occurrence of ``celery.schedules`` to
``celery.worker.awesome``

Edit the index using your favorite editor:

$ vim index.rst

Add ``celery.worker.awesome`` to the index.

Commit your changes:

Add the file to git
$ git add celery.worker.awesome.rst
$ git add index.rst
$ git commit celery.worker.awesome.rst index.rst \

-m "Adds reference for celery.worker.awesome"

Coding Style

You should probably be able to pick up the coding style from surrounding code, but it is a good idea to be aware of the
following conventions.

• All Python code must follow the PEP 8 guidelines.

pep8 is a utility you can use to verify that your code is following the conventions.

• Docstrings must follow the PEP 257 conventions, and use the following style.

Do this:

def method(self, arg):
"""Short description.

More details.

"""

or:

def method(self, arg):
"""Short description."""

but not this:

def method(self, arg):
"""
Short description.
"""

230 Chapter 2. Contents

https://www.python.org/dev/peps/pep-0008
https://pypi.python.org/pypi/pep8/
https://www.python.org/dev/peps/pep-0257

Celery Documentation, Release 4.1.0

• Lines shouldn’t exceed 78 columns.

You can enforce this in vim by setting the textwidth option:

set textwidth=78

If adhering to this limit makes the code less readable, you have one more character to go on. This means 78 is a
soft limit, and 79 is the hard limit :)

• Import order

– Python standard library (import xxx)

– Python standard library (from xxx import)

– Third-party packages.

– Other modules from the current package.

or in case of code using Django:

– Python standard library (import xxx)

– Python standard library (from xxx import)

– Third-party packages.

– Django packages.

– Other modules from the current package.

Within these sections the imports should be sorted by module name.

Example:

import threading
import time

from collections import deque
from Queue import Queue, Empty

from .platforms import Pidfile
from .five import zip_longest, items, range
from .utils.time import maybe_timedelta

• Wild-card imports must not be used (from xxx import *).

• For distributions where Python 2.5 is the oldest support version additional rules apply:

– Absolute imports must be enabled at the top of every module:

from __future__ import absolute_import

– If the module uses the with statement and must be compatible with Python 2.5 (celery isn’t)
then it must also enable that:

from __future__ import with_statement

– Every future import must be on its own line, as older Python 2.5 releases didn’t support import-
ing multiple features on the same future import line:

Good
from __future__ import absolute_import
from __future__ import with_statement

2.5. Contributing 231

https://docs.python.org/dev/reference/compound_stmts.html#with

Celery Documentation, Release 4.1.0

Bad
from __future__ import absolute_import, with_statement

(Note that this rule doesn’t apply if the package doesn’t include support for Python 2.5)

• Note that we use “new-style” relative imports when the distribution doesn’t support Python versions below 2.5

This requires Python 2.5 or later:

from . import submodule

Contributing features requiring additional libraries

Some features like a new result backend may require additional libraries that the user must install.

We use setuptools extra_requires for this, and all new optional features that require third-party libraries must be added.

1. Add a new requirements file in requirements/extras

For the Cassandra backend this is requirements/extras/cassandra.txt, and the file
looks like this:

pycassa

These are pip requirement files so you can have version specifiers and multiple packages are separated
by newline. A more complex example could be:

pycassa 2.0 breaks Foo
pycassa>=1.0,<2.0
thrift

2. Modify setup.py

After the requirements file is added you need to add it as an option to setup.py in the
extras_require section:

extra['extras_require'] = {
...
'cassandra': extras('cassandra.txt'),

}

3. Document the new feature in docs/includes/installation.txt

You must add your feature to the list in the Bundles section of docs/includes/
installation.txt.

After you’ve made changes to this file you need to render the distro README file:

$ pip install -U requirements/pkgutils.txt
$ make readme

That’s all that needs to be done, but remember that if your feature adds additional configuration options then these
needs to be documented in docs/configuration.rst. Also all settings need to be added to the celery/app/
defaults.py module.

Result backends require a separate section in the docs/configuration.rst file.

232 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Contacts

This is a list of people that can be contacted for questions regarding the official git repositories, PyPI packages Read
the Docs pages.

If the issue isn’t an emergency then it’s better to report an issue.

Committers

Ask Solem

github https://github.com/ask

twitter https://twitter.com/#!/asksol

Asif Saif Uddin

github https://github.com/auvipy

twitter https://twitter.com/#!/auvipy

Dmitry Malinovsky

github https://github.com/malinoff

twitter https://twitter.com/__malinoff__

Ionel Cristian Măries,

github https://github.com/ionelmc

twitter https://twitter.com/ionelmc

Mher Movsisyan

github https://github.com/mher

twitter https://twitter.com/#!/movsm

Omer Katz

github https://github.com/thedrow

twitter https://twitter.com/the_drow

Steeve Morin

github https://github.com/steeve

twitter https://twitter.com/#!/steeve

2.5. Contributing 233

https://github.com/ask
https://twitter.com/#!/asksol
https://github.com/auvipy
https://twitter.com/#!/auvipy
https://github.com/malinoff
https://twitter.com/__malinoff__
https://github.com/ionelmc
https://twitter.com/ionelmc
https://github.com/mher
https://twitter.com/#!/movsm
https://github.com/thedrow
https://twitter.com/the_drow
https://github.com/steeve
https://twitter.com/#!/steeve

Celery Documentation, Release 4.1.0

Website

The Celery Project website is run and maintained by

Mauro Rocco

github https://github.com/fireantology

twitter https://twitter.com/#!/fireantology

with design by:

Jan Henrik Helmers

web http://www.helmersworks.com

twitter https://twitter.com/#!/helmers

Packages

celery

git https://github.com/celery/celery

CI https://travis-ci.org/#!/celery/celery

Windows-CI https://ci.appveyor.com/project/ask/celery

PyPI celery

docs http://docs.celeryproject.org

kombu

Messaging library.

git https://github.com/celery/kombu

CI https://travis-ci.org/#!/celery/kombu

Windows-CI https://ci.appveyor.com/project/ask/kombu

PyPI kombu

docs https://kombu.readthedocs.io

amqp

Python AMQP 0.9.1 client.

git https://github.com/celery/py-amqp

CI https://travis-ci.org/#!/celery/py-amqp

Windows-CI https://ci.appveyor.com/project/ask/py-amqp

PyPI amqp

234 Chapter 2. Contents

https://github.com/fireantology
https://twitter.com/#!/fireantology
http://www.helmersworks.com
https://twitter.com/#!/helmers
https://github.com/celery/celery
https://travis-ci.org/#!/celery/celery
https://ci.appveyor.com/project/ask/celery
https://pypi.python.org/pypi/celery/
http://docs.celeryproject.org
https://github.com/celery/kombu
https://travis-ci.org/#!/celery/kombu
https://ci.appveyor.com/project/ask/kombu
https://pypi.python.org/pypi/kombu/
https://kombu.readthedocs.io
https://github.com/celery/py-amqp
https://travis-ci.org/#!/celery/py-amqp
https://ci.appveyor.com/project/ask/py-amqp
https://pypi.python.org/pypi/amqp/

Celery Documentation, Release 4.1.0

docs https://amqp.readthedocs.io

vine

Promise/deferred implementation.

git https://github.com/celery/vine/

CI https://travis-ci.org/#!/celery/vine/

Windows-CI https://ci.appveyor.com/project/ask/vine

PyPI vine

docs https://vine.readthedocs.io

billiard

Fork of multiprocessing containing improvements that’ll eventually be merged into the Python stdlib.

git https://github.com/celery/billiard

CI https://travis-ci.org/#!/celery/billiard/

Windows-CI https://ci.appveyor.com/project/ask/billiard

PyPI billiard

django-celery-beat

Database-backed Periodic Tasks with admin interface using the Django ORM.

git https://github.com/celery/django-celery-beat

CI https://travis-ci.org/#!/celery/django-celery-beat

Windows-CI https://ci.appveyor.com/project/ask/django-celery-beat

PyPI django-celery-beat

django-celery-results

Store task results in the Django ORM, or using the Django Cache Framework.

git https://github.com/celery/django-celery-results

CI https://travis-ci.org/#!/celery/django-celery-results

Windows-CI https://ci.appveyor.com/project/ask/django-celery-results

PyPI django-celery-results

librabbitmq

Very fast Python AMQP client written in C.

git https://github.com/celery/librabbitmq

PyPI librabbitmq

2.5. Contributing 235

https://amqp.readthedocs.io
https://github.com/celery/vine/
https://travis-ci.org/#!/celery/vine/
https://ci.appveyor.com/project/ask/vine
https://pypi.python.org/pypi/vine/
https://vine.readthedocs.io
https://github.com/celery/billiard
https://travis-ci.org/#!/celery/billiard/
https://ci.appveyor.com/project/ask/billiard
https://pypi.python.org/pypi/billiard/
https://github.com/celery/django-celery-beat
https://travis-ci.org/#!/celery/django-celery-beat
https://ci.appveyor.com/project/ask/django-celery-beat
https://pypi.python.org/pypi/django-celery-beat/
https://github.com/celery/django-celery-results
https://travis-ci.org/#!/celery/django-celery-results
https://ci.appveyor.com/project/ask/django-celery-results
https://pypi.python.org/pypi/django-celery-results/
https://github.com/celery/librabbitmq
https://pypi.python.org/pypi/librabbitmq/

Celery Documentation, Release 4.1.0

cell

Actor library.

git https://github.com/celery/cell

PyPI cell

cyme

Distributed Celery Instance manager.

git https://github.com/celery/cyme

PyPI cyme

docs https://cyme.readthedocs.io/

Deprecated

• django-celery

git https://github.com/celery/django-celery

PyPI django-celery

docs http://docs.celeryproject.org/en/latest/django

• Flask-Celery

git https://github.com/ask/Flask-Celery

PyPI Flask-Celery

• celerymon

git https://github.com/celery/celerymon

PyPI celerymon

• carrot

git https://github.com/ask/carrot

PyPI carrot

• ghettoq

git https://github.com/ask/ghettoq

PyPI ghettoq

• kombu-sqlalchemy

git https://github.com/ask/kombu-sqlalchemy

PyPI kombu-sqlalchemy

• django-kombu

git https://github.com/ask/django-kombu

PyPI django-kombu

• pylibrabbitmq

236 Chapter 2. Contents

https://github.com/celery/cell
https://pypi.python.org/pypi/cell/
https://github.com/celery/cyme
https://pypi.python.org/pypi/cyme/
https://cyme.readthedocs.io/
https://github.com/celery/django-celery
https://pypi.python.org/pypi/django-celery/
http://docs.celeryproject.org/en/latest/django
https://github.com/ask/Flask-Celery
https://pypi.python.org/pypi/Flask-Celery/
https://github.com/celery/celerymon
https://pypi.python.org/pypi/celerymon/
https://github.com/ask/carrot
https://pypi.python.org/pypi/carrot/
https://github.com/ask/ghettoq
https://pypi.python.org/pypi/ghettoq/
https://github.com/ask/kombu-sqlalchemy
https://pypi.python.org/pypi/kombu-sqlalchemy/
https://github.com/ask/django-kombu
https://pypi.python.org/pypi/django-kombu/

Celery Documentation, Release 4.1.0

Old name for librabbitmq.

git None

PyPI pylibrabbitmq

Release Procedure

Updating the version number

The version number must be updated two places:

• celery/__init__.py

• docs/include/introduction.txt

After you have changed these files you must render the README files. There’s a script to convert sphinx syntax to
generic reStructured Text syntax, and the make target readme does this for you:

$ make readme

Now commit the changes:

$ git commit -a -m "Bumps version to X.Y.Z"

and make a new version tag:

$ git tag vX.Y.Z
$ git push --tags

Releasing

Commands to make a new public stable release:

$ make distcheck # checks pep8, autodoc index, runs tests and more
$ make dist # NOTE: Runs git clean -xdf and removes files not in the repo.
$ python setup.py sdist upload --sign --identity='Celery Security Team'
$ python setup.py bdist_wheel upload --sign --identity='Celery Security Team'

If this is a new release series then you also need to do the following:

• Go to the Read The Docs management interface at: https://readthedocs.org/projects/celery/?fromdocs=
celery

• Enter “Edit project”

Change default branch to the branch of this series, for example, use the 2.4 branch for the 2.4 series.

• Also add the previous version under the “versions” tab.

Community Resources

This is a list of external blog posts, tutorials, and slides related to Celery. If you have a link that’s missing from this
list, please contact the mailing-list or submit a patch.

2.6. Community Resources 237

https://pypi.python.org/pypi/librabbitmq/
https://pypi.python.org/pypi/pylibrabbitmq/
https://readthedocs.org/projects/celery/?fromdocs=celery
https://readthedocs.org/projects/celery/?fromdocs=celery

Celery Documentation, Release 4.1.0

• Resources

– Who’s using Celery

– Wiki

– Celery questions on Stack Overflow

– Mailing-list Archive: celery-users

• News

Resources

Who’s using Celery

https://wiki.github.com/celery/celery/using

Wiki

https://wiki.github.com/celery/celery/

Celery questions on Stack Overflow

https://stackoverflow.com/search?q=celery&tab=newest

Mailing-list Archive: celery-users

http://blog.gmane.org/gmane.comp.python.amqp.celery.user

News

This section has moved to the Celery homepage: http://celeryproject.org/community/

Tutorials

Release 4.1

Date Jul 24, 2017

Task Cookbook

• Ensuring a task is only executed one at a time

238 Chapter 2. Contents

https://wiki.github.com/celery/celery/using
https://wiki.github.com/celery/celery/
https://stackoverflow.com/search?q=celery&tab=newest
http://blog.gmane.org/gmane.comp.python.amqp.celery.user
http://celeryproject.org/community/

Celery Documentation, Release 4.1.0

Ensuring a task is only executed one at a time

You can accomplish this by using a lock.

In this example we’ll be using the cache framework to set a lock that’s accessible for all workers.

It’s part of an imaginary RSS feed importer called djangofeeds. The task takes a feed URL as a single argument, and
imports that feed into a Django model called Feed. We ensure that it’s not possible for two or more workers to import
the same feed at the same time by setting a cache key consisting of the MD5 check-sum of the feed URL.

The cache key expires after some time in case something unexpected happens, and something always will...

For this reason your tasks run-time shouldn’t exceed the timeout.

Note: In order for this to work correctly you need to be using a cache backend where the .add operation is atomic.
memcached is known to work well for this purpose.

from celery import task
from celery.five import monotonic
from celery.utils.log import get_task_logger
from contextlib import contextmanager
from django.core.cache import cache
from hashlib import md5
from djangofeeds.models import Feed

logger = get_task_logger(__name__)

LOCK_EXPIRE = 60 * 10 # Lock expires in 10 minutes

@contextmanager
def memcache_lock(lock_id, oid):

timeout_at = monotonic() + LOCK_EXPIRE - 3
cache.add fails if the key already exists
status = cache.add(lock_id, oid, LOCK_EXPIRE)
try:

yield status
finally:

memcache delete is very slow, but we have to use it to take
advantage of using add() for atomic locking
if monotonic() < timeout_at:

don't release the lock if we exceeded the timeout
to lessen the chance of releasing an expired lock
owned by someone else.
cache.delete(lock_id)

@task(bind=True)
def import_feed(self, feed_url):

The cache key consists of the task name and the MD5 digest
of the feed URL.
feed_url_hexdigest = md5(feed_url).hexdigest()
lock_id = '{0}-lock-{1}'.format(self.name, feed_url_hexdigest)
logger.debug('Importing feed: %s', feed_url)
with memcache_lock(lock_id, self.app.oid) as acquired:

if acquired:
return Feed.objects.import_feed(feed_url).url

logger.debug(
'Feed %s is already being imported by another worker', feed_url)

2.7. Tutorials 239

Celery Documentation, Release 4.1.0

Frequently Asked Questions

• General

– What kinds of things should I use Celery for?

• Misconceptions

– Does Celery really consist of 50.000 lines of code?

– Does Celery have many dependencies?

* celery

* kombu

– Is Celery heavy-weight?

– Is Celery dependent on pickle?

– Is Celery for Django only?

– Do I have to use AMQP/RabbitMQ?

– Is Celery multilingual?

• Troubleshooting

– MySQL is throwing deadlock errors, what can I do?

– The worker isn’t doing anything, just hanging

– Task results aren’t reliably returning

– Why is Task.delay/apply*/the worker just hanging?

– Does it work on FreeBSD?

– I’m having IntegrityError: Duplicate Key errors. Why?

– Why aren’t my tasks processed?

– Why won’t my Task run?

– Why won’t my periodic task run?

– How do I purge all waiting tasks?

– I’ve purged messages, but there are still messages left in the queue?

• Results

– How do I get the result of a task if I have the ID that points there?

• Security

– Isn’t using pickle a security concern?

– Can messages be encrypted?

– Is it safe to run celery worker as root?

• Brokers

– Why is RabbitMQ crashing?

– Can I use Celery with ActiveMQ/STOMP?

240 Chapter 2. Contents

Celery Documentation, Release 4.1.0

– What features aren’t supported when not using an AMQP broker?

• Tasks

– How can I reuse the same connection when calling tasks?

– sudo in a subprocess returns None

– Why do workers delete tasks from the queue if they’re unable to process them?

– Can I call a task by name?

– Can I get the task id of the current task?

– Can I specify a custom task_id?

– Can I use decorators with tasks?

– Can I use natural task ids?

– Can I run a task once another task has finished?

– Can I cancel the execution of a task?

– Why aren’t my remote control commands received by all workers?

– Can I send some tasks to only some servers?

– Can I disable prefetching of tasks?

– Can I change the interval of a periodic task at runtime?

– Does Celery support task priorities?

– Should I use retry or acks_late?

– Can I schedule tasks to execute at a specific time?

– Can I safely shut down the worker?

– Can I run the worker in the background on [platform]?

• Django

– What purpose does the database tables created by django-celery-beat have?

– What purpose does the database tables created by django-celery-results have?

• Windows

– Does Celery support Windows?

General

What kinds of things should I use Celery for?

Answer: Queue everything and delight everyone is a good article describing why you’d use a queue in a web context.

These are some common use cases:

• Running something in the background. For example, to finish the web request as soon as possible, then update
the users page incrementally. This gives the user the impression of good performance and “snappiness”, even
though the real work might actually take some time.

• Running something after the web request has finished.

2.8. Frequently Asked Questions 241

https://docs.python.org/dev/library/subprocess.html#module-subprocess
https://decafbad.com/blog/2008/07/04/queue-everything-and-delight-everyone

Celery Documentation, Release 4.1.0

• Making sure something is done, by executing it asynchronously and using retries.

• Scheduling periodic work.

And to some degree:

• Distributed computing.

• Parallel execution.

Misconceptions

Does Celery really consist of 50.000 lines of code?

Answer: No, this and similarly large numbers have been reported at various locations.

The numbers as of this writing are:

• core: 7,141 lines of code.

• tests: 14,209 lines.

• backends, contrib, compat utilities: 9,032 lines.

Lines of code isn’t a useful metric, so even if Celery did consist of 50k lines of code you wouldn’t be able to draw any
conclusions from such a number.

Does Celery have many dependencies?

A common criticism is that Celery uses too many dependencies. The rationale behind such a fear is hard to imagine,
especially considering code reuse as the established way to combat complexity in modern software development, and
that the cost of adding dependencies is very low now that package managers like pip and PyPI makes the hassle of
installing and maintaining dependencies a thing of the past.

Celery has replaced several dependencies along the way, and the current list of dependencies are:

celery

• kombu

Kombu is part of the Celery ecosystem and is the library used to send and receive messages. It’s also the library
that enables us to support many different message brokers. It’s also used by the OpenStack project, and many others,
validating the choice to separate it from the Celery code-base.

• billiard

Billiard is a fork of the Python multiprocessing module containing many performance and stability improvements. It’s
an eventual goal that these improvements will be merged back into Python one day.

It’s also used for compatibility with older Python versions that don’t come with the multiprocessing module.

• pytz

The pytz module provides timezone definitions and related tools.

242 Chapter 2. Contents

https://pypi.python.org/pypi/kombu/
https://pypi.python.org/pypi/billiard/
https://pypi.python.org/pypi/pytz/

Celery Documentation, Release 4.1.0

kombu

Kombu depends on the following packages:

• amqp

The underlying pure-Python amqp client implementation. AMQP being the default broker this is a natural dependency.

Note: To handle the dependencies for popular configuration choices Celery defines a number of “bundle” packages,
see Bundles.

Is Celery heavy-weight?

Celery poses very little overhead both in memory footprint and performance.

But please note that the default configuration isn’t optimized for time nor space, see the Optimizing guide for more
information.

Is Celery dependent on pickle?

Answer: No, Celery can support any serialization scheme.

We have built-in support for JSON, YAML, Pickle, and msgpack. Every task is associated with a content type, so you
can even send one task using pickle, another using JSON.

The default serialization support used to be pickle, but since 4.0 the default is now JSON. If you require sending
complex Python objects as task arguments, you can use pickle as the serialization format, but see notes in Serializers.

If you need to communicate with other languages you should use a serialization format suited to that task, which pretty
much means any serializer that’s not pickle.

You can set a global default serializer, the default serializer for a particular Task, or even what serializer to use when
sending a single task instance.

Is Celery for Django only?

Answer: No, you can use Celery with any framework, web or otherwise.

Do I have to use AMQP/RabbitMQ?

Answer: No, although using RabbitMQ is recommended you can also use Redis, SQS, or Qpid.

See Brokers for more information.

Redis as a broker won’t perform as well as an AMQP broker, but the combination RabbitMQ as broker and Redis as
a result store is commonly used. If you have strict reliability requirements you’re encouraged to use RabbitMQ or
another AMQP broker. Some transports also use polling, so they’re likely to consume more resources. However, if
you for some reason aren’t able to use AMQP, feel free to use these alternatives. They will probably work fine for
most use cases, and note that the above points are not specific to Celery; If using Redis/database as a queue worked
fine for you before, it probably will now. You can always upgrade later if you need to.

2.8. Frequently Asked Questions 243

https://pypi.python.org/pypi/amqp/

Celery Documentation, Release 4.1.0

Is Celery multilingual?

Answer: Yes.

worker is an implementation of Celery in Python. If the language has an AMQP client, there shouldn’t be much
work to create a worker in your language. A Celery worker is just a program connecting to the broker to process
messages.

Also, there’s another way to be language-independent, and that’s to use REST tasks, instead of your tasks being
functions, they’re URLs. With this information you can even create simple web servers that enable preloading of code.
Simply expose an endpoint that performs an operation, and create a task that just performs an HTTP request to that
endpoint.

Troubleshooting

MySQL is throwing deadlock errors, what can I do?

Answer: MySQL has default isolation level set to REPEATABLE-READ, if you don’t really need that, set it to READ-
COMMITTED. You can do that by adding the following to your my.cnf:

[mysqld]
transaction-isolation = READ-COMMITTED

For more information about InnoDB‘s transaction model see MySQL - The InnoDB Transaction Model and Locking
in the MySQL user manual.

(Thanks to Honza Kral and Anton Tsigularov for this solution)

The worker isn’t doing anything, just hanging

Answer: See MySQL is throwing deadlock errors, what can I do?, or Why is Task.delay/apply*/the worker just
hanging?.

Task results aren’t reliably returning

Answer: If you’re using the database backend for results, and in particular using MySQL, see MySQL is throwing
deadlock errors, what can I do?.

Why is Task.delay/apply*/the worker just hanging?

Answer: There’s a bug in some AMQP clients that’ll make it hang if it’s not able to authenticate the current user, the
password doesn’t match or the user doesn’t have access to the virtual host specified. Be sure to check your broker
logs (for RabbitMQ that’s /var/log/rabbitmq/rabbit.log on most systems), it usually contains a message
describing the reason.

Does it work on FreeBSD?

Answer: Depends;

When using the RabbitMQ (AMQP) and Redis transports it should work out of the box.

244 Chapter 2. Contents

https://dev.mysql.com/doc/refman/5.1/en/innodb-transaction-model.html

Celery Documentation, Release 4.1.0

For other transports the compatibility prefork pool is used and requires a working POSIX semaphore implementation,
this is enabled in FreeBSD by default since FreeBSD 8.x. For older version of FreeBSD, you have to enable POSIX
semaphores in the kernel and manually recompile billiard.

Luckily, Viktor Petersson has written a tutorial to get you started with Celery on FreeBSD here: http://www.
playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/

I’m having IntegrityError: Duplicate Key errors. Why?

Answer: See MySQL is throwing deadlock errors, what can I do?. Thanks to @@howsthedotcom.

Why aren’t my tasks processed?

Answer: With RabbitMQ you can see how many consumers are currently receiving tasks by running the following
command:

$ rabbitmqctl list_queues -p <myvhost> name messages consumers
Listing queues ...
celery 2891 2

This shows that there’s 2891 messages waiting to be processed in the task queue, and there are two consumers pro-
cessing them.

One reason that the queue is never emptied could be that you have a stale worker process taking the messages hostage.
This could happen if the worker wasn’t properly shut down.

When a message is received by a worker the broker waits for it to be acknowledged before marking the message as
processed. The broker won’t re-send that message to another consumer until the consumer is shut down properly.

If you hit this problem you have to kill all workers manually and restart them:

$ pkill 'celery worker'

$ # - If you don't have pkill use:
$ # ps auxww | grep 'celery worker' | awk '{print $2}' | xargs kill

You may have to wait a while until all workers have finished executing tasks. If it’s still hanging after a long time you
can kill them by force with:

$ pkill -9 'celery worker'

$ # - If you don't have pkill use:
$ # ps auxww | grep 'celery worker' | awk '{print $2}' | xargs kill -9

Why won’t my Task run?

Answer: There might be syntax errors preventing the tasks module being imported.

You can find out if Celery is able to run the task by executing the task manually:

>>> from myapp.tasks import MyPeriodicTask
>>> MyPeriodicTask.delay()

Watch the workers log file to see if it’s able to find the task, or if some other error is happening.

2.8. Frequently Asked Questions 245

http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/
http://www.playingwithwire.com/2009/10/how-to-get-celeryd-to-work-on-freebsd/
https://github.com/@howsthedotcom/

Celery Documentation, Release 4.1.0

Why won’t my periodic task run?

Answer: See Why won’t my Task run?.

How do I purge all waiting tasks?

Answer: You can use the celery purge command to purge all configured task queues:

$ celery -A proj purge

or programmatically:

>>> from proj.celery import app
>>> app.control.purge()
1753

If you only want to purge messages from a specific queue you have to use the AMQP API or the celery amqp
utility:

$ celery -A proj amqp queue.purge <queue name>

The number 1753 is the number of messages deleted.

You can also start the worker with the --purge option enabled to purge messages when the worker starts.

I’ve purged messages, but there are still messages left in the queue?

Answer: Tasks are acknowledged (removed from the queue) as soon as they’re actually executed. After the worker has
received a task, it will take some time until it’s actually executed, especially if there are a lot of tasks already waiting for
execution. Messages that aren’t acknowledged are held on to by the worker until it closes the connection to the broker
(AMQP server). When that connection is closed (e.g., because the worker was stopped) the tasks will be re-sent by
the broker to the next available worker (or the same worker when it has been restarted), so to properly purge the queue
of waiting tasks you have to stop all the workers, and then purge the tasks using celery.control.purge().

Results

How do I get the result of a task if I have the ID that points there?

Answer: Use task.AsyncResult:

>>> result = my_task.AsyncResult(task_id)
>>> result.get()

This will give you a AsyncResult instance using the tasks current result backend.

If you need to specify a custom result backend, or you want to use the current application’s default backend you can
use app.AsyncResult:

>>> result = app.AsyncResult(task_id)
>>> result.get()

246 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Security

Isn’t using pickle a security concern?

Answer: Indeed, since Celery 4.0 the default serializer is now JSON to make sure people are choosing serializers
consciously and aware of this concern.

It’s essential that you protect against unauthorized access to your broker, databases and other services transmitting
pickled data.

Note that this isn’t just something you should be aware of with Celery, for example also Django uses pickle for its
cache client.

For the task messages you can set the task_serializer setting to “json” or “yaml” instead of pickle.

Similarly for task results you can set result_serializer.

For more details of the formats used and the lookup order when checking what format to use for a task see Serializers

Can messages be encrypted?

Answer: Some AMQP brokers supports using SSL (including RabbitMQ). You can enable this using the
broker_use_ssl setting.

It’s also possible to add additional encryption and security to messages, if you have a need for this then you should
contact the Mailing list.

Is it safe to run celery worker as root?

Answer: No!

We’re not currently aware of any security issues, but it would be incredibly naive to assume that they don’t exist,
so running the Celery services (celery worker, celery beat, celeryev, etc) as an unprivileged user is
recommended.

Brokers

Why is RabbitMQ crashing?

Answer: RabbitMQ will crash if it runs out of memory. This will be fixed in a future release of RabbitMQ. please
refer to the RabbitMQ FAQ: https://www.rabbitmq.com/faq.html#node-runs-out-of-memory

Note: This is no longer the case, RabbitMQ versions 2.0 and above includes a new persister, that’s tolerant to out of
memory errors. RabbitMQ 2.1 or higher is recommended for Celery.

If you’re still running an older version of RabbitMQ and experience crashes, then please upgrade!

Misconfiguration of Celery can eventually lead to a crash on older version of RabbitMQ. Even if it doesn’t crash, this
can still consume a lot of resources, so it’s important that you’re aware of the common pitfalls.

• Events.

Running worker with the -E option will send messages for events happening inside of the worker.

Events should only be enabled if you have an active monitor consuming them, or if you purge the event queue period-
ically.

2.8. Frequently Asked Questions 247

https://www.rabbitmq.com/faq.html#node-runs-out-of-memory

Celery Documentation, Release 4.1.0

• AMQP backend results.

When running with the AMQP result backend, every task result will be sent as a message. If you don’t collect these
results, they will build up and RabbitMQ will eventually run out of memory.

This result backend is now deprecated so you shouldn’t be using it. Use either the RPC backend for rpc-style calls, or
a persistent backend if you need multi-consumer access to results.

Results expire after 1 day by default. It may be a good idea to lower this value by configuring the result_expires
setting.

If you don’t use the results for a task, make sure you set the ignore_result option:

@app.task(ignore_result=True)
def mytask():

pass

class MyTask(Task):
ignore_result = True

Can I use Celery with ActiveMQ/STOMP?

Answer: No. It used to be supported by Carrot (our old messaging library) but isn’t currently supported in Kombu
(our new messaging library).

What features aren’t supported when not using an AMQP broker?

This is an incomplete list of features not available when using the virtual transports:

• Remote control commands (supported only by Redis).

• Monitoring with events may not work in all virtual transports.

• The header and fanout exchange types (fanout is supported by Redis).

Tasks

How can I reuse the same connection when calling tasks?

Answer: See the broker_pool_limit setting. The connection pool is enabled by default since version 2.5.

sudo in a subprocess returns None

There’s a sudo configuration option that makes it illegal for process without a tty to run sudo:

Defaults requiretty

If you have this configuration in your /etc/sudoers file then tasks won’t be able to call sudo when the worker is
running as a daemon. If you want to enable that, then you need to remove the line from /etc/sudoers.

See: http://timelordz.com/wiki/Apache_Sudo_Commands

248 Chapter 2. Contents

https://pypi.python.org/pypi/Carrot/
https://pypi.python.org/pypi/Kombu/
http://timelordz.com/wiki/Apache_Sudo_Commands

Celery Documentation, Release 4.1.0

Why do workers delete tasks from the queue if they’re unable to process them?

Answer:

The worker rejects unknown tasks, messages with encoding errors and messages that don’t contain the proper fields
(as per the task message protocol).

If it didn’t reject them they could be redelivered again and again, causing a loop.

Recent versions of RabbitMQ has the ability to configure a dead-letter queue for exchange, so that rejected messages
is moved there.

Can I call a task by name?

Answer: Yes, use app.send_task().

You can also call a task by name, from any language, using an AMQP client:

>>> app.send_task('tasks.add', args=[2, 2], kwargs={})
<AsyncResult: 373550e8-b9a0-4666-bc61-ace01fa4f91d>

Can I get the task id of the current task?

Answer: Yes, the current id and more is available in the task request:

@app.task(bind=True)
def mytask(self):

cache.set(self.request.id, "Running")

For more information see Task Request.

If you don’t have a reference to the task instance you can use app.current_task:

>>> app.current_task.request.id

But note that this will be any task, be it one executed by the worker, or a task called directly by that task, or a task
called eagerly.

To get the current task being worked on specifically, use current_worker_task:

>>> app.current_worker_task.request.id

Note: Both current_task, and current_worker_task can be None.

Can I specify a custom task_id?

Answer: Yes, use the task_id argument to Task.apply_async():

>>> task.apply_async(args, kwargs, task_id='...')

Can I use decorators with tasks?

Answer: Yes, but please see note in the sidebar at Basics.

2.8. Frequently Asked Questions 249

Celery Documentation, Release 4.1.0

Can I use natural task ids?

Answer: Yes, but make sure it’s unique, as the behavior for two tasks existing with the same id is undefined.

The world will probably not explode, but they can definitely overwrite each others results.

Can I run a task once another task has finished?

Answer: Yes, you can safely launch a task inside a task.

A common pattern is to add callbacks to tasks:

from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)

@app.task
def add(x, y):

return x + y

@app.task(ignore_result=True)
def log_result(result):

logger.info("log_result got: %r", result)

Invocation:

>>> (add.s(2, 2) | log_result.s()).delay()

See Canvas: Designing Work-flows for more information.

Can I cancel the execution of a task?

Answer: Yes, Use result.revoke():

>>> result = add.apply_async(args=[2, 2], countdown=120)
>>> result.revoke()

or if you only have the task id:

>>> from proj.celery import app
>>> app.control.revoke(task_id)

The latter also support passing a list of task-ids as argument.

Why aren’t my remote control commands received by all workers?

Answer: To receive broadcast remote control commands, every worker node creates a unique queue name, based on
the nodename of the worker.

If you have more than one worker with the same host name, the control commands will be received in round-robin
between them.

To work around this you can explicitly set the nodename for every worker using the -n argument to worker:

$ celery -A proj worker -n worker1@%h
$ celery -A proj worker -n worker2@%h

250 Chapter 2. Contents

Celery Documentation, Release 4.1.0

where %h expands into the current hostname.

Can I send some tasks to only some servers?

Answer: Yes, you can route tasks to one or more workers, using different message routing topologies, and a worker
instance can bind to multiple queues.

See Routing Tasks for more information.

Can I disable prefetching of tasks?

Answer: Maybe! The AMQP term “prefetch” is confusing, as it’s only used to describe the task prefetching limit.
There’s no actual prefetching involved.

Disabling the prefetch limits is possible, but that means the worker will consume as many tasks as it can, as fast as
possible.

A discussion on prefetch limits, and configuration settings for a worker that only reserves one task at a time is found
here: Prefetch Limits.

Can I change the interval of a periodic task at runtime?

Answer: Yes, you can use the Django database scheduler, or you can create a new schedule subclass and override
is_due():

from celery.schedules import schedule

class my_schedule(schedule):

def is_due(self, last_run_at):
return run_now, next_time_to_check

Does Celery support task priorities?

Answer: Yes, RabbitMQ supports priorities since version 3.5.0, and the Redis transport emulates priority support.

You can also prioritize work by routing high priority tasks to different workers. In the real world this usually works
better than per message priorities. You can use this in combination with rate limiting, and per message priorities to
achieve a responsive system.

Should I use retry or acks_late?

Answer: Depends. It’s not necessarily one or the other, you may want to use both.

Task.retry is used to retry tasks, notably for expected errors that is catch-able with the try block. The AMQP
transaction isn’t used for these errors: if the task raises an exception it’s still acknowledged!

The acks_late setting would be used when you need the task to be executed again if the worker (for some reason)
crashes mid-execution. It’s important to note that the worker isn’t known to crash, and if it does it’s usually an
unrecoverable error that requires human intervention (bug in the worker, or task code).

In an ideal world you could safely retry any task that’s failed, but this is rarely the case. Imagine the following task:

2.8. Frequently Asked Questions 251

https://docs.python.org/dev/reference/compound_stmts.html#try

Celery Documentation, Release 4.1.0

@app.task
def process_upload(filename, tmpfile):

Increment a file count stored in a database
increment_file_counter()
add_file_metadata_to_db(filename, tmpfile)
copy_file_to_destination(filename, tmpfile)

If this crashed in the middle of copying the file to its destination the world would contain incomplete state. This isn’t a
critical scenario of course, but you can probably imagine something far more sinister. So for ease of programming we
have less reliability; It’s a good default, users who require it and know what they are doing can still enable acks_late
(and in the future hopefully use manual acknowledgment).

In addition Task.retry has features not available in AMQP transactions: delay between retries, max retries, etc.

So use retry for Python errors, and if your task is idempotent combine that with acks_late if that level of reliability is
required.

Can I schedule tasks to execute at a specific time?

Answer: Yes. You can use the eta argument of Task.apply_async().

See also Periodic Tasks.

Can I safely shut down the worker?

Answer: Yes, use the TERM signal.

This will tell the worker to finish all currently executing jobs and shut down as soon as possible. No tasks should be
lost even with experimental transports as long as the shutdown completes.

You should never stop worker with the KILL signal (kill -9), unless you’ve tried TERM a few times and waited
a few minutes to let it get a chance to shut down.

Also make sure you kill the main worker process only, not any of its child processes. You can direct a kill signal to a
specific child process if you know the process is currently executing a task the worker shutdown is depending on, but
this also means that a WorkerLostError state will be set for the task so the task won’t run again.

Identifying the type of process is easier if you have installed the setproctitle module:

$ pip install setproctitle

With this library installed you’ll be able to see the type of process in ps listings, but the worker must be restarted for
this to take effect.

See also:

Stopping the worker

Can I run the worker in the background on [platform]?

Answer: Yes, please see Daemonization.

252 Chapter 2. Contents

https://pypi.python.org/pypi/setproctitle/

Celery Documentation, Release 4.1.0

Django

What purpose does the database tables created by django-celery-beat have?

When the database-backed schedule is used the periodic task schedule is taken from the PeriodicTask model,
there are also several other helper tables (IntervalSchedule, CrontabSchedule, PeriodicTasks).

What purpose does the database tables created by django-celery-results have?

The Django database result backend extension requires two extra models: TaskResult and GroupResult.

Windows

Does Celery support Windows?

Answer: No.

Since Celery 4.x, Windows is no longer supported due to lack of resources.

But it may still work and we are happy to accept patches.

Change history

This document contains change notes for bugfix releases in the 4.1.x series (latentcall), please see whatsnew-4.1 for
an overview of what’s new in Celery 4.1.

4.1.0

release-date 2017-07-25 00:00 PM PST

release-by Omer Katz

• Configuration: CELERY_SEND_EVENTS instead of CELERYD_SEND_EVENTS for 3.1.x compatibility
(#3997)

Contributed by abhinav nilaratna.

• App: Restore behavior so Broadcast queues work. (#3934)

Contributed by Patrick Cloke.

• Sphinx: Make appstr use standard format (#4134) (#4139)

Contributed by Preston Moore.

• App: Make id, name always accessible from logging.Formatter via extra (#3994)

Contributed by Yoichi NAKAYAMA.

• Worker: Add worker_shutting_down signal (#3998)

Contributed by Daniel Huang.

• PyPy: Support PyPy version 5.8.0 (#4128)

Contributed by Omer Katz.

2.9. Change history 253

Celery Documentation, Release 4.1.0

• Results: Elasticsearch: Fix serializing keys (#3924)

Contributed by @staticfox.

• Canvas: Deserialize all tasks in a chain (#4015)

Contributed by @fcoelho.

• Systemd: Recover loglevel for ExecStart in systemd config (#4023)

Contributed by Yoichi NAKAYAMA.

• Sphinx: Use the Sphinx add_directive_to_domain API. (#4037)

Contributed by Patrick Cloke.

• App: Pass properties to before_task_publish signal (#4035)

Contributed by Javier Domingo Cansino.

• Results: Add SSL option for Redis backends (#3831)

Contributed by Chris Kuehl.

• Beat: celery.schedule.crontab: fix reduce (#3826) (#3827)

Contributed by Taylor C. Richberger.

• State: Fix celery issues when using flower REST API

Contributed by Thierry RAMORASOAVINA.

• Results: Elasticsearch: Fix serializing document id.

Contributed by Acey9.

• Beat: Make shallow copy of schedules dictionary

Contributed by Brian May.

• Beat: Populate heap when periodic tasks are changed

Contributed by Wojciech Zywno.

• Task: Allow class methods to define tasks (#3952)

Contributed by georgepsarakis.

• Platforms: Always return boolean value when checking if signal is supported (#3962).

Contributed by Jian Yu.

• Canvas: Avoid duplicating chains in chords (#3779)

Contributed by Ryan Hiebert.

• Canvas: Lookup task only if list has items (#3847)

Contributed by Marc Gibbons.

• Results: Allow unicode message for exception raised in task (#3903)

Contributed by George Psarakis.

• Python3: Support for Python 3.6 (#3904, #3903, #3736)

Contributed by Jon Dufresne, George Psarakis, Asif Saifuddin Auvi, Omer Katz.

• App: Fix retried tasks with expirations (#3790)

Contributed by Brendan MacDonell.

254 Chapter 2. Contents

https://github.com/staticfox/
https://github.com/fcoelho/

Celery Documentation, Release 4.1.0

• – Fixes items format route in docs (#3875)

Contributed by Slam.

• Utils: Fix maybe_make_aware (#3850)

Contributed by Taylor C. Richberger.

• Task: Fix task ETA issues when timezone is defined in configuration (#3867)

Contributed by George Psarakis.

• Concurrency: Consumer does not shutdown properly when embedded in gevent application (#3746)

Contributed by Arcadiy Ivanov.

• Canvas: Fix #3725: Task replaced with group does not complete (#3731)

Contributed by Morgan Doocy.

• Task: Correct order in chains with replaced tasks (#3730)

Contributed by Morgan Doocy.

• Result: Enable synchronous execution of sub-tasks (#3696)

Contributed by shalev67.

• Task: Fix request context for blocking task apply (added hostname) (#3716)

Contributed by Marat Sharafutdinov.

• Utils: Fix task argument handling (#3678) (#3693)

Contributed by Roman Sichny.

• Beat: Provide a transparent method to update the Scheduler heap (#3721)

Contributed by Alejandro Pernin.

• Beat: Specify default value for pidfile option of celery beat. (#3722)

Contributed by Arnaud Rocher.

• Results: Elasticsearch: Stop generating a new field every time when a new result is being put (#3708)

Contributed by Mike Chen.

• Requirements

– Now depends on Kombu 4.1.0.

• Results: Elasticsearch now reuses fields when new results are added.

Contributed by Mike Chen.

• Results: Fixed MongoDB integration when using binary encodings (Issue #3575).

Contributed by Andrew de Quincey.

• Worker: Making missing *args and **kwargs in Task protocol 1

return empty value in protocol 2 (Issue #3687).

Contributed by Roman Sichny.

• App: Fixed TypeError in AMQP when using deprecated signal (Issue #3707).

Contributed by @michael-k.

• Beat: Added a transparent method to update the scheduler heap.

2.9. Change history 255

http://kombu.readthedocs.io/en/master/changelog.html#version-4-1-0
https://github.com/celery/celery/issues/3575
https://github.com/celery/celery/issues/3687
https://docs.python.org/dev/library/exceptions.html#TypeError
https://github.com/celery/celery/issues/3707
https://github.com/michael-k/

Celery Documentation, Release 4.1.0

Contributed by Alejandro Pernin.

• Task: Fixed handling of tasks with keyword arguments on Python 3 (Issue #3657).

Contributed by Roman Sichny.

• Task: Fixed request context for blocking task apply by adding missing hostname attribute.

Contributed by Marat Sharafutdinov.

• Task: Added option to run subtasks synchronously with disable_sync_subtasks argument.

Contributed by @shalev67.

• App: Fixed chaining of replaced tasks (Issue #3726).

Contributed by Morgan Doocy.

• Canvas: Fixed bug where replaced tasks with groups were not completing (Issue #3725).

Contributed by Morgan Doocy.

• Worker: Fixed problem where consumer does not shutdown properly when embedded in a gevent application
(Issue #3745).

Contributed by Arcadiy Ivanov.

• Results: Added support for using AWS DynamoDB as a result backend (#3736).

Contributed by George Psarakis.

• Testing: Added caching on pip installs.

Contributed by @orf.

• Worker: Prevent consuming queue before ready on startup (Issue #3620).

Contributed by Alan Hamlett.

• App: Fixed task ETA issues when timezone is defined in configuration (Issue #3753).

Contributed by George Psarakis.

• Utils: maybe_make_aware should not modify datetime when it is already timezone-aware (Issue #3849).

Contributed by Taylor C. Richberger.

• App: Fixed retrying tasks with expirations (Issue #3734).

Contributed by Brendan MacDonell.

• Results: Allow unicode message for exceptions raised in task (Issue #3858).

Contributed by @staticfox.

• Canvas: Fixed IndexError raised when chord has an empty header.

Contributed by Marc Gibbons.

• Canvas: Avoid duplicating chains in chords (Issue #3771).

Contributed by Ryan Hiebert and George Psarakis.

• Utils: Allow class methods to define tasks (Issue #3863).

Contributed by George Psarakis.

• Beat: Populate heap when periodic tasks are changed.

Contributed by @wzywno and Brian May.

256 Chapter 2. Contents

https://github.com/celery/celery/issues/3657
https://github.com/shalev67/
https://github.com/celery/celery/issues/3726
https://github.com/celery/celery/issues/3725
https://github.com/celery/celery/issues/3745
https://github.com/orf/
https://github.com/celery/celery/issues/3620
https://github.com/celery/celery/issues/3753
https://github.com/celery/celery/issues/3849
https://github.com/celery/celery/issues/3734
https://github.com/celery/celery/issues/3858
https://github.com/staticfox/
https://docs.python.org/dev/library/exceptions.html#IndexError
https://github.com/celery/celery/issues/3771
https://github.com/celery/celery/issues/3863
https://github.com/wzywno/

Celery Documentation, Release 4.1.0

• Results: Added support for Elasticsearch backend options settings.

Contributed by @Acey9.

• Events: Ensure Task.as_dict() works when not all information about task is available.

Contributed by @tramora.

• Schedules: Fixed pickled crontab schedules to restore properly (Issue #3826).

Contributed by Taylor C. Richberger.

• Results: Added SSL option for redis backends (Issue #3830).

Contributed by Chris Kuehl.

• Documentation and examples improvements by:

– Bruno Alla

– Jamie Alessio

– Vivek Anand

– Peter Bittner

– Kalle Bronsen

– Jon Dufresne

– James Michael DuPont

– Sergey Fursov

– Samuel Dion-Girardeau

– Daniel Hahler

– Mike Helmick

– Marc Hörsken

– Christopher Hoskin

– Daniel Huang

– Primož Kerin

– Michal Kuffa

– Simon Legner

– Anthony Lukach

– Ed Morley

– Jay McGrath

– Rico Moorman

– Viraj Navkal

– Ross Patterson

– Dmytro Petruk

– Luke Plant

– Eric Poelke

– Salvatore Rinchiera

2.9. Change history 257

https://github.com/Acey9/
https://github.com/tramora/
https://github.com/celery/celery/issues/3826
https://github.com/celery/celery/issues/3830

Celery Documentation, Release 4.1.0

– Arnaud Rocher

– Kirill Romanov

– Simon Schmidt

– Tamer Sherif

– YuLun Shih

– Ask Solem

– Tom ‘Biwaa’ Riat

– Arthur Vigil

– Joey Wilhelm

– Jian Yu

– YuLun Shih

– Arthur Vigil

– Joey Wilhelm

– @baixuexue123

– @bronsen

– @michael-k

– @orf

– @3lnc

What’s new in Celery 4.0 (latentcall)

Author Ask Solem (ask at celeryproject.org)

Change history

What’s new documents describe the changes in major versions, we also have a Change history that lists the changes
in bugfix releases (0.0.x), while older series are archived under the History section.

Celery is a simple, flexible, and reliable distributed system to process vast amounts of messages, while providing
operations with the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also supporting task scheduling.

Celery has a large and diverse community of users and contributors, you should come join us on IRC or our mailing-
list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions it’s important that you read the following section.

This version is officially supported on CPython 2.7, 3.4, and 3.5. and also supported on PyPy.

258 Chapter 2. Contents

https://github.com/baixuexue123/
https://github.com/bronsen/
https://github.com/michael-k/
https://github.com/orf/
https://github.com/3lnc/

Celery Documentation, Release 4.1.0

Table of Contents

Make sure you read the important notes before upgrading to this version.

• Preface

– Wall of Contributors

• Upgrading from Celery 3.1

– Step 1: Upgrade to Celery 3.1.25

– Step 2: Update your configuration with the new setting names

– Step 3: Read the important notes in this document

– Step 4: Upgrade to Celery 4.0

• Important Notes

– Dropped support for Python 2.6

– Last major version to support Python 2

– Django support

– Removed features

* Features removed for simplicity

* Features removed for lack of funding

– New Task Message Protocol

– Lowercase setting names

– Json is now the default serializer

– The Task base class no longer automatically register tasks

– Task argument checking

– Redis Events not backward compatible

– Redis Priorities Reversed

– Django: Auto-discover now supports Django app configurations

– Worker direct queues no longer use auto-delete

– Old command-line programs removed

• News

– New protocol highlights

– Prefork Pool Improvements

* Tasks now log from the child process

* -Ofair is now the default scheduling strategy

* Limit child process resident memory size

* One log-file per child process

2.10. What’s new in Celery 4.0 (latentcall) 259

Celery Documentation, Release 4.1.0

– Transports

* RabbitMQ priority queue support

* Configure broker URL for read/write separately

* RabbitMQ queue extensions support

* Amazon SQS transport now officially supported

* Apache QPid transport now officially supported

– Redis: Support for Sentinel

– Tasks

* Task Auto-retry Decorator

* Task.replace Improvements

* Remote Task Tracebacks

* Handling task connection errors

* Gevent/Eventlet: Dedicated thread for consuming results

* AsyncResult.then(on_success, on_error)

* New Task Router API

* Canvas Refactor

– Periodic Tasks

* New API for configuring periodic tasks

* Optimized Beat implementation

* Schedule tasks based on sunrise, sunset, dawn and dusk

– Result Backends

* RPC Result Backend matured

* Redis: Result backend optimizations

* New Riak result backend introduced

* New CouchDB result backend introduced

* New Consul result backend introduced

* Brand new Cassandra result backend

* New Elasticsearch result backend introduced

* New File-system result backend introduced

– Event Batching

– In Other News...

* Requirements

* Tasks

* Beat

* App

260 Chapter 2. Contents

Celery Documentation, Release 4.1.0

* Logging

* Execution Pools

– Testing

* Transports

* Programs

* Worker

* Debugging Utilities

* Signals

* Events

* Deployment

* Result Backends

* Documentation Improvements

• Reorganization, Deprecations, and Removals

– Incompatible changes

– Unscheduled Removals

– Reorganization Deprecations

– Scheduled Removals

* Modules

* Result

* TaskSet

* Events

* Magic keyword arguments

– Removed Settings

* Logging Settings

* Task Settings

– Changes to internal API

• Deprecation Time-line Changes

Preface

Welcome to Celery 4!

This is a massive release with over two years of changes. Not only does it come with many new features, but it also
fixes a massive list of bugs, so in many ways you could call it our “Snow Leopard” release.

The next major version of Celery will support Python 3.5 only, where we are planning to take advantage of the new
asyncio library.

This release would not have been possible without the support of my employer, Robinhood (we’re hiring!).

• Ask Solem

2.10. What’s new in Celery 4.0 (latentcall) 261

https://robinhood.com

Celery Documentation, Release 4.1.0

Dedicated to Sebastian “Zeb” Bjørnerud (RIP), with special thanks to Ty Wilkins, for designing our new logo, all the
contributors who help make this happen, and my colleagues at Robinhood.

Wall of Contributors

Aaron McMillin, Adam Chainz, Adam Renberg, Adriano Martins de Jesus, Adrien Guinet, Ahmet Demir, Aitor
Gómez-Goiri, Alan Justino, Albert Wang, Alex Koshelev, Alex Rattray, Alex Williams, Alexander Koshelev, Alexan-
der Lebedev, Alexander Oblovatniy, Alexey Kotlyarov, Ali Bozorgkhan, Alice Zoë Bevan–McGregor, Allard Hoeve,
Alman One, Amir Rustamzadeh, Andrea Rabbaglietti, Andrea Rosa, Andrei Fokau, Andrew Rodionoff, Andrew Stew-
art, Andriy Yurchuk, Aneil Mallavarapu, Areski Belaid, Armenak Baburyan, Arthur Vuillard, Artyom Koval, Asif Sai-
fuddin Auvi, Ask Solem, Balthazar Rouberol, Batiste Bieler, Berker Peksag, Bert Vanderbauwhede, Brendan Smithy-
man, Brian Bouterse, Bryce Groff, Cameron Will, ChangBo Guo, Chris Clark, Chris Duryee, Chris Erway, Chris Har-
ris, Chris Martin, Chillar Anand, Colin McIntosh, Conrad Kramer, Corey Farwell, Craig Jellick, Cullen Rhodes, Dal-
las Marlow, Daniel Devine, Daniel Wallace, Danilo Bargen, Davanum Srinivas, Dave Smith, David Baumgold, David
Harrigan, David Pravec, Dennis Brakhane, Derek Anderson, Dmitry Dygalo, Dmitry Malinovsky, Dongweiming,
Dudás Ádám, Dustin J. Mitchell, Ed Morley, Edward Betts, Éloi Rivard, Emmanuel Cazenave, Fahad Siddiqui, Fatih
Sucu, Feanil Patel, Federico Ficarelli, Felix Schwarz, Felix Yan, Fernando Rocha, Flavio Grossi, Frantisek Holop,
Gao Jiangmiao, George Whewell, Gerald Manipon, Gilles Dartiguelongue, Gino Ledesma, Greg Wilbur, Guillaume
Seguin, Hank John, Hogni Gylfason, Ilya Georgievsky, Ionel Cristian Măries, , Ivan Larin, James Pulec, Jared Lewis,
Jason Veatch, Jasper Bryant-Greene, Jeff Widman, Jeremy Tillman, Jeremy Zafran, Jocelyn Delalande, Joe Jevnik,
Joe Sanford, John Anderson, John Barham, John Kirkham, John Whitlock, Jonathan Vanasco, Joshua Harlow, João
Ricardo, Juan Carlos Ferrer, Juan Rossi, Justin Patrin, Kai Groner, Kevin Harvey, Kevin Richardson, Komu Wairagu,
Konstantinos Koukopoulos, Kouhei Maeda, Kracekumar Ramaraju, Krzysztof Bujniewicz, Latitia M. Haskins, Len
Buckens, Lev Berman, lidongming, Lorenzo Mancini, Lucas Wiman, Luke Pomfrey, Luyun Xie, Maciej Obuchowski,
Manuel Kaufmann, Marat Sharafutdinov, Marc Sibson, Marcio Ribeiro, Marin Atanasov Nikolov, Mathieu Fenniak,
Mark Parncutt, Mauro Rocco, Maxime Beauchemin, Maxime Vdb, Mher Movsisyan, Michael Aquilina, Michael
Duane Mooring, Michael Permana, Mickaël Penhard, Mike Attwood, Mitchel Humpherys, Mohamed Abouelsaoud,
Morris Tweed, Morton Fox, Môshe van der Sterre, Nat Williams, Nathan Van Gheem, Nicolas Unravel, Nik Nyby,
Omer Katz, Omer Korner, Ori Hoch, Paul Pearce, Paulo Bu, Pavlo Kapyshin, Philip Garnero, Pierre Fersing, Piotr Kil-
czuk, Piotr Maślanka, Quentin Pradet, Radek Czajka, Raghuram Srinivasan, Randy Barlow, Raphael Michel, Rémy
Léone, Robert Coup, Robert Kolba, Rockallite Wulf, Rodolfo Carvalho, Roger Hu, Romuald Brunet, Rongze Zhu,
Ross Deane, Ryan Luckie, Rémy Greinhofer, Samuel Giffard, Samuel Jaillet, Sergey Azovskov, Sergey Tikhonov,
Seungha Kim, Simon Peeters, Spencer E. Olson, Srinivas Garlapati, Stephen Milner, Steve Peak, Steven Sklar, Stuart
Axon, Sukrit Khera, Tadej Janež, Taha Jahangir, Takeshi Kanemoto, Tayfun Sen, Tewfik Sadaoui, Thomas French,
Thomas Grainger, Tomas Machalek, Tobias Schottdorf, Tocho Tochev, Valentyn Klindukh, Vic Kumar, Vladimir Bol-
shakov, Vladimir Gorbunov, Wayne Chang, Wieland Hoffmann, Wido den Hollander, Wil Langford, Will Thompson,
William King, Yury Selivanov, Vytis Banaitis, Zoran Pavlovic, Xin Li, , @allenling, @alzeih, @bastb, @bee-keeper,
@ffeast, @firefly4268, @flyingfoxlee, @gdw2, @gitaarik, @hankjin, @lvh, @m-vdb, @kindule, @mdk:, @michael-
k, @mozillazg, @nokrik, @ocean1, @orlo666, @raducc, @wanglei, @worldexception, @xBeAsTx.

Note: This wall was automatically generated from git history, so sadly it doesn’t not include the people who help
with more important things like answering mailing-list questions.

Upgrading from Celery 3.1

Step 1: Upgrade to Celery 3.1.25

If you haven’t already, the first step is to upgrade to Celery 3.1.25.

This version adds forward compatibility to the new message protocol, so that you can incrementally upgrade from 3.1
to 4.0.

262 Chapter 2. Contents

http://tywilkins.com
https://robinhood.com
https://github.com/allenling/
https://github.com/alzeih/
https://github.com/bastb/
https://github.com/bee-keeper/
https://github.com/ffeast/
https://github.com/firefly4268/
https://github.com/flyingfoxlee/
https://github.com/gdw2/
https://github.com/gitaarik/
https://github.com/hankjin/
https://github.com/lvh/
https://github.com/m-vdb/
https://github.com/kindule/
https://github.com/mdk/
https://github.com/michael-k/
https://github.com/michael-k/
https://github.com/mozillazg/
https://github.com/nokrik/
https://github.com/ocean1/
https://github.com/orlo666/
https://github.com/raducc/
https://github.com/wanglei/
https://github.com/worldexception/
https://github.com/xBeAsTx/

Celery Documentation, Release 4.1.0

Deploy the workers first by upgrading to 3.1.25, this means these workers can process messages sent by clients using
both 3.1 and 4.0.

After the workers are upgraded you can upgrade the clients (e.g. web servers).

Step 2: Update your configuration with the new setting names

This version radically changes the configuration setting names, to be more consistent.

The changes are fully backwards compatible, so you have the option to wait until the old setting names are deprecated,
but to ease the transition we have included a command-line utility that rewrites your settings automatically.

See Lowercase setting names for more information.

Step 3: Read the important notes in this document

Make sure you are not affected by any of the important upgrade notes mentioned in the following section.

An especially important note is that Celery now checks the arguments you send to a task by matching it to the signature
(Task argument checking).

Step 4: Upgrade to Celery 4.0

At this point you can upgrade your workers and clients with the new version.

Important Notes

Dropped support for Python 2.6

Celery now requires Python 2.7 or later, and also drops support for Python 3.3 so supported versions are:

• CPython 2.7

• CPython 3.4

• CPython 3.5

• PyPy 5.4 (pypy2)

• PyPy 5.5-alpha (pypy3)

Last major version to support Python 2

Starting from Celery 5.0 only Python 3.5+ will be supported.

To make sure you’re not affected by this change you should pin the Celery version in your requirements file, either to
a specific version: celery==4.0.0, or a range: celery>=4.0,<5.0.

Dropping support for Python 2 will enable us to remove massive amounts of compatibility code, and going with Python
3.5 allows us to take advantage of typing, async/await, asyncio, and similar concepts there’s no alternative for in older
versions.

Celery 4.x will continue to work on Python 2.7, 3.4, 3.5; just as Celery 3.x still works on Python 2.6.

2.10. What’s new in Celery 4.0 (latentcall) 263

Celery Documentation, Release 4.1.0

Django support

Celery 4.x requires Django 1.8 or later, but we really recommend using at least Django 1.9 for the new
transaction.on_commit feature.

A common problem when calling tasks from Django is when the task is related to a model change, and you wish to
cancel the task if the transaction is rolled back, or ensure the task is only executed after the changes have been written
to the database.

transaction.atomic enables you to solve this problem by adding the task as a callback to be called only when
the transaction is committed.

Example usage:

from functools import partial
from django.db import transaction

from .models import Article, Log
from .tasks import send_article_created_notification

def create_article(request):
with transaction.atomic():

article = Article.objects.create(**request.POST)
send this task only if the rest of the transaction succeeds.
transaction.on_commit(partial(

send_article_created_notification.delay, article_id=article.pk))
Log.objects.create(type=Log.ARTICLE_CREATED, object_pk=article.pk)

Removed features

• Microsoft Windows is no longer supported.

The test suite is passing, and Celery seems to be working with Windows, but we make no guarantees as we are
unable to diagnose issues on this platform. If you are a company requiring support on this platform, please get
in touch.

• Jython is no longer supported.

Features removed for simplicity

• Webhook task machinery (celery.task.http) has been removed.

Nowadays it’s easy to use the requests module to write webhook tasks manually. We would love to
use requests but we are simply unable to as there’s a very vocal ‘anti-dependency’ mob in the Python
community

If you need backwards compatibility you can simply copy + paste the 3.1 version of the module and
make sure it’s imported by the worker: https://github.com/celery/celery/blob/3.1/celery/task/http.py

• Tasks no longer sends error emails.

This also removes support for app.mail_admins, and any functionality related to sending emails.

• celery.contrib.batches has been removed.

This was an experimental feature, so not covered by our deprecation timeline guarantee.

You can copy and pase the existing batches code for use within your projects: https://github.com/
celery/celery/blob/3.1/celery/contrib/batches.py

264 Chapter 2. Contents

https://pypi.python.org/pypi/requests/
https://github.com/celery/celery/blob/3.1/celery/task/http.py
https://github.com/celery/celery/blob/3.1/celery/contrib/batches.py
https://github.com/celery/celery/blob/3.1/celery/contrib/batches.py

Celery Documentation, Release 4.1.0

Features removed for lack of funding

We announced with the 3.1 release that some transports were moved to experimental status, and that there’d be no
official support for the transports.

As this subtle hint for the need of funding failed we’ve removed them completely, breaking backwards compatibility.

• Using the Django ORM as a broker is no longer supported.

You can still use the Django ORM as a result backend: see django-celery-results - Using the Django
ORM/Cache as a result backend section for more information.

• Using SQLAlchemy as a broker is no longer supported.

You can still use SQLAlchemy as a result backend.

• Using CouchDB as a broker is no longer supported.

You can still use CouchDB as a result backend.

• Using IronMQ as a broker is no longer supported.

• Using Beanstalk as a broker is no longer supported.

In addition some features have been removed completely so that attempting to use them will raise an exception:

• The --autoreload feature has been removed.

This was an experimental feature, and not covered by our deprecation timeline guarantee. The flag is removed
completely so the worker will crash at startup when present. Luckily this flag isn’t used in production systems.

• The experimental threads pool is no longer supported and has been removed.

• The force_execv feature is no longer supported.

The celery worker command now ignores the --no-execv, --force-execv, and the
CELERYD_FORCE_EXECV setting.

This flag will be removed completely in 5.0 and the worker will raise an error.

• The old legacy “amqp” result backend has been deprecated, and will be removed in Celery 5.0.

Please use the rpc result backend for RPC-style calls, and a persistent result backend for multi-
consumer results.

We think most of these can be fixed without considerable effort, so if you’re interested in getting any of these features
back, please get in touch.

Now to the good news...

New Task Message Protocol

This version introduces a brand new task message protocol, the first major change to the protocol since the beginning
of the project.

The new protocol is enabled by default in this version and since the new version isn’t backwards compatible you have
to be careful when upgrading.

The 3.1.25 version was released to add compatibility with the new protocol so the easiest way to upgrade is to upgrade
to that version first, then upgrade to 4.0 in a second deployment.

If you wish to keep using the old protocol you may also configure the protocol version number used:

2.10. What’s new in Celery 4.0 (latentcall) 265

Celery Documentation, Release 4.1.0

app = Celery()
app.conf.task_protocol = 1

Read more about the features available in the new protocol in the news section found later in this document.

Lowercase setting names

In the pursuit of beauty all settings are now renamed to be in all lowercase and some setting names have been renamed
for consistency.

This change is fully backwards compatible so you can still use the uppercase setting names, but we would like you to
upgrade as soon as possible and you can do this automatically using the celery upgrade settings command:

$ celery upgrade settings proj/settings.py

This command will modify your module in-place to use the new lower-case names (if you want uppercase with a
“CELERY” prefix see block below), and save a backup in proj/settings.py.orig.

For Django users and others who want to keep uppercase names

If you’re loading Celery configuration from the Django settings module then you’ll want to keep using the uppercase
names.

You also want to use a CELERY_ prefix so that no Celery settings collide with Django settings used by other apps.

To do this, you’ll first need to convert your settings file to use the new consistent naming scheme, and add the prefix
to all Celery related settings:

$ celery upgrade settings proj/settings.py --django

After upgrading the settings file, you need to set the prefix explicitly in your proj/celery.py module:

app.config_from_object('django.conf:settings', namespace='CELERY')

You can find the most up to date Django Celery integration example here: First steps with Django.

Note: This will also add a prefix to settings that didn’t previously have one, for example BROKER_URL should be
written CELERY_BROKER_URL with a namespace of CELERY CELERY_BROKER_URL.

Luckily you don’t have to manually change the files, as the celery upgrade settings --django program
should do the right thing.

The loader will try to detect if your configuration is using the new format, and act accordingly, but this also means
you’re not allowed to mix and match new and old setting names, that’s unless you provide a value for both alternatives.

The major difference between previous versions, apart from the lower case names, are the renaming of some prefixes,
like celerybeat_ to beat_, celeryd_ to worker_.

The celery_ prefix has also been removed, and task related settings from this name-space is now prefixed by task_,
worker related settings with worker_.

Apart from this most of the settings will be the same in lowercase, apart from a few special ones:
Continued on next page

266 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Table 2.2 – continued from previous page
Setting name Replace with

Setting name Replace with
CELERY_MAX_CACHED_RESULTS result_cache_max
CELERY_MESSAGE_COMPRESSION result_compression/task_compression.
CELERY_TASK_RESULT_EXPIRES result_expires
CELERY_RESULT_DBURI result_backend
CELERY_RESULT_ENGINE_OPTIONS database_engine_options
-*-_DB_SHORT_LIVED_SESSIONS database_short_lived_sessions
CELERY_RESULT_DB_TABLE_NAMES database_db_names
CELERY_ACKS_LATE task_acks_late
CELERY_ALWAYS_EAGER task_always_eager
CELERY_ANNOTATIONS task_annotations
CELERY_MESSAGE_COMPRESSION task_compression
CELERY_CREATE_MISSING_QUEUES task_create_missing_queues
CELERY_DEFAULT_DELIVERY_MODE task_default_delivery_mode
CELERY_DEFAULT_EXCHANGE task_default_exchange
CELERY_DEFAULT_EXCHANGE_TYPE task_default_exchange_type
CELERY_DEFAULT_QUEUE task_default_queue
CELERY_DEFAULT_RATE_LIMIT task_default_rate_limit
CELERY_DEFAULT_ROUTING_KEY task_default_routing_key
-"-_EAGER_PROPAGATES_EXCEPTIONS task_eager_propagates
CELERY_IGNORE_RESULT task_ignore_result
CELERY_TASK_PUBLISH_RETRY task_publish_retry
CELERY_TASK_PUBLISH_RETRY_POLICY task_publish_retry_policy
CELERY_QUEUES task_queues
CELERY_ROUTES task_routes
CELERY_SEND_TASK_SENT_EVENT task_send_sent_event
CELERY_TASK_SERIALIZER task_serializer
CELERYD_TASK_SOFT_TIME_LIMIT task_soft_time_limit
CELERYD_TASK_TIME_LIMIT task_time_limit
CELERY_TRACK_STARTED task_track_started
CELERY_DISABLE_RATE_LIMITS worker_disable_rate_limits
CELERY_ENABLE_REMOTE_CONTROL worker_enable_remote_control
CELERYD_SEND_EVENTS worker_send_task_events

You can see a full table of the changes in New lowercase settings.

Json is now the default serializer

The time has finally come to end the reign of pickle as the default serialization mechanism, and json is the default
serializer starting from this version.

This change was announced with the release of Celery 3.1.

If you’re still depending on pickle being the default serializer, then you have to configure your app before upgrading
to 4.0:

task_serializer = 'pickle'
result_serializer = 'pickle'
accept_content = {'pickle'}

2.10. What’s new in Celery 4.0 (latentcall) 267

https://docs.python.org/dev/library/pickle.html#module-pickle
https://docs.python.org/dev/library/pickle.html#module-pickle

Celery Documentation, Release 4.1.0

The Json serializer now also supports some additional types:

• datetime, time, date

Converted to json text, in ISO-8601 format.

• Decimal

Converted to json text.

• django.utils.functional.Promise

Django only: Lazy strings used for translation etc., are evaluated and conversion to a json type is
attempted.

• uuid.UUID

Converted to json text.

You can also define a __json__ method on your custom classes to support JSON serialization (must return a json
compatible type):

class Person:
first_name = None
last_name = None
address = None

def __json__(self):
return {

'first_name': self.first_name,
'last_name': self.last_name,
'address': self.address,

}

The Task base class no longer automatically register tasks

The Task class is no longer using a special meta-class that automatically registers the task in the task registry.

Instead this is now handled by the app.task decorators.

If you’re still using class based tasks, then you need to register these manually:

class CustomTask(Task):
def run(self):

print('running')
CustomTask = app.register_task(CustomTask())

The best practice is to use custom task classes only for overriding general behavior, and then using the task decorator
to realize the task:

@app.task(bind=True, base=CustomTask)
def custom(self):

print('running')

This change also means that the abstract attribute of the task no longer has any effect.

Task argument checking

The arguments of the task are now verified when calling the task, even asynchronously:

268 Chapter 2. Contents

https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.time
https://docs.python.org/dev/library/datetime.html#datetime.date
https://docs.python.org/dev/library/decimal.html#decimal.Decimal
https://docs.python.org/dev/library/uuid.html#uuid.UUID

Celery Documentation, Release 4.1.0

>>> @app.task
... def add(x, y):
... return x + y

>>> add.delay(8, 8)
<AsyncResult: f59d71ca-1549-43e0-be41-4e8821a83c0c>

>>> add.delay(8)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "celery/app/task.py", line 376, in delay
return self.apply_async(args, kwargs)

File "celery/app/task.py", line 485, in apply_async
check_arguments(*(args or ()), **(kwargs or {}))

TypeError: add() takes exactly 2 arguments (1 given)

You can disable the argument checking for any task by setting its typing attribute to False:

>>> @app.task(typing=False)
... def add(x, y):
... return x + y

Or if you would like to disable this completely for all tasks you can pass strict_typing=False when creating
the app:

app = Celery(..., strict_typing=False)

Redis Events not backward compatible

The Redis fanout_patterns and fanout_prefix transport options are now enabled by default.

Workers/monitors without these flags enabled won’t be able to see workers with this flag disabled. They can still
execute tasks, but they cannot receive each others monitoring messages.

You can upgrade in a backward compatible manner by first configuring your 3.1 workers and monitors to enable the
settings, before the final upgrade to 4.0:

BROKER_TRANSPORT_OPTIONS = {
'fanout_patterns': True,
'fanout_prefix': True,

}

Redis Priorities Reversed

Priority 0 is now lowest, 9 is highest.

This change was made to make priority support consistent with how it works in AMQP.

Contributed by Alex Koshelev.

Django: Auto-discover now supports Django app configurations

The autodiscover_tasks() function can now be called without arguments, and the Django handler will auto-
matically find your installed apps:

2.10. What’s new in Celery 4.0 (latentcall) 269

Celery Documentation, Release 4.1.0

app.autodiscover_tasks()

The Django integration example in the documentation has been updated to use the argument-less call.

This also ensures compatibility with the new, ehm, AppConfig stuff introduced in recent Django versions.

Worker direct queues no longer use auto-delete

Workers/clients running 4.0 will no longer be able to send worker direct messages to workers running older versions,
and vice versa.

If you’re relying on worker direct messages you should upgrade your 3.x workers and clients to use the new routing
settings first, by replacing celery.utils.worker_direct() with this implementation:

from kombu import Exchange, Queue

worker_direct_exchange = Exchange('C.dq2')

def worker_direct(hostname):
return Queue(

'{hostname}.dq2'.format(hostname),
exchange=worker_direct_exchange,
routing_key=hostname,

)

This feature closed Issue #2492.

Old command-line programs removed

Installing Celery will no longer install the celeryd, celerybeat and celeryd-multi programs.

This was announced with the release of Celery 3.1, but you may still have scripts pointing to the old names, so make
sure you update these to use the new umbrella command:

Program New Status Replacement
celeryd REMOVED celery worker
celerybeat REMOVED celery beat
celeryd-multi REMOVED celery multi

News

New protocol highlights

The new protocol fixes many problems with the old one, and enables some long-requested features:

• Most of the data are now sent as message headers, instead of being serialized with the message body.

In version 1 of the protocol the worker always had to deserialize the message to be able to read task
meta-data like the task id, name, etc. This also meant that the worker was forced to double-decode
the data, first deserializing the message on receipt, serializing the message again to send to child
process, then finally the child process deserializes the message again.

Keeping the meta-data fields in the message headers means the worker doesn’t actually have to de-
code the payload before delivering the task to the child process, and also that it’s now possible for
the worker to reroute a task written in a language different from Python to a different worker.

270 Chapter 2. Contents

https://github.com/celery/celery/issues/2492

Celery Documentation, Release 4.1.0

• A new lang message header can be used to specify the programming language the task is written in.

• Worker stores results for internal errors like ContentDisallowed, and other deserialization errors.

• Worker stores results and sends monitoring events for unregistered task errors.

• Worker calls callbacks/errbacks even when the result is sent by the parent process (e.g., WorkerLostError
when a child process terminates, deserialization errors, unregistered tasks).

• A new origin header contains information about the process sending the task (worker node-name, or PID and
host-name information).

• A new shadow header allows you to modify the task name used in logs.

This is useful for dispatch like patterns, like a task that calls any function using pickle (don’t do this
at home):

from celery import Task
from celery.utils.imports import qualname

class call_as_task(Task):

def shadow_name(self, args, kwargs, options):
return 'call_as_task:{0}'.format(qualname(args[0]))

def run(self, fun, *args, **kwargs):
return fun(*args, **kwargs)

call_as_task = app.register_task(call_as_task())

• New argsrepr and kwargsrepr fields contain textual representations of the task arguments (possibly trun-
cated) for use in logs, monitors, etc.

This means the worker doesn’t have to deserialize the message payload to display the task arguments
for informational purposes.

• Chains now use a dedicated chain field enabling support for chains of thousands and more tasks.

• New parent_id and root_id headers adds information about a tasks relationship with other tasks.

– parent_id is the task id of the task that called this task

– root_id is the first task in the work-flow.

These fields can be used to improve monitors like flower to group related messages together (like
chains, groups, chords, complete work-flows, etc).

• app.TaskProducer replaced by app.amqp.create_task_message() and app.amqp.
send_task_message().

Dividing the responsibilities into creating and sending means that people who want to send messages
using a Python AMQP client directly, don’t have to implement the protocol.

The app.amqp.create_task_message() method calls either app.amqp.
as_task_v2(), or app.amqp.as_task_v1() depending on the configured task protocol,
and returns a special task_message tuple containing the headers, properties and body of the task
message.

See also:

The new task protocol is documented in full here: Version 2.

2.10. What’s new in Celery 4.0 (latentcall) 271

Celery Documentation, Release 4.1.0

Prefork Pool Improvements

Tasks now log from the child process

Logging of task success/failure now happens from the child process executing the task. As a result logging utilities,
like Sentry can get full information about tasks, including variables in the traceback stack.

-Ofair is now the default scheduling strategy

To re-enable the default behavior in 3.1 use the -Ofast command-line option.

There’s been lots of confusion about what the -Ofair command-line option does, and using the term “prefetch” in
explanations have probably not helped given how confusing this terminology is in AMQP.

When a Celery worker using the prefork pool receives a task, it needs to delegate that task to a child process for
execution.

The prefork pool has a configurable number of child processes (--concurrency) that can be used to execute tasks,
and each child process uses pipes/sockets to communicate with the parent process:

• inqueue (pipe/socket): parent sends task to the child process

• outqueue (pipe/socket): child sends result/return value to the parent.

In Celery 3.1 the default scheduling mechanism was simply to send the task to the first inqueue that was writable,
with some heuristics to make sure we round-robin between them to ensure each child process would receive the same
amount of tasks.

This means that in the default scheduling strategy, a worker may send tasks to the same child process that is already
executing a task. If that task is long running, it may block the waiting task for a long time. Even worse, hundreds of
short-running tasks may be stuck behind a long running task even when there are child processes free to do work.

The -Ofair scheduling strategy was added to avoid this situation, and when enabled it adds the rule that no task
should be sent to the a child process that is already executing a task.

The fair scheduling strategy may perform slightly worse if you have only short running tasks.

Limit child process resident memory size

You can now limit the maximum amount of memory allocated per prefork pool child process by setting the worker
--max-memory-per-child option, or the worker_max_memory_per_child setting.

The limit is for RSS/resident memory size and is specified in kilobytes.

A child process having exceeded the limit will be terminated and replaced with a new process after the currently
executing task returns.

See Max memory per child setting for more information.

Contributed by Dave Smith.

One log-file per child process

Init-scrips and celery multi now uses the %I log file format option (e.g., /var/log/celery/%n%I.log).

This change was necessary to ensure each child process has a separate log file after moving task logging to the child
process, as multiple processes writing to the same log file can cause corruption.

272 Chapter 2. Contents

Celery Documentation, Release 4.1.0

You’re encouraged to upgrade your init-scripts and celery multi arguments to use this new option.

Transports

RabbitMQ priority queue support

See RabbitMQ Message Priorities for more information.

Contributed by Gerald Manipon.

Configure broker URL for read/write separately

New broker_read_url and broker_write_url settings have been added so that separate broker URLs can
be provided for connections used for consuming/publishing.

In addition to the configuration options, two new methods have been added the app API:

• app.connection_for_read()

• app.connection_for_write()

These should now be used in place of app.connection() to specify the intent of the required connection.

Note: Two connection pools are available: app.pool (read), and app.producer_pool (write). The latter
doesn’t actually give connections but full kombu.Producer instances.

def publish_some_message(app, producer=None):
with app.producer_or_acquire(producer) as producer:

...

def consume_messages(app, connection=None):
with app.connection_or_acquire(connection) as connection:

...

RabbitMQ queue extensions support

Queue declarations can now set a message TTL and queue expiry time directly, by using the message_ttl and
expires arguments

New arguments have been added to Queue that lets you directly and conveniently configure RabbitMQ queue exten-
sions in queue declarations:

• Queue(expires=20.0)

Set queue expiry time in float seconds.

See kombu.Queue.expires.

• Queue(message_ttl=30.0)

Set queue message time-to-live float seconds.

See kombu.Queue.message_ttl.

• Queue(max_length=1000)

2.10. What’s new in Celery 4.0 (latentcall) 273

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.expires
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.message_ttl

Celery Documentation, Release 4.1.0

Set queue max length (number of messages) as int.

See kombu.Queue.max_length.

• Queue(max_length_bytes=1000)

Set queue max length (message size total in bytes) as int.

See kombu.Queue.max_length_bytes.

• Queue(max_priority=10)

Declare queue to be a priority queue that routes messages based on the priority field of the
message.

See kombu.Queue.max_priority.

Amazon SQS transport now officially supported

The SQS broker transport has been rewritten to use async I/O and as such joins RabbitMQ, Redis and QPid as officially
supported transports.

The new implementation also takes advantage of long polling, and closes several issues related to using SQS as a
broker.

This work was sponsored by Nextdoor.

Apache QPid transport now officially supported

Contributed by Brian Bouterse.

Redis: Support for Sentinel

You can point the connection to a list of sentinel URLs like:

sentinel://0.0.0.0:26379;sentinel://0.0.0.0:26380/...

where each sentinel is separated by a ;. Multiple sentinels are handled by kombu.Connection constructor, and
placed in the alternative list of servers to connect to in case of connection failure.

Contributed by Sergey Azovskov, and Lorenzo Mancini.

Tasks

Task Auto-retry Decorator

Writing custom retry handling for exception events is so common that we now have built-in support for it.

For this a new autoretry_for argument is now supported by the task decorators, where you can specify a tuple of
exceptions to automatically retry for:

from twitter.exceptions import FailWhaleError

@app.task(autoretry_for=(FailWhaleError,))
def refresh_timeline(user):

return twitter.refresh_timeline(user)

274 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.max_length
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.max_length_bytes
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue.max_priority
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection

Celery Documentation, Release 4.1.0

See Automatic retry for known exceptions for more information.

Contributed by Dmitry Malinovsky.

Task.replace Improvements

• self.replace(signature) can now replace any task, chord or group, and the signature to replace with
can be a chord, group or any other type of signature.

• No longer inherits the callbacks and errbacks of the existing task.

If you replace a node in a tree, then you wouldn’t expect the new node to inherit the children of the
old node.

• Task.replace_in_chord has been removed, use .replace instead.

• If the replacement is a group, that group will be automatically converted to a chord, where the callback “accu-
mulates” the results of the group tasks.

A new built-in task (celery.accumulate was added for this purpose)

Contributed by Steeve Morin, and Ask Solem.

Remote Task Tracebacks

The new task_remote_tracebacks will make task tracebacks more useful by injecting the stack of the remote
worker.

This feature requires the additional tblib library.

Contributed by Ionel Cristian Măries, .

Handling task connection errors

Connection related errors occuring while sending a task is now re-raised as a kombu.exceptions.
OperationalError error:

>>> try:
... add.delay(2, 2)
... except add.OperationalError as exc:
... print('Could not send task %r: %r' % (add, exc))

See Connection Error Handling for more information.

Gevent/Eventlet: Dedicated thread for consuming results

When using gevent, or eventlet there is now a single thread responsible for consuming events.

This means that if you have many calls retrieving results, there will be a dedicated thread for consuming them:

result = add.delay(2, 2)

this call will delegate to the result consumer thread:
once the consumer thread has received the result this greenlet can
continue.
value = result.get(timeout=3)

2.10. What’s new in Celery 4.0 (latentcall) 275

https://pypi.python.org/pypi/tblib/
https://pypi.python.org/pypi/gevent/
https://pypi.python.org/pypi/eventlet/

Celery Documentation, Release 4.1.0

This makes performing RPC calls when using gevent/eventlet perform much better.

AsyncResult.then(on_success, on_error)

The AsyncResult API has been extended to support the promise protocol.

This currently only works with the RPC (amqp) and Redis result backends, but lets you attach callbacks to when tasks
finish:

import gevent.monkey
monkey.patch_all()

import time
from celery import Celery

app = Celery(broker='amqp://', backend='rpc')

@app.task
def add(x, y):

return x + y

def on_result_ready(result):
print('Received result for id %r: %r' % (result.id, result.result,))

add.delay(2, 2).then(on_result_ready)

time.sleep(3) # run gevent event loop for a while.

Demonstrated using gevent here, but really this is an API that’s more useful in callback-based event loops like twisted,
or tornado.

New Task Router API

The task_routes setting can now hold functions, and map routes now support glob patterns and regexes.

Instead of using router classes you can now simply define a function:

def route_for_task(name, args, kwargs, options, task=None, **kwargs):
from proj import tasks

if name == tasks.add.name:
return {'queue': 'hipri'}

If you don’t need the arguments you can use start arguments, just make sure you always also accept star arguments so
that we have the ability to add more features in the future:

def route_for_task(name, *args, **kwargs):
from proj import tasks
if name == tasks.add.name:

return {'queue': 'hipri', 'priority': 9}

Both the options argument and the new task keyword argument are new to the function-style routers, and will
make it easier to write routers based on execution options, or properties of the task.

The optional task keyword argument won’t be set if a task is called by name using app.send_task().

For more examples, including using glob/regexes in routers please see task_routes and Automatic routing.

276 Chapter 2. Contents

https://pypi.python.org/pypi/gevent/
https://pypi.python.org/pypi/twisted/
https://pypi.python.org/pypi/tornado/

Celery Documentation, Release 4.1.0

Canvas Refactor

The canvas/work-flow implementation have been heavily refactored to fix some long outstanding issues.

• Error callbacks can now take real exception and traceback instances (Issue #2538).

>>> add.s(2, 2).on_error(log_error.s()).delay()

Where log_error could be defined as:

@app.task
def log_error(request, exc, traceback):

with open(os.path.join('/var/errors', request.id), 'a') as fh:
print('--\n\n{0} {1} {2}'.format(

task_id, exc, traceback), file=fh)

See Canvas: Designing Work-flows for more examples.

• chain(a, b, c) now works the same as a | b | c.

This means chain may no longer return an instance of chain, instead it may optimize the workflow
so that e.g. two groups chained together becomes one group.

• Now unrolls groups within groups into a single group (Issue #1509).

• chunks/map/starmap tasks now routes based on the target task

• chords and chains can now be immutable.

• Fixed bug where serialized signatures weren’t converted back into signatures (Issue #2078)

Fix contributed by Ross Deane.

• Fixed problem where chains and groups didn’t work when using JSON serialization (Issue #2076).

Fix contributed by Ross Deane.

• Creating a chord no longer results in multiple values for keyword argument ‘task_id’ (Issue #2225).

Fix contributed by Aneil Mallavarapu.

• Fixed issue where the wrong result is returned when a chain contains a chord as the penultimate task.

Fix contributed by Aneil Mallavarapu.

• Special case of group(A.s() | group(B.s() | C.s())) now works.

• Chain: Fixed bug with incorrect id set when a subtask is also a chain.

• group | group is now flattened into a single group (Issue #2573).

• Fixed issue where group | task wasn’t upgrading correctly to chord (Issue #2922).

• Chords now properly sets result.parent links.

• chunks/map/starmap are now routed based on the target task.

• Signature.link now works when argument is scalar (not a list) (Issue #2019).

• group() now properly forwards keyword arguments (Issue #3426).

Fix contributed by Samuel Giffard.

• A chord where the header group only consists of a single task is now turned into a simple chain.

• Passing a link argument to group.apply_async() now raises an error (Issue #3508).

2.10. What’s new in Celery 4.0 (latentcall) 277

https://github.com/celery/celery/issues/2538
https://github.com/celery/celery/issues/1509
https://github.com/celery/celery/issues/2078
https://github.com/celery/celery/issues/2076
https://github.com/celery/celery/issues/2225
https://github.com/celery/celery/issues/2573
https://github.com/celery/celery/issues/2922
https://github.com/celery/celery/issues/2019
https://github.com/celery/celery/issues/3426
https://github.com/celery/celery/issues/3508

Celery Documentation, Release 4.1.0

• chord | sig now attaches to the chord callback (Issue #3356).

Periodic Tasks

New API for configuring periodic tasks

This new API enables you to use signatures when defining periodic tasks, removing the chance of mistyping task
names.

An example of the new API is here.

Optimized Beat implementation

The celery beat implementation has been optimized for millions of periodic tasks by using a heap to schedule
entries.

Contributed by Ask Solem and Alexander Koshelev.

Schedule tasks based on sunrise, sunset, dawn and dusk

See Solar schedules for more information.

Contributed by Mark Parncutt.

Result Backends

RPC Result Backend matured

Lots of bugs in the previously experimental RPC result backend have been fixed and can now be considered to pro-
duction use.

Contributed by Ask Solem, Morris Tweed.

Redis: Result backend optimizations

result.get() is now using pub/sub for streaming task results

Calling result.get() when using the Redis result backend used to be extremely expensive as it was using polling
to wait for the result to become available. A default polling interval of 0.5 seconds didn’t help performance, but was
necessary to avoid a spin loop.

The new implementation is using Redis Pub/Sub mechanisms to publish and retrieve results immediately, greatly
improving task round-trip times.

Contributed by Yaroslav Zhavoronkov and Ask Solem.

278 Chapter 2. Contents

https://github.com/celery/celery/issues/3356

Celery Documentation, Release 4.1.0

New optimized chord join implementation

This was an experimental feature introduced in Celery 3.1, that could only be enabled by adding ?new_join=1 to
the result backend URL configuration.

We feel that the implementation has been tested thoroughly enough to be considered stable and enabled by default.

The new implementation greatly reduces the overhead of chords, and especially with larger chords the performance
benefit can be massive.

New Riak result backend introduced

See Riak backend settings for more information.

Contributed by Gilles Dartiguelongue, Alman One and NoKriK.

New CouchDB result backend introduced

See CouchDB backend settings for more information.

Contributed by Nathan Van Gheem.

New Consul result backend introduced

Add support for Consul as a backend using the Key/Value store of Consul.

Consul has an HTTP API where through you can store keys with their values.

The backend extends KeyValueStoreBackend and implements most of the methods.

Mainly to set, get and remove objects.

This allows Celery to store Task results in the K/V store of Consul.

Consul also allows to set a TTL on keys using the Sessions from Consul. This way the backend supports auto expiry
of Task results.

For more information on Consul visit https://consul.io/

The backend uses python-consul for talking to the HTTP API. This package is fully Python 3 compliant just as this
backend is:

$ pip install python-consul

That installs the required package to talk to Consul’s HTTP API from Python.

You can also specify consul as an extension in your dependency on Celery:

$ pip install celery[consul]

See Bundles for more information.

Contributed by Wido den Hollander.

2.10. What’s new in Celery 4.0 (latentcall) 279

https://consul.io/
https://pypi.python.org/pypi/python-consul/

Celery Documentation, Release 4.1.0

Brand new Cassandra result backend

A brand new Cassandra backend utilizing the new cassandra-driver library is replacing the old result backend using
the older pycassa library.

See Cassandra backend settings for more information.

To depend on Celery with Cassandra as the result backend use:

$ pip install celery[cassandra]

You can also combine multiple extension requirements, please see Bundles for more information.

New Elasticsearch result backend introduced

See Elasticsearch backend settings for more information.

To depend on Celery with Elasticsearch as the result bakend use:

$ pip install celery[elasticsearch]

You can also combine multiple extension requirements, please see Bundles for more information.

Contributed by Ahmet Demir.

New File-system result backend introduced

See File-system backend settings for more information.

Contributed by Môshe van der Sterre.

Event Batching

Events are now buffered in the worker and sent as a list, reducing the overhead required to send monitoring events.

For authors of custom event monitors there will be no action required as long as you’re using the Python Celery helpers
(Receiver) to implement your monitor.

However, if you’re parsing raw event messages you must now account for batched event messages, as they differ from
normal event messages in the following way:

• The routing key for a batch of event messages will be set to <event-group>.multi where the only batched
event group is currently task (giving a routing key of task.multi).

• The message body will be a serialized list-of-dictionaries instead of a dictionary. Each item in the list can be
regarded as a normal event message body.

In Other News...

Requirements

• Now depends on Kombu 4.0.

• Now depends on billiard version 3.5.

• No longer depends on anyjson. Good-bye old friend :(

280 Chapter 2. Contents

https://pypi.python.org/pypi/cassandra-driver/
https://pypi.python.org/pypi/pycassa/
http://kombu.readthedocs.io/en/master/changelog.html#version-4-0
https://pypi.python.org/pypi/billiard/
https://pypi.python.org/pypi/anyjson/

Celery Documentation, Release 4.1.0

Tasks

• The “anon-exchange” is now used for simple name-name direct routing.

This increases performance as it completely bypasses the routing table, in addition it also improves reliability
for the Redis broker transport.

• An empty ResultSet now evaluates to True.

Fix contributed by Colin McIntosh.

• The default routing key and exchange name is now taken from the task_default_queue setting.

This means that to change the name of the default queue, you now only have to set a single setting.

• New task_reject_on_worker_lost setting, and reject_on_worker_lost task attribute decides
what happens when the child worker process executing a late ack task is terminated.

Contributed by Michael Permana.

• Task.subtask renamed to Task.signature with alias.

• Task.subtask_from_request renamed to Task.signature_from_request with alias.

• The delivery_mode attribute for kombu.Queue is now respected (Issue #1953).

• Routes in task-routes can now specify a Queue instance directly.

Example:

task_routes = {'proj.tasks.add': {'queue': Queue('add')}}

• AsyncResult now raises ValueError if task_id is None. (Issue #1996).

• Retried tasks didn’t forward expires setting (Issue #3297).

• result.get() now supports an on_message argument to set a callback to be called for every message
received.

• New abstract classes added:

– CallableTask

Looks like a task.

– CallableSignature

Looks like a task signature.

• Task.replace now properly forwards callbacks (Issue #2722).

Fix contributed by Nicolas Unravel.

• Task.replace: Append to chain/chord (Closes #3232)

Fixed issue #3232, adding the signature to the chain (if there’s any). Fixed the chord suppress if the
given signature contains one.

Fix contributed by @honux.

• Task retry now also throws in eager mode.

Fix contributed by Feanil Patel.

2.10. What’s new in Celery 4.0 (latentcall) 281

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://github.com/celery/celery/issues/1953
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/exceptions.html#ValueError
https://github.com/celery/celery/issues/1996
https://github.com/celery/celery/issues/3297
https://github.com/celery/celery/issues/2722
https://github.com/celery/celery/issues/3232
https://github.com/honux/

Celery Documentation, Release 4.1.0

Beat

• Fixed crontab infinite loop with invalid date.

When occurrence can never be reached (example, April, 31th), trying to reach the next occurrence
would trigger an infinite loop.

Try fixing that by raising a RuntimeError after 2,000 iterations

(Also added a test for crontab leap years in the process)

Fix contributed by Romuald Brunet.

• Now ensures the program exits with a non-zero exit code when an exception terminates the service.

Fix contributed by Simon Peeters.

App

• Dates are now always timezone aware even if enable_utc is disabled (Issue #943).

Fix contributed by Omer Katz.

• Config: App preconfiguration is now also pickled with the configuration.

Fix contributed by Jeremy Zafran.

• The application can now change how task names are generated using the gen_task_name() method.

Contributed by Dmitry Malinovsky.

• App has new app.current_worker_task property that returns the task that’s currently being worked on
(or None). (Issue #2100).

Logging

• get_task_logger() now raises an exception if trying to use the name “celery” or “celery.task” (Issue
#3475).

Execution Pools

• Eventlet/Gevent: now enables AMQP heartbeat (Issue #3338).

• Eventlet/Gevent: Fixed race condition leading to “simultaneous read” errors (Issue #2755).

• Prefork: Prefork pool now uses poll instead of select where available (Issue #2373).

• Prefork: Fixed bug where the pool would refuse to shut down the worker (Issue #2606).

• Eventlet: Now returns pool size in celery inspect stats command.

Contributed by Alexander Oblovatniy.

Testing

• Celery is now a pytest plugin, including fixtures useful for unit and integration testing.

See the testing user guide for more information.

282 Chapter 2. Contents

https://docs.python.org/dev/library/exceptions.html#RuntimeError
https://github.com/celery/celery/issues/943
https://github.com/celery/celery/issues/2100
https://github.com/celery/celery/issues/3475
https://github.com/celery/celery/issues/3475
https://github.com/celery/celery/issues/3338
https://github.com/celery/celery/issues/2755
https://github.com/celery/celery/issues/2373
https://github.com/celery/celery/issues/2606
https://pypi.python.org/pypi/pytest/

Celery Documentation, Release 4.1.0

Transports

• amqps:// can now be specified to require SSL.

• Redis Transport: The Redis transport now supports the broker_use_ssl option.

Contributed by Robert Kolba.

• JSON serializer now calls obj.__json__ for unsupported types.

This means you can now define a __json__ method for custom types that can be reduced down to
a built-in json type.

Example:

class Person:
first_name = None
last_name = None
address = None

def __json__(self):
return {

'first_name': self.first_name,
'last_name': self.last_name,
'address': self.address,

}

• JSON serializer now handles datetime’s, Django promise, UUID and Decimal.

• New Queue.consumer_arguments can be used for the ability to set consumer priority via x-priority.

See https://www.rabbitmq.com/consumer-priority.html

Example:

consumer = Consumer(channel, consumer_arguments={'x-priority': 3})

• Queue/Exchange: no_declare option added (also enabled for internal amq. exchanges).

Programs

• Celery is now using argparse, instead of optparse.

• All programs now disable colors if the controlling terminal is not a TTY.

• celery worker: The -q argument now disables the startup banner.

• celery worker: The “worker ready” message is now logged using severity info, instead of warn.

• celery multi: %n format for is now synonym with %N to be consistent with celery worker.

• celery inspect/celery control: now supports a new --json option to give output in json format.

• celery inspect registered: now ignores built-in tasks.

• celery purge now takes -Q and -X options used to specify what queues to include and exclude from the
purge.

• New celery logtool: Utility for filtering and parsing celery worker log-files

• celery multi: now passes through %i and %I log file formats.

• General: %p can now be used to expand to the full worker node-name in log-file/pid-file arguments.

2.10. What’s new in Celery 4.0 (latentcall) 283

https://www.rabbitmq.com/consumer-priority.html
https://docs.python.org/dev/library/argparse.html#module-argparse
https://docs.python.org/dev/library/optparse.html#module-optparse

Celery Documentation, Release 4.1.0

• A new command line option --executable is now available for daemonizing programs (celery
worker and celery beat).

Contributed by Bert Vanderbauwhede.

• celery worker: supports new --prefetch-multiplier option.

Contributed by Mickaël Penhard.

• The --loader argument is now always effective even if an app argument is set (Issue #3405).

• inspect/control now takes commands from registry

This means user remote-control commands can also be used from the command-line.

Note that you need to specify the arguments/and type of arguments for the arguments to be correctly
passed on the command-line.

There are now two decorators, which use depends on the type of command: @inspect_command +
@control_command:

from celery.worker.control import control_command

@control_command(
args=[('n', int)]
signature='[N=1]',

)
def something(state, n=1, **kwargs):

...

Here args is a list of args supported by the command. The list must contain tuples of
(argument_name, type).

signature is just the command-line help used in e.g. celery -A proj control --help.

Commands also support variadic arguments, which means that any arguments left over will be added
to a single variable. Here demonstrated by the terminate command which takes a signal argument
and a variable number of task_ids:

from celery.worker.control import control_command

@control_command(
args=[('signal', str)],
signature='<signal> [id1, [id2, [..., [idN]]]]',
variadic='ids',

)
def terminate(state, signal, ids, **kwargs):

...

This command can now be called using:

$ celery -A proj control terminate SIGKILL id1 id2 id3`

See Writing your own remote control commands for more information.

Worker

• Improvements and fixes for LimitedSet.

284 Chapter 2. Contents

https://github.com/celery/celery/issues/3405

Celery Documentation, Release 4.1.0

Getting rid of leaking memory + adding minlen size of the set: the minimal residual size of the set
after operating for some time. minlen items are kept, even if they should’ve been expired.

Problems with older and even more old code:

1. Heap would tend to grow in some scenarios (like adding an item multiple times).

2. Adding many items fast wouldn’t clean them soon enough (if ever).

3. When talking to other workers, revoked._data was sent, but it was processed on the other side as
iterable. That means giving those keys new (current) time-stamp. By doing this workers could
recycle items forever. Combined with 1) and 2), this means that in large set of workers, you’re
getting out of memory soon.

All those problems should be fixed now.

This should fix issues #3095, #3086.

Contributed by David Pravec.

• New settings to control remote control command queues.

– control_queue_expires

Set queue expiry time for both remote control command queues, and remote control
reply queues.

– control_queue_ttl

Set message time-to-live for both remote control command queues, and remote control
reply queues.

Contributed by Alan Justino.

• The worker_shutdown signal is now always called during shutdown.

Previously it would not be called if the worker instance was collected by gc first.

• Worker now only starts the remote control command consumer if the broker transport used actually supports
them.

• Gossip now sets x-message-ttl for event queue to heartbeat_interval s. (Issue #2005).

• Now preserves exit code (Issue #2024).

• Now rejects messages with an invalid ETA value (instead of ack, which means they will be sent to the dead-letter
exchange if one is configured).

• Fixed crash when the -purge argument was used.

• Log–level for unrecoverable errors changed from error to critical.

• Improved rate limiting accuracy.

• Account for missing timezone information in task expires field.

Fix contributed by Albert Wang.

• The worker no longer has a Queues bootsteps, as it is now superfluous.

• Now emits the “Received task” line even for revoked tasks. (Issue #3155).

• Now respects broker_connection_retry setting.

Fix contributed by Nat Williams.

• New control_queue_ttl and control_queue_expires settings now enables you to configure re-
mote control command message TTLs, and queue expiry time.

2.10. What’s new in Celery 4.0 (latentcall) 285

https://github.com/celery/celery/issues/2005
https://github.com/celery/celery/issues/2024
https://github.com/celery/celery/issues/3155

Celery Documentation, Release 4.1.0

Contributed by Alan Justino.

• New celery.worker.state.requests enables O(1) loookup of active/reserved tasks by id.

• Auto-scale didn’t always update keep-alive when scaling down.

Fix contributed by Philip Garnero.

• Fixed typo options_list -> option_list.

Fix contributed by Greg Wilbur.

• Some worker command-line arguments and Worker() class arguments have been renamed for consistency.

All of these have aliases for backward compatibility.

– --send-events -> --task-events

– --schedule -> --schedule-filename

– --maxtasksperchild -> --max-tasks-per-child

– Beat(scheduler_cls=) -> Beat(scheduler=)

– Worker(send_events=True) -> Worker(task_events=True)

– Worker(task_time_limit=) -> Worker(time_limit=)

– Worker(task_soft_time_limit=) -> Worker(soft_time_limit=)

– Worker(state_db=) -> Worker(statedb=)

– Worker(working_directory=) -> Worker(workdir=)

Debugging Utilities

• celery.contrib.rdb: Changed remote debugger banner so that you can copy and paste the address easily
(no longer has a period in the address).

Contributed by Jonathan Vanasco.

• Fixed compatibility with recent psutil versions (Issue #3262).

Signals

• App: New signals for app configuration/finalization:

– app.on_configure

– app.on_after_configure

– app.on_after_finalize

• Task: New task signals for rejected task messages:

– celery.signals.task_rejected.

– celery.signals.task_unknown.

• Worker: New signal for when a heartbeat event is sent.

– celery.signals.heartbeat_sent

Contributed by Kevin Richardson.

286 Chapter 2. Contents

https://pypi.python.org/pypi/psutil/
https://github.com/celery/celery/issues/3262

Celery Documentation, Release 4.1.0

Events

• Event messages now uses the RabbitMQ x-message-ttl option to ensure older event messages are dis-
carded.

The default is 5 seconds, but can be changed using the event_queue_ttl setting.

• Task.send_event now automatically retries sending the event on connection failure, according to the task
publish retry settings.

• Event monitors now sets the event_queue_expires setting by default.

The queues will now expire after 60 seconds after the monitor stops consuming from it.

• Fixed a bug where a None value wasn’t handled properly.

Fix contributed by Dongweiming.

• New event_queue_prefix setting can now be used to change the default celeryev queue prefix for
event receiver queues.

Contributed by Takeshi Kanemoto.

• State.tasks_by_type and State.tasks_by_worker can now be used as a mapping for fast access
to this information.

Deployment

• Generic init-scripts now support CELERY_SU and CELERYD_SU_ARGS environment variables to set the path
and arguments for su (su(1)).

• Generic init-scripts now better support FreeBSD and other BSD systems by searching /usr/local/etc/
for the configuration file.

Contributed by Taha Jahangir.

• Generic init-script: Fixed strange bug for celerybeat where restart didn’t always work (Issue #3018).

• The systemd init script now uses a shell when executing services.

Contributed by Tomas Machalek.

Result Backends

• Redis: Now has a default socket timeout of 120 seconds.

The default can be changed using the new redis_socket_timeout setting.

Contributed by Raghuram Srinivasan.

• RPC Backend result queues are now auto delete by default (Issue #2001).

• RPC Backend: Fixed problem where exception wasn’t deserialized properly with the json serializer (Issue
#2518).

Fix contributed by Allard Hoeve.

• CouchDB: The backend used to double-json encode results.

Fix contributed by Andrew Stewart.

• CouchDB: Fixed typo causing the backend to not be found (Issue #3287).

2.10. What’s new in Celery 4.0 (latentcall) 287

https://github.com/celery/celery/issues/3018
https://github.com/celery/celery/issues/2001
https://github.com/celery/celery/issues/2518
https://github.com/celery/celery/issues/2518
https://github.com/celery/celery/issues/3287

Celery Documentation, Release 4.1.0

Fix contributed by Andrew Stewart.

• MongoDB: Now supports setting the result_serialzier setting to bson to use the MongoDB libraries
own serializer.

Contributed by Davide Quarta.

• MongoDB: URI handling has been improved to use database name, user and password from the URI if pro-
vided.

Contributed by Samuel Jaillet.

• SQLAlchemy result backend: Now ignores all result engine options when using NullPool (Issue #1930).

• SQLAlchemy result backend: Now sets max char size to 155 to deal with brain damaged MySQL Unicode
implementation (Issue #1748).

• General: All Celery exceptions/warnings now inherit from common CeleryError/CeleryWarning. (Is-
sue #2643).

Documentation Improvements

Contributed by:

• Adam Chainz

• Amir Rustamzadeh

• Arthur Vuillard

• Batiste Bieler

• Berker Peksag

• Bryce Groff

• Daniel Devine

• Edward Betts

• Jason Veatch

• Jeff Widman

• Maciej Obuchowski

• Manuel Kaufmann

• Maxime Beauchemin

• Mitchel Humpherys

• Pavlo Kapyshin

• Pierre Fersing

• Rik

• Steven Sklar

• Tayfun Sen

• Wieland Hoffmann

288 Chapter 2. Contents

https://github.com/celery/celery/issues/1930
https://github.com/celery/celery/issues/1748
https://github.com/celery/celery/issues/2643
https://github.com/celery/celery/issues/2643

Celery Documentation, Release 4.1.0

Reorganization, Deprecations, and Removals

Incompatible changes

• Prefork: Calling result.get() or joining any result from within a task now raises RuntimeError.

In previous versions this would emit a warning.

• celery.worker.consumer is now a package, not a module.

• Module celery.worker.job renamed to celery.worker.request.

• Beat: Scheduler.Publisher/.publisher renamed to .Producer/.producer.

• Result: The task_name argument/attribute of app.AsyncResult was removed.

This was historically a field used for pickle compatibility, but is no longer needed.

• Backends: Arguments named status renamed to state.

• Backends: backend.get_status() renamed to backend.get_state().

• Backends: backend.maybe_reraise() renamed to .maybe_throw()

The promise API uses .throw(), so this change was made to make it more consistent.

There’s an alias available, so you can still use maybe_reraise until Celery 5.0.

Unscheduled Removals

• The experimental celery.contrib.methods feature has been removed, as there were far many bugs in
the implementation to be useful.

• The CentOS init-scripts have been removed.

These didn’t really add any features over the generic init-scripts, so you’re encouraged to use them
instead, or something like supervisor.

Reorganization Deprecations

These symbols have been renamed, and while there’s an alias available in this version for backward compatibility, they
will be removed in Celery 5.0, so make sure you rename these ASAP to make sure it won’t break for that release.

Chances are that you’ll only use the first in this list, but you never know:

• celery.utils.worker_direct -> celery.utils.nodenames.worker_direct().

• celery.utils.nodename -> celery.utils.nodenames.nodename().

• celery.utils.anon_nodename -> celery.utils.nodenames.anon_nodename().

• celery.utils.nodesplit -> celery.utils.nodenames.nodesplit().

• celery.utils.default_nodename -> celery.utils.nodenames.default_nodename().

• celery.utils.node_format -> celery.utils.nodenames.node_format().

• celery.utils.host_format -> celery.utils.nodenames.host_format().

2.10. What’s new in Celery 4.0 (latentcall) 289

https://docs.python.org/dev/library/exceptions.html#RuntimeError
https://docs.python.org/dev/library/pickle.html#module-pickle
https://pypi.python.org/pypi/supervisor/

Celery Documentation, Release 4.1.0

Scheduled Removals

Modules

• Module celery.worker.job has been renamed to celery.worker.request.

This was an internal module so shouldn’t have any effect. It’s now part of the public API so must not
change again.

• Module celery.task.trace has been renamed to celery.app.trace as the celery.task package
is being phased out. The module will be removed in version 5.0 so please change any import from:

from celery.task.trace import X

to:

from celery.app.trace import X

• Old compatibility aliases in the celery.loaders module has been removed.

– Removed celery.loaders.current_loader(), use: current_app.loader

– Removed celery.loaders.load_settings(), use: current_app.conf

Result

• AsyncResult.serializable() and celery.result.from_serializable has been removed:

Use instead:

>>> tup = result.as_tuple()
>>> from celery.result import result_from_tuple
>>> result = result_from_tuple(tup)

• Removed BaseAsyncResult, use AsyncResult for instance checks instead.

• Removed TaskSetResult, use GroupResult instead.

– TaskSetResult.total -> len(GroupResult)

– TaskSetResult.taskset_id -> GroupResult.id

• Removed ResultSet.subtasks, use ResultSet.results instead.

TaskSet

TaskSet has been removed, as it was replaced by the group construct in Celery 3.0.

If you have code like this:

>>> from celery.task import TaskSet

>>> TaskSet(add.subtask((i, i)) for i in xrange(10)).apply_async()

You need to replace that with:

>>> from celery import group
>>> group(add.s(i, i) for i in xrange(10))()

290 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Events

• Removals for class celery.events.state.Worker:

– Worker._defaults attribute.

Use {k: getattr(worker, k) for k in worker._fields}.

– Worker.update_heartbeat

Use Worker.event(None, timestamp, received)

– Worker.on_online

Use Worker.event('online', timestamp, received, fields)

– Worker.on_offline

Use Worker.event('offline', timestamp, received, fields)

– Worker.on_heartbeat

Use Worker.event('heartbeat', timestamp, received, fields)

• Removals for class celery.events.state.Task:

– Task._defaults attribute.

Use {k: getattr(task, k) for k in task._fields}.

– Task.on_sent

Use Worker.event('sent', timestamp, received, fields)

– Task.on_received

Use Task.event('received', timestamp, received, fields)

– Task.on_started

Use Task.event('started', timestamp, received, fields)

– Task.on_failed

Use Task.event('failed', timestamp, received, fields)

– Task.on_retried

Use Task.event('retried', timestamp, received, fields)

– Task.on_succeeded

Use Task.event('succeeded', timestamp, received, fields)

– Task.on_revoked

Use Task.event('revoked', timestamp, received, fields)

– Task.on_unknown_event

Use Task.event(short_type, timestamp, received, fields)

– Task.update

Use Task.event(short_type, timestamp, received, fields)

– Task.merge

Contact us if you need this.

2.10. What’s new in Celery 4.0 (latentcall) 291

Celery Documentation, Release 4.1.0

Magic keyword arguments

Support for the very old magic keyword arguments accepted by tasks is finally removed in this version.

If you’re still using these you have to rewrite any task still using the old celery.decorators module and depend-
ing on keyword arguments being passed to the task, for example:

from celery.decorators import task

@task()
def add(x, y, task_id=None):

print('My task id is %r' % (task_id,))

should be rewritten into:

from celery import task

@task(bind=True)
def add(self, x, y):

print('My task id is {0.request.id}'.format(self))

Removed Settings

The following settings have been removed, and is no longer supported:

Logging Settings

Setting name Replace with
CELERYD_LOG_LEVEL celery worker --loglevel
CELERYD_LOG_FILE celery worker --logfile
CELERYBEAT_LOG_LEVEL celery beat --loglevel
CELERYBEAT_LOG_FILE celery beat --logfile
CELERYMON_LOG_LEVEL celerymon is deprecated, use flower
CELERYMON_LOG_FILE celerymon is deprecated, use flower
CELERYMON_LOG_FORMAT celerymon is deprecated, use flower

Task Settings

Setting name Replace with
CELERY_CHORD_PROPAGATES N/A

Changes to internal API

• Module celery.datastructures renamed to celery.utils.collections.

• Module celery.utils.timeutils renamed to celery.utils.time.

• celery.utils.datastructures.DependencyGraph moved to celery.utils.graph.

• celery.utils.jsonify is now celery.utils.serialization.jsonify().

• celery.utils.strtobool is now celery.utils.serialization.strtobool().

292 Chapter 2. Contents

Celery Documentation, Release 4.1.0

• celery.utils.is_iterable has been removed.

Instead use:

isinstance(x, collections.Iterable)

• celery.utils.lpmerge is now celery.utils.collections.lpmerge().

• celery.utils.cry is now celery.utils.debug.cry().

• celery.utils.isatty is now celery.platforms.isatty().

• celery.utils.gen_task_name is now celery.utils.imports.gen_task_name().

• celery.utils.deprecated is now celery.utils.deprecated.Callable()

• celery.utils.deprecated_property is now celery.utils.deprecated.Property().

• celery.utils.warn_deprecated is now celery.utils.deprecated.warn()

Deprecation Time-line Changes

See the Celery Deprecation Time-line.

What’s new in Celery 3.1 (Cipater)

Author Ask Solem (ask at celeryproject.org)

Change history

What’s new documents describe the changes in major versions, we also have a Change history that lists the changes
in bugfix releases (0.0.x), while older series are archived under the History section.

Celery is a simple, flexible, and reliable distributed system to process vast amounts of messages, while providing
operations with the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also supporting task scheduling.

Celery has a large and diverse community of users and contributors, you should come join us on IRC or our mailing-
list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions it’s important that you read the following section.

This version is officially supported on CPython 2.6, 2.7, and 3.3, and also supported on PyPy.

Table of Contents

Make sure you read the important notes before upgrading to this version.

• Preface

• Important Notes

2.11. What’s new in Celery 3.1 (Cipater) 293

Celery Documentation, Release 4.1.0

– Dropped support for Python 2.5

– Last version to enable Pickle by default

– Old command-line programs removed and deprecated

• News

– Prefork Pool Improvements

– Django supported out of the box

– Events are now ordered using logical time

– New worker node name format (name@host)

– Bound tasks

– Mingle: Worker synchronization

– Gossip: Worker <-> Worker communication

– Bootsteps: Extending the worker

– New RPC result backend

– Time limits can now be set by the client

– Redis: Broadcast messages and virtual hosts

– pytz replaces python-dateutil dependency

– Support for setuptools extra requirements

– subtask.__call__() now executes the task directly

– In Other News

• Scheduled Removals

• Deprecation Time-line Changes

• Fixes

• Internal changes

Preface

Deadlocks have long plagued our workers, and while uncommon they’re not acceptable. They’re also infamous for
being extremely hard to diagnose and reproduce, so to make this job easier I wrote a stress test suite that bombards the
worker with different tasks in an attempt to break it.

What happens if thousands of worker child processes are killed every second? what if we also kill the broker connec-
tion every 10 seconds? These are examples of what the stress test suite will do to the worker, and it reruns these tests
using different configuration combinations to find edge case bugs.

The end result was that I had to rewrite the prefork pool to avoid the use of the POSIX semaphore. This was extremely
challenging, but after months of hard work the worker now finally passes the stress test suite.

There’s probably more bugs to find, but the good news is that we now have a tool to reproduce them, so should you be
so unlucky to experience a bug then we’ll write a test for it and squash it!

Note that I’ve also moved many broker transports into experimental status: the only transports recommended for
production use today is RabbitMQ and Redis.

294 Chapter 2. Contents

Celery Documentation, Release 4.1.0

I don’t have the resources to maintain all of them, so bugs are left unresolved. I wish that someone will step up and
take responsibility for these transports or donate resources to improve them, but as the situation is now I don’t think
the quality is up to date with the rest of the code-base so I cannot recommend them for production use.

The next version of Celery 4.0 will focus on performance and removing rarely used parts of the library. Work has also
started on a new message protocol, supporting multiple languages and more. The initial draft can be found here.

This has probably been the hardest release I’ve worked on, so no introduction to this changelog would be complete
without a massive thank you to everyone who contributed and helped me test it!

Thank you for your support!

— Ask Solem

Important Notes

Dropped support for Python 2.5

Celery now requires Python 2.6 or later.

The new dual code base runs on both Python 2 and 3, without requiring the 2to3 porting tool.

Note: This is also the last version to support Python 2.6! From Celery 4.0 and on-wards Python 2.7 or later will be
required.

Last version to enable Pickle by default

Starting from Celery 4.0 the default serializer will be json.

If you depend on pickle being accepted you should be prepared for this change by explicitly allowing your worker to
consume pickled messages using the CELERY_ACCEPT_CONTENT setting:

CELERY_ACCEPT_CONTENT = ['pickle', 'json', 'msgpack', 'yaml']

Make sure you only select the serialization formats you’ll actually be using, and make sure you’ve properly secured
your broker from unwanted access (see the Security Guide).

The worker will emit a deprecation warning if you don’t define this setting.

for Kombu users

Kombu 3.0 no longer accepts pickled messages by default, so if you use Kombu directly then you have to configure
your consumers: see the Kombu 3.0 Changelog for more information.

Old command-line programs removed and deprecated

Everyone should move to the new celery umbrella command, so we’re incrementally deprecating the old command
names.

In this version we’ve removed all commands that aren’t used in init-scripts. The rest will be removed in 4.0.

2.11. What’s new in Celery 3.1 (Cipater) 295

http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-0

Celery Documentation, Release 4.1.0

Program New Status Replacement
celeryd DEPRECATED celery worker
celerybeat DEPRECATED celery beat
celeryd-multi DEPRECATED celery multi
celeryctl REMOVED celery inspect|control
celeryev REMOVED celery events
camqadm REMOVED celery amqp

If this isn’t a new installation then you may want to remove the old commands:

$ pip uninstall celery
$ # repeat until it fails
...
$ pip uninstall celery
$ pip install celery

Please run celery --help for help using the umbrella command.

News

Prefork Pool Improvements

These improvements are only active if you use an async capable transport. This means only RabbitMQ (AMQP) and
Redis are supported at this point and other transports will still use the thread-based fallback implementation.

• Pool is now using one IPC queue per child process.

Previously the pool shared one queue between all child processes, using a POSIX semaphore as a
mutex to achieve exclusive read and write access.

The POSIX semaphore has now been removed and each child process gets a dedicated queue. This
means that the worker will require more file descriptors (two descriptors per process), but it also
means that performance is improved and we can send work to individual child processes.

POSIX semaphores aren’t released when a process is killed, so killing processes could lead to a
deadlock if it happened while the semaphore was acquired. There’s no good solution to fix this, so
the best option was to remove the semaphore.

• Asynchronous write operations

The pool now uses async I/O to send work to the child processes.

• Lost process detection is now immediate.

If a child process is killed or exits mysteriously the pool previously had to wait for 30 seconds before
marking the task with a WorkerLostError. It had to do this because the out-queue was shared
between all processes, and the pool couldn’t be certain whether the process completed the task or not.
So an arbitrary timeout of 30 seconds was chosen, as it was believed that the out-queue would’ve been
drained by this point.

This timeout is no longer necessary, and so the task can be marked as failed as soon as the pool gets
the notification that the process exited.

• Rare race conditions fixed

Most of these bugs were never reported to us, but were discovered while running the new stress test
suite.

296 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Caveats

Long running tasks

The new pool will send tasks to a child process as long as the process in-queue is writable, and since the socket is
buffered this means that the processes are, in effect, prefetching tasks.

This benefits performance but it also means that other tasks may be stuck waiting for a long running task to complete:

-> send T1 to Process A
A executes T1
-> send T2 to Process B
B executes T2
<- T2 complete

-> send T3 to Process A
A still executing T1, T3 stuck in local buffer and
won't start until T1 returns

The buffer size varies based on the operating system: some may have a buffer as small as 64KB but on recent Linux
versions the buffer size is 1MB (can only be changed system wide).

You can disable this prefetching behavior by enabling the -Ofair worker option:

$ celery -A proj worker -l info -Ofair

With this option enabled the worker will only write to workers that are available for work, disabling the prefetch
behavior.

Max tasks per child

If a process exits and pool prefetch is enabled the worker may have already written many tasks to the process
in-queue, and these tasks must then be moved back and rewritten to a new process.

This is very expensive if you have the --max-tasks-per-child option set to a low value (e.g., less than 10),
you should not be using the -Ofast scheduler option.

Django supported out of the box

Celery 3.0 introduced a shiny new API, but unfortunately didn’t have a solution for Django users.

The situation changes with this version as Django is now supported in core and new Django users coming to Celery
are now expected to use the new API directly.

The Django community has a convention where there’s a separate django-x package for every library, acting like a
bridge between Django and the library.

Having a separate project for Django users has been a pain for Celery, with multiple issue trackers and multiple
documentation sources, and then lastly since 3.0 we even had different APIs.

With this version we challenge that convention and Django users will use the same library, the same API and the same
documentation as everyone else.

There’s no rush to port your existing code to use the new API, but if you’d like to experiment with it you should know
that:

2.11. What’s new in Celery 3.1 (Cipater) 297

Celery Documentation, Release 4.1.0

• You need to use a Celery application instance.

The new Celery API introduced in 3.0 requires users to instantiate the library by creating an applica-
tion:

from celery import Celery

app = Celery()

• You need to explicitly integrate Celery with Django

Celery won’t automatically use the Django settings, so you can either configure Celery separately or
you can tell it to use the Django settings with:

app.config_from_object('django.conf:settings')

Neither will it automatically traverse your installed apps to find task modules. If you want this
behavior, you must explicitly pass a list of Django instances to the Celery app:

from django.conf import settings
app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

• You no longer use manage.py

Instead you use the celery command directly:

$ celery -A proj worker -l info

For this to work your app module must store the DJANGO_SETTINGS_MODULE environment vari-
able, see the example in the Django guide.

To get started with the new API you should first read the First Steps with Celery tutorial, and then you should read the
Django-specific instructions in First steps with Django.

The fixes and improvements applied by the django-celery library are now automatically applied by core Celery when
it detects that the DJANGO_SETTINGS_MODULE environment variable is set.

The distribution ships with a new example project using Django in examples/django:

https://github.com/celery/celery/tree/3.1/examples/django

Some features still require the django-celery library:

• Celery doesn’t implement the Django database or cache result backends.

• Celery doesn’t ship with the database-based periodic task scheduler.

Note: If you’re still using the old API when you upgrade to Celery 3.1 then you must make sure that your set-
tings module contains the djcelery.setup_loader() line, since this will no longer happen as a side-effect of
importing the django-celery module.

New users (or if you’ve ported to the new API) don’t need the setup_loader line anymore, and must make sure to
remove it.

Events are now ordered using logical time

Keeping physical clocks in perfect sync is impossible, so using time-stamps to order events in a distributed system
isn’t reliable.

298 Chapter 2. Contents

http://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE
https://pypi.python.org/pypi/django-celery/
http://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE
https://github.com/celery/celery/tree/3.1/examples/django
https://pypi.python.org/pypi/django-celery/
https://pypi.python.org/pypi/django-celery/

Celery Documentation, Release 4.1.0

Celery event messages have included a logical clock value for some time, but starting with this version that field is
also used to order them.

Also, events now record timezone information by including a new utcoffset field in the event message. This is a
signed integer telling the difference from UTC time in hours, so for example, an event sent from the Europe/London
timezone in daylight savings time will have an offset of 1.

app.events.Receiver will automatically convert the time-stamps to the local timezone.

Note: The logical clock is synchronized with other nodes in the same cluster (neighbors), so this means that the
logical epoch will start at the point when the first worker in the cluster starts.

If all of the workers are shutdown the clock value will be lost and reset to 0. To protect against this, you should specify
the celery worker --statedb option such that the worker can persist the clock value at shutdown.

You may notice that the logical clock is an integer value and increases very rapidly. Don’t worry about the value
overflowing though, as even in the most busy clusters it may take several millennium before the clock exceeds a 64
bits value.

New worker node name format (name@host)

Node names are now constructed by two elements: name and host-name separated by ‘@’.

This change was made to more easily identify multiple instances running on the same machine.

If a custom name isn’t specified then the worker will use the name ‘celery’ by default, resulting in a fully qualified
node name of ‘celery@hostname‘:

$ celery worker -n example.com
celery@example.com

To also set the name you must include the @:

$ celery worker -n worker1@example.com
worker1@example.com

The worker will identify itself using the fully qualified node name in events and broadcast messages, so where before
a worker would identify itself as ‘worker1.example.com’, it’ll now use ‘celery@worker1.example.com‘.

Remember that the -n argument also supports simple variable substitutions, so if the current host-name is
george.example.com then the %h macro will expand into that:

$ celery worker -n worker1@%h
worker1@george.example.com

The available substitutions are as follows:

Variable Substitution
%h Full host-name (including domain name)
%d Domain name only
%n Host-name only (without domain name)
%% The character %

Bound tasks

The task decorator can now create “bound tasks”, which means that the task will receive the self argument.

2.11. What’s new in Celery 3.1 (Cipater) 299

mailto:'celery@hostname
mailto:'celery@worker1.example.com

Celery Documentation, Release 4.1.0

@app.task(bind=True)
def send_twitter_status(self, oauth, tweet):

try:
twitter = Twitter(oauth)
twitter.update_status(tweet)

except (Twitter.FailWhaleError, Twitter.LoginError) as exc:
raise self.retry(exc=exc)

Using bound tasks is now the recommended approach whenever you need access to the task instance or request context.
Previously one would’ve to refer to the name of the task instead (send_twitter_status.retry), but this could
lead to problems in some configurations.

Mingle: Worker synchronization

The worker will now attempt to synchronize with other workers in the same cluster.

Synchronized data currently includes revoked tasks and logical clock.

This only happens at start-up and causes a one second start-up delay to collect broadcast responses from other workers.

You can disable this bootstep using the celery worker --without-mingle option.

Gossip: Worker <-> Worker communication

Workers are now passively subscribing to worker related events like heartbeats.

This means that a worker knows what other workers are doing and can detect if they go offline. Currently this is only
used for clock synchronization, but there are many possibilities for future additions and you can write extensions that
take advantage of this already.

Some ideas include consensus protocols, reroute task to best worker (based on resource usage or data locality) or
restarting workers when they crash.

We believe that although this is a small addition, it opens amazing possibilities.

You can disable this bootstep using the celery worker --without-gossip option.

Bootsteps: Extending the worker

By writing bootsteps you can now easily extend the consumer part of the worker to add additional features, like custom
message consumers.

The worker has been using bootsteps for some time, but these were never documented. In this version the consumer
part of the worker has also been rewritten to use bootsteps and the new Extensions and Bootsteps guide documents
examples extending the worker, including adding custom message consumers.

See the Extensions and Bootsteps guide for more information.

Note: Bootsteps written for older versions won’t be compatible with this version, as the API has changed significantly.

The old API was experimental and internal but should you be so unlucky to use it then please contact the mailing-list
and we’ll help you port the bootstep to the new API.

300 Chapter 2. Contents

Celery Documentation, Release 4.1.0

New RPC result backend

This new experimental version of the amqp result backend is a good alternative to use in classical RPC scenarios,
where the process that initiates the task is always the process to retrieve the result.

It uses Kombu to send and retrieve results, and each client uses a unique queue for replies to be sent to. This avoids
the significant overhead of the original amqp result backend which creates one queue per task.

By default results sent using this backend won’t persist, so they won’t survive a broker restart. You can enable the
CELERY_RESULT_PERSISTENT setting to change that.

CELERY_RESULT_BACKEND = 'rpc'
CELERY_RESULT_PERSISTENT = True

Note that chords are currently not supported by the RPC backend.

Time limits can now be set by the client

Two new options have been added to the Calling API: time_limit and soft_time_limit:

>>> res = add.apply_async((2, 2), time_limit=10, soft_time_limit=8)

>>> res = add.subtask((2, 2), time_limit=10, soft_time_limit=8).delay()

>>> res = add.s(2, 2).set(time_limit=10, soft_time_limit=8).delay()

Contributed by Mher Movsisyan.

Redis: Broadcast messages and virtual hosts

Broadcast messages are currently seen by all virtual hosts when using the Redis transport. You can now fix this by
enabling a prefix to all channels so that the messages are separated:

BROKER_TRANSPORT_OPTIONS = {'fanout_prefix': True}

Note that you’ll not be able to communicate with workers running older versions or workers that doesn’t have this
setting enabled.

This setting will be the default in a future version.

Related to Issue #1490.

pytz replaces python-dateutil dependency

Celery no longer depends on the python-dateutil library, but instead a new dependency on the pytz library was added.

The pytz library was already recommended for accurate timezone support.

This also means that dependencies are the same for both Python 2 and Python 3, and that the requirements/
default-py3k.txt file has been removed.

Support for setuptools extra requirements

Pip now supports the setuptools extra requirements format, so we’ve removed the old bundles concept, and instead
specify setuptools extras.

2.11. What’s new in Celery 3.1 (Cipater) 301

https://github.com/celery/celery/issues/1490
https://pypi.python.org/pypi/python-dateutil/
https://pypi.python.org/pypi/pytz/
https://pypi.python.org/pypi/pytz/
https://pypi.python.org/pypi/setuptools/

Celery Documentation, Release 4.1.0

You install extras by specifying them inside brackets:

$ pip install celery[redis,mongodb]

The above will install the dependencies for Redis and MongoDB. You can list as many extras as you want.

Warning: You can’t use the celery-with-* packages anymore, as these won’t be updated to use Celery 3.1.

Extension Requirement entry Type
Redis celery[redis] transport, result backend
MongoDB celery[mongodb] transport, result backend
CouchDB celery[couchdb] transport
Beanstalk celery[beanstalk] transport
ZeroMQ celery[zeromq] transport
Zookeeper celery[zookeeper] transport
SQLAlchemy celery[sqlalchemy] transport, result backend
librabbitmq celery[librabbitmq] transport (C amqp client)

The complete list with examples is found in the Bundles section.

subtask.__call__() now executes the task directly

A misunderstanding led to Signature.__call__ being an alias of .delay but this doesn’t conform to the calling
API of Task which calls the underlying task method.

This means that:

@app.task
def add(x, y):

return x + y

add.s(2, 2)()

now does the same as calling the task directly:

>>> add(2, 2)

In Other News

• Now depends on Kombu 3.0.

• Now depends on billiard version 3.3.

• Worker will now crash if running as the root user with pickle enabled.

• Canvas: group.apply_async and chain.apply_async no longer starts separate task.

That the group and chord primitives supported the “calling API” like other subtasks was a nice idea,
but it was useless in practice and often confused users. If you still want this behavior you can define
a task to do it for you.

• New method Signature.freeze() can be used to “finalize” signatures/subtask.

Regular signature:

302 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-0
https://pypi.python.org/pypi/billiard/

Celery Documentation, Release 4.1.0

>>> s = add.s(2, 2)
>>> result = s.freeze()
>>> result
<AsyncResult: ffacf44b-f8a1-44e9-80a3-703150151ef2>
>>> s.delay()
<AsyncResult: ffacf44b-f8a1-44e9-80a3-703150151ef2>

Group:

>>> g = group(add.s(2, 2), add.s(4, 4))
>>> result = g.freeze()
<GroupResult: e1094b1d-08fc-4e14-838e-6d601b99da6d [

70c0fb3d-b60e-4b22-8df7-aa25b9abc86d,
58fcd260-2e32-4308-a2ea-f5be4a24f7f4]>

>>> g()
<GroupResult: e1094b1d-08fc-4e14-838e-6d601b99da6d [70c0fb3d-b60e-4b22-
→˓8df7-aa25b9abc86d, 58fcd260-2e32-4308-a2ea-f5be4a24f7f4]>

• Chord exception behavior defined (Issue #1172).

From this version the chord callback will change state to FAILURE when a task part of a chord raises
an exception.

See more at Error handling.

• New ability to specify additional command line options to the worker and beat programs.

The app.user_options attribute can be used to add additional command-line arguments, and
expects optparse-style options:

from celery import Celery
from celery.bin import Option

app = Celery()
app.user_options['worker'].add(

Option('--my-argument'),
)

See the Extensions and Bootsteps guide for more information.

• All events now include a pid field, which is the process id of the process that sent the event.

• Event heartbeats are now calculated based on the time when the event was received by the monitor, and not the
time reported by the worker.

This means that a worker with an out-of-sync clock will no longer show as ‘Offline’ in monitors.

A warning is now emitted if the difference between the senders time and the internal time is greater
than 15 seconds, suggesting that the clocks are out of sync.

• Monotonic clock support.

A monotonic clock is now used for timeouts and scheduling.

The monotonic clock function is built-in starting from Python 3.4, but we also have fallback imple-
mentations for Linux and macOS.

• celery worker now supports a new --detach argument to start the worker as a daemon in the back-
ground.

• app.events.Receiver now sets a local_received field for incoming events, which is set to the time
of when the event was received.

2.11. What’s new in Celery 3.1 (Cipater) 303

https://github.com/celery/celery/issues/1172
https://docs.python.org/dev/library/optparse.html#module-optparse

Celery Documentation, Release 4.1.0

• app.events.Dispatcher now accepts a groups argument which decides a white-list of event groups
that’ll be sent.

The type of an event is a string separated by ‘-‘, where the part before the first ‘-‘ is the group.
Currently there are only two groups: worker and task.

A dispatcher instantiated as follows:

>>> app.events.Dispatcher(connection, groups=['worker'])

will only send worker related events and silently drop any attempts to send events related to any other
group.

• New BROKER_FAILOVER_STRATEGY setting.

This setting can be used to change the transport fail-over strategy, can either be a callable returning
an iterable or the name of a Kombu built-in failover strategy. Default is “round-robin”.

Contributed by Matt Wise.

• Result.revoke will no longer wait for replies.

You can add the reply=True argument if you really want to wait for responses from the workers.

• Better support for link and link_error tasks for chords.

Contributed by Steeve Morin.

• Worker: Now emits warning if the CELERYD_POOL setting is set to enable the eventlet/gevent pools.

The -P option should always be used to select the eventlet/gevent pool to ensure that the patches are
applied as early as possible.

If you start the worker in a wrapper (like Django’s manage.py) then you must apply the patches
manually, for example by creating an alternative wrapper that monkey patches at the start of the
program before importing any other modules.

• There’s a now an ‘inspect clock’ command which will collect the current logical clock value from workers.

• celery inspect stats now contains the process id of the worker’s main process.

Contributed by Mher Movsisyan.

• New remote control command to dump a workers configuration.

Example:

$ celery inspect conf

Configuration values will be converted to values supported by JSON where possible.

Contributed by Mher Movsisyan.

• New settings CELERY_EVENT_QUEUE_TTL and CELERY_EVENT_QUEUE_EXPIRES.

These control when a monitors event queue is deleted, and for how long events published to that
queue will be visible. Only supported on RabbitMQ.

• New Couchbase result backend.

This result backend enables you to store and retrieve task results using Couchbase.

See Couchbase backend settings for more information about configuring this result backend.

Contributed by Alain Masiero.

• CentOS init-script now supports starting multiple worker instances.

304 Chapter 2. Contents

https://www.couchbase.com

Celery Documentation, Release 4.1.0

See the script header for details.

Contributed by Jonathan Jordan.

• AsyncResult.iter_native now sets default interval parameter to 0.5

Fix contributed by Idan Kamara

• New setting BROKER_LOGIN_METHOD.

This setting can be used to specify an alternate login method for the AMQP transports.

Contributed by Adrien Guinet

• The dump_conf remote control command will now give the string representation for types that aren’t JSON
compatible.

• Function celery.security.setup_security is now app.setup_security().

• Task retry now propagates the message expiry value (Issue #980).

The value is forwarded at is, so the expiry time won’t change. To update the expiry time you’d’ve to
pass a new expires argument to retry().

• Worker now crashes if a channel error occurs.

Channel errors are transport specific and is the list of exceptions returned by Connection.
channel_errors. For RabbitMQ this means that Celery will crash if the equivalence checks
for one of the queues in CELERY_QUEUES mismatches, which makes sense since this is a scenario
where manual intervention is required.

• Calling AsyncResult.get() on a chain now propagates errors for previous tasks (Issue #1014).

• The parent attribute of AsyncResult is now reconstructed when using JSON serialization (Issue #1014).

• Worker disconnection logs are now logged with severity warning instead of error.

Contributed by Chris Adams.

• events.State no longer crashes when it receives unknown event types.

• SQLAlchemy Result Backend: New CELERY_RESULT_DB_TABLENAMES setting can be used to change the
name of the database tables used.

Contributed by Ryan Petrello.

• SQLAlchemy Result Backend: Now calls enginge.dispose after fork (Issue #1564).

If you create your own SQLAlchemy engines then you must also make sure that these are closed
after fork in the worker:

from multiprocessing.util import register_after_fork

engine = create_engine(*engine_args)
register_after_fork(engine, engine.dispose)

• A stress test suite for the Celery worker has been written.

This is located in the funtests/stress directory in the git repository. There’s a README file
there to get you started.

• The logger named celery.concurrency has been renamed to celery.pool.

• New command line utility celery graph.

2.11. What’s new in Celery 3.1 (Cipater) 305

https://github.com/celery/celery/issues/980
https://github.com/celery/celery/issues/1014
https://github.com/celery/celery/issues/1014
https://github.com/celery/celery/issues/1564

Celery Documentation, Release 4.1.0

This utility creates graphs in GraphViz dot format.

You can create graphs from the currently installed bootsteps:

Create graph of currently installed bootsteps in both the worker
and consumer name-spaces.
$ celery graph bootsteps | dot -T png -o steps.png

Graph of the consumer name-space only.
$ celery graph bootsteps consumer | dot -T png -o consumer_only.png

Graph of the worker name-space only.
$ celery graph bootsteps worker | dot -T png -o worker_only.png

Or graphs of workers in a cluster:

Create graph from the current cluster
$ celery graph workers | dot -T png -o workers.png

Create graph from a specified list of workers
$ celery graph workers nodes:w1,w2,w3 | dot -T png workers.png

also specify the number of threads in each worker
$ celery graph workers nodes:w1,w2,w3 threads:2,4,6

...also specify the broker and backend URLs shown in the graph
$ celery graph workers broker:amqp:// backend:redis://

...also specify the max number of workers/threads shown (wmax/tmax),
enumerating anything that exceeds that number.
$ celery graph workers wmax:10 tmax:3

• Changed the way that app instances are pickled.

Apps can now define a __reduce_keys__ method that’s used instead of the old AppPickler
attribute. For example, if your app defines a custom ‘foo’ attribute that needs to be preserved when
pickling you can define a __reduce_keys__ as such:

import celery

class Celery(celery.Celery):

def __init__(self, *args, **kwargs):
super(Celery, self).__init__(*args, **kwargs)
self.foo = kwargs.get('foo')

def __reduce_keys__(self):
return super(Celery, self).__reduce_keys__().update(

foo=self.foo,
)

This is a much more convenient way to add support for pickling custom attributes. The old
AppPickler is still supported but its use is discouraged and we would like to remove it in a future
version.

• Ability to trace imports for debugging purposes.

The C_IMPDEBUG can be set to trace imports as they occur:

306 Chapter 2. Contents

Celery Documentation, Release 4.1.0

$ C_IMDEBUG=1 celery worker -l info

$ C_IMPDEBUG=1 celery shell

• Message headers now available as part of the task request.

Example adding and retrieving a header value:

@app.task(bind=True)
def t(self):

return self.request.headers.get('sender')

>>> t.apply_async(headers={'sender': 'George Costanza'})

• New before_task_publish signal dispatched before a task message is sent and can be used to modify the
final message fields (Issue #1281).

• New after_task_publish signal replaces the old task_sent signal.

The task_sent signal is now deprecated and shouldn’t be used.

• New worker_process_shutdown signal is dispatched in the prefork pool child processes as they exit.

Contributed by Daniel M Taub.

• celery.platforms.PIDFile renamed to celery.platforms.Pidfile.

• MongoDB Backend: Can now be configured using a URL:

• MongoDB Backend: No longer using deprecated pymongo.Connection.

• MongoDB Backend: Now disables auto_start_request.

• MongoDB Backend: Now enables use_greenlets when eventlet/gevent is used.

• subtask() / maybe_subtask() renamed to signature()/maybe_signature().

Aliases still available for backwards compatibility.

• The correlation_id message property is now automatically set to the id of the task.

• The task message eta and expires fields now includes timezone information.

• All result backends store_result/mark_as_* methods must now accept a request keyword argument.

• Events now emit warning if the broken yajl library is used.

• The celeryd_init signal now takes an extra keyword argument: option.

This is the mapping of parsed command line arguments, and can be used to prepare new preload
arguments (app.user_options['preload']).

• New callback: app.on_configure().

This callback is called when an app is about to be configured (a configuration key is required).

• Worker: No longer forks on HUP.

This means that the worker will reuse the same pid for better support with external process supervi-
sors.

Contributed by Jameel Al-Aziz.

• Worker: The log message Got task from broker ... was changed to Received task

2.11. What’s new in Celery 3.1 (Cipater) 307

https://github.com/celery/celery/issues/1281

Celery Documentation, Release 4.1.0

• Worker: The log message Skipping revoked task ... was changed to Discarding revoked
task

• Optimization: Improved performance of ResultSet.join_native().

Contributed by Stas Rudakou.

• The task_revoked signal now accepts new request argument (Issue #1555).

The revoked signal is dispatched after the task request is removed from the stack, so it must instead
use the Request object to get information about the task.

• Worker: New -X command line argument to exclude queues (Issue #1399).

The -X argument is the inverse of the -Q argument and accepts a list of queues to exclude (not
consume from):

Consume from all queues in CELERY_QUEUES, but not the 'foo' queue.
$ celery worker -A proj -l info -X foo

• Adds C_FAKEFORK environment variable for simple init-script/celery multi debugging.

This means that you can now do:

$ C_FAKEFORK=1 celery multi start 10

or:

$ C_FAKEFORK=1 /etc/init.d/celeryd start

to avoid the daemonization step to see errors that aren’t visible due to missing stdout/stderr.

A dryrun command has been added to the generic init-script that enables this option.

• New public API to push and pop from the current task stack:

celery.app.push_current_task() and celery.app.pop_current_task`().

• RetryTaskError has been renamed to Retry .

The old name is still available for backwards compatibility.

• New semi-predicate exception Reject.

This exception can be raised to reject/requeue the task message, see Reject for examples.

• Semipredicates documented: (Retry/Ignore/Reject).

Scheduled Removals

• The BROKER_INSIST setting and the insist argument to ~@connection is no longer supported.

• The CELERY_AMQP_TASK_RESULT_CONNECTION_MAX setting is no longer supported.

Use BROKER_POOL_LIMIT instead.

• The CELERY_TASK_ERROR_WHITELIST setting is no longer supported.

You should set the ErrorMail attribute of the task class instead. You can also do this using
CELERY_ANNOTATIONS:

308 Chapter 2. Contents

https://github.com/celery/celery/issues/1555
https://github.com/celery/celery/issues/1399

Celery Documentation, Release 4.1.0

from celery import Celery
from celery.utils.mail import ErrorMail

class MyErrorMail(ErrorMail):
whitelist = (KeyError, ImportError)

def should_send(self, context, exc):
return isinstance(exc, self.whitelist)

app = Celery()
app.conf.CELERY_ANNOTATIONS = {

'*': {
'ErrorMail': MyErrorMails,

}
}

• Functions that creates a broker connections no longer supports the connect_timeout argument.

This can now only be set using the BROKER_CONNECTION_TIMEOUT setting. This is because
functions no longer create connections directly, but instead get them from the connection pool.

• The CELERY_AMQP_TASK_RESULT_EXPIRES setting is no longer supported.

Use CELERY_TASK_RESULT_EXPIRES instead.

Deprecation Time-line Changes

See the Celery Deprecation Time-line.

Fixes

• AMQP Backend: join didn’t convert exceptions when using the json serializer.

• Non-abstract task classes are now shared between apps (Issue #1150).

Note that non-abstract task classes shouldn’t be used in the new API. You should only create custom
task classes when you use them as a base class in the @task decorator.

This fix ensure backwards compatibility with older Celery versions so that non-abstract task classes
works even if a module is imported multiple times so that the app is also instantiated multiple times.

• Worker: Workaround for Unicode errors in logs (Issue #427).

• Task methods: .apply_async now works properly if args list is None (Issue #1459).

• Eventlet/gevent/solo/threads pools now properly handles BaseException errors raised by tasks.

• autoscale and pool_grow/pool_shrink remote control commands will now also automatically in-
crease and decrease the consumer prefetch count.

Fix contributed by Daniel M. Taub.

• celery control pool_ commands didn’t coerce string arguments to int.

• Redis/Cache chords: Callback result is now set to failure if the group disappeared from the database (Issue
#1094).

• Worker: Now makes sure that the shutdown process isn’t initiated more than once.

• Programs: celery multi now properly handles both -f and --logfile options (Issue #1541).

2.11. What’s new in Celery 3.1 (Cipater) 309

https://github.com/celery/celery/issues/1150
https://github.com/celery/celery/issues/427
https://github.com/celery/celery/issues/1459
https://docs.python.org/dev/library/exceptions.html#BaseException
https://github.com/celery/celery/issues/1094
https://github.com/celery/celery/issues/1094
https://github.com/celery/celery/issues/1541

Celery Documentation, Release 4.1.0

Internal changes

• Module celery.task.trace has been renamed to celery.app.trace.

• Module celery.concurrency.processes has been renamed to celery.concurrency.prefork.

• Classes that no longer fall back to using the default app:

– Result backends (celery.backends.base.BaseBackend)

– celery.worker.WorkController

– celery.worker.Consumer

– celery.worker.request.Request

This means that you have to pass a specific app when instantiating these classes.

• EventDispatcher.copy_buffer renamed to app.events.Dispatcher.extend_buffer().

• Removed unused and never documented global instance celery.events.state.state.

• app.events.Receiver is now a kombu.mixins.ConsumerMixin subclass.

• celery.apps.worker.Worker has been refactored as a subclass of celery.worker.
WorkController.

This removes a lot of duplicate functionality.

• The Celery.with_default_connection method has been removed in favor of with app.
connection_or_acquire (app.connection_or_acquire())

• The celery.results.BaseDictBackend class has been removed and is replaced by celery.
results.BaseBackend.

API Reference

Release 4.1

Date Jul 24, 2017

celery — Distributed processing

This module is the main entry-point for the Celery API. It includes commonly needed things for calling tasks, and
creating Celery applications.

Celery Celery application instance
group group tasks together
chain chain tasks together
chord chords enable callbacks for groups
signature() create a new task signature
Signature object describing a task invocation
current_app proxy to the current application instance
current_task proxy to the currently executing task

310 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.mixins.html#kombu.mixins.ConsumerMixin

Celery Documentation, Release 4.1.0

Celery application objects

New in version 2.5.

class celery.Celery(main=None, loader=None, backend=None, amqp=None, events=None, log=None,
control=None, set_as_current=True, tasks=None, broker=None, include=None,
changes=None, config_source=None, fixups=None, task_cls=None, autofinal-
ize=True, namespace=None, strict_typing=True, **kwargs)

Celery application.

Parameters main (str) – Name of the main module if running as __main__. This is used as the
prefix for auto-generated task names.

Keyword Arguments

• broker (str) – URL of the default broker used.

• backend (Union[str, type]) – The result store backend class, or the name of the
backend class to use.

Default is the value of the result_backend setting.

• autofinalize (bool) – If set to False a RuntimeError will be raised if the task
registry or tasks are used before the app is finalized.

• set_as_current (bool) – Make this the global current app.

• include (List[str]) – List of modules every worker should import.

• amqp (Union[str, type]) – AMQP object or class name.

• events (Union[str, type]) – Events object or class name.

• log (Union[str, type]) – Log object or class name.

• control (Union[str, type]) – Control object or class name.

• tasks (Union[str, type]) – A task registry, or the name of a registry class.

• fixups (List[str]) – List of fix-up plug-ins (e.g., see celery.fixups.django).

• config_source (Union[str, type]) – Take configuration from a class, or object.
Attributes may include any setings described in the documentation.

user_options = None
Custom options for command-line programs. See Adding new command-line options

steps = None
Custom bootsteps to extend and modify the worker. See Installing Bootsteps.

current_task
Instance of task being executed, or None.

current_worker_task
The task currently being executed by a worker or None.

Differs from current_task in that it’s not affected by tasks calling other tasks directly, or eagerly.

amqp
AMQP related functionality – amqp.

backend
Current backend instance.

loader
Current loader instance.

2.12. API Reference 311

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#RuntimeError
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

control
Remote control – control.

events
Consuming and sending events – events.

log
Logging – log.

tasks
Task registry.

Warning: Accessing this attribute will also auto-finalize the app.

pool
Broker connection pool – pool.

Note: This attribute is not related to the workers concurrency pool.

producer_pool

Task
Base task class for this app.

timezone
Current timezone for this app.

This is a cached property taking the time zone from the timezone setting.

builtin_fixups = set([u’celery.fixups.django:fixup’])

oid
Universally unique identifier for this app.

close()
Clean up after the application.

Only necessary for dynamically created apps, and you should probably use the with statement instead.

Example

>>> with Celery(set_as_current=False) as app:
... with app.connection_for_write() as conn:
... pass

signature(*args, **kwargs)
Return a new Signature bound to this app.

bugreport()
Return information useful in bug reports.

config_from_object(obj, silent=False, force=False, namespace=None)
Read configuration from object.

Object is either an actual object or the name of a module to import.

312 Chapter 2. Contents

https://docs.python.org/dev/reference/compound_stmts.html#with

Celery Documentation, Release 4.1.0

Example

>>> celery.config_from_object('myapp.celeryconfig')

>>> from myapp import celeryconfig
>>> celery.config_from_object(celeryconfig)

Parameters

• silent (bool) – If true then import errors will be ignored.

• force (bool) – Force reading configuration immediately. By default the configuration
will be read only when required.

config_from_envvar(variable_name, silent=False, force=False)
Read configuration from environment variable.

The value of the environment variable must be the name of a module to import.

Example

>>> os.environ['CELERY_CONFIG_MODULE'] = 'myapp.celeryconfig'
>>> celery.config_from_envvar('CELERY_CONFIG_MODULE')

autodiscover_tasks(packages=None, related_name=u’tasks’, force=False)
Auto-discover task modules.

Searches a list of packages for a “tasks.py” module (or use related_name argument).

If the name is empty, this will be delegated to fix-ups (e.g., Django).

For example if you have a directory layout like this:

foo/__init__.py
tasks.py
models.py

bar/__init__.py
tasks.py
models.py

baz/__init__.py
models.py

Then calling app.autodiscover_tasks(['foo', bar', 'baz']) will result in the modules
foo.tasks and bar.tasks being imported.

Parameters

• packages (List[str]) – List of packages to search. This argument may also be a
callable, in which case the value returned is used (for lazy evaluation).

• related_name (str) – The name of the module to find. Defaults to “tasks”: meaning
“look for ‘module.tasks’ for every module in packages.”

• force (bool) – By default this call is lazy so that the actual auto-discovery won’t happen
until an application imports the default modules. Forcing will cause the auto-discovery to
happen immediately.

2.12. API Reference 313

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

add_defaults(fun)
Add default configuration from dict d.

If the argument is a callable function then it will be regarded as a promise, and it won’t be loaded until the
configuration is actually needed.

This method can be compared to:

>>> celery.conf.update(d)

with a difference that 1) no copy will be made and 2) the dict will not be transferred when the worker
spawns child processes, so it’s important that the same configuration happens at import time when pickle
restores the object on the other side.

add_periodic_task(schedule, sig, args=(), kwargs=(), name=None, **opts)

setup_security(allowed_serializers=None, key=None, cert=None, store=None, digest=u’sha1’, se-
rializer=u’json’)

Setup the message-signing serializer.

This will affect all application instances (a global operation).

Disables untrusted serializers and if configured to use the auth serializer will register the auth serializer
with the provided settings into the Kombu serializer registry.

Parameters

• allowed_serializers (Set[str]) – List of serializer names, or content_types
that should be exempt from being disabled.

• key (str) – Name of private key file to use. Defaults to the security_key setting.

• cert (str) – Name of certificate file to use. Defaults to the
security_certificate setting.

• store (str) – Directory containing certificates. Defaults to the
security_cert_store setting.

• digest (str) – Digest algorithm used when signing messages. Default is sha1.

• serializer (str) – Serializer used to encode messages after they’ve been signed. See
task_serializer for the serializers supported. Default is json.

start(argv=None)
Run celery using argv.

Uses sys.argv if argv is not specified.

task(*args, **opts)
Decorator to create a task class out of any callable.

Examples

@app.task
def refresh_feed(url):

store_feed(feedparser.parse(url))

with setting extra options:

@app.task(exchange='feeds')
def refresh_feed(url):

return store_feed(feedparser.parse(url))

314 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/sys.html#sys.argv

Celery Documentation, Release 4.1.0

Note: App Binding: For custom apps the task decorator will return a proxy object, so that the act of
creating the task is not performed until the task is used or the task registry is accessed.

If you’re depending on binding to be deferred, then you must not access any attributes on the returned
object until the application is fully set up (finalized).

send_task(name, args=None, kwargs=None, countdown=None, eta=None, task_id=None, pro-
ducer=None, connection=None, router=None, result_cls=None, expires=None, pub-
lisher=None, link=None, link_error=None, add_to_parent=True, group_id=None,
retries=0, chord=None, reply_to=None, time_limit=None, soft_time_limit=None,
root_id=None, parent_id=None, route_name=None, shadow=None, chain=None,
task_type=None, **options)

Send task by name.

Supports the same arguments as Task.apply_async().

Parameters

• name (str) – Name of task to call (e.g., “tasks.add”).

• result_cls (~@AsyncResult) – Specify custom result class.

gen_task_name(name, module)

AsyncResult
Create new result instance.

See also:

celery.result.AsyncResult.

GroupResult
Create new group result instance.

See also:

celery.result.GroupResult.

worker_main(argv=None)
Run celery worker using argv.

Uses sys.argv if argv is not specified.

Worker
Worker application.

See also:

Worker.

WorkController
Embeddable worker.

See also:

WorkController.

Beat
celery beat scheduler application.

See also:

2.12. API Reference 315

https://docs.python.org/dev/library/stdtypes.html#str
mailto:~@AsyncResult
https://docs.python.org/dev/library/sys.html#sys.argv

Celery Documentation, Release 4.1.0

Beat.

connection_for_read(url=None, **kwargs)
Establish connection used for consuming.

See also:

connection() for supported arguments.

connection_for_write(url=None, **kwargs)
Establish connection used for producing.

See also:

connection() for supported arguments.

connection(hostname=None, userid=None, password=None, virtual_host=None, port=None,
ssl=None, connect_timeout=None, transport=None, transport_options=None, heart-
beat=None, login_method=None, failover_strategy=None, **kwargs)

Establish a connection to the message broker.

Please use connection_for_read() and connection_for_write() instead, to convey the in-
tent of use for this connection.

Parameters

• url – Either the URL or the hostname of the broker to use.

• hostname (str) – URL, Hostname/IP-address of the broker. If a URL is used, then the
other argument below will be taken from the URL instead.

• userid (str) – Username to authenticate as.

• password (str) – Password to authenticate with

• virtual_host (str) – Virtual host to use (domain).

• port (int) – Port to connect to.

• ssl (bool, Dict) – Defaults to the broker_use_ssl setting.

• transport (str) – defaults to the broker_transport setting.

• transport_options (Dict) – Dictionary of transport specific options.

• heartbeat (int) – AMQP Heartbeat in seconds (pyamqp only).

• login_method (str) – Custom login method to use (AMQP only).

• failover_strategy (str, Callable) – Custom failover strategy.

• **kwargs – Additional arguments to kombu.Connection.

Returns the lazy connection instance.

Return type kombu.Connection

connection_or_acquire(connection=None, pool=True, *_, **__)
Context used to acquire a connection from the pool.

For use within a with statement to get a connection from the pool if one is not already provided.

Parameters connection (kombu.Connection) – If not provided, a connection will be
acquired from the connection pool.

producer_or_acquire(producer=None)
Context used to acquire a producer from the pool.

For use within a with statement to get a producer from the pool if one is not already provided

316 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/reference/compound_stmts.html#with
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/reference/compound_stmts.html#with

Celery Documentation, Release 4.1.0

Parameters producer (kombu.Producer) – If not provided, a producer will be acquired
from the producer pool.

select_queues(queues=None)
Select subset of queues.

Parameters queues (Sequence[str]) – a list of queue names to keep.

now()
Return the current time and date as a datetime.

set_current()
Make this the current app for this thread.

set_default()
Make this the default app for all threads.

finalize(auto=False)
Finalize the app.

This loads built-in tasks, evaluates pending task decorators, reads configuration, etc.

on_init()
Optional callback called at init.

prepare_config(c)
Prepare configuration before it is merged with the defaults.

on_configure
Signal sent when app is loading configuration.

on_after_configure
Signal sent after app has prepared the configuration.

on_after_finalize
Signal sent after app has been finalized.

on_after_fork
Signal sent in child process after fork.

Canvas primitives

See Canvas: Designing Work-flows for more about creating task work-flows.

class celery.group(*tasks, **options)
Creates a group of tasks to be executed in parallel.

A group is lazy so you must call it to take action and evaluate the group.

Note: If only one argument is passed, and that argument is an iterable then that’ll be used as the list of tasks
instead: this allows us to use group with generator expressions.

Example

>>> lazy_group = group([add.s(2, 2), add.s(4, 4)])
>>> promise = lazy_group() # <-- evaluate: returns lazy result.
>>> promise.get() # <-- will wait for the task to return
[4, 8]

2.12. API Reference 317

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

Parameters

• *tasks (List[Signature]) – A list of signatures that this group will call. If there’s
only one argument, and that argument is an iterable, then that’ll define the list of signatures
instead.

• **options (Any) – Execution options applied to all tasks in the group.

Returns

signature that when called will then call all of the tasks in the group (and return a
GroupResult instance that can be used to inspect the state of the group).

Return type group

class celery.chain(*tasks, **options)
Chain tasks together.

Each tasks follows one another, by being applied as a callback of the previous task.

Note: If called with only one argument, then that argument must be an iterable of tasks to chain: this allows us
to use generator expressions.

Example

This is effectively ((2 + 2) + 4):

>>> res = chain(add.s(2, 2), add.s(4))()
>>> res.get()
8

Calling a chain will return the result of the last task in the chain. You can get to the other tasks by following the
result.parent‘s:

>>> res.parent.get()
4

Using a generator expression:

>>> lazy_chain = chain(add.s(i) for i in range(10))
>>> res = lazy_chain(3)

Parameters *tasks (Signature) – List of task signatures to chain. If only one argument is
passed and that argument is an iterable, then that’ll be used as the list of signatures to chain
instead. This means that you can use a generator expression.

Returns

A lazy signature that can be called to apply the first task in the chain. When that task suc-
ceeed the next task in the chain is applied, and so on.

Return type chain

class celery.chord(header, body=None, task=u’celery.chord’, args=(), kwargs={}, app=None, **op-
tions)

Barrier synchronization primitive.

318 Chapter 2. Contents

Celery Documentation, Release 4.1.0

A chord consists of a header and a body.

The header is a group of tasks that must complete before the callback is called. A chord is essentially a callback
for a group of tasks.

The body is applied with the return values of all the header tasks as a list.

Example

The chord:

>>> res = chord([add.s(2, 2), add.s(4, 4)])(sum_task.s())

is effectively Σ((2 + 2) + (4 + 4)):

>>> res.get()
12

celery.signature(varies, *args, **kwargs)
Create new signature.

•if the first argument is a signature already then it’s cloned.

•if the first argument is a dict, then a Signature version is returned.

Returns The resulting signature.

Return type Signature

class celery.Signature(task=None, args=None, kwargs=None, options=None, type=None, sub-
task_type=None, immutable=False, app=None, **ex)

Task Signature.

Class that wraps the arguments and execution options for a single task invocation.

Used as the parts in a group and other constructs, or to pass tasks around as callbacks while being compatible
with serializers with a strict type subset.

Signatures can also be created from tasks:

•Using the .signature() method that has the same signature as Task.apply_async:

>>> add.signature(args=(1,), kwargs={'kw': 2}, options={})

•or the .s() shortcut that works for star arguments:

>>> add.s(1, kw=2)

•the .s() shortcut does not allow you to specify execution options but there’s a chaning .set method that
returns the signature:

>>> add.s(2, 2).set(countdown=10).set(expires=30).delay()

Note: You should use signature() to create new signatures. The Signature class is the type returned
by that function and should be used for isinstance checks for signatures.

See also:

2.12. API Reference 319

Celery Documentation, Release 4.1.0

Canvas: Designing Work-flows for the complete guide.

Parameters

• task (Task, str) – Either a task class/instance, or the name of a task.

• args (Tuple) – Positional arguments to apply.

• kwargs (Dict) – Keyword arguments to apply.

• options (Dict) – Additional options to Task.apply_async().

Note: If the first argument is a dict, the other arguments will be ignored and the values in the dict will be
used instead:

>>> s = signature('tasks.add', args=(2, 2))
>>> signature(s)
{'task': 'tasks.add', args=(2, 2), kwargs={}, options={}}

Proxies

celery.current_app
The currently set app for this thread.

celery.current_task
The task currently being executed (only set in the worker, or when eager/apply is used).

Celery Application.

• Proxies

• Functions

Proxies

celery.app.default_app = <Celery default>
Celery application.

Parameters main (str) – Name of the main module if running as __main__. This is used as the
prefix for auto-generated task names.

Keyword Arguments

• broker (str) – URL of the default broker used.

• backend (Union[str, type]) – The result store backend class, or the name of the
backend class to use.

Default is the value of the result_backend setting.

• autofinalize (bool) – If set to False a RuntimeError will be raised if the task
registry or tasks are used before the app is finalized.

• set_as_current (bool) – Make this the global current app.

• include (List[str]) – List of modules every worker should import.

320 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#dict
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#RuntimeError
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

• amqp (Union[str, type]) – AMQP object or class name.

• events (Union[str, type]) – Events object or class name.

• log (Union[str, type]) – Log object or class name.

• control (Union[str, type]) – Control object or class name.

• tasks (Union[str, type]) – A task registry, or the name of a registry class.

• fixups (List[str]) – List of fix-up plug-ins (e.g., see celery.fixups.django).

• config_source (Union[str, type]) – Take configuration from a class, or object.
Attributes may include any setings described in the documentation.

Functions

celery.app.app_or_default(app=None)

celery.app.enable_trace()
Enable tracing of app instances.

celery.app.disable_trace()
Disable tracing of app instances.

celery.app.task

Task implementation: request context and the task base class.

class celery.app.task.Task
Task base class.

Note: When called tasks apply the run() method. This method must be defined by all tasks (that is unless the
__call__() method is overridden).

AsyncResult(task_id, **kwargs)
Get AsyncResult instance for this kind of task.

Parameters task_id (str) – Task id to get result for.

exception MaxRetriesExceededError
The tasks max restart limit has been exceeded.

exception Task.OperationalError
Recoverable message transport connection error.

Task.Strategy = u’celery.worker.strategy:default’
Execution strategy used, or the qualified name of one.

Task.abstract = True
Deprecated attribute abstract here for compatibility.

Task.acks_late = False
When enabled messages for this task will be acknowledged after the task has been executed, and not just
before (the default behavior).

Please note that this means the task may be executed twice if the worker crashes mid execution.

The application default can be overridden with the task_acks_late setting.

2.12. API Reference 321

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

Task.add_to_chord(sig, lazy=False)
Add signature to the chord the current task is a member of.

New in version 4.0.

Currently only supported by the Redis result backend.

Parameters

• sig (~@Signature) – Signature to extend chord with.

• lazy (bool) – If enabled the new task won’t actually be called, and sig.delay()
must be called manually.

Task.after_return(status, retval, task_id, args, kwargs, einfo)
Handler called after the task returns.

Parameters

• status (str) – Current task state.

• retval (Any) – Task return value/exception.

• task_id (str) – Unique id of the task.

• args (Tuple) – Original arguments for the task.

• kwargs (Dict) – Original keyword arguments for the task.

• einfo (ExceptionInfo) – Exception information.

Returns The return value of this handler is ignored.

Return type None

Task.apply(args=None, kwargs=None, link=None, link_error=None, task_id=None, retries=None,
throw=None, logfile=None, loglevel=None, headers=None, **options)

Execute this task locally, by blocking until the task returns.

Parameters

• args (Tuple) – positional arguments passed on to the task.

• kwargs (Dict) – keyword arguments passed on to the task.

• throw (bool) – Re-raise task exceptions. Defaults to the task_eager_propagates
setting.

Returns pre-evaluated result.

Return type celery.result.EagerResult

Task.apply_async(args=None, kwargs=None, task_id=None, producer=None, link=None,
link_error=None, shadow=None, **options)

Apply tasks asynchronously by sending a message.

Parameters

• args (Tuple) – The positional arguments to pass on to the task.

• kwargs (Dict) – The keyword arguments to pass on to the task.

• countdown (float) – Number of seconds into the future that the task should execute.
Defaults to immediate execution.

• eta (datetime) – Absolute time and date of when the task should be executed. May
not be specified if countdown is also supplied.

322 Chapter 2. Contents

mailto:~@Signature
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.1.0

• expires (float, datetime) – Datetime or seconds in the future for the task should
expire. The task won’t be executed after the expiration time.

• shadow (str) – Override task name used in logs/monitoring. Default is retrieved from
shadow_name().

• connection (kombu.Connection) – Re-use existing broker connection instead of
acquiring one from the connection pool.

• retry (bool) – If enabled sending of the task message will be retried in the event of
connection loss or failure. Default is taken from the task_publish_retry setting.
Note that you need to handle the producer/connection manually for this to work.

• retry_policy (Mapping) – Override the retry policy used. See the
task_publish_retry_policy setting.

• queue (str, kombu.Queue) – The queue to route the task to. This must be a key
present in task_queues, or task_create_missing_queues must be enabled.
See Routing Tasks for more information.

• exchange (str, kombu.Exchange) – Named custom exchange to send the task to.
Usually not used in combination with the queue argument.

• routing_key (str) – Custom routing key used to route the task to a worker server. If
in combination with a queue argument only used to specify custom routing keys to topic
exchanges.

• priority (int) – The task priority, a number between 0 and 9. Defaults to the
priority attribute.

• serializer (str) – Serialization method to use. Can be pickle, json, yaml, msgpack or
any custom serialization method that’s been registered with kombu.serialization.
registry. Defaults to the serializer attribute.

• compression (str) – Optional compression method to use. Can be one of zlib,
bzip2, or any custom compression methods registered with kombu.compression.
register(). Defaults to the task_compression setting.

• link (~@Signature) – A single, or a list of tasks signatures to apply if the task returns
successfully.

• link_error (~@Signature) – A single, or a list of task signatures to apply if an error
occurs while executing the task.

• producer (kombu.Producer) – custom producer to use when publishing the task.

• add_to_parent (bool) – If set to True (default) and the task is applied while executing
another task, then the result will be appended to the parent tasks request.children
attribute. Trailing can also be disabled by default using the trail attribute

• publisher (kombu.Producer) – Deprecated alias to producer.

• headers (Dict) – Message headers to be included in the message.

Returns Promise of future evaluation.

Return type ~@AsyncResult

Raises

• TypeError – If not enough arguments are passed, or too many arguments are passed.
Note that signature checks may be disabled by specifying @task(typing=False).

2.12. API Reference 323

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.compression.html#kombu.compression.register
http://kombu.readthedocs.io/en/master/reference/kombu.compression.html#kombu.compression.register
mailto:~@Signature
mailto:~@Signature
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/functions.html#bool
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
mailto:~@AsyncResult
https://docs.python.org/dev/library/exceptions.html#TypeError

Celery Documentation, Release 4.1.0

• kombu.exceptions.OperationalError – If a connection to the transport cannot
be made, or if the connection is lost.

Note: Also supports all keyword arguments supported by kombu.Producer.publish().

Task.autoregister = True
If disabled this task won’t be registered automatically.

Task.backend
The result store backend used for this task.

Task.chunks(it, n)
Create a chunks task for this task.

Task.default_retry_delay = 180
Default time in seconds before a retry of the task should be executed. 3 minutes by default.

Task.delay(*args, **kwargs)
Star argument version of apply_async().

Does not support the extra options enabled by apply_async().

Parameters

• *args (Any) – Positional arguments passed on to the task.

• **kwargs (Any) – Keyword arguments passed on to the task.

Returns Future promise.

Return type celery.result.AsyncResult

Task.expires = None
Default task expiry time.

Task.ignore_result = False
If enabled the worker won’t store task state and return values for this task. Defaults to the
task_ignore_result setting.

Task.map(it)
Create a xmap task from it.

Task.max_retries = 3
Maximum number of retries before giving up. If set to None, it will never stop retrying.

Task.name = None
Name of the task.

classmethod Task.on_bound(app)
Called when the task is bound to an app.

Note: This class method can be defined to do additional actions when the task class is bound to an app.

Task.on_failure(exc, task_id, args, kwargs, einfo)
Error handler.

This is run by the worker when the task fails.

Parameters

• exc (Exception) – The exception raised by the task.

324 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer.publish
https://docs.python.org/dev/library/exceptions.html#Exception

Celery Documentation, Release 4.1.0

• task_id (str) – Unique id of the failed task.

• args (Tuple) – Original arguments for the task that failed.

• kwargs (Dict) – Original keyword arguments for the task that failed.

• einfo (ExceptionInfo) – Exception information.

Returns The return value of this handler is ignored.

Return type None

Task.on_retry(exc, task_id, args, kwargs, einfo)
Retry handler.

This is run by the worker when the task is to be retried.

Parameters

• exc (Exception) – The exception sent to retry().

• task_id (str) – Unique id of the retried task.

• args (Tuple) – Original arguments for the retried task.

• kwargs (Dict) – Original keyword arguments for the retried task.

• einfo (ExceptionInfo) – Exception information.

Returns The return value of this handler is ignored.

Return type None

Task.on_success(retval, task_id, args, kwargs)
Success handler.

Run by the worker if the task executes successfully.

Parameters

• retval (Any) – The return value of the task.

• task_id (str) – Unique id of the executed task.

• args (Tuple) – Original arguments for the executed task.

• kwargs (Dict) – Original keyword arguments for the executed task.

Returns The return value of this handler is ignored.

Return type None

Task.rate_limit = None
Rate limit for this task type. Examples – None (no rate limit), ‘100/s’ (hundred tasks a second), ‘100/m’
(hundred tasks a minute),“100/h’‘ (hundred tasks an hour)

Task.reject_on_worker_lost = None
Even if acks_late is enabled, the worker will acknowledge tasks when the worker process executing
them abruptly exits or is signaled (e.g., KILL/INT, etc).

Setting this to true allows the message to be re-queued instead, so that the task will execute again by the
same worker, or another worker.

Warning: Enabling this can cause message loops; make sure you know what you’re doing.

Task.replace(sig)
Replace this task, with a new task inheriting the task id.

New in version 4.0.

2.12. API Reference 325

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/constants.html#None

Celery Documentation, Release 4.1.0

Parameters sig (~@Signature) – signature to replace with.

Raises

• Ignore – This is always raised, so the best practice

• is to always use raise self.replace(...) to convey

• to the reader that the task won’t continue after being replaced.

Task.request
Get current request object.

Task.request_stack = <celery.utils.threads._LocalStack object>
Task request stack, the current request will be the topmost.

Task.resultrepr_maxsize = 1024
Max length of result representation used in logs and events.

Task.retry(args=None, kwargs=None, exc=None, throw=True, eta=None, countdown=None,
max_retries=None, **options)

Retry the task.

Example

>>> from imaginary_twitter_lib import Twitter
>>> from proj.celery import app

>>> @app.task(bind=True)
... def tweet(self, auth, message):
... twitter = Twitter(oauth=auth)
... try:
... twitter.post_status_update(message)
... except twitter.FailWhale as exc:
... # Retry in 5 minutes.
... raise self.retry(countdown=60 * 5, exc=exc)

Note: Although the task will never return above as retry raises an exception to notify the worker, we use
raise in front of the retry to convey that the rest of the block won’t be executed.

Parameters

• args (Tuple) – Positional arguments to retry with.

• kwargs (Dict) – Keyword arguments to retry with.

• exc (Exception) – Custom exception to report when the max retry limit has been ex-
ceeded (default: MaxRetriesExceededError).

If this argument is set and retry is called while an exception was raised (sys.
exc_info() is set) it will attempt to re-raise the current exception.

If no exception was raised it will raise the exc argument provided.

• countdown (float) – Time in seconds to delay the retry for.

• eta (dateime) – Explicit time and date to run the retry at.

326 Chapter 2. Contents

mailto:~@Signature
https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.1.0

• max_retries (int) – If set, overrides the default retry limit for this execution.
Changes to this parameter don’t propagate to subsequent task retry attempts. A value
of None, means “use the default”, so if you want infinite retries you’d have to set the
max_retries attribute of the task to None first.

• time_limit (int) – If set, overrides the default time limit.

• soft_time_limit (int) – If set, overrides the default soft time limit.

• throw (bool) – If this is False, don’t raise the Retry exception, that tells the worker
to mark the task as being retried. Note that this means the task will be marked as failed if
the task raises an exception, or successful if it returns after the retry call.

• **options (Any) – Extra options to pass on to apply_async().

Raises celery.exceptions.Retry – To tell the worker that the task has been re-sent for
retry. This always happens, unless the throw keyword argument has been explicitly set to
False, and is considered normal operation.

Task.run(*args, **kwargs)
The body of the task executed by workers.

Task.s(*args, **kwargs)
Create signature.

Shortcut for .s(*a, **k) -> .signature(a, k).

Task.send_event(type_, retry=True, retry_policy=None, **fields)
Send monitoring event message.

This can be used to add custom event types in Flower and other monitors.

Parameters type (str) – Type of event, e.g. "task-failed".

Keyword Arguments

• retry (bool) – Retry sending the message if the connection is lost. Default is taken
from the task_publish_retry setting.

• retry_policy (Mapping) – Retry settings. Default is taken from the
task_publish_retry_policy setting.

• **fields (Any) – Map containing information about the event. Must be JSON serial-
izable.

Task.send_events = True
If enabled the worker will send monitoring events related to this task (but only if the worker is configured
to send task related events). Note that this has no effect on the task-failure event case where a task is not
registered (as it will have no task class to check this flag).

Task.serializer = u’json’
The name of a serializer that are registered with kombu.serialization.registry. Default is
‘pickle’.

Task.shadow_name(args, kwargs, options)
Override for custom task name in worker logs/monitoring.

Example

2.12. API Reference 327

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://pypi.python.org/pypi/Flower/
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

from celery.utils.imports import qualname

def shadow_name(task, args, kwargs, options):
return qualname(args[0])

@app.task(shadow_name=shadow_name, serializer='pickle')
def apply_function_async(fun, *args, **kwargs):

return fun(*args, **kwargs)

Parameters

• args (Tuple) – Task positional arguments.

• kwargs (Dict) – Task keyword arguments.

• options (Dict) – Task execution options.

Task.si(*args, **kwargs)
Create immutable signature.

Shortcut for .si(*a, **k) -> .signature(a, k, immutable=True).

Task.signature(args=None, *starargs, **starkwargs)
Create signature.

Returns

object for this task, wrapping arguments and execution options for a single task invocation.

Return type signature

Task.soft_time_limit = None
Soft time limit. Defaults to the task_soft_time_limit setting.

Task.starmap(it)
Create a xstarmap task from it.

Task.store_errors_even_if_ignored = False
When enabled errors will be stored even if the task is otherwise configured to ignore results.

Task.subtask(args=None, *starargs, **starkwargs)
Create signature.

Returns

object for this task, wrapping arguments and execution options for a single task invocation.

Return type signature

Task.throws = ()
Tuple of expected exceptions.

These are errors that are expected in normal operation and that shouldn’t be regarded as a real error by the
worker. Currently this means that the state will be updated to an error state, but the worker won’t log the
event as an error.

Task.time_limit = None
Hard time limit. Defaults to the task_time_limit setting.

Task.track_started = False
If enabled the task will report its status as ‘started’ when the task is executed by a worker. Disabled by
default as the normal behavior is to not report that level of granularity. Tasks are either pending, finished,
or waiting to be retried.

328 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Having a ‘started’ status can be useful for when there are long running tasks and there’s a need to report
what task is currently running.

The application default can be overridden using the task_track_started setting.

Task.trail = True
If enabled the request will keep track of subtasks started by this task, and this information will be sent with
the result (result.children).

Task.typing = True
Enable argument checking. You can set this to false if you don’t want the signature to be checked when
calling the task. Defaults to Celery.strict_typing.

Task.update_state(task_id=None, state=None, meta=None)
Update task state.

Parameters

• task_id (str) – Id of the task to update. Defaults to the id of the current task.

• state (str) – New state.

• meta (Dict) – State meta-data.

class celery.app.task.Context(*args, **kwargs)
Task request variables (Task.request).

celery.app.task.TaskType
Here for backwards compatibility as tasks no longer use a custom meta-class.

alias of type

Sending/Receiving Messages (Kombu integration).

• AMQP

• Queues

AMQP

class celery.app.amqp.AMQP(app)
App AMQP API: app.amqp.

Connection
Broker connection class used. Default is kombu.Connection.

Consumer
Base Consumer class used. Default is kombu.Consumer.

Producer
Base Producer class used. Default is kombu.Producer.

queues
All currently defined task queues (a Queues instance).

Queues(queues, create_missing=None, ha_policy=None, autoexchange=None, max_priority=None)

Router(queues=None, create_missing=None)
Return the current task router.

flush_routes()

2.12. API Reference 329

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#type
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Consumer
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer

Celery Documentation, Release 4.1.0

create_task_message

send_task_message

default_queue

default_exchange

producer_pool

router

routes

Queues

class celery.app.amqp.Queues(queues=None, default_exchange=None, create_missing=True,
ha_policy=None, autoexchange=None, max_priority=None, de-
fault_routing_key=None)

Queue name declaration mapping.

Parameters

• queues (Iterable) – Initial list/tuple or dict of queues.

• create_missing (bool) – By default any unknown queues will be added automati-
cally, but if this flag is disabled the occurrence of unknown queues in wanted will raise
KeyError.

• ha_policy (Sequence, str) – Default HA policy for queues with none set.

• max_priority (int) – Default x-max-priority for queues with none set.

add(queue, **kwargs)
Add new queue.

The first argument can either be a kombu.Queue instance, or the name of a queue. If the former the rest
of the keyword arguments are ignored, and options are simply taken from the queue instance.

Parameters

• queue (kombu.Queue, str) – Queue to add.

• exchange (kombu.Exchange, str) – if queue is str, specifies exchange name.

• routing_key (str) – if queue is str, specifies binding key.

• exchange_type (str) – if queue is str, specifies type of exchange.

• **options (Any) – Additional declaration options used when queue is a str.

add_compat(name, **options)

consume_from

deselect(exclude)
Deselect queues so that they won’t be consumed from.

Parameters exclude (Sequence[str], str) – Names of queues to avoid consuming
from.

format(indent=0, indent_first=True)
Format routing table into string for log dumps.

new_missing(name)

330 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#KeyError
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

select(include)
Select a subset of currently defined queues to consume from.

Parameters include (Sequence[str], str) – Names of queues to consume from.

select_add(queue, **kwargs)
Add new task queue that’ll be consumed from.

The queue will be active even when a subset has been selected using the celery worker -Q option.

celery.app.defaults

Configuration introspection and defaults.

class celery.app.defaults.Option(default=None, *args, **kwargs)
Decribes a Celery configuration option.

alt = None

deprecate_by = None

old = set([])

remove_by = None

to_python(value)

typemap = {‘bool’: <function strtobool>, ‘string’: <type ‘str’>, ‘tuple’: <type ‘tuple’>, ‘int’: <type ‘int’>, ‘dict’: <type ‘dict’>, ‘float’: <type ‘float’>, ‘any’: <function <lambda>>}

celery.app.defaults.flatten(d, root=u’‘, keyfilter=<function _flatten_keys>)
Flatten settings.

celery.app.defaults.find(name, namespace=u’celery’)
Find setting by name.

celery.app.control

Worker Remote Control Client.

Client for worker remote control commands. Server implementation is in celery.worker.control.

class celery.app.control.Inspect(destination=None, timeout=1.0, callback=None, connec-
tion=None, app=None, limit=None)

API for app.control.inspect.

active(safe=None)

active_queues()

app = None

clock()

conf(with_defaults=False)

hello(from_node, revoked=None)

memdump(samples=10)

memsample()

objgraph(type=u’Request’, n=200, max_depth=10)

ping(destination=None)

2.12. API Reference 331

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

query_task(*ids)

registered(*taskinfoitems)

registered_tasks(*taskinfoitems)

report()

reserved(safe=None)

revoked()

scheduled(safe=None)

stats()

class celery.app.control.Control(app=None)
Worker remote control client.

class Mailbox(namespace, type=u’direct’, connection=None, clock=None, accept=None, se-
rializer=None, producer_pool=None, queue_ttl=None, queue_expires=None, re-
ply_queue_ttl=None, reply_queue_expires=10.0)

Process Mailbox.

Node(hostname=None, state=None, channel=None, handlers=None)

abcast(command, kwargs={})

accept = [u’json’]

call(destination, command, kwargs={}, timeout=None, callback=None, channel=None)

cast(destination, command, kwargs={})

connection = None

exchange = None

exchange_fmt = u’%s.pidbox’

get_queue(hostname)

get_reply_queue()

multi_call(command, kwargs={}, timeout=1, limit=None, callback=None, channel=None)

namespace = None

node_cls
alias of Node

oid

producer_or_acquire(*args, **kwds)

producer_pool

reply_exchange = None

reply_exchange_fmt = u’reply.%s.pidbox’

reply_queue

serializer = None

type = u’direct’

332 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Control.add_consumer(queue, exchange=None, exchange_type=u’direct’, routing_key=None, op-
tions=None, destination=None, **kwargs)

Tell all (or specific) workers to start consuming from a new queue.

Only the queue name is required as if only the queue is specified then the exchange/routing key will be set
to the same name (like automatic queues do).

Note: This command does not respect the default queue/exchange options in the configuration.

Parameters

• queue (str) – Name of queue to start consuming from.

• exchange (str) – Optional name of exchange.

• exchange_type (str) – Type of exchange (defaults to ‘direct’) command to, when
empty broadcast to all workers.

• routing_key (str) – Optional routing key.

• options (Dict) – Additional options as supported by kombu.entitiy.Queue.
from_dict().

See also:

broadcast() for supported keyword arguments.

Control.autoscale(max, min, destination=None, **kwargs)
Change worker(s) autoscale setting.

See also:

Supports the same arguments as broadcast().

Control.broadcast(command, arguments=None, destination=None, connection=None, re-
ply=False, timeout=1.0, limit=None, callback=None, channel=None, **ex-
tra_kwargs)

Broadcast a control command to the celery workers.

Parameters

• command (str) – Name of command to send.

• arguments (Dict) – Keyword arguments for the command.

• destination (List) – If set, a list of the hosts to send the command to, when empty
broadcast to all workers.

• connection (kombu.Connection) – Custom broker connection to use, if not set, a
connection will be acquired from the pool.

• reply (bool) – Wait for and return the reply.

• timeout (float) – Timeout in seconds to wait for the reply.

• limit (int) – Limit number of replies.

• callback (Callable) – Callback called immediately for each reply received.

Control.cancel_consumer(queue, destination=None, **kwargs)
Tell all (or specific) workers to stop consuming from queue.

See also:

2.12. API Reference 333

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.1.0

Supports the same arguments as broadcast().

Control.disable_events(destination=None, **kwargs)
Tell all (or specific) workers to disable events.

See also:

Supports the same arguments as broadcast().

Control.discard_all(connection=None)
Discard all waiting tasks.

This will ignore all tasks waiting for execution, and they will be deleted from the messaging server.

Parameters connection (kombu.Connection) – Optional specific connection instance
to use. If not provided a connection will be acquired from the connection pool.

Returns the number of tasks discarded.

Return type int

Control.election(id, topic, action=None, connection=None)

Control.enable_events(destination=None, **kwargs)
Tell all (or specific) workers to enable events.

See also:

Supports the same arguments as broadcast().

Control.heartbeat(destination=None, **kwargs)
Tell worker(s) to send a heartbeat immediately.

See also:

Supports the same arguments as broadcast()

Control.inspect

Control.ping(destination=None, timeout=1.0, **kwargs)
Ping all (or specific) workers.

Returns List of {'hostname': reply} dictionaries.

Return type List[Dict]

See also:

broadcast() for supported keyword arguments.

Control.pool_grow(n=1, destination=None, **kwargs)
Tell all (or specific) workers to grow the pool by n.

See also:

Supports the same arguments as broadcast().

Control.pool_restart(modules=None, reload=False, reloader=None, destination=None,
**kwargs)

Restart the execution pools of all or specific workers.

Keyword Arguments

• modules (Sequence[str]) – List of modules to reload.

• reload (bool) – Flag to enable module reloading. Default is False.

• reloader (Any) – Function to reload a module.

334 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

• destination (Sequence[str]) – List of worker names to send this command to.

See also:

Supports the same arguments as broadcast()

Control.pool_shrink(n=1, destination=None, **kwargs)
Tell all (or specific) workers to shrink the pool by n.

See also:

Supports the same arguments as broadcast().

Control.purge(connection=None)
Discard all waiting tasks.

This will ignore all tasks waiting for execution, and they will be deleted from the messaging server.

Parameters connection (kombu.Connection) – Optional specific connection instance
to use. If not provided a connection will be acquired from the connection pool.

Returns the number of tasks discarded.

Return type int

Control.rate_limit(task_name, rate_limit, destination=None, **kwargs)
Tell workers to set a new rate limit for task by type.

Parameters

• task_name (str) – Name of task to change rate limit for.

• rate_limit (int, str) – The rate limit as tasks per second, or a rate limit string
(‘100/m’, etc. see celery.task.base.Task.rate_limit for more information).

See also:

broadcast() for supported keyword arguments.

Control.revoke(task_id, destination=None, terminate=False, signal=’SIGTERM’, **kwargs)
Tell all (or specific) workers to revoke a task by id.

If a task is revoked, the workers will ignore the task and not execute it after all.

Parameters

• task_id (str) – Id of the task to revoke.

• terminate (bool) – Also terminate the process currently working on the task (if any).

• signal (str) – Name of signal to send to process if terminate. Default is TERM.

See also:

broadcast() for supported keyword arguments.

Control.shutdown(destination=None, **kwargs)
Shutdown worker(s).

See also:

Supports the same arguments as broadcast()

Control.terminate(task_id, destination=None, signal=’SIGTERM’, **kwargs)
Tell all (or specific) workers to terminate a task by id.

See also:

This is just a shortcut to revoke() with the terminate argument enabled.

2.12. API Reference 335

https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

Control.time_limit(task_name, soft=None, hard=None, destination=None, **kwargs)
Tell workers to set time limits for a task by type.

Parameters

• task_name (str) – Name of task to change time limits for.

• soft (float) – New soft time limit (in seconds).

• hard (float) – New hard time limit (in seconds).

• **kwargs (Any) – arguments passed on to broadcast().

celery.app.control.flatten_reply(reply)
Flatten node replies.

Convert from a list of replies in this format:

[{'a@example.com': reply},
{'b@example.com': reply}]

into this format:

{'a@example.com': reply,
'b@example.com': reply}

celery.app.registry

Registry of available tasks.

class celery.app.registry.TaskRegistry
Map of registered tasks.

exception NotRegistered
The task ain’t registered.

TaskRegistry.filter_types(type)

TaskRegistry.periodic()

TaskRegistry.register(task)
Register a task in the task registry.

The task will be automatically instantiated if not already an instance. Name must be configured prior to
registration.

TaskRegistry.regular()

TaskRegistry.unregister(name)
Unregister task by name.

Parameters name (str) – name of the task to unregister, or a celery.task.base.Task
with a valid name attribute.

Raises celery.exceptions.NotRegistered – if the task is not registered.

celery.app.backends

Backend selection.

336 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

celery.app.backends.by_name(backend=None, loader=None, exten-
sion_namespace=u’celery.result_backends’)

Get backend class by name/alias.

celery.app.backends.by_url(backend=None, loader=None)
Get backend class by URL.

celery.app.builtins

Built-in Tasks.

The built-in tasks are always available in all app instances.

celery.app.events

Implementation for the app.events shortcuts.

class celery.app.events.Events(app=None)
Implements app.events.

Dispatcher

Receiver

State

default_dispatcher(*args, **kwds)

dispatcher_cls = u’celery.events.dispatcher:EventDispatcher’

receiver_cls = u’celery.events.receiver:EventReceiver’

state_cls = u’celery.events.state:State’

celery.app.log

Logging configuration.

The Celery instances logging section: Celery.log.

Sets up logging for the worker and other programs, redirects standard outs, colors log output, patches logging related
compatibility fixes, and so on.

class celery.app.log.TaskFormatter(fmt=None, use_color=True)
Formatter for tasks, adding the task name and id.

format(record)

class celery.app.log.Logging(app)
Application logging setup (app.log).

already_setup = False

colored(logfile=None, enabled=None)

get_default_logger(name=u’celery’, **kwargs)

redirect_stdouts(loglevel=None, name=u’celery.redirected’)

redirect_stdouts_to_logger(logger, loglevel=None, stdout=True, stderr=True)
Redirect sys.stdout and sys.stderr to logger.

2.12. API Reference 337

Celery Documentation, Release 4.1.0

Parameters

• logger (logging.Logger) – Logger instance to redirect to.

• loglevel (int, str) – The loglevel redirected message will be logged as.

setup(loglevel=None, logfile=None, redirect_stdouts=False, redirect_level=u’WARNING’, col-
orize=None, hostname=None)

setup_handlers(logger, logfile, format, colorize, formatter=<class ‘cel-
ery.utils.log.ColorFormatter’>, **kwargs)

setup_logger(name=u’celery’, *args, **kwargs)
Deprecated: No longer used.

setup_logging_subsystem(loglevel=None, logfile=None, format=None, colorize=None, host-
name=None, **kwargs)

setup_task_loggers(loglevel=None, logfile=None, format=None, colorize=None, propa-
gate=False, **kwargs)

Setup the task logger.

If logfile is not specified, then sys.stderr is used.

Will return the base task logger object.

supports_color(colorize=None, logfile=None)

celery.app.utils

App utilities: Compat settings, bug-report tool, pickling apps.

class celery.app.utils.Settings(changes, defaults=None, keys=None, prefix=None)
Celery settings object.

broker_read_url

broker_url

broker_write_url

finalize()

find_option(name, namespace=u’‘)
Search for option by name.

Example

>>> from proj.celery import app
>>> app.conf.find_option('disable_rate_limits')
('worker', 'prefetch_multiplier',
<Option: type->bool default->False>))

Parameters

• name (str) – Name of option, cannot be partial.

• namespace (str) – Preferred name-space (None by default).

Returns of (namespace, key, type).

Return type Tuple

338 Chapter 2. Contents

https://docs.python.org/dev/library/logging.html#logging.Logger
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

find_value_for_key(name, namespace=u’celery’)
Shortcut to get_by_parts(*find_option(name)[:-1]).

get_by_parts(*parts)
Return the current value for setting specified as a path.

Example

>>> from proj.celery import app
>>> app.conf.get_by_parts('worker', 'disable_rate_limits')
False

humanize(with_defaults=False, censored=True)
Return a human readable text showing configuration changes.

table(with_defaults=False, censored=True)

task_default_exchange

task_default_routing_key

timezone

value_set_for(key)

without_defaults()
Return the current configuration, but without defaults.

celery.app.utils.appstr(app)
String used in __repr__ etc, to id app instances.

celery.app.utils.bugreport(app)
Return a string containing information useful in bug-reports.

celery.app.utils.filter_hidden_settings(conf)
Filter sensitive settings.

celery.app.utils.find_app(app, symbol_by_name=<function symbol_by_name>, imp=<function
import_from_cwd>)

Find app by name.

celery.bootsteps

A directed acyclic graph of reusable components.

class celery.bootsteps.Blueprint(steps=None, name=None, on_start=None, on_close=None,
on_stopped=None)

Blueprint containing bootsteps that can be applied to objects.

Parameters

• Sequence[Union[str, Step]] (steps) – List of steps.

• name (str) – Set explicit name for this blueprint.

• on_start (Callable) – Optional callback applied after blueprint start.

• on_close (Callable) – Optional callback applied before blueprint close.

• on_stopped (Callable) – Optional callback applied after blueprint stopped.

2.12. API Reference 339

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

GraphFormatter
alias of StepFormatter

alias

apply(parent, **kwargs)
Apply the steps in this blueprint to an object.

This will apply the __init__ and include methods of each step, with the object as argument:

step = Step(obj)
...
step.include(obj)

For StartStopStep the services created will also be added to the objects steps attribute.

claim_steps()

close(parent)

connect_with(other)

default_steps = set([])

human_state()

info(parent)

join(timeout=None)

load_step(step)

name = None

restart(parent, method=u’stop’, description=u’restarting’, propagate=False)

send_all(parent, method, description=None, reverse=True, propagate=True, args=())

start(parent)

started = 0

state = None

state_to_name = {0: u’initializing’, 1: u’running’, 2: u’closing’, 3: u’terminating’}

stop(parent, close=True, terminate=False)

class celery.bootsteps.Step(parent, **kwargs)
A Bootstep.

The __init__() method is called when the step is bound to a parent object, and can as such be used to
initialize attributes in the parent object at parent instantiation-time.

alias

conditional = False
Set this to true if the step is enabled based on some condition.

create(parent)
Create the step.

enabled = True
This provides the default for include_if().

include(parent)

340 Chapter 2. Contents

Celery Documentation, Release 4.1.0

include_if(parent)
Return true if bootstep should be included.

You can define this as an optional predicate that decides whether this step should be created.

info(obj)

instantiate(name, *args, **kwargs)

label = None
Optional short name used for graph outputs and in logs.

last = False
This flag is reserved for the workers Consumer, since it is required to always be started last. There can
only be one object marked last in every blueprint.

name = u’celery.bootsteps.Step’
Optional step name, will use qualname if not specified.

requires = ()
List of other steps that that must be started before this step. Note that all dependencies must be in the same
blueprint.

class celery.bootsteps.StartStopStep(parent, **kwargs)
Bootstep that must be started and stopped in order.

close(parent)

include(parent)

name = u’celery.bootsteps.StartStopStep’

obj = None
Optional obj created by the create() method. This is used by StartStopStep to keep the original
service object.

start(parent)

stop(parent)

terminate(parent)

class celery.bootsteps.ConsumerStep(parent, **kwargs)
Bootstep that starts a message consumer.

consumers = None

get_consumers(channel)

name = u’celery.bootsteps.ConsumerStep’

requires = (u’celery.worker.consumer:Connection’,)

shutdown(c)

start(c)

stop(c)

celery.result

Task results/state and results for groups of tasks.

class celery.result.ResultBase
Base class for results.

2.12. API Reference 341

Celery Documentation, Release 4.1.0

parent = None
Parent result (if part of a chain)

class celery.result.AsyncResult(id, backend=None, task_name=None, app=None, parent=None)
Query task state.

Parameters

• id (str) – See id.

• backend (Backend) – See backend.

exception TimeoutError
Error raised for timeouts.

AsyncResult.app = None

AsyncResult.as_tuple()

AsyncResult.backend = None
The task result backend to use.

AsyncResult.build_graph(intermediate=False, formatter=None)

AsyncResult.children

AsyncResult.collect(intermediate=False, **kwargs)
Collect results as they return.

Iterator, like get() will wait for the task to complete, but will also follow AsyncResult and
ResultSet returned by the task, yielding (result, value) tuples for each result in the tree.

An example would be having the following tasks:

from celery import group
from proj.celery import app

@app.task(trail=True)
def A(how_many):

return group(B.s(i) for i in range(how_many))()

@app.task(trail=True)
def B(i):

return pow2.delay(i)

@app.task(trail=True)
def pow2(i):

return i ** 2

>>> from celery.result import ResultBase
>>> from proj.tasks import A

>>> result = A.delay(10)
>>> [v for v in result.collect()
... if not isinstance(v, (ResultBase, tuple))]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Note: The Task.trail option must be enabled so that the list of children is stored in result.
children. This is the default but enabled explicitly for illustration.

342 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

Yields Tuple[AsyncResult, Any] – tuples containing the result instance of the child task, and the
return value of that task.

AsyncResult.failed()
Return True if the task failed.

AsyncResult.forget()
Forget about (and possibly remove the result of) this task.

AsyncResult.get(timeout=None, propagate=True, interval=0.5, no_ack=True, fol-
low_parents=True, callback=None, on_message=None, on_interval=None,
disable_sync_subtasks=True, EXCEPTION_STATES=frozenset([u’FAILURE’,
u’RETRY’, u’REVOKED’]), PROPAGATE_STATES=frozenset([u’FAILURE’,
u’REVOKED’]))

Wait until task is ready, and return its result.

Warning: Waiting for tasks within a task may lead to deadlocks. Please read Avoid launching syn-
chronous subtasks.

Parameters

• timeout (float) – How long to wait, in seconds, before the operation times out.

• propagate (bool) – Re-raise exception if the task failed.

• interval (float) – Time to wait (in seconds) before retrying to retrieve the result.
Note that this does not have any effect when using the RPC/redis result store backends, as
they don’t use polling.

• no_ack (bool) – Enable amqp no ack (automatically acknowledge message). If this is
False then the message will not be acked.

• follow_parents (bool) – Re-raise any exception raised by parent tasks.

• disable_sync_subtasks (bool) – Disable tasks to wait for sub tasks this is the
default configuration. CAUTION do not enable this unless you must.

Raises

• celery.exceptions.TimeoutError – if timeout isn’t None and the result does
not arrive within timeout seconds.

• Exception – If the remote call raised an exception then that exception will be re-raised
in the caller process.

AsyncResult.get_leaf()

AsyncResult.graph

AsyncResult.id = None
The task’s UUID.

AsyncResult.info
Task return value.

Note: When the task has been executed, this contains the return value. If the task raised an exception, this
will be the exception instance.

AsyncResult.iterdeps(intermediate=False)

2.12. API Reference 343

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#Exception

Celery Documentation, Release 4.1.0

AsyncResult.maybe_reraise(propagate=True, callback=None)

AsyncResult.maybe_throw(propagate=True, callback=None)

AsyncResult.ready()
Return True if the task has executed.

If the task is still running, pending, or is waiting for retry then False is returned.

AsyncResult.result
Task return value.

Note: When the task has been executed, this contains the return value. If the task raised an exception, this
will be the exception instance.

AsyncResult.revoke(connection=None, terminate=False, signal=None, wait=False, time-
out=None)

Send revoke signal to all workers.

Any worker receiving the task, or having reserved the task, must ignore it.

Parameters

• terminate (bool) – Also terminate the process currently working on the task (if any).

• signal (str) – Name of signal to send to process if terminate. Default is TERM.

• wait (bool) – Wait for replies from workers. The timeout argument specifies the
seconds to wait. Disabled by default.

• timeout (float) – Time in seconds to wait for replies when wait is enabled.

AsyncResult.state
The tasks current state.

Possible values includes:

PENDING

The task is waiting for execution.

STARTED

The task has been started.

RETRY

The task is to be retried, possibly because of failure.

FAILURE

The task raised an exception, or has exceeded the retry limit. The result attribute then
contains the exception raised by the task.

SUCCESS

The task executed successfully. The result attribute then contains the tasks return
value.

AsyncResult.status
The tasks current state.

Possible values includes:

PENDING

344 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.1.0

The task is waiting for execution.

STARTED

The task has been started.

RETRY

The task is to be retried, possibly because of failure.

FAILURE

The task raised an exception, or has exceeded the retry limit. The result attribute then
contains the exception raised by the task.

SUCCESS

The task executed successfully. The result attribute then contains the tasks return
value.

AsyncResult.successful()
Return True if the task executed successfully.

AsyncResult.supports_native_join

AsyncResult.task_id
Compat. alias to id.

AsyncResult.then(callback, on_error=None, weak=False)

AsyncResult.throw(*args, **kwargs)

AsyncResult.traceback
Get the traceback of a failed task.

AsyncResult.wait(timeout=None, propagate=True, interval=0.5, no_ack=True, fol-
low_parents=True, callback=None, on_message=None, on_interval=None,
disable_sync_subtasks=True, EXCEPTION_STATES=frozenset([u’FAILURE’,
u’RETRY’, u’REVOKED’]), PROPAGATE_STATES=frozenset([u’FAILURE’,
u’REVOKED’]))

Wait until task is ready, and return its result.

Warning: Waiting for tasks within a task may lead to deadlocks. Please read Avoid launching syn-
chronous subtasks.

Parameters

• timeout (float) – How long to wait, in seconds, before the operation times out.

• propagate (bool) – Re-raise exception if the task failed.

• interval (float) – Time to wait (in seconds) before retrying to retrieve the result.
Note that this does not have any effect when using the RPC/redis result store backends, as
they don’t use polling.

• no_ack (bool) – Enable amqp no ack (automatically acknowledge message). If this is
False then the message will not be acked.

• follow_parents (bool) – Re-raise any exception raised by parent tasks.

• disable_sync_subtasks (bool) – Disable tasks to wait for sub tasks this is the
default configuration. CAUTION do not enable this unless you must.

Raises

2.12. API Reference 345

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

• celery.exceptions.TimeoutError – if timeout isn’t None and the result does
not arrive within timeout seconds.

• Exception – If the remote call raised an exception then that exception will be re-raised
in the caller process.

class celery.result.ResultSet(results, app=None, ready_barrier=None, **kwargs)
A collection of results.

Parameters results (Sequence[AsyncResult]) – List of result instances.

add(result)
Add AsyncResult as a new member of the set.

Does nothing if the result is already a member.

app

backend

clear()
Remove all results from this set.

completed_count()
Task completion count.

Returns the number of tasks completed.

Return type int

discard(result)
Remove result from the set if it is a member.

Does nothing if it’s not a member.

failed()
Return true if any of the tasks failed.

Returns

true if one of the tasks failed. (i.e., raised an exception)

Return type bool

forget()
Forget about (and possible remove the result of) all the tasks.

get(timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True, on_message=None)
See join().

This is here for API compatibility with AsyncResult, in addition it uses join_native() if available
for the current result backend.

iter_native(timeout=None, interval=0.5, no_ack=True, on_message=None, on_interval=None)
Backend optimized version of iterate().

New in version 2.2.

Note that this does not support collecting the results for different task types using different backends.

This is currently only supported by the amqp, Redis and cache result backends.

iterate(timeout=None, propagate=True, interval=0.5)
Deprecated method, use get() with a callback argument.

346 Chapter 2. Contents

https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

join(timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True, on_message=None,
on_interval=None)

Gather the results of all tasks as a list in order.

Note: This can be an expensive operation for result store backends that must resort to polling (e.g.,
database).

You should consider using join_native() if your backend supports it.

Warning: Waiting for tasks within a task may lead to deadlocks. Please see Avoid launching syn-
chronous subtasks.

Parameters

• timeout (float) – The number of seconds to wait for results before the operation times
out.

• propagate (bool) – If any of the tasks raises an exception, the exception will be re-
raised when this flag is set.

• interval (float) – Time to wait (in seconds) before retrying to retrieve a result from
the set. Note that this does not have any effect when using the amqp result store backend,
as it does not use polling.

• callback (Callable) – Optional callback to be called for every result received. Must
have signature (task_id, value) No results will be returned by this function if a
callback is specified. The order of results is also arbitrary when a callback is used. To
get access to the result object for a particular id you’ll have to generate an index first:
index = {r.id: r for r in gres.results.values()} Or you can cre-
ate new result objects on the fly: result = app.AsyncResult(task_id) (both
will take advantage of the backend cache anyway).

• no_ack (bool) – Automatic message acknowledgment (Note that if this is set to False
then the messages will not be acknowledged).

Raises celery.exceptions.TimeoutError – if timeout isn’t None and the opera-
tion takes longer than timeout seconds.

join_native(timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True,
on_message=None, on_interval=None)

Backend optimized version of join().

New in version 2.2.

Note that this does not support collecting the results for different task types using different backends.

This is currently only supported by the amqp, Redis and cache result backends.

maybe_reraise(callback=None, propagate=True)

maybe_throw(callback=None, propagate=True)

ready()
Did all of the tasks complete? (either by success of failure).

Returns true if all of the tasks have been executed.

Return type bool

2.12. API Reference 347

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

remove(result)
Remove result from the set; it must be a member.

Raises KeyError – if the result isn’t a member.

results = None
List of results in in the set.

revoke(connection=None, terminate=False, signal=None, wait=False, timeout=None)
Send revoke signal to all workers for all tasks in the set.

Parameters

• terminate (bool) – Also terminate the process currently working on the task (if any).

• signal (str) – Name of signal to send to process if terminate. Default is TERM.

• wait (bool) – Wait for replies from worker. The timeout argument specifies the
number of seconds to wait. Disabled by default.

• timeout (float) – Time in seconds to wait for replies when the wait argument is
enabled.

successful()
Return true if all tasks successful.

Returns

true if all of the tasks finished successfully (i.e. didn’t raise an exception).

Return type bool

supports_native_join

then(callback, on_error=None, weak=False)

update(results)
Extend from iterable of results.

waiting()
Return true if any of the tasks are incomplete.

Returns

true if one of the tasks are still waiting for execution.

Return type bool

class celery.result.GroupResult(id=None, results=None, **kwargs)
Like ResultSet, but with an associated id.

This type is returned by group.

It enables inspection of the tasks state and return values as a single entity.

Parameters

• id (str) – The id of the group.

• results (Sequence[AsyncResult]) – List of result instances.

as_tuple()

children

delete(backend=None)
Remove this result if it was previously saved.

348 Chapter 2. Contents

https://docs.python.org/dev/library/exceptions.html#KeyError
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

id = None
The UUID of the group.

classmethod restore(id, backend=None, app=None)
Restore previously saved group result.

results = None
List/iterator of results in the group

save(backend=None)
Save group-result for later retrieval using restore().

Example

>>> def save_and_restore(result):
... result.save()
... result = GroupResult.restore(result.id)

class celery.result.EagerResult(id, ret_value, state, traceback=None)
Result that we know has already been executed.

forget()

get(timeout=None, propagate=True, **kwargs)

ready()

result
The tasks return value.

revoke(*args, **kwargs)

state
The tasks state.

status
The tasks state.

supports_native_join

then(callback, on_error=None, weak=False)

traceback
The traceback if the task failed.

wait(timeout=None, propagate=True, **kwargs)

celery.result.result_from_tuple(r, app=None)
Deserialize result from tuple.

celery.schedules

Schedules define the intervals at which periodic tasks run.

exception celery.schedules.ParseException
Raised by crontab_parser when the input can’t be parsed.

class celery.schedules.schedule(run_every=None, relative=False, nowfun=None, app=None)
Schedule for periodic task.

Parameters

2.12. API Reference 349

Celery Documentation, Release 4.1.0

• run_every (float, timedelta) – Time interval.

• relative (bool) – If set to True the run time will be rounded to the resolution of the
interval.

• nowfun (Callable) – Function returning the current date and time
(class:~datetime.datetime).

• app (~@Celery) – Celery app instance.

human_seconds

is_due(last_run_at)
Return tuple of (is_due, next_time_to_check).

Notes

•next time to check is in seconds.

•(True, 20), means the task should be run now, and the next time to check is in 20 seconds.

•(False, 12.3), means the task is not due, but that the scheduler should check again in 12.3
seconds.

The next time to check is used to save energy/CPU cycles, it does not need to be accurate but will influence
the precision of your schedule. You must also keep in mind the value of beat_max_loop_interval,
that decides the maximum number of seconds the scheduler can sleep between re-checking the periodic
task intervals. So if you have a task that changes schedule at run-time then your next_run_at check will
decide how long it will take before a change to the schedule takes effect. The max loop interval takes
precedence over the next check at value returned.

Scheduler max interval variance

The default max loop interval may vary for different schedulers. For the default scheduler the value is 5
minutes, but for example the django-celery-beat database scheduler the value is 5 seconds.

relative = False

remaining_estimate(last_run_at)

seconds

class celery.schedules.crontab(minute=u’*’, hour=u’*’, day_of_week=u’*’, day_of_month=u’*’,
month_of_year=u’*’, **kwargs)

Crontab schedule.

A Crontab can be used as the run_every value of a periodic task entry to add crontab(5)-like scheduling.

Like a cron(5)-job, you can specify units of time of when you’d like the task to execute. It’s a reasonably
complete implementation of cron‘s features, so it should provide a fair degree of scheduling needs.

You can specify a minute, an hour, a day of the week, a day of the month, and/or a month in the year in any of
the following formats:

minute

•A (list of) integers from 0-59 that represent the minutes of an hour of when execution should occur;
or

•A string representing a Crontab pattern. This may get pretty advanced, like minute='*/15' (for
every quarter) or minute='1,13,30-45,50-59/2'.

350 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/functions.html#bool
mailto:~@Celery
https://pypi.python.org/pypi/django-celery-beat/

Celery Documentation, Release 4.1.0

hour

•A (list of) integers from 0-23 that represent the hours of a day of when execution should occur; or

•A string representing a Crontab pattern. This may get pretty advanced, like hour='*/3' (for every
three hours) or hour='0,8-17/2' (at midnight, and every two hours during office hours).

day_of_week

•A (list of) integers from 0-6, where Sunday = 0 and Saturday = 6, that represent the days of a week
that execution should occur.

•A string representing a Crontab pattern. This may get pretty advanced, like
day_of_week='mon-fri' (for weekdays only). (Beware that day_of_week='*/2'
does not literally mean ‘every two days’, but ‘every day that is divisible by two’!)

day_of_month

•A (list of) integers from 1-31 that represents the days of the month that execution should occur.

•A string representing a Crontab pattern. This may get pretty advanced, such as
day_of_month='2-30/3' (for every even numbered day) or day_of_month='1-7,
15-21' (for the first and third weeks of the month).

month_of_year

•A (list of) integers from 1-12 that represents the months of the year during which execution can occur.

•A string representing a Crontab pattern. This may get pretty advanced, such as
month_of_year='*/3' (for the first month of every quarter) or month_of_year='2-12/
2' (for every even numbered month).

nowfun
Function returning the current date and time (datetime).

app
The Celery app instance.

It’s important to realize that any day on which execution should occur must be represented by entries in all three
of the day and month attributes. For example, if day_of_week is 0 and day_of_month is every seventh
day, only months that begin on Sunday and are also in the month_of_year attribute will have execution
events. Or, day_of_week is 1 and day_of_month is ‘1-7,15-21’ means every first and third Monday of
every month present in month_of_year.

is_due(last_run_at)
Return tuple of (is_due, next_time_to_run).

Note: Next time to run is in seconds.

SeeAlso: celery.schedules.schedule.is_due() for more information.

remaining_delta(last_run_at, tz=None, ffwd=<class ‘celery.utils.time.ffwd’>)

remaining_estimate(last_run_at, ffwd=<class ‘celery.utils.time.ffwd’>)
Estimate of next run time.

Returns when the periodic task should run next as a timedelta.

class celery.schedules.crontab_parser(max_=60, min_=0)
Parser for Crontab expressions.

2.12. API Reference 351

https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.timedelta

Celery Documentation, Release 4.1.0

Any expression of the form ‘groups’ (see BNF grammar below) is accepted and expanded to a set of numbers.
These numbers represent the units of time that the Crontab needs to run on:

digit :: '0'..'9'
dow :: 'a'..'z'
number :: digit+ | dow+
steps :: number
range :: number ('-' number) ?
numspec :: '*' | range
expr :: numspec ('/' steps) ?
groups :: expr (',' expr) *

The parser is a general purpose one, useful for parsing hours, minutes and day of week expressions. Example
usage:

>>> minutes = crontab_parser(60).parse('*/15')
[0, 15, 30, 45]
>>> hours = crontab_parser(24).parse('*/4')
[0, 4, 8, 12, 16, 20]
>>> day_of_week = crontab_parser(7).parse('*')
[0, 1, 2, 3, 4, 5, 6]

It can also parse day of month and month of year expressions if initialized with a minimum of 1. Example usage:

>>> days_of_month = crontab_parser(31, 1).parse('*/3')
[1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31]
>>> months_of_year = crontab_parser(12, 1).parse('*/2')
[1, 3, 5, 7, 9, 11]
>>> months_of_year = crontab_parser(12, 1).parse('2-12/2')
[2, 4, 6, 8, 10, 12]

The maximum possible expanded value returned is found by the formula:

𝑚𝑎𝑥+𝑚𝑖𝑛−1

exception ParseException
Raised by crontab_parser when the input can’t be parsed.

crontab_parser.parse(spec)

celery.schedules.maybe_schedule(s, relative=False, app=None)
Return schedule from number, timedelta, or actual schedule.

class celery.schedules.solar(event, lat, lon, **kwargs)
Solar event.

A solar event can be used as the run_every value of a periodic task entry to schedule based on certain solar
events.

Notes

Available event valus are:

•dawn_astronomical

•dawn_nautical

•dawn_civil

•sunrise

352 Chapter 2. Contents

Celery Documentation, Release 4.1.0

•solar_noon

•sunset

•dusk_civil

•dusk_nautical

•dusk_astronomical

Parameters

• event (str) – Solar event that triggers this task. See note for available values.

• lat (int) – The latitude of the observer.

• lon (int) – The longitude of the observer.

• nowfun (Callable) – Function returning the current date and time as a
class:~datetime.datetime.

• app (~@Celery) – Celery app instance.

is_due(last_run_at)
Return tuple of (is_due, next_time_to_run).

Note: next time to run is in seconds.

See also:

celery.schedules.schedule.is_due() for more information.

remaining_estimate(last_run_at)
Return estimate of next time to run.

Returns

when the periodic task should run next, or if it shouldn’t run today (e.g., the sun does not
rise today), returns the time when the next check should take place.

Return type timedelta

celery.signals

Celery Signals.

This module defines the signals (Observer pattern) sent by both workers and clients.

Functions can be connected to these signals, and connected functions are called whenever a signal is called.

See also:

Signals for more information.

celery.security

Message Signing Serializer.

celery.security.setup_security(allowed_serializers=None, key=None, cert=None, store=None,
digest=u’sha1’, serializer=u’json’, app=None)

See Celery.setup_security().

2.12. API Reference 353

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
mailto:~@Celery
https://docs.python.org/dev/library/datetime.html#datetime.timedelta

Celery Documentation, Release 4.1.0

celery.utils.debug

• Sampling Memory Usage

• API Reference

Sampling Memory Usage

This module can be used to diagnose and sample the memory usage used by parts of your application.

For example, to sample the memory usage of calling tasks you can do this:

from celery.utils.debug import sample_mem, memdump

from tasks import add

try:
for i in range(100):

for j in range(100):
add.delay(i, j)

sample_mem()
finally:

memdump()

API Reference

Utilities for debugging memory usage, blocking calls, etc.

celery.utils.debug.sample_mem()
Sample RSS memory usage.

Statistics can then be output by calling memdump().

celery.utils.debug.memdump(samples=10, file=None)
Dump memory statistics.

Will print a sample of all RSS memory samples added by calling sample_mem(), and in addition print used
RSS memory after gc.collect().

celery.utils.debug.sample(x, n, k=0)
Given a list x a sample of length n of that list is returned.

For example, if n is 10, and x has 100 items, a list of every tenth. item is returned.

k can be used as offset.

celery.utils.debug.mem_rss()
Return RSS memory usage as a humanized string.

celery.utils.debug.ps()
Return the global psutil.Process instance.

Note: Returns None if psutil is not installed.

354 Chapter 2. Contents

https://docs.python.org/dev/library/gc.html#gc.collect
https://pypi.python.org/pypi/psutil/

Celery Documentation, Release 4.1.0

celery.exceptions

• Error Hierarchy

Celery error types.

Error Hierarchy

• Exception

– celery.exceptions.CeleryError

* ImproperlyConfigured

* SecurityError

* TaskPredicate

· Ignore

· Reject

· Retry

* TaskError

· QueueNotFound

· IncompleteStream

· NotRegistered

· AlreadyRegistered

· TimeoutError

· MaxRetriesExceededError

· TaskRevokedError

· InvalidTaskError

· ChordError

– kombu.exceptions.KombuError

* OperationalError

Raised when a transport connection error occurs while sending a message (be it a task,
remote control command error).

Note: This exception does not inherit from CeleryError.

– billiard errors (prefork pool)

* SoftTimeLimitExceeded

* TimeLimitExceeded

* WorkerLostError

* Terminated

2.12. API Reference 355

https://docs.python.org/dev/library/exceptions.html#Exception

Celery Documentation, Release 4.1.0

• UserWarning

– CeleryWarning

* AlwaysEagerIgnored

* DuplicateNodenameWarning

* FixupWarning

* NotConfigured

• BaseException

– SystemExit

* WorkerTerminate

* WorkerShutdown

exception celery.exceptions.CeleryWarning
Base class for all Celery warnings.

exception celery.exceptions.AlwaysEagerIgnored
send_task ignores task_always_eager option.

exception celery.exceptions.DuplicateNodenameWarning
Multiple workers are using the same nodename.

exception celery.exceptions.FixupWarning
Fixup related warning.

exception celery.exceptions.NotConfigured
Celery hasn’t been configured, as no config module has been found.

exception celery.exceptions.CeleryError
Base class for all Celery errors.

exception celery.exceptions.ImproperlyConfigured
Celery is somehow improperly configured.

exception celery.exceptions.SecurityError
Security related exception.

exception celery.exceptions.OperationalError
Recoverable message transport connection error.

exception celery.exceptions.TaskPredicate
Base class for task-related semi-predicates.

exception celery.exceptions.Ignore
A task can raise this to ignore doing state updates.

exception celery.exceptions.Reject(reason=None, requeue=False)
A task can raise this if it wants to reject/re-queue the message.

exception celery.exceptions.Retry(message=None, exc=None, when=None, **kwargs)
The task is to be retried later.

exc = None
Exception (if any) that caused the retry to happen.

humanize()

message = None
Optional message describing context of retry.

356 Chapter 2. Contents

https://docs.python.org/dev/library/exceptions.html#UserWarning
https://docs.python.org/dev/library/exceptions.html#BaseException
https://docs.python.org/dev/library/exceptions.html#SystemExit

Celery Documentation, Release 4.1.0

when = None
Time of retry (ETA), either numbers.Real or datetime.

exception celery.exceptions.TaskError
Task related errors.

exception celery.exceptions.QueueNotFound
Task routed to a queue not in conf.queues.

exception celery.exceptions.IncompleteStream
Found the end of a stream of data, but the data isn’t complete.

exception celery.exceptions.NotRegistered
The task ain’t registered.

exception celery.exceptions.AlreadyRegistered
The task is already registered.

exception celery.exceptions.TimeoutError
The operation timed out.

exception celery.exceptions.MaxRetriesExceededError
The tasks max restart limit has been exceeded.

exception celery.exceptions.TaskRevokedError
The task has been revoked, so no result available.

exception celery.exceptions.InvalidTaskError
The task has invalid data or ain’t properly constructed.

exception celery.exceptions.ChordError
A task part of the chord raised an exception.

exception celery.exceptions.SoftTimeLimitExceeded
The soft time limit has been exceeded. This exception is raised to give the task a chance to clean up.

exception celery.exceptions.TimeLimitExceeded
The time limit has been exceeded and the job has been terminated.

exception celery.exceptions.WorkerLostError
The worker processing a job has exited prematurely.

exception celery.exceptions.Terminated
The worker processing a job has been terminated by user request.

exception celery.exceptions.CPendingDeprecationWarning
Warning of pending deprecation.

exception celery.exceptions.CDeprecationWarning
Warning of deprecation.

exception celery.exceptions.WorkerShutdown
Signals that the worker should perform a warm shutdown.

exception celery.exceptions.WorkerTerminate
Signals that the worker should terminate immediately.

celery.loaders

Get loader by name.

Loaders define how configuration is read, what happens when workers start, when tasks are executed and so on.

2.12. API Reference 357

https://docs.python.org/dev/library/numbers.html#numbers.Real
https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.1.0

celery.loaders.get_loader_cls(loader)
Get loader class by name/alias.

celery.loaders.app

The default loader used with custom app instances.

class celery.loaders.app.AppLoader(app, **kwargs)
Default loader used when an app is specified.

celery.loaders.default

The default loader used when no custom app has been initialized.

class celery.loaders.default.Loader(app, **kwargs)
The loader used by the default app.

read_configuration(fail_silently=True)
Read configuration from celeryconfig.py.

setup_settings(settingsdict)

celery.loaders.base

Loader base class.

class celery.loaders.base.BaseLoader(app, **kwargs)
Base class for loaders.

Loaders handles,

•Reading celery client/worker configurations.

•What happens when a task starts? See on_task_init().

•What happens when the worker starts? See on_worker_init().

•What happens when the worker shuts down? See on_worker_shutdown().

•What modules are imported to find tasks?

autodiscover_tasks(packages, related_name=u’tasks’)

builtin_modules = frozenset([])

cmdline_config_parser(args, namespace=u’celery’, re_type=<_sre.SRE_Pattern object>, ex-
tra_types={u’json’: <function loads>}, override_types={u’dict’:
u’json’, u’list’: u’json’, u’tuple’: u’json’})

conf
Loader configuration.

config_from_object(obj, silent=False)

configured = False

default_modules

find_module(module)

import_default_modules()

358 Chapter 2. Contents

Celery Documentation, Release 4.1.0

import_from_cwd(module, imp=None, package=None)

import_module(module, package=None)

import_task_module(module)

init_worker()

init_worker_process()

now(utc=True)

on_process_cleanup()
Called after a task is executed.

on_task_init(task_id, task)
Called before a task is executed.

on_worker_init()
Called when the worker (celery worker) starts.

on_worker_process_init()
Called when a child process starts.

on_worker_shutdown()
Called when the worker (celery worker) shuts down.

override_backends = {}

read_configuration(env=u’CELERY_CONFIG_MODULE’)

shutdown_worker()

worker_initialized = False

• States

• Sets

– READY_STATES

– UNREADY_STATES

– EXCEPTION_STATES

– PROPAGATE_STATES

– ALL_STATES

• Misc

Built-in task states.

States

See States.

Sets

2.12. API Reference 359

Celery Documentation, Release 4.1.0

READY_STATES

Set of states meaning the task result is ready (has been executed).

UNREADY_STATES

Set of states meaning the task result is not ready (hasn’t been executed).

EXCEPTION_STATES

Set of states meaning the task returned an exception.

PROPAGATE_STATES

Set of exception states that should propagate exceptions to the user.

ALL_STATES

Set of all possible states.

Misc

celery.states.PENDING = u’PENDING’
Task state is unknown (assumed pending since you know the id).

celery.states.RECEIVED = u’RECEIVED’
Task was received by a worker (only used in events).

celery.states.STARTED = u’STARTED’
Task was started by a worker (task_track_started).

celery.states.SUCCESS = u’SUCCESS’
Task succeeded

celery.states.FAILURE = u’FAILURE’
Task failed

celery.states.REVOKED = u’REVOKED’
Task was revoked.

celery.states.RETRY = u’RETRY’
Task is waiting for retry.

celery.states.precedence(state)
Get the precedence index for state.

Lower index means higher precedence.

class celery.states.state
Task state.

State is a subclass of str, implementing comparison methods adhering to state precedence rules:

360 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

>>> from celery.states import state, PENDING, SUCCESS

>>> state(PENDING) < state(SUCCESS)
True

Any custom state is considered to be lower than FAILURE and SUCCESS, but higher than any of the other
built-in states:

>>> state('PROGRESS') > state(STARTED)
True

>>> state('PROGRESS') > state('SUCCESS')
False

celery.contrib.abortable

• Abortable tasks overview

– Usage example

Abortable Tasks.

Abortable tasks overview

For long-running Task‘s, it can be desirable to support aborting during execution. Of course, these tasks should be
built to support abortion specifically.

The AbortableTask serves as a base class for all Task objects that should support abortion by producers.

• Producers may invoke the abort() method on AbortableAsyncResult instances, to request abortion.

• Consumers (workers) should periodically check (and honor!) the is_aborted() method at controlled points
in their task’s run() method. The more often, the better.

The necessary intermediate communication is dealt with by the AbortableTask implementation.

Usage example

In the consumer:

from __future__ import absolute_import

from celery.contrib.abortable import AbortableTask
from celery.utils.log import get_task_logger

from proj.celery import app

logger = get_logger(__name__)

@app.task(bind=True, base=AbortableTask)
def long_running_task(self):

results = []
for i in range(100):

2.12. API Reference 361

Celery Documentation, Release 4.1.0

check after every 5 iterations...
(or alternatively, check when some timer is due)
if not i % 5:

if self.is_aborted():
respect aborted state, and terminate gracefully.
logger.warning('Task aborted')
return

value = do_something_expensive(i)
results.append(y)

logger.info('Task complete')
return results

In the producer:

from __future__ import absolute_import

import time

from proj.tasks import MyLongRunningTask

def myview(request):
result is of type AbortableAsyncResult
result = long_running_task.delay()

abort the task after 10 seconds
time.sleep(10)
result.abort()

After the result.abort() call, the task execution isn’t aborted immediately. In fact, it’s not guaranteed to abort at all.
Keep checking result.state status, or call result.get(timeout=) to have it block until the task is finished.

Note: In order to abort tasks, there needs to be communication between the producer and the consumer. This is
currently implemented through the database backend. Therefore, this class will only work with the database backends.

class celery.contrib.abortable.AbortableAsyncResult(id, backend=None,
task_name=None, app=None,
parent=None)

Represents an abortable result.

Specifically, this gives the AsyncResult a abort() method, that sets the state of the underlying Task to
‘ABORTED’.

abort()
Set the state of the task to ABORTED.

Abortable tasks monitor their state at regular intervals and terminate execution if so.

Warning: Be aware that invoking this method does not guarantee when the task will be aborted (or
even if the task will be aborted at all).

is_aborted()
Return True if the task is (being) aborted.

class celery.contrib.abortable.AbortableTask
Task that can be aborted.

362 Chapter 2. Contents

Celery Documentation, Release 4.1.0

This serves as a base class for all Task‘s that support aborting during execution.

All subclasses of AbortableTask must call the is_aborted() method periodically and act accordingly
when the call evaluates to True.

AsyncResult(task_id)
Return the accompanying AbortableAsyncResult instance.

abstract = True

is_aborted(**kwargs)
Return true if task is aborted.

Checks against the backend whether this AbortableAsyncResult is ABORTED.

Always return False in case the task_id parameter refers to a regular (non-abortable) Task.

Be aware that invoking this method will cause a hit in the backend (for example a database query), so find
a good balance between calling it regularly (for responsiveness), but not too often (for performance).

celery.contrib.migrate

Message migration tools (Broker <-> Broker).

exception celery.contrib.migrate.StopFiltering
Semi-predicate used to signal filter stop.

class celery.contrib.migrate.State
Migration progress state.

count = 0

filtered = 0

strtotal

total_apx = 0

celery.contrib.migrate.republish(producer, message, exchange=None, routing_key=None,
remove_props=[u’application_headers’, u’content_type’,
u’content_encoding’, u’headers’])

Republish message.

celery.contrib.migrate.migrate_task(producer, body_, message, queues=None)
Migrate single task message.

celery.contrib.migrate.migrate_tasks(source, dest, migrate=<function migrate_task>,
app=None, queues=None, **kwargs)

Migrate tasks from one broker to another.

celery.contrib.migrate.move(predicate, connection=None, exchange=None, routing_key=None,
source=None, app=None, callback=None, limit=None, trans-
form=None, **kwargs)

Find tasks by filtering them and move the tasks to a new queue.

Parameters

• predicate (Callable) – Filter function used to decide the messages to move. Must
accept the standard signature of (body, message) used by Kombu consumer call-
backs. If the predicate wants the message to be moved it must return either:

1. a tuple of (exchange, routing_key), or

2. a Queue instance, or

2.12. API Reference 363

Celery Documentation, Release 4.1.0

3. any other true value means the specified exchange and routing_key argu-
ments will be used.

• connection (kombu.Connection) – Custom connection to use.

• source – List[Union[str, kombu.Queue]]: Optional list of source queues to use instead
of the default (queues in task_queues). This list can also contain Queue instances.

• exchange (str, kombu.Exchange) – Default destination exchange.

• routing_key (str) – Default destination routing key.

• limit (int) – Limit number of messages to filter.

• callback (Callable) – Callback called after message moved, with signature
(state, body, message).

• transform (Callable) – Optional function to transform the return value (destina-
tion) of the filter function.

Also supports the same keyword arguments as start_filter().

To demonstrate, the move_task_by_id() operation can be implemented like this:

def is_wanted_task(body, message):
if body['id'] == wanted_id:

return Queue('foo', exchange=Exchange('foo'),
routing_key='foo')

move(is_wanted_task)

or with a transform:

def transform(value):
if isinstance(value, string_t):

return Queue(value, Exchange(value), value)
return value

move(is_wanted_task, transform=transform)

Note: The predicate may also return a tuple of (exchange, routing_key) to specify the destination to
where the task should be moved, or a Queue instance. Any other true value means that the task will be moved
to the default exchange/routing_key.

celery.contrib.migrate.task_id_eq(task_id, body, message)
Return true if task id equals task_id’.

celery.contrib.migrate.task_id_in(ids, body, message)
Return true if task id is member of set ids’.

celery.contrib.migrate.start_filter(app, conn, filter, limit=None, timeout=1.0,
ack_messages=False, tasks=None, queues=None, call-
back=None, forever=False, on_declare_queue=None,
consume_from=None, state=None, accept=None,
**kwargs)

Filter tasks.

celery.contrib.migrate.move_task_by_id(task_id, dest, **kwargs)
Find a task by id and move it to another queue.

Parameters

364 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Exchange
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.1.0

• task_id (str) – Id of task to find and move.

• dest – (str, kombu.Queue): Destination queue.

• **kwargs (Any) – Also supports the same keyword arguments as move().

celery.contrib.migrate.move_by_idmap(map, **kwargs)
Move tasks by matching from a task_id: queue mapping.

Where queue is a queue to move the task to.

Example

>>> move_by_idmap({
... '5bee6e82-f4ac-468e-bd3d-13e8600250bc': Queue('name'),
... 'ada8652d-aef3-466b-abd2-becdaf1b82b3': Queue('name'),
... '3a2b140d-7db1-41ba-ac90-c36a0ef4ab1f': Queue('name')},
... queues=['hipri'])

celery.contrib.migrate.move_by_taskmap(map, **kwargs)
Move tasks by matching from a task_name: queue mapping.

queue is the queue to move the task to.

Example

>>> move_by_taskmap({
... 'tasks.add': Queue('name'),
... 'tasks.mul': Queue('name'),
... })

celery.contrib.pytest

• API Reference

API Reference

celery.contrib.sphinx

Sphinx documentation plugin used to document tasks.

Introduction

Usage

Add the extension to your docs/conf.py configuration module:

extensions = (...,
'celery.contrib.sphinx')

2.12. API Reference 365

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

If you’d like to change the prefix for tasks in reference documentation then you can change the
celery_task_prefix configuration value:

celery_task_prefix = '(task)' # < default

With the extension installed autodoc will automatically find task decorated objects and generate the correct (as well as
add a (task) prefix), and you can also refer to the tasks using :task:proj.tasks.add syntax.

Use .. autotask:: to manually document a task.

class celery.contrib.sphinx.TaskDirective(name, arguments, options, content, lineno, con-
tent_offset, block_text, state, state_machine)

Sphinx task directive.

class celery.contrib.sphinx.TaskDocumenter(directive, name, indent=u’‘)
Document task definitions.

celery.contrib.sphinx.setup(app)
Setup Sphinx extension.

celery.contrib.testing.worker

• API Reference

API Reference

Embedded workers for integration tests.

class celery.contrib.testing.worker.TestWorkController(*args, **kwargs)
Worker that can synchronize on being fully started.

ensure_started()
Wait for worker to be fully up and running.

Warning: Worker must be started within a thread for this to work, or it will block forever.

on_consumer_ready(consumer)
Callback called when the Consumer blueprint is fully started.

celery.contrib.testing.worker.setup_app_for_worker(app, loglevel, logfile)
Setup the app to be used for starting an embedded worker.

celery.contrib.testing.worker.start_worker(*args, **kwds)
Start embedded worker.

Yields celery.app.worker.Worker – worker instance.

celery.contrib.testing.app

• API Reference

366 Chapter 2. Contents

Celery Documentation, Release 4.1.0

API Reference

Create Celery app instances used for testing.

celery.contrib.testing.app.DEFAULT_TEST_CONFIG = {u’enable_utc’: True, u’worker_hijack_root_logger’: False, u’timezone’: u’UTC’, u’accept_content’: set([u’json’]), u’worker_log_color’: False, u’broker_url’: u’memory://’, u’result_backend’: u’cache+memory://’, u’broker_heartbeat’: 0}
Contains the default configuration values for the test app.

celery.contrib.testing.app.TestApp(name=None, config=None, enable_logging=False,
set_as_current=False, log=<class ‘cel-
ery.contrib.testing.app.UnitLogging’>, backend=None,
broker=None, **kwargs)

App used for testing.

class celery.contrib.testing.app.Trap
Trap that pretends to be an app but raises an exception instead.

This to protect from code that does not properly pass app instances, then falls back to the current_app.

class celery.contrib.testing.app.UnitLogging(*args, **kwargs)
Sets up logging for the test application.

celery.contrib.testing.app.set_trap(*args, **kwds)
Contextmanager that installs the trap app.

The trap means that anything trying to use the current or default app will raise an exception.

celery.contrib.testing.app.setup_default_app(*args, **kwds)
Setup default app for testing.

Ensures state is clean after the test returns.

celery.contrib.testing.manager

• API Reference

API Reference

Integration testing utilities.

class celery.contrib.testing.manager.Manager(app, **kwargs)
Test helpers for task integration tests.

class celery.contrib.testing.manager.ManagerMixin
Mixin that adds Manager capabilities.

assert_accepted(ids, interval=0.5, desc=u’waiting for tasks to be accepted’, **policy)

assert_received(ids, interval=0.5, desc=u’waiting for tasks to be received’, **policy)

assert_task_worker_state(fun, ids, interval=0.5, **policy)

ensure_not_for_a_while(fun, catch, desc=u’thing’, max_retries=20, interval_start=0.1, inter-
val_step=0.02, interval_max=1.0, emit_warning=False, **options)

Make sure something does not happen (at least for a while).

inspect(timeout=3.0)

is_accepted(ids, **kwargs)

2.12. API Reference 367

Celery Documentation, Release 4.1.0

is_received(ids, **kwargs)

join(r, propagate=False, max_retries=10, **kwargs)

missing_results(r)

query_task_states(ids, timeout=0.5)

query_tasks(ids, timeout=0.5)

remark(s, sep=u’-‘)

retry_over_time(*args, **kwargs)

true_or_raise(fun, *args, **kwargs)

wait_for(fun, catch, desc=u’thing’, args=(), kwargs={}, errback=None, max_retries=10, inter-
val_start=0.1, interval_step=0.5, interval_max=5.0, emit_warning=False, **options)

Wait for event to happen.

The catch argument specifies the exception that means the event has not happened yet.

exception celery.contrib.testing.manager.Sentinel
Signifies the end of something.

celery.contrib.testing.mocks

• API Reference

API Reference

Useful mocks for unit testing.

celery.contrib.testing.mocks.TaskMessage(name, id=None, args=(), kwargs={}, call-
backs=None, errbacks=None, chain=None,
shadow=None, utc=None, **options)

Create task message in protocol 2 format.

celery.contrib.testing.mocks.TaskMessage1(name, id=None, args=(), kwargs={}, call-
backs=None, errbacks=None, chain=None,
**options)

Create task message in protocol 1 format.

celery.contrib.testing.mocks.task_message_from_sig(app, sig, utc=True, TaskMes-
sage=<function TaskMessage>)

Create task message from celery.Signature.

Example

>>> m = task_message_from_sig(app, add.s(2, 2))
>>> amqp_client.basic_publish(m, exchange='ex', routing_key='rkey')

celery.contrib.rdb

Remote Debugger.

368 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Introduction

This is a remote debugger for Celery tasks running in multiprocessing pool workers. Inspired by a lost post on
dzone.com.

Usage

from celery.contrib import rdb
from celery import task

@task()
def add(x, y):

result = x + y
rdb.set_trace()
return result

Environment Variables

CELERY_RDB_HOST

CELERY_RDB_HOST

Hostname to bind to. Default is ‘127.0.01’ (only accessable from localhost).

CELERY_RDB_PORT

CELERY_RDB_PORT

Base port to bind to. Default is 6899. The debugger will try to find an available port starting from the
base port. The selected port will be logged by the worker.

celery.contrib.rdb.set_trace(frame=None)
Set break-point at current location, or a specified frame.

celery.contrib.rdb.debugger()
Return the current debugger instance, or create if none.

class celery.contrib.rdb.Rdb(host=u‘127.0.0.1’, port=6899, port_search_limit=100, port_skew=0,
out=<open file ‘<stdout>’, mode ‘w’>)

Remote debugger.

celery.events

Monitoring Event Receiver+Dispatcher.

Events is a stream of messages sent for certain actions occurring in the worker (and clients if
task_send_sent_event is enabled), used for monitoring purposes.

celery.events.Event(type, _fields=None, __dict__=<type ‘dict’>, __now__=<built-in function time>,
**fields)

Create an event.

2.12. API Reference 369

Celery Documentation, Release 4.1.0

Notes

An event is simply a dictionary: the only required field is type. A timestamp field will be set to the current
time if not provided.

class celery.events.EventDispatcher(connection=None, hostname=None, enabled=True,
channel=None, buffer_while_offline=True,
app=None, serializer=None, groups=None, deliv-
ery_mode=1, buffer_group=None, buffer_limit=24,
on_send_buffered=None)

Dispatches event messages.

Parameters

• connection (kombu.Connection) – Connection to the broker.

• hostname (str) – Hostname to identify ourselves as, by default uses the hostname
returned by anon_nodename().

• groups (Sequence[str]) – List of groups to send events for. send() will ignore
send requests to groups not in this list. If this is None, all events will be sent. Example
groups include "task" and "worker".

• enabled (bool) – Set to False to not actually publish any events, making send()
a no-op.

• channel (kombu.Channel) – Can be used instead of connection to specify an exact
channel to use when sending events.

• buffer_while_offline (bool) – If enabled events will be buffered while the con-
nection is down. flush() must be called as soon as the connection is re-established.

Note: You need to close() this after use.

DISABLED_TRANSPORTS = set([u’sql’])

app = None

close()
Close the event dispatcher.

disable()

enable()

extend_buffer(other)
Copy the outbound buffer of another instance.

flush(errors=True, groups=True)
Flush the outbound buffer.

on_disabled = None

on_enabled = None

publish(type, fields, producer, blind=False, Event=<function Event>, **kwargs)
Publish event using custom Producer.

Parameters

• type (str) – Event type name, with group separated by dash (-). fields: Dictionary
of event fields, must be json serializable.

370 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

• producer (kombu.Producer) – Producer instance to use: only the publish
method will be called.

• retry (bool) – Retry in the event of connection failure.

• retry_policy (Mapping) – Map of custom retry policy options. See
ensure().

• blind (bool) – Don’t set logical clock value (also don’t forward the internal logical
clock).

• Event (Callable) – Event type used to create event. Defaults to Event().

• utcoffset (Callable) – Function returning the current utc offset in hours.

publisher

send(type, blind=False, utcoffset=<function utcoffset>, retry=False, retry_policy=None,
Event=<function Event>, **fields)

Send event.

Parameters

• type (str) – Event type name, with group separated by dash (-).

• retry (bool) – Retry in the event of connection failure.

• retry_policy (Mapping) – Map of custom retry policy options. See
ensure().

• blind (bool) – Don’t set logical clock value (also don’t forward the internal logical
clock).

• Event (Callable) – Event type used to create event, defaults to Event().

• utcoffset (Callable) – unction returning the current utc offset in hours.

• **fields (Any) – Event fields – must be json serializable.

class celery.events.EventReceiver(channel, handlers=None, routing_key=u’#’, node_id=None,
app=None, queue_prefix=None, accept=None,
queue_ttl=None, queue_expires=None)

Capture events.

Parameters

• connection (kombu.Connection) – Connection to the broker.

• handlers (Mapping[Callable]) – Event handlers. This is a map of event type
names and their handlers. The special handler “*” captures all events that don’t have a
handler.

app = None

capture(limit=None, timeout=None, wakeup=True)
Open up a consumer capturing events.

This has to run in the main process, and it will never stop unless EventDispatcher.should_stop
is set to True, or forced via KeyboardInterrupt or SystemExit.

connection

event_from_message(body, localize=True, now=<built-in function time>, tz-
fields=<operator.itemgetter object>, adjust_timestamp=<function ad-
just_timestamp>, CLIENT_CLOCK_SKEW=-1)

get_consumers(Consumer, channel)

2.12. API Reference 371

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/functions.html#bool
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#bool
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/dev/library/exceptions.html#SystemExit

Celery Documentation, Release 4.1.0

itercapture(limit=None, timeout=None, wakeup=True)

on_consume_ready(connection, channel, consumers, wakeup=True, **kwargs)

process(type, event)
Process event by dispatching to configured handler.

wakeup_workers(channel=None)

celery.events.get_exchange(conn)
Get exchange used for sending events.

Parameters conn (kombu.Connection) – Connection used for sending/receving events.

Note: The event type changes if Redis is used as the transport (from topic -> fanout).

celery.events.group_from(type)
Get the group part of an event type name.

Example

>>> group_from('task-sent')
'task'

>>> group_from('custom-my-event')
'custom'

celery.events.receiver

Event receiver implementation.

class celery.events.receiver.EventReceiver(channel, handlers=None, routing_key=u’#’,
node_id=None, app=None, queue_prefix=None,
accept=None, queue_ttl=None,
queue_expires=None)

Capture events.

Parameters

• connection (kombu.Connection) – Connection to the broker.

• handlers (Mapping[Callable]) – Event handlers. This is a map of event type
names and their handlers. The special handler “*” captures all events that don’t have a
handler.

app = None

capture(limit=None, timeout=None, wakeup=True)
Open up a consumer capturing events.

This has to run in the main process, and it will never stop unless EventDispatcher.should_stop
is set to True, or forced via KeyboardInterrupt or SystemExit.

connection

event_from_message(body, localize=True, now=<built-in function time>, tz-
fields=<operator.itemgetter object>, adjust_timestamp=<function ad-
just_timestamp>, CLIENT_CLOCK_SKEW=-1)

372 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/dev/library/exceptions.html#SystemExit

Celery Documentation, Release 4.1.0

get_consumers(Consumer, channel)

itercapture(limit=None, timeout=None, wakeup=True)

on_consume_ready(connection, channel, consumers, wakeup=True, **kwargs)

process(type, event)
Process event by dispatching to configured handler.

wakeup_workers(channel=None)

celery.events.state

Event dispatcher sends events.

class celery.events.dispatcher.EventDispatcher(connection=None, hostname=None,
enabled=True, channel=None,
buffer_while_offline=True, app=None,
serializer=None, groups=None, de-
livery_mode=1, buffer_group=None,
buffer_limit=24, on_send_buffered=None)

Dispatches event messages.

Parameters

• connection (kombu.Connection) – Connection to the broker.

• hostname (str) – Hostname to identify ourselves as, by default uses the hostname
returned by anon_nodename().

• groups (Sequence[str]) – List of groups to send events for. send() will ignore
send requests to groups not in this list. If this is None, all events will be sent. Example
groups include "task" and "worker".

• enabled (bool) – Set to False to not actually publish any events, making send()
a no-op.

• channel (kombu.Channel) – Can be used instead of connection to specify an exact
channel to use when sending events.

• buffer_while_offline (bool) – If enabled events will be buffered while the con-
nection is down. flush() must be called as soon as the connection is re-established.

Note: You need to close() this after use.

DISABLED_TRANSPORTS = set([u’sql’])

app = None

close()
Close the event dispatcher.

disable()

enable()

extend_buffer(other)
Copy the outbound buffer of another instance.

flush(errors=True, groups=True)
Flush the outbound buffer.

2.12. API Reference 373

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

on_disabled = None

on_enabled = None

publish(type, fields, producer, blind=False, Event=<function Event>, **kwargs)
Publish event using custom Producer.

Parameters

• type (str) – Event type name, with group separated by dash (-). fields: Dictionary
of event fields, must be json serializable.

• producer (kombu.Producer) – Producer instance to use: only the publish
method will be called.

• retry (bool) – Retry in the event of connection failure.

• retry_policy (Mapping) – Map of custom retry policy options. See
ensure().

• blind (bool) – Don’t set logical clock value (also don’t forward the internal logical
clock).

• Event (Callable) – Event type used to create event. Defaults to Event().

• utcoffset (Callable) – Function returning the current utc offset in hours.

publisher

send(type, blind=False, utcoffset=<function utcoffset>, retry=False, retry_policy=None,
Event=<function Event>, **fields)

Send event.

Parameters

• type (str) – Event type name, with group separated by dash (-).

• retry (bool) – Retry in the event of connection failure.

• retry_policy (Mapping) – Map of custom retry policy options. See
ensure().

• blind (bool) – Don’t set logical clock value (also don’t forward the internal logical
clock).

• Event (Callable) – Event type used to create event, defaults to Event().

• utcoffset (Callable) – unction returning the current utc offset in hours.

• **fields (Any) – Event fields – must be json serializable.

celery.events.event

Creating events, and event exchange definition.

celery.events.event.Event(type, _fields=None, __dict__=<type ‘dict’>, __now__=<built-in func-
tion time>, **fields)

Create an event.

Notes

An event is simply a dictionary: the only required field is type. A timestamp field will be set to the current
time if not provided.

374 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Producer
https://docs.python.org/dev/library/functions.html#bool
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

celery.events.event.event_exchange = <unbound Exchange celeryev(topic)>
Exchange used to send events on. Note: Use get_exchange() instead, as the type of exchange will vary
depending on the broker connection.

celery.events.event.get_exchange(conn)
Get exchange used for sending events.

Parameters conn (kombu.Connection) – Connection used for sending/receving events.

Note: The event type changes if Redis is used as the transport (from topic -> fanout).

celery.events.event.group_from(type)
Get the group part of an event type name.

Example

>>> group_from('task-sent')
'task'

>>> group_from('custom-my-event')
'custom'

celery.events.state

In-memory representation of cluster state.

This module implements a data-structure used to keep track of the state of a cluster of workers and the tasks it is
working on (by consuming events).

For every event consumed the state is updated, so the state represents the state of the cluster at the time of the last
event.

Snapshots (celery.events.snapshot) can be used to take “pictures” of this state at regular intervals to for
example, store that in a database.

class celery.events.state.Worker(hostname=None, pid=None, freq=60, heartbeats=None,
clock=0, active=None, processed=None, loadavg=None,
sw_ident=None, sw_ver=None, sw_sys=None)

Worker State.

active

alive

clock

event

expire_window = 200

freq

heartbeat_expires

heartbeat_max = 4

heartbeats

2.12. API Reference 375

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection

Celery Documentation, Release 4.1.0

hostname

id

loadavg

pid

processed

status_string

sw_ident

sw_sys

sw_ver

update(f, **kw)

class celery.events.state.Task(uuid=None, cluster_state=None, children=None, **kwargs)
Task State.

args = None

as_dict()

client = None

clock = 0

eta = None

event(type_, timestamp=None, local_received=None, fields=None, precedence=<function
precedence>, items=<function items>, setattr=<built-in function setattr>,
task_event_to_state=<built-in method get of dict object>, RETRY=u’RETRY’)

exception = None

exchange = None

expires = None

failed = None

id

info(fields=None, extra=[])
Information about this task suitable for on-screen display.

kwargs = None

merge_rules = {u’RECEIVED’: (u’name’, u’args’, u’kwargs’, u’parent_id’, u’root_idretries’, u’eta’, u’expires’)}
How to merge out of order events. Disorder is detected by logical ordering (e.g., task-received
must’ve happened before a task-failed event).

A merge rule consists of a state and a list of fields to keep from that state. (RECEIVED, ('name',
'args'), means the name and args fields are always taken from the RECEIVED state, and any values
for these fields received before or after is simply ignored.

name = None

origin

parent

parent_id = None

ready

376 Chapter 2. Contents

Celery Documentation, Release 4.1.0

received = None

rejected = None

result = None

retried = None

retries = None

revoked = None

root

root_id = None

routing_key = None

runtime = None

sent = None

started = None

state = u’PENDING’

succeeded = None

timestamp = None

traceback = None

worker = None

class celery.events.state.State(callback=None, workers=None, tasks=None, taskheap=None,
max_workers_in_memory=5000, max_tasks_in_memory=10000,
on_node_join=None, on_node_leave=None,
tasks_by_type=None, tasks_by_worker=None)

Records clusters state.

class Task(uuid=None, cluster_state=None, children=None, **kwargs)
Task State.

args = None

as_dict()

client = None

clock = 0

eta = None

event(type_, timestamp=None, local_received=None, fields=None, precedence=<function
precedence>, items=<function items>, setattr=<built-in function setattr>,
task_event_to_state=<built-in method get of dict object>, RETRY=u’RETRY’)

exception = None

exchange = None

expires = None

failed = None

id

info(fields=None, extra=[])
Information about this task suitable for on-screen display.

2.12. API Reference 377

Celery Documentation, Release 4.1.0

kwargs = None

merge_rules = {u’RECEIVED’: (u’name’, u’args’, u’kwargs’, u’parent_id’, u’root_idretries’, u’eta’, u’expires’)}

name = None

origin

parent

parent_id = None

ready

received = None

rejected = None

result = None

retried = None

retries = None

revoked = None

root

root_id = None

routing_key = None

runtime = None

sent = None

started = None

state = u’PENDING’

succeeded = None

timestamp = None

traceback = None

worker = None

class State.Worker(hostname=None, pid=None, freq=60, heartbeats=None, clock=0, ac-
tive=None, processed=None, loadavg=None, sw_ident=None, sw_ver=None,
sw_sys=None)

Worker State.

active

alive

clock

event

expire_window = 200

freq

heartbeat_expires

heartbeat_max = 4

heartbeats

378 Chapter 2. Contents

Celery Documentation, Release 4.1.0

hostname

id

loadavg

pid

processed

status_string

sw_ident

sw_sys

sw_ver

update(f, **kw)

State.alive_workers()
Return a list of (seemingly) alive workers.

State.clear(ready=True)

State.clear_tasks(ready=True)

State.event(event)

State.event_count = 0

State.freeze_while(fun, *args, **kwargs)

State.get_or_create_task(uuid)
Get or create task by uuid.

State.get_or_create_worker(hostname, **kwargs)
Get or create worker by hostname.

Returns of (worker, was_created) pairs.

Return type Tuple

State.heap_multiplier = 4

State.itertasks(limit=None)

State.rebuild_taskheap(timetuple=<class ‘kombu.clocks.timetuple’>)

State.task_count = 0

State.task_event(type_, fields)
Deprecated, use event().

State.task_types()
Return a list of all seen task types.

State.tasks_by_time(limit=None, reverse=True)
Generator yielding tasks ordered by time.

Yields Tuples of (uuid, Task).

State.tasks_by_timestamp(limit=None, reverse=True)
Generator yielding tasks ordered by time.

Yields Tuples of (uuid, Task).

State.worker_event(type_, fields)
Deprecated, use event().

2.12. API Reference 379

Celery Documentation, Release 4.1.0

celery.events.state.heartbeat_expires(timestamp, freq=60, expire_window=200, Dec-
imal=<class ‘decimal.Decimal’>, float=<type
‘float’>, isinstance=<built-in function isinstance>)

Return time when heartbeat expires.

celery.beat

The periodic task scheduler.

exception celery.beat.SchedulingError
An error occurred while scheduling a task.

class celery.beat.ScheduleEntry(name=None, task=None, last_run_at=None, to-
tal_run_count=None, schedule=None, args=(), kwargs={},
options={}, relative=False, app=None)

An entry in the scheduler.

Parameters

• name (str) – see name.

• schedule (schedule) – see schedule.

• args (Tuple) – see args.

• kwargs (Dict) – see kwargs.

• options (Dict) – see options.

• last_run_at (datetime) – see last_run_at.

• total_run_count (int) – see total_run_count.

• relative (bool) – Is the time relative to when the server starts?

args = None
Positional arguments to apply.

is_due()
See is_due().

kwargs = None
Keyword arguments to apply.

last_run_at = None
The time and date of when this task was last scheduled.

name = None
The task name

next(last_run_at=None)
Return new instance, with date and count fields updated.

options = None
Task execution options.

schedule = None
The schedule (schedule)

total_run_count = 0
Total number of times this task has been scheduled.

update(other)
Update values from another entry.

380 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

Will only update “editable” fields: task, schedule, args, kwargs, options.

class celery.beat.Scheduler(app, schedule=None, max_interval=None, Producer=None, lazy=False,
sync_every_tasks=None, **kwargs)

Scheduler for periodic tasks.

The celery beat program may instantiate this class multiple times for introspection purposes, but then with
the lazy argument set. It’s important for subclasses to be idempotent when this argument is set.

Parameters

• schedule (schedule) – see schedule.

• max_interval (int) – see max_interval.

• lazy (bool) – Don’t set up the schedule.

Entry
alias of ScheduleEntry

add(**kwargs)

adjust(n, drift=-0.01)

apply_async(entry, producer=None, advance=True, **kwargs)

apply_entry(entry, producer=None)

close()

connection

get_schedule()

info

install_default_entries(data)

is_due(entry)

logger = <logging.Logger object>

max_interval = 300
Maximum time to sleep between re-checking the schedule.

merge_inplace(b)

populate_heap(event_t=<class ‘celery.beat.event_t’>, heapify=<built-in function heapify>)
Populate the heap with the data contained in the schedule.

producer

reserve(entry)

schedule
The schedule dict/shelve.

schedules_equal(old_schedules, new_schedules)

send_task(*args, **kwargs)

set_schedule(schedule)

setup_schedule()

should_sync()

sync()

2.12. API Reference 381

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

sync_every = 180
How often to sync the schedule (3 minutes by default)

sync_every_tasks = None
How many tasks can be called before a sync is forced.

tick(event_t=<class ‘celery.beat.event_t’>, min=<built-in function min>, heappop=<built-in function
heappop>, heappush=<built-in function heappush>)

Run a tick - one iteration of the scheduler.

Executes one due task per call.

Returns preferred delay in seconds for next call.

Return type float

update_from_dict(dict_)

class celery.beat.PersistentScheduler(*args, **kwargs)
Scheduler backed by shelve database.

close()

get_schedule()

info

known_suffixes = (u’‘, u’.db’, u’.dat’, u’.bak’, u’.dir’)

persistence = <module ‘shelve’ from ‘/usr/lib/python2.7/shelve.pyc’>

schedule

set_schedule(schedule)

setup_schedule()

sync()

class celery.beat.Service(app, max_interval=None, schedule_filename=None, scheduler_cls=None)
Celery periodic task service.

get_scheduler(lazy=False, extension_namespace=u’celery.beat_schedulers’)

scheduler

scheduler_cls
alias of PersistentScheduler

start(embedded_process=False)

stop(wait=False)

sync()

celery.beat.EmbeddedService(app, max_interval=None, **kwargs)
Return embedded clock service.

Parameters thread (bool) – Run threaded instead of as a separate process. Uses
multiprocessing by default, if available.

celery.apps.worker

Worker command-line program.

This module is the ‘program-version’ of celery.worker.

382 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/shelve.html#module-shelve
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing

Celery Documentation, Release 4.1.0

It does everything necessary to run that module as an actual application, like installing signal handlers, platform
tweaks, and so on.

class celery.apps.worker.Worker(app=None, hostname=None, **kwargs)
Worker as a program.

emit_banner()

extra_info()

install_platform_tweaks(worker)
Install platform specific tweaks and workarounds.

macOS_proxy_detection_workaround()
See https://github.com/celery/celery/issues#issue/161.

on_after_init(purge=False, no_color=None, redirect_stdouts=None, redi-
rect_stdouts_level=None, **kwargs)

on_before_init(quiet=False, **kwargs)

on_consumer_ready(consumer)

on_init_blueprint()

on_start()

purge_messages()

set_process_status(info)

setup_logging(colorize=None)

startup_info(artlines=True)

tasklist(include_builtins=True, sep=u’\n’, int_=u’celery.’)

celery.apps.beat

Beat command-line program.

This module is the ‘program-version’ of celery.beat.

It does everything necessary to run that module as an actual application, like installing signal handlers and so on.

class celery.apps.beat.Beat(max_interval=None, app=None, socket_timeout=30, pidfile=None,
no_color=None, loglevel=u’WARN’, logfile=None, schedule=None,
scheduler=None, scheduler_cls=None, redirect_stdouts=None, redi-
rect_stdouts_level=None, **kwargs)

Beat as a service.

class Service(app, max_interval=None, schedule_filename=None, scheduler_cls=None)
Celery periodic task service.

get_scheduler(lazy=False, extension_namespace=u’celery.beat_schedulers’)

scheduler

scheduler_cls
alias of PersistentScheduler

start(embedded_process=False)

stop(wait=False)

sync()

2.12. API Reference 383

https://github.com/celery/celery/issues#issue/161

Celery Documentation, Release 4.1.0

Beat.app = None

Beat.banner(service)

Beat.init_loader()

Beat.install_sync_handler(service)
Install a SIGTERM + SIGINT handler saving the schedule.

Beat.run()

Beat.set_process_title()

Beat.setup_logging(colorize=None)

Beat.start_scheduler()

Beat.startup_info(service)

celery.apps.multi

Start/stop/manage workers.

class celery.apps.multi.Cluster(nodes, cmd=None, env=None, on_stopping_preamble=None,
on_send_signal=None, on_still_waiting_for=None,
on_still_waiting_progress=None, on_still_waiting_end=None,
on_node_start=None, on_node_restart=None,
on_node_shutdown_ok=None, on_node_status=None,
on_node_signal=None, on_node_signal_dead=None,
on_node_down=None, on_child_spawn=None,
on_child_signalled=None, on_child_failure=None)

Represent a cluster of workers.

data

find(name)

getpids(on_down=None)

kill()

restart(sig=15)

send_all(sig)

shutdown_nodes(nodes, sig=15, retry=None)

start()

start_node(node)

stop(retry=None, callback=None, sig=15)

stopwait(retry=2, callback=None, sig=15)

class celery.apps.multi.Node(name, cmd=None, append=None, options=None, extra_args=None)
Represents a node in a cluster.

alive()

argv_with_executable

executable

classmethod from_kwargs(name, **kwargs)

384 Chapter 2. Contents

Celery Documentation, Release 4.1.0

getopt(*alt)

handle_process_exit(retcode, on_signalled=None, on_failure=None)

logfile

pid

pidfile

prepare_argv(argv, path)

send(sig, on_error=None)

start(env=None, **kwargs)

celery.worker

Worker implementation.

class celery.worker.WorkController(app=None, hostname=None, **kwargs)
Unmanaged worker instance.

class Blueprint(steps=None, name=None, on_start=None, on_close=None, on_stopped=None)
Worker bootstep blueprint.

default_steps = set([u’celery.worker.components:Consumer’, u’celery.worker.components:Hub’, u’celery.worker.components:Timer’, u’celery.worker.autoscale:WorkerComponent’, u’celery.worker.components:Beat’, u’celery.worker.components:Pool’, u’celery.worker.components:StateDB’])

name = u’Worker’

WorkController.app = None

WorkController.blueprint = None

WorkController.exitcode = None

WorkController.info()

WorkController.on_after_init(**kwargs)

WorkController.on_before_init(**kwargs)

WorkController.on_close()

WorkController.on_consumer_ready(consumer)

WorkController.on_init_blueprint()

WorkController.on_start()

WorkController.on_stopped()

WorkController.pidlock = None

WorkController.pool = None

WorkController.prepare_args(**kwargs)

WorkController.register_with_event_loop(hub)

WorkController.reload(modules=None, reload=False, reloader=None)

WorkController.rusage()

WorkController.semaphore = None

2.12. API Reference 385

Celery Documentation, Release 4.1.0

WorkController.setup_defaults(concurrency=None, loglevel=u’WARN’, log-
file=None, task_events=None, pool=None, con-
sumer_cls=None, timer_cls=None, timer_precision=None,
autoscaler_cls=None, pool_putlocks=None,
pool_restarts=None, optimization=None, O=None, stat-
edb=None, time_limit=None, soft_time_limit=None,
scheduler=None, pool_cls=None, state_db=None,
task_time_limit=None, task_soft_time_limit=None,
scheduler_cls=None, schedule_filename=None,
max_tasks_per_child=None, prefetch_multiplier=None,
disable_rate_limits=None, worker_lost_wait=None,
max_memory_per_child=None, **_kw)

WorkController.setup_includes(includes)

WorkController.setup_instance(queues=None, ready_callback=None, pidfile=None, in-
clude=None, use_eventloop=None, exclude_queues=None,
**kwargs)

WorkController.setup_queues(include, exclude=None)

WorkController.should_use_eventloop()

WorkController.signal_consumer_close()

WorkController.start()

WorkController.state

WorkController.stats()

WorkController.stop(in_sighandler=False, exitcode=None)
Graceful shutdown of the worker server.

WorkController.terminate(in_sighandler=False)
Not so graceful shutdown of the worker server.

celery.worker.request

Task request.

This module defines the Request class, that specifies how tasks are executed.

class celery.worker.request.Request(message, on_ack=<function noop>, hostname=None,
eventer=None, app=None, connection_errors=None, re-
quest_dict=None, task=None, on_reject=<function noop>,
body=None, headers=None, decoded=False, utc=True,
maybe_make_aware=<function maybe_make_aware>,
maybe_iso8601=<function maybe_iso8601>, **opts)

A request for task execution.

acknowledge()
Acknowledge task.

acknowledged = False

app

argsrepr

body

chord

386 Chapter 2. Contents

Celery Documentation, Release 4.1.0

connection_errors

content_encoding

content_type

correlation_id

delivery_info

errbacks

eta

eventer

execute(loglevel=None, logfile=None)
Execute the task in a trace_task().

Parameters

• loglevel (int) – The loglevel used by the task.

• logfile (str) – The logfile used by the task.

execute_using_pool(pool, **kwargs)
Used by the worker to send this task to the pool.

Parameters pool (TaskPool) – The execution pool used to execute this request.

Raises celery.exceptions.TaskRevokedError – if the task was revoked.

expires

group

hostname

humaninfo()

id

info(safe=False)

kwargsrepr

maybe_expire()
If expired, mark the task as revoked.

name

on_accepted(pid, time_accepted)
Handler called when task is accepted by worker pool.

on_ack

on_failure(exc_info, send_failed_event=True, return_ok=False)
Handler called if the task raised an exception.

on_reject

on_retry(exc_info)
Handler called if the task should be retried.

on_success(failed__retval__runtime, **kwargs)
Handler called if the task was successfully processed.

on_timeout(soft, timeout)
Handler called if the task times out.

2.12. API Reference 387

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

parent_id

reject(requeue=False)

reply_to

request_dict

revoked()
If revoked, skip task and mark state.

root_id

send_event(type, **fields)

store_errors

task

task_id

task_name

terminate(pool, signal=None)

time_limits = (None, None)

time_start = None

type

tzlocal

utc

worker_pid = None

celery.worker.state

Internal worker state (global).

This includes the currently active and reserved tasks, statistics, and revoked tasks.

celery.worker.state.SOFTWARE_INFO = {u’sw_sys’: ‘Linux’, u’sw_ident’: u’py-celery’, u’sw_ver’: u‘4.1.0’}
Worker software/platform information.

celery.worker.state.reserved_requests = <_weakrefset.WeakSet object>
set of all reserved Request‘s.

celery.worker.state.active_requests = <_weakrefset.WeakSet object>
set of currently active Request‘s.

celery.worker.state.total_count = Counter()
count of tasks accepted by the worker, sorted by type.

celery.worker.state.revoked = <LimitedSet(0): maxlen=50000, expires=10800, minlen=0>
the list of currently revoked tasks. Persistent if statedb set.

celery.worker.state.task_reserved(request, add_request=<method-wrapper ‘__setitem__’ of
dict object>, add_reserved_request=<bound method Weak-
Set.add of <_weakrefset.WeakSet object>>)

Update global state when a task has been reserved.

celery.worker.state.maybe_shutdown()
Shutdown if flags have been set.

388 Chapter 2. Contents

Celery Documentation, Release 4.1.0

celery.worker.state.task_accepted(request, _all_total_count=[0], add_active_request=<bound
method WeakSet.add of <_weakrefset.WeakSet object>>,
add_to_total_count=<bound method Counter.update of
Counter()>)

Update global state when a task has been accepted.

celery.worker.state.task_ready(request, remove_request=<built-in method pop of dict
object>, discard_active_request=<bound method Weak-
Set.discard of <_weakrefset.WeakSet object>>, dis-
card_reserved_request=<bound method WeakSet.discard of
<_weakrefset.WeakSet object>>)

Update global state when a task is ready.

class celery.worker.state.Persistent(state, filename, clock=None)
Stores worker state between restarts.

This is the persistent data stored by the worker when celery worker --statedb is enabled.

Currently only stores revoked task id’s.

close()

compress()
compress(string[, level]) – Returned compressed string.

Optional arg level is the compression level, in 0-9.

db

decompress()
decompress(string[, wbits[, bufsize]]) – Return decompressed string.

Optional arg wbits indicates the window buffer size and container format. Optional arg bufsize is the
initial output buffer size.

merge()

open()

protocol = 2

save()

storage = <module ‘shelve’ from ‘/usr/lib/python2.7/shelve.pyc’>

sync()

celery.worker.strategy

Task execution strategy (optimization).

celery.worker.strategy.default(task, app, consumer, info=<bound method Logger.info of
<logging.Logger object>>, error=<bound method Logger.error
of <logging.Logger object>>, task_reserved=<function
task_reserved>, to_system_tz=<bound method _Zone.to_system
of <celery.utils.time._Zone object>>, bytes=<type ‘str’>,
buffer_t=<type ‘buffer’>, proto1_to_proto2=<function
proto1_to_proto2>)

Default task execution strategy.

Note: Strategies are here as an optimization, so sadly it’s not very easy to override.

2.12. API Reference 389

Celery Documentation, Release 4.1.0

celery.worker.consumer

Worker consumer.

class celery.worker.consumer.Consumer(on_task_request, init_callback=<function noop>, host-
name=None, pool=None, app=None, timer=None,
controller=None, hub=None, amqheartbeat=None,
worker_options=None, disable_rate_limits=False,
initial_prefetch_count=2, prefetch_multiplier=1,
**kwargs)

Consumer blueprint.

class Blueprint(steps=None, name=None, on_start=None, on_close=None, on_stopped=None)
Consumer blueprint.

default_steps = [u’celery.worker.consumer.connection:Connection’, u’celery.worker.consumer.mingle:Mingle’, u’celery.worker.consumer.events:Events’, u’celery.worker.consumer.gossip:Gossip’, u’celery.worker.consumer.heart:Heart’, u’celery.worker.consumer.control:Control’, u’celery.worker.consumer.tasks:Tasks’, u’celery.worker.consumer.consumer:Evloop’, u’celery.worker.consumer.agent:Agent’]

name = u’Consumer’

shutdown(parent)

Consumer.Strategies
alias of dict

Consumer.add_task_queue(queue, exchange=None, exchange_type=None, routing_key=None,
**options)

Consumer.apply_eta_task(task)
Method called by the timer to apply a task with an ETA/countdown.

Consumer.bucket_for_task(type)

Consumer.call_soon(p, *args, **kwargs)

Consumer.cancel_task_queue(queue)

Consumer.connect()
Establish the broker connection used for consuming tasks.

Retries establishing the connection if the broker_connection_retry setting is enabled

Consumer.connection_for_read(heartbeat=None)

Consumer.connection_for_write(heartbeat=None)

Consumer.create_task_handler(promise=<class ‘vine.promises.promise’>)

Consumer.ensure_connected(conn)

Consumer.init_callback = None

Consumer.loop_args()

Consumer.on_close()

Consumer.on_connection_error_after_connected(exc)

Consumer.on_connection_error_before_connected(exc)

Consumer.on_decode_error(message, exc)
Callback called if an error occurs while decoding a message.

Simply logs the error and acknowledges the message so it doesn’t enter a loop.

Parameters

• message (kombu.Message) – The message received.

390 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#dict

Celery Documentation, Release 4.1.0

• exc (Exception) – The exception being handled.

Consumer.on_invalid_task(body, message, exc)

Consumer.on_ready()

Consumer.on_send_event_buffered()

Consumer.on_unknown_message(body, message)

Consumer.on_unknown_task(body, message, exc)

Consumer.perform_pending_operations()

Consumer.pool = None

Consumer.register_with_event_loop(hub)

Consumer.reset_rate_limits()

Consumer.restart_count = -1

Consumer.shutdown()

Consumer.start()

Consumer.stop()

Consumer.timer = None

Consumer.update_strategies()

class celery.worker.consumer.Agent(c, **kwargs)
Agent starts cell actors.

conditional = True

create(c)

name = u’celery.worker.consumer.agent.Agent’

requires = (step:celery.worker.consumer.connection.Connection{()},)

class celery.worker.consumer.Connection(c, **kwargs)
Service managing the consumer broker connection.

info(c)

name = u’celery.worker.consumer.connection.Connection’

shutdown(c)

start(c)

class celery.worker.consumer.Control(c, **kwargs)
Remote control command service.

include_if(c)

name = u’celery.worker.consumer.control.Control’

requires = (step:celery.worker.consumer.tasks.Tasks{(step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)},)

class celery.worker.consumer.Events(c, task_events=True, without_heartbeat=False, with-
out_gossip=False, **kwargs)

Service used for sending monitoring events.

name = u’celery.worker.consumer.events.Events’

requires = (step:celery.worker.consumer.connection.Connection{()},)

2.12. API Reference 391

https://docs.python.org/dev/library/exceptions.html#Exception
https://pypi.python.org/pypi/cell/

Celery Documentation, Release 4.1.0

shutdown(c)

start(c)

stop(c)

class celery.worker.consumer.Gossip(c, without_gossip=False, interval=5.0, heart-
beat_interval=2.0, **kwargs)

Bootstep consuming events from other workers.

This keeps the logical clock value up to date.

call_task(task)

compatible_transport(app)

compatible_transports = set([u’redis’, u’amqp’])

election(id, topic, action=None)

get_consumers(channel)

label = u’Gossip’

name = u’celery.worker.consumer.gossip.Gossip’

on_elect(event)

on_elect_ack(event)

on_message(prepare, message)

on_node_join(worker)

on_node_leave(worker)

on_node_lost(worker)

periodic()

register_timer()

requires = (step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)

start(c)

class celery.worker.consumer.Heart(c, without_heartbeat=False, heartbeat_interval=None,
**kwargs)

Bootstep sending event heartbeats.

This service sends a worker-heartbeat message every n seconds.

Note: Not to be confused with AMQP protocol level heartbeats.

name = u’celery.worker.consumer.heart.Heart’

requires = (step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)

shutdown(c)

start(c)

stop(c)

class celery.worker.consumer.Mingle(c, without_mingle=False, **kwargs)
Bootstep syncing state with neighbor workers.

At startup, or upon consumer restart, this will:

392 Chapter 2. Contents

Celery Documentation, Release 4.1.0

•Sync logical clocks.

•Sync revoked tasks.

compatible_transport(app)

compatible_transports = set([u’redis’, u’amqp’])

label = u’Mingle’

name = u’celery.worker.consumer.mingle.Mingle’

on_clock_event(c, clock)

on_node_reply(c, nodename, reply)

on_revoked_received(c, revoked)

requires = (step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)

send_hello(c)

start(c)

sync(c)

sync_with_node(c, clock=None, revoked=None, **kwargs)

class celery.worker.consumer.Tasks(c, **kwargs)
Bootstep starting the task message consumer.

info(c)
Return task consumer info.

name = u’celery.worker.consumer.tasks.Tasks’

requires = (step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)

shutdown(c)
Shutdown task consumer.

start(c)
Start task consumer.

stop(c)
Stop task consumer.

celery.worker.consumer.agent

Celery + cell integration.

class celery.worker.consumer.agent.Agent(c, **kwargs)
Agent starts cell actors.

conditional = True

create(c)

name = u’celery.worker.consumer.agent.Agent’

requires = (step:celery.worker.consumer.connection.Connection{()},)

2.12. API Reference 393

https://pypi.python.org/pypi/cell/
https://pypi.python.org/pypi/cell/

Celery Documentation, Release 4.1.0

celery.worker.consumer.connection

Consumer Broker Connection Bootstep.

class celery.worker.consumer.connection.Connection(c, **kwargs)
Service managing the consumer broker connection.

info(c)

name = u’celery.worker.consumer.connection.Connection’

shutdown(c)

start(c)

celery.worker.consumer.consumer

Worker Consumer Blueprint.

This module contains the components responsible for consuming messages from the broker, processing the messages
and keeping the broker connections up and running.

class celery.worker.consumer.consumer.Consumer(on_task_request, init_callback=<function
noop>, hostname=None, pool=None,
app=None, timer=None, con-
troller=None, hub=None, amqheart-
beat=None, worker_options=None,
disable_rate_limits=False,
initial_prefetch_count=2,
prefetch_multiplier=1, **kwargs)

Consumer blueprint.

class Blueprint(steps=None, name=None, on_start=None, on_close=None, on_stopped=None)
Consumer blueprint.

default_steps = [u’celery.worker.consumer.connection:Connection’, u’celery.worker.consumer.mingle:Mingle’, u’celery.worker.consumer.events:Events’, u’celery.worker.consumer.gossip:Gossip’, u’celery.worker.consumer.heart:Heart’, u’celery.worker.consumer.control:Control’, u’celery.worker.consumer.tasks:Tasks’, u’celery.worker.consumer.consumer:Evloop’, u’celery.worker.consumer.agent:Agent’]

name = u’Consumer’

shutdown(parent)

Consumer.Strategies
alias of dict

Consumer.add_task_queue(queue, exchange=None, exchange_type=None, routing_key=None,
**options)

Consumer.apply_eta_task(task)
Method called by the timer to apply a task with an ETA/countdown.

Consumer.bucket_for_task(type)

Consumer.call_soon(p, *args, **kwargs)

Consumer.cancel_task_queue(queue)

Consumer.connect()
Establish the broker connection used for consuming tasks.

Retries establishing the connection if the broker_connection_retry setting is enabled

Consumer.connection_for_read(heartbeat=None)

Consumer.connection_for_write(heartbeat=None)

394 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#dict

Celery Documentation, Release 4.1.0

Consumer.create_task_handler(promise=<class ‘vine.promises.promise’>)

Consumer.ensure_connected(conn)

Consumer.init_callback = None
Optional callback called the first time the worker is ready to receive tasks.

Consumer.loop_args()

Consumer.on_close()

Consumer.on_connection_error_after_connected(exc)

Consumer.on_connection_error_before_connected(exc)

Consumer.on_decode_error(message, exc)
Callback called if an error occurs while decoding a message.

Simply logs the error and acknowledges the message so it doesn’t enter a loop.

Parameters

• message (kombu.Message) – The message received.

• exc (Exception) – The exception being handled.

Consumer.on_invalid_task(body, message, exc)

Consumer.on_ready()

Consumer.on_send_event_buffered()

Consumer.on_unknown_message(body, message)

Consumer.on_unknown_task(body, message, exc)

Consumer.perform_pending_operations()

Consumer.pool = None
The current worker pool instance.

Consumer.register_with_event_loop(hub)

Consumer.reset_rate_limits()

Consumer.restart_count = -1

Consumer.shutdown()

Consumer.start()

Consumer.stop()

Consumer.timer = None
A timer used for high-priority internal tasks, such as sending heartbeats.

Consumer.update_strategies()

class celery.worker.consumer.consumer.Evloop(parent, **kwargs)
Event loop service.

Note: This is always started last.

label = u’event loop’

last = True

2.12. API Reference 395

https://docs.python.org/dev/library/exceptions.html#Exception

Celery Documentation, Release 4.1.0

name = u’celery.worker.consumer.consumer.Evloop’

patch_all(c)

start(c)

celery.worker.consumer.consumer.dump_body(m, body)
Format message body for debugging purposes.

celery.worker.consumer.control

Worker Remote Control Bootstep.

Control -> celery.worker.pidbox -> kombu.pidbox.

The actual commands are implemented in celery.worker.control.

class celery.worker.consumer.control.Control(c, **kwargs)
Remote control command service.

include_if(c)

name = u’celery.worker.consumer.control.Control’

requires = (step:celery.worker.consumer.tasks.Tasks{(step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)},)

celery.worker.consumer.events

Worker Event Dispatcher Bootstep.

Events -> celery.events.EventDispatcher.

class celery.worker.consumer.events.Events(c, task_events=True, without_heartbeat=False,
without_gossip=False, **kwargs)

Service used for sending monitoring events.

name = u’celery.worker.consumer.events.Events’

requires = (step:celery.worker.consumer.connection.Connection{()},)

shutdown(c)

start(c)

stop(c)

celery.worker.consumer.gossip

Worker <-> Worker communication Bootstep.

class celery.worker.consumer.gossip.Gossip(c, without_gossip=False, interval=5.0, heart-
beat_interval=2.0, **kwargs)

Bootstep consuming events from other workers.

This keeps the logical clock value up to date.

call_task(task)

compatible_transport(app)

compatible_transports = set([u’redis’, u’amqp’])

election(id, topic, action=None)

396 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.pidbox.html#module-kombu.pidbox

Celery Documentation, Release 4.1.0

get_consumers(channel)

label = u’Gossip’

name = u’celery.worker.consumer.gossip.Gossip’

on_elect(event)

on_elect_ack(event)

on_message(prepare, message)

on_node_join(worker)

on_node_leave(worker)

on_node_lost(worker)

periodic()

register_timer()

requires = (step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)

start(c)

celery.worker.consumer.heart

Worker Event Heartbeat Bootstep.

class celery.worker.consumer.heart.Heart(c, without_heartbeat=False, heart-
beat_interval=None, **kwargs)

Bootstep sending event heartbeats.

This service sends a worker-heartbeat message every n seconds.

Note: Not to be confused with AMQP protocol level heartbeats.

name = u’celery.worker.consumer.heart.Heart’

requires = (step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)

shutdown(c)

start(c)

stop(c)

celery.worker.consumer.mingle

Worker <-> Worker Sync at startup (Bootstep).

class celery.worker.consumer.mingle.Mingle(c, without_mingle=False, **kwargs)
Bootstep syncing state with neighbor workers.

At startup, or upon consumer restart, this will:

•Sync logical clocks.

•Sync revoked tasks.

compatible_transport(app)

2.12. API Reference 397

Celery Documentation, Release 4.1.0

compatible_transports = set([u’redis’, u’amqp’])

label = u’Mingle’

name = u’celery.worker.consumer.mingle.Mingle’

on_clock_event(c, clock)

on_node_reply(c, nodename, reply)

on_revoked_received(c, revoked)

requires = (step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)

send_hello(c)

start(c)

sync(c)

sync_with_node(c, clock=None, revoked=None, **kwargs)

celery.worker.consumer.tasks

Worker Task Consumer Bootstep.

class celery.worker.consumer.tasks.Tasks(c, **kwargs)
Bootstep starting the task message consumer.

info(c)
Return task consumer info.

name = u’celery.worker.consumer.tasks.Tasks’

requires = (step:celery.worker.consumer.mingle.Mingle{(step:celery.worker.consumer.events.Events{(step:celery.worker.consumer.connection.Connection{()},)},)},)

shutdown(c)
Shutdown task consumer.

start(c)
Start task consumer.

stop(c)
Stop task consumer.

celery.worker.worker

WorkController can be used to instantiate in-process workers.

The command-line interface for the worker is in celery.bin.worker, while the worker program is in celery.
apps.worker.

The worker program is responsible for adding signal handlers, setting up logging, etc. This is a bare-bones worker
without global side-effects (i.e., except for the global state stored in celery.worker.state).

The worker consists of several components, all managed by bootsteps (mod:celery.bootsteps).

class celery.worker.worker.WorkController(app=None, hostname=None, **kwargs)
Unmanaged worker instance.

class Blueprint(steps=None, name=None, on_start=None, on_close=None, on_stopped=None)
Worker bootstep blueprint.

default_steps = set([u’celery.worker.components:Consumer’, u’celery.worker.components:Hub’, u’celery.worker.components:Timer’, u’celery.worker.autoscale:WorkerComponent’, u’celery.worker.components:Beat’, u’celery.worker.components:Pool’, u’celery.worker.components:StateDB’])

398 Chapter 2. Contents

Celery Documentation, Release 4.1.0

name = u’Worker’

WorkController.app = None

WorkController.blueprint = None

WorkController.exitcode = None
contains the exit code if a SystemExit event is handled.

WorkController.info()

WorkController.on_after_init(**kwargs)

WorkController.on_before_init(**kwargs)

WorkController.on_close()

WorkController.on_consumer_ready(consumer)

WorkController.on_init_blueprint()

WorkController.on_start()

WorkController.on_stopped()

WorkController.pidlock = None

WorkController.pool = None

WorkController.prepare_args(**kwargs)

WorkController.register_with_event_loop(hub)

WorkController.reload(modules=None, reload=False, reloader=None)

WorkController.rusage()

WorkController.semaphore = None

WorkController.setup_defaults(concurrency=None, loglevel=u’WARN’, log-
file=None, task_events=None, pool=None, con-
sumer_cls=None, timer_cls=None, timer_precision=None,
autoscaler_cls=None, pool_putlocks=None,
pool_restarts=None, optimization=None, O=None, stat-
edb=None, time_limit=None, soft_time_limit=None,
scheduler=None, pool_cls=None, state_db=None,
task_time_limit=None, task_soft_time_limit=None,
scheduler_cls=None, schedule_filename=None,
max_tasks_per_child=None, prefetch_multiplier=None,
disable_rate_limits=None, worker_lost_wait=None,
max_memory_per_child=None, **_kw)

WorkController.setup_includes(includes)

WorkController.setup_instance(queues=None, ready_callback=None, pidfile=None, in-
clude=None, use_eventloop=None, exclude_queues=None,
**kwargs)

WorkController.setup_queues(include, exclude=None)

WorkController.should_use_eventloop()

WorkController.signal_consumer_close()

WorkController.start()

WorkController.state

2.12. API Reference 399

https://docs.python.org/dev/library/exceptions.html#SystemExit

Celery Documentation, Release 4.1.0

WorkController.stats()

WorkController.stop(in_sighandler=False, exitcode=None)
Graceful shutdown of the worker server.

WorkController.terminate(in_sighandler=False)
Not so graceful shutdown of the worker server.

celery.bin.base

Base command-line interface.

exception celery.bin.base.Error(reason, status=None)
Exception raised by commands.

status = 1

exception celery.bin.base.UsageError(reason, status=None)
Exception raised for malformed arguments.

status = 64

class celery.bin.base.Extensions(namespace, register)
Loads extensions from setuptools entrypoints.

add(cls, name)

load()

class celery.bin.base.Command(app=None, get_app=None, no_color=False, stdout=None,
stderr=None, quiet=False, on_error=None, on_usage_error=None)

Base class for command-line applications.

Parameters

• app (~@Celery) – The app to use.

• get_app (Callable) – Fucntion returning the current app when no app provided.

exception Error(reason, status=None)
Exception raised by commands.

status = 1

Command.Parser
alias of ArgumentParser

exception Command.UsageError(reason, status=None)
Exception raised for malformed arguments.

status = 64

Command.add_append_opt(acc, opt, value)

Command.add_arguments(parser)

Command.add_compat_options(parser, options)

Command.add_preload_arguments(parser)

Command.args = u’‘

Command.args_name = u’args’

400 Chapter 2. Contents

mailto:~@Celery

Celery Documentation, Release 4.1.0

Command.ask(q, choices, default=None)
Prompt user to choose from a tuple of string values.

If a default is not specified the question will be repeated until the user gives a valid choice.

Matching is case insensitive.

Parameters

• q (str) – the question to ask (don’t include questionark)

• choice (Tuple[str]) – tuple of possible choices, must be lowercase.

• default (Any) – Default value if any.

Command.check_args(args)

Command.colored

Command.create_parser(prog_name, command=None)

Command.description = u’‘

Command.die(msg, status=1)

Command.doc = None

Command.early_version(argv)

Command.enable_config_from_cmdline = False

Command.epilog = None

Command.error(s)

Command.execute_from_commandline(argv=None)
Execute application from command-line.

Parameters argv (List[str]) – The list of command-line arguments. Defaults to sys.
argv.

Command.expanduser(value)

Command.find_app(app)

Command.get_cls_by_name(name, imp=<function import_from_cwd>)

Command.get_options()

Command.handle_argv(prog_name, argv, command=None)
Parse arguments from argv and dispatch to run().

Warning: Exits with an error message if supports_args is disabled and argv contains posi-
tional arguments.

Parameters

• prog_name (str) – The program name (argv[0]).

• argv (List[str]) – Rest of command-line arguments.

Command.host_format(s, **extra)

Command.leaf = True

Command.maybe_patch_concurrency(argv=None)

2.12. API Reference 401

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

Command.namespace = None

Command.no_color

Command.node_format(s, nodename, **extra)

Command.on_concurrency_setup()

Command.on_error(exc)

Command.on_usage_error(exc)

Command.option_list = None

Command.out(s, fh=None)

Command.parse_doc(doc)

Command.parse_options(prog_name, arguments, command=None)
Parse the available options.

Command.parse_preload_options(args)

Command.prepare_args(options, args)

Command.prepare_arguments(parser)

Command.prepare_parser(parser)

Command.pretty(n)

Command.pretty_dict_ok_error(n)

Command.pretty_list(n)

Command.process_cmdline_config(argv)

Command.prog_name = u’celery’

Command.respects_app_option = True

Command.run(*args, **options)

Command.run_from_argv(prog_name, argv=None, command=None)

Command.say_chat(direction, title, body=u’‘)

Command.say_remote_command_reply(replies)

Command.setup_app_from_commandline(argv)

Command.show_body = True

Command.show_reply = True

Command.supports_args = True

Command.symbol_by_name(name, imp=<function import_from_cwd>)

Command.usage(command)

Command.verify_args(given, _index=0)

Command.version = u‘4.1.0 (latentcall)’

Command.with_pool_option(argv)
Return tuple of (short_opts, long_opts).

Returns only if the command supports a pool argument, and used to monkey patch eventlet/gevent envi-
ronments as early as possible.

402 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Example

>>> has_pool_option = (['-P'], ['--pool'])

class celery.bin.base.Option(*opts, **attrs)

Instance attributes: _short_opts : [string] _long_opts : [string]

action : string type : string dest : string default : any nargs : int const : any choices : [string] callback :
function callback_args : (any*) callback_kwargs : { string : any } help : string metavar : string

ACTIONS = (‘store’, ‘store_const’, ‘store_true’, ‘store_false’, ‘append’, ‘append_const’, ‘count’, ‘callback’, ‘help’, ‘version’)

ALWAYS_TYPED_ACTIONS = (‘store’, ‘append’)

ATTRS = [’action’, ‘type’, ‘dest’, ‘default’, ‘nargs’, ‘const’, ‘choices’, ‘callback’, ‘callback_args’, ‘callback_kwargs’, ‘help’, ‘metavar’]

CHECK_METHODS = [<function _check_action>, <function _check_type>, <function _check_choice>, <function _check_dest>, <function _check_const>, <function _check_nargs>, <function _check_callback>]

CONST_ACTIONS = (‘store_const’, ‘append_const’)

STORE_ACTIONS = (‘store’, ‘store_const’, ‘store_true’, ‘store_false’, ‘append’, ‘append_const’, ‘count’)

TYPED_ACTIONS = (‘store’, ‘append’, ‘callback’)

TYPES = (‘string’, ‘int’, ‘long’, ‘float’, ‘complex’, ‘choice’)

TYPE_CHECKER = {‘int’: <function check_builtin>, ‘float’: <function check_builtin>, ‘complex’: <function check_builtin>, ‘long’: <function check_builtin>, ‘choice’: <function check_choice>}

check_value(opt, value)

convert_value(opt, value)

get_opt_string()

process(opt, value, values, parser)

take_action(action, dest, opt, value, values, parser)

takes_value()

celery.bin.base.daemon_options(parser, default_pidfile=None, default_logfile=None)
Add daemon options to argparse parser.

celery.bin.celery

• Preload Options

• Daemon Options

• celery inspect

• celery control

• celery migrate

• celery upgrade

• celery shell

• celery result

• celery purge

2.12. API Reference 403

Celery Documentation, Release 4.1.0

• celery call

The celery umbrella command.

Preload Options

These options are supported by all commands, and usually parsed before command-specific arguments.

-A, --app
app instance to use (e.g., module.attr_name)

-b, --broker
URL to broker. default is amqp://guest@localhost//

--loader
name of custom loader class to use.

--config
Name of the configuration module

-C, --no-color
Disable colors in output.

-q, --quiet
Give less verbose output (behavior depends on the sub command).

--help
Show help and exit.

Daemon Options

These options are supported by commands that can detach into the background (daemon). They will be present in any
command that also has a –detach option.

-f, --logfile
Path to log file. If no logfile is specified, stderr is used.

--pidfile
Optional file used to store the process pid.

The program won’t start if this file already exists and the pid is still alive.

--uid
User id, or user name of the user to run as after detaching.

--gid
Group id, or group name of the main group to change to after detaching.

--umask
Effective umask (in octal) of the process after detaching. Inherits the umask of the parent process by default.

--workdir
Optional directory to change to after detaching.

--executable
Executable to use for the detached process.

404 Chapter 2. Contents

Celery Documentation, Release 4.1.0

celery inspect

-t, --timeout
Timeout in seconds (float) waiting for reply

-d, --destination
Comma separated list of destination node names.

-j, --json
Use json as output format.

celery control

-t, --timeout
Timeout in seconds (float) waiting for reply

-d, --destination
Comma separated list of destination node names.

-j, --json
Use json as output format.

celery migrate

-n, --limit
Number of tasks to consume (int).

-t, -timeout
Timeout in seconds (float) waiting for tasks.

-a, --ack-messages
Ack messages from source broker.

-T, --tasks
List of task names to filter on.

-Q, --queues
List of queues to migrate.

-F, --forever
Continually migrate tasks until killed.

celery upgrade

--django
Upgrade a Django project.

--compat
Maintain backwards compatibility.

--no-backup
Don’t backup original files.

2.12. API Reference 405

Celery Documentation, Release 4.1.0

celery shell

-I, --ipython
Force iPython implementation.

-B, --bpython
Force bpython implementation.

-P, --python
Force default Python shell.

-T, --without-tasks
Don’t add tasks to locals.

--eventlet
Use eventlet monkey patches.

--gevent
Use gevent monkey patches.

celery result

-t, --task
Name of task (if custom backend).

--traceback
Show traceback if any.

celery purge

-f, --force
Don’t prompt for verification before deleting messages (DANGEROUS)

celery call

-a, --args
Positional arguments (json format).

-k, --kwargs
Keyword arguments (json format).

--eta
Scheduled time in ISO-8601 format.

--countdown
ETA in seconds from now (float/int).

--expires
Expiry time in float/int seconds, or a ISO-8601 date.

--serializer
Specify serializer to use (default is json).

--queue
Destination queue.

--exchange
Destination exchange (defaults to the queue exchange).

406 Chapter 2. Contents

https://pypi.python.org/pypi/iPython/
https://pypi.python.org/pypi/bpython/
https://pypi.python.org/pypi/eventlet/
https://pypi.python.org/pypi/gevent/

Celery Documentation, Release 4.1.0

--routing-key
Destination routing key (defaults to the queue routing key).

class celery.bin.celery.CeleryCommand(app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,
on_usage_error=None)

Base class for commands.

commands = {u’control’: <class ‘celery.bin.control.control’>, u’status’: <class ‘celery.bin.control.status’>, u’multi’: <class ‘celery.bin.celery.multi’>, u’logtool’: <class ‘celery.bin.logtool.logtool’>, u’amqp’: <class ‘celery.bin.amqp.amqp’>, u’beat’: <class ‘celery.bin.beat.beat’>, u’graph’: <class ‘celery.bin.graph.graph’>, u’inspect’: <class ‘celery.bin.control.inspect’>, u’list’: <class ‘celery.bin.list.list_’>, u’purge’: <class ‘celery.bin.purge.purge’>, u’migrate’: <class ‘celery.bin.migrate.migrate’>, u’shell’: <class ‘celery.bin.shell.shell’>, u’call’: <class ‘celery.bin.call.call’>, u’result’: <class ‘celery.bin.result.result’>, u’report’: <class ‘celery.bin.celery.report’>, u’worker’: <class ‘celery.bin.worker.worker’>, u’upgrade’: <class ‘celery.bin.upgrade.upgrade’>, u’events’: <class ‘celery.bin.events.events’>, u’help’: <class ‘celery.bin.celery.help’>}

enable_config_from_cmdline = True

execute(command, argv=None)

execute_from_commandline(argv=None)

ext_fmt = u’{self.namespace}.commands’

classmethod get_command_info(command, indent=0, color=None, colored=None, app=None)

handle_argv(prog_name, argv, **kwargs)

classmethod list_commands(indent=0, colored=None, app=None)

load_extension_commands()

namespace = u’celery’

on_concurrency_setup()

on_usage_error(exc, command=None)

prepare_prog_name(name)

prog_name = u’celery’

classmethod register_command(fun, name=None)

with_pool_option(argv)

celery.bin.celery.main(argv=None)
Start celery umbrella command.

celery.bin.worker

Program used to start a Celery worker instance.

The celery worker command (previously known as celeryd)

See also:

See Preload Options.

-c, --concurrency
Number of child processes processing the queue. The default is the number of CPUs available on your system.

-P, --pool
Pool implementation:

prefork (default), eventlet, gevent or solo.

-n, --hostname
Set custom hostname (e.g., ‘w1@%%h‘). Expands: %%h (hostname), %%n (name) and %%d, (domain).

2.12. API Reference 407

mailto:'w1@%%h

Celery Documentation, Release 4.1.0

-B, --beat
Also run the celery beat periodic task scheduler. Please note that there must only be one instance of this service.

Note: -B is meant to be used for development purposes. For production environment, you need to start
celery beat separately.

-Q, --queues
List of queues to enable for this worker, separated by comma. By default all configured queues are enabled.
Example: -Q video,image

-X, --exclude-queues
List of queues to disable for this worker, separated by comma. By default all configured queues are enabled.
Example: -X video,image.

-I, --include
Comma separated list of additional modules to import. Example: -I foo.tasks,bar.tasks

-s, --schedule
Path to the schedule database if running with the -B option. Defaults to celerybeat-schedule. The extension
”.db” may be appended to the filename.

-O
Apply optimization profile. Supported: default, fair

--prefetch-multiplier
Set custom prefetch multiplier value for this worker instance.

--scheduler
Scheduler class to use. Default is celery.beat.PersistentScheduler

-S, --statedb
Path to the state database. The extension ‘.db’ may be appended to the filename. Default: {default}

-E, --task-events
Send task-related events that can be captured by monitors like celery events, celerymon, and others.

--without-gossip
Don’t subscribe to other workers events.

--without-mingle
Don’t synchronize with other workers at start-up.

--without-heartbeat
Don’t send event heartbeats.

--heartbeat-interval
Interval in seconds at which to send worker heartbeat

--purge
Purges all waiting tasks before the daemon is started. WARNING: This is unrecoverable, and the tasks will be
deleted from the messaging server.

--time-limit
Enables a hard time limit (in seconds int/float) for tasks.

--soft-time-limit
Enables a soft time limit (in seconds int/float) for tasks.

--max-tasks-per-child
Maximum number of tasks a pool worker can execute before it’s terminated and replaced by a new worker.

408 Chapter 2. Contents

Celery Documentation, Release 4.1.0

--max-memory-per-child
Maximum amount of resident memory, in KiB, that may be consumed by a child process before it will be
replaced by a new one. If a single task causes a child process to exceed this limit, the task will be completed
and the child process will be replaced afterwards. Default: no limit.

--autoscale
Enable autoscaling by providing max_concurrency, min_concurrency. Example:

--autoscale=10,3

(always keep 3 processes, but grow to 10 if necessary)

--detach
Start worker as a background process.

-f, --logfile
Path to log file. If no logfile is specified, stderr is used.

-l, --loglevel
Logging level, choose between DEBUG, INFO, WARNING, ERROR, CRITICAL, or FATAL.

--pidfile
Optional file used to store the process pid.

The program won’t start if this file already exists and the pid is still alive.

--uid
User id, or user name of the user to run as after detaching.

--gid
Group id, or group name of the main group to change to after detaching.

--umask
Effective umask(1) (in octal) of the process after detaching. Inherits the umask(1) of the parent process by
default.

--workdir
Optional directory to change to after detaching.

--executable
Executable to use for the detached process.

class celery.bin.worker.worker(app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,
on_usage_error=None)

Start worker instance.

Examples

$ celery worker --app=proj -l info
$ celery worker -A proj -l info -Q hipri,lopri

$ celery worker -A proj --concurrency=4
$ celery worker -A proj --concurrency=1000 -P eventlet
$ celery worker --autoscale=10,0

add_arguments(parser)

doc = u’Program used to start a Celery worker instance.\n\nThe :program:‘celery worker‘ command (previously known as ‘‘celeryd‘‘)\n\n.. program:: celery worker\n\n.. seealso::\n\n See :ref:‘preload-options‘.\n\n.. cmdoption:: -c, –concurrency\n\n Number of child processes processing the queue. The default\n is the number of CPUs available on your system.\n\n.. cmdoption:: -P, –pool\n\n Pool implementation:\n\n prefork (default), eventlet, gevent or solo.\n\n.. cmdoption:: -n, –hostname\n\n Set custom hostname (e.g., \’w1@%%h\’). Expands: %%h (hostname),\n %%n (name) and %%d, (domain).\n\n.. cmdoption:: -B, –beat\n\n Also run the ‘celery beat‘ periodic task scheduler. Please note that\n there must only be one instance of this service.\n\n .. note::\n\n ‘‘-B‘‘ is meant to be used for development purposes. For production\n environment, you need to start :program:‘celery beat‘ separately.\n\n.. cmdoption:: -Q, –queues\n\n List of queues to enable for this worker, separated by comma.\n By default all configured queues are enabled.\n Example: ‘-Q video,image‘\n\n.. cmdoption:: -X, –exclude-queues\n\n List of queues to disable for this worker, separated by comma.\n By default all configured queues are enabled.\n Example: ‘-X video,image‘.\n\n.. cmdoption:: -I, –include\n\n Comma separated list of additional modules to import.\n Example: -I foo.tasks,bar.tasks\n\n.. cmdoption:: -s, –schedule\n\n Path to the schedule database if running with the ‘-B‘ option.\n Defaults to ‘celerybeat-schedule‘. The extension ”.db” may be\n appended to the filename.\n\n.. cmdoption:: -O\n\n Apply optimization profile. Supported: default, fair\n\n.. cmdoption:: –prefetch-multiplier\n\n Set custom prefetch multiplier value for this worker instance.\n\n.. cmdoption:: –scheduler\n\n Scheduler class to use. Default is\n :class:‘celery.beat.PersistentScheduler‘\n\n.. cmdoption:: -S, –statedb\n\n Path to the state database. The extension \’.db\’ may\n be appended to the filename. Default: {default}\n\n.. cmdoption:: -E, –task-events\n\n Send task-related events that can be captured by monitors like\n :program:‘celery events‘, ‘celerymon‘, and others.\n\n.. cmdoption:: –without-gossip\n\n Don\’t subscribe to other workers events.\n\n.. cmdoption:: –without-mingle\n\n Don\’t synchronize with other workers at start-up.\n\n.. cmdoption:: –without-heartbeat\n\n Don\’t send event heartbeats.\n\n.. cmdoption:: –heartbeat-interval\n\n Interval in seconds at which to send worker heartbeat\n\n.. cmdoption:: –purge\n\n Purges all waiting tasks before the daemon is started.\n **WARNING**: This is unrecoverable, and the tasks will be\n deleted from the messaging server.\n\n.. cmdoption:: –time-limit\n\n Enables a hard time limit (in seconds int/float) for tasks.\n\n.. cmdoption:: –soft-time-limit\n\n Enables a soft time limit (in seconds int/float) for tasks.\n\n.. cmdoption:: –max-tasks-per-child\n\n Maximum number of tasks a pool worker can execute before it\’s\n terminated and replaced by a new worker.\n\n.. cmdoption:: –max-memory-per-child\n\n Maximum amount of resident memory, in KiB, that may be consumed by a\n child process before it will be replaced by a new one. If a single\n task causes a child process to exceed this limit, the task will be\n completed and the child process will be replaced afterwards.\n Default: no limit.\n\n.. cmdoption:: –autoscale\n\n Enable autoscaling by providing\n max_concurrency, min_concurrency. Example::\n\n –autoscale=10,3\n\n (always keep 3 processes, but grow to 10 if necessary)\n\n.. cmdoption:: –detach\n\n Start worker as a background process.\n\n.. cmdoption:: -f, –logfile\n\n Path to log file. If no logfile is specified, ‘stderr‘ is used.\n\n.. cmdoption:: -l, –loglevel\n\n Logging level, choose between ‘DEBUG‘, ‘INFO‘, ‘WARNING‘,\n ‘ERROR‘, ‘CRITICAL‘, or ‘FATAL‘.\n\n.. cmdoption:: –pidfile\n\n Optional file used to store the process pid.\n\n The program won\’t start if this file already exists\n and the pid is still alive.\n\n.. cmdoption:: –uid\n\n User id, or user name of the user to run as after detaching.\n\n.. cmdoption:: –gid\n\n Group id, or group name of the main group to change to after\n detaching.\n\n.. cmdoption:: –umask\n\n Effective :manpage:‘umask(1)‘ (in octal) of the process after detaching.\n Inherits the :manpage:‘umask(1)‘ of the parent process by default.\n\n.. cmdoption:: –workdir\n\n Optional directory to change to after detaching.\n\n.. cmdoption:: –executable\n\n Executable to use for the detached process.\n’

enable_config_from_cmdline = True

2.12. API Reference 409

Celery Documentation, Release 4.1.0

maybe_detach(argv, dopts=[u’-D’, u’–detach’])

namespace = u’worker’

removed_flags = set([u’–force-execv’, u’–no-execv’])

run(hostname=None, pool_cls=None, app=None, uid=None, gid=None, loglevel=None, logfile=None,
pidfile=None, statedb=None, **kwargs)

run_from_argv(prog_name, argv=None, command=None)

supports_args = False

with_pool_option(argv)

celery.bin.worker.main(app=None)
Start worker.

celery.bin.beat

The celery beat command.

See also:

See Preload Options and Daemon Options.

--detach
Detach and run in the background as a daemon.

-s, --schedule
Path to the schedule database. Defaults to celerybeat-schedule. The extension ‘.db’ may be appended to the
filename. Default is {default}.

-S, --scheduler
Scheduler class to use. Default is celery.beat.PersistentScheduler.

--max-interval
Max seconds to sleep between schedule iterations.

-f, --logfile
Path to log file. If no logfile is specified, stderr is used.

-l, --loglevel
Logging level, choose between DEBUG, INFO, WARNING, ERROR, CRITICAL, or FATAL.

--pidfile
File used to store the process pid. Defaults to celerybeat.pid.

The program won’t start if this file already exists and the pid is still alive.

--uid
User id, or user name of the user to run as after detaching.

--gid
Group id, or group name of the main group to change to after detaching.

--umask
Effective umask (in octal) of the process after detaching. Inherits the umask of the parent process by default.

--workdir
Optional directory to change to after detaching.

--executable
Executable to use for the detached process.

410 Chapter 2. Contents

Celery Documentation, Release 4.1.0

class celery.bin.beat.beat(app=None, get_app=None, no_color=False, stdout=None, stderr=None,
quiet=False, on_error=None, on_usage_error=None)

Start the beat periodic task scheduler.

Examples

$ celery beat -l info
$ celery beat -s /var/run/celery/beat-schedule --detach
$ celery beat -S django

The last example requires the django-celery-beat extension package found on PyPI.

add_arguments(parser)

doc = u”The :program:‘celery beat‘ command.\n\n.. program:: celery beat\n\n.. seealso::\n\n See :ref:‘preload-options‘ and :ref:‘daemon-options‘.\n\n.. cmdoption:: –detach\n\n Detach and run in the background as a daemon.\n\n.. cmdoption:: -s, –schedule\n\n Path to the schedule database. Defaults to ‘celerybeat-schedule‘.\n The extension ‘.db’ may be appended to the filename.\n Default is {default}.\n\n.. cmdoption:: -S, –scheduler\n\n Scheduler class to use.\n Default is :class:‘celery.beat.PersistentScheduler‘.\n\n.. cmdoption:: –max-interval\n\n Max seconds to sleep between schedule iterations.\n\n.. cmdoption:: -f, –logfile\n\n Path to log file. If no logfile is specified, ‘stderr‘ is used.\n\n.. cmdoption:: -l, –loglevel\n\n Logging level, choose between ‘DEBUG‘, ‘INFO‘, ‘WARNING‘,\n ‘ERROR‘, ‘CRITICAL‘, or ‘FATAL‘.\n\n.. cmdoption:: –pidfile\n\n File used to store the process pid. Defaults to ‘celerybeat.pid‘.\n\n The program won’t start if this file already exists\n and the pid is still alive.\n\n.. cmdoption:: –uid\n\n User id, or user name of the user to run as after detaching.\n\n.. cmdoption:: –gid\n\n Group id, or group name of the main group to change to after\n detaching.\n\n.. cmdoption:: –umask\n\n Effective umask (in octal) of the process after detaching. Inherits\n the umask of the parent process by default.\n\n.. cmdoption:: –workdir\n\n Optional directory to change to after detaching.\n\n.. cmdoption:: –executable\n\n Executable to use for the detached process.\n”

enable_config_from_cmdline = True

run(detach=False, logfile=None, pidfile=None, uid=None, gid=None, umask=None, workdir=None,
**kwargs)

supports_args = False

celery.bin.events

The celery events command.

See also:

See Preload Options and Daemon Options.

-d, --dump
Dump events to stdout.

-c, --camera
Take snapshots of events using this camera.

--detach
Camera: Detach and run in the background as a daemon.

-F, --freq, --frequency
Camera: Shutter frequency. Default is every 1.0 seconds.

-r, --maxrate
Camera: Optional shutter rate limit (e.g., 10/m).

-l, --loglevel
Logging level, choose between DEBUG, INFO, WARNING, ERROR, CRITICAL, or FATAL. Default is INFO.

-f, --logfile
Path to log file. If no logfile is specified, stderr is used.

--pidfile
Optional file used to store the process pid.

The program won’t start if this file already exists and the pid is still alive.

--uid
User id, or user name of the user to run as after detaching.

2.12. API Reference 411

https://pypi.python.org/pypi/django-celery-beat/

Celery Documentation, Release 4.1.0

--gid
Group id, or group name of the main group to change to after detaching.

--umask
Effective umask (in octal) of the process after detaching. Inherits the umask of the parent process by default.

--workdir
Optional directory to change to after detaching.

--executable
Executable to use for the detached process.

class celery.bin.events.events(app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,
on_usage_error=None)

Event-stream utilities.

Notes

- Start graphical monitor (requires curses)
$ celery events --app=proj
$ celery events -d --app=proj
- Dump events to screen.
$ celery events -b amqp://
- Run snapshot camera.
$ celery events -c <camera> [options]

Examples

$ celery events
$ celery events -d
$ celery events -c mod.attr -F 1.0 --detach --maxrate=100/m -l info

add_arguments(parser)

doc = u”The :program:‘celery events‘ command.\n\n.. program:: celery events\n\n.. seealso::\n\n See :ref:‘preload-options‘ and :ref:‘daemon-options‘.\n\n.. cmdoption:: -d, –dump\n\n Dump events to stdout.\n\n.. cmdoption:: -c, –camera\n\n Take snapshots of events using this camera.\n\n.. cmdoption:: –detach\n\n Camera: Detach and run in the background as a daemon.\n\n.. cmdoption:: -F, –freq, –frequency\n\n Camera: Shutter frequency. Default is every 1.0 seconds.\n\n.. cmdoption:: -r, –maxrate\n\n Camera: Optional shutter rate limit (e.g., 10/m).\n\n.. cmdoption:: -l, –loglevel\n\n Logging level, choose between ‘DEBUG‘, ‘INFO‘, ‘WARNING‘,\n ‘ERROR‘, ‘CRITICAL‘, or ‘FATAL‘. Default is INFO.\n\n.. cmdoption:: -f, –logfile\n\n Path to log file. If no logfile is specified, ‘stderr‘ is used.\n\n.. cmdoption:: –pidfile\n\n Optional file used to store the process pid.\n\n The program won’t start if this file already exists\n and the pid is still alive.\n\n.. cmdoption:: –uid\n\n User id, or user name of the user to run as after detaching.\n\n.. cmdoption:: –gid\n\n Group id, or group name of the main group to change to after\n detaching.\n\n.. cmdoption:: –umask\n\n Effective umask (in octal) of the process after detaching. Inherits\n the umask of the parent process by default.\n\n.. cmdoption:: –workdir\n\n Optional directory to change to after detaching.\n\n.. cmdoption:: –executable\n\n Executable to use for the detached process.\n”

run(dump=False, camera=None, frequency=1.0, maxrate=None, loglevel=u’INFO’, logfile=None,
prog_name=u’celery events’, pidfile=None, uid=None, gid=None, umask=None, workdir=None,
detach=False, **kwargs)

run_evcam(camera, logfile=None, pidfile=None, uid=None, gid=None, umask=None, workdir=None,
detach=False, **kwargs)

run_evdump()

run_evtop()

set_process_status(prog, info=u’‘)

supports_args = False

celery.bin.logtool

The celery logtool command.

412 Chapter 2. Contents

Celery Documentation, Release 4.1.0

class celery.bin.logtool.logtool(app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,
on_usage_error=None)

The celery logtool command.

args = u’<action> [arguments]\n stats [file1|- [file2 [...]]]\n traces [file1|- [file2 [...]]]\n errors [file1|- [file2 [...]]]\n incomplete [file1|- [file2 [...]]]\n debug [file1|- [file2 [...]]]\n ‘

debug(files)

errors(files)

incomplete(files)

run(what=None, *files, **kwargs)

say1(line, *_)

stats(files)

traces(files)

celery.bin.amqp

The celery amqp command.

class celery.bin.amqp.AMQPAdmin(*args, **kwargs)
The celery celery amqp utility.

Shell
alias of AMQShell

connect(conn=None)

note(m)

run()

class celery.bin.amqp.AMQShell(*args, **kwargs)
AMQP API Shell.

Parameters

• connect (Callable) – Function used to connect to the server. Must return kombu.
Connection object.

• silent (bool) – If enabled, the commands won’t have annoying output not relevant
when running in non-shell mode.

amqp = {u’queue.declare’: <celery.bin.amqp.Spec object>, u’queue.purge’: <celery.bin.amqp.Spec object>, u’exchange.delete’: <celery.bin.amqp.Spec object>, u’basic.publish’: <celery.bin.amqp.Spec object>, u’basic.ack’: <celery.bin.amqp.Spec object>, u’exchange.declare’: <celery.bin.amqp.Spec object>, u’queue.delete’: <celery.bin.amqp.Spec object>, u’queue.bind’: <celery.bin.amqp.Spec object>, u’basic.get’: <celery.bin.amqp.Spec object>}

builtins = {u’exit’: u’do_exit’, u’EOF’: u’do_exit’, u’help’: u’do_help’}

chan = None

completenames(text, *ignored)
Return all commands starting with text, for tab-completion.

conn = None

counter = 1

default(line)

2.12. API Reference 413

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

dispatch(cmd, arglist)
Dispatch and execute the command.

Look-up order is: builtins -> amqp.

display_command_help(cmd, short=False)

do_exit(*args)
The ‘exit’ command.

do_help(*args)

get_amqp_api_command(cmd, arglist)
Get AMQP command wrapper.

With a command name and a list of arguments, convert the arguments to Python values and find the
corresponding method on the AMQP channel object.

Returns of (method, processed_args) pairs.

Return type Tuple

get_names()

identchars = u’.’

inc_counter = count(2)

needs_reconnect = False

note(m)
Say something to the user. Disabled if silent.

onecmd(line)
Parse line and execute command.

parseline(parts)
Parse input line.

Returns

of three items: (command_name, arglist, original_line)

Return type Tuple

prompt

prompt_fmt = u’{self.counter}> ‘

respond(retval)
What to do with the return value of a command.

say(m)

class celery.bin.amqp.Spec(*args, **kwargs)
AMQP Command specification.

Used to convert arguments to Python values and display various help and tool-tips.

Parameters

• args (Sequence) – see args.

• returns (str) – see returns.

args = None

414 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

coerce(index, value)
Coerce value for argument at index.

format_arg(name, type, default_value=None)

format_response(response)
Format the return value of this command in a human-friendly way.

format_signature()

returns = None

str_args_to_python(arglist)
Process list of string arguments to values according to spec.

Example

>>> spec = Spec([('queue', str), ('if_unused', bool)])
>>> spec.str_args_to_python('pobox', 'true')
('pobox', True)

class celery.bin.amqp.amqp(app=None, get_app=None, no_color=False, stdout=None, stderr=None,
quiet=False, on_error=None, on_usage_error=None)

AMQP Administration Shell.

Also works for non-AMQP transports (but not ones that store declarations in memory).

Examples

$ # start shell mode
$ celery amqp
$ # show list of commands
$ celery amqp help

$ celery amqp exchange.delete name
$ celery amqp queue.delete queue
$ celery amqp queue.delete queue yes yes

run(*args, **options)

celery.bin.graph

The celery graph command.

class celery.bin.graph.graph(app=None, get_app=None, no_color=False, stdout=None,
stderr=None, quiet=False, on_error=None, on_usage_error=None)

The celery graph command.

args = u’<TYPE> [arguments]\n bootsteps [worker] [consumer]\n workers [enumerate]\n ‘

bootsteps(*args, **kwargs)

run(what=None, *args, **kwargs)

workers(*args, **kwargs)

2.12. API Reference 415

Celery Documentation, Release 4.1.0

celery.bin.multi

Start multiple worker instances from the command-line.

Examples

$ # Single worker with explicit name and events enabled.
$ celery multi start Leslie -E

$ # Pidfiles and logfiles are stored in the current directory
$ # by default. Use --pidfile and --logfile argument to change
$ # this. The abbreviation %n will be expanded to the current
$ # node name.
$ celery multi start Leslie -E --pidfile=/var/run/celery/%n.pid

--logfile=/var/log/celery/%n%I.log

$ # You need to add the same arguments when you restart,
$ # as these aren't persisted anywhere.
$ celery multi restart Leslie -E --pidfile=/var/run/celery/%n.pid

--logfile=/var/run/celery/%n%I.log

$ # To stop the node, you need to specify the same pidfile.
$ celery multi stop Leslie --pidfile=/var/run/celery/%n.pid

$ # 3 workers, with 3 processes each
$ celery multi start 3 -c 3
celery worker -n celery1@myhost -c 3
celery worker -n celery2@myhost -c 3
celery worker -n celery3@myhost -c 3

$ # start 3 named workers
$ celery multi start image video data -c 3
celery worker -n image@myhost -c 3
celery worker -n video@myhost -c 3
celery worker -n data@myhost -c 3

$ # specify custom hostname
$ celery multi start 2 --hostname=worker.example.com -c 3
celery worker -n celery1@worker.example.com -c 3
celery worker -n celery2@worker.example.com -c 3

$ # specify fully qualified nodenames
$ celery multi start foo@worker.example.com bar@worker.example.com -c 3

$ # fully qualified nodenames but using the current hostname
$ celery multi start foo@%h bar@%h

$ # Advanced example starting 10 workers in the background:
$ # * Three of the workers processes the images and video queue
$ # * Two of the workers processes the data queue with loglevel DEBUG
$ # * the rest processes the default' queue.
$ celery multi start 10 -l INFO -Q:1-3 images,video -Q:4,5 data

-Q default -L:4,5 DEBUG

$ # You can show the commands necessary to start the workers with
$ # the 'show' command:
$ celery multi show 10 -l INFO -Q:1-3 images,video -Q:4,5 data

416 Chapter 2. Contents

Celery Documentation, Release 4.1.0

-Q default -L:4,5 DEBUG

$ # Additional options are added to each celery worker' comamnd,
$ # but you can also modify the options for ranges of, or specific workers

$ # 3 workers: Two with 3 processes, and one with 10 processes.
$ celery multi start 3 -c 3 -c:1 10
celery worker -n celery1@myhost -c 10
celery worker -n celery2@myhost -c 3
celery worker -n celery3@myhost -c 3

$ # can also specify options for named workers
$ celery multi start image video data -c 3 -c:image 10
celery worker -n image@myhost -c 10
celery worker -n video@myhost -c 3
celery worker -n data@myhost -c 3

$ # ranges and lists of workers in options is also allowed:
$ # (-c:1-3 can also be written as -c:1,2,3)
$ celery multi start 5 -c 3 -c:1-3 10
celery worker -n celery1@myhost -c 10
celery worker -n celery2@myhost -c 10
celery worker -n celery3@myhost -c 10
celery worker -n celery4@myhost -c 3
celery worker -n celery5@myhost -c 3

$ # lists also works with named workers
$ celery multi start foo bar baz xuzzy -c 3 -c:foo,bar,baz 10
celery worker -n foo@myhost -c 10
celery worker -n bar@myhost -c 10
celery worker -n baz@myhost -c 10
celery worker -n xuzzy@myhost -c 3

class celery.bin.multi.MultiTool(env=None, cmd=None, fh=None, stdout=None, stderr=None,
**kwargs)

The celery multi program.

Cluster(nodes, cmd=None)

DOWN

FAILED

class MultiParser(cmd=u’celery worker’, append=u’‘, prefix=u’‘, suffix=u’‘,
range_prefix=u’celery’)

class Node(name, cmd=None, append=None, options=None, extra_args=None)
Represents a node in a cluster.

alive()

argv_with_executable

executable

classmethod from_kwargs(name, **kwargs)

getopt(*alt)

handle_process_exit(retcode, on_signalled=None, on_failure=None)

logfile

2.12. API Reference 417

Celery Documentation, Release 4.1.0

pid

pidfile

prepare_argv(argv, path)

send(sig, on_error=None)

start(env=None, **kwargs)

MultiTool.MultiParser.parse(p)

MultiTool.OK

MultiTool.OptionParser
alias of NamespacedOptionParser

MultiTool.call_command(command, argv)

MultiTool.cluster_from_argv(argv, cmd=None)

MultiTool.execute_from_commandline(argv, cmd=None)

MultiTool.expand(template, *argv)

MultiTool.get(wanted, *argv)

MultiTool.help(*argv)

MultiTool.kill(*args, **kwargs)

MultiTool.names(*argv, **kwargs)

MultiTool.on_child_failure(node, retcode)

MultiTool.on_child_signalled(node, signum)

MultiTool.on_child_spawn(node, argstr, env)

MultiTool.on_node_down(node)

MultiTool.on_node_restart(node)

MultiTool.on_node_shutdown_ok(node)

MultiTool.on_node_signal(node, sig)

MultiTool.on_node_signal_dead(node)

MultiTool.on_node_start(node)

MultiTool.on_node_status(node, retval)

MultiTool.on_send_signal(node, sig)

MultiTool.on_still_waiting_end()

MultiTool.on_still_waiting_for(nodes)

MultiTool.on_still_waiting_progress(nodes)

MultiTool.on_stopping_preamble(nodes)

MultiTool.reserved_options = [(u’–nosplash’, u’nosplash’), (u’–quiet’, u’quiet’), (u’-q’, u’quiet’), (u’–verbose’, u’verbose’), (u’–no-color’, u’no_color’)]

MultiTool.restart(*args, **kwargs)

MultiTool.show(*argv, **kwargs)

MultiTool.start(*args, **kwargs)

418 Chapter 2. Contents

Celery Documentation, Release 4.1.0

MultiTool.stop(*args, **kwargs)

MultiTool.stop_verify(*args, **kwargs)

MultiTool.stopwait(*args, **kwargs)

MultiTool.validate_arguments(argv)

celery.bin.call

The celery call program used to send tasks from the command-line.

class celery.bin.call.call(app=None, get_app=None, no_color=False, stdout=None, stderr=None,
quiet=False, on_error=None, on_usage_error=None)

Call a task by name.

Examples

$ celery call tasks.add --args='[2, 2]'
$ celery call tasks.add --args='[2, 2]' --countdown=10

add_arguments(parser)

args = u’<task_name>’

args_name = u’posargs’

run(name, *_, **kwargs)

celery.bin.control

The celery control, . inspect and . status programs.

class celery.bin.control.control(*args, **kwargs)
Workers remote control.

Availability: RabbitMQ (AMQP), Redis, and MongoDB transports.

Examples

$ celery control enable_events --timeout=5
$ celery control -d worker1@example.com enable_events
$ celery control -d w1.e.com,w2.e.com enable_events

$ celery control -d w1.e.com add_consumer queue_name
$ celery control -d w1.e.com cancel_consumer queue_name

$ celery control add_consumer queue exchange direct rkey

call(method, arguments, **options)

control_group = u’control’

name = u’control’

2.12. API Reference 419

Celery Documentation, Release 4.1.0

class celery.bin.control.inspect(*args, **kwargs)
Inspect the worker at runtime.

Availability: RabbitMQ (AMQP) and Redis transports.

Examples

$ celery inspect active --timeout=5
$ celery inspect scheduled -d worker1@example.com
$ celery inspect revoked -d w1@e.com,w2@e.com

call(method, arguments, **options)

control_group = u’inspect’

name = u’inspect’

class celery.bin.control.status(app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,
on_usage_error=None)

Show list of workers that are online.

option_list = None

run(*args, **kwargs)

celery.bin.list

The celery list bindings command, used to inspect queue bindings.

class celery.bin.list.list_(app=None, get_app=None, no_color=False, stdout=None,
stderr=None, quiet=False, on_error=None, on_usage_error=None)

Get info from broker.

Note: For RabbitMQ the management plugin is required.

Example

$ celery list bindings

args = u’[bindings]’

list_bindings(management)

run(what=None, *_, **kw)

celery.bin.migrate

The celery migrate command, used to filter and move messages.

class celery.bin.migrate.migrate(app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,
on_usage_error=None)

Migrate tasks from one broker to another.

420 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Warning: This command is experimental, make sure you have a backup of the tasks before you continue.

Example

$ celery migrate amqp://A.example.com amqp://guest@B.example.com//
$ celery migrate redis://localhost amqp://guest@localhost//

add_arguments(parser)

args = u’<source_url> <dest_url>’

on_migrate_task(state, body, message)

progress_fmt = u’Migrating task {state.count}/{state.strtotal}: {body[task]}[{body[id]}]’

run(source, destination, **kwargs)

celery.bin.purge

The celery purge program, used to delete messages from queues.

class celery.bin.purge.purge(app=None, get_app=None, no_color=False, stdout=None,
stderr=None, quiet=False, on_error=None, on_usage_error=None)

Erase all messages from all known task queues.

Warning: There’s no undo operation for this command.

add_arguments(parser)

fmt_empty = u’No messages purged from {qnum} {queues}’

fmt_purged = u’Purged {mnum} {messages} from {qnum} known task {queues}.’

run(force=False, queues=None, exclude_queues=None, **kwargs)

warn_prelude = u’{warning}: This will remove all tasks from {queues}: {names}.\n There is no undo for this operation!\n\n(to skip this prompt use the -f option)\n’

warn_prompt = u’Are you sure you want to delete all tasks’

celery.bin.result

The celery result program, used to inspect task results.

class celery.bin.result.result(app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,
on_usage_error=None)

Gives the return value for a given task id.

Examples

$ celery result 8f511516-e2f5-4da4-9d2f-0fb83a86e500
$ celery result 8f511516-e2f5-4da4-9d2f-0fb83a86e500 -t tasks.add
$ celery result 8f511516-e2f5-4da4-9d2f-0fb83a86e500 --traceback

2.12. API Reference 421

Celery Documentation, Release 4.1.0

add_arguments(parser)

args = u’<task_id>’

run(task_id, *args, **kwargs)

celery.bin.shell

The celery shell program, used to start a REPL.

class celery.bin.shell.shell(app=None, get_app=None, no_color=False, stdout=None,
stderr=None, quiet=False, on_error=None, on_usage_error=None)

Start shell session with convenient access to celery symbols.

The following symbols will be added to the main globals:

•celery: the current application.

•chord, group, chain, chunks, xmap, xstarmap subtask, Task

•all registered tasks.

add_arguments(parser)

invoke_bpython_shell()

invoke_default_shell()

invoke_fallback_shell()

invoke_ipython_shell()

run(*args, **kwargs)

celery.bin.upgrade

The celery upgrade command, used to upgrade from previous versions.

class celery.bin.upgrade.upgrade(app=None, get_app=None, no_color=False, std-
out=None, stderr=None, quiet=False, on_error=None,
on_usage_error=None)

Perform upgrade between versions.

add_arguments(parser)

choices = set([u’settings’])

run(*args, **kwargs)

settings(command, filename, no_backup=False, django=False, compat=False, **kwargs)

usage(command)

Internals

Release 4.1

Date Jul 24, 2017

422 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Contributors Guide to the Code

• Philosophy

– The API>RCP Precedence Rule

• Conventions and Idioms Used

– Classes

* Naming

* Default values

* Exceptions

* Composites

• Applications vs. “single mode”

• Module Overview

• Worker overview

Philosophy

The API>RCP Precedence Rule

• The API is more important than Readability

• Readability is more important than Convention

• Convention is more important than Performance

– . . . unless the code is a proven hot-spot.

More important than anything else is the end-user API. Conventions must step aside, and any suffering is always
alleviated if the end result is a better API.

Conventions and Idioms Used

Classes

Naming

• Follows PEP 8.

• Class names must be CamelCase.

• but not if they’re verbs, verbs shall be lower_case:

- test case for a class
class TestMyClass(Case): # BAD

pass

class test_MyClass(Case): # GOOD
pass

2.13. Internals 423

https://www.python.org/dev/peps/pep-0008

Celery Documentation, Release 4.1.0

- test case for a function
class TestMyFunction(Case): # BAD

pass

class test_my_function(Case): # GOOD
pass

- "action" class (verb)
class UpdateTwitterStatus(object): # BAD

pass

class update_twitter_status(object): # GOOD
pass

Note: Sometimes it makes sense to have a class mask as a function, and there’s precedence for this
in the Python standard library (e.g., contextmanager). Celery examples include signature,
chord, inspect, promise and more..

• Factory functions and methods must be CamelCase (excluding verbs):

class Celery(object):

def consumer_factory(self): # BAD
...

def Consumer(self): # GOOD
...

Default values

Class attributes serve as default values for the instance, as this means that they can be set by either instantiation or
inheritance.

Example:

class Producer(object):
active = True
serializer = 'json'

def __init__(self, serializer=None):
self.serializer = serializer or self.serializer

must check for None when value can be false-y
self.active = active if active is not None else self.active

A subclass can change the default value:

TaskProducer(Producer):
serializer = 'pickle'

and the value can be set at instantiation:

>>> producer = TaskProducer(serializer='msgpack')

424 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Exceptions

Custom exceptions raised by an objects methods and properties should be available as an attribute and documented in
the method/property that throw.

This way a user doesn’t have to find out where to import the exception from, but rather use help(obj) and access
the exception class from the instance directly.

Example:

class Empty(Exception):
pass

class Queue(object):
Empty = Empty

def get(self):
"""Get the next item from the queue.

:raises Queue.Empty: if there are no more items left.

"""
try:

return self.queue.popleft()
except IndexError:

raise self.Empty()

Composites

Similarly to exceptions, composite classes should be override-able by inheritance and/or instantiation. Common sense
can be used when selecting what classes to include, but often it’s better to add one too many: predicting what users
need to override is hard (this has saved us from many a monkey patch).

Example:

class Worker(object):
Consumer = Consumer

def __init__(self, connection, consumer_cls=None):
self.Consumer = consumer_cls or self.Consumer

def do_work(self):
with self.Consumer(self.connection) as consumer:

self.connection.drain_events()

Applications vs. “single mode”

In the beginning Celery was developed for Django, simply because this enabled us get the project started quickly,
while also having a large potential user base.

In Django there’s a global settings object, so multiple Django projects can’t co-exist in the same process space, this
later posed a problem for using Celery with frameworks that don’t have this limitation.

Therefore the app concept was introduced. When using apps you use ‘celery’ objects instead of importing things from
Celery sub-modules, this (unfortunately) also means that Celery essentially has two API’s.

2.13. Internals 425

Celery Documentation, Release 4.1.0

Here’s an example using Celery in single-mode:

from celery import task
from celery.task.control import inspect

from .models import CeleryStats

@task
def write_stats_to_db():

stats = inspect().stats(timeout=1)
for node_name, reply in stats:

CeleryStats.objects.update_stat(node_name, stats)

and here’s the same using Celery app objects:

from .celery import celery
from .models import CeleryStats

@app.task
def write_stats_to_db():

stats = celery.control.inspect().stats(timeout=1)
for node_name, reply in stats:

CeleryStats.objects.update_stat(node_name, stats)

In the example above the actual application instance is imported from a module in the project, this module could look
something like this:

from celery import Celery

app = Celery(broker='amqp://')

Module Overview

• celery.app

This is the core of Celery: the entry-point for all functionality.

• celery.loaders

Every app must have a loader. The loader decides how configuration is read; what happens when
the worker starts; when a task starts and ends; and so on.

The loaders included are:

– app

Custom Celery app instances uses this loader by default.

– default

“single-mode” uses this loader by default.

Extension loaders also exist, for example celery-pylons.

• celery.worker

This is the worker implementation.

• celery.backends

Task result backends live here.

426 Chapter 2. Contents

https://pypi.python.org/pypi/celery-pylons/

Celery Documentation, Release 4.1.0

• celery.apps

Major user applications: worker and beat. The command-line wrappers for these are in celery.bin
(see below)

• celery.bin

Command-line applications. setup.py creates setuptools entry-points for these.

• celery.concurrency

Execution pool implementations (prefork, eventlet, gevent, solo).

• celery.db

Database models for the SQLAlchemy database result backend. (should be moved into celery.
backends.database)

• celery.events

Sending and consuming monitoring events, also includes curses monitor, event dumper and utilities
to work with in-memory cluster state.

• celery.execute.trace

How tasks are executed and traced by the worker, and in eager mode.

• celery.security

Security related functionality, currently a serializer using cryptographic digests.

• celery.task

single-mode interface to creating tasks, and controlling workers.

• t.unit (int distribution)

The unit test suite.

• celery.utils

Utility functions used by the Celery code base. Much of it is there to be compatible across Python
versions.

• celery.contrib

Additional public code that doesn’t fit into any other name-space.

Worker overview

• celery.bin.worker:Worker

This is the command-line interface to the worker.

Responsibilities:

– Daemonization when --detach set,

– dropping privileges when using --uid/ --gid arguments

– Installs “concurrency patches” (eventlet/gevent monkey patches).

app.worker_main(argv) calls instantiate('celery.bin.worker:Worker')(app).
execute_from_commandline(argv)

• app.Worker -> celery.apps.worker:Worker

2.13. Internals 427

Celery Documentation, Release 4.1.0

Responsibilities: * sets up logging and redirects standard outs * installs signal handlers
(TERM/HUP/STOP/USR1 (cry)/USR2 (rdb)) * prints banner and warnings (e.g., pickle warning)
* handles the celery worker --purge argument

• app.WorkController -> celery.worker.WorkController

This is the real worker, built up around bootsteps.

Celery Deprecation Time-line

• Removals for version 5.0

– Old Task API

* Compat Task Modules

– Task attributes

– Modules to Remove

– Settings

* BROKER Settings

* REDIS Result Backend Settings

– Task_sent signal

– Result

* Settings

• Removals for version 2.0

Removals for version 5.0

Old Task API

Compat Task Modules

• Module celery.decorators will be removed:

This means you need to change:

from celery.decorators import task

Into:

from celery import task

• Module celery.task may be removed (not decided)

This means you should change:

from celery.task import task

into:

428 Chapter 2. Contents

Celery Documentation, Release 4.1.0

from celery import task

—and:

from celery.task import Task

into:

from celery import Task

Note that the new Task class no longer uses classmethod() for these methods:

• delay

• apply_async

• retry

• apply

• AsyncResult

• subtask

This also means that you can’t call these methods directly on the class, but have to instantiate the task first:

>>> MyTask.delay() # NO LONGER WORKS

>>> MyTask().delay() # WORKS!

Task attributes

The task attributes:

• queue

• exchange

• exchange_type

• routing_key

• delivery_mode

• priority

is deprecated and must be set by task_routes instead.

Modules to Remove

• celery.execute

This module only contains send_task: this must be replaced with app.send_task instead.

• celery.decorators

See Compat Task Modules

• celery.log

Use app.log instead.

2.13. Internals 429

https://docs.python.org/dev/library/functions.html#classmethod

Celery Documentation, Release 4.1.0

• celery.messaging

Use app.amqp instead.

• celery.registry

Use celery.app.registry instead.

• celery.task.control

Use app.control instead.

• celery.task.schedules

Use celery.schedules instead.

• celery.task.chords

Use celery.chord() instead.

Settings

BROKER Settings

Setting name Replace with
BROKER_HOST broker_url
BROKER_PORT broker_url
BROKER_USER broker_url
BROKER_PASSWORD broker_url
BROKER_VHOST broker_url

REDIS Result Backend Settings

Setting name Replace with
CELERY_REDIS_HOST result_backend
CELERY_REDIS_PORT result_backend
CELERY_REDIS_DB result_backend
CELERY_REDIS_PASSWORD result_backend
REDIS_HOST result_backend
REDIS_PORT result_backend
REDIS_DB result_backend
REDIS_PASSWORD result_backend

Task_sent signal

The task_sent signal will be removed in version 4.0. Please use the before_task_publish and
after_task_publish signals instead.

Result

Apply to: AsyncResult, EagerResult:

• Result.wait() -> Result.get()

430 Chapter 2. Contents

Celery Documentation, Release 4.1.0

• Result.task_id() -> Result.id

• Result.status -> Result.state.

Settings

Setting name Replace with
CELERY_AMQP_TASK_RESULT_EXPIRES result_expires

Removals for version 2.0

• The following settings will be removed:

Setting name Replace with
CELERY_AMQP_CONSUMER_QUEUES task_queues
CELERY_AMQP_CONSUMER_QUEUES task_queues
CELERY_AMQP_EXCHANGE task_default_exchange
CELERY_AMQP_EXCHANGE_TYPE task_default_exchange_type
CELERY_AMQP_CONSUMER_ROUTING_KEY task_queues
CELERY_AMQP_PUBLISHER_ROUTING_KEY task_default_routing_key

• CELERY_LOADER definitions without class name.

For example„ celery.loaders.default, needs to include the class name: cel-
ery.loaders.default.Loader.

• TaskSet.run(). Use celery.task.base.TaskSet.apply_async() instead.

Internals: The worker

• Introduction

• Data structures

– timer

• Components

– Consumer

– Timer

– TaskPool

Introduction

The worker consists of 4 main components: the consumer, the scheduler, the mediator and the task pool. All these
components runs in parallel working with two data structures: the ready queue and the ETA schedule.

Data structures

2.13. Internals 431

Celery Documentation, Release 4.1.0

timer

The timer uses heapq to schedule internal functions. It’s very efficient and can handle hundred of thousands of
entries.

Components

Consumer

Receives messages from the broker using Kombu.

When a message is received it’s converted into a celery.worker.request.Request object.

Tasks with an ETA, or rate-limit are entered into the timer, messages that can be immediately processed are sent to the
execution pool.

ETA and rate-limit are 2 incompatible parameters, and the ETA is overriding the rate-limit by default. A task with
both will follow its ETA and ignore its rate-limit.

Timer

The timer schedules internal functions, like cleanup and internal monitoring, but also it schedules ETA tasks and rate
limited tasks. If the scheduled tasks ETA has passed it is moved to the execution pool.

TaskPool

This is a slightly modified multiprocessing.Pool. It mostly works the same way, except it makes sure all of
the workers are running at all times. If a worker is missing, it replaces it with a new one.

Message Protocol

• Task messages

– Version 2

* Definition

* Example

* Changes from version 1

– Version 1

* Message body

* Example message

– Task Serialization

• Event Messages

– Standard body fields

– Standard event types

432 Chapter 2. Contents

https://docs.python.org/dev/library/heapq.html#module-heapq
https://pypi.python.org/pypi/Kombu/

Celery Documentation, Release 4.1.0

– Example message

Task messages

Version 2

Definition

properties = {
'correlation_id': uuid task_id,
'content_type': string mimetype,
'content_encoding': string encoding,

optional
'reply_to': string queue_or_url,

}
headers = {

'lang': string 'py'
'task': string task,
'id': uuid task_id,
'root_id': uuid root_id,
'parent_id': uuid parent_id,
'group': uuid group_id,

optional
'meth': string method_name,
'shadow': string alias_name,
'eta': iso8601 ETA,
'expires': iso8601 expires,
'retries': int retries,
'timelimit': (soft, hard),
'argsrepr': str repr(args),
'kwargsrepr': str repr(kwargs),
'origin': str nodename,

}

body = (
object[] args,
Mapping kwargs,
Mapping embed {

'callbacks': Signature[] callbacks,
'errbacks': Signature[] errbacks,
'chain': Signature[] chain,
'chord': Signature chord_callback,

}
)

Example

This example sends a task message using version 2 of the protocol:

chain: add(add(add(2, 2), 4), 8) == 2 + 2 + 4 + 8

2.13. Internals 433

Celery Documentation, Release 4.1.0

import json
import os
import socket

task_id = uuid()
args = (2, 2)
kwargs = {}
basic_publish(

message=json.dumps((args, kwargs, None),
application_headers={

'lang': 'py',
'task': 'proj.tasks.add',
'argsrepr': repr(args),
'kwargsrepr': repr(kwargs),
'origin': '@'.join([os.getpid(), socket.gethostname()])

}
properties={

'correlation_id': task_id,
'content_type': 'application/json',
'content_encoding': 'utf-8',

}
)

Changes from version 1

• Protocol version detected by the presence of a task message header.

• Support for multiple languages via the lang header.

Worker may redirect the message to a worker that supports the language.

• Meta-data moved to headers.

This means that workers/intermediates can inspect the message and make decisions based on the
headers without decoding the payload (that may be language specific, for example serialized by the
Python specific pickle serializer).

• Always UTC

There’s no utc flag anymore, so any time information missing timezone will be expected to be in
UTC time.

• Body is only for language specific data.

– Python stores args/kwargs and embedded signatures in body.

– If a message uses raw encoding then the raw data will be passed as a single argument to the function.

– Java/C, etc. can use a Thrift/protobuf document as the body

• origin is the name of the node sending the task.

• Dispatches to actor based on task, meth headers

meth is unused by Python, but may be used in the future to specify class+method pairs.

• Chain gains a dedicated field.

Reducing the chain into a recursive callbacks argument causes problems when the recursion
limit is exceeded.

434 Chapter 2. Contents

Celery Documentation, Release 4.1.0

This is fixed in the new message protocol by specifying a list of signatures, each task will then pop
a task off the list when sending the next message:

execute_task(message)
chain = embed['chain']
if chain:

sig = maybe_signature(chain.pop())
sig.apply_async(chain=chain)

• correlation_id replaces task_id field.

• root_id and parent_id fields helps keep track of work-flows.

• shadow lets you specify a different name for logs, monitors can be used for concepts like tasks that calls a
function specified as argument:

from celery.utils.imports import qualname

class PickleTask(Task):

def unpack_args(self, fun, args=()):
return fun, args

def apply_async(self, args, kwargs, **options):
fun, real_args = self.unpack_args(*args)
return super(PickleTask, self).apply_async(

(fun, real_args, kwargs), shadow=qualname(fun), **options
)

@app.task(base=PickleTask)
def call(fun, args, kwargs):

return fun(*args, **kwargs)

Version 1

In version 1 of the protocol all fields are stored in the message body: meaning workers and intermediate consumers
must deserialize the payload to read the fields.

Message body

• task

string

Name of the task. required

• id

string

Unique id of the task (UUID). required

• args

list

List of arguments. Will be an empty list if not provided.

• kwargs

2.13. Internals 435

Celery Documentation, Release 4.1.0

dictionary

Dictionary of keyword arguments. Will be an empty dictionary if not provided.

• retries

int

Current number of times this task has been retried. Defaults to 0 if not specified.

• eta

string (ISO 8601)

Estimated time of arrival. This is the date and time in ISO 8601 format. If not provided the message isn’t
scheduled, but will be executed asap.

• expires

string (ISO 8601)

New in version 2.0.2.

Expiration date. This is the date and time in ISO 8601 format. If not provided the message will never
expire. The message will be expired when the message is received and the expiration date has been
exceeded.

• taskset

string

The group this task is part of (if any).

• chord

Signature

New in version 2.3.

Signifies that this task is one of the header parts of a chord. The value of this key is the body of the cord
that should be executed when all of the tasks in the header has returned.

• utc

bool

New in version 2.5.

If true time uses the UTC timezone, if not the current local timezone should be used.

• callbacks

<list>Signature

New in version 3.0.

A list of signatures to call if the task exited successfully.

• errbacks

<list>Signature

New in version 3.0.

A list of signatures to call if an error occurs while executing the task.

• timelimit

<tuple>(float, float)

436 Chapter 2. Contents

Celery Documentation, Release 4.1.0

New in version 3.1.

Task execution time limit settings. This is a tuple of hard and soft time limit value (int/float or None for
no limit).

Example value specifying a soft time limit of 3 seconds, and a hard time limit of 10 seconds:

{'timelimit': (3.0, 10.0)}

Example message

This is an example invocation of a celery.task.ping task in json format:

{"id": "4cc7438e-afd4-4f8f-a2f3-f46567e7ca77",
"task": "celery.task.PingTask",
"args": [],
"kwargs": {},
"retries": 0,
"eta": "2009-11-17T12:30:56.527191"}

Task Serialization

Several types of serialization formats are supported using the content_type message header.

The MIME-types supported by default are shown in the following table.

Scheme MIME Type
json application/json
yaml application/x-yaml
pickle application/x-python-serialize
msgpack application/x-msgpack

Event Messages

Event messages are always JSON serialized and can contain arbitrary message body fields.

Since version 4.0. the body can consist of either a single mapping (one event), or a list of mappings (multiple events).

There are also standard fields that must always be present in an event message:

Standard body fields

• string type

The type of event. This is a string containing the category and action separated by a dash delimiter
(e.g., task-succeeded).

• string hostname

The fully qualified hostname of where the event occurred at.

• unsigned long long clock

The logical clock value for this event (Lamport time-stamp).

• float timestamp

2.13. Internals 437

Celery Documentation, Release 4.1.0

The UNIX time-stamp corresponding to the time of when the event occurred.

• signed short utcoffset

This field describes the timezone of the originating host, and is specified as the number of hours
ahead of/behind UTC (e.g., -2 or +1).

• unsigned long long pid

The process id of the process the event originated in.

Standard event types

For a list of standard event types and their fields see the Event Reference.

Example message

This is the message fields for a task-succeeded event:

properties = {
'routing_key': 'task.succeeded',
'exchange': 'celeryev',
'content_type': 'application/json',
'content_encoding': 'utf-8',
'delivery_mode': 1,

}
headers = {

'hostname': 'worker1@george.vandelay.com',
}
body = {

'type': 'task-succeeded',
'hostname': 'worker1@george.vandelay.com',
'pid': 6335,
'clock': 393912923921,
'timestamp': 1401717709.101747,
'utcoffset': -1,
'uuid': '9011d855-fdd1-4f8f-adb3-a413b499eafb',
'retval': '4',
'runtime': 0.0003212,

)

“The Big Instance” Refactor

The app branch is a work-in-progress to remove the use of a global configuration in Celery.

Celery can now be instantiated and several instances of Celery may exist in the same process space. Also, large parts
can be customized without resorting to monkey patching.

Examples

Creating a Celery instance:

438 Chapter 2. Contents

Celery Documentation, Release 4.1.0

>>> from celery import Celery
>>> app = Celery()
>>> app.config_from_object('celeryconfig')
>>> #app.config_from_envvar('CELERY_CONFIG_MODULE')

Creating tasks:

@app.task
def add(x, y):

return x + y

Creating custom Task subclasses:

Task = celery.create_task_cls()

class DebugTask(Task):

def on_failure(self, *args, **kwargs):
import pdb
pdb.set_trace()

@app.task(base=DebugTask)
def add(x, y):

return x + y

Starting a worker:

worker = celery.Worker(loglevel='INFO')

Getting access to the configuration:

celery.conf.task_always_eager = True
celery.conf['task_always_eager'] = True

Controlling workers:

>>> celery.control.inspect().active()
>>> celery.control.rate_limit(add.name, '100/m')
>>> celery.control.broadcast('shutdown')
>>> celery.control.discard_all()

Other interesting attributes:

Establish broker connection.
>>> celery.broker_connection()

AMQP Specific features.
>>> celery.amqp
>>> celery.amqp.Router
>>> celery.amqp.get_queues()
>>> celery.amqp.get_task_consumer()

Loader
>>> celery.loader

Default backend
>>> celery.backend

2.13. Internals 439

Celery Documentation, Release 4.1.0

As you can probably see, this really opens up another dimension of customization abilities.

Deprecated

• celery.task.ping celery.task.PingTask

Inferior to the ping remote control command. Will be removed in Celery 2.3.

Aliases (Pending deprecation)

• celery.task.base

– .Task -> {app.Task / celery.app.task.Task}

• celery.task.sets

– .TaskSet -> {app.TaskSet}

• celery.decorators / celery.task

– .task -> {app.task}

• celery.execute

– .apply_async -> {task.apply_async}

– .apply -> {task.apply}

– .send_task -> {app.send_task}

– .delay_task -> no alternative

• celery.log

– .get_default_logger -> {app.log.get_default_logger}

– .setup_logger -> {app.log.setup_logger}

– .get_task_logger -> {app.log.get_task_logger}

– .setup_task_logger -> {app.log.setup_task_logger}

– .setup_logging_subsystem -> {app.log.setup_logging_subsystem}

– .redirect_stdouts_to_logger -> {app.log.redirect_stdouts_to_logger}

• celery.messaging

– .establish_connection -> {app.broker_connection}

– .with_connection -> {app.with_connection}

– .get_consumer_set -> {app.amqp.get_task_consumer}

– .TaskPublisher -> {app.amqp.TaskPublisher}

– .TaskConsumer -> {app.amqp.TaskConsumer}

– .ConsumerSet -> {app.amqp.ConsumerSet}

• celery.conf.* -> {app.conf}

NOTE: All configuration keys are now named the same as in the configuration. So the key
task_always_eager is accessed as:

440 Chapter 2. Contents

Celery Documentation, Release 4.1.0

>>> app.conf.task_always_eager

instead of:

>>> from celery import conf
>>> conf.always_eager

– .get_queues -> {app.amqp.get_queues}

• celery.task.control

– .broadcast -> {app.control.broadcast}

– .rate_limit -> {app.control.rate_limit}

– .ping -> {app.control.ping}

– .revoke -> {app.control.revoke}

– .discard_all -> {app.control.discard_all}

– .inspect -> {app.control.inspect}

• celery.utils.info

– .humanize_seconds -> celery.utils.time.humanize_seconds

– .textindent -> celery.utils.textindent

– .get_broker_info -> {app.amqp.get_broker_info}

– .format_broker_info -> {app.amqp.format_broker_info}

– .format_queues -> {app.amqp.format_queues}

Default App Usage

To be backward compatible, it must be possible to use all the classes/functions without passing an explicit app instance.

This is achieved by having all app-dependent objects use default_app if the app instance is missing.

from celery.app import app_or_default

class SomeClass(object):

def __init__(self, app=None):
self.app = app_or_default(app)

The problem with this approach is that there’s a chance that the app instance is lost along the way, and everything
seems to be working normally. Testing app instance leaks is hard. The environment variable CELERY_TRACE_APP
can be used, when this is enabled celery.app.app_or_default() will raise an exception whenever it has to
go back to the default app instance.

App Dependency Tree

• {app}

– celery.loaders.base.BaseLoader

– celery.backends.base.BaseBackend

2.13. Internals 441

Celery Documentation, Release 4.1.0

– {app.TaskSet}

* celery.task.sets.TaskSet (app.TaskSet)

– [app.TaskSetResult]

* celery.result.TaskSetResult (app.TaskSetResult)

• {app.AsyncResult}

– celery.result.BaseAsyncResult / celery.result.AsyncResult

• celery.bin.worker.WorkerCommand

– celery.apps.worker.Worker

* celery.worker.WorkerController

· celery.worker.consumer.Consumer

celery.worker.request.Request

celery.events.EventDispatcher

celery.worker.control.ControlDispatch

celery.worker.control.registry.Panel

celery.pidbox.BroadcastPublisher

celery.pidbox.BroadcastConsumer

· celery.beat.EmbeddedService

• celery.bin.events.EvCommand

– celery.events.snapshot.evcam

* celery.events.snapshot.Polaroid

* celery.events.EventReceiver

– celery.events.cursesmon.evtop

* celery.events.EventReceiver

* celery.events.cursesmon.CursesMonitor

– celery.events.dumper

* celery.events.EventReceiver

• celery.bin.amqp.AMQPAdmin

• celery.bin.beat.BeatCommand

– celery.apps.beat.Beat

* celery.beat.Service

· celery.beat.Scheduler

Internal Module Reference

Release 4.1

Date Jul 24, 2017

442 Chapter 2. Contents

Celery Documentation, Release 4.1.0

celery.worker.components

Worker-level Bootsteps.

class celery.worker.components.Timer(parent, **kwargs)
Timer bootstep.

create(w)

name = u’celery.worker.components.Timer’

on_timer_error(exc)

on_timer_tick(delay)

class celery.worker.components.Hub(w, **kwargs)
Worker starts the event loop.

create(w)

include_if(w)

name = u’celery.worker.components.Hub’

requires = (step:celery.worker.components.Timer{()},)

start(w)

stop(w)

terminate(w)

class celery.worker.components.Pool(w, autoscale=None, **kwargs)
Bootstep managing the worker pool.

Describes how to initialize the worker pool, and starts and stops the pool during worker start-up/shutdown.

Adds attributes:
•autoscale
•pool
•max_concurrency
•min_concurrency

close(w)

create(w)

info(w)

name = u’celery.worker.components.Pool’

register_with_event_loop(w, hub)

requires = (step:celery.worker.components.Hub{(step:celery.worker.components.Timer{()},)},)

terminate(w)

class celery.worker.components.Beat(w, beat=False, **kwargs)
Step used to embed a beat process.

Enabled when the beat argument is set.

conditional = True

create(w)

label = u’Beat’

name = u’celery.worker.components.Beat’

2.13. Internals 443

Celery Documentation, Release 4.1.0

class celery.worker.components.StateDB(w, **kwargs)
Bootstep that sets up between-restart state database file.

create(w)

name = u’celery.worker.components.StateDB’

class celery.worker.components.Consumer(parent, **kwargs)
Bootstep starting the Consumer blueprint.

create(w)

last = True

name = u’celery.worker.components.Consumer’

celery.worker.loops

The consumers highly-optimized inner loop.

celery.worker.loops.asynloop(obj, connection, consumer, blueprint, hub, qos, heartbeat, clock,
hbrate=2.0)

Non-blocking event loop.

celery.worker.loops.synloop(obj, connection, consumer, blueprint, hub, qos, heartbeat, clock,
hbrate=2.0, **kwargs)

Fallback blocking event loop for transports that doesn’t support AIO.

celery.worker.heartbeat

Heartbeat service.

This is the internal thread responsible for sending heartbeat events at regular intervals (may not be an actual thread).

class celery.worker.heartbeat.Heart(timer, eventer, interval=None)
Timer sending heartbeats at regular intervals.

Parameters
• timer (kombu.async.timer.Timer) – Timer to use.
• eventer (celery.events.EventDispatcher) – Event dispatcher to use.
• interval (float) – Time in seconds between sending heartbeats. Default is 2

seconds.
start()

stop()

celery.worker.control

Worker remote control command implementations.

class celery.worker.control.Panel(*args, **kwargs)
Global registry of remote control commands.

data = {‘shutdown’: <function shutdown>, ‘time_limit’: <function time_limit>, ‘revoke’: <function revoke>, ‘objgraph’: <function objgraph>, ‘terminate’: <function terminate>, ‘report’: <function report>, ‘cancel_consumer’: <function cancel_consumer>, u’dump_reserved’: <function reserved>, ‘election’: <function election>, ‘conf’: <function conf>, ‘reserved’: <function reserved>, ‘stats’: <function stats>, ‘clock’: <function clock>, ‘active_queues’: <function active_queues>, ‘ping’: <function ping>, ‘disable_events’: <function disable_events>, ‘memdump’: <function memdump>, ‘scheduled’: <function scheduled>, ‘pool_shrink’: <function pool_shrink>, ‘pool_restart’: <function pool_restart>, u’dump_active’: <function active>, ‘registered’: <function registered>, u’dump_schedule’: <function scheduled>, ‘active’: <function active>, ‘autoscale’: <function autoscale>, ‘query_task’: <function query_task>, u’dump_tasks’: <function registered>, ‘add_consumer’: <function add_consumer>, ‘revoked’: <function revoked>, ‘enable_events’: <function enable_events>, u’dump_revoked’: <function revoked>, ‘rate_limit’: <function rate_limit>, u’dump_conf’: <function conf>, ‘memsample’: <function memsample>, ‘pool_grow’: <function pool_grow>, ‘heartbeat’: <function heartbeat>, ‘hello’: <function hello>}

meta = {‘shutdown’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Shutdown worker(s).’, signature=None, args=None, variadic=None), ‘time_limit’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Tell worker(s) to modify the time limit for task by type.’, signature=u’<task_name> <soft_secs> [hard_secs]’, args=[(u’task_name’, <type ‘unicode’>), (u’soft’, <type ‘float’>), (u’hard’, <type ‘float’>)], variadic=None), ‘revoke’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Revoke task by task id (or list of ids).’, signature=u’[id1 [id2 [... [idN]]]]’, args=None, variadic=u’task_id’), ‘objgraph’: controller_info_t(alias=None, type=u’inspect’, visible=True, default_timeout=60.0, help=u’Create graph of uncollected objects (memory-leak debugging).’, signature=u’[object_type=Request] [num=200 [max_depth=10]]’, args=[(u’type’, <type ‘unicode’>), (u’num’, <type ‘int’>), (u’max_depth’, <type ‘int’>)], variadic=None), ‘terminate’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Terminate task by task id (or list of ids).’, signature=u’<signal> [id1 [id2 [... [idN]]]]’, args=[(u’signal’, <type ‘unicode’>)], variadic=u’task_id’), ‘report’: controller_info_t(alias=None, type=u’inspect’, visible=True, default_timeout=1.0, help=u’Information about Celery installation for bug reports.’, signature=None, args=None, variadic=None), ‘cancel_consumer’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Tell worker(s) to stop consuming from task queue by name.’, signature=u’<queue>’, args=[(u’queue’, <type ‘unicode’>)], variadic=None), ‘election’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Hold election.’, signature=None, args=None, variadic=None), ‘conf’: controller_info_t(alias=u’dump_conf’, type=u’inspect’, visible=True, default_timeout=1.0, help=u’List configuration.’, signature=u’[include_defaults=False]’, args=[(u’with_defaults’, <function strtobool>)], variadic=None), ‘reserved’: controller_info_t(alias=u’dump_reserved’, type=u’inspect’, visible=True, default_timeout=1.0, help=u’List of currently reserved tasks, not including scheduled/active.’, signature=None, args=None, variadic=None), ‘stats’: controller_info_t(alias=None, type=u’inspect’, visible=True, default_timeout=1.0, help=u’Request worker statistics/information.’, signature=None, args=None, variadic=None), ‘clock’: controller_info_t(alias=None, type=u’inspect’, visible=True, default_timeout=1.0, help=u’Get current logical clock value.’, signature=None, args=None, variadic=None), ‘active_queues’: controller_info_t(alias=None, type=u’inspect’, visible=True, default_timeout=1.0, help=u’List the task queues a worker are currently consuming from.’, signature=None, args=None, variadic=None), ‘ping’: controller_info_t(alias=None, type=u’inspect’, visible=True, default_timeout=0.2, help=u’Ping worker(s).’, signature=None, args=None, variadic=None), ‘disable_events’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Tell worker(s) to stop sending task-related events.’, signature=None, args=None, variadic=None), ‘memdump’: controller_info_t(alias=None, type=u’inspect’, visible=True, default_timeout=1.0, help=u’Dump statistics of previous memsample requests.’, signature=u’[n_samples=10]’, args=[(u’samples’, <type ‘int’>)], variadic=None), ‘scheduled’: controller_info_t(alias=u’dump_schedule’, type=u’inspect’, visible=True, default_timeout=1.0, help=u’List of currently scheduled ETA/countdown tasks.’, signature=None, args=None, variadic=None), ‘pool_shrink’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Shrink pool by n processes/threads.’, signature=u’[N=1]’, args=[(u’n’, <type ‘int’>)], variadic=None), ‘pool_restart’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Restart execution pool.’, signature=None, args=None, variadic=None), ‘registered’: controller_info_t(alias=u’dump_tasks’, type=u’inspect’, visible=True, default_timeout=1.0, help=u’List of registered tasks.’, signature=u’[attr1 [attr2 [... [attrN]]]]’, args=None, variadic=u’taskinfoitems’), ‘active’: controller_info_t(alias=u’dump_active’, type=u’inspect’, visible=True, default_timeout=1.0, help=u’List of tasks currently being executed.’, signature=None, args=None, variadic=None), ‘autoscale’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Modify autoscale settings.’, signature=u’[max [min]]’, args=[(u’max’, <type ‘int’>), (u’min’, <type ‘int’>)], variadic=None), ‘query_task’: controller_info_t(alias=None, type=u’inspect’, visible=True, default_timeout=1.0, help=u’Query for task information by id.’, signature=u’[id1 [id2 [... [idN]]]]’, args=None, variadic=u’ids’), ‘add_consumer’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Tell worker(s) to consume from task queue by name.’, signature=u’<queue> [exchange [type [routing_key]]]’, args=[(u’queue’, <type ‘unicode’>), (u’exchange’, <type ‘unicode’>), (u’exchange_type’, <type ‘unicode’>), (u’routing_key’, <type ‘unicode’>)], variadic=None), ‘revoked’: controller_info_t(alias=u’dump_revoked’, type=u’inspect’, visible=True, default_timeout=1.0, help=u’List of revoked task-ids.’, signature=None, args=None, variadic=None), ‘enable_events’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Tell worker(s) to send task-related events.’, signature=None, args=None, variadic=None), ‘rate_limit’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Tell worker(s) to modify the rate limit for a task by type.’, signature=u’<task_name> <rate_limit (e.g., 5/s | 5/m | 5/h)>’, args=[(u’task_name’, <type ‘unicode’>), (u’rate_limit’, <type ‘unicode’>)], variadic=None), ‘memsample’: controller_info_t(alias=None, type=u’inspect’, visible=True, default_timeout=1.0, help=u’Sample current RSS memory usage.’, signature=None, args=None, variadic=None), ‘pool_grow’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Grow pool by n processes/threads.’, signature=u’[N=1]’, args=[(u’n’, <type ‘int’>)], variadic=None), ‘heartbeat’: controller_info_t(alias=None, type=u’control’, visible=True, default_timeout=1.0, help=u’Tell worker(s) to send event heartbeat immediately.’, signature=None, args=None, variadic=None), ‘hello’: controller_info_t(alias=None, type=u’inspect’, visible=False, default_timeout=1.0, help=u’Request mingle sync-data.’, signature=None, args=None, variadic=None)}

classmethod register(*args, **kwargs)

444 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.async.timer.html#kombu.async.timer.Timer
https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.1.0

celery.worker.pidbox

Worker Pidbox (remote control).

class celery.worker.pidbox.Pidbox(c)
Worker mailbox.

consumer = None

on_message(body, message)

on_stop()

reset()

shutdown(c)

start(c)

stop(c)

class celery.worker.pidbox.gPidbox(c)
Worker pidbox (greenlet).

loop(c)

on_stop()

reset()

start(c)

celery.worker.autoscale

Pool Autoscaling.

This module implements the internal thread responsible for growing and shrinking the pool according to the current
autoscale settings.

The autoscale thread is only enabled if the celery worker --autoscale option is used.

class celery.worker.autoscale.Autoscaler(pool, max_concurrency, min_concurrency=0,
worker=None, keepalive=30.0, mutex=None)

Background thread to autoscale pool workers.

body()

force_scale_down(n)

force_scale_up(n)

info()

maybe_scale(req=None)

processes

qty

scale_down(n)

scale_up(n)

update(max=None, min=None)

class celery.worker.autoscale.WorkerComponent(w, **kwargs)
Bootstep that starts the autoscaler thread/timer in the worker.

2.13. Internals 445

Celery Documentation, Release 4.1.0

conditional = True

create(w)

label = u’Autoscaler’

name = u’celery.worker.autoscale.WorkerComponent’

register_with_event_loop(w, hub)

requires = (step:celery.worker.components.Pool{(step:celery.worker.components.Hub{(step:celery.worker.components.Timer{()},)},)},)

celery.concurrency

Pool implementation abstract factory, and alias definitions.

celery.concurrency.get_implementation(cls)
Return pool implementation by name.

celery.concurrency.solo

Single-threaded execution pool.

class celery.concurrency.solo.TaskPool(*args, **kwargs)
Solo task pool (blocking, inline, fast).

body_can_be_buffer = True

celery.concurrency.prefork

Prefork execution pool.

Pool implementation using multiprocessing.

class celery.concurrency.prefork.TaskPool(limit=None, putlocks=True, forking_enable=True,
callbacks_propagate=(), app=None, **options)

Multiprocessing Pool implementation.

BlockingPool
alias of Pool

Pool
alias of AsynPool

did_start_ok()

num_processes

on_close()

on_start()

on_stop()
Gracefully stop the pool.

on_terminate()
Force terminate the pool.

register_with_event_loop(loop)

restart()

446 Chapter 2. Contents

https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing

Celery Documentation, Release 4.1.0

uses_semaphore = True

write_stats = None

celery.concurrency.prefork.process_initializer(app, hostname)
Pool child process initializer.

Initialize the child pool process to ensure the correct app instance is used and things like logging works.

celery.concurrency.prefork.process_destructor(pid, exitcode)
Pool child process destructor.

Dispatch the worker_process_shutdown signal.

celery.concurrency.eventlet

Eventlet execution pool.

class celery.concurrency.eventlet.TaskPool(*args, **kwargs)
Eventlet Task Pool.

class Timer(*args, **kwargs)
Eventlet Timer.

cancel(tref)

clear()

queue

TaskPool.grow(n=1)

TaskPool.is_green = True

TaskPool.on_apply(target, args=None, kwargs=None, callback=None, accept_callback=None,
**_)

TaskPool.on_start()

TaskPool.on_stop()

TaskPool.shrink(n=1)

TaskPool.signal_safe = False

TaskPool.task_join_will_block = False

celery.concurrency.gevent

Gevent execution pool.

class celery.concurrency.gevent.TaskPool(*args, **kwargs)
GEvent Pool.

class Timer(*args, **kwargs)

clear()

queue

TaskPool.grow(n=1)

TaskPool.is_green = True

2.13. Internals 447

Celery Documentation, Release 4.1.0

TaskPool.num_processes

TaskPool.on_apply(target, args=None, kwargs=None, callback=None, accept_callback=None,
timeout=None, timeout_callback=None, apply_target=<function ap-
ply_target>, **_)

TaskPool.on_start()

TaskPool.on_stop()

TaskPool.shrink(n=1)

TaskPool.signal_safe = False

TaskPool.task_join_will_block = False

celery.concurrency.base

Base Execution Pool.

class celery.concurrency.base.BasePool(limit=None, putlocks=True, forking_enable=True, call-
backs_propagate=(), app=None, **options)

Task pool.

CLOSE = 2

RUN = 1

TERMINATE = 3

class Timer(schedule=None, on_error=None, on_tick=None, on_start=None, max_interval=None,
**kwargs)

Timer thread.

Note: This is only used for transports not supporting AsyncIO.

class Entry(fun, args=None, kwargs=None)
Schedule Entry.

args

cancel()

canceled

cancelled

fun

kwargs

tref

BasePool.Timer.Schedule
alias of Timer

BasePool.Timer.call_after(*args, **kwargs)

BasePool.Timer.call_at(*args, **kwargs)

BasePool.Timer.call_repeatedly(*args, **kwargs)

BasePool.Timer.cancel(tref)

BasePool.Timer.clear()

448 Chapter 2. Contents

Celery Documentation, Release 4.1.0

BasePool.Timer.empty()

BasePool.Timer.ensure_started()

BasePool.Timer.enter(entry, eta, priority=None)

BasePool.Timer.enter_after(*args, **kwargs)

BasePool.Timer.exit_after(secs, priority=10)

BasePool.Timer.next()

BasePool.Timer.on_tick = None

BasePool.Timer.queue

BasePool.Timer.run()

BasePool.Timer.running = False

BasePool.Timer.stop()

BasePool.active

BasePool.apply_async(target, args=[], kwargs={}, **options)
Equivalent of the apply() built-in function.

Callbacks should optimally return as soon as possible since otherwise the thread which handles the result
will get blocked.

BasePool.body_can_be_buffer = False

BasePool.close()

BasePool.did_start_ok()

BasePool.flush()

BasePool.info

BasePool.is_green = False
set to true if pool uses greenlets.

BasePool.maintain_pool(*args, **kwargs)

BasePool.num_processes

BasePool.on_apply(*args, **kwargs)

BasePool.on_close()

BasePool.on_hard_timeout(job)

BasePool.on_soft_timeout(job)

BasePool.on_start()

BasePool.on_stop()

BasePool.on_terminate()

BasePool.register_with_event_loop(loop)

BasePool.restart()

BasePool.signal_safe = True
set to true if the pool can be shutdown from within a signal handler.

BasePool.start()

2.13. Internals 449

Celery Documentation, Release 4.1.0

BasePool.stop()

BasePool.task_join_will_block = True

BasePool.terminate()

BasePool.terminate_job(pid, signal=None)

BasePool.uses_semaphore = False
only used by multiprocessing pool

celery.concurrency.base.apply_target(target, args=(), kwargs={}, callback=None, ac-
cept_callback=None, pid=None, getpid=<built-in
function getpid>, propagate=(), monotonic=<function
monotonic>, **)

Apply function within pool context.

celery.backends

Result Backends.

celery.backends.get_backend_by_url(backend=None, loader=None)
Deprecated alias to celery.app.backends.by_url().

celery.backends.get_backend_cls(backend=None, loader=None, **kwargs)
Deprecated alias to celery.app.backends.by_name().

celery.backends.base

Result backend base classes.

• BaseBackend defines the interface.

• KeyValueStoreBackend is a common base class using K/V semantics like _get and _put.

class celery.backends.base.BaseBackend(app, serializer=None, max_cached_results=None,
accept=None, expires=None, expires_type=None,
url=None, **kwargs)

Base (synchronous) result backend.

class celery.backends.base.KeyValueStoreBackend(*args, **kwargs)
Result backend base class for key/value stores.

class celery.backends.base.DisabledBackend(app, serializer=None,
max_cached_results=None, accept=None,
expires=None, expires_type=None, url=None,
**kwargs)

Dummy result backend.

as_uri(*args, **kwargs)

ensure_chords_allowed()

get_many(*args, **kwargs)

get_result(*args, **kwargs)

get_state(*args, **kwargs)

get_status(*args, **kwargs)

get_task_meta_for(*args, **kwargs)

450 Chapter 2. Contents

Celery Documentation, Release 4.1.0

get_traceback(*args, **kwargs)

store_result(*args, **kwargs)

wait_for(*args, **kwargs)

celery.backends.async

Async I/O backend support utilities.

class celery.backends.async.AsyncBackendMixin
Mixin for backends that enables the async API.

add_pending_result(result, weak=False, start_drainer=True)

add_pending_results(results, weak=False)

is_async

iter_native(result, no_ack=True, **kwargs)

on_result_fulfilled(result)

remove_pending_result(result)

wait_for_pending(result, callback=None, propagate=True, **kwargs)

class celery.backends.async.BaseResultConsumer(backend, app, accept, pending_results,
pending_messages)

Manager responsible for consuming result messages.

cancel_for(task_id)

consume_from(task_id)

drain_events(timeout=None)

drain_events_until(p, timeout=None, on_interval=None)

on_after_fork()

on_out_of_band_result(message)

on_state_change(meta, message)

on_wait_for_pending(result, timeout=None, **kwargs)

start(initial_task_id, **kwargs)

stop()

class celery.backends.async.Drainer(result_consumer)
Result draining service.

drain_events_until(p, timeout=None, on_interval=None, wait=None)

start()

stop()

wait_for(p, wait, timeout=None)

celery.backends.async.register_drainer(name)
Decorator used to register a new result drainer type.

2.13. Internals 451

Celery Documentation, Release 4.1.0

celery.backends.rpc

The RPC result backend for AMQP brokers.

RPC-style result backend, using reply-to and one queue per client.

exception celery.backends.rpc.BacklogLimitExceeded
Too much state history to fast-forward.

class celery.backends.rpc.RPCBackend(app, connection=None, exchange=None, ex-
change_type=None, persistent=None, serializer=None,
auto_delete=True, **kwargs)

Base class for the RPC result backend.

exception BacklogLimitExceeded
Exception raised when there are too many messages for a task id.

class RPCBackend.Consumer(channel, queues=None, no_ack=None, auto_declare=None, call-
backs=None, on_decode_error=None, on_message=None, ac-
cept=None, prefetch_count=None, tag_prefix=None)

Consumer that requires manual declaration of queues.

auto_declare = False

class RPCBackend.Exchange(name=u’‘, type=u’‘, channel=None, **kwargs)
An Exchange declaration.

Parameters
• name (str) – See name.
• type (str) – See type.
• channel (kombu.Connection, ChannelT) – See channel.
• durable (bool) – See durable.
• auto_delete (bool) – See auto_delete.
• delivery_mode (enum) – See delivery_mode.
• arguments (Dict) – See arguments.
• no_declare (bool) – See no_declare

name
str – Name of the exchange. Default is no name (the default exchange).

type
str – This description of AMQP exchange types was shamelessly stolen from the blog post ‘AMQP
in 10 minutes: Part 4‘_ by Rajith Attapattu. Reading this article is recommended if you’re new to
amqp.

“AMQP defines four default exchange types (routing algorithms) that covers most of the common
messaging use cases. An AMQP broker can also define additional exchange types, so see your
broker manual for more information about available exchange types.

•direct (default)

Direct match between the routing key in the message, and the rout-
ing criteria used when a queue is bound to this exchange.

•topic

Wildcard match between the routing key and the routing pattern
specified in the exchange/queue binding. The routing key is treated
as zero or more words delimited by ”.” and supports special wild-
card characters. “*” matches a single word and “#” matches zero
or more words.

•fanout

452 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/enum.html#module-enum
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

Queues are bound to this exchange with no arguments. Hence any
message sent to this exchange will be forwarded to all queues bound
to this exchange.

•headers

Queues are bound to this exchange with a table of arguments con-
taining headers and values (optional). A special argument named
“x-match” determines the matching algorithm, where “all” implies
an AND (all pairs must match) and “any” implies OR (at least one
pair must match).

arguments is used to specify the arguments.

channel
ChannelT – The channel the exchange is bound to (if bound).

durable
bool – Durable exchanges remain active when a server restarts. Non-durable exchanges (transient
exchanges) are purged when a server restarts. Default is True.

auto_delete
bool – If set, the exchange is deleted when all queues have finished using it. Default is False.

delivery_mode
enum – The default delivery mode used for messages. The value is an integer, or alias string.

•1 or “transient”
The message is transient. Which means it is stored in memory only, and is lost
if the server dies or restarts.

•2 or “persistent” (default) The message is persistent. Which means the message is stored
both in-memory, and on disk, and therefore preserved if the server dies or restarts.

The default value is 2 (persistent).

arguments
Dict – Additional arguments to specify when the exchange is declared.

no_declare
bool – Never declare this exchange (declare() does nothing).

Message(body, delivery_mode=None, properties=None, **kwargs)
Create message instance to be sent with publish().

Parameters

• body (Any) – Message body.

• delivery_mode (bool) – Set custom delivery mode. Defaults to
delivery_mode.

• priority (int) – Message priority, 0 to broker configured max priority,
where higher is better.

• content_type (str) – The messages content_type. If content_type
is set, no serialization occurs as it is assumed this is either a binary ob-
ject, or you’ve done your own serialization. Leave blank if using built-in
serialization as our library properly sets content_type.

• content_encoding (str) – The character set in which this object is
encoded. Use “binary” if sending in raw binary objects. Leave blank if
using built-in serialization as our library properly sets content_encoding.

• properties (Dict) – Message properties.

• headers (Dict) – Message headers.

2.13. Internals 453

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

PERSISTENT_DELIVERY_MODE = 2

TRANSIENT_DELIVERY_MODE = 1

attrs = ((u’name’, None), (u’type’, None), (u’arguments’, None), (u’durable’, <type ‘bool’>), (u’passive’, <type ‘bool’>), (u’auto_delete’, <type ‘bool’>), (u’delivery_mode’, <function <lambda>>), (u’no_declare’, <type ‘bool’>))

auto_delete = False

bind_to(exchange=u’‘, routing_key=u’‘, arguments=None, nowait=False, channel=None,
**kwargs)

Bind the exchange to another exchange.
Parameters nowait (bool) – If set the server will not respond, and the call will not

block waiting for a response. Default is False.

binding(routing_key=u’‘, arguments=None, unbind_arguments=None)

can_cache_declaration

declare(nowait=False, passive=None, channel=None)
Declare the exchange.

Creates the exchange on the broker, unless passive is set in which case it will only assert that the
exchange exists.
Argument:

nowait (bool): If set the server will not respond, and a response will not be waited for.
Default is False.

delete(if_unused=False, nowait=False)
Delete the exchange declaration on server.

Parameters

• if_unused (bool) – Delete only if the exchange has no bindings. De-
fault is False.

• nowait (bool) – If set the server will not respond, and a response will
not be waited for. Default is False.

delivery_mode = None

durable = True

name = u’‘

no_declare = False

passive = False

publish(message, routing_key=None, mandatory=False, immediate=False, exchange=None)
Publish message.

Parameters

• message (Union[kombu.Message, str, bytes]) – Message
to publish.

• routing_key (str) – Message routing key.

• mandatory (bool) – Currently not supported.

• immediate (bool) – Currently not supported.

type = u’direct’

unbind_from(source=u’‘, routing_key=u’‘, nowait=False, arguments=None, channel=None)
Delete previously created exchange binding from the server.

454 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#bytes
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

class RPCBackend.Producer(channel, exchange=None, routing_key=None, serializer=None,
auto_declare=None, compression=None, on_return=None)

Message Producer.
Parameters

• channel (kombu.Connection, ChannelT) – Connection or channel.
• exchange (Exchange, str) – Optional default exchange.
• routing_key (str) – Optional default routing key.
• serializer (str) – Default serializer. Default is “json”.
• compression (str) – Default compression method. Default is no compres-

sion.
• auto_declare (bool) – Automatically declare the default exchange at in-

stantiation. Default is True.
• on_return (Callable) – Callback to call for undeliverable messages, when

the mandatory or immediate arguments to publish() is used. This callback
needs the following signature: (exception, exchange, routing_key, message).
Note that the producer needs to drain events to use this feature.

auto_declare = True

channel

close()

compression = None

connection

declare()
Declare the exchange.

Note: This happens automatically at instantiation when the auto_declare flag is enabled.

exchange = None

maybe_declare(entity, retry=False, **retry_policy)
Declare exchange if not already declared during this session.

on_return = None

publish(body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False,
priority=0, content_type=None, content_encoding=None, serializer=None, head-
ers=None, compression=None, exchange=None, retry=False, retry_policy=None, de-
clare=None, expiration=None, **properties)

Publish message to the specified exchange.
Parameters

• body (Any) – Message body.

• routing_key (str) – Message routing key.

• delivery_mode (enum) – See delivery_mode.

• mandatory (bool) – Currently not supported.

• immediate (bool) – Currently not supported.

• priority (int) – Message priority. A number between 0 and 9.

• content_type (str) – Content type. Default is auto-detect.

• content_encoding (str) – Content encoding. Default is auto-detect.

• serializer (str) – Serializer to use. Default is auto-detect.

2.13. Internals 455

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/enum.html#module-enum
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

• compression (str) – Compression method to use. Default is none.

• headers (Dict) – Mapping of arbitrary headers to pass along with the
message body.

• exchange (Exchange, str) – Override the exchange. Note that this
exchange must have been declared.

• declare (Sequence[EntityT]) – Optional list of required entities
that must have been declared before publishing the message. The entities
will be declared using maybe_declare().

• retry (bool) – Retry publishing, or declaring entities if the connection
is lost.

• retry_policy (Dict) – Retry configuration, this is the keywords sup-
ported by ensure().

• expiration (float) – A TTL in seconds can be specified per mes-
sage. Default is no expiration.

• **properties (Any) – Additional message properties, see AMQP
spec.

release()

revive(channel)
Revive the producer after connection loss.

routing_key = u’‘

serializer = None

class RPCBackend.Queue(name=u’‘, exchange=None, routing_key=u’‘, channel=None, bind-
ings=None, on_declared=None, **kwargs)

Queue that never caches declaration.

can_cache_declaration = False

class RPCBackend.ResultConsumer(*args, **kwargs)

class Consumer(channel, queues=None, no_ack=None, auto_declare=None, call-
backs=None, on_decode_error=None, on_message=None, accept=None,
prefetch_count=None, tag_prefix=None)

Message consumer.
Parameters

• channel (kombu.Connection, ChannelT) – see channel.

• queues (Sequence[kombu.Queue]) – see queues.

• no_ack (bool) – see no_ack.

• auto_declare (bool) – see auto_declare

• callbacks (Sequence[Callable]) – see callbacks.

• on_message (Callable) – See on_message

• on_decode_error (Callable) – see on_decode_error.

• prefetch_count (int) – see prefetch_count.
exception ContentDisallowed

Consumer does not allow this content-type.

456 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.common.html#kombu.common.maybe_declare
https://docs.python.org/dev/library/functions.html#bool
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#float
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.1.0

RPCBackend.ResultConsumer.Consumer.accept = None

RPCBackend.ResultConsumer.Consumer.add_queue(queue)
Add a queue to the list of queues to consume from.

Note: This will not start consuming from the queue, for that you will have to call
consume() after.

RPCBackend.ResultConsumer.Consumer.auto_declare = True

RPCBackend.ResultConsumer.Consumer.callbacks = None

RPCBackend.ResultConsumer.Consumer.cancel()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not
send any more messages for this consumer.

RPCBackend.ResultConsumer.Consumer.cancel_by_queue(queue)
Cancel consumer by queue name.

RPCBackend.ResultConsumer.Consumer.channel = None

RPCBackend.ResultConsumer.Consumer.close()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not
send any more messages for this consumer.

RPCBackend.ResultConsumer.Consumer.connection

RPCBackend.ResultConsumer.Consumer.consume(no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues
added since the last call, it will not cancel consuming from removed queues (use
cancel_by_queue()).

Parameters no_ack (bool) – See no_ack.

RPCBackend.ResultConsumer.Consumer.consuming_from(queue)
Return True if currently consuming from queue’.

RPCBackend.ResultConsumer.Consumer.declare()
Declare queues, exchanges and bindings.

Note: This is done automatically at instantiation when auto_declare is set.

RPCBackend.ResultConsumer.Consumer.flow(active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues
or otherwise finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content
(if any), and then wait until flow is reactivated.

2.13. Internals 457

https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

RPCBackend.ResultConsumer.Consumer.no_ack = None

RPCBackend.ResultConsumer.Consumer.on_decode_error = None

RPCBackend.ResultConsumer.Consumer.on_message = None

RPCBackend.ResultConsumer.Consumer.prefetch_count = None

RPCBackend.ResultConsumer.Consumer.purge()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

RPCBackend.ResultConsumer.Consumer.qos(prefetch_size=0,
prefetch_count=0, ap-
ply_global=False)

Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes
processing a message, the following message is already held locally, rather than needing to
be sent down the channel. Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.
Parameters

• prefetch_size (int) – Specify the prefetch window in octets.
The server will send a message in advance if it is equal to or smaller
in size than the available prefetch size (and also falls within other
prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply.

• prefetch_count (int) – Specify the prefetch window in terms
of whole messages.

• apply_global (bool) – Apply new settings globally on all chan-
nels.

RPCBackend.ResultConsumer.Consumer.queues

RPCBackend.ResultConsumer.Consumer.receive(body, message)
Method called when a message is received.

This dispatches to the registered callbacks.
Parameters

• body (Any) – The decoded message body.

• message (Message) – The message instance.

Raises NotImplementedError – If no consumer callbacks have been reg-
istered.

RPCBackend.ResultConsumer.Consumer.recover(requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.
Parameters requeue (bool) – By default the messages will be redelivered

to the original recipient. With requeue set to true, the server will attempt
to requeue the message, potentially then delivering it to an alternative sub-
scriber.

458 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#NotImplementedError
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

RPCBackend.ResultConsumer.Consumer.register_callback(callback)
Register a new callback to be called when a message is received.

Note: The signature of the callback needs to accept two arguments: (body, message), which
is the decoded message body and the Message instance.

RPCBackend.ResultConsumer.Consumer.revive(channel)
Revive consumer after connection loss.

RPCBackend.ResultConsumer.cancel_for(task_id)

RPCBackend.ResultConsumer.consume_from(task_id)

RPCBackend.ResultConsumer.drain_events(timeout=None)

RPCBackend.ResultConsumer.on_after_fork()

RPCBackend.ResultConsumer.start(initial_task_id, no_ack=True, **kwargs)

RPCBackend.ResultConsumer.stop()

RPCBackend.as_uri(include_password=True)

RPCBackend.binding

RPCBackend.delete_group(group_id)

RPCBackend.destination_for(task_id, request)
Get the destination for result by task id.

Returns tuple of (reply_to, correlation_id).
Return type Tuple[str, str]

RPCBackend.ensure_chords_allowed()

RPCBackend.get_task_meta(task_id, backlog_limit=1000)

RPCBackend.oid

RPCBackend.on_out_of_band_result(task_id, message)

RPCBackend.on_reply_declare(task_id)

RPCBackend.on_result_fulfilled(result)

RPCBackend.on_task_call(producer, task_id)

RPCBackend.persistent = False

RPCBackend.poll(task_id, backlog_limit=1000)

RPCBackend.reload_group_result(task_id)
Reload group result, even if it has been previously fetched.

RPCBackend.reload_task_result(task_id)

RPCBackend.restore_group(group_id, cache=True)

RPCBackend.retry_policy = {u’interval_start’: 0, u’interval_max’: 1, u’max_retries’: 20, u’interval_step’: 1}

RPCBackend.revive(channel)

RPCBackend.save_group(group_id, result)

RPCBackend.store_result(task_id, result, state, traceback=None, request=None, **kwargs)
Send task return value and state.

2.13. Internals 459

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

RPCBackend.supports_autoexpire = True

RPCBackend.supports_native_join = True

celery.backends.database

SQLAlchemy result store backend.

class celery.backends.database.DatabaseBackend(dburi=None, engine_options=None,
url=None, **kwargs)

The database result backend.

ResultSession(session_manager=<celery.backends.database.session.SessionManager object>)

cleanup()
Delete expired meta-data.

subpolling_interval = 0.5

celery.backends.amqp

The old AMQP result backend, deprecated and replaced by the RPC backend.

exception celery.backends.amqp.BacklogLimitExceeded
Too much state history to fast-forward.

class celery.backends.amqp.AMQPBackend(app, connection=None, exchange=None, ex-
change_type=None, persistent=None, serializer=None,
auto_delete=True, **kwargs)

The AMQP result backend.

Deprecated: Please use the RPC backend or a persistent backend.

exception BacklogLimitExceeded
Too much state history to fast-forward.

class AMQPBackend.Consumer(channel, queues=None, no_ack=None, auto_declare=None, call-
backs=None, on_decode_error=None, on_message=None, ac-
cept=None, prefetch_count=None, tag_prefix=None)

Message consumer.
Parameters

• channel (kombu.Connection, ChannelT) – see channel.
• queues (Sequence[kombu.Queue]) – see queues.
• no_ack (bool) – see no_ack.
• auto_declare (bool) – see auto_declare
• callbacks (Sequence[Callable]) – see callbacks.
• on_message (Callable) – See on_message
• on_decode_error (Callable) – see on_decode_error.
• prefetch_count (int) – see prefetch_count.

exception ContentDisallowed
Consumer does not allow this content-type.

AMQPBackend.Consumer.accept = None

AMQPBackend.Consumer.add_queue(queue)
Add a queue to the list of queues to consume from.

460 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.1.0

Note: This will not start consuming from the queue, for that you will have to call consume()
after.

AMQPBackend.Consumer.auto_declare = True

AMQPBackend.Consumer.callbacks = None

AMQPBackend.Consumer.cancel()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not send
any more messages for this consumer.

AMQPBackend.Consumer.cancel_by_queue(queue)
Cancel consumer by queue name.

AMQPBackend.Consumer.channel = None

AMQPBackend.Consumer.close()
End all active queue consumers.

Note: This does not affect already delivered messages, but it does mean the server will not send
any more messages for this consumer.

AMQPBackend.Consumer.connection

AMQPBackend.Consumer.consume(no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues added since the
last call, it will not cancel consuming from removed queues (use cancel_by_queue()).

Parameters no_ack (bool) – See no_ack.

AMQPBackend.Consumer.consuming_from(queue)
Return True if currently consuming from queue’.

AMQPBackend.Consumer.declare()
Declare queues, exchanges and bindings.

Note: This is done automatically at instantiation when auto_declare is set.

AMQPBackend.Consumer.flow(active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues or
otherwise finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content (if
any), and then wait until flow is reactivated.

AMQPBackend.Consumer.no_ack = None

AMQPBackend.Consumer.on_decode_error = None

AMQPBackend.Consumer.on_message = None

2.13. Internals 461

https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

AMQPBackend.Consumer.prefetch_count = None

AMQPBackend.Consumer.purge()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

AMQPBackend.Consumer.qos(prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes
processing a message, the following message is already held locally, rather than needing to be sent
down the channel. Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.
Parameters

• prefetch_size (int) – Specify the prefetch window in octets. The
server will send a message in advance if it is equal to or smaller in size
than the available prefetch size (and also falls within other prefetch limits).
May be set to zero, meaning “no specific limit”, although other prefetch
limits may still apply.

• prefetch_count (int) – Specify the prefetch window in terms of
whole messages.

• apply_global (bool) – Apply new settings globally on all channels.

AMQPBackend.Consumer.queues

AMQPBackend.Consumer.receive(body, message)
Method called when a message is received.

This dispatches to the registered callbacks.
Parameters

• body (Any) – The decoded message body.

• message (Message) – The message instance.
Raises NotImplementedError – If no consumer callbacks have been registered.

AMQPBackend.Consumer.recover(requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.
Parameters requeue (bool) – By default the messages will be redelivered to the

original recipient. With requeue set to true, the server will attempt to requeue
the message, potentially then delivering it to an alternative subscriber.

AMQPBackend.Consumer.register_callback(callback)
Register a new callback to be called when a message is received.

Note: The signature of the callback needs to accept two arguments: (body, message), which is the
decoded message body and the Message instance.

AMQPBackend.Consumer.revive(channel)
Revive consumer after connection loss.

462 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/exceptions.html#NotImplementedError
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

class AMQPBackend.Exchange(name=u’‘, type=u’‘, channel=None, **kwargs)
An Exchange declaration.

Parameters
• name (str) – See name.
• type (str) – See type.
• channel (kombu.Connection, ChannelT) – See channel.
• durable (bool) – See durable.
• auto_delete (bool) – See auto_delete.
• delivery_mode (enum) – See delivery_mode.
• arguments (Dict) – See arguments.
• no_declare (bool) – See no_declare

name
str – Name of the exchange. Default is no name (the default exchange).

type
str – This description of AMQP exchange types was shamelessly stolen from the blog post ‘AMQP
in 10 minutes: Part 4‘_ by Rajith Attapattu. Reading this article is recommended if you’re new to
amqp.

“AMQP defines four default exchange types (routing algorithms) that covers most of the common
messaging use cases. An AMQP broker can also define additional exchange types, so see your
broker manual for more information about available exchange types.

•direct (default)

Direct match between the routing key in the message, and the rout-
ing criteria used when a queue is bound to this exchange.

•topic

Wildcard match between the routing key and the routing pattern
specified in the exchange/queue binding. The routing key is treated
as zero or more words delimited by ”.” and supports special wild-
card characters. “*” matches a single word and “#” matches zero
or more words.

•fanout

Queues are bound to this exchange with no arguments. Hence any
message sent to this exchange will be forwarded to all queues bound
to this exchange.

•headers

Queues are bound to this exchange with a table of arguments con-
taining headers and values (optional). A special argument named
“x-match” determines the matching algorithm, where “all” implies
an AND (all pairs must match) and “any” implies OR (at least one
pair must match).

arguments is used to specify the arguments.

channel
ChannelT – The channel the exchange is bound to (if bound).

durable
bool – Durable exchanges remain active when a server restarts. Non-durable exchanges (transient
exchanges) are purged when a server restarts. Default is True.

auto_delete
bool – If set, the exchange is deleted when all queues have finished using it. Default is False.

2.13. Internals 463

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/enum.html#module-enum
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

delivery_mode
enum – The default delivery mode used for messages. The value is an integer, or alias string.

•1 or “transient”
The message is transient. Which means it is stored in memory only, and is lost
if the server dies or restarts.

•2 or “persistent” (default) The message is persistent. Which means the message is stored
both in-memory, and on disk, and therefore preserved if the server dies or restarts.

The default value is 2 (persistent).

arguments
Dict – Additional arguments to specify when the exchange is declared.

no_declare
bool – Never declare this exchange (declare() does nothing).

Message(body, delivery_mode=None, properties=None, **kwargs)
Create message instance to be sent with publish().

Parameters

• body (Any) – Message body.

• delivery_mode (bool) – Set custom delivery mode. Defaults to
delivery_mode.

• priority (int) – Message priority, 0 to broker configured max priority,
where higher is better.

• content_type (str) – The messages content_type. If content_type
is set, no serialization occurs as it is assumed this is either a binary ob-
ject, or you’ve done your own serialization. Leave blank if using built-in
serialization as our library properly sets content_type.

• content_encoding (str) – The character set in which this object is
encoded. Use “binary” if sending in raw binary objects. Leave blank if
using built-in serialization as our library properly sets content_encoding.

• properties (Dict) – Message properties.

• headers (Dict) – Message headers.

PERSISTENT_DELIVERY_MODE = 2

TRANSIENT_DELIVERY_MODE = 1

attrs = ((u’name’, None), (u’type’, None), (u’arguments’, None), (u’durable’, <type ‘bool’>), (u’passive’, <type ‘bool’>), (u’auto_delete’, <type ‘bool’>), (u’delivery_mode’, <function <lambda>>), (u’no_declare’, <type ‘bool’>))

auto_delete = False

bind_to(exchange=u’‘, routing_key=u’‘, arguments=None, nowait=False, channel=None,
**kwargs)

Bind the exchange to another exchange.
Parameters nowait (bool) – If set the server will not respond, and the call will not

block waiting for a response. Default is False.

binding(routing_key=u’‘, arguments=None, unbind_arguments=None)

can_cache_declaration

declare(nowait=False, passive=None, channel=None)
Declare the exchange.

Creates the exchange on the broker, unless passive is set in which case it will only assert that the
exchange exists.
Argument:

464 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

nowait (bool): If set the server will not respond, and a response will not be waited for.
Default is False.

delete(if_unused=False, nowait=False)
Delete the exchange declaration on server.

Parameters

• if_unused (bool) – Delete only if the exchange has no bindings. De-
fault is False.

• nowait (bool) – If set the server will not respond, and a response will
not be waited for. Default is False.

delivery_mode = None

durable = True

name = u’‘

no_declare = False

passive = False

publish(message, routing_key=None, mandatory=False, immediate=False, exchange=None)
Publish message.

Parameters

• message (Union[kombu.Message, str, bytes]) – Message
to publish.

• routing_key (str) – Message routing key.

• mandatory (bool) – Currently not supported.

• immediate (bool) – Currently not supported.

type = u’direct’

unbind_from(source=u’‘, routing_key=u’‘, nowait=False, arguments=None, channel=None)
Delete previously created exchange binding from the server.

class AMQPBackend.Producer(channel, exchange=None, routing_key=None, serializer=None,
auto_declare=None, compression=None, on_return=None)

Message Producer.
Parameters

• channel (kombu.Connection, ChannelT) – Connection or channel.
• exchange (Exchange, str) – Optional default exchange.
• routing_key (str) – Optional default routing key.
• serializer (str) – Default serializer. Default is “json”.
• compression (str) – Default compression method. Default is no compres-

sion.
• auto_declare (bool) – Automatically declare the default exchange at in-

stantiation. Default is True.
• on_return (Callable) – Callback to call for undeliverable messages, when

the mandatory or immediate arguments to publish() is used. This callback
needs the following signature: (exception, exchange, routing_key, message).
Note that the producer needs to drain events to use this feature.

auto_declare = True

channel

close()

compression = None

2.13. Internals 465

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#bytes
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

connection

declare()
Declare the exchange.

Note: This happens automatically at instantiation when the auto_declare flag is enabled.

exchange = None

maybe_declare(entity, retry=False, **retry_policy)
Declare exchange if not already declared during this session.

on_return = None

publish(body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False,
priority=0, content_type=None, content_encoding=None, serializer=None, head-
ers=None, compression=None, exchange=None, retry=False, retry_policy=None, de-
clare=None, expiration=None, **properties)

Publish message to the specified exchange.
Parameters

• body (Any) – Message body.

• routing_key (str) – Message routing key.

• delivery_mode (enum) – See delivery_mode.

• mandatory (bool) – Currently not supported.

• immediate (bool) – Currently not supported.

• priority (int) – Message priority. A number between 0 and 9.

• content_type (str) – Content type. Default is auto-detect.

• content_encoding (str) – Content encoding. Default is auto-detect.

• serializer (str) – Serializer to use. Default is auto-detect.

• compression (str) – Compression method to use. Default is none.

• headers (Dict) – Mapping of arbitrary headers to pass along with the
message body.

• exchange (Exchange, str) – Override the exchange. Note that this
exchange must have been declared.

• declare (Sequence[EntityT]) – Optional list of required entities
that must have been declared before publishing the message. The entities
will be declared using maybe_declare().

• retry (bool) – Retry publishing, or declaring entities if the connection
is lost.

• retry_policy (Dict) – Retry configuration, this is the keywords sup-
ported by ensure().

• expiration (float) – A TTL in seconds can be specified per mes-
sage. Default is no expiration.

• **properties (Any) – Additional message properties, see AMQP
spec.

release()

466 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/enum.html#module-enum
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.common.html#kombu.common.maybe_declare
https://docs.python.org/dev/library/functions.html#bool
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Connection.ensure
https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.1.0

revive(channel)
Revive the producer after connection loss.

routing_key = u’‘

serializer = None

AMQPBackend.Queue
alias of NoCacheQueue

AMQPBackend.as_uri(include_password=True)

AMQPBackend.consume(task_id, timeout=None, no_ack=True, on_interval=None)

AMQPBackend.delete_group(group_id)

AMQPBackend.destination_for(task_id, request)

AMQPBackend.drain_events(connection, consumer, timeout=None, on_interval=None,
now=<function _monotonic>, wait=None)

AMQPBackend.get_many(task_ids, timeout=None, no_ack=True, on_message=None,
on_interval=None, now=<function _mono-
tonic>, getfields=<operator.itemgetter object>,
READY_STATES=frozenset([u’FAILURE’, u’REVOKED’,
u’SUCCESS’]), PROPAGATE_STATES=frozenset([u’FAILURE’,
u’REVOKED’]), **kwargs)

AMQPBackend.get_task_meta(task_id, backlog_limit=1000)

AMQPBackend.on_reply_declare(task_id)

AMQPBackend.persistent = True

AMQPBackend.poll(task_id, backlog_limit=1000)

AMQPBackend.reload_group_result(task_id)
Reload group result, even if it has been previously fetched.

AMQPBackend.reload_task_result(task_id)

AMQPBackend.restore_group(group_id, cache=True)

AMQPBackend.retry_policy = {u’interval_start’: 0, u’interval_max’: 1, u’max_retries’: 20, u’interval_step’: 1}

AMQPBackend.revive(channel)

AMQPBackend.rkey(task_id)

AMQPBackend.save_group(group_id, result)

AMQPBackend.store_result(task_id, result, state, traceback=None, request=None, **kwargs)
Send task return value and state.

AMQPBackend.supports_autoexpire = True

AMQPBackend.supports_native_join = True

AMQPBackend.wait_for(task_id, timeout=None, cache=True, no_ack=True, on_interval=None,
READY_STATES=frozenset([u’FAILURE’, u’REVOKED’,
u’SUCCESS’]), PROPAGATE_STATES=frozenset([u’FAILURE’,
u’REVOKED’]), **kwargs)

2.13. Internals 467

Celery Documentation, Release 4.1.0

celery.backends.cache

Memcached and in-memory cache result backend.

class celery.backends.cache.CacheBackend(app, expires=None, backend=None, options={},
url=None, **kwargs)

Cache result backend.

as_uri(*args, **kwargs)
Return the backend as an URI.

This properly handles the case of multiple servers.

client

delete(key)

expire(key, value)

get(key)

implements_incr = True

incr(key)

mget(keys)

servers = None

set(key, value)

supports_autoexpire = True

supports_native_join = True

celery.backends.consul

Consul result store backend.

• ConsulBackend implements KeyValueStoreBackend to store results in the key-value store of Consul.

class celery.backends.consul.ConsulBackend(*args, **kwargs)
Consul.io K/V store backend for Celery.

client = None

consistency = u’consistent’

consul = None

delete(key)

get(key)

mget(keys)

path = None

set(key, value)
Set a key in Consul.

Before creating the key it will create a session inside Consul where it creates a session with a TTL

The key created afterwards will reference to the session’s ID.

If the session expires it will remove the key so that results can auto expire from the K/V store

468 Chapter 2. Contents

Celery Documentation, Release 4.1.0

supports_autoexpire = True

celery.backends.couchdb

CouchDB result store backend.

class celery.backends.couchdb.CouchBackend(url=None, *args, **kwargs)
CouchDB backend.

Raises celery.exceptions.ImproperlyConfigured – if module pycouchdb is not
available.

connection

container = u’default’

delete(key)

get(key)

host = u’localhost’

mget(keys)

password = None

port = 5984

scheme = u’http’

set(key, value)

username = None

celery.backends.mongodb

MongoDB result store backend.

class celery.backends.mongodb.MongoBackend(app=None, **kwargs)
MongoDB result backend.

Raises celery.exceptions.ImproperlyConfigured – if module pymongo is not avail-
able.

as_uri(include_password=False)
Return the backend as an URI.

Parameters include_password (bool) – Password censored if disabled.

cleanup()
Delete expired meta-data.

collection
Get the meta-data task collection.

database
Get database from MongoDB connection.

performs authentication if necessary.

database_name = u’celery’

decode(data)

encode(data)

expires_delta

2.13. Internals 469

https://pypi.python.org/pypi/pycouchdb/
https://pypi.python.org/pypi/pymongo/
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

group_collection
Get the meta-data task collection.

groupmeta_collection = u’celery_groupmeta’

host = u’localhost’

max_pool_size = 10

mongo_host = None

options = None

password = None

port = 27017

supports_autoexpire = False

taskmeta_collection = u’celery_taskmeta’

user = None

celery.backends.elasticsearch

Elasticsearch result store backend.

class celery.backends.elasticsearch.ElasticsearchBackend(url=None, *args, **kwargs)
Elasticsearch Backend.

Raises celery.exceptions.ImproperlyConfigured – if module elasticsearch is not
available.

delete(key)

doc_type = u’backend’

es_max_retries = 3

es_retry_on_timeout = False

es_timeout = 10

get(key)

host = u’localhost’

index = u’celery’

mget(keys)

port = 9200

scheme = u’http’

server

set(key, value)

celery.backends.redis

Redis result store backend.

class celery.backends.redis.RedisBackend(host=None, port=None, db=None, password=None,
max_connections=None, url=None, connec-
tion_pool=None, **kwargs)

Redis task result store.

470 Chapter 2. Contents

https://pypi.python.org/pypi/elasticsearch/

Celery Documentation, Release 4.1.0

ConnectionPool

class ResultConsumer(*args, **kwargs)

cancel_for(task_id)

consume_from(task_id)

drain_events(timeout=None)

on_wait_for_pending(result, **kwargs)

start(initial_task_id, **kwargs)

stop()

RedisBackend.add_to_chord(group_id, result)

RedisBackend.apply_chord(header, partial_args, group_id, body, result=None, options={},
**kwargs)

RedisBackend.client

RedisBackend.db

RedisBackend.delete(key)

RedisBackend.ensure(fun, args, **policy)

RedisBackend.expire(key, value)

RedisBackend.get(key)

RedisBackend.host

RedisBackend.incr(key)

RedisBackend.max_connections = None
Maximum number of connections in the pool.

RedisBackend.mget(keys)

RedisBackend.on_chord_part_return(request, state, result, propagate=None, **kwargs)

RedisBackend.on_connection_error(max_retries, exc, intervals, retries)

RedisBackend.on_task_call(producer, task_id)

RedisBackend.password

RedisBackend.port

RedisBackend.redis = None
redis client module.

RedisBackend.set(key, value, **retry_policy)

RedisBackend.supports_autoexpire = True

RedisBackend.supports_native_join = True

celery.backends.riak

Riak result store backend.

2.13. Internals 471

https://pypi.python.org/pypi/redis/

Celery Documentation, Release 4.1.0

class celery.backends.riak.RiakBackend(host=None, port=None, bucket_name=None, proto-
col=None, url=None, *args, **kwargs)

Riak result backend.
Raises celery.exceptions.ImproperlyConfigured – if module riak is not available.

bucket

bucket_name = u’celery’
default Riak bucket name (default)

client

delete(key)

get(key)

host = u’localhost’
default Riak server hostname (localhost)

mget(keys)

port = 8087
default Riak server port (8087)

protocol = u’pbc’
default protocol used to connect to Riak, might be http or pbc

set(key, value)

celery.backends.cassandra

Apache Cassandra result store backend using the DataStax driver.

class celery.backends.cassandra.CassandraBackend(servers=None, keyspace=None, ta-
ble=None, entry_ttl=None, port=9042,
**kwargs)

Cassandra backend utilizing DataStax driver.
Raises celery.exceptions.ImproperlyConfigured – if module cassandra-driver is

not available, or if the cassandra_servers setting is not set.
as_uri(include_password=True)

process_cleanup()

servers = None
List of Cassandra servers with format – hostname.

supports_autoexpire = True

celery.backends.couchbase

Couchbase result store backend.

class celery.backends.couchbase.CouchbaseBackend(url=None, *args, **kwargs)
Couchbase backend.

Raises celery.exceptions.ImproperlyConfigured – if module couchbase is not
available.

bucket = u’default’

connection

delete(key)

472 Chapter 2. Contents

https://pypi.python.org/pypi/riak/
https://pypi.python.org/pypi/cassandra-driver/
https://pypi.python.org/pypi/couchbase/

Celery Documentation, Release 4.1.0

get(key)

host = u’localhost’

key_t
alias of unicode

mget(keys)

password = None

port = 8091

quiet = False

set(key, value)

timeout = 2.5

username = None

celery.backends.dynamodb

AWS DynamoDB result store backend.

class celery.backends.dynamodb.DynamoDBBackend(url=None, table_name=None, *args,
**kwargs)

AWS DynamoDB result backend.
Raises celery.exceptions.ImproperlyConfigured – if module boto3 is not avail-

able.
aws_region = None

AWS region (default)

client

delete(key)

endpoint_url = None
The endpoint URL that is passed to boto3 (local DynamoDB) (default)

get(key)

mget(keys)

read_capacity_units = 1
Read Provisioned Throughput (default)

set(key, value)

table_name = u’celery’
default DynamoDB table name (default)

write_capacity_units = 1
Write Provisioned Throughput (default)

celery.backends.filesystem

File-system result store backend.

2.13. Internals 473

https://pypi.python.org/pypi/boto3/

Celery Documentation, Release 4.1.0

class celery.backends.filesystem.FilesystemBackend(url=None, open=<built-in func-
tion open>, unlink=<built-
in function unlink>, sep=’/’,
encoding=’ANSI_X3.4-1968’, *args,
**kwargs)

File-system result backend.
Parameters

• url (str) – URL to the directory we should use
• open (Callable) – open function to use when opening files
• unlink (Callable) – unlink function to use when deleting files
• sep (str) – directory separator (to join the directory with the key)
• encoding (str) – encoding used on the file-system

delete(key)

get(key)

mget(keys)

set(key, value)

celery.app.trace

Trace task execution.

This module defines how the task execution is traced: errors are recorded, handlers are applied and so on.

class celery.app.trace.TraceInfo(state, retval=None)
Information about task execution.

handle_error_state(task, req, eager=False, call_errbacks=True)

handle_failure(task, req, store_errors=True, call_errbacks=True)
Handle exception.

handle_ignore(task, req, **kwargs)

handle_reject(task, req, **kwargs)

handle_retry(task, req, store_errors=True, **kwargs)
Handle retry exception.

retval

state

celery.app.trace.build_tracer(name, task, loader=None, hostname=None, store_errors=True,
Info=<class ‘celery.app.trace.TraceInfo’>, eager=False,
propagate=False, app=None, monotonic=<function _mono-
tonic>, trace_ok_t=<class ‘celery.app.trace.trace_ok_t’>,
IGNORE_STATES=frozenset([u’IGNORED’, u’RETRY’,
u’REJECTED’]))

Return a function that traces task execution.

Catches all exceptions and updates result backend with the state and result.

If the call was successful, it saves the result to the task result backend, and sets the task status to “SUCCESS”.

If the call raises Retry , it extracts the original exception, uses that as the result and sets the task state to
“RETRY”.

If the call results in an exception, it saves the exception as the task result, and sets the task state to “FAILURE”.

Return a function that takes the following arguments:

474 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

param uuid The id of the task.
param args List of positional args to pass on to the function.
param kwargs Keyword arguments mapping to pass on to the function.
keyword request Request dict.

celery.app.trace.trace_task(task, uuid, args, kwargs, request={}, **opts)
Trace task execution.

celery.app.trace.setup_worker_optimizations(app, hostname=None)
Setup worker related optimizations.

celery.app.trace.reset_worker_optimizations()
Reset previously configured optimizations.

celery.app.annotations

Task Annotations.

Annotations is a nice term for monkey-patching task classes in the configuration.

This prepares and performs the annotations in the task_annotations setting.

class celery.app.annotations.MapAnnotation
Annotation map: task_name => attributes.

annotate(task)

annotate_any()

celery.app.annotations.prepare(annotations)
Expand the task_annotations setting.

celery.app.annotations.resolve_all(anno, task)
Resolve all pending annotations.

celery.app.routes

Task Routing.

Contains utilities for working with task routers, (task_routes).

class celery.app.routes.MapRoute(map)
Creates a router out of a dict.

class celery.app.routes.Router(routes=None, queues=None, create_missing=False, app=None)
Route tasks based on the task_routes setting.

expand_destination(route)

lookup_route(name, args=None, kwargs=None, options=None, task_type=None)

query_router(router, task, args, kwargs, options, task_type)

route(options, name, args=(), kwargs={}, task_type=None)

celery.app.routes.prepare(routes)
Expand the task_routes setting.

2.13. Internals 475

https://docs.python.org/dev/library/stdtypes.html#dict

Celery Documentation, Release 4.1.0

celery.security.certificate

X.509 certificates.

class celery.security.certificate.Certificate(cert)
X.509 certificate.

get_id()
Serial number/issuer pair uniquely identifies a certificate.

get_issuer()
Return issuer (CA) as a string.

get_serial_number()
Return the serial number in the certificate.

has_expired()
Check if the certificate has expired.

verify(data, signature, digest)
Verify signature for string containing data.

class celery.security.certificate.CertStore
Base class for certificate stores.

add_cert(cert)

itercerts()
Return certificate iterator.

class celery.security.certificate.FSCertStore(path)
File system certificate store.

celery.security.key

Private keys for the security serializer.

class celery.security.key.PrivateKey(key)
Represents a private key.

sign(data, digest)
Sign string containing data.

celery.security.serialization

Secure serializer.

class celery.security.serialization.SecureSerializer(key=None, cert=None,
cert_store=None, digest=u’sha1’,
serializer=u’json’)

Signed serializer.

deserialize(data)
Deserialize data structure from string.

serialize(data)
Serialize data structure into string.

celery.security.serialization.register_auth(key=None, cert=None, store=None, di-
gest=u’sha1’, serializer=u’json’)

Register security serializer.

476 Chapter 2. Contents

Celery Documentation, Release 4.1.0

celery.security.utils

Utilities used by the message signing serializer.

celery.security.utils.reraise_errors(*args, **kwds)
Context reraising crypto errors as SecurityError.

celery.events.snapshot

Periodically store events in a database.

Consuming the events as a stream isn’t always suitable so this module implements a system to take snapshots of the
state of a cluster at regular intervals. There’s a full implementation of this writing the snapshots to a database in
djcelery.snapshots in the django-celery distribution.

class celery.events.snapshot.Polaroid(state, freq=1.0, maxrate=None, cleanup_freq=3600.0,
timer=None, app=None)

Record event snapshots.

cancel()

capture()

cleanup()

cleanup_signal = <Signal: cleanup_signal providing_args=set([])>

clear_after = False

install()

on_cleanup()

on_shutter(state)

shutter()

shutter_signal = <Signal: shutter_signal providing_args=set([u’state’])>

timer = None

celery.events.snapshot.evcam(camera, freq=1.0, maxrate=None, loglevel=0, logfile=None, pid-
file=None, timer=None, app=None)

Start snapshot recorder.

celery.events.cursesmon

Graphical monitor of Celery events using curses.

class celery.events.cursesmon.CursesMonitor(state, app, keymap=None)
A curses based Celery task monitor.

alert(callback, title=None)

alert_remote_control_reply(reply)

background = 7

display_height

display_task_row(lineno, task)

display_width

2.13. Internals 477

Celery Documentation, Release 4.1.0

draw()

find_position()

foreground = 0

format_row(uuid, task, worker, timestamp, state)

greet = u’celery events 4.1.0 (latentcall)’

handle_keypress()

help = u’j:down k:up i:info t:traceback r:result c:revoke ^c: quit’

help_title = u’Keys: ‘

info_str = u’Info: ‘

init_screen()

keyalias = {258: u’J’, 259: u’K’, 343: u’I’}

keymap = {}

limit

move_selection(direction=1)

move_selection_down()

move_selection_up()

nap()

online_str = u’Workers online: ‘

readline(x, y)

resetscreen()

revoke_selection()

safe_add_str(y, x, string, *args, **kwargs)

screen_delay = 10

screen_height

screen_width

selected_position = 0

selected_str = u’Selected: ‘

selected_task = None

selection_info()

selection_rate_limit()

selection_result()

selection_traceback()

tasks

win = None

workers

478 Chapter 2. Contents

Celery Documentation, Release 4.1.0

celery.events.cursesmon.evtop(app=None)
Start curses monitor.

celery.events.dumper

Utility to dump events to screen.

This is a simple program that dumps events to the console as they happen. Think of it like a tcpdump for Celery events.

class celery.events.dumper.Dumper(out=<open file ‘<stdout>’, mode ‘w’>)
Monitor events.

format_task_event(hostname, timestamp, type, task, event)

on_event(ev)

say(msg)

celery.events.dumper.evdump(app=None, out=<open file ‘<stdout>’, mode ‘w’>)
Start event dump.

celery.backends.database.models

Database models used by the SQLAlchemy result store backend.

class celery.backends.database.models.Task(task_id)
Task result/status.

date_done

id

result

status

task_id

to_dict()

traceback

class celery.backends.database.models.TaskSet(taskset_id, result)
TaskSet result.

date_done

id

result

taskset_id

to_dict()

celery.backends.database.session

SQLAlchemy session.

class celery.backends.database.session.SessionManager
Manage SQLAlchemy sessions.

2.13. Internals 479

Celery Documentation, Release 4.1.0

create_session(dburi, short_lived_sessions=False, **kwargs)

get_engine(dburi, **kwargs)

prepare_models(engine)

session_factory(dburi, **kwargs)

celery.utils

Utility functions.

Don’t import from here directly anymore, as these are only here for backwards compatibility.

celery.utils.worker_direct(hostname)
Return the kombu.Queue being a direct route to a worker.

Parameters hostname (str, Queue) – The fully qualified node name of a worker (e.g.,
w1@example.com). If passed a kombu.Queue instance it will simply return that instead.

celery.utils.gen_task_name(app, name, module_name)
Generate task name from name/module pair.

celery.utils.nodename(name, hostname)
Create node name from name/hostname pair.

celery.utils.nodesplit(name)
Split node name into tuple of name/hostname.

class celery.utils.cached_property(fget=None, fset=None, fdel=None, doc=None)
Cached property descriptor.

Caches the return value of the get method on first call.

Examples

@cached_property
def connection(self):

return Connection()

@connection.setter # Prepares stored value
def connection(self, value):

if value is None:
raise TypeError('Connection must be a connection')

return value

@connection.deleter
def connection(self, value):

Additional action to do at del(self.attr)
if value is not None:

print('Connection {0!r} deleted'.format(value)

deleter(fdel)

setter(fset)

celery.utils.uuid(_uuid=<function uuid4>)
Generate unique id in UUID4 format.

See also:

480 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue

Celery Documentation, Release 4.1.0

For now this is provided by uuid.uuid4().

celery.utils.abstract

Abstract classes.

class celery.utils.abstract.CallableTask
Task interface.

apply(*args, **kwargs)

apply_async(*args, **kwargs)

delay(*args, **kwargs)

class celery.utils.abstract.CallableSignature
Celery Signature interface.

app

args

chord_size

clone(args=None, kwargs=None)

freeze(id=None, group_id=None, chord=None, root_id=None)

id

immutable

kwargs

link(callback)

link_error(errback)

name

options

set(immutable=None, **options)

subtask_type

task

type

celery.utils.collections

Custom maps, sets, sequences, and other data structures.

class celery.utils.collections.AttributeDictMixin
Mixin for Mapping interface that adds attribute access.

I.e., d.key -> d[key]).

class celery.utils.collections.AttributeDict
Dict subclass with attribute access.

class celery.utils.collections.BufferMap(maxsize, iterable=None, bufmaxsize=1000)
Map of buffers.

2.13. Internals 481

https://docs.python.org/dev/library/uuid.html#uuid.uuid4

Celery Documentation, Release 4.1.0

Buffer
alias of Messagebuffer

exception Empty
Exception raised by Queue.get(block=0)/get_nowait().

BufferMap.bufmaxsize = None

BufferMap.extend(key, it)

BufferMap.maxsize = None

BufferMap.put(key, item)

BufferMap.take(key, *default)

BufferMap.total = 0

class celery.utils.collections.ChainMap(*maps, **kwargs)
Key lookup on a sequence of maps.

add_defaults(d)

changes = None

clear()

copy()

defaults = None

classmethod fromkeys(iterable, *args)
Create a ChainMap with a single dict created from the iterable.

get(key, default=None)

items()

iteritems()

iterkeys()

itervalues()

key_t = None

keys()

maps = None

pop(key, *default)

setdefault(key, default=None)

update(*args, **kwargs)

values()

class celery.utils.collections.ConfigurationView(changes, defaults=None, keys=None,
prefix=None)

A view over an applications configuration dictionaries.

Custom (but older) version of collections.ChainMap.

If the key does not exist in changes, the defaults dictionaries are consulted.
Parameters

• changes (Mapping) – Map of configuration changes.
• defaults (List[Mapping]) – List of dictionaries containing the default config-

uration.

482 Chapter 2. Contents

https://docs.python.org/dev/library/collections.html#collections.ChainMap

Celery Documentation, Release 4.1.0

clear()
Remove all changes, but keep defaults.

first(*keys)

get(key, default=None)

swap_with(other)

class celery.utils.collections.DictAttribute(obj)
Dict interface to attributes.

obj[k] -> obj.k obj[k] = val -> obj.k = val

get(key, default=None)

items()

iteritems()

iterkeys()

itervalues()

keys()

obj = None

setdefault(key, default=None)

values()

class celery.utils.collections.Evictable
Mixin for classes supporting the evict method.

exception Empty
Exception raised by Queue.get(block=0)/get_nowait().

Evictable.evict()
Force evict until maxsize is enforced.

class celery.utils.collections.LimitedSet(maxlen=0, expires=0, data=None, minlen=0)
Kind-of Set (or priority queue) with limitations.

Good for when you need to test for membership (a in set), but the set should not grow unbounded.

maxlen is enforced at all times, so if the limit is reached we’ll also remove non-expired items.

You can also configure minlen: this is the minimal residual size of the set.

All arguments are optional, and no limits are enabled by default.
Parameters

• maxlen (int) – Optional max number of items. Adding more items than maxlen
will result in immediate removal of items sorted by oldest insertion time.

• expires (float) – TTL for all items. Expired items are purged as keys are inserted.
• minlen (int) – Minimal residual size of this set. .. versionadded:: 4.0

Value must be less than maxlen if both are configured.

Older expired items will be deleted, only after the set exceeds minlen number of
items.

• data (Sequence) – Initial data to initialize set with. Can be an iterable of
(key, value) pairs, a dict ({key: insertion_time}), or another instance
of LimitedSet.

2.13. Internals 483

https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.1.0

Example

>>> s = LimitedSet(maxlen=50000, expires=3600, minlen=4000)
>>> for i in range(60000):
... s.add(i)
... s.add(str(i))
...
>>> 57000 in s # last 50k inserted values are kept
True
>>> '10' in s # '10' did expire and was purged from set.
False
>>> len(s) # maxlen is reached
50000
>>> s.purge(now=time.time() + 7200) # clock + 2 hours
>>> len(s) # now only minlen items are cached
4000
>>>> 57000 in s # even this item is gone now
False

add(item, now=None)
Add a new item, or reset the expiry time of an existing item.

as_dict()
Whole set as serializable dictionary.

Example

>>> s = LimitedSet(maxlen=200)
>>> r = LimitedSet(maxlen=200)
>>> for i in range(500):
... s.add(i)
...
>>> r.update(s.as_dict())
>>> r == s
True

clear()
Clear all data, start from scratch again.

discard(item)

max_heap_percent_overload = 15

pop(default=None)
Remove and return the oldest item, or None when empty.

pop_value(item)

purge(now=None)
Check oldest items and remove them if needed.

Parameters now (float) – Time of purging – by default right now. This can be useful for
unit testing.

update(other)
Update this set from other LimitedSet, dict or iterable.

484 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#float

Celery Documentation, Release 4.1.0

class celery.utils.collections.Messagebuffer(maxsize, iterable=None, deque=<type ‘collec-
tions.deque’>)

A buffer of pending messages.

exception Empty
Exception raised by Queue.get(block=0)/get_nowait().

Messagebuffer.extend(it)

Messagebuffer.put(item)

Messagebuffer.take(*default)

class celery.utils.collections.OrderedDict(*args, **kwds)
Dict where insertion order matters.

move_to_end(key, last=True)

celery.utils.collections.force_mapping(m)
Wrap object into supporting the mapping interface if necessary.

celery.utils.collections.lpmerge(L, R)
In place left precedent dictionary merge.

Keeps values from L, if the value in R is None.

celery.utils.nodenames

Worker name utilities.

celery.utils.nodenames.worker_direct(hostname)
Return the kombu.Queue being a direct route to a worker.

Parameters hostname (str, Queue) – The fully qualified node name of a worker (e.g.,
w1@example.com). If passed a kombu.Queue instance it will simply return that instead.

celery.utils.nodenames.gethostname()→ string
Return the current host name.

celery.utils.nodenames.nodename(name, hostname)
Create node name from name/hostname pair.

celery.utils.nodenames.anon_nodename(hostname=None, prefix=u’gen’)
Return the nodename for this process (not a worker).

This is used for e.g. the origin task message field.

celery.utils.nodenames.nodesplit(name)
Split node name into tuple of name/hostname.

celery.utils.nodenames.default_nodename(hostname)
Return the default nodename for this process.

celery.utils.nodenames.node_format(s, name, **extra)
Format worker node name (name@host.com).

celery.utils.nodenames.host_format(s, host=None, name=None, **extra)
Format host %x abbreviations.

celery.utils.deprecated

Deprecation utilities.

2.13. Internals 485

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://docs.python.org/dev/library/stdtypes.html#str
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
mailto:name@host.com

Celery Documentation, Release 4.1.0

celery.utils.deprecated.Callable(deprecation=None, removal=None, alternative=None, de-
scription=None)

Decorator for deprecated functions.

A deprecation warning will be emitted when the function is called.
Parameters

• deprecation (str) – Version that marks first deprecation, if this argument isn’t set
a PendingDeprecationWarning will be emitted instead.

• removal (str) – Future version when this feature will be removed.
• alternative (str) – Instructions for an alternative solution (if any).
• description (str) – Description of what’s being deprecated.

celery.utils.deprecated.Property(deprecation=None, removal=None, alternative=None, de-
scription=None)

Decorator for deprecated properties.

celery.utils.deprecated.warn(description=None, deprecation=None, removal=None, alterna-
tive=None, stacklevel=2)

Warn of (pending) deprecation.

celery.utils.functional

Functional-style utilties.

class celery.utils.functional.LRUCache(limit=None)
LRU Cache implementation using a doubly linked list to track access.

Parameters limit (int) – The maximum number of keys to keep in the cache. When a new key
is inserted and the limit has been exceeded, the Least Recently Used key will be discarded
from the cache.

incr(key, delta=1)

items()

iteritems()

iterkeys()

itervalues()

keys()

popitem(last=True)

update(*args, **kwargs)

values()

celery.utils.functional.is_list(l, scalars=(<class ‘_abcoll.Mapping’>, <type ‘basestring’>),
iters=(<class ‘_abcoll.Iterable’>,))

Return true if the object is iterable.

Note: Returns false if object is a mapping or string.

celery.utils.functional.maybe_list(l, scalars=(<class ‘_abcoll.Mapping’>, <type ‘bases-
tring’>))

Return list of one element if l is a scalar.

celery.utils.functional.memoize(maxsize=None, keyfun=None, Cache=<class
kombu.utils.functional.LRUCache>)

Decorator to cache function return value.

486 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.1.0

class celery.utils.functional.mlazy(fun, *args, **kwargs)
Memoized lazy evaluation.

The function is only evaluated once, every subsequent access will return the same value.

evaluate()

evaluated = False

celery.utils.functional.noop(*args, **kwargs)
No operation.

Takes any arguments/keyword arguments and does nothing.

celery.utils.functional.first(predicate, it)
Return the first element in it that predicate accepts.

If predicate is None it will return the first item that’s not None.

celery.utils.functional.firstmethod(method, on_call=None)
Multiple dispatch.

Return a function that with a list of instances, finds the first instance that gives a value for the given method.

The list can also contain lazy instances (lazy.)

celery.utils.functional.chunks(it, n)
Split an iterator into chunks with n elements each.

Warning: itmust be an actual iterator, if you pass this a concrete sequence will get you repeating elements.

So chunks(iter(range(1000)), 10) is fine, but chunks(range(1000), 10) is not.

Example

n == 2 >>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 2) >>> list(x) [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9],
[10]]

n == 3 >>> x = chunks(iter([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), 3) >>> list(x) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

celery.utils.functional.padlist(container, size, default=None)
Pad list with default elements.

Example

>>> first, last, city = padlist(['George', 'Costanza', 'NYC'], 3)
('George', 'Costanza', 'NYC')
>>> first, last, city = padlist(['George', 'Costanza'], 3)
('George', 'Costanza', None)
>>> first, last, city, planet = padlist(
... ['George', 'Costanza', 'NYC'], 4, default='Earth',
...)
('George', 'Costanza', 'NYC', 'Earth')

celery.utils.functional.mattrgetter(*attrs)
Get attributes, ignoring attribute errors.

Like operator.itemgetter() but return None on missing attributes instead of raising
AttributeError.

2.13. Internals 487

http://kombu.readthedocs.io/en/master/reference/kombu.utils.functional.html#kombu.utils.functional.lazy
https://docs.python.org/dev/library/operator.html#operator.itemgetter
https://docs.python.org/dev/library/exceptions.html#AttributeError

Celery Documentation, Release 4.1.0

celery.utils.functional.uniq(it)
Return all unique elements in it, preserving order.

celery.utils.functional.regen(it)
Convert iterator to an object that can be consumed multiple times.

Regen takes any iterable, and if the object is an generator it will cache the evaluated list on first access, so that
the generator can be “consumed” multiple times.

celery.utils.functional.dictfilter(d=None, **kw)
Remove all keys from dict d whose value is None.

class celery.utils.functional.lazy(fun, *args, **kwargs)
Holds lazy evaluation.

Evaluated when called or if the evaluate() method is called. The function is re-evaluated on every call.
Overloaded operations that will evaluate the promise: __str__(), __repr__(), __cmp__().
evaluate()

celery.utils.functional.maybe_evaluate(value)
Evaluate value only if value is a lazy instance.

celery.utils.functional.head_from_fun(fun, bound=False, debug=False)
Generate signature function from actual function.

celery.utils.functional.maybe(typ, val)
Call typ on value if val is defined.

celery.utils.functional.fun_accepts_kwargs(fun)
Return true if function accepts arbitrary keyword arguments.

celery.utils.graph

Dependency graph implementation.

class celery.utils.graph.DOT
Constants related to the dot format.

ATTR = u’{name}={value}’

ATTRSEP = u’, ‘

DIRS = {u’digraph’: u’->’, u’graph’: u’–‘}

EDGE = u’{INp}”{0}” {dir} “{1}” [{attrs}]’

HEAD = u’\n{IN}{type} {id} {{\n{INp}graph [{attrs}]\n’

NODE = u’{INp}”{0}” [{attrs}]’

TAIL = u’{IN}}}’

exception celery.utils.graph.CycleError
A cycle was detected in an acyclic graph.

class celery.utils.graph.DependencyGraph(it=None, formatter=None)
A directed acyclic graph of objects and their dependencies.

Supports a robust topological sort to detect the order in which they must be handled.

Takes an optional iterator of (obj, dependencies) tuples to build the graph from.

488 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Warning: Does not support cycle detection.

add_arc(obj)
Add an object to the graph.

add_edge(A, B)
Add an edge from object A to object B.

I.e. A depends on B.

connect(graph)
Add nodes from another graph.

edges()
Return generator that yields for all edges in the graph.

format(obj)

items()

iteritems()

repr_node(obj, level=1, fmt=u’{0}({1})’)

to_dot(fh, formatter=None)
Convert the graph to DOT format.

Parameters
• fh (IO) – A file, or a file-like object to write the graph to.
• formatter (celery.utils.graph.GraphFormatter) – Custom

graph formatter to use.

topsort()
Sort the graph topologically.

Returns of objects in the order in which they must be handled.
Return type List

update(it)
Update graph with data from a list of (obj, deps) tuples.

valency_of(obj)
Return the valency (degree) of a vertex in the graph.

class celery.utils.graph.GraphFormatter(root=None, type=None, id=None, indent=0, inw=u’ ‘,
**scheme)

Format dependency graphs.

FMT(fmt, *args, **kwargs)

attr(name, value)

attrs(d, scheme=None)

draw_edge(a, b, scheme=None, attrs=None)

draw_node(obj, scheme=None, attrs=None)

edge(a, b, **attrs)

edge_scheme = {u’color’: u’darkseagreen4’, u’arrowsize’: 0.7, u’arrowcolor’: u’black’}

graph_scheme = {u’bgcolor’: u’mintcream’}

head(**attrs)

2.13. Internals 489

Celery Documentation, Release 4.1.0

label(obj)

node(obj, **attrs)

node_scheme = {u’color’: u’palegreen4’, u’fillcolor’: u’palegreen3’}

scheme = {u’shape’: u’box’, u’fontname’: u’HelveticaNeue’, u’arrowhead’: u’vee’, u’style’: u’filled’}

tail()

term_scheme = {u’color’: u’palegreen2’, u’fillcolor’: u’palegreen1’}

terminal_node(obj, **attrs)

celery.utils.objects

Object related utilities, including introspection, etc.

class celery.utils.objects.Bunch(**kwargs)
Object that enables you to modify attributes.

class celery.utils.objects.FallbackContext(provided, fallback, *fb_args, **fb_kwargs)
Context workaround.

The built-in @contextmanager utility does not work well when wrapping other contexts, as the traceback is
wrong when the wrapped context raises.

This solves this problem and can be used instead of @contextmanager in this example:

@contextmanager
def connection_or_default_connection(connection=None):

if connection:
user already has a connection, shouldn't close
after use
yield connection

else:
must've new connection, and also close the connection
after the block returns
with create_new_connection() as connection:

yield connection

This wrapper can be used instead for the above like this:

def connection_or_default_connection(connection=None):
return FallbackContext(connection, create_new_connection)

class celery.utils.objects.getitem_property(keypath, doc=None)
Attribute -> dict key descriptor.

The target object must support __getitem__, and optionally __setitem__.

Example

>>> from collections import defaultdict

>>> class Me(dict):
... deep = defaultdict(dict)
...

490 Chapter 2. Contents

Celery Documentation, Release 4.1.0

... foo = _getitem_property('foo')

... deep_thing = _getitem_property('deep.thing')

>>> me = Me()
>>> me.foo
None

>>> me.foo = 10
>>> me.foo
10
>>> me['foo']
10

>>> me.deep_thing = 42
>>> me.deep_thing
42
>>> me.deep
defaultdict(<type 'dict'>, {'thing': 42})

celery.utils.objects.mro_lookup(cls, attr, stop=set([]), monkey_patched=[])
Return the first node by MRO order that defines an attribute.

Parameters
• cls (Any) – Child class to traverse.
• attr (str) – Name of attribute to find.
• stop (Set[Any]) – A set of types that if reached will stop the search.
• monkey_patched (Sequence) – Use one of the stop classes if the attributes mod-

ule origin isn’t in this list. Used to detect monkey patched attributes.
Returns The attribute value, or None if not found.
Return type Any

celery.utils.term

Terminals and colors.

class celery.utils.term.colored(*s, **kwargs)
Terminal colored text.

Example

>>> c = colored(enabled=True)
>>> print(str(c.red('the quick '), c.blue('brown ', c.bold('fox ')),
... c.magenta(c.underline('jumps over')),
... c.yellow(' the lazy '),
... c.green('dog ')))

black(*s)

blink(*s)

blue(*s)

bold(*s)

bright(*s)

2.13. Internals 491

https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

cyan(*s)

embed()

green(*s)

iblue(*s)

icyan(*s)

igreen(*s)

imagenta(*s)

ired(*s)

iwhite(*s)

iyellow(*s)

magenta(*s)

no_color()

node(s, op)

red(*s)

reset(*s)

reverse(*s)

underline(*s)

white(*s)

yellow(*s)

celery.utils.time

Utilities related to dates, times, intervals, and timezones.

class celery.utils.time.LocalTimezone
Local time implementation.

Note: Used only when the enable_utc setting is disabled.

dst(dt)

tzname(dt)

utcoffset(dt)

celery.utils.time.maybe_timedelta(delta)
Convert integer to timedelta, if argument is an integer.

celery.utils.time.delta_resolution(dt, delta)
Round a datetime to the resolution of timedelta.

If the timedelta is in days, the datetime will be rounded to the nearest days, if the timedelta is in
hours the datetime will be rounded to the nearest hour, and so on until seconds, which will just return the
original datetime.

492 Chapter 2. Contents

https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.1.0

celery.utils.time.remaining(start, ends_in, now=None, relative=False)
Calculate the remaining time for a start date and a timedelta.

For example, “how many seconds left for 30 seconds after start?”
Parameters

• start (datetime) – Starting date.
• ends_in (timedelta) – The end delta.
• relative (bool) – If enabled the end time will be calculated using
delta_resolution() (i.e., rounded to the resolution of ends_in).

• now (Callable) – Function returning the current time and date. Defaults to
datetime.utcnow().

Returns Remaining time.
Return type timedelta

celery.utils.time.rate(r)
Convert rate string (“100/m”, “2/h” or “0.5/s”) to seconds.

celery.utils.time.weekday(name)
Return the position of a weekday: 0 - 7, where 0 is Sunday.

Example

>>> weekday('sunday'), weekday('sun'), weekday('mon')
(0, 0, 1)

celery.utils.time.humanize_seconds(secs, prefix=u’‘, sep=u’‘, now=u’now’, microsec-
onds=False)

Show seconds in human form.

For example, 60 becomes “1 minute”, and 7200 becomes “2 hours”.
Parameters

• prefix (str) – can be used to add a preposition to the output (e.g., ‘in’ will give ‘in
1 second’, but add nothing to ‘now’).

• now (str) – Literal ‘now’.
• microseconds (bool) – Include microseconds.

celery.utils.time.maybe_iso8601(dt)
Either datetime | str -> datetime or None -> None.

celery.utils.time.is_naive(dt)
Return True if datetime is naive.

celery.utils.time.make_aware(dt, tz)
Set timezone for a datetime object.

celery.utils.time.localize(dt, tz)
Convert aware datetime to another timezone.

celery.utils.time.to_utc(dt)
Convert naive datetime to UTC.

celery.utils.time.maybe_make_aware(dt, tz=None)
Convert dt to aware datetime, do nothing if dt is already aware.

class celery.utils.time.ffwd(year=None, month=None, weeks=0, weekday=None, day=None,
hour=None, minute=None, second=None, microsecond=None,
**kwargs)

Version of dateutil.relativedelta that only supports addition.

2.13. Internals 493

https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/datetime.html#datetime.timedelta
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.datetime

Celery Documentation, Release 4.1.0

celery.utils.time.utcoffset(time=<module ‘time’ (built-in)>, localtime=<built-in function local-
time>)

Return the current offset to UTC in hours.

celery.utils.time.adjust_timestamp(ts, offset, here=<function utcoffset>)
Adjust timestamp based on provided utcoffset.

celery.utils.iso8601

Parse ISO8601 dates.

Originally taken from pyiso8601 (https://bitbucket.org/micktwomey/pyiso8601)

Modified to match the behavior of dateutil.parser:

• raise ValueError instead of ParseError

• return naive datetime by default

• uses pytz.FixedOffset

This is the original License:

Copyright (c) 2007 Michael Twomey

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sub-license, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

celery.utils.iso8601.parse_iso8601(datestring)
Parse and convert ISO-8601 string to datetime.

celery.utils.saferepr

Streaming, truncating, non-recursive version of repr().

Differences from regular repr():

• Sets are represented the Python 3 way: {1, 2} vs set([1, 2]).

• Unicode strings does not have the u' prefix, even on Python 2.

• Empty set formatted as set() (Python 3), not set([]) (Python 2).

• Longs don’t have the L suffix.

Very slow with no limits, super quick with limits.

celery.utils.saferepr.saferepr(o, maxlen=None, maxlevels=3, seen=None)
Safe version of repr().

494 Chapter 2. Contents

https://pypi.python.org/pypi/pyiso8601/
https://bitbucket.org/micktwomey/pyiso8601
https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/functions.html#repr
https://docs.python.org/dev/library/functions.html#repr
https://docs.python.org/dev/library/functions.html#repr

Celery Documentation, Release 4.1.0

Warning: Make sure you set the maxlen argument, or it will be very slow for recursive objects. With the
maxlen set, it’s often faster than built-in repr.

celery.utils.saferepr.reprstream(stack, seen=None, maxlevels=3, level=0, isinstance=<built-
in function isinstance>)

Streaming repr, yielding tokens.

celery.utils.serialization

Utilities for safely pickling exceptions.

exception celery.utils.serialization.UnpickleableExceptionWrapper(exc_module,
exc_cls_name,
exc_args,
text=None)

Wraps unpickleable exceptions.
Parameters

• exc_module (str) – See exc_module.
• exc_cls_name (str) – See exc_cls_name.
• exc_args (Tuple[Any, ..]) – See exc_args.

Example

>>> def pickle_it(raising_function):
... try:
... raising_function()
... except Exception as e:
... exc = UnpickleableExceptionWrapper(
... e.__class__.__module__,
... e.__class__.__name__,
... e.args,
...)
... pickle.dumps(exc) # Works fine.

exc_args = None
The arguments for the original exception.

exc_cls_name = None
The name of the original exception class.

exc_module = None
The module of the original exception.

classmethod from_exception(exc)

restore()

celery.utils.serialization.subclass_exception(name, parent, module)
Create new exception class.

celery.utils.serialization.find_pickleable_exception(exc, loads=<built-in function
loads>, dumps=<built-in func-
tion dumps>)

Find first pickleable exception base class.

2.13. Internals 495

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

With an exception instance, iterate over its super classes (by MRO) and find the first super exception that’s
pickleable. It does not go below Exception (i.e., it skips Exception, BaseException and object). If
that happens you should use UnpickleableException instead.

Parameters exc (BaseException) – An exception instance.
Returns

Nearest pickleable parent exception class (except Exception and parents), or if the ex-
ception is pickleable it will return None.

Return type Exception

celery.utils.serialization.create_exception_cls(name, module, parent=None)
Dynamically create an exception class.

celery.utils.serialization.get_pickleable_exception(exc)
Make sure exception is pickleable.

celery.utils.serialization.get_pickleable_etype(cls, loads=<built-in function loads>,
dumps=<built-in function dumps>)

Get pickleable exception type.

celery.utils.serialization.get_pickled_exception(exc)
Reverse of get_pickleable_exception().

celery.utils.serialization.strtobool(term, table={u‘1’: True, u‘0’: False, u’false’: False,
u’no’: False, u’off’: False, u’yes’: True, u’on’: True,
u’true’: True})

Convert common terms for true/false to bool.

Examples (true/false/yes/no/on/off/1/0).

celery.utils.sysinfo

System information utilities.

celery.utils.sysinfo.load_average()
Return system load average as a triple.

class celery.utils.sysinfo.df(path)
Disk information.

available

capacity

stat

total_blocks

celery.utils.threads

Threading primitives and utilities.

class celery.utils.threads.bgThread(name=None, **kwargs)
Background service thread.

body()

on_crash(msg, *fmt, **kwargs)

run()

496 Chapter 2. Contents

https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/exceptions.html#BaseException
https://docs.python.org/dev/library/functions.html#object
https://docs.python.org/dev/library/exceptions.html#BaseException
https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/exceptions.html#Exception

Celery Documentation, Release 4.1.0

stop()
Graceful shutdown.

class celery.utils.threads.Local
Local object.

celery.utils.threads.LocalStack
alias of _LocalStack

class celery.utils.threads.LocalManager(locals=None, ident_func=None)
Local objects cannot manage themselves.

For that you need a local manager. You can pass a local manager multiple locals or add them later by appending
them to manager.locals. Every time the manager cleans up, it will clean up all the data left in the locals
for this context.

The ident_func parameter can be added to override the default ident function for the wrapped locals.

cleanup()
Manually clean up the data in the locals for this context.

Call this at the end of the request or use make_middleware().

get_ident()
Return context identifier.

This is the indentifer the local objects use internally for this context. You cannot override this method to
change the behavior but use it to link other context local objects (such as SQLAlchemy’s scoped sessions)
to the Werkzeug locals.

celery.utils.threads.get_ident()→ integer
Return a non-zero integer that uniquely identifies the current thread amongst other threads that exist simulta-
neously. This may be used to identify per-thread resources. Even though on some platforms threads identities
may appear to be allocated consecutive numbers starting at 1, this behavior should not be relied upon, and the
number should be seen purely as a magic cookie. A thread’s identity may be reused for another thread after it
exits.

celery.utils.threads.default_socket_timeout(*args, **kwds)
Context temporarily setting the default socket timeout.

celery.utils.timer2

Scheduler for Python functions.

Note: This is used for the thread-based worker only, not for amqp/redis/sqs/qpid where kombu.async.timer is
used.

class celery.utils.timer2.Entry(fun, args=None, kwargs=None)
Schedule Entry.

args

cancel()

canceled

cancelled

fun

kwargs

2.13. Internals 497

http://kombu.readthedocs.io/en/master/reference/kombu.async.timer.html#module-kombu.async.timer

Celery Documentation, Release 4.1.0

tref

celery.utils.timer2.Schedule
alias of Timer

class celery.utils.timer2.Timer(schedule=None, on_error=None, on_tick=None, on_start=None,
max_interval=None, **kwargs)

Timer thread.

Note: This is only used for transports not supporting AsyncIO.

class Entry(fun, args=None, kwargs=None)
Schedule Entry.

args

cancel()

canceled

cancelled

fun

kwargs

tref

Timer.Schedule
alias of Timer

Timer.call_after(*args, **kwargs)

Timer.call_at(*args, **kwargs)

Timer.call_repeatedly(*args, **kwargs)

Timer.cancel(tref)

Timer.clear()

Timer.empty()

Timer.ensure_started()

Timer.enter(entry, eta, priority=None)

Timer.enter_after(*args, **kwargs)

Timer.exit_after(secs, priority=10)

Timer.next()

Timer.on_tick = None

Timer.queue

Timer.run()

Timer.running = False

Timer.stop()

celery.utils.timer2.to_timestamp(d, default_timezone=<UTC>, time=<function _mono-
tonic>)

Convert datetime to timestamp.

498 Chapter 2. Contents

Celery Documentation, Release 4.1.0

If d’ is already a timestamp, then that will be used.

celery.utils.imports

Utilities related to importing modules and symbols by name.

exception celery.utils.imports.NotAPackage
Raised when importing a package, but it’s not a package.

celery.utils.imports.qualname(obj)
Return object name.

celery.utils.imports.instantiate(name, *args, **kwargs)
Instantiate class by name.

See also:

symbol_by_name().

celery.utils.imports.symbol_by_name(name, aliases={}, imp=None, package=None, sep=u’.’,
default=None, **kwargs)

Get symbol by qualified name.

The name should be the full dot-separated path to the class:

modulename.ClassName

Example:

celery.concurrency.processes.TaskPool
^- class name

or using ‘:’ to separate module and symbol:

celery.concurrency.processes:TaskPool

If aliases is provided, a dict containing short name/long name mappings, the name is looked up in the aliases
first.

Examples

>>> symbol_by_name('celery.concurrency.processes.TaskPool')
<class 'celery.concurrency.processes.TaskPool'>

>>> symbol_by_name('default', {
... 'default': 'celery.concurrency.processes.TaskPool'})
<class 'celery.concurrency.processes.TaskPool'>

Does not try to look up non-string names. >>> from celery.concurrency.processes import TaskPool >>>
symbol_by_name(TaskPool) is TaskPool True

celery.utils.imports.cwd_in_path(*args, **kwds)
Context adding the current working directory to sys.path.

celery.utils.imports.find_module(module, path=None, imp=None)
Version of imp.find_module() supporting dots.

2.13. Internals 499

https://docs.python.org/dev/library/imp.html#imp.find_module

Celery Documentation, Release 4.1.0

celery.utils.imports.import_from_cwd(module, imp=None, package=None)
Import module, temporarily including modules in the current directory.

Modules located in the current directory has precedence over modules located in sys.path.

celery.utils.imports.reload_from_cwd(module, reloader=None)
Reload module (ensuring that CWD is in sys.path).

celery.utils.imports.module_file(module)
Return the correct original file name of a module.

celery.utils.imports.gen_task_name(app, name, module_name)
Generate task name from name/module pair.

celery.utils.log

Logging utilities.

class celery.utils.log.ColorFormatter(fmt=None, use_color=True)
Logging formatter that adds colors based on severity.

COLORS = {u’blue’: <bound method colored.blue of u’‘>, u’black’: <bound method colored.black of u’‘>, u’yellow’: <bound method colored.yellow of u’‘>, u’cyan’: <bound method colored.cyan of u’‘>, u’green’: <bound method colored.green of u’‘>, u’magenta’: <bound method colored.magenta of u’‘>, u’white’: <bound method colored.white of u’‘>, u’red’: <bound method colored.red of u’‘>}

colors = {u’DEBUG’: <bound method colored.blue of u’‘>, u’CRITICAL’: <bound method colored.magenta of u’‘>, u’WARNING’: <bound method colored.yellow of u’‘>, u’ERROR’: <bound method colored.red of u’‘>}

format(record)

formatException(ei)

class celery.utils.log.LoggingProxy(logger, loglevel=None)
Forward file object to logging.Logger instance.

Parameters
• logger (Logger) – Logger instance to forward to.
• loglevel (int, str) – Log level to use when logging messages.

close()

closed = False

flush()

isatty()
Here for file support.

loglevel = 40

mode = u’w’

name = None

write(data)
Write message to logging object.

writelines(sequence)
Write list of strings to file.

The sequence can be any iterable object producing strings. This is equivalent to calling write() for
each string.

celery.utils.log.set_in_sighandler(value)
Set flag signifiying that we’re inside a signal handler.

celery.utils.log.in_sighandler(*args, **kwds)
Context that records that we are in a signal handler.

500 Chapter 2. Contents

https://docs.python.org/dev/library/logging.html#logging.Logger
https://docs.python.org/dev/library/logging.html#logging.Logger
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str

Celery Documentation, Release 4.1.0

celery.utils.log.get_logger(name)
Get logger by name.

celery.utils.log.get_task_logger(name)
Get logger for task module by name.

celery.utils.log.mlevel(level)
Convert level name/int to log level.

celery.utils.log.get_multiprocessing_logger()
Return the multiprocessing logger.

celery.utils.log.reset_multiprocessing_logger()
Reset multiprocessing logging setup.

celery.utils.text

Text formatting utilities.

celery.utils.text.abbr(S, max, ellipsis=u’...’)
Abbreviate word.

celery.utils.text.abbrtask(S, max)
Abbreviate task name.

celery.utils.text.dedent(s, n=4, sep=u’\n’)
Remove identation.

celery.utils.text.dedent_initial(s, n=4)
Remove identation from first line of text.

celery.utils.text.ensure_sep(sep, s, n=2)
Ensure text s ends in separator sep’.

celery.utils.text.fill_paragraphs(s, width, sep=u’\n’)
Fill paragraphs with newlines (or custom separator).

celery.utils.text.indent(t, indent=0, sep=u’\n’)
Indent text.

celery.utils.text.join(l, sep=u’\n’)
Concatenate list of strings.

celery.utils.text.pluralize(n, text, suffix=u’s’)
Pluralize term when n is greater than one.

celery.utils.text.pretty(value, width=80, nl_width=80, sep=u’\n’, **kw)
Format value for printing to console.

celery.utils.text.str_to_list(s)
Convert string to list.

celery.utils.text.simple_format(s, keys, pattern=<_sre.SRE_Pattern object>, expand=u’\\1’)
Format string, expanding abbreviations in keys’.

celery.utils.text.truncate(s, maxlen=128, suffix=u’...’)
Truncate text to a maximum number of characters.

celery.utils.dispatch

Observer pattern.

2.13. Internals 501

Celery Documentation, Release 4.1.0

class celery.utils.dispatch.Signal(providing_args=None, use_caching=False, name=None)
Create new signal.

Keyword Arguments
• providing_args (List) – A list of the arguments this signal can pass along in a
send() call.

• use_caching (bool) – Enable receiver cache.
• name (str) – Name of signal, used for debugging purposes.

connect(*args, **kwargs)
Connect receiver to sender for signal.

Parameters
• receiver (Callable) – A function or an instance method which is to receive

signals. Receivers must be hashable objects.

if weak is True, then receiver must be weak-referenceable.

Receivers must be able to accept keyword arguments.

If receivers have a dispatch_uid attribute, the receiver will not be added if another
receiver already exists with that dispatch_uid.

• sender (Any) – The sender to which the receiver should respond. Must either
be a Python object, or None to receive events from any sender.

• weak (bool) – Whether to use weak references to the receiver. By default,
the module will attempt to use weak references to the receiver objects. If this
parameter is false, then strong references will be used.

• dispatch_uid (Hashable) – An identifier used to uniquely identify a par-
ticular instance of a receiver. This will usually be a string, though it may be
anything hashable.

disconnect(receiver=None, sender=None, weak=None, dispatch_uid=None)
Disconnect receiver from sender for signal.

If weak references are used, disconnect needn’t be called. The receiver will be removed from dispatch
automatically.

Parameters
• receiver (Callable) – The registered receiver to disconnect. May be none

if dispatch_uid is specified.
• sender (Any) – The registered sender to disconnect.
• weak (bool) – The weakref state to disconnect.
• dispatch_uid (Hashable) – The unique identifier of the receiver to dis-

connect.

has_listeners(sender=None)

receivers = None

send(sender, **named)
Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through send, terminating the dispatch loop, so it
is quite possible to not have all receivers called if a raises an error.

Parameters
• sender (Any) – The sender of the signal. Either a specific object or None.
• **named (Any) – Named arguments which will be passed to receivers.

Returns of tuple pairs: [(receiver, response), . . .].
Return type List

send_robust(sender, **named)
Send signal from sender to all connected receivers.

502 Chapter 2. Contents

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

If any receiver raises an error, the error propagates back through send, terminating the dispatch loop, so it
is quite possible to not have all receivers called if a raises an error.

Parameters
• sender (Any) – The sender of the signal. Either a specific object or None.
• **named (Any) – Named arguments which will be passed to receivers.

Returns of tuple pairs: [(receiver, response), . . .].
Return type List

celery.utils.dispatch.signal

Implementation of the Observer pattern.

class celery.utils.dispatch.signal.Signal(providing_args=None, use_caching=False,
name=None)

Create new signal.
Keyword Arguments

• providing_args (List) – A list of the arguments this signal can pass along in a
send() call.

• use_caching (bool) – Enable receiver cache.
• name (str) – Name of signal, used for debugging purposes.

connect(*args, **kwargs)
Connect receiver to sender for signal.

Parameters
• receiver (Callable) – A function or an instance method which is to receive

signals. Receivers must be hashable objects.

if weak is True, then receiver must be weak-referenceable.

Receivers must be able to accept keyword arguments.

If receivers have a dispatch_uid attribute, the receiver will not be added if another
receiver already exists with that dispatch_uid.

• sender (Any) – The sender to which the receiver should respond. Must either
be a Python object, or None to receive events from any sender.

• weak (bool) – Whether to use weak references to the receiver. By default,
the module will attempt to use weak references to the receiver objects. If this
parameter is false, then strong references will be used.

• dispatch_uid (Hashable) – An identifier used to uniquely identify a par-
ticular instance of a receiver. This will usually be a string, though it may be
anything hashable.

disconnect(receiver=None, sender=None, weak=None, dispatch_uid=None)
Disconnect receiver from sender for signal.

If weak references are used, disconnect needn’t be called. The receiver will be removed from dispatch
automatically.

Parameters
• receiver (Callable) – The registered receiver to disconnect. May be none

if dispatch_uid is specified.
• sender (Any) – The registered sender to disconnect.
• weak (bool) – The weakref state to disconnect.
• dispatch_uid (Hashable) – The unique identifier of the receiver to dis-

connect.

has_listeners(sender=None)

2.13. Internals 503

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#bool

Celery Documentation, Release 4.1.0

receivers = None
Holds a dictionary of {receiverkey (id): weakref(receiver)} mappings.

send(sender, **named)
Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through send, terminating the dispatch loop, so it
is quite possible to not have all receivers called if a raises an error.

Parameters
• sender (Any) – The sender of the signal. Either a specific object or None.
• **named (Any) – Named arguments which will be passed to receivers.

Returns of tuple pairs: [(receiver, response), . . .].
Return type List

send_robust(sender, **named)
Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through send, terminating the dispatch loop, so it
is quite possible to not have all receivers called if a raises an error.

Parameters
• sender (Any) – The sender of the signal. Either a specific object or None.
• **named (Any) – Named arguments which will be passed to receivers.

Returns of tuple pairs: [(receiver, response), . . .].
Return type List

celery.utils.dispatch.weakref_backports

Weakref compatibility.

weakref_backports is a partial backport of the weakref module for Python versions below 3.4.

Copyright (C) 2013 Python Software Foundation, see LICENSE.python for details.

The following changes were made to the original sources during backporting:

• Added self to super calls.

• Removed from None when raising exceptions.

class celery.utils.dispatch.weakref_backports.WeakMethod
Weak reference to bound method.

A custom weakref.ref subclass which simulates a weak reference to a bound method, working around the
lifetime problem of bound methods.

celery.platforms

Platforms.

Utilities dealing with platform specifics: signals, daemonization, users, groups, and so on.

celery.platforms.pyimplementation()
Return string identifying the current Python implementation.

exception celery.platforms.LockFailed
Raised if a PID lock can’t be acquired.

celery.platforms.get_fdmax(default=None)
Return the maximum number of open file descriptors on this system.

Keyword Arguments default – Value returned if there’s no file descriptor limit.

504 Chapter 2. Contents

https://docs.python.org/dev/library/weakref.html#weakref.ref

Celery Documentation, Release 4.1.0

class celery.platforms.Pidfile(path)
Pidfile.

This is the type returned by create_pidlock().

See also:

Best practice is to not use this directly but rather use the create_pidlock() function instead: more conve-
nient and also removes stale pidfiles (when the process holding the lock is no longer running).

acquire()
Acquire lock.

is_locked()
Return true if the pid lock exists.

path = None

read_pid()
Read and return the current pid.

release(*args)
Release lock.

remove()
Remove the lock.

remove_if_stale()
Remove the lock if the process isn’t running.

I.e. process does not respons to signal.

write_pid()

celery.platforms.create_pidlock(pidfile)
Create and verify pidfile.

If the pidfile already exists the program exits with an error message, however if the process it refers to isn’t
running anymore, the pidfile is deleted and the program continues.

This function will automatically install an atexit handler to release the lock at exit, you can skip this by
calling _create_pidlock() instead.

Returns used to manage the lock.
Return type Pidfile

Example

>>> pidlock = create_pidlock('/var/run/app.pid')

celery.platforms.close_open_fds(keep=None)

class celery.platforms.DaemonContext(pidfile=None, workdir=None, umask=None, fake=False,
after_chdir=None, after_forkers=True, **kwargs)

Context manager daemonizing the process.

close(*args)

open()

redirect_to_null(fd)

2.13. Internals 505

https://docs.python.org/dev/library/atexit.html#module-atexit

Celery Documentation, Release 4.1.0

celery.platforms.detached(logfile=None, pidfile=None, uid=None, gid=None, umask=0,
workdir=None, fake=False, **opts)

Detach the current process in the background (daemonize).
Parameters

• logfile (str) – Optional log file. The ability to write to this file will be verified
before the process is detached.

• pidfile (str) – Optional pid file. The pidfile won’t be created, as this is the respon-
sibility of the child. But the process will exit if the pid lock exists and the pid written
is still running.

• uid (int, str) – Optional user id or user name to change effective privileges to.
• gid (int, str) – Optional group id or group name to change effective privileges

to.
• umask (str, int) – Optional umask that’ll be effective in the child process.
• workdir (str) – Optional new working directory.
• fake (bool) – Don’t actually detach, intended for debugging purposes.
• **opts (Any) – Ignored.

Example

>>> from celery.platforms import detached, create_pidlock
>>> with detached(
... logfile='/var/log/app.log',
... pidfile='/var/run/app.pid',
... uid='nobody'):
... # Now in detached child process with effective user set to nobody,
... # and we know that our logfile can be written to, and that
... # the pidfile isn't locked.
... pidlock = create_pidlock('/var/run/app.pid')
...
... # Run the program
... program.run(logfile='/var/log/app.log')

celery.platforms.parse_uid(uid)
Parse user id.

Parameters uid (str, int) – Actual uid, or the username of a user.
Returns The actual uid.
Return type int

celery.platforms.parse_gid(gid)
Parse group id.

Parameters gid (str, int) – Actual gid, or the name of a group.
Returns The actual gid of the group.
Return type int

celery.platforms.setgroups(groups)
Set active groups from a list of group ids.

celery.platforms.initgroups(uid, gid)
Init process group permissions.

Compat version of os.initgroups() that was first added to Python 2.7.

celery.platforms.setgid(gid)
Version of os.setgid() supporting group names.

celery.platforms.setuid(uid)
Version of os.setuid() supporting usernames.

506 Chapter 2. Contents

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/os.html#os.initgroups
https://docs.python.org/dev/library/os.html#os.setgid
https://docs.python.org/dev/library/os.html#os.setuid

Celery Documentation, Release 4.1.0

celery.platforms.maybe_drop_privileges(uid=None, gid=None)
Change process privileges to new user/group.

If UID and GID is specified, the real user/group is changed.

If only UID is specified, the real user is changed, and the group is changed to the users primary group.

If only GID is specified, only the group is changed.

celery.platforms.signal_name(signum)
Return name of signal from signal number.

celery.platforms.set_process_title(progname, info=None)
Set the ps name for the currently running process.

Only works if setproctitle is installed.

celery.platforms.set_mp_process_title(progname, info=None, hostname=None)
Set the ps name from the current process name.

Only works if setproctitle is installed.

celery.platforms.get_errno_name(n)
Get errno for string (e.g., ENOENT).

celery.platforms.ignore_errno(*args, **kwds)
Context manager to ignore specific POSIX error codes.

Takes a list of error codes to ignore: this can be either the name of the code, or the code integer itself:

>>> with ignore_errno('ENOENT'):
... with open('foo', 'r') as fh:
... return fh.read()

>>> with ignore_errno(errno.ENOENT, errno.EPERM):
... pass

Parameters types (Tuple[Exception]) – A tuple of exceptions to ignore (when the errno
matches). Defaults to Exception.

celery.platforms.fd_by_path(paths)
Return a list of file descriptors.

This method returns list of file descriptors corresponding to file paths passed in paths variable.
Parameters paths – List[str]: List of file paths.
Returns List of file descriptors.
Return type List[int]

Example

>>> keep = fd_by_path(['/dev/urandom', '/my/precious/'])

celery.platforms.isatty(fh)
Return true if the process has a controlling terminal.

celery._state

Internal state.

This is an internal module containing thread state like the current_app, and current_task.

2.13. Internals 507

https://pypi.python.org/pypi/setproctitle/
https://pypi.python.org/pypi/setproctitle/
https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/exceptions.html#Exception
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.1.0

This module shouldn’t be used directly.

celery._state.set_default_app(app)
Set default app.

celery._state.get_current_app()

celery._state.get_current_task()
Currently executing task.

celery._state.get_current_worker_task()
Currently executing task, that was applied by the worker.

This is used to differentiate between the actual task executed by the worker and any task that was called within
a task (using task.__call__ or task.apply)

celery._state.connect_on_app_finalize(callback)
Connect callback to be called when any app is finalized.

History

This section contains historical change histories, for the latest version please visit Change history.

Release 4.1

Date Jul 24, 2017

Change history

This document contains change notes for bugfix releases in the 4.0.x series (latentcall), please see What’s new in
Celery 4.0 (latentcall) for an overview of what’s new in Celery 4.0.

4.0.2

release-date 2016-12-15 03:40 PM PST

release-by Ask Solem

• Requirements

– Now depends on Kombu 4.0.2.

• Tasks: Fixed problem with JSON serialization of group (keys must be string error, Issue #3688).

• Worker: Fixed JSON serialization issue when using inspect active and friends (Issue #3667).

• App: Fixed saferef errors when using signals (Issue #3670).

• Prefork: Fixed bug with pack requiring bytes argument on Python 2.7.5 and earlier (Issue #3674).

• Tasks: Saferepr did not handle unicode in bytestrings on Python 2 (Issue #3676).

• Testing: Added new celery_worker_paremeters fixture.

Contributed by Michael Howitz.

• Tasks: Added new app argument to GroupResult.restore (Issue #3669).

This makes the restore method behave the same way as the GroupResult constructor.

Contributed by Andreas Pelme.

508 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/changelog.html#version-4-0-2
https://github.com/celery/celery/issues/3688
https://github.com/celery/celery/issues/3667
https://github.com/celery/celery/issues/3670
https://github.com/celery/celery/issues/3674
https://github.com/celery/celery/issues/3676
https://github.com/celery/celery/issues/3669

Celery Documentation, Release 4.1.0

• Tasks: Fixed type checking crash when task takes *args on Python 3 (Issue #3678).

• Documentation and examples improvements by:

– BLAGA Razvan-Paul

– Michael Howitz

– @paradox41

4.0.1

release-date 2016-12-08 05:22 PM PST

release-by Ask Solem

• [Security: CELERYSA-0003] Insecure default configuration

The default accept_content setting was set to allow deserialization of pickled messages in
Celery 4.0.0.

The insecure default has been fixed in 4.0.1, and you can also configure the 4.0.0 version to explic-
itly only allow json serialized messages:

app.conf.accept_content = ['json']

• Tasks: Added new method to register class-based tasks (Issue #3615).

To register a class based task you should now call app.register_task:

from celery import Celery, Task

app = Celery()

class CustomTask(Task):

def run(self):
return 'hello'

app.register_task(CustomTask())

• Tasks: Argument checking now supports keyword-only arguments on Python3 (Issue #3658).

Contributed by @sww.

• Tasks: The task-sent event was not being sent even if configured to do so (Issue #3646).

• Worker: Fixed AMQP heartbeat support for eventlet/gevent pools (Issue #3649).

• App: app.conf.humanize() would not work if configuration not finalized (Issue #3652).

• Utils: saferepr attempted to show iterables as lists and mappings as dicts.

• Utils: saferepr did not handle unicode-errors when attempting to format bytes on Python 3 (Issue #3610).

• Utils: saferepr should now properly represent byte strings with non-ascii characters (Issue #3600).

• Results: Fixed bug in elasticsearch where _index method missed the body argument (Issue #3606).

Fix contributed by (Sean Ho).

• Canvas: Fixed ValueError in chord with single task header (Issue #3608).

Fix contributed by Viktor Holmqvist.

2.14. History 509

https://github.com/celery/celery/issues/3678
https://github.com/paradox41/
https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0003.txt
https://github.com/celery/celery/issues/3615
https://github.com/celery/celery/issues/3658
https://github.com/sww/
https://github.com/celery/celery/issues/3646
https://github.com/celery/celery/issues/3649
https://github.com/celery/celery/issues/3652
https://github.com/celery/celery/issues/3610
https://github.com/celery/celery/issues/3600
https://github.com/celery/celery/issues/3606
https://docs.python.org/dev/library/exceptions.html#ValueError
https://github.com/celery/celery/issues/3608

Celery Documentation, Release 4.1.0

• Task: Ensure class-based task has name prior to registration (Issue #3616).

Fix contributed by Rick Wargo.

• Beat: Fixed problem with strings in shelve (Issue #3644).

Fix contributed by Alli.

• Worker: Fixed KeyError in inspect stats when -O argument set to something other than fast or
fair (Issue #3621).

• Task: Retried tasks were no longer sent to the original queue (Issue #3622).

• Worker: Python 3: Fixed None/int type comparison in apps/worker.py (Issue #3631).

• Results: Redis has a new redis_socket_connect_timeout setting.

• Results: Redis result backend passed the socket_connect_timeout argument to UNIX socket based
connections by mistake, causing a crash.

• Worker: Fixed missing logo in worker splash screen when running on Python 3.x (Issue #3627).

Fix contributed by Brian Luan.

• Deps: Fixed celery[redis] bundle installation (Issue #3643).

Fix contributed by Rémi Marenco.

• Deps: Bundle celery[sqs] now also requires pycurl (Issue #3619).

• Worker: Hard time limits were no longer being respected (Issue #3618).

• Worker: Soft time limit log showed Trues instead of the number of seconds.

• App: registry_cls argument no longer had any effect (Issue #3613).

• Worker: Event producer now uses connection_for_Write (Issue #3525).

• Results: Redis/memcache backends now uses result_expires to expire chord counter (Issue #3573).

Contributed by Tayfun Sen.

• Django: Fixed command for upgrading settings with Django (Issue #3563).

Fix contributed by François Voron.

• Testing: Added a celery_parameters test fixture to be able to use customized Celery init parameters.
(#3626)

Contributed by Steffen Allner.

• Documentation improvements contributed by

– @csfeathers

– Moussa Taifi

– Yuhannaa

– Laurent Peuch

– Christian

– Bruno Alla

– Steven Johns

– @tnir

– GDR!

510 Chapter 2. Contents

https://github.com/celery/celery/issues/3616
https://github.com/celery/celery/issues/3644
https://docs.python.org/dev/library/exceptions.html#KeyError
https://github.com/celery/celery/issues/3621
https://github.com/celery/celery/issues/3622
https://github.com/celery/celery/issues/3631
https://github.com/celery/celery/issues/3627
https://github.com/celery/celery/issues/3643
https://pypi.python.org/pypi/pycurl/
https://github.com/celery/celery/issues/3619
https://github.com/celery/celery/issues/3618
https://github.com/celery/celery/issues/3613
https://github.com/celery/celery/issues/3525
https://github.com/celery/celery/issues/3573
https://github.com/celery/celery/issues/3563
https://github.com/csfeathers/
https://github.com/tnir/

Celery Documentation, Release 4.1.0

4.0.0

release-date 2016-11-04 02:00 P.M PDT

release-by Ask Solem

See What’s new in Celery 4.0 (latentcall) (in docs/whatsnew-4.0.rst).

4.0.0rc7

release-date 2016-11-02 01:30 P.M PDT

Important notes

• Database result backend related setting names changed from sqlalchemy_* -> database_*.

The sqlalchemy_ named settings won’t work at all in this version so you need to rename them.
This is a last minute change, and as they were not supported in 3.1 we will not be providing aliases.

• chain(A, B, C) now works the same way as A | B | C.

This means calling chain() might not actually return a chain, it can return a group or any other
type depending on how the workflow can be optimized.

Change history

This document contains change notes for bugfix releases in the 3.1.x series (Cipater), please see What’s new in Celery
3.1 (Cipater) for an overview of what’s new in Celery 3.1.

3.1.25

release-date 2016-10-10 12:00 PM PDT

release-by Ask Solem

• Requirements

– Now depends on Kombu 3.0.37

• Fixed problem with chords in group introduced in 3.1.24 (Issue #3504).

3.1.24

release-date 2016-09-30 04:21 PM PDT

release-by Ask Solem

• Requirements

– Now depends on Kombu 3.0.36.

• Now supports Task protocol 2 from the future 4.0 release.

2.14. History 511

http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-37
https://github.com/celery/celery/issues/3504
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-36

Celery Documentation, Release 4.1.0

Workers running 3.1.24 are now able to process messages sent using the new task message protocol
to be introduced in Celery 4.0.

Users upgrading to Celery 4.0 when this is released are encouraged to upgrade to this version as an
intermediate step, as this means workers not yet upgraded will be able to process messages from
clients/workers running 4.0.

• Task.send_events can now be set to disable sending of events for that task only.

Example when defining the task:

@app.task(send_events=False)
def add(x, y):

return x + y

• Utils: Fixed compatibility with recent psutil versions (Issue #3262).

• Canvas: Chord now forwards partial arguments to its subtasks.

Fix contributed by Tayfun Sen.

• App: Arguments to app such as backend, broker, etc are now pickled and sent to the child processes on
Windows.

Fix contributed by Jeremy Zafran.

• Deployment: Generic init scripts now supports being symlinked in runlevel directories (Issue #3208).

• Deployment: Updated CentOS scripts to work with CentOS 7.

Contributed by Joe Sanford.

• Events: The curses monitor no longer crashes when the result of a task is empty.

Fix contributed by Dongweiming.

• Worker: repr(worker) would crash when called early in the startup process (Issue #2514).

• Tasks: GroupResult now defines __bool__ and __nonzero__.

This is to fix an issue where a ResultSet or GroupResult with an empty result list are not properly
tupled with the as_tuple() method when it is a parent result. This is due to the as_tuple() method
performing a logical and operation on the ResultSet.

Fix contributed by Colin McIntosh.

• Worker: Fixed wrong values in autoscale related logging message.

Fix contributed by @raducc.

• Documentation improvements by

– Alexandru Chirila

– Michael Aquilina

– Mikko Ekström

– Mitchel Humpherys

– Thomas A. Neil

– Tiago Moreira Vieira

– Yuriy Syrovetskiy

– @dessant

512 Chapter 2. Contents

http://docs.celeryproject.org/en/master/internals/protocol.html#version-2
https://pypi.python.org/pypi/psutil/
https://github.com/celery/celery/issues/3262
https://github.com/celery/celery/issues/3208
https://github.com/celery/celery/issues/2514

Celery Documentation, Release 4.1.0

3.1.23

release-date 2016-03-09 06:00 P.M PST

release-by Ask Solem

• Programs: Last release broke support for the --hostnmame argument to celery multi and celery
worker --detach (Issue #3103).

• Results: MongoDB result backend could crash the worker at startup if not configured using an URL.

3.1.22

release-date 2016-03-07 01:30 P.M PST

release-by Ask Solem

• Programs: The worker would crash immediately on startup on backend.as_uri() when using some result
backends (Issue #3094).

• Programs: celery multi/celery worker --detach would create an extraneous logfile including
literal formats (e.g. %I) in the filename (Issue #3096).

3.1.21

release-date 2016-03-04 11:16 a.m. PST

release-by Ask Solem

• Requirements

– Now depends on Kombu 3.0.34.

– Now depends on billiard 3.3.0.23.

• Prefork pool: Fixes 100% CPU loop on Linux epoll (Issue #1845).

Also potential fix for: Issue #2142, Issue #2606

• Prefork pool: Fixes memory leak related to processes exiting (Issue #2927).

• Worker: Fixes crash at start-up when trying to censor passwords in MongoDB and Cache result backend URLs
(Issue #3079, Issue #3045, Issue #3049, Issue #3068, Issue #3073).

Fix contributed by Maxime Verger.

• Task: An exception is now raised if countdown/expires is less than -2147483648 (Issue #3078).

• Programs: celery shell --ipython now compatible with newer IPython versions.

• Programs: The DuplicateNodeName warning emitted by inspect/control now includes a list of the node names
returned.

Contributed by Sebastian Kalinowski.

• Utils: The .discard(item) method of LimitedSet didn’t actually remove the item (Issue #3087).

Fix contributed by Dave Smith.

• Worker: Node name formatting now emits less confusing error message for unmatched format keys (Issue
#3016).

• Results: RPC/AMQP backends: Fixed deserialization of JSON exceptions (Issue #2518).

2.14. History 513

https://github.com/celery/celery/issues/3103
https://github.com/celery/celery/issues/3094
https://github.com/celery/celery/issues/3096
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-34
https://github.com/celery/celery/issues/1845
https://github.com/celery/celery/issues/2142
https://github.com/celery/celery/issues/2606
https://github.com/celery/celery/issues/2927
https://github.com/celery/celery/issues/3079
https://github.com/celery/celery/issues/3045
https://github.com/celery/celery/issues/3049
https://github.com/celery/celery/issues/3068
https://github.com/celery/celery/issues/3073
https://github.com/celery/celery/issues/3078
https://pypi.python.org/pypi/IPython/
https://github.com/celery/celery/issues/3087
https://github.com/celery/celery/issues/3016
https://github.com/celery/celery/issues/3016
https://github.com/celery/celery/issues/2518

Celery Documentation, Release 4.1.0

Fix contributed by Allard Hoeve.

• Prefork pool: The process inqueue damaged error message now includes the original exception raised.

• Documentation: Includes improvements by:

– Jeff Widman.

3.1.20

release-date 2016-01-22 06:50 p.m. UTC

release-by Ask Solem

• Requirements

– Now depends on Kombu 3.0.33.

– Now depends on billiard 3.3.0.22.

Includes binary wheels for Microsoft Windows x86 and x86_64!

• Task: Error emails now uses utf-8 character set by default (Issue #2737).

• Task: Retry now forwards original message headers (Issue #3017).

• Worker: Bootsteps can now hook into on_node_join/leave/lost.

See Attributes for an example.

• Events: Fixed handling of DST timezones (Issue #2983).

• Results: Redis backend stopped respecting certain settings.

Contributed by Jeremy Llewellyn.

• Results: Database backend now properly supports JSON exceptions (Issue #2441).

• Results: Redis new_join didn’t properly call task errbacks on chord error (Issue #2796).

• Results: Restores Redis compatibility with Python redis < 2.10.0 (Issue #2903).

• Results: Fixed rare issue with chord error handling (Issue #2409).

• Tasks: Using queue-name values in CELERY_ROUTES now works again (Issue #2987).

• General: Result backend password now sanitized in report output (Issue #2812, Issue #2004).

• Configuration: Now gives helpful error message when the result backend configuration points to a module, and
not a class (Issue #2945).

• Results: Exceptions sent by JSON serialized workers are now properly handled by pickle configured workers.

• Programs: celery control autoscale now works (Issue #2950).

• Programs: celery beat --detached now runs after fork callbacks.

• General: Fix for LRU cache implementation on Python 3.5 (Issue #2897).

Contributed by Dennis Brakhane.

Python 3.5’s OrderedDict doesn’t allow mutation while it is being iterated over. This breaks
“update” if it is called with a dict larger than the maximum size.

This commit changes the code to a version that doesn’t iterate over the dict, and should also be a
little bit faster.

• Init-scripts: The beat init-script now properly reports service as down when no pid file can be found.

514 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-33
https://github.com/celery/celery/issues/2737
https://github.com/celery/celery/issues/3017
https://github.com/celery/celery/issues/2983
https://github.com/celery/celery/issues/2441
https://github.com/celery/celery/issues/2796
https://pypi.python.org/pypi/redis/
https://github.com/celery/celery/issues/2903
https://github.com/celery/celery/issues/2409
https://github.com/celery/celery/issues/2987
https://github.com/celery/celery/issues/2812
https://github.com/celery/celery/issues/2004
https://github.com/celery/celery/issues/2945
https://github.com/celery/celery/issues/2950
https://github.com/celery/celery/issues/2897

Celery Documentation, Release 4.1.0

Eric Zarowny

• Beat: Added cleaning of corrupted scheduler files for some storage backend errors (Issue #2985).

Fix contributed by Aleksandr Kuznetsov.

• Beat: Now syncs the schedule even if the schedule is empty.

Fix contributed by Colin McIntosh.

• Supervisord: Set higher process priority in the supervisord example.

Contributed by George Tantiras.

• Documentation: Includes improvements by:

@Bryson Caleb Mingle Christopher Martin Dieter Adriaenssens Jason Veatch Jeremy Cline Juan
Rossi Kevin Harvey Kevin McCarthy Kirill Pavlov Marco Buttu @Mayflower Mher Movsisyan
Michael Floering @michael-k Nathaniel Varona Rudy Attias Ryan Luckie Steven Parker @squfrans
Tadej Janež TakesxiSximada Tom S

3.1.19

release-date 2015-10-26 01:00 p.m. UTC

release-by Ask Solem

• Requirements

– Now depends on Kombu 3.0.29.

– Now depends on billiard 3.3.0.21.

• Results: Fixed MongoDB result backend URL parsing problem (Issue celery/kombu#375).

• Worker: Task request now properly sets priority in delivery_info.

Fix contributed by Gerald Manipon.

• Beat: PyPy shelve may raise KeyError when setting keys (Issue #2862).

• Programs: celery beat --deatched now working on PyPy.

Fix contributed by Krzysztof Bujniewicz.

• Results: Redis result backend now ensures all pipelines are cleaned up.

Contributed by Justin Patrin.

• Results: Redis result backend now allows for timeout to be set in the query portion of the result backend URL.

For example CELERY_RESULT_BACKEND = 'redis://?timeout=10'

Contributed by Justin Patrin.

• Results: result.get now properly handles failures where the exception value is set to None (Issue #2560).

• Prefork pool: Fixed attribute error proc.dead.

• Worker: Fixed worker hanging when gossip/heartbeat disabled (Issue #1847).

Fix contributed by Aaron Webber and Bryan Helmig.

• Results: MongoDB result backend now supports pymongo 3.x (Issue #2744).

Fix contributed by Sukrit Khera.

• Results: RPC/AMQP backends didn’t deserialize exceptions properly (Issue #2691).

2.14. History 515

https://github.com/celery/celery/issues/2985
https://pypi.python.org/pypi/supervisord/
https://github.com/Bryson/
https://github.com/Mayflower/
https://github.com/michael-k/
https://github.com/squfrans/
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-29
https://github.com/celery/celery/issues/2862
https://github.com/celery/celery/issues/2560
https://github.com/celery/celery/issues/1847
https://github.com/celery/celery/issues/2744
https://github.com/celery/celery/issues/2691

Celery Documentation, Release 4.1.0

Fix contributed by Sukrit Khera.

• Programs: Fixed problem with celery amqp‘s basic_publish (Issue #2013).

• Worker: Embedded beat now properly sets app for thread/process (Issue #2594).

• Documentation: Many improvements and typos fixed.

Contributions by:

Carlos Garcia-Dubus D. Yu @jerry Jocelyn Delalande Josh Kupershmidt Juan Rossi
@kanemra Paul Pearce Pavel Savchenko Sean Wang Seungha Kim Zhaorong Ma

3.1.18

release-date 2015-04-22 05:30 p.m. UTC

release-by Ask Solem

• Requirements

– Now depends on Kombu 3.0.25.

– Now depends on billiard 3.3.0.20.

• Django: Now supports Django 1.8 (Issue #2536).

Fix contributed by Bence Tamas and Mickaël Penhard.

• Results: MongoDB result backend now compatible with pymongo 3.0.

Fix contributed by Fatih Sucu.

• Tasks: Fixed bug only happening when a task has multiple callbacks (Issue #2515).

Fix contributed by NotSqrt.

• Commands: Preload options now support --arg value syntax.

Fix contributed by John Anderson.

• Compat: A typo caused celery.log.setup_logging_subsystem to be undefined.

Fix contributed by Gunnlaugur Thor Briem.

• init-scripts: The beat generic init-script now uses /bin/sh instead of bash (Issue #2496).

Fix contributed by Jelle Verstraaten.

• Django: Fixed a TypeError sometimes occurring in logging when validating models.

Fix contributed by Alexander.

• Commands: Worker now supports new --executable argument that can be used with celery worker
--detach.

Contributed by Bert Vanderbauwhede.

• Canvas: Fixed crash in chord unlock fallback task (Issue #2404).

• Worker: Fixed rare crash occurring with --autoscale enabled (Issue #2411).

• Django: Properly recycle worker Django database connections when the Django CONN_MAX_AGE setting is
enabled (Issue #2453).

Fix contributed by Luke Burden.

516 Chapter 2. Contents

https://github.com/celery/celery/issues/2013
https://github.com/celery/celery/issues/2594
https://github.com/jerry/
https://github.com/kanemra/
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-25
https://github.com/celery/celery/issues/2536
https://github.com/celery/celery/issues/2515
https://github.com/celery/celery/issues/2496
https://docs.python.org/dev/library/exceptions.html#TypeError
https://github.com/celery/celery/issues/2404
https://github.com/celery/celery/issues/2411
https://github.com/celery/celery/issues/2453

Celery Documentation, Release 4.1.0

3.1.17

release-date 2014-11-19 03:30 p.m. UTC

release-by Ask Solem

Don’t enable the CELERYD_FORCE_EXECV setting!

Please review your configuration and disable this option if you’re using the RabbitMQ or Redis transport.

Keeping this option enabled after 3.1 means the async based prefork pool will be disabled, which can easily cause
instability.

• Requirements

– Now depends on Kombu 3.0.24.

Includes the new Qpid transport coming in Celery 3.2, backported to support those who may
still require Python 2.6 compatibility.

– Now depends on billiard 3.3.0.19.

– celery[librabbitmq] now depends on librabbitmq 1.6.1.

• Task: The timing of ETA/countdown tasks were off after the example LocalTimezone implementation in
the Python documentation no longer works in Python 3.4. (Issue #2306).

• Task: Raising Ignore no longer sends task-failed event (Issue #2365).

• Redis result backend: Fixed unbound local errors.

Fix contributed by Thomas French.

• Task: Callbacks wasn’t called properly if link was a list of signatures (Issue #2350).

• Canvas: chain and group now handles json serialized signatures (Issue #2076).

• Results: .join_native() would accidentally treat the STARTED state as being ready (Issue #2326).

This could lead to the chord callback being called with invalid arguments when using chords with
the CELERY_TRACK_STARTED setting enabled.

• Canvas: The chord_size attribute is now set for all canvas primitives, making sure more combinations will
work with the new_join optimization for Redis (Issue #2339).

• Task: Fixed problem with app not being properly propagated to trace_task in all cases.

Fix contributed by @kristaps.

• Worker: Expires from task message now associated with a timezone.

Fix contributed by Albert Wang.

• Cassandra result backend: Fixed problems when using detailed mode.

When using the Cassandra backend in detailed mode, a regression caused errors when attempting
to retrieve results.

Fix contributed by Gino Ledesma.

• Mongodb Result backend: Pickling the backend instance will now include the original URL (Issue #2347).

Fix contributed by Sukrit Khera.

• Task: Exception info wasn’t properly set for tasks raising Reject (Issue #2043).

2.14. History 517

http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-24
https://github.com/celery/celery/issues/2306
https://github.com/celery/celery/issues/2365
https://github.com/celery/celery/issues/2350
https://github.com/celery/celery/issues/2076
https://github.com/celery/celery/issues/2326
https://github.com/celery/celery/issues/2339
https://github.com/kristaps/
https://github.com/celery/celery/issues/2347
https://github.com/celery/celery/issues/2043

Celery Documentation, Release 4.1.0

• Worker: Duplicates are now removed when loading the set of revoked tasks from the worker state database
(Issue #2336).

• celery.contrib.rdb: Fixed problems with rdb.set_trace calling stop from the wrong frame.

Fix contributed by @llllllllll.

• Canvas: chain and chord can now be immutable.

• Canvas: chord.apply_async will now keep partial args set in self.args (Issue #2299).

• Results: Small refactoring so that results are decoded the same way in all result backends.

• Logging: The processName format was introduced in Python 2.6.2 so for compatibility this format is now
excluded when using earlier versions (Issue #1644).

3.1.16

release-date 2014-10-03 06:00 p.m. UTC

release-by Ask Solem

• Worker: 3.1.15 broke -Ofair behavior (Issue #2286).

This regression could result in all tasks executing in a single child process if -Ofair was enabled.

• Canvas: celery.signature now properly forwards app argument in all cases.

• Task: .retry() didn’t raise the exception correctly when called without a current exception.

Fix contributed by Andrea Rabbaglietti.

• Worker: The enable_events remote control command disabled worker-related events by mistake (Issue
#2272).

Fix contributed by Konstantinos Koukopoulos.

• Django: Adds support for Django 1.7 class names in INSTALLED_APPS when using app.
autodiscover_tasks() (Issue #2248).

• Sphinx: celery.contrib.sphinx now uses getfullargspec on Python 3 (Issue #2302).

• Redis/Cache Backends: Chords will now run at most once if one or more tasks in the chord are executed
multiple times for some reason.

3.1.15

release-date 2014-09-14 11:00 p.m. UTC

release-by Ask Solem

• Django: Now makes sure django.setup() is called before importing any task modules (Django 1.7 com-
patibility, Issue #2227)

• Results: result.get() was misbehaving by calling backend.get_task_meta in a finally call
leading to AMQP result backend queues not being properly cleaned up (Issue #2245).

3.1.14

release-date 2014-09-08 03:00 p.m. UTC

release-by Ask Solem

518 Chapter 2. Contents

https://github.com/celery/celery/issues/2336
https://github.com/llllllllll/
https://github.com/celery/celery/issues/2299
https://github.com/celery/celery/issues/1644
https://github.com/celery/celery/issues/2286
https://github.com/celery/celery/issues/2272
https://github.com/celery/celery/issues/2272
https://github.com/celery/celery/issues/2248
https://github.com/celery/celery/issues/2302
https://github.com/celery/celery/issues/2227
https://docs.python.org/dev/reference/compound_stmts.html#finally
https://github.com/celery/celery/issues/2245

Celery Documentation, Release 4.1.0

• Requirements

– Now depends on Kombu 3.0.22.

• Init-scripts: The generic worker init-scripts status command now gets an accurate pidfile list (Issue #1942).

• Init-scripts: The generic beat script now implements the status command.

Contributed by John Whitlock.

• Commands: Multi now writes informational output to stdout instead of stderr.

• Worker: Now ignores not implemented error for pool.restart (Issue #2153).

• Task: Retry no longer raises retry exception when executed in eager mode (Issue #2164).

• AMQP Result backend: Now ensured on_interval is called at least every second for blocking calls to
properly propagate parent errors.

• Django: Compatibility with Django 1.7 on Windows (Issue #2126).

• Programs: --umask argument can now be specified in both octal (if starting with 0) or decimal.

3.1.13

Security Fixes

• [Security: CELERYSA-0002] Insecure default umask.

The built-in utility used to daemonize the Celery worker service sets an insecure umask by default
(umask 0).

This means that any files or directories created by the worker will end up having world-writable
permissions.

Special thanks to Red Hat for originally discovering and reporting the issue!

This version will no longer set a default umask by default, so if unset the umask of the parent
process will be used.

News

• Requirements

– Now depends on Kombu 3.0.21.

– Now depends on billiard 3.3.0.18.

• App: backend argument now also sets the CELERY_RESULT_BACKEND setting.

• Task: signature_from_request now propagates reply_to so that the RPC backend works with retried
tasks (Issue #2113).

• Task: retry will no longer attempt to re-queue the task if sending the retry message fails.

Unrelated exceptions being raised could cause a message loop, so it was better to remove this
behavior.

• Beat: Accounts for standard 1ms drift by always waking up 0.010s earlier.

This will adjust the latency so that the periodic tasks won’t move 1ms after every invocation.

• Documentation fixes

2.14. History 519

http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-22
https://github.com/celery/celery/issues/1942
https://github.com/celery/celery/issues/2153
https://github.com/celery/celery/issues/2164
https://github.com/celery/celery/issues/2126
https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0002.txt
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-21
https://github.com/celery/celery/issues/2113

Celery Documentation, Release 4.1.0

Contributed by Yuval Greenfield, Lucas Wiman, @nicholsonjf.

• Worker: Removed an outdated assert statement that could lead to errors being masked (Issue #2086).

3.1.12

release-date 2014-06-09 10:12 p.m. UTC

release-by Ask Solem

• Requirements

Now depends on Kombu 3.0.19.

• App: Connections weren’t being closed after fork due to an error in the after fork handler (Issue #2055).

This could manifest itself by causing framing errors when using RabbitMQ. (Unexpected
frame).

• Django: django.setup() was being called too late when using Django 1.7 (Issue #1802).

• Django: Fixed problems with event timezones when using Django (Substantial drift).

Celery didn’t take into account that Django modifies the time.timeone attributes and friends.

• Canvas: Signature.link now works when the link option is a scalar value (Issue #2019).

• Prefork pool: Fixed race conditions for when file descriptors are removed from the event loop.

Fix contributed by Roger Hu.

• Prefork pool: Improved solution for dividing tasks between child processes.

This change should improve performance when there are many child processes, and also decrease
the chance that two subsequent tasks are written to the same child process.

• Worker: Now ignores unknown event types, instead of crashing.

Fix contributed by Illes Solt.

• Programs: celery worker --detach no longer closes open file descriptors when C_FAKEFORK is used
so that the workers output can be seen.

• Programs: The default working directory for celery worker --detach is now the current working di-
rectory, not /.

• Canvas: signature(s, app=app) didn’t upgrade serialized signatures to their original class
(subtask_type) when the app keyword argument was used.

• Control: The duplicate nodename warning emitted by control commands now shows the duplicate node
name.

• Tasks: Can now call ResultSet.get() on a result set without members.

Fix contributed by Alexey Kotlyarov.

• App: Fixed strange traceback mangling issue for app.connection_or_acquire.

• Programs: The celery multi stopwait command is now documented in usage.

• Other: Fixed cleanup problem with PromiseProxy when an error is raised while trying to evaluate the
promise.

• Other: The utility used to censor configuration values now handles non-string keys.

Fix contributed by Luke Pomfrey.

520 Chapter 2. Contents

https://github.com/nicholsonjf/
https://github.com/celery/celery/issues/2086
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-19
https://github.com/celery/celery/issues/2055
https://github.com/celery/celery/issues/1802
https://github.com/celery/celery/issues/2019

Celery Documentation, Release 4.1.0

• Other: The inspect conf command didn’t handle non-string keys well.

Fix contributed by Jay Farrimond.

• Programs: Fixed argument handling problem in celery worker --detach.

Fix contributed by Dmitry Malinovsky.

• Programs: celery worker --detach didn’t forward working directory option (Issue #2003).

• Programs: celery inspect registered no longer includes the list of built-in tasks.

• Worker: The requires attribute for boot steps weren’t being handled correctly (Issue #2002).

• Eventlet: The eventlet pool now supports the pool_grow and pool_shrink remote control commands.

Contributed by Mher Movsisyan.

• Eventlet: The eventlet pool now implements statistics for :program:celery inspect stats.

Contributed by Mher Movsisyan.

• Documentation: Clarified Task.rate_limit behavior.

Contributed by Jonas Haag.

• Documentation: AbortableTask examples now updated to use the new API (Issue #1993).

• Documentation: The security documentation examples used an out of date import.

Fix contributed by Ian Dees.

• Init-scripts: The CentOS init-scripts didn’t quote CELERY_CHDIR.

Fix contributed by @ffeast.

3.1.11

release-date 2014-04-16 11:00 p.m. UTC

release-by Ask Solem

• Now compatible with RabbitMQ 3.3.0

You need to run Celery 3.1.11 or later when using RabbitMQ 3.3, and if you use the librabbitmq
module you also have to upgrade to librabbitmq 1.5.0:

$ pip install -U librabbitmq

• Requirements:

– Now depends on Kombu 3.0.15.

– Now depends on billiard 3.3.0.17.

– Bundle celery[librabbitmq] now depends on librabbitmq 1.5.0.

• Tasks: The CELERY_DEFAULT_DELIVERY_MODE setting was being ignored (Issue #1953).

• Worker: New celery worker --heartbeat-interval can be used to change the time (in seconds)
between sending event heartbeats.

Contributed by Matthew Duggan and Craig Northway.

• App: Fixed memory leaks occurring when creating lots of temporary app instances (Issue #1949).

• MongoDB: SSL configuration with non-MongoDB transport breaks MongoDB results backend (Issue #1973).

2.14. History 521

https://github.com/celery/celery/issues/2003
https://github.com/celery/celery/issues/2002
https://github.com/celery/celery/issues/1993
https://github.com/ffeast/
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-15
https://github.com/celery/billiard/blob/master/CHANGES.txt
https://github.com/celery/celery/issues/1953
https://github.com/celery/celery/issues/1949
https://github.com/celery/celery/issues/1973

Celery Documentation, Release 4.1.0

Fix contributed by Brian Bouterse.

• Logging: The color formatter accidentally modified record.msg (Issue #1939).

• Results: Fixed problem with task trails being stored multiple times, causing result.collect() to hang
(Issue #1936, Issue #1943).

• Results: ResultSet now implements a .backend attribute for compatibility with AsyncResult.

• Results: .forget() now also clears the local cache.

• Results: Fixed problem with multiple calls to result._set_cache (Issue #1940).

• Results: join_native populated result cache even if disabled.

• Results: The YAML result serializer should now be able to handle storing exceptions.

• Worker: No longer sends task error emails for expected errors (in @task(throws=(...,))).

• Canvas: Fixed problem with exception deserialization when using the JSON serializer (Issue #1987).

• Eventlet: Fixes crash when celery.contrib.batches attempted to cancel a non-existing timer (Issue
#1984).

• Can now import celery.version_info_t, and celery.five (Issue #1968).

3.1.10

release-date 2014-03-22 09:40 p.m. UTC

release-by Ask Solem

• Requirements:

– Now depends on Kombu 3.0.14.

• Results:

Reliability improvements to the SQLAlchemy database backend. Previously the connection from
the MainProcess was improperly shared with the workers. (Issue #1786)

• Redis: Important note about events (Issue #1882).

There’s a new transport option for Redis that enables monitors to filter out unwanted events. En-
abling this option in the workers will increase performance considerably:

BROKER_TRANSPORT_OPTIONS = {'fanout_patterns': True}

Enabling this option means that your workers won’t be able to see workers with the option disabled
(or is running an older version of Celery), so if you do enable it then make sure you do so on all
nodes.

See Caveats.

This will be the default in Celery 3.2.

• Results: The app.AsyncResult object now keeps a local cache of the final state of the task.

This means that the global result cache can finally be disabled, and you can do so by setting
CELERY_MAX_CACHED_RESULTS to -1. The lifetime of the cache will then be bound to the
lifetime of the result object, which will be the default behavior in Celery 3.2.

• Events: The “Substantial drift” warning message is now logged once per node name only (Issue #1802).

• Worker: Ability to use one log file per child process when using the prefork pool.

522 Chapter 2. Contents

https://github.com/celery/celery/issues/1939
https://github.com/celery/celery/issues/1936
https://github.com/celery/celery/issues/1943
https://github.com/celery/celery/issues/1940
https://github.com/celery/celery/issues/1987
https://github.com/celery/celery/issues/1984
https://github.com/celery/celery/issues/1984
https://github.com/celery/celery/issues/1968
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-14
https://github.com/celery/celery/issues/1786
https://github.com/celery/celery/issues/1882
https://github.com/celery/celery/issues/1802

Celery Documentation, Release 4.1.0

This can be enabled by using the new %i and %I format specifiers for the log file name. See Prefork
pool process index.

• Redis: New experimental chord join implementation.

This is an optimization for chords when using the Redis result backend, where the join operation is
now considerably faster and using less resources than the previous strategy.

The new option can be set in the result backend URL:

CELERY_RESULT_BACKEND = 'redis://localhost?new_join=1'

This must be enabled manually as it’s incompatible with workers and clients not using it, so be sure
to enable the option in all clients and workers if you decide to use it.

• Multi: With -opt:index (e.g., -c:1) the index now always refers to the position of a node in the argument
list.

This means that referring to a number will work when specifying a list of node names and not just
for a number range:

celery multi start A B C D -c:1 4 -c:2-4 8

In this example 1 refers to node A (as it’s the first node in the list).

• Signals: The sender argument to Signal.connect can now be a proxy object, which means that it can be
used with the task decorator (Issue #1873).

• Task: A regression caused the queue argument to Task.retry to be ignored (Issue #1892).

• App: Fixed error message for config_from_envvar().

Fix contributed by Dmitry Malinovsky.

• Canvas: Chords can now contain a group of other chords (Issue #1921).

• Canvas: Chords can now be combined when using the amqp result backend (a chord where the callback is also
a chord).

• Canvas: Calling result.get() for a chain task will now complete even if one of the tasks in the chain is
ignore_result=True (Issue #1905).

• Canvas: Worker now also logs chord errors.

• Canvas: A chord task raising an exception will now result in any errbacks (link_error) to the chord callback
to also be called.

• Results: Reliability improvements to the SQLAlchemy database backend (Issue #1786).

Previously the connection from the MainProcess was improperly inherited by child processes.

Fix contributed by Ionel Cristian Măries, .

• Task: Task callbacks and errbacks are now called using the group primitive.

• Task: Task.apply now properly sets request.headers (Issue #1874).

• Worker: Fixed UnicodeEncodeError occurring when worker is started by supervisor.

Fix contributed by Codeb Fan.

• Beat: No longer attempts to upgrade a newly created database file (Issue #1923).

• Beat: New setting :setting:CELERYBEAT_SYNC_EVERY can be be used to control file sync by specifying the
number of tasks to send between each sync.

2.14. History 523

https://github.com/celery/celery/issues/1873
https://github.com/celery/celery/issues/1892
https://github.com/celery/celery/issues/1921
https://github.com/celery/celery/issues/1905
https://github.com/celery/celery/issues/1786
https://github.com/celery/celery/issues/1874
https://docs.python.org/dev/library/exceptions.html#UnicodeEncodeError
https://pypi.python.org/pypi/supervisor/
https://github.com/celery/celery/issues/1923

Celery Documentation, Release 4.1.0

Contributed by Chris Clark.

• Commands: celery inspect memdump no longer crashes if the psutil module isn’t installed (Issue
#1914).

• Worker: Remote control commands now always accepts json serialized messages (Issue #1870).

• Worker: Gossip will now drop any task related events it receives by mistake (Issue #1882).

3.1.9

release-date 2014-02-10 06:43 p.m. UTC

release-by Ask Solem

• Requirements:

– Now depends on Kombu 3.0.12.

• Prefork pool: Better handling of exiting child processes.

Fix contributed by Ionel Cristian Măries, .

• Prefork pool: Now makes sure all file descriptors are removed from the hub when a process is cleaned up.

Fix contributed by Ionel Cristian Măries, .

• New Sphinx extension: for autodoc documentation of tasks: celery.contrib.spinx (Issue #1833).

• Django: Now works with Django 1.7a1.

• Task: Task.backend is now a property that forwards to app.backend if no custom backend has been specified
for the task (Issue #1821).

• Generic init-scripts: Fixed bug in stop command.

Fix contributed by Rinat Shigapov.

• Generic init-scripts: Fixed compatibility with GNU stat.

Fix contributed by Paul Kilgo.

• Generic init-scripts: Fixed compatibility with the minimal dash shell (Issue #1815).

• Commands: The celery amqp basic.publish command wasn’t working properly.

Fix contributed by Andrey Voronov.

• Commands: Did no longer emit an error message if the pidfile exists and the process is still alive (Issue #1855).

• Commands: Better error message for missing arguments to preload options (Issue #1860).

• Commands: celery -h didn’t work because of a bug in the argument parser (Issue #1849).

• Worker: Improved error message for message decoding errors.

• Time: Now properly parses the Z timezone specifier in ISO 8601 date strings.

Fix contributed by Martin Davidsson.

• Worker: Now uses the negotiated heartbeat value to calculate how often to run the heartbeat checks.

• Beat: Fixed problem with beat hanging after the first schedule iteration (Issue #1822).

Fix contributed by Roger Hu.

• Signals: The header argument to before_task_publish is now always a dictionary instance so that signal
handlers can add headers.

524 Chapter 2. Contents

https://github.com/celery/celery/issues/1914
https://github.com/celery/celery/issues/1914
https://github.com/celery/celery/issues/1870
https://github.com/celery/celery/issues/1882
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-12
https://github.com/celery/celery/issues/1833
https://github.com/celery/celery/issues/1821
https://github.com/celery/celery/issues/1815
https://github.com/celery/celery/issues/1855
https://github.com/celery/celery/issues/1860
https://github.com/celery/celery/issues/1849
https://github.com/celery/celery/issues/1822

Celery Documentation, Release 4.1.0

• Worker: A list of message headers is now included in message related errors.

3.1.8

release-date 2014-01-17 10:45 p.m. UTC

release-by Ask Solem

• Requirements:

– Now depends on Kombu 3.0.10.

– Now depends on billiard 3.3.0.14.

• Worker: The event loop wasn’t properly reinitialized at consumer restart which would force the worker to
continue with a closed epoll instance on Linux, resulting in a crash.

• Events: Fixed issue with both heartbeats and task events that could result in the data not being kept in sorted
order.

As a result this would force the worker to log “heartbeat missed” events even though the remote
node was sending heartbeats in a timely manner.

• Results: The pickle serializer no longer converts group results to tuples, and will keep the original type (Issue
#1750).

• Results: ResultSet.iterate is now pending deprecation.

The method will be deprecated in version 3.2 and removed in version 3.3.

Use result.get(callback=) (or result.iter_native() where available) instead.

• Worker|eventlet/gevent: A regression caused Control-c to be ineffective for shutdown.

• Redis result backend: Now using a pipeline to store state changes for improved performance.

Contributed by Pepijn de Vos.

• Redis result backend: Will now retry storing the result if disconnected.

• Worker|gossip: Fixed attribute error occurring when another node leaves.

Fix contributed by Brodie Rao.

• Generic init-scripts: Now runs a check at start-up to verify that any configuration scripts are owned by root
and that they aren’t world/group writable.

The init-script configuration is a shell script executed by root, so this is a preventive measure to
ensure that users don’t leave this file vulnerable to changes by unprivileged users.

Note: Note that upgrading Celery won’t update the init-scripts, instead you need to manually copy
the improved versions from the source distribution: https://github.com/celery/celery/tree/3.1/extra/
generic-init.d

• Commands: The celery purge command now warns that the operation will delete all tasks and prompts
the user for confirmation.

A new -f was added that can be used to disable interactive mode.

• Task: .retry() didn’t raise the value provided in the exc argument when called outside of an error context
(Issue #1755).

• Commands: The celery multi command didn’t forward command line configuration to the target workers.

2.14. History 525

http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-10
https://github.com/celery/billiard/blob/master/CHANGES.txt
https://github.com/celery/celery/issues/1750
https://github.com/celery/celery/issues/1750
https://github.com/celery/celery/tree/3.1/extra/generic-init.d
https://github.com/celery/celery/tree/3.1/extra/generic-init.d
https://github.com/celery/celery/issues/1755

Celery Documentation, Release 4.1.0

The change means that multi will forward the special -- argument and configuration content at the
end of the arguments line to the specified workers.

Example using command-line configuration to set a broker heartbeat from celery multi:

$ celery multi start 1 -c3 -- broker.heartbeat=30

Fix contributed by Antoine Legrand.

• Canvas: chain.apply_async() now properly forwards execution options.

Fix contributed by Konstantin Podshumok.

• Redis result backend: Now takes connection_pool argument that can be used to change the connection
pool class/constructor.

• Worker: Now truncates very long arguments and keyword arguments logged by the pool at debug severity.

• Worker: The worker now closes all open files on SIGHUP (regression) (Issue #1768).

Fix contributed by Brodie Rao

• Worker: Will no longer accept remote control commands while the worker start-up phase is incomplete (Issue
#1741).

• Commands: The output of the event dump utility (celery events -d) can now be piped into other com-
mands.

• Documentation: The RabbitMQ installation instructions for macOS was updated to use modern Homebrew
practices.

Contributed by Jon Chen.

• Commands: The celery inspect conf utility now works.

• Commands: The --no-color argument was not respected by all commands (Issue #1799).

• App: Fixed rare bug with autodiscover_tasks() (Issue #1797).

• Distribution: The sphinx docs will now always add the parent directory to path so that the current Celery source
code is used as a basis for API documentation (Issue #1782).

• Documentation: supervisor examples contained an extraneous ‘-‘ in a --logfile argument example.

Fix contributed by Mohammad Almeer.

3.1.7

release-date 2013-12-17 06:00 p.m. UTC

release-by Ask Solem

Important Notes

Init-script security improvements

Where the generic init-scripts (for celeryd, and celerybeat) before delegated the responsibility of dropping
privileges to the target application, it will now use su instead, so that the Python program isn’t trusted with superuser
privileges.

This isn’t in reaction to any known exploit, but it will limit the possibility of a privilege escalation bug being abused
in the future.

526 Chapter 2. Contents

https://github.com/celery/celery/issues/1768
https://github.com/celery/celery/issues/1741
https://github.com/celery/celery/issues/1741
https://github.com/celery/celery/issues/1799
https://github.com/celery/celery/issues/1797
https://github.com/celery/celery/issues/1782
https://pypi.python.org/pypi/supervisor/

Celery Documentation, Release 4.1.0

You have to upgrade the init-scripts manually from this directory: https://github.com/celery/celery/tree/3.1/extra/
generic-init.d

AMQP result backend

The 3.1 release accidentally left the amqp backend configured to be non-persistent by default.

Upgrading from 3.0 would give a “not equivalent” error when attempting to set or retrieve results for a task. That’s
unless you manually set the persistence setting:

CELERY_RESULT_PERSISTENT = True

This version restores the previous value so if you already forced the upgrade by removing the existing exchange
you must either keep the configuration by setting CELERY_RESULT_PERSISTENT = False or delete the
celeryresults exchange again.

Synchronous subtasks

Tasks waiting for the result of a subtask will now emit a RuntimeWarning warning when using the prefork pool,
and in 3.2 this will result in an exception being raised.

It’s not legal for tasks to block by waiting for subtasks as this is likely to lead to resource starvation and eventually
deadlock when using the prefork pool (see also Avoid launching synchronous subtasks).

If you really know what you’re doing you can avoid the warning (and the future exception being raised) by moving
the operation in a white-list block:

from celery.result import allow_join_result

@app.task
def misbehaving():

result = other_task.delay()
with allow_join_result():

result.get()

Note also that if you wait for the result of a subtask in any form when using the prefork pool you must also disable the
pool prefetching behavior with the worker -Ofair option.

Fixes

• Now depends on Kombu 3.0.8.

• Now depends on billiard 3.3.0.13

• Events: Fixed compatibility with non-standard json libraries that sends float as decimal.Decimal (Issue
#1731)

• Events: State worker objects now always defines attributes: active, processed, loadavg, sw_ident,
sw_ver and sw_sys.

• Worker: Now keeps count of the total number of tasks processed, not just by type (all_active_count).

• Init-scripts: Fixed problem with reading configuration file when the init-script is symlinked to a runlevel (e.g.,
S02celeryd). (Issue #1740).

2.14. History 527

https://github.com/celery/celery/tree/3.1/extra/generic-init.d
https://github.com/celery/celery/tree/3.1/extra/generic-init.d
https://docs.python.org/dev/library/exceptions.html#RuntimeWarning
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-8
https://docs.python.org/dev/library/decimal.html#decimal.Decimal
https://github.com/celery/celery/issues/1731
https://github.com/celery/celery/issues/1731
https://github.com/celery/celery/issues/1740

Celery Documentation, Release 4.1.0

This also removed a rarely used feature where you can symlink the script to provide alternative
configurations. You instead copy the script and give it a new name, but perhaps a better solution is
to provide arguments to CELERYD_OPTS to separate them:

CELERYD_NODES="X1 X2 Y1 Y2"
CELERYD_OPTS="-A:X1 x -A:X2 x -A:Y1 y -A:Y2 y"

• Fallback chord unlock task is now always called after the chord header (Issue #1700).

This means that the unlock task won’t be started if there’s an error sending the header.

• Celery command: Fixed problem with arguments for some control commands.

Fix contributed by Konstantin Podshumok.

• Fixed bug in utcoffset where the offset when in DST would be completely wrong (Issue #1743).

• Worker: Errors occurring while attempting to serialize the result of a task will now cause the task to be marked
with failure and a kombu.exceptions.EncodingError error.

Fix contributed by Ionel Cristian Măries, .

• Worker with -B argument didn’t properly shut down the beat instance.

• Worker: The %n and %h formats are now also supported by the --logfile, --pidfile and --statedb
arguments.

Example:

$ celery -A proj worker -n foo@%h --logfile=%n.log --statedb=%n.db

• Redis/Cache result backends: Will now timeout if keys evicted while trying to join a chord.

• The fallback unlock chord task now raises Retry so that the retry even is properly logged by the worker.

• Multi: Will no longer apply Eventlet/gevent monkey patches (Issue #1717).

• Redis result backend: Now supports UNIX sockets.

Like the Redis broker transport the result backend now also supports using redis+socket://
/tmp/redis.sock URLs.

Contributed by Alcides Viamontes Esquivel.

• Events: Events sent by clients was mistaken for worker related events (Issue #1714).

For events.State the tasks now have a Task.client attribute that’s set when a task-sent
event is being received.

Also, a clients logical clock isn’t in sync with the cluster so they live in a “time bubble.” So for this
reason monitors will no longer attempt to merge with the clock of an event sent by a client, instead
it will fake the value by using the current clock with a skew of -1.

• Prefork pool: The method used to find terminated processes was flawed in that it didn’t also take into account
missing popen objects.

• Canvas: group and chord now works with anon signatures as long as the group/chord object is associated
with an app instance (Issue #1744).

You can pass the app by using group(..., app=app).

528 Chapter 2. Contents

https://github.com/celery/celery/issues/1700
https://github.com/celery/celery/issues/1743
https://github.com/celery/celery/issues/1717
https://github.com/celery/celery/issues/1714
https://github.com/celery/celery/issues/1744

Celery Documentation, Release 4.1.0

3.1.6

release-date 2013-12-02 06:00 p.m. UTC

release-by Ask Solem

• Now depends on billiard 3.3.0.10.

• Now depends on Kombu 3.0.7.

• Fixed problem where Mingle caused the worker to hang at start-up (Issue #1686).

• Beat: Would attempt to drop privileges twice (Issue #1708).

• Windows: Fixed error with geteuid not being available (Issue #1676).

• Tasks can now provide a list of expected error classes (Issue #1682).

The list should only include errors that the task is expected to raise during normal operation:

@task(throws=(KeyError, HttpNotFound))

What happens when an exceptions is raised depends on the type of error:

– Expected errors (included in Task.throws)

Will be logged using severity INFO, and traceback is excluded.

– Unexpected errors

Will be logged using severity ERROR, with traceback included.

• Cache result backend now compatible with Python 3 (Issue #1697).

• CentOS init-script: Now compatible with SysV style init symlinks.

Fix contributed by Jonathan Jordan.

• Events: Fixed problem when task name isn’t defined (Issue #1710).

Fix contributed by Mher Movsisyan.

• Task: Fixed unbound local errors (Issue #1684).

Fix contributed by Markus Ullmann.

• Canvas: Now unrolls groups with only one task (optimization) (Issue #1656).

• Task: Fixed problem with ETA and timezones.

Fix contributed by Alexander Koval.

• Django: Worker now performs model validation (Issue #1681).

• Task decorator now emits less confusing errors when used with incorrect arguments (Issue #1692).

• Task: New method Task.send_event can be used to send custom events to Flower and other monitors.

• Fixed a compatibility issue with non-abstract task classes

• Events from clients now uses new node name format (gen<pid>@<hostname>).

• Fixed rare bug with Callable not being defined at interpreter shutdown (Issue #1678).

Fix contributed by Nick Johnson.

• Fixed Python 2.6 compatibility (Issue #1679).

2.14. History 529

http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-7
https://github.com/celery/celery/issues/1686
https://github.com/celery/celery/issues/1708
https://github.com/celery/celery/issues/1676
https://github.com/celery/celery/issues/1682
https://github.com/celery/celery/issues/1697
https://github.com/celery/celery/issues/1710
https://github.com/celery/celery/issues/1684
https://github.com/celery/celery/issues/1656
https://github.com/celery/celery/issues/1681
https://github.com/celery/celery/issues/1692
https://github.com/celery/celery/issues/1678
https://github.com/celery/celery/issues/1679

Celery Documentation, Release 4.1.0

3.1.5

release-date 2013-11-21 06:20 p.m. UTC

release-by Ask Solem

• Now depends on Kombu 3.0.6.

• Now depends on billiard 3.3.0.8

• App: config_from_object is now lazy (Issue #1665).

• App: autodiscover_tasks is now lazy.

Django users should now wrap access to the settings object in a lambda:

app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

this ensures that the settings object isn’t prepared prematurely.

• Fixed regression for --app argument experienced by some users (Issue #1653).

• Worker: Now respects the --uid and --gid arguments even if --detach isn’t enabled.

• Beat: Now respects the --uid and --gid arguments even if --detach isn’t enabled.

• Python 3: Fixed unorderable error occurring with the worker -B argument enabled.

• celery.VERSION is now a named tuple.

• maybe_signature(list) is now applied recursively (Issue #1645).

• celery shell command: Fixed IPython.frontend deprecation warning.

• The default app no longer includes the built-in fix-ups.

This fixes a bug where celery multi would attempt to load the Django settings module before
entering the target working directory.

• The Django daemonization tutorial was changed.

Users no longer have to explicitly export DJANGO_SETTINGS_MODULE in /etc/default/
celeryd when the new project layout is used.

• Redis result backend: expiry value can now be 0 (Issue #1661).

• Censoring settings now accounts for non-string keys (Issue #1663).

• App: New autofinalize option.

Apps are automatically finalized when the task registry is accessed. You can now disable this
behavior so that an exception is raised instead.

Example:

app = Celery(autofinalize=False)

raises RuntimeError
tasks = app.tasks

@app.task
def add(x, y):

return x + y

raises RuntimeError
add.delay(2, 2)

530 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-6
https://github.com/celery/celery/issues/1665
https://github.com/celery/celery/issues/1653
https://github.com/celery/celery/issues/1645
https://github.com/celery/celery/issues/1661
https://github.com/celery/celery/issues/1663

Celery Documentation, Release 4.1.0

app.finalize()
no longer raises:
tasks = app.tasks
add.delay(2, 2)

• The worker didn’t send monitoring events during shutdown.

• Worker: Mingle and gossip is now automatically disabled when used with an unsupported transport (Issue
#1664).

• celery command: Preload options now supports the rare --opt value format (Issue #1668).

• celery command: Accidentally removed options appearing before the sub-command, these are now moved to
the end instead.

• Worker now properly responds to inspect stats commands even if received before start-up is complete
(Issue #1659).

• task_postrun is now sent within a finally block, to make sure the signal is always sent.

• Beat: Fixed syntax error in string formatting.

Contributed by @nadad.

• Fixed typos in the documentation.

Fixes contributed by Loic Bistuer, @sunfinite.

• Nested chains now works properly when constructed using the chain type instead of the | operator (Issue
#1656).

3.1.4

release-date 2013-11-15 11:40 p.m. UTC

release-by Ask Solem

• Now depends on Kombu 3.0.5.

• Now depends on billiard 3.3.0.7

• Worker accidentally set a default socket timeout of 5 seconds.

• Django: Fix-up now sets the default app so that threads will use the same app instance (e.g., for manage.py
runserver).

• Worker: Fixed Unicode error crash at start-up experienced by some users.

• Calling .apply_async on an empty chain now works again (Issue #1650).

• The celery multi show command now generates the same arguments as the start command does.

• The --app argument could end up using a module object instead of an app instance (with a resulting crash).

• Fixed a syntax error problem in the beat init-script.

Fix contributed by Vsevolod.

• Tests now passing on PyPy 2.1 and 2.2.

2.14. History 531

https://github.com/celery/celery/issues/1664
https://github.com/celery/celery/issues/1664
https://github.com/celery/celery/issues/1668
https://github.com/celery/celery/issues/1659
https://docs.python.org/dev/reference/compound_stmts.html#finally
https://github.com/nadad/
https://github.com/sunfinite/
https://github.com/celery/celery/issues/1656
https://github.com/celery/celery/issues/1656
http://kombu.readthedocs.io/en/master/changelog.html#version-3-0-5
https://github.com/celery/celery/issues/1650

Celery Documentation, Release 4.1.0

3.1.3

release-date 2013-11-13 00:55 a.m. UTC

release-by Ask Solem

• Fixed compatibility problem with Python 2.7.0 - 2.7.5 (Issue #1637)

unpack_from started supporting memoryview arguments in Python 2.7.6.

• Worker: -B argument accidentally closed files used for logging.

• Task decorated tasks now keep their docstring (Issue #1636)

3.1.2

release-date 2013-11-12 08:00 p.m. UTC

release-by Ask Solem

• Now depends on billiard 3.3.0.6

• No longer needs the billiard C extension to be installed.

• The worker silently ignored task errors.

• Django: Fixed ImproperlyConfigured error raised when no database backend specified.

Fix contributed by @j0hnsmith.

• Prefork pool: Now using _multiprocessing.read with memoryview if available.

• close_open_fds now uses os.closerange if available.

• get_fdmax now takes value from sysconfig if possible.

3.1.1

release-date 2013-11-11 06:30 p.m. UTC

release-by Ask Solem

• Now depends on billiard 3.3.0.4.

• Python 3: Fixed compatibility issues.

• Windows: Accidentally showed warning that the billiard C extension wasn’t installed (Issue #1630).

• Django: Tutorial updated with a solution that sets a default DJANGO_SETTINGS_MODULE so that it doesn’t
have to be typed in with the celery command.

Also fixed typos in the tutorial, and added the settings required to use the Django database backend.

Thanks to Chris Ward, @orarbel.

• Django: Fixed a problem when using the Django settings in Django 1.6.

• Django: Fix-up shouldn’t be applied if the django loader is active.

• Worker: Fixed attribute error for human_write_stats when using the compatibility prefork pool imple-
mentation.

• Worker: Fixed compatibility with billiard without C extension.

• Inspect.conf: Now supports a with_defaults argument.

532 Chapter 2. Contents

https://github.com/celery/celery/issues/1637
https://github.com/celery/celery/issues/1636
https://github.com/j0hnsmith/
https://github.com/celery/celery/issues/1630
http://django.readthedocs.io/en/latest/topics/settings.html#envvar-DJANGO_SETTINGS_MODULE
https://github.com/orarbel/

Celery Documentation, Release 4.1.0

• Group.restore: The backend argument wasn’t respected.

3.1.0

release-date 2013-11-09 11:00 p.m. UTC

release-by Ask Solem

See What’s new in Celery 3.1 (Cipater).

What’s new in Celery 3.0 (Chiastic Slide)

Celery is a simple, flexible, and reliable distributed system to process vast amounts of messages, while providing
operations with the tools required to maintain such a system.

It’s a task queue with focus on real-time processing, while also supporting task scheduling.

Celery has a large and diverse community of users and contributors, you should come join us on IRC or our mailing-
list.

To read more about Celery you should go read the introduction.

While this version is backward compatible with previous versions it’s important that you read the following section.

If you use Celery in combination with Django you must also read the django-celery changelog and upgrade to django-
celery 3.0.

This version is officially supported on CPython 2.5, 2.6, 2.7, 3.2 and 3.3, as well as PyPy and Jython.

Highlights

Overview

• A new and improved API, that’s both simpler and more powerful.

Everyone must read the new First Steps with Celery tutorial, and the new Next Steps tutorial. Oh,
and why not reread the user guide while you’re at it :)

There are no current plans to deprecate the old API, so you don’t have to be in a hurry to port your
applications.

• The worker is now thread-less, giving great performance improvements.

• The new “Canvas” makes it easy to define complex work-flows.

Ever wanted to chain tasks together? This is possible, but not just that, now you can even chain
together groups and chords, or even combine multiple chains.

Read more in the Canvas user guide.

• All of Celery’s command-line programs are now available from a single celery umbrella command.

• This is the last version to support Python 2.5.

Starting with Celery 3.1, Python 2.6 or later is required.

• Support for the new librabbitmq C client.

2.14. History 533

https://github.com/celery/django-celery/tree/master/Changelog
https://pypi.python.org/pypi/django-celery/
https://pypi.python.org/pypi/django-celery/
https://pypi.python.org/pypi/librabbitmq/

Celery Documentation, Release 4.1.0

Celery will automatically use the librabbitmq module if installed, which is a very fast and memory-
optimized replacement for the amqp module.

• Redis support is more reliable with improved ack emulation.

• Celery now always uses UTC

• Over 600 commits, 30k additions/36k deletions.

In comparison 1.0 2.0 had 18k additions/8k deletions.

Important Notes

Broadcast exchanges renamed

The workers remote control command exchanges has been renamed (a new pidbox name), this is because the
auto_delete flag on the exchanges has been removed, and that makes it incompatible with earlier versions.

You can manually delete the old exchanges if you want, using the celery amqp command (previously called
camqadm):

$ celery amqp exchange.delete celeryd.pidbox
$ celery amqp exchange.delete reply.celeryd.pidbox

Event-loop

The worker is now running without threads when used with RabbitMQ (AMQP), or Redis as a broker, resulting in:

• Much better overall performance.

• Fixes several edge case race conditions.

• Sub-millisecond timer precision.

• Faster shutdown times.

The transports supported are: py-amqp librabbitmq, redis, and amqplib. Hopefully this can be extended to
include additional broker transports in the future.

For increased reliability the CELERY_FORCE_EXECV setting is enabled by default if the event-loop isn’t used.

New celery umbrella command

All Celery’s command-line programs are now available from a single celery umbrella command.

You can see a list of sub-commands and options by running:

$ celery help

Commands include:

• celery worker (previously celeryd).

• celery beat (previously celerybeat).

• celery amqp (previously camqadm).

The old programs are still available (celeryd, celerybeat, etc), but you’re discouraged from using them.

534 Chapter 2. Contents

https://pypi.python.org/pypi/librabbitmq/
https://pypi.python.org/pypi/amqp/

Celery Documentation, Release 4.1.0

Now depends on billiard

Billiard is a fork of the multiprocessing containing the no-execv patch by sbt (http://bugs.python.org/issue8713), and
also contains the pool improvements previously located in Celery.

This fork was necessary as changes to the C extension code was required for the no-execv patch to work.

• Issue #625

• Issue #627

• Issue #640

• django-celery #122 <https://github.com/celery/django-celery/issues/122

• django-celery #124 <https://github.com/celery/django-celery/issues/122

celery.app.task no longer a package

The celery.app.task module is now a module instead of a package.

The setup.py install script will try to remove the old package, but if that doesn’t work for some reason you have to
remove it manually. This command helps:

$ rm -r $(dirname $(python -c 'import celery;print(celery.__file__)'))/app/task/

If you experience an error like ImportError: cannot import name _unpickle_task, you just have
to remove the old package and everything is fine.

Last version to support Python 2.5

The 3.0 series will be last version to support Python 2.5, and starting from 3.1 Python 2.6 and later will be required.

With several other distributions taking the step to discontinue Python 2.5 support, we feel that it is time too.

Python 2.6 should be widely available at this point, and we urge you to upgrade, but if that’s not possible you still have
the option to continue using the Celery 3.0, and important bug fixes introduced in Celery 3.1 will be back-ported to
Celery 3.0 upon request.

UTC timezone is now used

This means that ETA/countdown in messages aren’t compatible with Celery versions prior to 2.5.

You can disable UTC and revert back to old local time by setting the CELERY_ENABLE_UTC setting.

Redis: Ack emulation improvements

Reducing the possibility of data loss.

Acks are now implemented by storing a copy of the message when the message is consumed. The copy
isn’t removed until the consumer acknowledges or rejects it.

This means that unacknowledged messages will be redelivered either when the connection is closed, or
when the visibility timeout is exceeded.

• Visibility timeout

2.14. History 535

http://bugs.python.org/issue8713
https://github.com/celery/celery/issues/625
https://github.com/celery/celery/issues/627
https://github.com/celery/celery/issues/640

Celery Documentation, Release 4.1.0

This is a timeout for acks, so that if the consumer doesn’t ack the message within this
time limit, the message is redelivered to another consumer.

The timeout is set to one hour by default, but can be changed by configuring a transport
option:

BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 18000} # 5
→˓hours

Note: Messages that haven’t been acked will be redelivered if the visibility timeout is exceeded, for
Celery users this means that ETA/countdown tasks that are scheduled to execute with a time that exceeds
the visibility timeout will be executed twice (or more). If you plan on using long ETA/countdowns you
should tweak the visibility timeout accordingly.

Setting a long timeout means that it’ll take a long time for messages to be redelivered in the event of
a power failure, but if so happens you could temporarily set the visibility timeout lower to flush out
messages when you start up the systems again.

News

Chaining Tasks

Tasks can now have callbacks and errbacks, and dependencies are recorded

• The task message format have been updated with two new extension keys

Both keys can be empty/undefined or a list of subtasks.

– callbacks

Applied if the task exits successfully, with the result of the task as an argument.

– errbacks

Applied if an error occurred while executing the task, with the uuid of the task
as an argument. Since it may not be possible to serialize the exception instance,
it passes the uuid of the task instead. The uuid can then be used to retrieve the
exception and traceback of the task from the result backend.

– link and link_error keyword arguments has been added to apply_async.

These add callbacks and errbacks to the task, and you can read more about them
at Linking (callbacks/errbacks).

– We now track what subtasks a task sends, and some result backends supports retrieving this
information.

* task.request.children

Contains the result instances of the subtasks the currently ex-
ecuting task has applied.

* AsyncResult.children

Returns the tasks dependencies, as a list of
AsyncResult/ResultSet instances.

* AsyncResult.iterdeps

536 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Recursively iterates over the tasks dependencies, yielding
(parent, node) tuples.

Raises IncompleteStream if any of the dependencies hasn’t
returned yet.

* AsyncResult.graph

A DependencyGraph of the tasks dependencies. With this
you can also convert to dot format:

with open('graph.dot') as fh:
result.graph.to_dot(fh)

then produce an image of the graph:

$ dot -Tpng graph.dot -o graph.png

• A new special subtask called chain is also included:

>>> from celery import chain

(2 + 2) * 8 / 2
>>> res = chain(add.subtask((2, 2)),

mul.subtask((8,)),
div.subtask((2,))).apply_async()

>>> res.get() == 16

>>> res.parent.get() == 32

>>> res.parent.parent.get() == 4

• Adds AsyncResult.get_leaf()

Waits and returns the result of the leaf subtask. That’s the last node found when traversing the
graph, but this means that the graph can be 1-dimensional only (in effect a list).

• Adds subtask.link(subtask) + subtask.link_error(subtask)

Shortcut to s.options.setdefault('link', []).append(subtask)

• Adds subtask.flatten_links()

Returns a flattened list of all dependencies (recursively)

Redis: Priority support

The message’s priority field is now respected by the Redis transport by having multiple lists for each named queue.
The queues are then consumed by in order of priority.

The priority field is a number in the range of 0 - 9, where 0 is the default and highest priority.

The priority range is collapsed into four steps by default, since it is unlikely that nine steps will yield more benefit than
using four steps. The number of steps can be configured by setting the priority_steps transport option, which
must be a list of numbers in sorted order:

>>> BROKER_TRANSPORT_OPTIONS = {
... 'priority_steps': [0, 2, 4, 6, 8, 9],
... }

2.14. History 537

Celery Documentation, Release 4.1.0

Priorities implemented in this way isn’t as reliable as priorities on the server side, which is why the feature is nick-
named “quasi-priorities”; Using routing is still the suggested way of ensuring quality of service, as client im-
plemented priorities fall short in a number of ways, for example if the worker is busy with long running tasks, has
prefetched many messages, or the queues are congested.

Still, it is possible that using priorities in combination with routing can be more beneficial than using routing or
priorities alone. Experimentation and monitoring should be used to prove this.

Contributed by Germán M. Bravo.

Redis: Now cycles queues so that consuming is fair

This ensures that a very busy queue won’t block messages from other queues, and ensures that all queues have an
equal chance of being consumed from.

This used to be the case before, but the behavior was accidentally changed while switching to using blocking pop.

group/chord /chain are now subtasks

• group is no longer an alias to TaskSet, but new all together, since it was very difficult to migrate the TaskSet
class to become a subtask.

• A new shortcut has been added to tasks:

>>> task.s(arg1, arg2, kw=1)

as a shortcut to:

>>> task.subtask((arg1, arg2), {'kw': 1})

• Tasks can be chained by using the | operator:

>>> (add.s(2, 2), pow.s(2)).apply_async()

• Subtasks can be “evaluated” using the ~ operator:

>>> ~add.s(2, 2)
4

>>> ~(add.s(2, 2) | pow.s(2))

is the same as:

>>> chain(add.s(2, 2), pow.s(2)).apply_async().get()

• A new subtask_type key has been added to the subtask dictionary.

This can be the string "chord", "group", "chain", "chunks", "xmap", or "xstarmap".

• maybe_subtask now uses subtask_type to reconstruct the object, to be used when using non-pickle serializers.

• The logic for these operations have been moved to dedicated tasks celery.chord, celery.chain and celery.group.

• subtask no longer inherits from AttributeDict.

It’s now a pure dict subclass with properties for attribute access to the relevant keys.

• The repr’s now outputs how the sequence would like imperatively:

538 Chapter 2. Contents

Celery Documentation, Release 4.1.0

>>> from celery import chord

>>> (chord([add.s(i, i) for i in xrange(10)], xsum.s())
| pow.s(2))

tasks.xsum([tasks.add(0, 0),
tasks.add(1, 1),
tasks.add(2, 2),
tasks.add(3, 3),
tasks.add(4, 4),
tasks.add(5, 5),
tasks.add(6, 6),
tasks.add(7, 7),
tasks.add(8, 8),
tasks.add(9, 9)]) | tasks.pow(2)

New remote control commands

These commands were previously experimental, but they’ve proven stable and is now documented as part of the official
API.

• add_consumer/cancel_consumer

Tells workers to consume from a new queue, or cancel consuming from a queue. This command has
also been changed so that the worker remembers the queues added, so that the change will persist
even if the connection is re-connected.

These commands are available programmatically as app.control.add_consumer() / app.
control.cancel_consumer():

>>> celery.control.add_consumer(queue_name,
... destination=['w1.example.com'])
>>> celery.control.cancel_consumer(queue_name,
... destination=['w1.example.com'])

or using the celery control command:

$ celery control -d w1.example.com add_consumer queue
$ celery control -d w1.example.com cancel_consumer queue

Note: Remember that a control command without destination will be sent to all workers.

• autoscale

Tells workers with --autoscale enabled to change autoscale max/min concurrency settings.

This command is available programmatically as app.control.autoscale():

>>> celery.control.autoscale(max=10, min=5,
... destination=['w1.example.com'])

or using the celery control command:

$ celery control -d w1.example.com autoscale 10 5

• pool_grow/pool_shrink

2.14. History 539

Celery Documentation, Release 4.1.0

Tells workers to add or remove pool processes.

These commands are available programmatically as app.control.pool_grow() / app.
control.pool_shrink():

>>> celery.control.pool_grow(2, destination=['w1.example.com'])
>>> celery.contorl.pool_shrink(2, destination=['w1.example.com'])

or using the celery control command:

$ celery control -d w1.example.com pool_grow 2
$ celery control -d w1.example.com pool_shrink 2

• celery control now supports rate_limit and time_limit commands.

See celery control --help for details.

Crontab now supports Day of Month, and Month of Year arguments

See the updated list of examples at Crontab schedules.

Immutable subtasks

subtask‘s can now be immutable, which means that the arguments won’t be modified when calling callbacks:

>>> chain(add.s(2, 2), clear_static_electricity.si())

means it’ll not receive the argument of the parent task, and .si() is a shortcut to:

>>> clear_static_electricity.subtask(immutable=True)

Logging Improvements

Logging support now conforms better with best practices.

• Classes used by the worker no longer uses app.get_default_logger, but uses celery.utils.log.get_logger which
simply gets the logger not setting the level, and adds a NullHandler.

• Loggers are no longer passed around, instead every module using logging defines a module global logger that’s
used throughout.

• All loggers inherit from a common logger called “celery”.

• Before task.get_logger would setup a new logger for every task, and even set the log level. This is no
longer the case.

– Instead all task loggers now inherit from a common “celery.task” logger that’s set up when programs call
setup_logging_subsystem.

– Instead of using LoggerAdapter to augment the formatter with the task_id and task_name field, the task
base logger now use a special formatter adding these values at run-time from the currently executing task.

• In fact, task.get_logger is no longer recommended, it is better to add a module-level logger to your tasks
module.

For example, like this:

540 Chapter 2. Contents

Celery Documentation, Release 4.1.0

from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)

@celery.task
def add(x, y):

logger.debug('Adding %r + %r' % (x, y))
return x + y

The resulting logger will then inherit from the "celery.task" logger so that the current task
name and id is included in logging output.

• Redirected output from stdout/stderr is now logged to a “celery.redirected” logger.

• In addition a few warnings.warn have been replaced with logger.warn.

• Now avoids the ‘no handlers for logger multiprocessing’ warning

Task registry no longer global

Every Celery instance now has its own task registry.

You can make apps share registries by specifying it:

>>> app1 = Celery()
>>> app2 = Celery(tasks=app1.tasks)

Note that tasks are shared between registries by default, so that tasks will be added to every subsequently created task
registry. As an alternative tasks can be private to specific task registries by setting the shared argument to the @task
decorator:

@celery.task(shared=False)
def add(x, y):

return x + y

Abstract tasks are now lazily bound

The Task class is no longer bound to an app by default, it will first be bound (and configured) when a concrete
subclass is created.

This means that you can safely import and make task base classes, without also initializing the app environment:

from celery.task import Task

class DebugTask(Task):
abstract = True

def __call__(self, *args, **kwargs):
print('CALLING %r' % (self,))
return self.run(*args, **kwargs)

>>> DebugTask
<unbound DebugTask>

>>> @celery1.task(base=DebugTask)
... def add(x, y):

2.14. History 541

Celery Documentation, Release 4.1.0

... return x + y
>>> add.__class__
<class add of <Celery default:0x101510d10>>

Lazy task decorators

The @task decorator is now lazy when used with custom apps.

That is, if accept_magic_kwargs is enabled (her by called “compat mode”), the task decorator executes inline
like before, however for custom apps the @task decorator now returns a special PromiseProxy object that’s only
evaluated on access.

All promises will be evaluated when app.finalize() is called, or implicitly when the task registry is first used.

Smart –app option

The --app option now ‘auto-detects’

• If the provided path is a module it tries to get an attribute named ‘celery’.

• If the provided path is a package it tries to import a sub module named celery’, and get the celery attribute from
that module.

For example, if you have a project named proj where the celery app is located in from proj.celery import
app, then the following will be equivalent:

$ celery worker --app=proj
$ celery worker --app=proj.celery:
$ celery worker --app=proj.celery:app

In Other News

• New CELERYD_WORKER_LOST_WAIT to control the timeout in seconds before billiard.
WorkerLostError is raised when a worker can’t be signaled (Issue #595).

Contributed by Brendon Crawford.

• Redis event monitor queues are now automatically deleted (Issue #436).

• App instance factory methods have been converted to be cached descriptors that creates a new subclass on
access.

For example, this means that app.Worker is an actual class and will work as expected when:

class Worker(app.Worker):
...

• New signal: task_success.

• Multiprocessing logs are now only emitted if the MP_LOG environment variable is set.

• The Celery instance can now be created with a broker URL

app = Celery(broker='redis://')

• Result backends can now be set using a URL

542 Chapter 2. Contents

https://github.com/celery/celery/issues/595
https://github.com/celery/celery/issues/436

Celery Documentation, Release 4.1.0

Currently only supported by redis. Example use:

CELERY_RESULT_BACKEND = 'redis://localhost/1'

• Heartbeat frequency now every 5s, and frequency sent with event

The heartbeat frequency is now available in the worker event messages, so that clients can decide
when to consider workers offline based on this value.

• Module celery.actors has been removed, and will be part of cl instead.

• Introduces new celery command, which is an entry-point for all other commands.

The main for this command can be run by calling celery.start().

• Annotations now supports decorators if the key starts with ‘@’.

For example:

def debug_args(fun):

@wraps(fun)
def _inner(*args, **kwargs):

print('ARGS: %r' % (args,))
return _inner

CELERY_ANNOTATIONS = {
'tasks.add': {'@__call__': debug_args},

}

Also tasks are now always bound by class so that annotated methods end up being bound.

• Bug-report now available as a command and broadcast command

– Get it from a Python REPL:

>>> import celery
>>> print(celery.bugreport())

– Using the celery command line program:

$ celery report

– Get it from remote workers:

$ celery inspect report

• Module celery.log moved to celery.app.log.

• Module celery.task.control moved to celery.app.control.

• New signal: task_revoked

Sent in the main process when the task is revoked or terminated.

• AsyncResult.task_id renamed to AsyncResult.id

• TasksetResult.taskset_id renamed to .id

• xmap(task, sequence) and xstarmap(task, sequence)

Returns a list of the results applying the task function to every item in the sequence.

Example:

2.14. History 543

Celery Documentation, Release 4.1.0

>>> from celery import xstarmap

>>> xstarmap(add, zip(range(10), range(10)).apply_async()
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

• chunks(task, sequence, chunksize)

• group.skew(start=, stop=, step=)

Skew will skew the countdown for the individual tasks in a group – for example with this group:

>>> g = group(add.s(i, i) for i in xrange(10))

Skewing the tasks from 0 seconds to 10 seconds:

>>> g.skew(stop=10)

Will have the first task execute in 0 seconds, the second in 1 second, the third in 2 seconds and so on.

• 99% test Coverage

• CELERY_QUEUES can now be a list/tuple of Queue instances.

Internally app.amqp.queues is now a mapping of name/Queue instances, instead of converting
on the fly.

• Can now specify connection for app.control.inspect.

from kombu import Connection

i = celery.control.inspect(connection=Connection('redis://'))
i.active_queues()

• CELERY_FORCE_EXECV is now enabled by default.

If the old behavior is wanted the setting can be set to False, or the new –no-execv option to celery
worker.

• Deprecated module celery.conf has been removed.

• The CELERY_TIMEZONE now always require the pytz library to be installed (except if the timezone is set to
UTC).

• The Tokyo Tyrant backend has been removed and is no longer supported.

• Now uses maybe_declare() to cache queue declarations.

• There’s no longer a global default for the CELERYBEAT_MAX_LOOP_INTERVAL setting, it is instead set by
individual schedulers.

• Worker: now truncates very long message bodies in error reports.

• No longer deep-copies exceptions when trying to serialize errors.

• CELERY_BENCH environment variable, will now also list memory usage statistics at worker shutdown.

• Worker: now only ever use a single timer for all timing needs, and instead set different priorities.

• An exceptions arguments are now safely pickled

Contributed by Matt Long.

• Worker/Beat no longer logs the start-up banner.

Previously it would be logged with severity warning, now it’s only written to stdout.

544 Chapter 2. Contents

http://kombu.readthedocs.io/en/master/reference/kombu.html#kombu.Queue
https://pypi.python.org/pypi/pytz/
http://kombu.readthedocs.io/en/master/reference/kombu.common.html#kombu.common.maybe_declare

Celery Documentation, Release 4.1.0

• The contrib/ directory in the distribution has been renamed to extra/.

• New signal: task_revoked

• celery.contrib.migrate: Many improvements, including; filtering, queue migration, and support for
acking messages on the broker migrating from.

Contributed by John Watson.

• Worker: Prefetch count increments are now optimized and grouped together.

• Worker: No longer calls consume on the remote control command queue twice.

Probably didn’t cause any problems, but was unnecessary.

Internals

• app.broker_connection is now app.connection

Both names still work.

• Compatibility modules are now generated dynamically upon use.

These modules are celery.messaging, celery.log, celery.decorators and
celery.registry.

• celery.utils refactored into multiple modules:

celery.utils.text celery.utils.imports celery.utils.functional

• Now using kombu.utils.encoding instead of celery.utils.encoding.

• Renamed module celery.routes -> celery.app.routes.

• Renamed package celery.db -> celery.backends.database.

• Renamed module celery.abstract -> celery.worker.bootsteps.

• Command line docs are now parsed from the module docstrings.

• Test suite directory has been reorganized.

• setup.py now reads docs from the requirements/ directory.

• Celery commands no longer wraps output (Issue #700).

Contributed by Thomas Johansson.

Experimental

celery.contrib.methods: Task decorator for methods

This is an experimental module containing a task decorator, and a task decorator filter, that can be used to create tasks
out of methods:

from celery.contrib.methods import task_method

class Counter(object):

def __init__(self):
self.value = 1

@celery.task(name='Counter.increment', filter=task_method)

2.14. History 545

http://kombu.readthedocs.io/en/master/reference/kombu.utils.encoding.html#module-kombu.utils.encoding
https://github.com/celery/celery/issues/700

Celery Documentation, Release 4.1.0

def increment(self, n=1):
self.value += 1
return self.value

See celery.contrib.methods for more information.

Unscheduled Removals

Usually we don’t make backward incompatible removals, but these removals should have no major effect.

• The following settings have been renamed:

– CELERYD_ETA_SCHEDULER -> CELERYD_TIMER

– CELERYD_ETA_SCHEDULER_PRECISION -> CELERYD_TIMER_PRECISION

Deprecation Time-line Changes

See the Celery Deprecation Time-line.

• The celery.backends.pyredis compat module has been removed.

Use celery.backends.redis instead!

• The following undocumented API’s has been moved:

– control.inspect.add_consumer -> app.control.add_consumer().

– control.inspect.cancel_consumer -> app.control.
cancel_consumer().

– control.inspect.enable_events -> app.control.enable_events().

– control.inspect.disable_events -> app.control.disable_events().

This way inspect() is only used for commands that don’t modify anything, while idempotent
control commands that make changes are on the control objects.

Fixes

• Retry SQLAlchemy backend operations on DatabaseError/OperationalError (Issue #634)

• Tasks that called retry wasn’t acknowledged if acks late was enabled

Fix contributed by David Markey.

• The message priority argument wasn’t properly propagated to Kombu (Issue #708).

Fix contributed by Eran Rundstein

Change history for Celery 3.0

• 3.0.24

• 3.0.23

• 3.0.22

546 Chapter 2. Contents

https://github.com/celery/celery/issues/634
https://github.com/celery/celery/issues/708

Celery Documentation, Release 4.1.0

• 3.0.21

• 3.0.20

• 3.0.19

• 3.0.18

• 3.0.17

• 3.0.16

• 3.0.15

• 3.0.14

• 3.0.13

• 3.0.12

• 3.0.11

• 3.0.10

• 3.0.9

• 3.0.8

• 3.0.7

• 3.0.6

• 3.0.5

• 3.0.4

• 3.0.3

• 3.0.2

• 3.0.1

• 3.0.0 (Chiastic Slide)

If you’re looking for versions prior to 3.0.x you should go to History.

3.0.24

release-date 2013-10-11 04:40 p.m. BST

release-by Ask Solem

• Now depends on Kombu 2.5.15.

• Now depends on billiard version 2.7.3.34.

• AMQP Result backend: No longer caches queue declarations.

The queues created by the AMQP result backend are always unique, so caching the declarations
caused a slow memory leak.

• Worker: Fixed crash when hostname contained Unicode characters.

Contributed by Daodao.

• The worker would no longer start if the -P solo pool was selected (Issue #1548).

• Redis/Cache result backends wouldn’t complete chords if any of the tasks were retried (Issue #1401).

2.14. History 547

http://kombu.readthedocs.io/en/master/changelog.html#version-2-5-15
https://pypi.python.org/pypi/billiard/
https://github.com/celery/celery/issues/1548
https://github.com/celery/celery/issues/1401

Celery Documentation, Release 4.1.0

• Task decorator is no longer lazy if app is finalized.

• AsyncResult: Fixed bug with copy(AsyncResult) when no current_app available.

• ResultSet: Now properly propagates app when passed string id’s.

• Loader now ignores CELERY_CONFIG_MODULE if value is empty string.

• Fixed race condition in Proxy object where it tried to delete an attribute twice, resulting in AttributeError.

• Task methods now works with the CELERY_ALWAYS_EAGER setting (Issue #1478).

• Broadcast queues were accidentally declared when publishing tasks (Issue #1540).

• New C_FAKEFORK environment variable can be used to debug the init-scripts.

Setting this will skip the daemonization step so that errors printed to stderr after standard outs are
closed can be seen:

$ C_FAKEFORK /etc/init.d/celeryd start

This works with the celery multi command in general.

• get_pickleable_etype didn’t always return a value (Issue #1556).

• Fixed bug where app.GroupResult.restore would fall back to the default app.

• Fixed rare bug where built-in tasks would use the current_app.

• maybe_fileno() now handles ValueError.

3.0.23

release-date 2013-09-02 01:00 p.m. BST

release-by Ask Solem

• Now depends on Kombu 2.5.14.

• send_task didn’t honor link and link_error arguments.

This had the side effect of chains not calling unregistered tasks, silently discarding them.

Fix contributed by Taylor Nelson.

• celery.state: Optimized precedence lookup.

Contributed by Matt Robenolt.

• POSIX: Daemonization didn’t redirect sys.stdin to /dev/null.

Fix contributed by Alexander Smirnov.

• Canvas: group bug caused fallback to default app when .apply_async used (Issue #1516)

• Canvas: generator arguments wasn’t always pickleable.

3.0.22

release-date 2013-08-16 04:30 p.m. BST

release-by Ask Solem

• Now depends on Kombu 2.5.13.

• Now depends on billiard 2.7.3.32

548 Chapter 2. Contents

https://docs.python.org/dev/library/exceptions.html#AttributeError
https://github.com/celery/celery/issues/1478
http://kombu.readthedocs.io/en/master/reference/kombu.common.html#kombu.common.Broadcast
https://github.com/celery/celery/issues/1540
https://github.com/celery/celery/issues/1556
https://docs.python.org/dev/library/exceptions.html#ValueError
http://kombu.readthedocs.io/en/master/changelog.html#version-2-5-14
https://github.com/celery/celery/issues/1516
http://kombu.readthedocs.io/en/master/changelog.html#version-2-5-13
https://pypi.python.org/pypi/billiard/

Celery Documentation, Release 4.1.0

• Fixed bug with monthly and yearly Crontabs (Issue #1465).

Fix contributed by Guillaume Gauvrit.

• Fixed memory leak caused by time limits (Issue #1129, Issue #1427)

• Worker will now sleep if being restarted more than 5 times in one second to avoid spamming with
worker-online events.

• Includes documentation fixes

Contributed by: Ken Fromm, Andreas Savvides, Alex Kiriukha, Michael Fladischer.

3.0.21

release-date 2013-07-05 04:30 p.m. BST

release-by Ask Solem

• Now depends on billiard 2.7.3.31.

This version fixed a bug when running without the billiard C extension.

• 3.0.20 broke eventlet/gevent support (worker not starting).

• Fixed memory leak problem when MongoDB result backend was used with the gevent pool.

Fix contributed by Ross Lawley.

3.0.20

release-date 2013-06-28 04:00 p.m. BST

release-by Ask Solem

• Contains workaround for deadlock problems.

A better solution will be part of Celery 3.1.

• Now depends on Kombu 2.5.12.

• Now depends on billiard 2.7.3.30.

• --loader argument no longer supported importing loaders from the current directory.

• [Worker] Fixed memory leak when restarting after connection lost (Issue #1325).

• [Worker] Fixed UnicodeDecodeError at start-up (Issue #1373).

Fix contributed by Jessica Tallon.

• [Worker] Now properly rewrites unpickleable exceptions again.

• Fixed possible race condition when evicting items from the revoked task set.

• [generic-init.d] Fixed compatibility with Ubuntu’s minimal Dash shell (Issue #1387).

Fix contributed by @monkut.

• Task.apply/ALWAYS_EAGER now also executes callbacks and errbacks (Issue #1336).

• [Worker] The worker-shutdown signal was no longer being dispatched (Issue #1339)j

• [Python 3] Fixed problem with threading.Event.

Fix contributed by Xavier Ordoquy.

2.14. History 549

https://github.com/celery/celery/issues/1465
https://github.com/celery/celery/issues/1129
https://github.com/celery/celery/issues/1427
https://pypi.python.org/pypi/billiard/
http://kombu.readthedocs.io/en/master/changelog.html#version-2-5-12
https://pypi.python.org/pypi/billiard/
https://github.com/celery/celery/issues/1325
https://github.com/celery/celery/issues/1373
https://github.com/celery/celery/issues/1387
https://github.com/monkut/
https://github.com/celery/celery/issues/1336
https://github.com/celery/celery/issues/1339

Celery Documentation, Release 4.1.0

• [Python 3] Now handles io.UnsupportedOperation that may be raised by file.fileno() in Python
3.

• [Python 3] Fixed problem with qualname.

• [events.State] Now ignores unknown event-groups.

• [MongoDB backend] No longer uses deprecated safe parameter.

Fix contributed by @rfkrocktk.

• The eventlet pool now imports on Windows.

• [Canvas] Fixed regression where immutable chord members may receive arguments (Issue #1340).

Fix contributed by Peter Brook.

• [Canvas] chain now accepts generator argument again (Issue #1319).

• celery.migrate command now consumes from all queues if no queues specified.

Fix contributed by John Watson.

3.0.19

release-date 2013-04-17 04:30:00 p.m. BST

release-by Ask Solem

• Now depends on billiard 2.7.3.28

• A Python 3 related fix managed to disable the deadlock fix announced in 3.0.18.

Tests have been added to make sure this doesn’t happen again.

• Task retry policy: Default max_retries is now 3.

This ensures clients won’t be hanging while the broker is down.

Note: You can set a longer retry for the worker by using the celeryd_after_setup signal:

from celery.signals import celeryd_after_setup

@celeryd_after_setup.connect
def configure_worker(instance, conf, **kwargs):

conf.CELERY_TASK_PUBLISH_RETRY_POLICY = {
'max_retries': 100,
'interval_start': 0,
'interval_max': 1,
'interval_step': 0.2,

}

• Worker: Will now properly display message body in error messages even if the body is a buffer instance.

• 3.0.18 broke the MongoDB result backend (Issue #1303).

3.0.18

release-date 2013-04-12 05:00:00 p.m. BST

release-by Ask Solem

550 Chapter 2. Contents

https://github.com/rfkrocktk/
https://github.com/celery/celery/issues/1340
https://github.com/celery/celery/issues/1319
https://pypi.python.org/pypi/billiard/
https://github.com/celery/celery/issues/1303

Celery Documentation, Release 4.1.0

• Now depends on kombu 2.5.10.

See the kombu changelog.

• Now depends on billiard 2.7.3.27.

• Can now specify a white-list of accepted serializers using the new CELERY_ACCEPT_CONTENT setting.

This means that you can force the worker to discard messages serialized with pickle and other
untrusted serializers. For example to only allow JSON serialized messages use:

CELERY_ACCEPT_CONTENT = ['json']

you can also specify MIME types in the white-list:

CELERY_ACCEPT_CONTENT = ['application/json']

• Fixed deadlock in multiprocessing’s pool caused by the semaphore not being released when terminated by
signal.

• Processes Pool: It’s now possible to debug pool processes using GDB.

• celery report now censors possibly secret settings, like passwords and secret tokens.

You should still check the output before pasting anything on the internet.

• Connection URLs now ignore multiple ‘+’ tokens.

• Worker/statedb: Now uses pickle protocol 2 (Python 2.5+)

• Fixed Python 3 compatibility issues.

• Worker: A warning is now given if a worker is started with the same node name as an existing worker.

• Worker: Fixed a deadlock that could occur while revoking tasks (Issue #1297).

• Worker: The HUP handler now closes all open file descriptors before restarting to ensure file descriptors doesn’t
leak (Issue #1270).

• Worker: Optimized storing/loading the revoked tasks list (Issue #1289).

After this change the celery worker --statedb file will take up more disk space, but load-
ing from and storing the revoked tasks will be considerably faster (what before took 5 minutes will
now take less than a second).

• Celery will now suggest alternatives if there’s a typo in the broker transport name (e.g., ampq -> amqp).

• Worker: The auto-reloader would cause a crash if a monitored file was unlinked.

Fix contributed by Agris Ameriks.

• Fixed AsyncResult pickling error.

Fix contributed by Thomas Minor.

• Fixed handling of Unicode in logging output when using log colors (Issue #427).

• ConfigurationView is now a MutableMapping.

Contributed by Aaron Harnly.

• Fixed memory leak in LRU cache implementation.

Fix contributed by Romuald Brunet.

• celery.contrib.rdb: Now works when sockets are in non-blocking mode.

Fix contributed by Theo Spears.

2.14. History 551

https://pypi.python.org/pypi/kombu/
http://kombu.readthedocs.io/en/master/changelog.html#version-2-5-10
https://pypi.python.org/pypi/billiard/
https://github.com/celery/celery/issues/1297
https://github.com/celery/celery/issues/1270
https://github.com/celery/celery/issues/1289
https://github.com/celery/celery/issues/427

Celery Documentation, Release 4.1.0

• The inspect reserved remote control command included active (started) tasks with the reserved tasks (Issue
#1030).

• The task_failure signal received a modified traceback object meant for pickling purposes, this has been
fixed so that it now receives the real traceback instead.

• The @task decorator silently ignored positional arguments, it now raises the expected TypeError instead
(Issue #1125).

• The worker will now properly handle messages with invalid ETA/expires fields (Issue #1232).

• The pool_restart remote control command now reports an error if the CELERYD_POOL_RESTARTS
setting isn’t set.

• add_defaults`() can now be used with non-dict objects.

• Fixed compatibility problems in the Proxy class (Issue #1087).

The class attributes __module__, __name__ and __doc__ are now meaningful string objects.

Thanks to Marius Gedminas.

• MongoDB Backend: The MONGODB_BACKEND_SETTINGS setting now accepts a option key that lets you
forward arbitrary kwargs to the underlying pymongo.Connection object (Issue #1015).

• Beat: The daily backend cleanup task is no longer enabled for result backends that support automatic result
expiration (Issue #1031).

• Canvas list operations now takes application instance from the first task in the list, instead of depending on the
current_app (Issue #1249).

• Worker: Message decoding error log message now includes traceback information.

• Worker: The start-up banner now includes system platform.

• celery inspect|status|control now gives an error if used with a SQL based broker transport.

3.0.17

release-date 2013-03-22 04:00:00 p.m. UTC

release-by Ask Solem

• Now depends on kombu 2.5.8

• Now depends on billiard 2.7.3.23

• RabbitMQ/Redis: thread-less and lock-free rate-limit implementation.

This means that rate limits pose minimal overhead when used with RabbitMQ/Redis or future trans-
ports using the event-loop, and that the rate-limit implementation is now thread-less and lock-free.

The thread-based transports will still use the old implementation for now, but the plan is to use the
timer also for other broker transports in Celery 3.1.

• Rate limits now works with eventlet/gevent if using RabbitMQ/Redis as the broker.

• A regression caused task.retry to ignore additional keyword arguments.

Extra keyword arguments are now used as execution options again. Fix contributed by Simon
Engledew.

• Windows: Fixed problem with the worker trying to pickle the Django settings module at worker start-up.

• generic-init.d: No longer double quotes $CELERYD_CHDIR (Issue #1235).

552 Chapter 2. Contents

https://github.com/celery/celery/issues/1030
https://github.com/celery/celery/issues/1030
https://docs.python.org/dev/library/exceptions.html#TypeError
https://github.com/celery/celery/issues/1125
https://github.com/celery/celery/issues/1232
https://github.com/celery/celery/issues/1087
https://github.com/celery/celery/issues/1015
https://github.com/celery/celery/issues/1031
https://github.com/celery/celery/issues/1249
https://github.com/celery/celery/issues/1235

Celery Documentation, Release 4.1.0

• generic-init.d: Removes bash-specific syntax.

Fix contributed by Pär Wieslander.

• Cassandra Result Backend: Now handles the AllServersUnavailable error (Issue #1010).

Fix contributed by Jared Biel.

• Result: Now properly forwards apps to GroupResults when deserializing (Issue #1249).

Fix contributed by Charles-Axel Dein.

• GroupResult.revoke now supports the terminate and signal keyword arguments.

• Worker: Multiprocessing pool workers now import task modules/configuration before setting up the logging
system so that logging signals can be connected before they’re dispatched.

• chord: The AsyncResult instance returned now has its parent attribute set to the header GroupResult.

This is consistent with how chain works.

3.0.16

release-date 2013-03-07 04:00:00 p.m. UTC

release-by Ask Solem

• Happy International Women’s Day!

We have a long way to go, so this is a chance for you to get involved in one of the organizations
working for making our communities more diverse.

– PyLadies — http://pyladies.com

– Girls Who Code — http://www.girlswhocode.com

– Women Who Code — http://www.meetup.com/Women-Who-Code-SF/

• Now depends on kombu version 2.5.7

• Now depends on billiard version 2.7.3.22

• AMQP heartbeats are now disabled by default.

Some users experiences issues with heartbeats enabled, and it’s not strictly necessary to use them.

If you’re experiencing problems detecting connection failures, you can re-enable heartbeats by
configuring the BROKER_HEARTBEAT setting.

• Worker: Now propagates connection errors occurring in multiprocessing callbacks, so that the connection can
be reset (Issue #1226).

• Worker: Now propagates connection errors occurring in timer callbacks, so that the connection can be reset.

• The modules in CELERY_IMPORTS and CELERY_INCLUDE are now imported in the original order (Issue
#1161).

The modules in CELERY_IMPORTSwill be imported first, then continued by CELERY_INCLUDE.

Thanks to Joey Wilhelm.

• New bash completion for celery available in the git repository:

https://github.com/celery/celery/tree/3.0/extra/bash-completion

You can source this file or put it in bash_completion.d to get auto-completion for the celery
command-line utility.

2.14. History 553

https://github.com/celery/celery/issues/1010
https://github.com/celery/celery/issues/1249
http://pyladies.com
http://www.girlswhocode.com
http://www.meetup.com/Women-Who-Code-SF/
https://pypi.python.org/pypi/kombu/
https://pypi.python.org/pypi/billiard/
https://github.com/celery/celery/issues/1226
https://github.com/celery/celery/issues/1161
https://github.com/celery/celery/issues/1161
https://github.com/celery/celery/tree/3.0/extra/bash-completion

Celery Documentation, Release 4.1.0

• The node name of a worker can now include unicode characters (Issue #1186).

• The repr of a crontab object now displays correctly (Issue #972).

• events.State no longer modifies the original event dictionary.

• No longer uses Logger.warn deprecated in Python 3.

• Cache Backend: Now works with chords again (Issue #1094).

• Chord unlock now handles errors occurring while calling the callback.

• Generic worker init.d script: Status check is now performed by querying the pid of the instance instead of
sending messages.

Contributed by Milen Pavlov.

• Improved init-scripts for CentOS.

– Updated to support Celery 3.x conventions.

– Now uses CentOS built-in status and killproc

– Support for multi-node / multi-pid worker services.

– Standard color-coded CentOS service-init output.

– A test suite.

Contributed by Milen Pavlov.

• ResultSet.join now always works with empty result set (Issue #1219).

• A group consisting of a single task is now supported (Issue #1219).

• Now supports the pycallgraph program (Issue #1051).

• Fixed Jython compatibility problems.

• Django tutorial: Now mentions that the example app must be added to INSTALLED_APPS (Issue #1192).

3.0.15

release-date 2013-02-11 04:30:00 p.m. UTC

release-by Ask Solem

• Now depends on billiard 2.7.3.21 which fixed a syntax error crash.

• Fixed bug with CELERY_SEND_TASK_SENT_EVENT.

3.0.14

release-date 2013-02-08 05:00:00 p.m. UTC

release-by Ask Solem

• Now depends on Kombu 2.5.6

• Now depends on billiard 2.7.3.20

• execv is now disabled by default.

554 Chapter 2. Contents

https://github.com/celery/celery/issues/1186
https://github.com/celery/celery/issues/972
https://github.com/celery/celery/issues/1094
https://github.com/celery/celery/issues/1219
https://github.com/celery/celery/issues/1219
https://github.com/celery/celery/issues/1051
https://github.com/celery/celery/issues/1192

Celery Documentation, Release 4.1.0

It was causing too many problems for users, you can still enable it using the CEL-
ERYD_FORCE_EXECV setting.

execv was only enabled when transports other than AMQP/Redis was used, and it’s there to prevent
deadlocks caused by mutexes not being released before the process forks. Unfortunately it also
changes the environment introducing many corner case bugs that’re hard to fix without adding
horrible hacks. Deadlock issues are reported far less often than the bugs that execv are causing, so
we now disable it by default.

Work is in motion to create non-blocking versions of these transports so that execv isn’t necessary
(which is the situation with the amqp and redis broker transports)

• Chord exception behavior defined (Issue #1172).

From Celery 3.1 the chord callback will change state to FAILURE when a task part of a chord raises
an exception.

It was never documented what happens in this case, and the actual behavior was very unsatisfactory,
indeed it will just forward the exception value to the chord callback.

For backward compatibility reasons we don’t change to the new behavior in a bugfix re-
lease, even if the current behavior was never documented. Instead you can enable the
CELERY_CHORD_PROPAGATES setting to get the new behavior that’ll be default from Celery
3.1.

See more at Error handling.

• worker: Fixes bug with ignored and retried tasks.

The on_chord_part_return and Task.after_return callbacks, nor the
task_postrun signal should be called when the task was retried/ignored.

Fix contributed by Vlad.

• GroupResult.join_native now respects the propagate argument.

• subtask.id added as an alias to subtask['options'].id

>>> s = add.s(2, 2)
>>> s.id = 'my-id'
>>> s['options']
{'task_id': 'my-id'}

>>> s.id
'my-id'

• worker: Fixed error Could not start worker processes occurring when restarting after connection failure (Issue
#1118).

• Adds new signal task-retried (Issue #1169).

• celery events –dumper now handles connection loss.

• Will now retry sending the task-sent event in case of connection failure.

• amqp backend: Now uses Message.requeue instead of republishing the message after poll.

• New BROKER_HEARTBEAT_CHECKRATE setting introduced to modify the rate at which broker connection
heartbeats are monitored.

The default value was also changed from 3.0 to 2.0.

• celery.events.state.State is now pickleable.

Fix contributed by Mher Movsisyan.

2.14. History 555

https://github.com/celery/celery/issues/1172
https://github.com/celery/celery/issues/1118
https://github.com/celery/celery/issues/1118
https://github.com/celery/celery/issues/1169

Celery Documentation, Release 4.1.0

• celery.utils.functional.LRUCache is now pickleable.

Fix contributed by Mher Movsisyan.

• The stats broadcast command now includes the workers pid.

Contributed by Mher Movsisyan.

• New conf remote control command to get a workers current configuration.

Contributed by Mher Movsisyan.

• Adds the ability to modify the chord unlock task’s countdown argument (Issue #1146).

Contributed by Jun Sakai

• beat: The scheduler now uses the now()‘ method of the schedule, so that schedules can provide a custom way to
get the current date and time.

Contributed by Raphaël Slinckx

• Fixed pickling of configuration modules on Windows or when execv is used (Issue #1126).

• Multiprocessing logger is now configured with loglevel ERROR by default.

Since 3.0 the multiprocessing loggers were disabled by default (only configured when the MP_LOG
environment variable was set).

3.0.13

release-date 2013-01-07 04:00:00 p.m. UTC

release-by Ask Solem

• Now depends on Kombu 2.5

– amqp has replaced amqplib as the default transport, gaining support for AMQP 0.9, and the RabbitMQ
extensions, including Consumer Cancel Notifications and heartbeats.

– support for multiple connection URLs for failover.

– Read more in the Kombu 2.5 changelog.

• Now depends on billiard 2.7.3.19

• Fixed a deadlock issue that could occur when the producer pool inherited the connection pool instance of the
parent process.

• The --loader option now works again (Issue #1066).

• celery umbrella command: All sub-commands now supports the --workdir option (Issue #1063).

• Groups included in chains now give GroupResults (Issue #1057)

Previously it would incorrectly add a regular result instead of a group result, but now this works:

>>> # [4 + 4, 4 + 8, 16 + 8]
>>> res = (add.s(2, 2) | group(add.s(4), add.s(8), add.s(16)))()
>>> res
<GroupResult: a0acf905-c704-499e-b03a-8d445e6398f7 [

4346501c-cb99-4ad8-8577-12256c7a22b1,
b12ead10-a622-4d44-86e9-3193a778f345,
26c7a420-11f3-4b33-8fac-66cd3b62abfd]>

• Chains can now chain other chains and use partial arguments (Issue #1057).

556 Chapter 2. Contents

https://github.com/celery/celery/issues/1146
https://github.com/celery/celery/issues/1126
https://pypi.python.org/pypi/amqp/
https://pypi.python.org/pypi/amqplib/
http://kombu.readthedocs.io/en/master/changelog.html#version-2-5-0
https://github.com/celery/celery/issues/1066
https://github.com/celery/celery/issues/1063
https://github.com/celery/celery/issues/1057
https://github.com/celery/celery/issues/1057

Celery Documentation, Release 4.1.0

Example:

>>> c1 = (add.s(2) | add.s(4))
>>> c2 = (add.s(8) | add.s(16))

>>> c3 = (c1 | c2)

>>> # 8 + 2 + 4 + 8 + 16
>>> assert c3(8).get() == 38

• Subtasks can now be used with unregistered tasks.

You can specify subtasks even if you just have the name:

>>> s = subtask(task_name, args=(), kwargs=())
>>> s.delay()

• The celery shell command now always adds the current directory to the module path.

• The worker will now properly handle the pytz.AmbiguousTimeError exception raised when an
ETA/countdown is prepared while being in DST transition (Issue #1061).

• force_execv: Now makes sure that task symbols in the original task modules will always use the correct app
instance (Issue #1072).

• AMQP Backend: Now republishes result messages that have been polled (using result.ready() and
friends, result.get() won’t do this in this version).

• Crontab schedule values can now “wrap around”

This means that values like 11-1 translates to [11, 12, 1].

Contributed by Loren Abrams.

• multi stopwait command now shows the pid of processes.

Contributed by Loren Abrams.

• Handling of ETA/countdown fixed when the CELERY_ENABLE_UTC setting is disabled (Issue #1065).

• A number of unneeded properties were included in messages, caused by accidentally passing Queue.as_dict
as message properties.

• Rate limit values can now be float

This also extends the string format so that values like "0.5/s" works.

Contributed by Christoph Krybus

• Fixed a typo in the broadcast routing documentation (Issue #1026).

• Rewrote confusing section about idempotence in the task user guide.

• Fixed typo in the daemonization tutorial (Issue #1055).

• Fixed several typos in the documentation.

Contributed by Marius Gedminas.

• Batches: Now works when using the eventlet pool.

Fix contributed by Thomas Grainger.

• Batches: Added example sending results to celery.contrib.batches.

Contributed by Thomas Grainger.

2.14. History 557

https://github.com/celery/celery/issues/1061
https://github.com/celery/celery/issues/1072
https://github.com/celery/celery/issues/1065
https://github.com/celery/celery/issues/1026
https://github.com/celery/celery/issues/1055

Celery Documentation, Release 4.1.0

• MongoDB backend: Connection max_pool_size can now be set in
CELERY_MONGODB_BACKEND_SETTINGS.

Contributed by Craig Younkins.

• Fixed problem when using earlier versions of pytz.

Fix contributed by Vlad.

• Docs updated to include the default value for the CELERY_TASK_RESULT_EXPIRES setting.

• Improvements to the django-celery tutorial.

Contributed by Locker537.

• The add_consumer control command didn’t properly persist the addition of new queues so that they survived
connection failure (Issue #1079).

3.0.12

release-date 2012-11-06 02:00 p.m. UTC

release-by Ask Solem

• Now depends on kombu 2.4.8

– [Redis] New and improved fair queue cycle algorithm (Kevin McCarthy).

– [Redis] Now uses a Redis-based mutex when restoring messages.

– [Redis] Number of messages that can be restored in one interval is no longer limited (but can be set
using the unacked_restore_limit transport option).

– Heartbeat value can be specified in broker URLs (Mher Movsisyan).

– Fixed problem with msgpack on Python 3 (Jasper Bryant-Greene).

• Now depends on billiard 2.7.3.18

• Celery can now be used with static analysis tools like PyDev/PyCharm/pylint etc.

• Development documentation has moved to Read The Docs.

The new URL is: http://docs.celeryproject.org/en/master

• New CELERY_QUEUE_HA_POLICY setting used to set the default HA policy for queues when using Rab-
bitMQ.

• New method Task.subtask_from_request returns a subtask using the current request.

• Results get_many method didn’t respect timeout argument.

Fix contributed by Remigiusz Modrzejewski

• generic_init.d scripts now support setting CELERY_CREATE_DIRS to always create log and pid directories
(Issue #1045).

This can be set in your /etc/default/celeryd.

• Fixed strange kombu import problem on Python 3.2 (Issue #1034).

• Worker: ETA scheduler now uses millisecond precision (Issue #1040).

• The --config argument to programs is now supported by all loaders.

• The CASSANDRA_OPTIONS setting has now been documented.

Contributed by Jared Biel.

558 Chapter 2. Contents

https://pypi.python.org/pypi/pytz/
https://pypi.python.org/pypi/django-celery/
https://github.com/celery/celery/issues/1079
http://docs.celeryproject.org/en/master
https://github.com/celery/celery/issues/1045
https://github.com/celery/celery/issues/1034
https://github.com/celery/celery/issues/1040

Celery Documentation, Release 4.1.0

• Task methods (celery.contrib.methods) cannot be used with the old task base class, the task decorator
in that module now inherits from the new.

• An optimization was too eager and caused some logging messages to never emit.

• celery.contrib.batches now works again.

• Fixed missing white-space in bdist_rpm requirements (Issue #1046).

• Event state’s tasks_by_name applied limit before filtering by name.

Fix contributed by Alexander A. Sosnovskiy.

3.0.11

release-date 2012-09-26 04:00 p.m. UTC

release-by Ask Solem

• [security:low] generic-init.d scripts changed permissions of /var/log & /var/run

In the daemonization tutorial the recommended directories were as follows:

CELERYD_LOG_FILE="/var/log/celery/%n.log"
CELERYD_PID_FILE="/var/run/celery/%n.pid"

But in the scripts themselves the default files were /var/log/celery%n.log and /var/
run/celery%n.pid, so if the user didn’t change the location by configuration, the directories
/var/log and /var/run would be created - and worse have their permissions and owners
changed.

This change means that:

– Default pid file is /var/run/celery/%n.pid

– Default log file is /var/log/celery/%n.log

– The directories are only created and have their permissions changed if no custom locations
are set.

Users can force paths to be created by calling the create-paths sub-command:

$ sudo /etc/init.d/celeryd create-paths

Upgrading Celery won’t update init-scripts

To update the init-scripts you have to re-download the files from source control and update them
manually. You can find the init-scripts for version 3.0.x at:

https://github.com/celery/celery/tree/3.0/extra/generic-init.d

• Now depends on billiard 2.7.3.17

• Fixes request stack protection when app is initialized more than once (Issue #1003).

• ETA tasks now properly works when system timezone isn’t same as the configured timezone (Issue #1004).

• Terminating a task now works if the task has been sent to the pool but not yet acknowledged by a pool process
(Issue #1007).

Fix contributed by Alexey Zatelepin

2.14. History 559

https://github.com/celery/celery/issues/1046
https://github.com/celery/celery/tree/3.0/extra/generic-init.d
https://github.com/celery/celery/issues/1003
https://github.com/celery/celery/issues/1004
https://github.com/celery/celery/issues/1007

Celery Documentation, Release 4.1.0

• Terminating a task now properly updates the state of the task to revoked, and sends a task-revoked event.

• Generic worker init-script now waits for workers to shutdown by default.

• Multi: No longer parses –app option (Issue #1008).

• Multi: stop_verify command renamed to stopwait.

• Daemonization: Now delays trying to create pidfile/logfile until after the working directory has been changed
into.

• celery worker and celery beat commands now respects the --no-color option (Issue #999).

• Fixed typos in eventlet examples (Issue #1000)

Fix contributed by Bryan Bishop. Congratulations on opening bug #1000!

• Tasks that raise Ignore are now acknowledged.

• Beat: Now shows the name of the entry in sending due task logs.

3.0.10

release-date 2012-09-20 05:30 p.m. BST

release-by Ask Solem

• Now depends on kombu 2.4.7

• Now depends on billiard 2.7.3.14

– Fixes crash at start-up when using Django and pre-1.4 projects (setup_environ).

– Hard time limits now sends the KILL signal shortly after TERM, to terminate processes that have signal
handlers blocked by C extensions.

– Billiard now installs even if the C extension cannot be built.

It’s still recommended to build the C extension if you’re using a transport other than Rab-
bitMQ/Redis (or use forced execv for some other reason).

– Pool now sets a current_process().index attribute that can be used to create as many log files as
there are processes in the pool.

• Canvas: chord/group/chain no longer modifies the state when called

Previously calling a chord/group/chain would modify the ids of subtasks so that:

>>> c = chord([add.s(2, 2), add.s(4, 4)], xsum.s())
>>> c()
>>> c() <-- call again

at the second time the ids for the tasks would be the same as in the previous invocation. This is now
fixed, so that calling a subtask won’t mutate any options.

• Canvas: Chaining a chord to another task now works (Issue #965).

• Worker: Fixed a bug where the request stack could be corrupted if relative imports are used.

Problem usually manifested itself as an exception while trying to send a failed task result
(NoneType does not have id attribute).

Fix contributed by Sam Cooke.

• Tasks can now raise Ignore to skip updating states or events after return.

560 Chapter 2. Contents

https://github.com/celery/celery/issues/1008
https://github.com/celery/celery/issues/999
https://github.com/celery/celery/issues/1000
https://github.com/celery/celery/issues/965

Celery Documentation, Release 4.1.0

Example:

from celery.exceptions import Ignore

@task
def custom_revokes():

if redis.sismember('tasks.revoked', custom_revokes.request.id):
raise Ignore()

• The worker now makes sure the request/task stacks aren’t modified by the initial Task.__call__.

This would previously be a problem if a custom task class defined __call__ and also called
super().

• Because of problems the fast local optimization has been disabled, and can only be enabled by setting the
USE_FAST_LOCALS attribute.

• Worker: Now sets a default socket timeout of 5 seconds at shutdown so that broken socket reads don’t hinder
proper shutdown (Issue #975).

• More fixes related to late eventlet/gevent patching.

• Documentation for settings out of sync with reality:

– CELERY_TASK_PUBLISH_RETRY

Documented as disabled by default, but it was enabled by default since 2.5 as
stated by the 2.5 changelog.

– CELERY_TASK_PUBLISH_RETRY_POLICY

The default max_retries had been set to 100, but documented as being 3, and the
interval_max was set to 1 but documented as 0.2. The default setting are now set
to 3 and 0.2 as it was originally documented.

Fix contributed by Matt Long.

• Worker: Log messages when connection established and lost have been improved.

• The repr of a Crontab schedule value of ‘0’ should be ‘*’ (Issue #972).

• Revoked tasks are now removed from reserved/active state in the worker (Issue #969)

Fix contributed by Alexey Zatelepin.

• gevent: Now supports hard time limits using gevent.Timeout.

• Documentation: Links to init-scripts now point to the 3.0 branch instead of the development branch (master).

• Documentation: Fixed typo in signals user guide (Issue #986).

instance.app.queues -> instance.app.amqp.queues.

• Eventlet/gevent: The worker didn’t properly set the custom app for new greenlets.

• Eventlet/gevent: Fixed a bug where the worker could not recover from connection loss (Issue #959).

Also, because of a suspected bug in gevent the BROKER_CONNECTION_TIMEOUT setting has
been disabled when using gevent

3.0.9

release-date 2012-08-31 06:00 p.m. BST

release-by Ask Solem

2.14. History 561

https://github.com/celery/celery/issues/975
https://github.com/celery/celery/issues/972
https://github.com/celery/celery/issues/969
https://github.com/celery/celery/issues/986
https://github.com/celery/celery/issues/959

Celery Documentation, Release 4.1.0

• Important note for users of Django and the database scheduler!

Recently a timezone issue has been fixed for periodic tasks, but erroneous timezones could have
already been stored in the database, so for the fix to work you need to reset the last_run_at
fields.

You can do this by executing the following command:

$ python manage.py shell
>>> from djcelery.models import PeriodicTask
>>> PeriodicTask.objects.update(last_run_at=None)

You also have to do this if you change the timezone or CELERY_ENABLE_UTC setting.

• Note about the CELERY_ENABLE_UTC setting.

If you previously disabled this just to force periodic tasks to work with your timezone, then you’re
now encouraged to re-enable it.

• Now depends on Kombu 2.4.5 which fixes PyPy + Jython installation.

• Fixed bug with timezones when CELERY_ENABLE_UTC is disabled (Issue #952).

• Fixed a typo in the celerybeat upgrade mechanism (Issue #951).

• Make sure the exc_info argument to logging is resolved (Issue #899).

• Fixed problem with Python 3.2 and thread join timeout overflow (Issue #796).

• A test case was occasionally broken for Python 2.5.

• Unit test suite now passes for PyPy 1.9.

• App instances now supports the with statement.

This calls the new app.close() method at exit, which cleans up after the app like closing pool
connections.

Note that this is only necessary when dynamically creating apps, for example “temporary” apps.

• Support for piping a subtask to a chain.

For example:

pipe = sometask.s() | othertask.s()
new_pipe = mytask.s() | pipe

Contributed by Steve Morin.

• Fixed problem with group results on non-pickle serializers.

Fix contributed by Steeve Morin.

3.0.8

release-date 2012-08-29 05:00 p.m. BST

release-by Ask Solem

• Now depends on Kombu 2.4.4

• Fixed problem with amqplib and receiving larger message payloads (Issue #922).

562 Chapter 2. Contents

https://github.com/celery/celery/issues/952
https://github.com/celery/celery/issues/951
https://github.com/celery/celery/issues/899
https://github.com/celery/celery/issues/796
https://docs.python.org/dev/reference/compound_stmts.html#with
https://pypi.python.org/pypi/amqplib/
https://github.com/celery/celery/issues/922

Celery Documentation, Release 4.1.0

The problem would manifest itself as either the worker hanging, or occasionally a Framing
error exception appearing.

Users of the new pyamqp:// transport must upgrade to amqp 0.9.3.

• Beat: Fixed another timezone bug with interval and Crontab schedules (Issue #943).

• Beat: The schedule file is now automatically cleared if the timezone is changed.

The schedule is also cleared when you upgrade to 3.0.8 from an earlier version, this to register the
initial timezone info.

• Events: The worker-heartbeat event now include processed and active count fields.

Contributed by Mher Movsisyan.

• Fixed error with error email and new task classes (Issue #931).

• BaseTask.__call__ is no longer optimized away if it has been monkey patched.

• Fixed shutdown issue when using gevent (Issue #911 & Issue #936).

Fix contributed by Thomas Meson.

3.0.7

release-date 2012-08-24 05:00 p.m. BST

release-by Ask Solem

• Fixes several problems with periodic tasks and timezones (Issue #937).

• Now depends on kombu 2.4.2

– Redis: Fixes a race condition crash

– Fixes an infinite loop that could happen when retrying establishing the broker connection.

• Daemons now redirect standard file descriptors to /dev/null

Though by default the standard outs are also redirected to the logger instead, but you can disable
this by changing the CELERY_REDIRECT_STDOUTS setting.

• Fixes possible problems when eventlet/gevent is patched too late.

• LoggingProxy no longer defines fileno() (Issue #928).

• Results are now ignored for the chord unlock task.

Fix contributed by Steeve Morin.

• Cassandra backend now works if result expiry is disabled.

Fix contributed by Steeve Morin.

• The traceback object is now passed to signal handlers instead of the string representation.

Fix contributed by Adam DePue.

• Celery command: Extensions are now sorted by name.

• A regression caused the task-failed event to be sent with the exception object instead of its string repre-
sentation.

• The worker daemon would try to create the pid file before daemonizing to catch errors, but this file wasn’t
immediately released (Issue #923).

• Fixes Jython compatibility.

2.14. History 563

https://pypi.python.org/pypi/amqp/
https://github.com/celery/celery/issues/943
https://github.com/celery/celery/issues/931
https://github.com/celery/celery/issues/911
https://github.com/celery/celery/issues/936
https://github.com/celery/celery/issues/937
https://github.com/celery/celery/issues/928
https://github.com/celery/celery/issues/923

Celery Documentation, Release 4.1.0

• billiard.forking_enable was called by all pools not just the processes pool, which would result in a
useless warning if the billiard C extensions weren’t installed.

3.0.6

release-date 2012-08-17 11:00 p.mp.m. Ask Solem

• Now depends on kombu 2.4.0

• Now depends on billiard 2.7.3.12

• Redis: Celery now tries to restore messages whenever there are no messages in the queue.

• Crontab schedules now properly respects CELERY_TIMEZONE setting.

It’s important to note that Crontab schedules uses UTC time by default unless this setting is set.

Issue #904 and django-celery #150.

• billiard.enable_forking is now only set by the processes pool.

• The transport is now properly shown by celery report (Issue #913).

• The –app argument now works if the last part is a module name (Issue #921).

• Fixed problem with unpickleable exceptions (billiard #12).

• Adds task_name attribute to EagerResult which is always None (Issue #907).

• Old Task class in celery.task no longer accepts magic kwargs by default (Issue #918).

A regression long ago disabled magic kwargs for these, and since no one has complained about it
we don’t have any incentive to fix it now.

• The inspect reserved control command didn’t work properly.

• Should now play better with tools for static analysis by explicitly specifying dynamically created attributes in
the celery and celery.task modules.

• Terminating a task now results in RevokedTaskError instead of a WorkerLostError.

• AsyncResult.revoke now accepts terminate and signal arguments.

• The task-revoked event now includes new fields: terminated, signum, and expired.

• The argument to TaskRevokedError is now one of the reasons revoked, expired or terminated.

• Old Task class does no longer use classmethod for push_request and pop_request (Issue #912).

• GroupResult now supports the children attribute (Issue #916).

• AsyncResult.collect now respects the intermediate argument (Issue #917).

• Fixes example task in documentation (Issue #902).

• Eventlet fixed so that the environment is patched as soon as possible.

• eventlet: Now warns if Celery related modules that depends on threads are imported before eventlet is patched.

• Improved event and camera examples in the monitoring guide.

• Disables celery command setuptools entry-points if the command can’t be loaded.

• Fixed broken dump_request example in the tasks guide.

564 Chapter 2. Contents

https://github.com/celery/celery/issues/904
https://pypi.python.org/pypi/django-celery/
https://github.com/celery/celery/issues/913
https://github.com/celery/celery/issues/921
https://github.com/celery/celery/issues/907
https://github.com/celery/celery/issues/918
https://github.com/celery/celery/issues/912
https://github.com/celery/celery/issues/916
https://github.com/celery/celery/issues/917
https://github.com/celery/celery/issues/902

Celery Documentation, Release 4.1.0

3.0.5

release-date 2012-08-01 04:00 p.m. BST

release-by Ask Solem

• Now depends on kombu 2.3.1 + billiard 2.7.3.11

• Fixed a bug with the -B option (cannot pickle thread.lock objects) (Issue #894 + Issue #892, +
django-celery #154).

• The restart_pool control command now requires the CELERYD_POOL_RESTARTS setting to be enabled

This change was necessary as the multiprocessing event that the restart command depends on is
responsible for creating many semaphores/file descriptors, resulting in problems in some environ-
ments.

• chain.apply now passes args to the first task (Issue #889).

• Documented previously secret options to the django-celery monitor in the monitoring user guide (Issue #396).

• Old changelog are now organized in separate documents for each series, see History.

3.0.4

release-date 2012-07-26 07:00 p.m. BST

release-by Ask Solem

• Now depends on Kombu 2.3

• New experimental standalone Celery monitor: Flower

See Flower: Real-time Celery web-monitor to read more about it!

Contributed by Mher Movsisyan.

• Now supports AMQP heartbeats if using the new pyamqp:// transport.

– The amqp transport requires the amqp library to be installed:

$ pip install amqp

– Then you need to set the transport URL prefix to pyamqp://.

– The default heartbeat value is 10 seconds, but this can be changed using the
BROKER_HEARTBEAT setting:

BROKER_HEARTBEAT = 5.0

– If the broker heartbeat is set to 10 seconds, the heartbeats will be monitored every 5 seconds
(double the heartbeat rate).

See the Kombu 2.3 changelog for more information.

• Now supports RabbitMQ Consumer Cancel Notifications, using the pyamqp:// transport.

This is essential when running RabbitMQ in a cluster.

See the Kombu 2.3 changelog for more information.

• Delivery info is no longer passed directly through.

2.14. History 565

https://github.com/celery/celery/issues/894
https://github.com/celery/celery/issues/892
https://pypi.python.org/pypi/django-celery/
https://github.com/celery/celery/issues/889
https://pypi.python.org/pypi/django-celery/
https://github.com/celery/celery/issues/396
https://pypi.python.org/pypi/amqp/
https://pypi.python.org/pypi/amqp/
http://kombu.readthedocs.io/en/master/changelog.html#version-2-3-0
http://kombu.readthedocs.io/en/master/changelog.html#version-2-3-0

Celery Documentation, Release 4.1.0

It was discovered that the SQS transport adds objects that can’t be pickled to the delivery info
mapping, so we had to go back to using the white-list again.

Fixing this bug also means that the SQS transport is now working again.

• The semaphore wasn’t properly released when a task was revoked (Issue #877).

This could lead to tasks being swallowed and not released until a worker restart.

Thanks to Hynek Schlawack for debugging the issue.

• Retrying a task now also forwards any linked tasks.

This means that if a task is part of a chain (or linked in some other way) and that even if the task is
retried, then the next task in the chain will be executed when the retry succeeds.

• Chords: Now supports setting the interval and other keyword arguments to the chord unlock task.

– The interval can now be set as part of the chord subtasks kwargs:

chord(header)(body, interval=10.0)

– In addition the chord unlock task now honors the Task.default_retry_delay option, used when none is
specified, which also means that the default interval can also be changed using annotations:

CELERY_ANNOTATIONS = {
'celery.chord_unlock': {

'default_retry_delay': 10.0,
}

}

• New app.add_defaults() method can add new default configuration dictionaries to the applications con-
figuration.

For example:

config = {'FOO': 10}

app.add_defaults(config)

is the same as app.conf.update(config) except that data won’t be copied, and that it won’t
be pickled when the worker spawns child processes.

In addition the method accepts a callable:

def initialize_config():
insert heavy stuff that can't be done at import time here.

app.add_defaults(initialize_config)

which means the same as the above except that it won’t happen until the Celery configuration is
actually used.

As an example, Celery can lazily use the configuration of a Flask app:

flask_app = Flask()
app = Celery()
app.add_defaults(lambda: flask_app.config)

• Revoked tasks weren’t marked as revoked in the result backend (Issue #871).

Fix contributed by Hynek Schlawack.

566 Chapter 2. Contents

https://github.com/celery/celery/issues/877
https://github.com/celery/celery/issues/871

Celery Documentation, Release 4.1.0

• Event-loop now properly handles the case when the epoll poller object has been closed (Issue #882).

• Fixed syntax error in funtests/test_leak.py

Fix contributed by Catalin Iacob.

• group/chunks: Now accepts empty task list (Issue #873).

• New method names:

– Celery.default_connection() connection_or_acquire().

– Celery.default_producer() producer_or_acquire().

The old names still work for backward compatibility.

3.0.3

release-date 2012-07-20 09:17 p.m. BST

release-by Ask Solem

• amqplib passes the channel object as part of the delivery_info and it’s not pickleable, so we now remove it.

3.0.2

release-date 2012-07-20 04:00 p.m. BST

release-by Ask Solem

• A bug caused the following task options to not take defaults from the configuration (Issue #867 + Issue
#858)

The following settings were affected:

– CELERY_IGNORE_RESULT

– CELERYD_SEND_TASK_ERROR_EMAILS

– CELERY_TRACK_STARTED

– CElERY_STORE_ERRORS_EVEN_IF_IGNORED

Fix contributed by John Watson.

• Task Request: delivery_info is now passed through as-is (Issue #807).

• The ETA argument now supports datetime’s with a timezone set (Issue #855).

• The worker’s banner displayed the autoscale settings in the wrong order (Issue #859).

• Extension commands are now loaded after concurrency is set up so that they don’t interfere with things like
eventlet patching.

• Fixed bug in the threaded pool (Issue #863)

• The task failure handler mixed up the fields in sys.exc_info().

Fix contributed by Rinat Shigapov.

• Fixed typos and wording in the docs.

Fix contributed by Paul McMillan

• New setting: CELERY_WORKER_DIRECT

2.14. History 567

https://github.com/celery/celery/issues/882
https://github.com/celery/celery/issues/873
https://pypi.python.org/pypi/amqplib/
https://github.com/celery/celery/issues/867
https://github.com/celery/celery/issues/858
https://github.com/celery/celery/issues/858
https://github.com/celery/celery/issues/807
https://github.com/celery/celery/issues/855
https://github.com/celery/celery/issues/859
https://github.com/celery/celery/issues/863
https://docs.python.org/dev/library/sys.html#sys.exc_info

Celery Documentation, Release 4.1.0

If enabled each worker will consume from their own dedicated queue which can be used to route
tasks to specific workers.

• Fixed several edge case bugs in the add consumer remote control command.

• migrate: Can now filter and move tasks to specific workers if CELERY_WORKER_DIRECT is enabled.

Among other improvements, the following functions have been added:

– move_direct(filterfun, **opts)

– move_direct_by_id(task_id, worker_hostname, **opts)

– move_direct_by_idmap({task_id: worker_hostname, ...},

**opts)

– move_direct_by_taskmap({task_name: worker_hostname, ...},

**opts)

• default_connection() now accepts a pool argument that if set to false causes a new connection to be
created instead of acquiring one from the pool.

• New signal: celeryd_after_setup.

• Default loader now keeps lowercase attributes from the configuration module.

3.0.1

release-date 2012-07-10 06:00 p.m. BST

release-by Ask Solem

• Now depends on kombu 2.2.5

• inspect now supports limit argument:

myapp.control.inspect(limit=1).ping()

• Beat: now works with timezone aware datetime’s.

• Task classes inheriting from celery import Task mistakenly enabled accept_magic_kwargs.

• Fixed bug in inspect scheduled (Issue #829).

• Beat: Now resets the schedule to upgrade to UTC.

• The celery worker command now works with eventlet/gevent.

Previously it wouldn’t patch the environment early enough.

• The celery command now supports extension commands using setuptools entry-points.

Libraries can add additional commands to the celery command by adding an entry-point like:

setup(
entry_points=[

'celery.commands': [
'foo = my.module:Command',

],
],
...)

The command must then support the interface of celery.bin.base.Command.

• contrib.migrate: New utilities to move tasks from one queue to another.

568 Chapter 2. Contents

https://github.com/celery/celery/issues/829

Celery Documentation, Release 4.1.0

– move_tasks()

– move_task_by_id()

• The task-sent event now contains exchange and routing_key fields.

• Fixes bug with installing on Python 3.

Fix contributed by Jed Smith.

3.0.0 (Chiastic Slide)

release-date 2012-07-07 01:30 p.m. BST

release-by Ask Solem

See What’s new in Celery 3.0 (Chiastic Slide).

What’s new in Celery 2.5

Celery aims to be a flexible and reliable, best-of-breed solution to process vast amounts of messages in a distributed
fashion, while providing operations with the tools to maintain such a system.

Celery has a large and diverse community of users and contributors, you should come join us on IRC or our mailing-
list.

To read more about Celery you should visit our website.

While this version is backward compatible with previous versions it’s important that you read the following section.

If you use Celery in combination with Django you must also read the django-celery changelog <djcelery:version-
2.5.0> and upgrade to django-celery 2.5.

This version is officially supported on CPython 2.5, 2.6, 2.7, 3.2 and 3.3, as well as PyPy and Jython.

• Important Notes

– Broker connection pool now enabled by default

– Rabbit Result Backend: Exchange is no longer auto delete

– Solution for hanging workers (but must be manually enabled)

• Optimization

• Deprecation Time-line Changes

– Removals

– Deprecated modules

• News

– Timezone support

– New security serializer using cryptographic signing

– New CELERY_ANNOTATIONS setting

– current provides the currently executing task

– In Other News

2.14. History 569

http://celeryproject.org/
https://pypi.python.org/pypi/django-celery/

Celery Documentation, Release 4.1.0

• Fixes

Important Notes

Broker connection pool now enabled by default

The default limit is 10 connections, if you have many threads/green-threads using connections at the same time you
may want to tweak this limit to avoid contention.

See the BROKER_POOL_LIMIT setting for more information.

Also note that publishing tasks will be retried by default, to change this default or the default retry policy see
CELERY_TASK_PUBLISH_RETRY and CELERY_TASK_PUBLISH_RETRY_POLICY.

Rabbit Result Backend: Exchange is no longer auto delete

The exchange used for results in the Rabbit (AMQP) result backend used to have the auto_delete flag set, which could
result in a race condition leading to an annoying warning.

For RabbitMQ users

Old exchanges created with the auto_delete flag enabled has to be removed.

The camqadm command can be used to delete the previous exchange:

$ camqadm exchange.delete celeryresults

As an alternative to deleting the old exchange you can configure a new name for the exchange:

CELERY_RESULT_EXCHANGE = 'celeryresults2'

But you have to make sure that all clients and workers use this new setting, so they’re updated to use the same exchange
name.

Solution for hanging workers (but must be manually enabled)

The CELERYD_FORCE_EXECV setting has been added to solve a problem with deadlocks that originate when threads
and fork is mixed together:

CELERYD_FORCE_EXECV = True

This setting is recommended for all users using the prefork pool, but especially users also using time limits or a max
tasks per child setting.

• See Python Issue 6721 to read more about this issue, and why resorting to execv`() is the only safe solution.

Enabling this option will result in a slight performance penalty when new child worker processes are started, and it
will also increase memory usage (but many platforms are optimized, so the impact may be minimal). Considering that
it ensures reliability when replacing lost worker processes, it should be worth it.

• It’s already the default behavior on Windows.

• It will be the default behavior for all platforms in a future version.

570 Chapter 2. Contents

http://bugs.python.org/issue6721#msg140215

Celery Documentation, Release 4.1.0

Optimization

• The code path used when the worker executes a task has been heavily optimized, meaning the worker is able to
process a great deal more tasks/second compared to previous versions. As an example the solo pool can now
process up to 15000 tasks/second on a 4 core MacBook Pro when using the pylibrabbitmq transport, where it
previously could only do 5000 tasks/second.

• The task error tracebacks are now much shorter.

• Fixed a noticeable delay in task processing when rate limits are enabled.

Deprecation Time-line Changes

Removals

• The old TaskSet signature of (task_name, list_of_tasks) can no longer be used (originally sched-
uled for removal in 2.4). The deprecated .task_name and .task attributes has also been removed.

• The functions celery.execute.delay_task, celery.execute.apply, and celery.execute.
apply_async has been removed (originally) scheduled for removal in 2.3).

• The built-in ping task has been removed (originally scheduled for removal in 2.3). Please use the ping broadcast
command instead.

• It’s no longer possible to import subtask and TaskSet from celery.task.base, please import them
from celery.task instead (originally scheduled for removal in 2.4).

Deprecated modules

• The celery.decorators module has changed status from pending deprecation to deprecated, and is sched-
uled for removal in version 4.0. The celery.task module must be used instead.

News

Timezone support

Celery can now be configured to treat all incoming and outgoing dates as UTC, and the local timezone can be config-
ured.

This isn’t yet enabled by default, since enabling time zone support means workers running versions pre-2.5 will be out
of sync with upgraded workers.

To enable UTC you have to set CELERY_ENABLE_UTC:

CELERY_ENABLE_UTC = True

When UTC is enabled, dates and times in task messages will be converted to UTC, and then converted back to the
local timezone when received by a worker.

You can change the local timezone using the CELERY_TIMEZONE setting. Installing the pytz library is recommended
when using a custom timezone, to keep timezone definition up-to-date, but it will fallback to a system definition of the
timezone if available.

UTC will enabled by default in version 3.0.

2.14. History 571

https://pypi.python.org/pypi/pylibrabbitmq/
https://pypi.python.org/pypi/pytz/

Celery Documentation, Release 4.1.0

Note: django-celery will use the local timezone as specified by the TIME_ZONE setting, it will also honor the new
USE_TZ setting introduced in Django 1.4.

New security serializer using cryptographic signing

A new serializer has been added that signs and verifies the signature of messages.

The name of the new serializer is auth, and needs additional configuration to work (see Security).

See also:

Security

Contributed by Mher Movsisyan.

New CELERY_ANNOTATIONS setting

This new setting enables the configuration to modify task classes and their attributes.

The setting can be a dict, or a list of annotation objects that filter for tasks and return a map of attributes to change.

As an example, this is an annotation to change the rate_limit attribute for the tasks.add task:

CELERY_ANNOTATIONS = {'tasks.add': {'rate_limit': '10/s'}}

or change the same for all tasks:

CELERY_ANNOTATIONS = {'*': {'rate_limit': '10/s'}}

You can change methods too, for example the on_failure handler:

def my_on_failure(self, exc, task_id, args, kwargs, einfo):
print('Oh no! Task failed: %r' % (exc,))

CELERY_ANNOTATIONS = {'*': {'on_failure': my_on_failure}}

If you need more flexibility then you can also create objects that filter for tasks to annotate:

class MyAnnotate(object):

def annotate(self, task):
if task.name.startswith('tasks.'):

return {'rate_limit': '10/s'}

CELERY_ANNOTATIONS = (MyAnnotate(), {other_annotations,})

current provides the currently executing task

The new celery.task.current proxy will always give the currently executing task.

Example:

572 Chapter 2. Contents

https://pypi.python.org/pypi/django-celery/
https://docs.djangoproject.com/en/dev/topics/i18n/timezones/

Celery Documentation, Release 4.1.0

from celery.task import current, task

@task
def update_twitter_status(auth, message):

twitter = Twitter(auth)
try:

twitter.update_status(message)
except twitter.FailWhale, exc:

retry in 10 seconds.
current.retry(countdown=10, exc=exc)

Previously you’d’ve to type update_twitter_status.retry(...) here, which can be annoying for long
task names.

Note: This won’t work if the task function is called directly (i.e., update_twitter_status(a, b)). For that
to work apply must be used: update_twitter_status.apply((a, b)).

In Other News

• Now depends on Kombu 2.1.0.

• Efficient Chord support for the Memcached backend (Issue #533)

This means Memcached joins Redis in the ability to do non-polling chords.

Contributed by Dan McGee.

• Adds Chord support for the Rabbit result backend (amqp)

The Rabbit result backend can now use the fallback chord solution.

• Sending QUIT to celeryd will now cause it cold terminate.

That is, it won’t finish executing the tasks it’s currently working on.

Contributed by Alec Clowes.

• New “detailed” mode for the Cassandra backend.

Allows to have a “detailed” mode for the Cassandra backend. Basically the idea is to keep all states
using Cassandra wide columns. New states are then appended to the row as new columns, the last
state being the last column.

See the CASSANDRA_DETAILED_MODE setting.

Contributed by Steeve Morin.

• The Crontab parser now matches Vixie Cron behavior when parsing ranges with steps (e.g., 1-59/2).

Contributed by Daniel Hepper.

• celerybeat can now be configured on the command-line like celeryd.

Additional configuration must be added at the end of the argument list followed by --, for example:

$ celerybeat -l info -- celerybeat.max_loop_interval=10.0

• Now limits the number of frames in a traceback so that celeryd doesn’t crash on maximum recursion limit
exceeded exceptions (Issue #615).

2.14. History 573

https://github.com/celery/celery/issues/533
https://github.com/celery/celery/issues/615

Celery Documentation, Release 4.1.0

The limit is set to the current recursion limit divided by 8 (which is 125 by default).

To get or set the current recursion limit use sys.getrecursionlimit() and sys.
setrecursionlimit().

• More information is now preserved in the pickleable traceback.

This has been added so that Sentry can show more details.

Contributed by Sean O’Connor.

• CentOS init-script has been updated and should be more flexible.

Contributed by Andrew McFague.

• MongoDB result backend now supports forget().

Contributed by Andrew McFague

• task.retry() now re-raises the original exception keeping the original stack trace.

Suggested by @ojii.

• The –uid argument to daemons now uses initgroups() to set groups to all the groups the user is a member
of.

Contributed by Łukasz Oleś.

• celeryctl: Added shell command.

The shell will have the current_app (celery) and all tasks automatically added to locals.

• celeryctl: Added migrate command.

The migrate command moves all tasks from one broker to another. Note that this is experimental
and you should have a backup of the data before proceeding.

Examples:

$ celeryctl migrate redis://localhost amqp://localhost
$ celeryctl migrate amqp://localhost//v1 amqp://localhost//v2
$ python manage.py celeryctl migrate django:// redis://

• Routers can now override the exchange and routing_key used to create missing queues (Issue #577).

By default this will always use the name of the queue, but you can now have a router return exchange
and routing_key keys to set them.

This is useful when using routing classes which decides a destination at run-time.

Contributed by Akira Matsuzaki.

• Redis result backend: Adds support for a max_connections parameter.

It’s now possible to configure the maximum number of simultaneous connections in the Redis
connection pool used for results.

The default max connections setting can be configured using the
CELERY_REDIS_MAX_CONNECTIONS setting, or it can be changed individually by
RedisBackend(max_connections=int).

Contributed by Steeve Morin.

• Redis result backend: Adds the ability to wait for results without polling.

Contributed by Steeve Morin.

• MongoDB result backend: Now supports save and restore taskset.

574 Chapter 2. Contents

https://docs.python.org/dev/library/sys.html#sys.getrecursionlimit
https://docs.python.org/dev/library/sys.html#sys.setrecursionlimit
https://docs.python.org/dev/library/sys.html#sys.setrecursionlimit
https://github.com/ojii/
https://github.com/celery/celery/issues/577

Celery Documentation, Release 4.1.0

Contributed by Julien Poissonnier.

• There’s a new Security guide in the documentation.

• The init-scripts have been updated, and many bugs fixed.

Contributed by Chris Streeter.

• User (tilde) is now expanded in command-line arguments.

• Can now configure CELERYCTL environment variable in /etc/default/celeryd.

While not necessary for operation, celeryctl is used for the celeryd status command,
and the path to celeryctl must be configured for that to work.

The daemonization cookbook contains examples.

Contributed by Jude Nagurney.

• The MongoDB result backend can now use Replica Sets.

Contributed by Ivan Metzlar.

• gevent: Now supports autoscaling (Issue #599).

Contributed by Mark Lavin.

• multiprocessing: Mediator thread is now always enabled, even though rate limits are disabled, as the pool
semaphore is known to block the main thread, causing broadcast commands and shutdown to depend on the
semaphore being released.

Fixes

• Exceptions that are re-raised with a new exception object now keeps the original stack trace.

• Windows: Fixed the no handlers found for multiprocessing warning.

• Windows: The celeryd program can now be used.

Previously Windows users had to launch celeryd using python -m celery.bin.
celeryd.

• Redis result backend: Now uses SETEX command to set result key, and expiry atomically.

Suggested by @yaniv-aknin.

• celeryd: Fixed a problem where shutdown hanged when Control-c was used to terminate.

• celeryd: No longer crashes when channel errors occur.

Fix contributed by Roger Hu.

• Fixed memory leak in the eventlet pool, caused by the use of greenlet.getcurrent.

Fix contributed by Ignas Mikalajūnas.

• Cassandra backend: No longer uses pycassa.connect() which is deprecated since pycassa 1.4.

Fix contributed by Jeff Terrace.

• Fixed unicode decode errors that could occur while sending error emails.

Fix contributed by Seong Wun Mun.

• celery.bin programs now always defines __package__ as recommended by PEP-366.

• send_task now emits a warning when used in combination with CELERY_ALWAYS_EAGER (Issue #581).

2.14. History 575

https://github.com/celery/celery/issues/599
https://github.com/yaniv-aknin/
https://pypi.python.org/pypi/pycassa/
https://github.com/celery/celery/issues/581

Celery Documentation, Release 4.1.0

Contributed by Mher Movsisyan.

• apply_async now forwards the original keyword arguments to apply when CELERY_ALWAYS_EAGER is
enabled.

• celeryev now tries to re-establish the connection if the connection to the broker is lost (Issue #574).

• celeryev: Fixed a crash occurring if a task has no associated worker information.

Fix contributed by Matt Williamson.

• The current date and time is now consistently taken from the current loaders now method.

• Now shows helpful error message when given a configuration module ending in .py that can’t be imported.

• celeryctl: The --expires and --eta arguments to the apply command can now be an ISO-8601 for-
matted string.

• celeryctl now exits with exit status EX_UNAVAILABLE (69) if no replies have been received.

Change history for Celery 2.5

This document contains change notes for bugfix releases in the 2.5.x series, please see What’s new in Celery 2.5 for
an overview of what’s new in Celery 2.5.

If you’re looking for versions prior to 2.5 you should visit our History of releases.

• 2.5.5

• 2.5.3

• 2.5.2

– News

– Fixes

• 2.5.1

– Fixes

• 2.5.0

2.5.5

release-date 2012-06-06 04:00 p.m. BST

release-by Ask Solem

This is a dummy release performed for the following goals:

• Protect against force upgrading to Kombu 2.2.0

• Version parity with django-celery

2.5.3

release-date 2012-04-16 07:00 p.m. BST

release-by Ask Solem

576 Chapter 2. Contents

https://github.com/celery/celery/issues/574
https://pypi.python.org/pypi/django-celery/

Celery Documentation, Release 4.1.0

• A bug causes messages to be sent with UTC time-stamps even though CELERY_ENABLE_UTC wasn’t enabled
(Issue #636).

• celerybeat: No longer crashes if an entry’s args is set to None (Issue #657).

• Auto-reload didn’t work if a module’s __file__ attribute was set to the modules .pyc file. (Issue #647).

• Fixes early 2.5 compatibility where __package__ doesn’t exist (Issue #638).

2.5.2

release-date 2012-04-13 04:30 p.m. GMT

release-by Ask Solem

News

• Now depends on Kombu 2.1.5.

• Django documentation has been moved to the main Celery docs.

See Django.

• New celeryd_init signal can be used to configure workers by hostname.

• Signal.connect can now be used as a decorator.

Example:

from celery.signals import task_sent

@task_sent.connect
def on_task_sent(**kwargs):

print('sent task: %r' % (kwargs,))

• Invalid task messages are now rejected instead of acked.

This means that they will be moved to the dead-letter queue introduced in the latest RabbitMQ
version (but must be enabled manually, consult the RabbitMQ documentation).

• Internal logging calls has been cleaned up to work better with tools like Sentry.

Contributed by David Cramer.

• New method subtask.clone() can be used to clone an existing subtask with augmented arguments/options.

Example:

>>> s = add.subtask((5,))
>>> new = s.clone(args=(10,), countdown=5})
>>> new.args
(10, 5)

>>> new.options
{'countdown': 5}

• Chord callbacks are now triggered in eager mode.

2.14. History 577

https://github.com/celery/celery/issues/636
https://github.com/celery/celery/issues/657
https://github.com/celery/celery/issues/647
https://github.com/celery/celery/issues/638

Celery Documentation, Release 4.1.0

Fixes

• Programs now verifies that the pidfile is actually written correctly (Issue #641).

Hopefully this will crash the worker immediately if the system is out of space to store the complete
pidfile.

In addition, we now verify that existing pidfiles contain a new line so that a partially written pidfile
is detected as broken, as before doing:

$ echo -n "1" > celeryd.pid

would cause the worker to think that an existing instance was already running (init has pid 1 after
all).

• Fixed 2.5 compatibility issue with use of print_exception.

Fix contributed by Martin Melin.

• Fixed 2.5 compatibility issue with imports.

Fix contributed by Iurii Kriachko.

• All programs now fix up __package__ when called as main.

This fixes compatibility with Python 2.5.

Fix contributed by Martin Melin.

• [celery control|inspect] can now be configured on the command-line.

Like with the worker it is now possible to configure Celery settings on the command-line for celery
control|inspect

$ celery inspect -- broker.pool_limit=30

• Version dependency for python-dateutil fixed to be strict.

Fix contributed by Thomas Meson.

• Task.__call__ is now optimized away in the task tracer rather than when the task class is created.

This fixes a bug where a custom __call__ may mysteriously disappear.

• Auto-reload’s inotify support has been improved.

Contributed by Mher Movsisyan.

• The Django broker documentation has been improved.

• Removed confusing warning at top of routing user guide.

2.5.1

release-date 2012-03-01 01:00 p.m. GMT

release-by Ask Solem

578 Chapter 2. Contents

https://github.com/celery/celery/issues/641
https://pypi.python.org/pypi/python-dateutil/

Celery Documentation, Release 4.1.0

Fixes

• Eventlet/Gevent: A small typo caused the worker to hang when eventlet/gevent was used, this was because the
environment wasn’t monkey patched early enough.

• Eventlet/Gevent: Another small typo caused the mediator to be started with eventlet/gevent, which would make
the worker sometimes hang at shutdown.

• multiprocessing: Fixed an error occurring if the pool was stopped before it was properly started.

• Proxy objects now redirects __doc__ and __name__ so help(obj) works.

• Internal timer (timer2) now logs exceptions instead of swallowing them (Issue #626).

• celery shell: can now be started with --eventlet or --gevent options to apply their monkey patches.

2.5.0

release-date 2012-02-24 04:00 p.m. GMT

release-by Ask Solem

See What’s new in Celery 2.5.

Since the changelog has gained considerable size, we decided to do things differently this time: by having separate
“what’s new” documents for major version changes.

Bugfix releases will still be found in the changelog.

Change history for Celery 2.4

• 2.4.5

• 2.4.4

– Security Fixes

– Fixes

• 2.4.3

• 2.4.2

• 2.4.1

• 2.4.0

– Important Notes

– News

2.4.5

release-date 2011-12-02 05:00 p.m. GMT

release-by Ask Solem

• Periodic task interval schedules were accidentally rounded down, resulting in some periodic tasks being executed
early.

2.14. History 579

https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing
https://github.com/celery/celery/issues/626

Celery Documentation, Release 4.1.0

• Logging of humanized times in the beat log is now more detailed.

• New Brokers section in the Getting Started part of the Documentation

This replaces the old “Other queues” tutorial, and adds documentation for MongoDB, Beanstalk
and CouchDB.

2.4.4

release-date 2011-11-25 04:00 p.m. GMT

release-by Ask Solem

Security Fixes

• [Security: CELERYSA-0001] Daemons would set effective id’s rather than real id’s when the --uid/ --gid
arguments to celery multi, celeryd_detach, celery beat and celery events were used.

This means privileges weren’t properly dropped, and that it would be possible to regain supervisor privileges
later.

Fixes

• Processes pool: Fixed rare deadlock at shutdown (Issue #523).

Fix contributed by Ionel Maries Christian.

• Webhook tasks issued the wrong HTTP POST headers (Issue #515).

The Content-Type header has been changed from application/json application/
x-www-form-urlencoded, and adds a proper Content-Length header.

Fix contributed by Mitar.

• Daemonization tutorial: Adds a configuration example using Django and virtualenv together (Issue #505).

Contributed by Juan Ignacio Catalano.

• generic init-scripts now automatically creates log and pid file directories (Issue #545).

Contributed by Chris Streeter.

2.4.3

release-date 2011-11-22 06:00 p.m. GMT

release-by Ask Solem

• Fixes module import typo in celeryctl (Issue #538).

Fix contributed by Chris Streeter.

580 Chapter 2. Contents

https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0001.txt
https://github.com/celery/celery/issues/523
https://github.com/celery/celery/issues/515
https://github.com/celery/celery/issues/505
https://github.com/celery/celery/issues/545
https://github.com/celery/celery/issues/538

Celery Documentation, Release 4.1.0

2.4.2

release-date 2011-11-14 12:00 p.m. GMT

release-by Ask Solem

• Program module no longer uses relative imports so that it’s possible to do python -m celery.bin.name.

2.4.1

release-date 2011-11-07 06:00 p.m. GMT

release-by Ask Solem

• celeryctl inspect commands was missing output.

• processes pool: Decrease polling interval for less idle CPU usage.

• processes pool: MaybeEncodingError wasn’t wrapped in ExceptionInfo (Issue #524).

• worker: would silence errors occurring after task consumer started.

• logging: Fixed a bug where unicode in stdout redirected log messages couldn’t be written (Issue #522).

2.4.0

release-date 2011-11-04 04:00 p.m. GMT

release-by Ask Solem

Important Notes

• Now supports Python 3.

• Fixed deadlock in worker process handling (Issue #496).

A deadlock could occur after spawning new child processes because the logging library’s mutex
wasn’t properly reset after fork.

The symptoms of this bug affecting would be that the worker simply stops processing tasks, as none
of the workers child processes are functioning. There was a greater chance of this bug occurring
with maxtasksperchild or a time-limit enabled.

This is a workaround for http://bugs.python.org/issue6721#msg140215.

Be aware that while this fixes the logging library lock, there could still be other locks initialized in
the parent process, introduced by custom code.

Fix contributed by Harm Verhagen.

• AMQP Result backend: Now expires results by default.

The default expiration value is now taken from the CELERY_TASK_RESULT_EXPIRES setting.

The old CELERY_AMQP_TASK_RESULT_EXPIRES setting has been deprecated and will be re-
moved in version 4.0.

Note that this means that the result backend requires RabbitMQ 2.1.0 or higher, and that you
have to disable expiration if you’re running with an older version. You can do so by disabling
the CELERY_TASK_RESULT_EXPIRES setting:

2.14. History 581

https://github.com/celery/celery/issues/524
https://github.com/celery/celery/issues/522
https://github.com/celery/celery/issues/496
http://bugs.python.org/issue6721#msg140215

Celery Documentation, Release 4.1.0

CELERY_TASK_RESULT_EXPIRES = None

• Eventlet: Fixed problem with shutdown (Issue #457).

• Broker transports can be now be specified using URLs

The broker can now be specified as a URL instead. This URL must have the format:

transport://user:password@hostname:port/virtual_host

for example the default broker is written as:

amqp://guest:guest@localhost:5672//

The scheme is required, so that the host is identified as a URL and not just a host name. User,
password, port and virtual_host are optional and defaults to the particular transports default value.

Note: Note that the path component (virtual_host) always starts with a forward-slash. This is
necessary to distinguish between the virtual host '' (empty) and '/', which are both acceptable
virtual host names.

A virtual host of '/' becomes:

amqp://guest:guest@localhost:5672//

and a virtual host of '' (empty) becomes:

amqp://guest:guest@localhost:5672/

So the leading slash in the path component is always required.

In addition the BROKER_URL setting has been added as an alias to BROKER_HOST. Any broker
setting specified in both the URL and in the configuration will be ignored, if a setting isn’t provided
in the URL then the value from the configuration will be used as default.

Also, programs now support the --broker option to specify a broker URL on the command-line:

$ celery worker -b redis://localhost

$ celery inspect -b amqp://guest:guest@localhost//e

The environment variable CELERY_BROKER_URL can also be used to easily override the default
broker used.

• The deprecated celery.loaders.setup_loader() function has been removed.

• The CELERY_TASK_ERROR_WHITELIST setting has been replaced by a more flexible approach (Issue #447).

The error mail sending logic is now available as Task.ErrorMail, with the implementation (for
reference) in celery.utils.mail.

The error mail class can be sub-classed to gain complete control of when error messages are sent,
thus removing the need for a separate white-list setting.

The CELERY_TASK_ERROR_WHITELIST setting has been deprecated, and will be removed
completely in version 4.0.

• Additional Deprecations

582 Chapter 2. Contents

https://github.com/celery/celery/issues/457
https://github.com/celery/celery/issues/447

Celery Documentation, Release 4.1.0

The following functions has been deprecated and is scheduled for removal in version 4.0:

Old function Alternative
celery.loaders.current_loader celery.current_app.loader
celery.loaders.load_settings celery.current_app.conf
celery.execute.apply Task.apply
celery.execute.apply_async Task.apply_async
celery.execute.delay_task celery.execute.send_task

The following settings has been deprecated and is scheduled for removal in version 4.0:

Old setting Alternative
CELERYD_LOG_LEVEL celery worker --loglevel=
CELERYD_LOG_FILE celery worker --logfile=
CELERYBEAT_LOG_LEVEL celery beat --loglevel=
CELERYBEAT_LOG_FILE celery beat --logfile=
CELERYMON_LOG_LEVEL celerymon --loglevel=
CELERYMON_LOG_FILE celerymon --logfile=

News

• No longer depends on pyparsing.

• Now depends on Kombu 1.4.3.

• CELERY_IMPORTS can now be a scalar value (Issue #485).

It’s too easy to forget to add the comma after the sole element of a tuple, and this is something that
often affects newcomers.

The docs should probably use a list in examples, as using a tuple for this doesn’t even make sense.
Nonetheless, there are many tutorials out there using a tuple, and this change should be a help to
new users.

Suggested by @jsaxon-cars.

• Fixed a memory leak when using the thread pool (Issue #486).

Contributed by Kornelijus Survila.

• The statedb wasn’t saved at exit.

This has now been fixed and it should again remember previously revoked tasks when a
--statedb is enabled.

• Adds EMAIL_USE_TLS to enable secure SMTP connections (Issue #418).

Contributed by Stefan Kjartansson.

• Now handles missing fields in task messages as documented in the message format documentation.

– Missing required field throws InvalidTaskError

– Missing args/kwargs is assumed empty.

Contributed by Chris Chamberlin.

• Fixed race condition in celery.events.state (celerymon/celeryev) where task info would be re-
moved while iterating over it (Issue #501).

• The Cache, Cassandra, MongoDB, Redis and Tyrant backends now respects the
CELERY_RESULT_SERIALIZER setting (Issue #435).

2.14. History 583

https://pypi.python.org/pypi/pyparsing/
https://github.com/celery/celery/issues/485
https://github.com/jsaxon-cars/
https://github.com/celery/celery/issues/486
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-EMAIL_USE_TLS
https://github.com/celery/celery/issues/418
https://github.com/celery/celery/issues/501
https://github.com/celery/celery/issues/435

Celery Documentation, Release 4.1.0

This means that only the database (Django/SQLAlchemy) backends currently doesn’t support using
custom serializers.

Contributed by Steeve Morin

• Logging calls no longer manually formats messages, but delegates that to the logging system, so tools like
Sentry can easier work with the messages (Issue #445).

Contributed by Chris Adams.

• multi now supports a stop_verify command to wait for processes to shutdown.

• Cache backend didn’t work if the cache key was unicode (Issue #504).

Fix contributed by Neil Chintomby.

• New setting CELERY_RESULT_DB_SHORT_LIVED_SESSIONS added, which if enabled will disable the
caching of SQLAlchemy sessions (Issue #449).

Contributed by Leo Dirac.

• All result backends now implements __reduce__ so that they can be pickled (Issue #441).

Fix contributed by Remy Noel

• multi didn’t work on Windows (Issue #472).

• New-style CELERY_REDIS_* settings now takes precedence over the old REDIS_* configuration keys (Issue
#508).

Fix contributed by Joshua Ginsberg

• Generic beat init-script no longer sets bash -e (Issue #510).

Fix contributed by Roger Hu.

• Documented that Chords don’t work well with redis-server versions before 2.2.

Contributed by Dan McGee.

• The CELERYBEAT_MAX_LOOP_INTERVAL setting wasn’t respected.

• inspect.registered_tasks renamed to inspect.registered for naming consistency.

The previous name is still available as an alias.

Contributed by Mher Movsisyan

• Worker logged the string representation of args and kwargs without safe guards (Issue #480).

• RHEL init-script: Changed worker start-up priority.

The default start / stop priorities for MySQL on RHEL are:

chkconfig: - 64 36

Therefore, if Celery is using a database as a broker / message store, it should be started after the
database is up and running, otherwise errors will ensue. This commit changes the priority in the
init-script to:

chkconfig: - 85 15

which are the default recommended settings for 3-rd party applications and assure that Celery will
be started after the database service & shut down before it terminates.

Contributed by Yury V. Zaytsev.

584 Chapter 2. Contents

https://github.com/celery/celery/issues/445
https://github.com/celery/celery/issues/504
https://github.com/celery/celery/issues/449
https://github.com/celery/celery/issues/441
https://github.com/celery/celery/issues/472
https://github.com/celery/celery/issues/508
https://github.com/celery/celery/issues/508
https://github.com/celery/celery/issues/510
https://github.com/celery/celery/issues/480

Celery Documentation, Release 4.1.0

• KeyValueStoreBackend.get_many didn’t respect the timeout argument (Issue #512).

• beat/events’s --workdir option didn’t chdir(2) before after configuration was attempted (Issue #506).

• After deprecating 2.4 support we can now name modules correctly, since we can take use of absolute imports.

Therefore the following internal modules have been renamed:

celery.concurrency.evlet -> celery.concurrency.eventlet
celery.concurrency.evg -> celery.concurrency.gevent

• AUTHORS file is now sorted alphabetically.

Also, as you may have noticed the contributors of new features/fixes are now mentioned in the
Changelog.

Change history for Celery 2.3

• 2.3.4

– Security Fixes

– Fixes

• 2.3.3

• 2.3.2

– News

– Fixes

• 2.3.1

– Fixes

• 2.3.0

– Important Notes

– News

– Fixes

2.3.4

release-date 2011-11-25 04:00 p.m. GMT

release-by Ask Solem

Security Fixes

• [Security: CELERYSA-0001] Daemons would set effective id’s rather than real id’s when the --uid/ --gid
arguments to celery multi, celeryd_detach, celery beat and celery events were used.

This means privileges weren’t properly dropped, and that it would be possible to regain supervisor privileges
later.

2.14. History 585

https://github.com/celery/celery/issues/512
https://github.com/celery/celery/issues/506
https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0001.txt

Celery Documentation, Release 4.1.0

Fixes

• Backported fix for #455 from 2.4 to 2.3.

• StateDB wasn’t saved at shutdown.

• Fixes worker sometimes hanging when hard time limit exceeded.

2.3.3

release-date 2011-16-09 05:00 p.m. BST

release-by Mher Movsisyan

• Monkey patching sys.stdout could result in the worker crashing if the replacing object didn’t define
isatty() (Issue #477).

• CELERYD option in /etc/default/celeryd shouldn’t be used with generic init-scripts.

2.3.2

release-date 2011-10-07 05:00 p.m. BST

release-by Ask Solem

News

• Improved Contributing guide.

If you’d like to contribute to Celery you should read the Contributing Gudie.

We’re looking for contributors at all skill levels, so don’t hesitate!

• Now depends on Kombu 1.3.1

• Task.request now contains the current worker host name (Issue #460).

Available as task.request.hostname.

• It’s now easier for app subclasses to extend how they’re pickled. (see celery.app.AppPickler).

Fixes

• purge/discard_all wasn’t working correctly (Issue #455).

• The coloring of log messages didn’t handle non-ASCII data well (Issue #427).

• [Windows] the multiprocessing pool tried to import os.kill even though this isn’t available there (Issue
#450).

• Fixes case where the worker could become unresponsive because of tasks exceeding the hard time limit.

• The task-sent event was missing from the event reference.

• ResultSet.iterate now returns results as they finish (Issue #459).

This wasn’t the case previously, even though the documentation states this was the expected behav-
ior.

• Retries will no longer be performed when tasks are called directly (using __call__).

586 Chapter 2. Contents

https://github.com/celery/celery/issues/477
https://github.com/celery/celery/issues/460
https://github.com/celery/celery/issues/455
https://github.com/celery/celery/issues/427
https://github.com/celery/celery/issues/450
https://github.com/celery/celery/issues/450
https://github.com/celery/celery/issues/459

Celery Documentation, Release 4.1.0

Instead the exception passed to retry will be re-raised.

• Eventlet no longer crashes if autoscale is enabled.

growing and shrinking eventlet pools is still not supported.

• py24 target removed from tox.ini.

2.3.1

release-date 2011-08-07 08:00 p.m. BST

release-by Ask Solem

Fixes

• The CELERY_AMQP_TASK_RESULT_EXPIRES setting didn’t work, resulting in an AMQP related error
about not being able to serialize floats while trying to publish task states (Issue #446).

2.3.0

release-date 2011-08-05 12:00 p.m. BST

tested CPython: 2.5, 2.6, 2.7; PyPy: 1.5; Jython: 2.5.2

release-by Ask Solem

Important Notes

• Now requires Kombu 1.2.1

• Results are now disabled by default.

The AMQP backend wasn’t a good default because often the users were not consuming the results,
resulting in thousands of queues.

While the queues can be configured to expire if left unused, it wasn’t possible to enable this by
default because this was only available in recent RabbitMQ versions (2.1.1+)

With this change enabling a result backend will be a conscious choice, which will hopefully lead the
user to read the documentation and be aware of any common pitfalls with the particular backend.

The default backend is now a dummy backend (celery.backends.base.
DisabledBackend). Saving state is simply an no-op, and AsyncResult.wait(), .result,
.state, etc. will raise a NotImplementedError telling the user to configure the result backend.

For help choosing a backend please see Result Backends.

If you depend on the previous default which was the AMQP backend, then you have to set this
explicitly before upgrading:

CELERY_RESULT_BACKEND = 'amqp'

Note: For django-celery users the default backend is still database, and results are not disabled
by default.

2.14. History 587

https://github.com/celery/celery/issues/446
https://docs.python.org/dev/library/exceptions.html#NotImplementedError
https://pypi.python.org/pypi/django-celery/

Celery Documentation, Release 4.1.0

• The Debian init-scripts have been deprecated in favor of the generic-init.d init-scripts.

In addition generic init-scripts for celerybeat and celeryev has been added.

News

• Automatic connection pool support.

The pool is used by everything that requires a broker connection, for example calling tasks, sending
broadcast commands, retrieving results with the AMQP result backend, and so on.

The pool is disabled by default, but you can enable it by configuring the BROKER_POOL_LIMIT
setting:

BROKER_POOL_LIMIT = 10

A limit of 10 means a maximum of 10 simultaneous connections can co-exist. Only a single con-
nection will ever be used in a single-thread environment, but in a concurrent environment (threads,
greenlets, etc., but not processes) when the limit has been exceeded, any try to acquire a connec-
tion will block the thread and wait for a connection to be released. This is something to take into
consideration when choosing a limit.

A limit of None or 0 means no limit, and connections will be established and closed every time.

• Introducing Chords (taskset callbacks).

A chord is a task that only executes after all of the tasks in a taskset has finished executing. It’s a
fancy term for “taskset callbacks” adopted from C𝜔).

It works with all result backends, but the best implementation is currently provided by the Redis
result backend.

Here’s an example chord:

>>> chord(add.subtask((i, i))
... for i in xrange(100))(tsum.subtask()).get()
9900

Please read the Chords section in the user guide, if you want to know more.

• Time limits can now be set for individual tasks.

To set the soft and hard time limits for a task use the time_limit and soft_time_limit
attributes:

import time

@task(time_limit=60, soft_time_limit=30)
def sleeptask(seconds):

time.sleep(seconds)

If the attributes are not set, then the workers default time limits will be used.

New in this version you can also change the time limits for a task at runtime using the
time_limit() remote control command:

>>> from celery.task import control
>>> control.time_limit('tasks.sleeptask',
... soft=60, hard=120, reply=True)
[{'worker1.example.com': {'ok': 'time limits set successfully'}}]

588 Chapter 2. Contents

http://research.microsoft.com/en-us/um/cambridge/projects/comega/

Celery Documentation, Release 4.1.0

Only tasks that starts executing after the time limit change will be affected.

Note: Soft time limits will still not work on Windows or other platforms that don’t have the
SIGUSR1 signal.

• Redis backend configuration directive names changed to include the CELERY_ prefix.

Old setting name Replace with
REDIS_HOST CELERY_REDIS_HOST
REDIS_PORT CELERY_REDIS_PORT
REDIS_DB CELERY_REDIS_DB
REDIS_PASSWORD CELERY_REDIS_PASSWORD

The old names are still supported but pending deprecation.

• PyPy: The default pool implementation used is now multiprocessing if running on PyPy 1.5.

• multi: now supports “pass through” options.

Pass through options makes it easier to use Celery without a configuration file, or just add last-
minute options on the command line.

Example use:

$ celery multi start 4 -c 2 -- broker.host=amqp.example.com \
broker.vhost=/ \
celery.disable_rate_limits=yes

• celerybeat: Now retries establishing the connection (Issue #419).

• celeryctl: New list bindings command.

Lists the current or all available bindings, depending on the broker transport used.

• Heartbeat is now sent every 30 seconds (previously every 2 minutes).

• ResultSet.join_native() and iter_native() is now supported by the Redis and Cache result
backends.

This is an optimized version of join() using the underlying backends ability to fetch multiple
results at once.

• Can now use SSL when sending error e-mails by enabling the EMAIL_USE_SSL setting.

• events.default_dispatcher(): Context manager to easily obtain an event dispatcher instance using
the connection pool.

• Import errors in the configuration module won’t be silenced anymore.

• ResultSet.iterate: Now supports the timeout, propagate and interval arguments.

• with_default_connection -> with default_connection

• TaskPool.apply_async: Keyword arguments callbacks and errbacks has been renamed to callback
and errback and take a single scalar value instead of a list.

• No longer propagates errors occurring during process cleanup (Issue #365)

• Added TaskSetResult.delete(), which will delete a previously saved taskset result.

• celerybeat now syncs every 3 minutes instead of only at shutdown (Issue #382).

• Monitors now properly handles unknown events, so user-defined events are displayed.

2.14. History 589

https://github.com/celery/celery/issues/419
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-EMAIL_USE_SSL
https://github.com/celery/celery/issues/365
https://github.com/celery/celery/issues/382

Celery Documentation, Release 4.1.0

• Terminating a task on Windows now also terminates all of the tasks child processes (Issue #384).

• worker: -I|--include option now always searches the current directory to import the specified modules.

• Cassandra backend: Now expires results by using TTLs.

• Functional test suite in funtests is now actually working properly, and passing tests.

Fixes

• celeryev was trying to create the pidfile twice.

• celery.contrib.batches: Fixed problem where tasks failed silently (Issue #393).

• Fixed an issue where logging objects would give “<Unrepresentable”, even though the objects were.

• CELERY_TASK_ERROR_WHITE_LIST is now properly initialized in all loaders.

• celeryd_detach now passes through command line configuration.

• Remote control command add_consumer now does nothing if the queue is already being consumed from.

Change history for Celery 2.2

• 2.2.8

– Security Fixes

• 2.2.7

• 2.2.6

– Important Notes

– Fixes

• 2.2.5

– Important Notes

– News

– Fixes

• 2.2.4

– Fixes

• 2.2.3

– Fixes

• 2.2.2

– Fixes

• 2.2.1

– Fixes

• 2.2.0

– Important Notes

590 Chapter 2. Contents

https://github.com/celery/celery/issues/384
https://github.com/celery/celery/issues/393

Celery Documentation, Release 4.1.0

– News

– Fixes

– Experimental

2.2.8

release-date 2011-11-25 04:00 p.m. GMT

release-by Ask Solem

Security Fixes

• [Security: CELERYSA-0001] Daemons would set effective id’s rather than real id’s when the --uid/ --gid
arguments to celery multi, celeryd_detach, celery beat and celery events were used.

This means privileges weren’t properly dropped, and that it would be possible to regain supervisor privileges
later.

2.2.7

release-date 2011-06-13 04:00 p.m. BST

release-by Ask Solem

• New signals: after_setup_logger and after_setup_task_logger

These signals can be used to augment logging configuration after Celery has set up logging.

• Redis result backend now works with Redis 2.4.4.

• multi: The --gid option now works correctly.

• worker: Retry wrongfully used the repr of the traceback instead of the string representation.

• App.config_from_object: Now loads module, not attribute of module.

• Fixed issue where logging of objects would give “<Unrepresentable: ...>”

2.2.6

release-date 2011-04-15 04:00 p.m. CEST

release-by Ask Solem

Important Notes

• Now depends on Kombu 1.1.2.

• Dependency lists now explicitly specifies that we don’t want python-dateutil 2.x, as this version only supports
Python 3.

If you have installed dateutil 2.0 by accident you should downgrade to the 1.5.0 version:

2.14. History 591

https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0001.txt
https://pypi.python.org/pypi/Kombu/
https://pypi.python.org/pypi/python-dateutil/

Celery Documentation, Release 4.1.0

$ pip install -U python-dateutil==1.5.0

or by easy_install:

$ easy_install -U python-dateutil==1.5.0

Fixes

• The new WatchedFileHandler broke Python 2.5 support (Issue #367).

• Task: Don’t use app.main if the task name is set explicitly.

• Sending emails didn’t work on Python 2.5, due to a bug in the version detection code (Issue #378).

• Beat: Adds method ScheduleEntry._default_now

This method can be overridden to change the default value of last_run_at.

• An error occurring in process cleanup could mask task errors.

We no longer propagate errors happening at process cleanup, but log them instead. This way they won’t interfere
with publishing the task result (Issue #365).

• Defining tasks didn’t work properly when using the Django shell_plus utility (Issue #366).

• AsyncResult.get didn’t accept the interval and propagate arguments.

• worker: Fixed a bug where the worker wouldn’t shutdown if a socket.error was raised.

2.2.5

release-date 2011-03-28 06:00 p.m. CEST

release-by Ask Solem

Important Notes

• Now depends on Kombu 1.0.7

News

• Our documentation is now hosted by Read The Docs (http://docs.celeryproject.org), and all links have been
changed to point to the new URL.

• Logging: Now supports log rotation using external tools like logrotate.d (Issue #321)

This is accomplished by using the WatchedFileHandler, which re-opens the file if it’s re-
named or deleted.

• otherqueues tutorial now documents how to configure Redis/Database result backends.

• gevent: Now supports ETA tasks.

But gevent still needs CELERY_DISABLE_RATE_LIMITS=True to work.

• TaskSet User Guide: now contains TaskSet callback recipes.

• Eventlet: New signals:

592 Chapter 2. Contents

https://github.com/celery/celery/issues/367
https://github.com/celery/celery/issues/378
https://github.com/celery/celery/issues/365
https://github.com/celery/celery/issues/366
https://docs.python.org/dev/library/socket.html#socket.error
http://docs.celeryproject.org
http://www.ducea.com/2006/06/06/rotating-linux-log-files-part-2-logrotate/
https://github.com/celery/celery/issues/321

Celery Documentation, Release 4.1.0

– eventlet_pool_started

– eventlet_pool_preshutdown

– eventlet_pool_postshutdown

– eventlet_pool_apply

See celery.signals for more information.

• New BROKER_TRANSPORT_OPTIONS setting can be used to pass additional arguments to a particular broker
transport.

• worker: worker_pid is now part of the request info as returned by broadcast commands.

• TaskSet.apply/Taskset.apply_async now accepts an optional taskset_id argument.

• The taskset_id (if any) is now available in the Task request context.

• SQLAlchemy result backend: taskset_id and taskset_id columns now have a unique constraint (tables need to
recreated for this to take affect).

• Task user guide: Added section about choosing a result backend.

• Removed unused attribute AsyncResult.uuid.

Fixes

• multiprocessing.Pool: Fixes race condition when marking job with WorkerLostError (Issue #268).

The process may have published a result before it was terminated, but we have no reliable way to
detect that this is the case.

So we have to wait for 10 seconds before marking the result with WorkerLostError. This gives the
result handler a chance to retrieve the result.

• multiprocessing.Pool: Shutdown could hang if rate limits disabled.

There was a race condition when the MainThread was waiting for the pool semaphore to be re-
leased. The ResultHandler now terminates after 5 seconds if there are unacked jobs, but no worker
processes left to start them (it needs to timeout because there could still be an ack+result that we
haven’t consumed from the result queue. It is unlikely we’ll receive any after 5 seconds with no
worker processes).

• celerybeat: Now creates pidfile even if the --detach option isn’t set.

• eventlet/gevent: The broadcast command consumer is now running in a separate green-thread.

This ensures broadcast commands will take priority even if there are many active tasks.

• Internal module celery.worker.controllers renamed to celery.worker.mediator.

• worker: Threads now terminates the program by calling os._exit, as it is the only way to ensure exit in the
case of syntax errors, or other unrecoverable errors.

• Fixed typo in maybe_timedelta (Issue #352).

• worker: Broadcast commands now logs with loglevel debug instead of warning.

• AMQP Result Backend: Now resets cached channel if the connection is lost.

• Polling results with the AMQP result backend wasn’t working properly.

• Rate limits: No longer sleeps if there are no tasks, but rather waits for the task received condition (Performance
improvement).

2.14. History 593

https://github.com/celery/celery/issues/268
https://github.com/celery/celery/issues/352

Celery Documentation, Release 4.1.0

• ConfigurationView: iter(dict) should return keys, not items (Issue #362).

• celerybeat: PersistentScheduler now automatically removes a corrupted schedule file (Issue #346).

• Programs that doesn’t support positional command-line arguments now provides a user friendly error message.

• Programs no longer tries to load the configuration file when showing --version (Issue #347).

• Autoscaler: The “all processes busy” log message is now severity debug instead of error.

• worker: If the message body can’t be decoded, it’s now passed through safe_str when logging.

This to ensure we don’t get additional decoding errors when trying to log the failure.

• app.config_from_object/app.config_from_envvar now works for all loaders.

• Now emits a user-friendly error message if the result backend name is unknown (Issue #349).

• celery.contrib.batches: Now sets loglevel and logfile in the task request so task.get_logger
works with batch tasks (Issue #357).

• worker: An exception was raised if using the amqp transport and the prefetch count value exceeded 65535 (Issue
#359).

The prefetch count is incremented for every received task with an ETA/countdown defined. The
prefetch count is a short, so can only support a maximum value of 65535. If the value exceeds the
maximum value we now disable the prefetch count, it’s re-enabled as soon as the value is below the
limit again.

• cursesmon: Fixed unbound local error (Issue #303).

• eventlet/gevent is now imported on demand so autodoc can import the modules without having eventlet/gevent
installed.

• worker: Ack callback now properly handles AttributeError.

• Task.after_return is now always called after the result has been written.

• Cassandra Result Backend: Should now work with the latest pycassa version.

• multiprocessing.Pool: No longer cares if the putlock semaphore is released too many times (this can happen
if one or more worker processes are killed).

• SQLAlchemy Result Backend: Now returns accidentally removed date_done again (Issue #325).

• Task.request context is now always initialized to ensure calling the task function directly works even if it actively
uses the request context.

• Exception occurring when iterating over the result from TaskSet.apply fixed.

• eventlet: Now properly schedules tasks with an ETA in the past.

2.2.4

release-date 2011-02-19 00:00 AM CET

release-by Ask Solem

Fixes

• worker: 2.2.3 broke error logging, resulting in tracebacks not being logged.

• AMQP result backend: Polling task states didn’t work properly if there were more than one result message in
the queue.

594 Chapter 2. Contents

https://github.com/celery/celery/issues/362
https://github.com/celery/celery/issues/346
https://github.com/celery/celery/issues/347
https://github.com/celery/celery/issues/349
https://github.com/celery/celery/issues/357
https://github.com/celery/celery/issues/359
https://github.com/celery/celery/issues/359
https://github.com/celery/celery/issues/303
https://github.com/celery/celery/issues/325

Celery Documentation, Release 4.1.0

• TaskSet.apply_async() and TaskSet.apply() now supports an optional taskset_id keyword
argument (Issue #331).

• The current taskset id (if any) is now available in the task context as request.taskset (Issue #329).

• SQLAlchemy result backend: date_done was no longer part of the results as it had been accidentally removed.
It’s now available again (Issue #325).

• SQLAlchemy result backend: Added unique constraint on Task.id and TaskSet.taskset_id. Tables needs to be
recreated for this to take effect.

• Fixed exception raised when iterating on the result of TaskSet.apply().

• Tasks user guide: Added section on choosing a result backend.

2.2.3

release-date 2011-02-12 04:00 p.m. CET

release-by Ask Solem

Fixes

• Now depends on Kombu 1.0.3

• Task.retry now supports a max_retries argument, used to change the default value.

• multiprocessing.cpu_count may raise NotImplementedError on platforms where this isn’t supported (Is-
sue #320).

• Coloring of log messages broke if the logged object wasn’t a string.

• Fixed several typos in the init-script documentation.

• A regression caused Task.exchange and Task.routing_key to no longer have any effect. This is now fixed.

• Routing user guide: Fixes typo, routers in CELERY_ROUTES must be instances, not classes.

• celeryev didn’t create pidfile even though the --pidfile argument was set.

• Task logger format was no longer used (Issue #317).

The id and name of the task is now part of the log message again.

• A safe version of repr() is now used in strategic places to ensure objects with a broken __repr__ doesn’t
crash the worker, or otherwise make errors hard to understand (Issue #298).

• Remote control command active_queues: didn’t account for queues added at runtime.

In addition the dictionary replied by this command now has a different structure: the exchange key
is now a dictionary containing the exchange declaration in full.

• The celery worker -Q option removed unused queue declarations, so routing of tasks could fail.

Queues are no longer removed, but rather app.amqp.queues.consume_from() is used as the list of
queues to consume from.

This ensures all queues are available for routing purposes.

• celeryctl: Now supports the inspect active_queues command.

2.14. History 595

https://github.com/celery/celery/issues/331
https://github.com/celery/celery/issues/329
https://github.com/celery/celery/issues/325
https://pypi.python.org/pypi/Kombu/
https://docs.python.org/dev/library/exceptions.html#NotImplementedError
https://github.com/celery/celery/issues/320
https://github.com/celery/celery/issues/320
https://github.com/celery/celery/issues/317
https://github.com/celery/celery/issues/298

Celery Documentation, Release 4.1.0

2.2.2

release-date 2011-02-03 04:00 p.m. CET

release-by Ask Solem

Fixes

• celerybeat couldn’t read the schedule properly, so entries in CELERYBEAT_SCHEDULE wouldn’t be
scheduled.

• Task error log message now includes exc_info again.

• The eta argument can now be used with task.retry.

Previously it was overwritten by the countdown argument.

• celery multi/celeryd_detach: Now logs errors occurring when executing the celery worker com-
mand.

• daemonizing tutorial: Fixed typo --time-limit 300 -> --time-limit=300

• Colors in logging broke non-string objects in log messages.

• setup_task_logger no longer makes assumptions about magic task kwargs.

2.2.1

release-date 2011-02-02 04:00 p.m. CET

release-by Ask Solem

Fixes

• Eventlet pool was leaking memory (Issue #308).

• Deprecated function celery.execute.delay_task was accidentally removed, now available again.

• BasePool.on_terminate stub didn’t exist

• celeryd_detach: Adds readable error messages if user/group name doesn’t exist.

• Smarter handling of unicode decode errors when logging errors.

2.2.0

release-date 2011-02-01 10:00 AM CET

release-by Ask Solem

Important Notes

• Carrot has been replaced with Kombu

Kombu is the next generation messaging library for Python, fixing several flaws present in Carrot
that was hard to fix without breaking backwards compatibility.

Also it adds:

596 Chapter 2. Contents

https://github.com/celery/celery/issues/308
https://pypi.python.org/pypi/Kombu/

Celery Documentation, Release 4.1.0

– First-class support for virtual transports; Redis, Django ORM, SQLAlchemy, Beanstalk,
MongoDB, CouchDB and in-memory.

– Consistent error handling with introspection,

– The ability to ensure that an operation is performed by gracefully handling connection and
channel errors,

– Message compression (zlib, bz2, or custom compression schemes).

This means that ghettoq is no longer needed as the functionality it provided is already available in
Celery by default. The virtual transports are also more feature complete with support for exchanges
(direct and topic). The Redis transport even supports fanout exchanges so it’s able to perform
worker remote control commands.

• Magic keyword arguments pending deprecation.

The magic keyword arguments were responsible for many problems and quirks: notably issues with
tasks and decorators, and name collisions in keyword arguments for the unaware.

It wasn’t easy to find a way to deprecate the magic keyword arguments, but we think this is a
solution that makes sense and it won’t have any adverse effects for existing code.

The path to a magic keyword argument free world is:

– the celery.decorators module is deprecated and the decorators can now be found
in celery.task.

– The decorators in celery.task disables keyword arguments by default

– All examples in the documentation have been changed to use celery.task.

This means that the following will have magic keyword arguments enabled (old style):

from celery.decorators import task

@task()
def add(x, y, **kwargs):

print('In task %s' % kwargs['task_id'])
return x + y

And this won’t use magic keyword arguments (new style):

from celery.task import task

@task()
def add(x, y):

print('In task %s' % add.request.id)
return x + y

In addition, tasks can choose not to accept magic keyword arguments by setting the
task.accept_magic_kwargs attribute.

Deprecation

Using the decorators in celery.decorators emits a PendingDeprecationWarning
with a helpful message urging you to change your code, in version 2.4 this will be replaced with
a DeprecationWarning, and in version 4.0 the celery.decorators module will be re-
moved and no longer exist.

2.14. History 597

https://docs.python.org/dev/library/zlib.html#module-zlib
https://docs.python.org/dev/library/bz2.html#module-bz2
https://docs.python.org/dev/library/exceptions.html#PendingDeprecationWarning
https://docs.python.org/dev/library/exceptions.html#DeprecationWarning

Celery Documentation, Release 4.1.0

Similarly, the task.accept_magic_kwargs attribute will no longer have any effect starting from ver-
sion 4.0.

• The magic keyword arguments are now available as task.request

This is called the context. Using thread-local storage the context contains state that’s related to the
current request.

It’s mutable and you can add custom attributes that’ll only be seen by the current task request.

The following context attributes are always available:

Magic Keyword Argument Replace with
kwargs[’task_id’] self.request.id
kwargs[’delivery_info’] self.request.delivery_info
kwargs[’task_retries’] self.request.retries
kwargs[’logfile’] self.request.logfile
kwargs[’loglevel’] self.request.loglevel
kwargs[’task_is_eager’] self.request.is_eager
NEW self.request.args
NEW self.request.kwargs

In addition, the following methods now automatically uses the current context, so you don’t have
to pass kwargs manually anymore:

– task.retry

– task.get_logger

– task.update_state

• Eventlet support.

This is great news for I/O-bound tasks!

To change pool implementations you use the celery worker --pool argument, or globally
using the CELERYD_POOL setting. This can be the full name of a class, or one of the following
aliases: processes, eventlet, gevent.

For more information please see the Concurrency with Eventlet section in the User Guide.

Why not gevent?

For our first alternative concurrency implementation we’ve focused on Eventlet, but there’s also an
experimental gevent pool available. This is missing some features, notably the ability to schedule
ETA tasks.

Hopefully the gevent support will be feature complete by version 2.3, but this depends on user
demand (and contributions).

• Python 2.4 support deprecated!

We’re happy^H^H^H^H^Hsad to announce that this is the last version to support Python 2.4.

You’re urged to make some noise if you’re currently stuck with Python 2.4. Complain to your
package maintainers, sysadmins and bosses: tell them it’s time to move on!

Apart from wanting to take advantage of with statements, coroutines, conditional expressions and
enhanced try blocks, the code base now contains so many 2.4 related hacks and workarounds it’s
no longer just a compromise, but a sacrifice.

598 Chapter 2. Contents

http://eventlet.net
http://eventlet.net
http://gevent.org
http://gevent.org
https://docs.python.org/dev/reference/compound_stmts.html#with
https://docs.python.org/dev/reference/compound_stmts.html#try

Celery Documentation, Release 4.1.0

If it really isn’t your choice, and you don’t have the option to upgrade to a newer version of Python,
you can just continue to use Celery 2.2. Important fixes can be back ported for as long as there’s
interest.

• worker: Now supports Autoscaling of child worker processes.

The --autoscale option can be used to configure the minimum and maximum number of child
worker processes:

--autoscale=AUTOSCALE
Enable autoscaling by providing
max_concurrency,min_concurrency. Example:
--autoscale=10,3 (always keep 3 processes, but grow to

10 if necessary).

• Remote Debugging of Tasks

celery.contrib.rdb is an extended version of pdb that enables remote debugging of pro-
cesses that doesn’t have terminal access.

Example usage:

from celery.contrib import rdb
from celery.task import task

@task()
def add(x, y):

result = x + y
set breakpoint
rdb.set_trace()
return result

:func:`~celery.contrib.rdb.set_trace` sets a breakpoint at the current
location and creates a socket you can telnet into to remotely debug
your task.

The debugger may be started by multiple processes at the same time,
so rather than using a fixed port the debugger will search for an
available port, starting from the base port (6900 by default).
The base port can be changed using the environment variable
:envvar:`CELERY_RDB_PORT`.

By default the debugger will only be available from the local host,
to enable access from the outside you have to set the environment
variable :envvar:`CELERY_RDB_HOST`.

When the worker encounters your breakpoint it will log the following
information::

[INFO/MainProcess] Received task:
tasks.add[d7261c71-4962-47e5-b342-2448bedd20e8]

[WARNING/PoolWorker-1] Remote Debugger:6900:
Please telnet 127.0.0.1 6900. Type `exit` in session to

→˓continue.
[2011-01-18 14:25:44,119: WARNING/PoolWorker-1] Remote Debugger:6900:

Waiting for client...

If you telnet the port specified you'll be presented
with a ``pdb`` shell:

2.14. History 599

https://docs.python.org/dev/library/pdb.html#module-pdb

Celery Documentation, Release 4.1.0

.. code-block:: console

$ telnet localhost 6900
Connected to localhost.
Escape character is '^]'.
> /opt/devel/demoapp/tasks.py(128)add()
-> return result
(Pdb)

Enter ``help`` to get a list of available commands,
It may be a good idea to read the `Python Debugger Manual`_ if
you have never used `pdb` before.

• Events are now transient and is using a topic exchange (instead of direct).

The CELERYD_EVENT_EXCHANGE, CELERYD_EVENT_ROUTING_KEY, CEL-
ERYD_EVENT_EXCHANGE_TYPE settings are no longer in use.

This means events won’t be stored until there’s a consumer, and the events will be gone as soon as
the consumer stops. Also it means there can be multiple monitors running at the same time.

The routing key of an event is the type of event (e.g., worker.started, worker.heartbeat,
task.succeeded, etc. This means a consumer can filter on specific types, to only be alerted of the
events it cares about.

Each consumer will create a unique queue, meaning it’s in effect a broadcast exchange.

This opens up a lot of possibilities, for example the workers could listen for worker events to know
what workers are in the neighborhood, and even restart workers when they go down (or use this
information to optimize tasks/autoscaling).

Note: The event exchange has been renamed from "celeryevent" to "celeryev" so it
doesn’t collide with older versions.

If you’d like to remove the old exchange you can do so by executing the following command:

$ camqadm exchange.delete celeryevent

• The worker now starts without configuration, and configuration can be specified directly on the command-line.

Configuration options must appear after the last argument, separated by two dashes:

$ celery worker -l info -I tasks -- broker.host=localhost broker.vhost=/app

• Configuration is now an alias to the original configuration, so changes to the original will reflect Celery at
runtime.

• celery.conf has been deprecated, and modifying celery.conf.ALWAYS_EAGER will no longer have any effect.

The default configuration is now available in the celery.app.defaults module. The avail-
able configuration options and their types can now be introspected.

• Remote control commands are now provided by kombu.pidbox, the generic process mailbox.

• Internal module celery.worker.listener has been renamed to celery.worker.consumer, and .CarrotListener is now
.Consumer.

• Previously deprecated modules celery.models and celery.management.commands have now been removed as per
the deprecation time-line.

600 Chapter 2. Contents

Celery Documentation, Release 4.1.0

• [Security: Low severity] Removed celery.task.RemoteExecuteTask and accompanying functions: dmap,
dmap_async, and execute_remote.

Executing arbitrary code using pickle is a potential security issue if someone gains unrestricted access to
the message broker.

If you really need this functionality, then you’d’ve to add this to your own project.

• [Security: Low severity] The stats command no longer transmits the broker password.

One would’ve needed an authenticated broker connection to receive this password in the first place,
but sniffing the password at the wire level would’ve been possible if using unencrypted communi-
cation.

News

• The internal module celery.task.builtins has been removed.

• The module celery.task.schedules is deprecated, and celery.schedules should be used instead.

For example if you have:

from celery.task.schedules import crontab

You should replace that with:

from celery.schedules import crontab

The module needs to be renamed because it must be possible to import schedules without importing
the celery.task module.

• The following functions have been deprecated and is scheduled for removal in version 2.3:

– celery.execute.apply_async

Use task.apply_async() instead.

– celery.execute.apply

Use task.apply() instead.

– celery.execute.delay_task

Use registry.tasks[name].delay() instead.

• Importing TaskSet from celery.task.base is now deprecated.

You should use:

>>> from celery.task import TaskSet

instead.

• New remote control commands:

– active_queues

Returns the queue declarations a worker is currently consuming from.

• Added the ability to retry publishing the task message in the event of connection loss or failure.

2.14. History 601

Celery Documentation, Release 4.1.0

This is disabled by default but can be enabled using the CELERY_TASK_PUBLISH_RETRY set-
ting, and tweaked by the CELERY_TASK_PUBLISH_RETRY_POLICY setting.

In addition retry, and retry_policy keyword arguments have been added to Task.apply_async.

Note: Using the retry argument to apply_async requires you to handle the publisher/connection
manually.

• Periodic Task classes (@periodic_task/PeriodicTask) will not be deprecated as previously indicated in the source
code.

But you’re encouraged to use the more flexible CELERYBEAT_SCHEDULE setting.

• Built-in daemonization support of the worker using celery multi is no longer experimental and is considered
production quality.

See Generic init-scripts if you want to use the new generic init scripts.

• Added support for message compression using the CELERY_MESSAGE_COMPRESSION setting, or the com-
pression argument to apply_async. This can also be set using routers.

• worker: Now logs stack-trace of all threads when receiving the SIGUSR1 signal (doesn’t work on CPython
2.4, Windows or Jython).

Inspired by https://gist.github.com/737056

• Can now remotely terminate/kill the worker process currently processing a task.

The revoke remote control command now supports a terminate argument Default signal is TERM,
but can be specified using the signal argument. Signal can be the uppercase name of any signal
defined in the signal module in the Python Standard Library.

Terminating a task also revokes it.

Example:

>>> from celery.task.control import revoke

>>> revoke(task_id, terminate=True)
>>> revoke(task_id, terminate=True, signal='KILL')
>>> revoke(task_id, terminate=True, signal='SIGKILL')

• TaskSetResult.join_native: Backend-optimized version of join().

If available, this version uses the backends ability to retrieve multiple results at once, unlike join()
which fetches the results one by one.

So far only supported by the AMQP result backend. Support for Memcached and Redis may be
added later.

• Improved implementations of TaskSetResult.join and AsyncResult.wait.

An interval keyword argument have been added to both so the polling interval can be specified
(default interval is 0.5 seconds).

A propagate keyword argument have been added to result.wait(), errors will be re-
turned instead of raised if this is set to False.

Warning: You should decrease the polling interval when using the database result
backend, as frequent polling can result in high database load.

602 Chapter 2. Contents

https://gist.github.com/737056
https://docs.python.org/dev/library/signal.html#module-signal

Celery Documentation, Release 4.1.0

• The PID of the child worker process accepting a task is now sent as a field with the task-started event.

• The following fields have been added to all events in the worker class:

– sw_ident: Name of worker software (e.g., "py-celery").

– sw_ver: Software version (e.g., 2.2.0).

– sw_sys: Operating System (e.g., Linux, Windows, Darwin).

• For better accuracy the start time reported by the multiprocessing worker process is used when calculating task
duration.

Previously the time reported by the accept callback was used.

• celerybeat: New built-in daemonization support using the –detach option.

• celeryev: New built-in daemonization support using the –detach option.

• TaskSet.apply_async: Now supports custom publishers by using the publisher argument.

• Added CELERY_SEND_TASK_SENT_EVENT setting.

If enabled an event will be sent with every task, so monitors can track tasks before the workers
receive them.

• celerybeat: Now reuses the broker connection when calling scheduled tasks.

• The configuration module and loader to use can now be specified on the command-line.

For example:

$ celery worker --config=celeryconfig.py --loader=myloader.Loader

• Added signals: beat_init and beat_embedded_init

– celery.signals.beat_init

Dispatched when celerybeat starts (either standalone or embedded). Sender is the
celery.beat.Service instance.

– celery.signals.beat_embedded_init

Dispatched in addition to the beat_init signal when celerybeat is started as an em-
bedded process. Sender is the celery.beat.Service instance.

• Redis result backend: Removed deprecated settings REDIS_TIMEOUT and REDIS_CONNECT_RETRY.

• CentOS init-script for celery worker now available in extra/centos.

• Now depends on pyparsing version 1.5.0 or higher.

There have been reported issues using Celery with pyparsing 1.4.x, so please upgrade to the latest
version.

• Lots of new unit tests written, now with a total coverage of 95%.

Fixes

• celeryev Curses Monitor: Improved resize handling and UI layout (Issue #274 + Issue #276)

• AMQP Backend: Exceptions occurring while sending task results are now propagated instead of silenced.

the worker will then show the full traceback of these errors in the log.

2.14. History 603

https://pypi.python.org/pypi/pyparsing/
https://pypi.python.org/pypi/pyparsing/
https://github.com/celery/celery/issues/274
https://github.com/celery/celery/issues/276

Celery Documentation, Release 4.1.0

• AMQP Backend: No longer deletes the result queue after successful poll, as this should be handled by the
CELERY_AMQP_TASK_RESULT_EXPIRES setting instead.

• AMQP Backend: Now ensures queues are declared before polling results.

• Windows: worker: Show error if running with -B option.

Running celerybeat embedded is known not to work on Windows, so users are encouraged to
run celerybeat as a separate service instead.

• Windows: Utilities no longer output ANSI color codes on Windows

• camqadm: Now properly handles Control-c by simply exiting instead of showing confusing traceback.

• Windows: All tests are now passing on Windows.

• Remove bin/ directory, and scripts section from setup.py.

This means we now rely completely on setuptools entry-points.

Experimental

• Jython: worker now runs on Jython using the threaded pool.

All tests pass, but there may still be bugs lurking around the corners.

• PyPy: worker now runs on PyPy.

It runs without any pool, so to get parallel execution you must start multiple instances (e.g., using
multi).

Sadly an initial benchmark seems to show a 30% performance decrease on pypy-1.4.1 + JIT.
We would like to find out why this is, so stay tuned.

• PublisherPool: Experimental pool of task publishers and connections to be used with the retry argument
to apply_async.

The example code below will re-use connections and channels, and retry sending of the task message if the
connection is lost.

from celery import current_app

Global pool
pool = current_app().amqp.PublisherPool(limit=10)

def my_view(request):
with pool.acquire() as publisher:

add.apply_async((2, 2), publisher=publisher, retry=True)

Change history for Celery 2.1

• 2.1.4

– Fixes

– Documentation

• 2.1.3

604 Chapter 2. Contents

Celery Documentation, Release 4.1.0

• 2.1.2

– Fixes

• 2.1.1

– Fixes

– News

• 2.1.0

– Important Notes

– News

– Fixes

– Experimental

– Documentation

2.1.4

release-date 2010-12-03 12:00 p.m. CEST

release-by Ask Solem

Fixes

• Execution options to apply_async now takes precedence over options returned by active routers. This was a
regression introduced recently (Issue #244).

• curses monitor: Long arguments are now truncated so curses doesn’t crash with out of bounds errors (Issue
#235).

• multi: Channel errors occurring while handling control commands no longer crash the worker but are instead
logged with severity error.

• SQLAlchemy database backend: Fixed a race condition occurring when the client wrote the pending state. Just
like the Django database backend, it does no longer save the pending state (Issue #261 + Issue #262).

• Error email body now uses repr(exception) instead of str(exception), as the latter could result in Unicode decode
errors (Issue #245).

• Error email timeout value is now configurable by using the EMAIL_TIMEOUT setting.

• celeryev: Now works on Windows (but the curses monitor won’t work without having curses).

• Unit test output no longer emits non-standard characters.

• worker: The broadcast consumer is now closed if the connection is reset.

• worker: Now properly handles errors occurring while trying to acknowledge the message.

• TaskRequest.on_failure now encodes traceback using the current file-system encoding (Issue #286).

• EagerResult can now be pickled (Issue #288).

2.14. History 605

https://github.com/celery/celery/issues/244
https://github.com/celery/celery/issues/235
https://github.com/celery/celery/issues/235
https://github.com/celery/celery/issues/261
https://github.com/celery/celery/issues/262
https://github.com/celery/celery/issues/245
http://django.readthedocs.io/en/latest/ref/settings.html#std:setting-EMAIL_TIMEOUT
https://github.com/celery/celery/issues/286
https://github.com/celery/celery/issues/288

Celery Documentation, Release 4.1.0

Documentation

• Adding Contributing.

• Added Optimizing.

• Added Security section to the FAQ.

2.1.3

release-date 2010-11-09 05:00 p.m. CEST

release-by Ask Solem

• Fixed deadlocks in timer2 which could lead to djcelerymon/celeryev -c hanging.

• EventReceiver: now sends heartbeat request to find workers.

This means celeryev and friends finds workers immediately at start-up.

• celeryev curses monitor: Set screen_delay to 10ms, so the screen refreshes more often.

• Fixed pickling errors when pickling AsyncResult on older Python versions.

• worker: prefetch count was decremented by ETA tasks even if there were no active prefetch limits.

2.1.2

release-data TBA

Fixes

• worker: Now sends the task-retried event for retried tasks.

• worker: Now honors ignore result for WorkerLostError and timeout errors.

• celerybeat: Fixed UnboundLocalError in celerybeat logging when using logging setup signals.

• worker: All log messages now includes exc_info.

2.1.1

release-date 2010-10-14 02:00 p.m. CEST

release-by Ask Solem

Fixes

• Now working on Windows again.

Removed dependency on the pwd/grp modules.

• snapshots: Fixed race condition leading to loss of events.

• worker: Reject tasks with an ETA that cannot be converted to a time stamp.

See issue #209

• concurrency.processes.pool: The semaphore was released twice for each task (both at ACK and result ready).

606 Chapter 2. Contents

https://docs.python.org/dev/library/exceptions.html#UnboundLocalError
https://docs.python.org/dev/library/pwd.html#module-pwd
https://docs.python.org/dev/library/grp.html#module-grp
https://github.com/celery/celery/issues/209

Celery Documentation, Release 4.1.0

This has been fixed, and it is now released only once per task.

• docs/configuration: Fixed typo CELERYD_TASK_SOFT_TIME_LIMIT ->
CELERYD_TASK_SOFT_TIME_LIMIT.

See issue #214

• control command dump_scheduled: was using old .info attribute

• multi: Fixed set changed size during iteration bug occurring in the restart command.

• worker: Accidentally tried to use additional command-line arguments.

This would lead to an error like:

got multiple values for keyword argument ‘concurrency’.

Additional command-line arguments are now ignored, and doesn’t produce this error.
However – we do reserve the right to use positional arguments in the future, so please
don’t depend on this behavior.

• celerybeat: Now respects routers and task execution options again.

• celerybeat: Now reuses the publisher instead of the connection.

• Cache result backend: Using float as the expires argument to cache.set is deprecated by the Memcached
libraries, so we now automatically cast to int.

• unit tests: No longer emits logging and warnings in test output.

News

• Now depends on carrot version 0.10.7.

• Added CELERY_REDIRECT_STDOUTS, and CELERYD_REDIRECT_STDOUTS_LEVEL settings.

CELERY_REDIRECT_STDOUTS is used by the worker and beat. All output to stdout and stderr
will be redirected to the current logger if enabled.

CELERY_REDIRECT_STDOUTS_LEVEL decides the log level used and is WARNING by default.

• Added CELERYBEAT_SCHEDULER setting.

This setting is used to define the default for the -S option to celerybeat.

Example:

CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler'

• Added Task.expires: Used to set default expiry time for tasks.

• New remote control commands: add_consumer and cancel_consumer.

add_consumer(queue, exchange, exchange_type, routing_key,
**options)

Tells the worker to declare and consume from the specified declaration.

cancel_consumer(queue_name)
Tells the worker to stop consuming from queue (by queue name).

Commands also added to celeryctl and inspect.

Example using celeryctl to start consuming from queue “queue”, in exchange “exchange”, of
type “direct” using binding key “key”:

2.14. History 607

https://github.com/celery/celery/issues/214
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#int

Celery Documentation, Release 4.1.0

$ celeryctl inspect add_consumer queue exchange direct key
$ celeryctl inspect cancel_consumer queue

See Management Command-line Utilities (inspect/control) for more information about the
celeryctl program.

Another example using inspect:

>>> from celery.task.control import inspect
>>> inspect.add_consumer(queue='queue', exchange='exchange',
... exchange_type='direct',
... routing_key='key',
... durable=False,
... auto_delete=True)

>>> inspect.cancel_consumer('queue')

• celerybeat: Now logs the traceback if a message can’t be sent.

• celerybeat: Now enables a default socket timeout of 30 seconds.

• README/introduction/homepage: Added link to Flask-Celery.

2.1.0

release-date 2010-10-08 12:00 p.m. CEST

release-by Ask Solem

Important Notes

• Celery is now following the versioning semantics defined by semver.

This means we’re no longer allowed to use odd/even versioning semantics By our previous version-
ing scheme this stable release should’ve been version 2.2.

• Now depends on Carrot 0.10.7.

• No longer depends on SQLAlchemy, this needs to be installed separately if the database result backend is used.

• django-celery now comes with a monitor for the Django Admin interface. This can also be used if you’re not a
Django user. (Update: Django-Admin monitor has been replaced with Flower, see the Monitoring guide).

• If you get an error after upgrading saying: AttributeError: ‘module’ object has no attribute ‘system’,

Then this is because the celery.platform module has been renamed to celery.platforms to not collide
with the built-in platform module.

You have to remove the old platform.py (and maybe platform.pyc) file from your previous
Celery installation.

To do this use python to find the location of this module:

$ python
>>> import celery.platform
>>> celery.platform
<module 'celery.platform' from '/opt/devel/celery/celery/platform.pyc'>

608 Chapter 2. Contents

https://github.com/ask/flask-celery
http://semver.org
https://pypi.python.org/pypi/django-celery/
https://docs.python.org/dev/library/platform.html#module-platform

Celery Documentation, Release 4.1.0

Here the compiled module is in /opt/devel/celery/celery/, to remove the offending files
do:

$ rm -f /opt/devel/celery/celery/platform.py*

News

• Added support for expiration of AMQP results (requires RabbitMQ 2.1.0)

The new configuration option CELERY_AMQP_TASK_RESULT_EXPIRES sets the expiry time in
seconds (can be int or float):

CELERY_AMQP_TASK_RESULT_EXPIRES = 30 * 60 # 30 minutes.
CELERY_AMQP_TASK_RESULT_EXPIRES = 0.80 # 800 ms.

• celeryev: Event Snapshots

If enabled, the worker sends messages about what the worker is doing. These messages are called
“events”. The events are used by real-time monitors to show what the cluster is doing, but they’re
not very useful for monitoring over a longer period of time. Snapshots lets you take “pictures” of
the clusters state at regular intervals. This can then be stored in a database to generate statistics
with, or even monitoring over longer time periods.

django-celery now comes with a Celery monitor for the Django Admin interface. To use this you
need to run the django-celery snapshot camera, which stores snapshots to the database at config-
urable intervals.

To use the Django admin monitor you need to do the following:

1. Create the new database tables:

$ python manage.py syncdb

2. Start the django-celery snapshot camera:

$ python manage.py celerycam

3. Open up the django admin to monitor your cluster.

The admin interface shows tasks, worker nodes, and even lets you perform some actions, like re-
voking and rate limiting tasks, and shutting down worker nodes.

There’s also a Debian init.d script for events available, see Daemonization for more information.

New command-line arguments to celeryev:

– celery events --camera: Snapshot camera class to use.

– celery events --logfile: Log file

– celery events --loglevel: Log level

– celery events --maxrate: Shutter rate limit.

– celery events --freq: Shutter frequency

The --camera argument is the name of a class used to take snapshots with. It must support the
interface defined by celery.events.snapshot.Polaroid.

2.14. History 609

https://pypi.python.org/pypi/django-celery/
https://pypi.python.org/pypi/django-celery/
https://pypi.python.org/pypi/django-celery/

Celery Documentation, Release 4.1.0

Shutter frequency controls how often the camera thread wakes up, while the rate limit controls how
often it will actually take a snapshot. The rate limit can be an integer (snapshots/s), or a rate limit
string which has the same syntax as the task rate limit strings (“200/m”, “10/s”, “1/h”, etc).

For the Django camera case, this rate limit can be used to control how often the snapshots are
written to the database, and the frequency used to control how often the thread wakes up to check
if there’s anything new.

The rate limit is off by default, which means it will take a snapshot for every --frequency
seconds.

• broadcast(): Added callback argument, this can be used to process replies immediately as they arrive.

• celeryctl: New command line utility to manage and inspect worker nodes, apply tasks and inspect the
results of tasks.

See also:

The Management Command-line Utilities (inspect/control) section in the User Guide.

Some examples:

$ celeryctl apply tasks.add -a '[2, 2]' --countdown=10

$ celeryctl inspect active
$ celeryctl inspect registered_tasks
$ celeryctl inspect scheduled
$ celeryctl inspect --help
$ celeryctl apply --help

• Added the ability to set an expiry date and time for tasks.

Example:

>>> # Task expires after one minute from now.
>>> task.apply_async(args, kwargs, expires=60)
>>> # Also supports datetime
>>> task.apply_async(args, kwargs,
... expires=datetime.now() + timedelta(days=1)

When a worker receives a task that’s been expired it will be marked as revoked
(TaskRevokedError).

• Changed the way logging is configured.

We now configure the root logger instead of only configuring our custom logger. In addition we
don’t hijack the multiprocessing logger anymore, but instead use a custom logger name for different
applications:

Application Logger Name
celeryd "celery"
celerybeat "celery.beat"
celeryev "celery.ev"

This means that the loglevel and logfile arguments will affect all registered loggers (even those from
third-party libraries). Unless you configure the loggers manually as shown below, that is.

Users can choose to configure logging by subscribing to the :signal:‘~celery.signals.setup_logging‘
signal:

from logging.config import fileConfig
from celery import signals

610 Chapter 2. Contents

Celery Documentation, Release 4.1.0

@signals.setup_logging.connect
def setup_logging(**kwargs):

fileConfig('logging.conf')

If there are no receivers for this signal, the logging subsystem will be configured using the
--loglevel/ --logfile arguments, this will be used for all defined loggers.

Remember that the worker also redirects stdout and stderr to the Celery logger, if manually config-
ure logging you also need to redirect the standard outs manually:

from logging.config import fileConfig
from celery import log

def setup_logging(**kwargs):
import logging
fileConfig('logging.conf')
stdouts = logging.getLogger('mystdoutslogger')
log.redirect_stdouts_to_logger(stdouts, loglevel=logging.WARNING)

• worker Added command line option --include:

A comma separated list of (task) modules to be imported.

Example:

$ celeryd -I app1.tasks,app2.tasks

• worker: now emits a warning if running as the root user (euid is 0).

• celery.messaging.establish_connection(): Ability to override defaults used using keyword ar-
gument “defaults”.

• worker: Now uses multiprocessing.freeze_support() so that it should work with py2exe, PyInstaller, cx_Freeze,
etc.

• worker: Now includes more meta-data for the STARTED state: PID and host name of the worker that started the
task.

See issue #181

• subtask: Merge additional keyword arguments to subtask() into task keyword arguments.

For example:

>>> s = subtask((1, 2), {'foo': 'bar'}, baz=1)
>>> s.args
(1, 2)
>>> s.kwargs
{'foo': 'bar', 'baz': 1}

See issue #182.

• worker: Now emits a warning if there’s already a worker node using the same name running on the same virtual
host.

• AMQP result backend: Sending of results are now retried if the connection is down.

• AMQP result backend: result.get(): Wait for next state if state isn’t in READY_STATES.

• TaskSetResult now supports subscription.

2.14. History 611

https://github.com/celery/celery/issues/181
https://github.com/celery/celery/issues/182

Celery Documentation, Release 4.1.0

>>> res = TaskSet(tasks).apply_async()
>>> res[0].get()

• Added Task.send_error_emails + Task.error_whitelist, so these can be configured per task instead of just by the
global setting.

• Added Task.store_errors_even_if_ignored, so it can be changed per Task, not just by the global setting.

• The Crontab scheduler no longer wakes up every second, but implements remaining_estimate (Optimization).

• worker: Store FAILURE result if the WorkerLostError exception occurs (worker process disappeared).

• worker: Store FAILURE result if one of the *TimeLimitExceeded exceptions occurs.

• Refactored the periodic task responsible for cleaning up results.

– The backend cleanup task is now only added to the schedule if
CELERY_TASK_RESULT_EXPIRES is set.

– If the schedule already contains a periodic task named “celery.backend_cleanup” it won’t
change it, so the behavior of the backend cleanup task can be easily changed.

– The task is now run every day at 4:00 AM, rather than every day since the first time it was
run (using Crontab schedule instead of run_every)

– Renamed celery.task.builtins.DeleteExpiredTaskMetaTask -> celery.task.
builtins.backend_cleanup

– The task itself has been renamed from “celery.delete_expired_task_meta” to “cel-
ery.backend_cleanup”

See issue #134.

• Implemented AsyncResult.forget for SQLAlchemy/Memcached/Redis/Tokyo Tyrant backends (forget and re-
move task result).

See issue #184.

• TaskSetResult.join: Added ‘propagate=True’ argument.

When set to False exceptions occurring in subtasks will not be re-raised.

• Added Task.update_state(task_id, state, meta) as a shortcut to task.backend.store_result(task_id, meta, state).

The backend interface is “private” and the terminology outdated, so better to move this to Task so
it can be used.

• timer2: Set self.running=False in stop() so it won’t try to join again on subsequent calls to stop().

• Log colors are now disabled by default on Windows.

• celery.platform renamed to celery.platforms, so it doesn’t collide with the built-in platform module.

• Exceptions occurring in Mediator+Pool callbacks are now caught and logged instead of taking down the worker.

• Redis result backend: Now supports result expiration using the Redis EXPIRE command.

• unit tests: Don’t leave threads running at tear down.

• worker: Task results shown in logs are now truncated to 46 chars.

• Task.__name__ is now an alias to self.__class__.__name__. This way tasks introspects more like regular
functions.

• Task.retry: Now raises TypeError if kwargs argument is empty.

See issue #164.

612 Chapter 2. Contents

https://github.com/celery/celery/issues/134
https://github.com/celery/celery/issues/184
https://docs.python.org/dev/library/platform.html#module-platform
https://docs.python.org/dev/library/exceptions.html#TypeError
https://github.com/celery/celery/issues/164

Celery Documentation, Release 4.1.0

• timedelta_seconds: Use timedelta.total_seconds if running on Python 2.7

• TokenBucket: Generic Token Bucket algorithm

• celery.events.state: Recording of cluster state can now be paused and resumed, including support for
buffering.

State.freeze(buffer=True)
Pauses recording of the stream.

If buffer is true, events received while being frozen will be buffered, and may be replayed
later.

State.thaw(replay=True)
Resumes recording of the stream.

If replay is true, then the recorded buffer will be applied.

State.freeze_while(fun)
With a function to apply, freezes the stream before, and replays the buffer after the function
returns.

• EventReceiver.capture Now supports a timeout keyword argument.

• worker: The mediator thread is now disabled if CELERY_RATE_LIMITS is enabled, and tasks are directly sent
to the pool without going through the ready queue (Optimization).

Fixes

• Pool: Process timed out by TimeoutHandler must be joined by the Supervisor, so don’t remove it from the
internal process list.

See issue #192.

• TaskPublisher.delay_task now supports exchange argument, so exchange can be overridden when sending tasks
in bulk using the same publisher

See issue #187.

• the worker no longer marks tasks as revoked if CELERY_IGNORE_RESULT is enabled.

See issue #207.

• AMQP Result backend: Fixed bug with result.get() if CELERY_TRACK_STARTED enabled.

result.get() would stop consuming after receiving the STARTED state.

• Fixed bug where new processes created by the pool supervisor becomes stuck while reading from the task
Queue.

See http://bugs.python.org/issue10037

• Fixed timing issue when declaring the remote control command reply queue

This issue could result in replies being lost, but have now been fixed.

• Backward compatible LoggerAdapter implementation: Now works for Python 2.4.

Also added support for several new methods: fatal, makeRecord, _log, log, isEnabledFor, addHan-
dler, removeHandler.

2.14. History 613

http://kombu.readthedocs.io/en/master/reference/kombu.utils.limits.html#kombu.utils.limits.TokenBucket
https://github.com/celery/celery/issues/192
https://github.com/celery/celery/issues/187
https://github.com/celery/celery/issues/207
http://bugs.python.org/issue10037

Celery Documentation, Release 4.1.0

Experimental

• multi: Added daemonization support.

multi can now be used to start, stop and restart worker nodes:

$ celeryd-multi start jerry elaine george kramer

This also creates PID files and log files (celeryd@jerry.pid, ..., celeryd@jerry.log.
To specify a location for these files use the –pidfile and –logfile arguments with the %n format:

$ celeryd-multi start jerry elaine george kramer \
--logfile=/var/log/celeryd@%n.log \
--pidfile=/var/run/celeryd@%n.pid

Stopping:

$ celeryd-multi stop jerry elaine george kramer

Restarting. The nodes will be restarted one by one as the old ones are shutdown:

$ celeryd-multi restart jerry elaine george kramer

Killing the nodes (WARNING: Will discard currently executing tasks):

$ celeryd-multi kill jerry elaine george kramer

See celeryd-multi help for help.

• multi: start command renamed to show.

celeryd-multi start will now actually start and detach worker nodes. To just generate the commands
you have to use celeryd-multi show.

• worker: Added –pidfile argument.

The worker will write its pid when it starts. The worker will not be started if this file exists and the
pid contained is still alive.

• Added generic init.d script using celeryd-multi

https://github.com/celery/celery/tree/master/extra/generic-init.d/celeryd

Documentation

• Added User guide section: Monitoring

• Added user guide section: Periodic Tasks

Moved from getting-started/periodic-tasks and updated.

• tutorials/external moved to new section: “community”.

• References has been added to all sections in the documentation.

This makes it easier to link between documents.

614 Chapter 2. Contents

https://github.com/celery/celery/tree/master/extra/generic-init.d/celeryd

Celery Documentation, Release 4.1.0

Change history for Celery 2.0

• 2.0.3

– Fixes

– Documentation

• 2.0.2

• 2.0.1

• 2.0.0

– Foreword

– Upgrading for Django-users

– Upgrading for others

* Database result backend

* Cache result backend

– Backward incompatible changes

– News

2.0.3

release-date 2010-08-27 12:00 p.m. CEST

release-by Ask Solem

Fixes

• Worker: Properly handle connection errors happening while closing consumers.

• Worker: Events are now buffered if the connection is down, then sent when the connection is re-established.

• No longer depends on the mailer package.

This package had a name space collision with django-mailer, so its functionality was replaced.

• Redis result backend: Documentation typos: Redis doesn’t have database names, but database numbers. The
default database is now 0.

• inspect: registered_tasks was requesting an invalid command because of a typo.

See issue #170.

• CELERY_ROUTES: Values defined in the route should now have precedence over values defined in
CELERY_QUEUES when merging the two.

With the follow settings:

CELERY_QUEUES = {'cpubound': {'exchange': 'cpubound',
'routing_key': 'cpubound'}}

CELERY_ROUTES = {'tasks.add': {'queue': 'cpubound',

2.14. History 615

https://pypi.python.org/pypi/mailer/
https://github.com/celery/celery/issues/170

Celery Documentation, Release 4.1.0

'routing_key': 'tasks.add',
'serializer': 'json'}}

The final routing options for tasks.add will become:

{'exchange': 'cpubound',
'routing_key': 'tasks.add',
'serializer': 'json'}

This wasn’t the case before: the values in CELERY_QUEUES would take precedence.

• Worker crashed if the value of CELERY_TASK_ERROR_WHITELIST was not an iterable

• apply(): Make sure kwargs[’task_id’] is always set.

• AsyncResult.traceback: Now returns None, instead of raising KeyError if traceback is missing.

• inspect: Replies didn’t work correctly if no destination was specified.

• Can now store result/meta-data for custom states.

• Worker: A warning is now emitted if the sending of task error emails fails.

• celeryev: Curses monitor no longer crashes if the terminal window is resized.

See issue #160.

• Worker: On macOS it isn’t possible to run os.exec* in a process that’s threaded.

This breaks the SIGHUP restart handler, and is now disabled on macOS, emitting a
warning instead.

See issue #152.

• celery.execute.trace: Properly handle raise(str), which is still allowed in Python 2.4.

See issue #175.

• Using urllib2 in a periodic task on macOS crashed because of the proxy auto detection used in macOS.

This is now fixed by using a workaround. See issue #143.

• Debian init-scripts: Commands shouldn’t run in a sub shell

See issue #163.

• Debian init-scripts: Use the absolute path of celeryd program to allow stat

See issue #162.

Documentation

• getting-started/broker-installation: Fixed typo

set_permissions “” -> set_permissions ”.*”.

• Tasks User Guide: Added section on database transactions.

See issue #169.

• Routing User Guide: Fixed typo “feed”: -> {“queue”: “feeds”}.

See issue #169.

616 Chapter 2. Contents

https://docs.python.org/dev/library/exceptions.html#KeyError
https://github.com/celery/celery/issues/160
https://github.com/celery/celery/issues/152
https://github.com/celery/celery/issues/175
https://github.com/celery/celery/issues/143
https://github.com/celery/celery/issues/163
https://github.com/celery/celery/issues/162
https://github.com/celery/celery/issues/169
https://github.com/celery/celery/issues/169

Celery Documentation, Release 4.1.0

• Documented the default values for the CELERYD_CONCURRENCY and
CELERYD_PREFETCH_MULTIPLIER settings.

• Tasks User Guide: Fixed typos in the subtask example

• celery.signals: Documented worker_process_init.

• Daemonization cookbook: Need to export DJANGO_SETTINGS_MODULE in /etc/default/celeryd.

• Added some more FAQs from stack overflow

• Daemonization cookbook: Fixed typo CELERYD_LOGFILE/CELERYD_PIDFILE

to CELERYD_LOG_FILE / CELERYD_PID_FILE

Also added troubleshooting section for the init-scripts.

2.0.2

release-date 2010-07-22 11:31 a.m. CEST

release-by Ask Solem

• Routes: When using the dict route syntax, the exchange for a task could disappear making the task unroutable.

See issue #158.

• Test suite now passing on Python 2.4

• No longer have to type PYTHONPATH=. to use celeryconfig in the current directory.

This is accomplished by the default loader ensuring that the current directory is in sys.path when
loading the config module. sys.path is reset to its original state after loading.

Adding the current working directory to sys.path without the user knowing may be a security issue,
as this means someone can drop a Python module in the users directory that executes arbitrary
commands. This was the original reason not to do this, but if done only when loading the config
module, this means that the behavior will only apply to the modules imported in the config module,
which I think is a good compromise (certainly better than just explicitly setting PYTHONPATH=.
anyway)

• Experimental Cassandra backend added.

• Worker: SIGHUP handler accidentally propagated to worker pool processes.

In combination with GitHub SHA@7a7c44e39344789f11b5346e9cc8340f5fe4846c this would
make each child process start a new worker instance when the terminal window was closed :/

• Worker: Don’t install SIGHUP handler if running from a terminal.

This fixes the problem where the worker is launched in the background when closing the terminal.

• Worker: Now joins threads at shutdown.

See issue #152.

• Test tear down: Don’t use atexit but nose’s teardown() functionality instead.

See issue #154.

• Debian worker init-script: Stop now works correctly.

• Task logger: warn method added (synonym for warning)

• Can now define a white list of errors to send error emails for.

2.14. History 617

https://github.com/celery/celery/issues/158
https://github.com/celery/celery/commit/7a7c44e39344789f11b5346e9cc8340f5fe4846c
https://github.com/celery/celery/issues/152
https://github.com/celery/celery/issues/154

Celery Documentation, Release 4.1.0

Example:

CELERY_TASK_ERROR_WHITELIST = ('myapp.MalformedInputError',)

See issue #153.

• Worker: Now handles overflow exceptions in time.mktime while parsing the ETA field.

• LoggerWrapper: Try to detect loggers logging back to stderr/stdout making an infinite loop.

• Added celery.task.control.inspect: Inspects a running worker.

Examples:

Inspect a single worker
>>> i = inspect('myworker.example.com')

Inspect several workers
>>> i = inspect(['myworker.example.com', 'myworker2.example.com'])

Inspect all workers consuming on this vhost.
>>> i = inspect()

Methods

Get currently executing tasks
>>> i.active()

Get currently reserved tasks
>>> i.reserved()

Get the current ETA schedule
>>> i.scheduled()

Worker statistics and info
>>> i.stats()

List of currently revoked tasks
>>> i.revoked()

List of registered tasks
>>> i.registered_tasks()

• Remote control commands dump_active/dump_reserved/dump_schedule now replies with detailed task requests.

Containing the original arguments and fields of the task requested.

In addition the remote control command set_loglevel has been added, this only changes the log level
for the main process.

• Worker control command execution now catches errors and returns their string representation in the reply.

• Functional test suite added

celery.tests.functional.case contains utilities to start and stop an embedded worker
process, for use in functional testing.

2.0.1

release-date 2010-07-09 03:02 p.m. CEST

618 Chapter 2. Contents

https://github.com/celery/celery/issues/153

Celery Documentation, Release 4.1.0

release-by Ask Solem

• multiprocessing.pool: Now handles encoding errors, so that pickling errors doesn’t crash the worker processes.

• The remote control command replies wasn’t working with RabbitMQ 1.8.0’s stricter equivalence checks.

If you’ve already hit this problem you may have to delete the declaration:

$ camqadm exchange.delete celerycrq

or:

$ python manage.py camqadm exchange.delete celerycrq

• A bug sneaked in the ETA scheduler that made it only able to execute one task per second(!)

The scheduler sleeps between iterations so it doesn’t consume too much CPU. It keeps a list of the
scheduled items sorted by time, at each iteration it sleeps for the remaining time of the item with
the nearest deadline. If there are no ETA tasks it will sleep for a minimum amount of time, one
second by default.

A bug sneaked in here, making it sleep for one second for every task that was scheduled. This has
been fixed, so now it should move tasks like hot knife through butter.

In addition a new setting has been added to control the minimum sleep interval;
CELERYD_ETA_SCHEDULER_PRECISION. A good value for this would be a float between 0
and 1, depending on the needed precision. A value of 0.8 means that when the ETA of a task is met,
it will take at most 0.8 seconds for the task to be moved to the ready queue.

• Pool: Supervisor didn’t release the semaphore.

This would lead to a deadlock if all workers terminated prematurely.

• Added Python version trove classifiers: 2.4, 2.5, 2.6 and 2.7

• Tests now passing on Python 2.7.

• Task.__reduce__: Tasks created using the task decorator can now be pickled.

• setup.py: nose added to tests_require.

• Pickle should now work with SQLAlchemy 0.5.x

• New homepage design by Jan Henrik Helmers: http://celeryproject.org

• New Sphinx theme by Armin Ronacher: http://docs.celeryproject.org/

• Fixed “pending_xref” errors shown in the HTML rendering of the documentation. Apparently this was caused
by new changes in Sphinx 1.0b2.

• Router classes in CELERY_ROUTES are now imported lazily.

Importing a router class in a module that also loads the Celery environment would cause a circular
dependency. This is solved by importing it when needed after the environment is set up.

• CELERY_ROUTES was broken if set to a single dict.

This example in the docs should now work again:

CELERY_ROUTES = {'feed.tasks.import_feed': 'feeds'}

• CREATE_MISSING_QUEUES wasn’t honored by apply_async.

• New remote control command: stats

2.14. History 619

https://pypi.python.org/pypi/nose/
http://celeryproject.org
http://docs.celeryproject.org/

Celery Documentation, Release 4.1.0

Dumps information about the worker, like pool process ids, and total number of tasks executed by
type.

Example reply:

[{'worker.local':
'total': {'tasks.sleeptask': 6},
'pool': {'timeouts': [None, None],

'processes': [60376, 60377],
'max-concurrency': 2,
'max-tasks-per-child': None,
'put-guarded-by-semaphore': True}}]

• New remote control command: dump_active

Gives a list of tasks currently being executed by the worker. By default arguments are passed
through repr in case there are arguments that’s not JSON encodable. If you know the arguments are
JSON safe, you can pass the argument safe=True.

Example reply:

>>> broadcast('dump_active', arguments={'safe': False}, reply=True)
[{'worker.local': [

{'args': '(1,)',
'time_start': 1278580542.6300001,
'name': 'tasks.sleeptask',
'delivery_info': {

'consumer_tag': '30',
'routing_key': 'celery',
'exchange': 'celery'},

'hostname': 'casper.local',
'acknowledged': True,
'kwargs': '{}',
'id': '802e93e9-e470-47ed-b913-06de8510aca2',

}
]}]

• Added experimental support for persistent revokes.

Use the -S|–statedb argument to the worker to enable it:

$ celeryd --statedb=/var/run/celeryd

This will use the file: /var/run/celeryd.db, as the shelve module automatically adds the .db suffix.

2.0.0

release-date 2010-07-02 02:30 p.m. CEST

release-by Ask Solem

Foreword

Celery 2.0 contains backward incompatible changes, the most important being that the Django dependency has been
removed so Celery no longer supports Django out of the box, but instead as an add-on package called django-celery.

We’re very sorry for breaking backwards compatibility, but there’s also many new and exciting features to make up
for the time you lose upgrading, so be sure to read the News section.

620 Chapter 2. Contents

https://pypi.python.org/pypi/django-celery/

Celery Documentation, Release 4.1.0

Quite a lot of potential users have been upset about the Django dependency, so maybe this is a chance to get wider
adoption by the Python community as well.

Big thanks to all contributors, testers and users!

Upgrading for Django-users

Django integration has been moved to a separate package: django-celery.

• To upgrade you need to install the django-celery module and change:

INSTALLED_APPS = 'celery'

to:

INSTALLED_APPS = 'djcelery'

• If you use mod_wsgi you need to add the following line to your .wsgi file:

import os
os.environ['CELERY_LOADER'] = 'django'

• The following modules has been moved to django-celery:

Module name Replace with
celery.models djcelery.models
celery.managers djcelery.managers
celery.views djcelery.views
celery.urls djcelery.urls
celery.management djcelery.management
celery.loaders.djangoapp djcelery.loaders
celery.backends.database djcelery.backends.database
celery.backends.cache djcelery.backends.cache

Importing djcelery will automatically setup Celery to use Django loader. loader. It does this by setting the
CELERY_LOADER environment variable to “django” (it won’t change it if a loader is already set).

When the Django loader is used, the “database” and “cache” result backend aliases will point to the djcelery
backends instead of the built-in backends, and configuration will be read from the Django settings.

Upgrading for others

Database result backend

The database result backend is now using SQLAlchemy instead of the Django ORM, see Supported Databases for a
table of supported databases.

The DATABASE_* settings has been replaced by a single setting: CELERY_RESULT_DBURI. The value here should
be an SQLAlchemy Connection String, some examples include:

sqlite (filename)
CELERY_RESULT_DBURI = 'sqlite:///celerydb.sqlite'

mysql
CELERY_RESULT_DBURI = 'mysql://scott:tiger@localhost/foo'

2.14. History 621

https://pypi.python.org/pypi/django-celery/
https://pypi.python.org/pypi/django-celery/
https://pypi.python.org/pypi/django-celery/
http://www.sqlalchemy.org
http://www.sqlalchemy.org/docs/core/engines.html#supported-databases
http://www.sqlalchemy.org/docs/core/engines.html#database-urls

Celery Documentation, Release 4.1.0

postgresql
CELERY_RESULT_DBURI = 'postgresql://scott:tiger@localhost/mydatabase'

oracle
CELERY_RESULT_DBURI = 'oracle://scott:tiger@127.0.0.1:1521/sidname'

See SQLAlchemy Connection Strings for more information about connection strings.

To specify additional SQLAlchemy database engine options you can use the CELERY_RESULT_ENGINE_OPTIONS
setting:

echo enables verbose logging from SQLAlchemy.
CELERY_RESULT_ENGINE_OPTIONS = {'echo': True}

Cache result backend

The cache result backend is no longer using the Django cache framework, but it supports mostly the same configuration
syntax:

CELERY_CACHE_BACKEND = 'memcached://A.example.com:11211;B.example.com'

To use the cache backend you must either have the pylibmc or python-memcached library installed, of which the
former is regarded as the best choice.

The support backend types are memcached:// and memory://, we haven’t felt the need to support any of the other
backends provided by Django.

Backward incompatible changes

• Default (python) loader now prints warning on missing celeryconfig.py instead of raising ImportError.

The worker raises ImproperlyConfigured if the configuration isn’t set up. This makes it
possible to use –help etc., without having a working configuration.

Also this makes it possible to use the client side of Celery without being configured:

>>> from carrot.connection import BrokerConnection
>>> conn = BrokerConnection('localhost', 'guest', 'guest', '/')
>>> from celery.execute import send_task
>>> r = send_task('celery.ping', args=(), kwargs={}, connection=conn)
>>> from celery.backends.amqp import AMQPBackend
>>> r.backend = AMQPBackend(connection=conn)
>>> r.get()
'pong'

• The following deprecated settings has been removed (as scheduled by the Celery Deprecation Time-line):

Setting name Replace with
CELERY_AMQP_CONSUMER_QUEUES CELERY_QUEUES
CELERY_AMQP_EXCHANGE CELERY_DEFAULT_EXCHANGE
CELERY_AMQP_EXCHANGE_TYPE CELERY_DEFAULT_EXCHANGE_TYPE
CELERY_AMQP_CONSUMER_ROUTING_KEY CELERY_QUEUES
CELERY_AMQP_PUBLISHER_ROUTING_KEY CELERY_DEFAULT_ROUTING_KEY

• The celery.task.rest module has been removed, use celery.task.http instead (as scheduled by the Celery Depre-
cation Time-line).

622 Chapter 2. Contents

http://www.sqlalchemy.org/docs/core/engines.html#database-urls
https://pypi.python.org/pypi/pylibmc/
https://pypi.python.org/pypi/python-memcached/
https://docs.python.org/dev/library/exceptions.html#ImportError

Celery Documentation, Release 4.1.0

• It’s no longer allowed to skip the class name in loader names. (as scheduled by the Celery Deprecation Time-
line):

Assuming the implicit Loader class name is no longer supported, for example, if you use:

CELERY_LOADER = 'myapp.loaders'

You need to include the loader class name, like this:

CELERY_LOADER = 'myapp.loaders.Loader'

• CELERY_TASK_RESULT_EXPIRES now defaults to 1 day.

Previous default setting was to expire in 5 days.

• AMQP backend: Don’t use different values for auto_delete.

This bug became visible with RabbitMQ 1.8.0, which no longer allows conflicting declarations for
the auto_delete and durable settings.

If you’ve already used Celery with this backend chances are you have to delete the previous decla-
ration:

$ camqadm exchange.delete celeryresults

• Now uses pickle instead of cPickle on Python versions <= 2.5

cPickle is broken in Python <= 2.5.

It unsafely and incorrectly uses relative instead of absolute imports, so for example:

exceptions.KeyError

becomes:

celery.exceptions.KeyError

Your best choice is to upgrade to Python 2.6, as while the pure pickle version has worse perfor-
mance, it is the only safe option for older Python versions.

News

• celeryev: Curses Celery Monitor and Event Viewer.

This is a simple monitor allowing you to see what tasks are executing in real-time and investigate
tracebacks and results of ready tasks. It also enables you to set new rate limits and revoke tasks.

Screenshot:

If you run celeryev with the -d switch it will act as an event dumper, simply dumping the events it
receives to standard out:

$ celeryev -d
-> celeryev: starting capture...
casper.local [2010-06-04 10:42:07.020000] heartbeat
casper.local [2010-06-04 10:42:14.750000] task received:

tasks.add(61a68756-27f4-4879-b816-3cf815672b0e) args=[2, 2] kwargs={}
eta=2010-06-04T10:42:16.669290, retries=0

casper.local [2010-06-04 10:42:17.230000] task started
tasks.add(61a68756-27f4-4879-b816-3cf815672b0e) args=[2, 2] kwargs={}

2.14. History 623

Celery Documentation, Release 4.1.0

624 Chapter 2. Contents

Celery Documentation, Release 4.1.0

casper.local [2010-06-04 10:42:17.960000] task succeeded:
tasks.add(61a68756-27f4-4879-b816-3cf815672b0e)
args=[2, 2] kwargs={} result=4, runtime=0.782663106918

The fields here are, in order: *sender hostname*, *timestamp*, *event
→˓type* and

additional event fields.

• AMQP result backend: Now supports .ready(), .successful(), .result, .status, and even responds to changes in
task state

• New user guides:

– Workers Guide

– Canvas: Designing Work-flows

– Routing Tasks

• Worker: Standard out/error is now being redirected to the log file.

• billiard has been moved back to the Celery repository.

Module name celery equivalent
billiard.pool celery.concurrency.processes.pool
billiard.serialization celery.serialization
billiard.utils.functional celery.utils.functional

The billiard distribution may be maintained, depending on interest.

• now depends on carrot >= 0.10.5

• now depends on pyparsing

• Worker: Added –purge as an alias to –discard.

• Worker: Control-c (SIGINT) once does warm shutdown, hitting Control-c twice forces termination.

• Added support for using complex Crontab-expressions in periodic tasks. For example, you can now use:

>>> crontab(minute='*/15')

or even:

>>> crontab(minute='*/30', hour='8-17,1-2', day_of_week='thu-fri')

See Periodic Tasks.

• Worker: Now waits for available pool processes before applying new tasks to the pool.

This means it doesn’t have to wait for dozens of tasks to finish at shutdown because it has applied
prefetched tasks without having any pool processes available to immediately accept them.

See issue #122.

• New built-in way to do task callbacks using subtask.

See Canvas: Designing Work-flows for more information.

• TaskSets can now contain several types of tasks.

TaskSet has been refactored to use a new syntax, please see Canvas: Designing Work-flows for more infor-
mation.

The previous syntax is still supported, but will be deprecated in version 1.4.

2.14. History 625

https://pypi.python.org/pypi/billiard/
https://pypi.python.org/pypi/billiard/
https://pypi.python.org/pypi/carrot/
https://pypi.python.org/pypi/pyparsing/
https://github.com/celery/celery/issues/122

Celery Documentation, Release 4.1.0

• TaskSet failed() result was incorrect.

See issue #132.

• Now creates different loggers per task class.

See issue #129.

• Missing queue definitions are now created automatically.

You can disable this using the CELERY_CREATE_MISSING_QUEUES setting.

The missing queues are created with the following options:

CELERY_QUEUES[name] = {'exchange': name,
'exchange_type': 'direct',
'routing_key': 'name}

This feature is added for easily setting up routing using the -Q option to the worker:

$ celeryd -Q video, image

See the new routing section of the User Guide for more information: Routing Tasks.

• New Task option: Task.queue

If set, message options will be taken from the corresponding entry in CELERY_QUEUES. exchange,
exchange_type and routing_key will be ignored

• Added support for task soft and hard time limits.

New settings added:

– CELERYD_TASK_TIME_LIMIT

Hard time limit. The worker processing the task will be killed and replaced with
a new one when this is exceeded.

– CELERYD_TASK_SOFT_TIME_LIMIT

Soft time limit. The SoftTimeLimitExceeded exception will be raised
when this is exceeded. The task can catch this to, for example, clean up before
the hard time limit comes.

New command-line arguments to celeryd added: –time-limit and –soft-time-limit.

What’s left?

This won’t work on platforms not supporting signals (and specifically the SIGUSR1 signal) yet. So
an alternative the ability to disable the feature all together on nonconforming platforms must be
implemented.

Also when the hard time limit is exceeded, the task result should be a TimeLimitExceeded exception.

• Test suite is now passing without a running broker, using the carrot in-memory backend.

• Log output is now available in colors.

Log level Color
DEBUG Blue
WARNING Yellow
CRITICAL Magenta
ERROR Red

This is only enabled when the log output is a tty. You can explicitly enable/disable this feature using
the CELERYD_LOG_COLOR setting.

626 Chapter 2. Contents

https://github.com/celery/celery/issues/132
https://github.com/celery/celery/issues/129

Celery Documentation, Release 4.1.0

• Added support for task router classes (like the django multi-db routers)

– New setting: CELERY_ROUTES

This is a single, or a list of routers to traverse when sending tasks. Dictionaries in this list converts
to a celery.routes.MapRoute instance.

Examples:

>>> CELERY_ROUTES = {'celery.ping': 'default',
'mytasks.add': 'cpu-bound',
'video.encode': {

'queue': 'video',
'exchange': 'media'
'routing_key': 'media.video.encode'}}

>>> CELERY_ROUTES = ('myapp.tasks.Router',
{'celery.ping': 'default})

Where myapp.tasks.Router could be:

class Router(object):

def route_for_task(self, task, args=None, kwargs=None):
if task == 'celery.ping':

return 'default'

route_for_task may return a string or a dict. A string then means it’s a queue name in
CELERY_QUEUES, a dict means it’s a custom route.

When sending tasks, the routers are consulted in order. The first router that doesn’t return None
is the route to use. The message options is then merged with the found route settings, where the
routers settings have priority.

Example if apply_async() has these arguments:

>>> Task.apply_async(immediate=False, exchange='video',
... routing_key='video.compress')

and a router returns:

{'immediate': True,
'exchange': 'urgent'}

the final message options will be:

>>> task.apply_async(
... immediate=True,
... exchange='urgent',
... routing_key='video.compress',
...)

(and any default message options defined in the Task class)

• New Task handler called after the task returns: after_return().

• ExceptionInfo now passed to on_retry()/ on_failure() as einfo keyword argument.

• Worker: Added CELERYD_MAX_TASKS_PER_CHILD / celery worker --maxtasksperchild.

2.14. History 627

Celery Documentation, Release 4.1.0

Defines the maximum number of tasks a pool worker can process before the process is terminated
and replaced by a new one.

• Revoked tasks now marked with state REVOKED, and result.get() will now raise TaskRevokedError.

• celery.task.control.ping() now works as expected.

• apply(throw=True) / CELERY_EAGER_PROPAGATES_EXCEPTIONS: Makes eager execution re-raise task
errors.

• New signal: ~celery.signals.worker_process_init: Sent inside the pool worker process at init.

• Worker: celery worker -Q option: Ability to specify list of queues to use, disabling other configured
queues.

For example, if CELERY_QUEUES defines four queues: image, video, data and default, the follow-
ing command would make the worker only consume from the image and video queues:

$ celeryd -Q image,video

• Worker: New return value for the revoke control command:

Now returns:

{'ok': 'task $id revoked'}

instead of True.

• Worker: Can now enable/disable events using remote control

Example usage:

>>> from celery.task.control import broadcast
>>> broadcast('enable_events')
>>> broadcast('disable_events')

• Removed top-level tests directory. Test config now in celery.tests.config

This means running the unit tests doesn’t require any special setup. celery/tests/__init__ now con-
figures the CELERY_CONFIG_MODULE and CELERY_LOADER environment variables, so when
nosetests imports that, the unit test environment is all set up.

Before you run the tests you need to install the test requirements:

$ pip install -r requirements/test.txt

Running all tests:

$ nosetests

Specifying the tests to run:

$ nosetests celery.tests.test_task

Producing HTML coverage:

$ nosetests --with-coverage3

The coverage output is then located in celery/tests/cover/index.html.

• Worker: New option –version: Dump version info and exit.

• celeryd-multi: Tool for shell scripts to start multiple workers.

628 Chapter 2. Contents

Celery Documentation, Release 4.1.0

Some examples:

– Advanced example with 10 workers:

* Three of the workers processes the images and video queue

* Two of the workers processes the data queue with loglevel DEBUG

* the rest processes the default’ queue.

$ celeryd-multi start 10 -l INFO -Q:1-3 images,video -Q:4,
→˓5:data -Q default -L:4,5 DEBUG

– Get commands to start 10 workers, with 3 processes each

$ celeryd-multi start 3 -c 3
celeryd -n celeryd1.myhost -c 3
celeryd -n celeryd2.myhost -c 3
celeryd -n celeryd3.myhost -c 3

– Start 3 named workers

$ celeryd-multi start image video data -c 3
celeryd -n image.myhost -c 3
celeryd -n video.myhost -c 3
celeryd -n data.myhost -c 3

– Specify custom hostname

$ celeryd-multi start 2 -n worker.example.com -c 3
celeryd -n celeryd1.worker.example.com -c 3
celeryd -n celeryd2.worker.example.com -c 3

Additional options are added to each celeryd, but you can also modify the
options for ranges of or single workers

– 3 workers: Two with 3 processes, and one with 10 processes.

$ celeryd-multi start 3 -c 3 -c:1 10
celeryd -n celeryd1.myhost -c 10
celeryd -n celeryd2.myhost -c 3
celeryd -n celeryd3.myhost -c 3

– Can also specify options for named workers

$ celeryd-multi start image video data -c 3 -c:image 10
celeryd -n image.myhost -c 10
celeryd -n video.myhost -c 3
celeryd -n data.myhost -c 3

– Ranges and lists of workers in options is also allowed: (-c:1-3 can also be written as
-c:1,2,3)

$ celeryd-multi start 5 -c 3 -c:1-3 10
celeryd-multi -n celeryd1.myhost -c 10
celeryd-multi -n celeryd2.myhost -c 10
celeryd-multi -n celeryd3.myhost -c 10
celeryd-multi -n celeryd4.myhost -c 3
celeryd-multi -n celeryd5.myhost -c 3

2.14. History 629

Celery Documentation, Release 4.1.0

– Lists also work with named workers:

$ celeryd-multi start foo bar baz xuzzy -c 3 -c:foo,bar,
→˓baz 10
celeryd-multi -n foo.myhost -c 10
celeryd-multi -n bar.myhost -c 10
celeryd-multi -n baz.myhost -c 10
celeryd-multi -n xuzzy.myhost -c 3

• The worker now calls the result backends process_cleanup method after task execution instead of before.

• AMQP result backend now supports Pika.

Change history for Celery 1.0

• 1.0.6

• 1.0.5

– Critical

– Changes

• 1.0.4

• 1.0.3

– Important notes

– News

– Remote control commands

– Fixes

• 1.0.2

• 1.0.1

• 1.0.0

– Backward incompatible changes

– Deprecations

– News

– Changes

– Bugs

– Documentation

• 0.8.4

• 0.8.3

• 0.8.2

• 0.8.1

– Very important note

– Important changes

630 Chapter 2. Contents

Celery Documentation, Release 4.1.0

– Changes

• 0.8.0

– Backward incompatible changes

– Important changes

– News

• 0.6.0

– Important changes

– News

• 0.4.1

• 0.4.0

• 0.3.20

• 0.3.7

• 0.3.3

• 0.3.2

• 0.3.1

• 0.3.0

• 0.2.0

• 0.2.0-pre3

• 0.2.0-pre2

• 0.2.0-pre1

• 0.1.15

• 0.1.14

• 0.1.13

• 0.1.12

• 0.1.11

• 0.1.10

• 0.1.8

• 0.1.7

• 0.1.6

• 0.1.0

1.0.6

release-date 2010-06-30 09:57 a.m. CEST

release-by Ask Solem

• RabbitMQ 1.8.0 has extended their exchange equivalence tests to include auto_delete and durable. This broke
the AMQP backend.

2.14. History 631

Celery Documentation, Release 4.1.0

If you’ve already used the AMQP backend this means you have to delete the previous definitions:

$ camqadm exchange.delete celeryresults

or:

$ python manage.py camqadm exchange.delete celeryresults

1.0.5

release-date 2010-06-01 02:36 p.m. CEST

release-by Ask Solem

Critical

• INT/Control-c killed the pool, abruptly terminating the currently executing tasks.

Fixed by making the pool worker processes ignore SIGINT.

• Shouldn’t close the consumers before the pool is terminated, just cancel the consumers.

See issue #122.

• Now depends on billiard >= 0.3.1

• worker: Previously exceptions raised by worker components could stall start-up, now it correctly logs the ex-
ceptions and shuts down.

• worker: Prefetch counts was set too late. QoS is now set as early as possible, so the worker: can’t slurp in all
the messages at start-up.

Changes

• celery.contrib.abortable: Abortable tasks.

Tasks that defines steps of execution, the task can then be aborted after each step has completed.

• EventDispatcher: No longer creates AMQP channel if events are disabled

• Added required RPM package names under [bdist_rpm] section, to support building RPMs from the sources
using setup.py.

• Running unit tests: NOSE_VERBOSE environment var now enables verbose output from Nose.

• celery.execute.apply(): Pass log file/log level arguments as task kwargs.

See issue #110.

• celery.execute.apply: Should return exception, not ExceptionInfo on error.

See issue #111.

• Added new entries to the FAQs:

– Should I use retry or acks_late?

– Can I call a task by name?

632 Chapter 2. Contents

https://github.com/celery/celery/issues/122
https://pypi.python.org/pypi/billiard/
https://github.com/celery/celery/issues/110
https://github.com/celery/celery/issues/111

Celery Documentation, Release 4.1.0

1.0.4

release-date 2010-05-31 09:54 a.m. CEST

release-by Ask Solem

• Changelog merged with 1.0.5 as the release was never announced.

1.0.3

release-date 2010-05-15 03:00 p.m. CEST

release-by Ask Solem

Important notes

• Messages are now acknowledged just before the task function is executed.

This is the behavior we’ve wanted all along, but couldn’t have because of limitations in the multi-
processing module. The previous behavior wasn’t good, and the situation worsened with the release
of 1.0.1, so this change will definitely improve reliability, performance and operations in general.

For more information please see http://bit.ly/9hom6T

• Database result backend: result now explicitly sets null=True as django-picklefield version 0.1.5 changed the
default behavior right under our noses :(

See: http://bit.ly/d5OwMr

This means those who created their Celery tables (via syncdb or celeryinit) with django-
picklefield‘ versions >= 0.1.5 has to alter their tables to allow the result field to be NULL manually.

MySQL:

ALTER TABLE celery_taskmeta MODIFY result TEXT NULL

PostgreSQL:

ALTER TABLE celery_taskmeta ALTER COLUMN result DROP NOT NULL

• Removed Task.rate_limit_queue_type, as it wasn’t really useful and made it harder to refactor some parts.

• Now depends on carrot >= 0.10.4

• Now depends on billiard >= 0.3.0

News

• AMQP backend: Added timeout support for result.get() / result.wait().

• New task option: Task.acks_late (default: CELERY_ACKS_LATE)

Late ack means the task messages will be acknowledged after the task has been executed, not just
before, which is the default behavior.

Note: This means the tasks may be executed twice if the worker crashes in mid-execution. Not
acceptable for most applications, but desirable for others.

2.14. History 633

http://bit.ly/9hom6T
http://bit.ly/d5OwMr
https://pypi.python.org/pypi/django-picklefield{}`/
https://pypi.python.org/pypi/django-picklefield{}`/

Celery Documentation, Release 4.1.0

• Added Crontab-like scheduling to periodic tasks.

Like a cronjob, you can specify units of time of when you’d like the task to execute. While not a full
implementation of cron‘s features, it should provide a fair degree of common scheduling needs.

You can specify a minute (0-59), an hour (0-23), and/or a day of the week (0-6 where 0 is Sunday,
or by names: sun, mon, tue, wed, thu, fri, sat).

Examples:

from celery.schedules import crontab
from celery.decorators import periodic_task

@periodic_task(run_every=crontab(hour=7, minute=30))
def every_morning():

print('Runs every morning at 7:30a.m')

@periodic_task(run_every=crontab(hour=7, minute=30, day_of_week='mon'))
def every_monday_morning():

print('Run every monday morning at 7:30a.m')

@periodic_task(run_every=crontab(minutes=30))
def every_hour():

print('Runs every hour on the clock (e.g., 1:30, 2:30, 3:30 etc.).')

Note: This a late addition. While we have unit tests, due to the nature of this feature we haven’t
been able to completely test this in practice, so consider this experimental.

• TaskPool.apply_async: Now supports the accept_callback argument.

• apply_async: Now raises ValueError if task args isn’t a list, or kwargs isn’t a tuple (Issue #95).

• Task.max_retries can now be None, which means it will retry forever.

• celerybeat: Now reuses the same connection when publishing large sets of tasks.

• Modified the task locking example in the documentation to use cache.add for atomic locking.

• Added experimental support for a started status on tasks.

If Task.track_started is enabled the task will report its status as “started” when the task is executed
by a worker.

The default value is False as the normal behavior is to not report that level of granularity. Tasks are
either pending, finished, or waiting to be retried. Having a “started” status can be useful for when
there are long running tasks and there’s a need to report which task is currently running.

The global default can be overridden by the CELERY_TRACK_STARTED setting.

• User Guide: New section Tips and Best Practices.

Contributions welcome!

Remote control commands

• Remote control commands can now send replies back to the caller.

Existing commands has been improved to send replies, and the client interface in celery.task.control
has new keyword arguments: reply, timeout and limit. Where reply means it will wait for replies,

634 Chapter 2. Contents

https://docs.python.org/dev/library/exceptions.html#ValueError
https://github.com/celery/celery/issues/95

Celery Documentation, Release 4.1.0

timeout is the time in seconds to stop waiting for replies, and limit is the maximum number of
replies to get.

By default, it will wait for as many replies as possible for one second.

– rate_limit(task_name, destination=all, reply=False, timeout=1, limit=0)

Worker returns {‘ok’: message} on success, or {‘failure’: message} on failure.

>>> from celery.task.control import rate_limit
>>> rate_limit('tasks.add', '10/s', reply=True)
[{'worker1': {'ok': 'new rate limit set successfully'}},
{'worker2': {'ok': 'new rate limit set successfully'}}]

– ping(destination=all, reply=False, timeout=1, limit=0)

Worker returns the simple message “pong”.

>>> from celery.task.control import ping
>>> ping(reply=True)
[{'worker1': 'pong'},
{'worker2': 'pong'},

– revoke(destination=all, reply=False, timeout=1, limit=0)

Worker simply returns True.

>>> from celery.task.control import revoke
>>> revoke('419e46eb-cf6a-4271-86a8-442b7124132c',
→˓reply=True)
[{'worker1': True},
{'worker2'; True}]

• You can now add your own remote control commands!

Remote control commands are functions registered in the command registry. Registering a com-
mand is done using celery.worker.control.Panel.register():

from celery.task.control import Panel

@Panel.register
def reset_broker_connection(state, **kwargs):

state.consumer.reset_connection()
return {'ok': 'connection re-established'}

With this module imported in the worker, you can launch the command using cel-
ery.task.control.broadcast:

>>> from celery.task.control import broadcast
>>> broadcast('reset_broker_connection', reply=True)
[{'worker1': {'ok': 'connection re-established'},
{'worker2': {'ok': 'connection re-established'}}]

TIP You can choose the worker(s) to receive the command by using the destination argument:

>>> broadcast('reset_broker_connection', destination=['worker1'])
[{'worker1': {'ok': 'connection re-established'}]

• New remote control command: dump_reserved

2.14. History 635

Celery Documentation, Release 4.1.0

Dumps tasks reserved by the worker, waiting to be executed:

>>> from celery.task.control import broadcast
>>> broadcast('dump_reserved', reply=True)
[{'myworker1': [<TaskRequest>]}]

• New remote control command: dump_schedule

Dumps the workers currently registered ETA schedule. These are tasks with an eta (or countdown)
argument waiting to be executed by the worker.

>>> from celery.task.control import broadcast
>>> broadcast('dump_schedule', reply=True)
[{'w1': []},
{'w3': []},
{'w2': ['0. 2010-05-12 11:06:00 pri0 <TaskRequest

{name:'opalfeeds.tasks.refresh_feed_slice',
id:'95b45760-4e73-4ce8-8eac-f100aa80273a',
args:'(<Feeds freq_max:3600 freq_min:60

start:2184.0 stop:3276.0>,)',
kwargs:'{'page': 2}'}>']},

{'w4': ['0. 2010-05-12 11:00:00 pri0 <TaskRequest
{name:'opalfeeds.tasks.refresh_feed_slice',
id:'c053480b-58fb-422f-ae68-8d30a464edfe',
args:'(<Feeds freq_max:3600 freq_min:60

start:1092.0 stop:2184.0>,)',
kwargs:'{\'page\': 1}'}>',

'1. 2010-05-12 11:12:00 pri0 <TaskRequest
{name:'opalfeeds.tasks.refresh_feed_slice',
id:'ab8bc59e-6cf8-44b8-88d0-f1af57789758',
args:'(<Feeds freq_max:3600 freq_min:60

start:3276.0 stop:4365>,)',
kwargs:'{\'page\': 3}'}>']}]

Fixes

• Mediator thread no longer blocks for more than 1 second.

With rate limits enabled and when there was a lot of remaining time, the mediator thread could
block shutdown (and potentially block other jobs from coming in).

• Remote rate limits wasn’t properly applied (Issue #98).

• Now handles exceptions with Unicode messages correctly in TaskRequest.on_failure.

• Database backend: TaskMeta.result: default value should be None not empty string.

1.0.2

release-date 2010-03-31 12:50 p.m. CET

release-by Ask Solem

• Deprecated: CELERY_BACKEND, please use CELERY_RESULT_BACKEND instead.

• We now use a custom logger in tasks. This logger supports task magic keyword arguments in formats.

The default format for tasks (CELERYD_TASK_LOG_FORMAT) now includes the id and the name
of tasks so the origin of task log messages can easily be traced.

636 Chapter 2. Contents

https://github.com/celery/celery/issues/98

Celery Documentation, Release 4.1.0

Example output::

[2010-03-25 13:11:20,317: INFO/PoolWorker-1] [tasks.add(a6e1c5ad-60d9-42a0-8b24-
9e39363125a4)] Hello from add

To revert to the previous behavior you can set:

CELERYD_TASK_LOG_FORMAT = """
[%(asctime)s: %(levelname)s/%(processName)s] %(message)s

""".strip()

• Unit tests: Don’t disable the django test database tear down, instead fixed the underlying issue which was caused
by modifications to the DATABASE_NAME setting (Issue #82).

• Django Loader: New config CELERY_DB_REUSE_MAX (max number of tasks to reuse the same database
connection)

The default is to use a new connection for every task. We’d very much like to reuse the connection,
but a safe number of reuses isn’t known, and we don’t have any way to handle the errors that might
happen, which may even be database dependent.

See: http://bit.ly/94fwdd

• worker: The worker components are now configurable: CELERYD_POOL, CELERYD_CONSUMER,
CELERYD_MEDIATOR, and CELERYD_ETA_SCHEDULER.

The default configuration is as follows:

CELERYD_POOL = 'celery.concurrency.processes.TaskPool'
CELERYD_MEDIATOR = 'celery.worker.controllers.Mediator'
CELERYD_ETA_SCHEDULER = 'celery.worker.controllers.ScheduleController'
CELERYD_CONSUMER = 'celery.worker.consumer.Consumer'

The CELERYD_POOL setting makes it easy to swap out the multiprocessing pool with a threaded
pool, or how about a twisted/eventlet pool?

Consider the competition for the first pool plug-in started!

• Debian init-scripts: Use -a not && (Issue #82).

• Debian init-scripts: Now always preserves $CELERYD_OPTS from the /etc/default/celeryd and
/etc/default/celerybeat.

• celery.beat.Scheduler: Fixed a bug where the schedule wasn’t properly flushed to disk if the schedule hadn’t
been properly initialized.

• celerybeat: Now syncs the schedule to disk when receiving the SIGTERM and SIGINT signals.

• Control commands: Make sure keywords arguments aren’t in Unicode.

• ETA scheduler: Was missing a logger object, so the scheduler crashed when trying to log that a task had been
revoked.

• management.commands.camqadm: Fixed typo camqpadm -> camqadm (Issue #83).

• PeriodicTask.delta_resolution: wasn’t working for days and hours, now fixed by rounding to the nearest
day/hour.

• Fixed a potential infinite loop in BaseAsyncResult.__eq__, although there’s no evidence that it has ever been
triggered.

• worker: Now handles messages with encoding problems by acking them and emitting an error message.

2.14. History 637

https://github.com/celery/celery/issues/82
http://bit.ly/94fwdd
https://github.com/celery/celery/issues/82
https://github.com/celery/celery/issues/83

Celery Documentation, Release 4.1.0

1.0.1

release-date 2010-02-24 07:05 p.m. CET

release-by Ask Solem

• Tasks are now acknowledged early instead of late.

This is done because messages can only be acknowledged within the same connection channel, so
if the connection is lost we’d’ve to re-fetch the message again to acknowledge it.

This might or might not affect you, but mostly those running tasks with a really long execution
time are affected, as all tasks that’s made it all the way into the pool needs to be executed before
the worker can safely terminate (this is at most the number of pool workers, multiplied by the
CELERYD_PREFETCH_MULTIPLIER setting).

We multiply the prefetch count by default to increase the performance at times with bursts of tasks
with a short execution time. If this doesn’t apply to your use case, you should be able to set the
prefetch multiplier to zero, without sacrificing performance.

Note: A patch to multiprocessing is currently being worked on, this patch would enable us
to use a better solution, and is scheduled for inclusion in the 2.0.0 release.

• The worker now shutdowns cleanly when receiving the SIGTERM signal.

• The worker now does a cold shutdown if the SIGINT signal is received (Control-c), this means it tries to
terminate as soon as possible.

• Caching of results now moved to the base backend classes, so no need to implement this functionality in the
base classes.

• Caches are now also limited in size, so their memory usage doesn’t grow out of control.

You can set the maximum number of results the cache can hold using the
CELERY_MAX_CACHED_RESULTS setting (the default is five thousand results). In ad-
dition, you can re-fetch already retrieved results using backend.reload_task_result + back-
end.reload_taskset_result (that’s for those who want to send results incrementally).

• The worker now works on Windows again.

Warning: If you’re using Celery with Django, you can’t use project.settings as the settings
module name, but the following should work:

$ python manage.py celeryd --settings=settings

• Execution: .messaging.TaskPublisher.send_task now incorporates all the functionality apply_async previously
did.

Like converting countdowns to ETA, so celery.execute.apply_async() is now simply
a convenient front-end to celery.messaging.TaskPublisher.send_task(), using the
task classes default options.

Also celery.execute.send_task() has been introduced, which can apply tasks using just
the task name (useful if the client doesn’t have the destination task in its task registry).

Example:

638 Chapter 2. Contents

https://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing

Celery Documentation, Release 4.1.0

>>> from celery.execute import send_task
>>> result = send_task('celery.ping', args=[], kwargs={})
>>> result.get()
'pong'

• camqadm: This is a new utility for command-line access to the AMQP API.

Excellent for deleting queues/bindings/exchanges, experimentation and testing:

$ camqadm
1> help

Gives an interactive shell, type help for a list of commands.

When using Django, use the management command instead:

$ python manage.py camqadm
1> help

• Redis result backend: To conform to recent Redis API changes, the following settings has been deprecated:

– REDIS_TIMEOUT

– REDIS_CONNECT_RETRY

These will emit a DeprecationWarning if used.

A REDIS_PASSWORD setting has been added, so you can use the new simple authentication mech-
anism in Redis.

• The redis result backend no longer calls SAVE when disconnecting, as this is apparently better handled by Redis
itself.

• If settings.DEBUG is on, the worker now warns about the possible memory leak it can result in.

• The ETA scheduler now sleeps at most two seconds between iterations.

• The ETA scheduler now deletes any revoked tasks it might encounter.

As revokes aren’t yet persistent, this is done to make sure the task is revoked even though, for
example, it’s currently being hold because its ETA is a week into the future.

• The task_id argument is now respected even if the task is executed eagerly (either using apply, or
CELERY_ALWAYS_EAGER).

• The internal queues are now cleared if the connection is reset.

• New magic keyword argument: delivery_info.

Used by retry() to resend the task to its original destination using the same exchange/routing_key.

• Events: Fields wasn’t passed by .send() (fixes the UUID key errors in celerymon)

• Added –schedule/-s option to the worker, so it is possible to specify a custom schedule filename when using an
embedded celerybeat server (the -B/–beat) option.

• Better Python 2.4 compatibility. The test suite now passes.

• task decorators: Now preserve docstring as cls.__doc__, (was previously copied to cls.run.__doc__)

• The testproj directory has been renamed to tests and we’re now using nose + django-nose for test discovery, and
unittest2 for test cases.

• New pip requirements files available in requirements.

2.14. History 639

Celery Documentation, Release 4.1.0

• TaskPublisher: Declarations are now done once (per process).

• Added Task.delivery_mode and the CELERY_DEFAULT_DELIVERY_MODE setting.

These can be used to mark messages non-persistent (i.e., so they’re lost if the broker is restarted).

• Now have our own ImproperlyConfigured exception, instead of using the Django one.

• Improvements to the Debian init-scripts: Shows an error if the program is not executable. Does not modify
CELERYD when using django with virtualenv.

1.0.0

release-date 2010-02-10 04:00 p.m. CET

release-by Ask Solem

Backward incompatible changes

• Celery doesn’t support detaching anymore, so you have to use the tools available on your platform, or something
like supervisor to make celeryd/celerybeat/celerymon into background processes.

We’ve had too many problems with the worker daemonizing itself, so it was decided it has to be
removed. Example start-up scripts has been added to the extra/ directory:

– Debian, Ubuntu, (start-stop-daemon)

extra/debian/init.d/celeryd extra/debian/init.d/celerybeat

– macOS launchd

extra/mac/org.celeryq.celeryd.plist extra/mac/org.celeryq.celerybeat.plist ex-
tra/mac/org.celeryq.celerymon.plist

– Supervisor (http://supervisord.org)

extra/supervisord/supervisord.conf

In addition to –detach, the following program arguments has been removed: –uid, –gid, –workdir,
–chroot, –pidfile, –umask. All good daemonization tools should support equivalent functionality, so
don’t worry.

Also the following configuration keys has been removed: CELERYD_PID_FILE, CELERY-
BEAT_PID_FILE, CELERYMON_PID_FILE.

• Default worker loglevel is now WARN, to enable the previous log level start the worker with –loglevel=INFO.

• Tasks are automatically registered.

This means you no longer have to register your tasks manually. You don’t have to change your old
code right away, as it doesn’t matter if a task is registered twice.

If you don’t want your task to be automatically registered you can set the abstract attribute

class MyTask(Task):
abstract = True

By using abstract only tasks subclassing this task will be automatically registered (this works like
the Django ORM).

If you don’t want subclasses to be registered either, you can set the autoregister attribute to False.

640 Chapter 2. Contents

https://pypi.python.org/pypi/supervisor/
http://supervisord.org

Celery Documentation, Release 4.1.0

Incidentally, this change also fixes the problems with automatic name assignment and relative im-
ports. So you also don’t have to specify a task name anymore if you use relative imports.

• You can no longer use regular functions as tasks.

This change was added because it makes the internals a lot more clean and simple. However, you
can now turn functions into tasks by using the @task decorator:

from celery.decorators import task

@task()
def add(x, y):

return x + y

See also:

Tasks for more information about the task decorators.

• The periodic task system has been rewritten to a centralized solution.

This means the worker no longer schedules periodic tasks by default, but a new daemon has been
introduced: celerybeat.

To launch the periodic task scheduler you have to run celerybeat:

$ celerybeat

Make sure this is running on one server only, if you run it twice, all periodic tasks will also be
executed twice.

If you only have one worker server you can embed it into the worker like this:

$ celeryd --beat # Embed celerybeat in celeryd.

• The supervisor has been removed.

This means the -S and –supervised options to celeryd is no longer supported. Please use something
like http://supervisord.org instead.

• TaskSet.join has been removed, use TaskSetResult.join instead.

• The task status “DONE” has been renamed to “SUCCESS”.

• AsyncResult.is_done has been removed, use AsyncResult.successful instead.

• The worker no longer stores errors if Task.ignore_result is set, to revert to the previous behavior set
CELERY_STORE_ERRORS_EVEN_IF_IGNORED to True.

• The statistics functionality has been removed in favor of events, so the -S and –statistics‘ switches has been
removed.

• The module celery.task.strategy has been removed.

• celery.discovery has been removed, and it’s autodiscover function is now in celery.loaders.djangoapp.
Reason: Internal API.

• The CELERY_LOADER environment variable now needs loader class name in addition to module name,

For example, where you previously had: “celery.loaders.default”, you now need “cel-
ery.loaders.default.Loader”, using the previous syntax will result in a DeprecationWarning.

• Detecting the loader is now lazy, and so isn’t done when importing celery.loaders.

2.14. History 641

http://supervisord.org

Celery Documentation, Release 4.1.0

To make this happen celery.loaders.settings has been renamed to load_settings and is now a function
returning the settings object. celery.loaders.current_loader is now also a function, returning the
current loader.

So:

loader = current_loader

needs to be changed to:

loader = current_loader()

Deprecations

• The following configuration variables has been renamed and will be deprecated in v2.0:

– CELERYD_DAEMON_LOG_FORMAT -> CELERYD_LOG_FORMAT

– CELERYD_DAEMON_LOG_LEVEL -> CELERYD_LOG_LEVEL

– CELERY_AMQP_CONNECTION_TIMEOUT -> CELERY_BROKER_CONNECTION_TIMEOUT

– CELERY_AMQP_CONNECTION_RETRY -> CELERY_BROKER_CONNECTION_RETRY

– CELERY_AMQP_CONNECTION_MAX_RETRIES -> CELERY_BROKER_CONNECTION_MAX_RETRIES

– SEND_CELERY_TASK_ERROR_EMAILS -> CELERY_SEND_TASK_ERROR_EMAILS

• The public API names in celery.conf has also changed to a consistent naming scheme.

• We now support consuming from an arbitrary number of queues.

To do this we had to rename the configuration syntax. If you use any of the custom AMQP routing
options (queue/exchange/routing_key, etc.), you should read the new FAQ entry: Can I send some
tasks to only some servers?.

The previous syntax is deprecated and scheduled for removal in v2.0.

• TaskSet.run has been renamed to TaskSet.apply_async.

TaskSet.run has now been deprecated, and is scheduled for removal in v2.0.

News

• Rate limiting support (per task type, or globally).

• New periodic task system.

• Automatic registration.

• New cool task decorator syntax.

• worker: now sends events if enabled with the -E argument.

Excellent for monitoring tools, one is already in the making (https://github.com/celery/celerymon).

Current events include: worker-heartbeat, task-[received/succeeded/failed/retried],
worker-online, worker-offline.

• You can now delete (revoke) tasks that’s already been applied.

• You can now set the hostname the worker identifies as using the –hostname argument.

642 Chapter 2. Contents

https://github.com/celery/celerymon

Celery Documentation, Release 4.1.0

• Cache backend now respects the CELERY_TASK_RESULT_EXPIRES setting.

• Message format has been standardized and now uses ISO-8601 format for dates instead of datetime.

• worker now responds to the SIGHUP signal by restarting itself.

• Periodic tasks are now scheduled on the clock.

That is, timedelta(hours=1) means every hour at :00 minutes, not every hour from the server starts.
To revert to the previous behavior you can set PeriodicTask.relative = True.

• Now supports passing execute options to a TaskSets list of args.

Example:

>>> ts = TaskSet(add, [([2, 2], {}, {'countdown': 1}),
... ([4, 4], {}, {'countdown': 2}),
... ([8, 8], {}, {'countdown': 3})])
>>> ts.run()

• Got a 3x performance gain by setting the prefetch count to four times the concurrency, (from an average task
round-trip of 0.1s to 0.03s!).

A new setting has been added: CELERYD_PREFETCH_MULTIPLIER, which is set to 4 by default.

• Improved support for webhook tasks.

celery.task.rest is now deprecated, replaced with the new and shiny celery.task.http. With more
reflective names, sensible interface, and it’s possible to override the methods used to perform HTTP
requests.

• The results of task sets are now cached by storing it in the result backend.

Changes

• Now depends on carrot >= 0.8.1

• New dependencies: billiard, python-dateutil, django-picklefield.

• No longer depends on python-daemon

• The uuid distribution is added as a dependency when running Python 2.4.

• Now remembers the previously detected loader by keeping it in the CELERY_LOADER environment variable.

This may help on windows where fork emulation is used.

• ETA no longer sends datetime objects, but uses ISO 8601 date format in a string for better compatibility with
other platforms.

• No longer sends error mails for retried tasks.

• Task can now override the backend used to store results.

• Refactored the ExecuteWrapper, apply and CELERY_ALWAYS_EAGER now also executes the task callbacks
and signals.

• Now using a proper scheduler for the tasks with an ETA.

This means waiting ETA tasks are sorted by time, so we don’t have to poll the whole list all the
time.

• Now also imports modules listed in CELERY_IMPORTS when running with django (as documented).

• Log level for stdout/stderr changed from INFO to ERROR

2.14. History 643

https://pypi.python.org/pypi/carrot/
https://pypi.python.org/pypi/billiard/
https://pypi.python.org/pypi/python-dateutil/
https://pypi.python.org/pypi/django-picklefield/

Celery Documentation, Release 4.1.0

• ImportErrors are now properly propagated when auto-discovering tasks.

• You can now use celery.messaging.establish_connection to establish a connection to the broker.

• When running as a separate service the periodic task scheduler does some smart moves to not poll too regularly.

If you need faster poll times you can lower the value of CELERYBEAT_MAX_LOOP_INTERVAL.

• You can now change periodic task intervals at runtime, by making run_every a property, or subclassing Period-
icTask.is_due.

• The worker now supports control commands enabled through the use of a broadcast queue, you can remotely
revoke tasks or set the rate limit for a task type. See celery.task.control.

• The services now sets informative process names (as shown in ps listings) if the setproctitle module is installed.

• NotRegistered now inherits from KeyError, and TaskRegistry.__getitem__‘+‘pop raises NotRegistered
instead

• You can set the loader via the CELERY_LOADER environment variable.

• You can now set CELERY_IGNORE_RESULT to ignore task results by default (if enabled, tasks doesn’t save
results or errors to the backend used).

• The worker now correctly handles malformed messages by throwing away and acknowledging the message,
instead of crashing.

Bugs

• Fixed a race condition that could happen while storing task results in the database.

Documentation

• Reference now split into two sections; API reference and internal module reference.

0.8.4

release-date 2010-02-05 01:52 p.m. CEST

release-by Ask Solem

• Now emits a warning if the –detach argument is used. –detach shouldn’t be used anymore, as it has several not
easily fixed bugs related to it. Instead, use something like start-stop-daemon, supervisor or launchd (macOS).

• Make sure logger class is process aware, even if running Python >= 2.6.

• Error emails are not sent anymore when the task is retried.

0.8.3

release-date 2009-12-22 09:43 a.m. CEST

release-by Ask Solem

• Fixed a possible race condition that could happen when storing/querying task results using the database backend.

• Now has console script entry points in the setup.py file, so tools like zc.buildout will correctly install the
programs celeryd and celeryinit.

644 Chapter 2. Contents

https://pypi.python.org/pypi/setproctitle/
https://docs.python.org/dev/library/exceptions.html#KeyError
https://pypi.python.org/pypi/supervisor/
https://pypi.python.org/pypi/zc.buildout/

Celery Documentation, Release 4.1.0

0.8.2

release-date 2009-11-20 03:40 p.m. CEST

release-by Ask Solem

• QOS Prefetch count wasn’t applied properly, as it was set for every message received (which apparently behaves
like, “receive one more”), instead of only set when our wanted value changed.

0.8.1

release-date 2009-11-16 05:21 p.m. CEST

release-by Ask Solem

Very important note

This release (with carrot 0.8.0) enables AMQP QoS (quality of service), which means the workers will only receive
as many messages as it can handle at a time. As with any release, you should test this version upgrade on your
development servers before rolling it out to production!

Important changes

• If you’re using Python < 2.6 and you use the multiprocessing backport, then multiprocessing version 2.6.2.1 is
required.

• All AMQP_* settings has been renamed to BROKER_*, and in addition AMQP_SERVER has been renamed to
BROKER_HOST, so before where you had:

AMQP_SERVER = 'localhost'
AMQP_PORT = 5678
AMQP_USER = 'myuser'
AMQP_PASSWORD = 'mypassword'
AMQP_VHOST = 'celery'

You need to change that to:

BROKER_HOST = 'localhost'
BROKER_PORT = 5678
BROKER_USER = 'myuser'
BROKER_PASSWORD = 'mypassword'
BROKER_VHOST = 'celery'

• Custom carrot backends now need to include the backend class name, so before where you had:

CARROT_BACKEND = 'mycustom.backend.module'

you need to change it to:

CARROT_BACKEND = 'mycustom.backend.module.Backend'

where Backend is the class name. This is probably “Backend”, as that was the previously implied name.

• New version requirement for carrot: 0.8.0

2.14. History 645

Celery Documentation, Release 4.1.0

Changes

• Incorporated the multiprocessing backport patch that fixes the processName error.

• Ignore the result of PeriodicTask’s by default.

• Added a Redis result store backend

• Allow /etc/default/celeryd to define additional options for the celeryd init-script.

• MongoDB periodic tasks issue when using different time than UTC fixed.

• Windows specific: Negate test for available os.fork (thanks @miracle2k).

• Now tried to handle broken PID files.

• Added a Django test runner to contrib that sets CELERY_ALWAYS_EAGER = True for testing with the database
backend.

• Added a CELERY_CACHE_BACKEND setting for using something other than the Django-global cache backend.

• Use custom implementation of functools.partial for Python 2.4 support (Probably still problems with
running on 2.4, but it will eventually be supported)

• Prepare exception to pickle when saving RETRY status for all backends.

• SQLite no concurrency limit should only be effective if the database backend is used.

0.8.0

release-date 2009-09-22 03:06 p.m. CEST

release-by Ask Solem

Backward incompatible changes

• Add traceback to result value on failure.

Note: If you use the database backend you have to re-create the database table celery_taskmeta.

Contact the Mailing list or IRC channel for help doing this.

• Database tables are now only created if the database backend is used, so if you change back to the database
backend at some point, be sure to initialize tables (django: syncdb, python: celeryinit).

Note: This is only applies if using Django version 1.1 or higher.

• Now depends on carrot version 0.6.0.

• Now depends on python-daemon 1.4.8

Important changes

• Celery can now be used in pure Python (outside of a Django project).

646 Chapter 2. Contents

https://github.com/miracle2k/

Celery Documentation, Release 4.1.0

This means Celery is no longer Django specific.

For more information see the FAQ entry Is Celery for Django only?.

• Celery now supports task retries.

See Retrying for more information.

• We now have an AMQP result store backend.

It uses messages to publish task return value and status. And it’s incredibly fast!

See issue #6 for more info!

• AMQP QoS (prefetch count) implemented:

This to not receive more messages than we can handle.

• Now redirects stdout/stderr to the workers log file when detached

• Now uses inspect.getargspec to only pass default arguments the task supports.

• Add Task.on_success, .on_retry, .on_failure handlers

See celery.task.base.Task.on_success(), celery.task.base.Task.
on_retry(), celery.task.base.Task.on_failure(),

• celery.utils.gen_unique_id: Workaround for http://bugs.python.org/issue4607

• You can now customize what happens at worker start, at process init, etc., by creating your own loaders
(see celery.loaders.default, celery.loaders.djangoapp, celery.loaders).

• Support for multiple AMQP exchanges and queues.

This feature misses documentation and tests, so anyone interested is encouraged to improve this
situation.

• The worker now survives a restart of the AMQP server!

Automatically re-establish AMQP broker connection if it’s lost.

New settings:

– AMQP_CONNECTION_RETRY Set to True to enable connection retries.

– AMQP_CONNECTION_MAX_RETRIES. Maximum number of restarts before we give up. Default:
100.

News

• Fix an incompatibility between python-daemon and multiprocessing, which resulted in the [Errno 10] No
child processes problem when detaching.

• Fixed a possible DjangoUnicodeDecodeError being raised when saving pickled data to Django‘s Mem-
cached cache backend.

• Better Windows compatibility.

• New version of the pickled field (taken from http://www.djangosnippets.org/snippets/513/)

• New signals introduced: task_sent, task_prerun and task_postrun, see celery.signals for more infor-
mation.

• TaskSetResult.join caused TypeError when timeout=None. Thanks Jerzy Kozera. Closes #31

• views.apply should return HttpResponse instance. Thanks to Jerzy Kozera. Closes #32

2.14. History 647

https://github.com/celery/celery/issues/6
http://bugs.python.org/issue4607
http://www.djangosnippets.org/snippets/513/

Celery Documentation, Release 4.1.0

• PeriodicTask: Save conversion of run_every from int to timedelta to the class attribute instead of on the in-
stance.

• Exceptions has been moved to celery.exceptions, but are still available in the previous module.

• Try to rollback transaction and retry saving result if an error happens while setting task status with the
database backend.

• jail() refactored into celery.execute.ExecuteWrapper.

• views.apply now correctly sets mime-type to “application/json”

• views.task_status now returns exception if state is RETRY

• views.task_status now returns traceback if state is FAILURE or RETRY

• Documented default task arguments.

• Add a sensible __repr__ to ExceptionInfo for easier debugging

• Fix documentation typo .. import map -> .. import dmap. Thanks to @mikedizon.

0.6.0

release-date 2009-08-07 06:54 a.m. CET

release-by Ask Solem

Important changes

• Fixed a bug where tasks raising unpickleable exceptions crashed pool workers. So if you’ve had pool
workers mysteriously disappearing, or problems with the worker stopping working, this has been fixed in
this version.

• Fixed a race condition with periodic tasks.

• The task pool is now supervised, so if a pool worker crashes, goes away or stops responding, it is automati-
cally replaced with a new one.

• Task.name is now automatically generated out of class module+name, for example “djangotwit-
ter.tasks.UpdateStatusesTask”. Very convenient. No idea why we didn’t do this before. Some documentation is
updated to not manually specify a task name.

News

• Tested with Django 1.1

• New Tutorial: Creating a click counter using Carrot and Celery

• Database entries for periodic tasks are now created at the workers start-up instead of for each check
(which has been a forgotten TODO/XXX in the code for a long time)

• New settings variable: CELERY_TASK_RESULT_EXPIRES Time (in seconds, or a datetime.timedelta ob-
ject) for when after stored task results are deleted. For the moment this only works for the database
backend.

• The worker now emits a debug log message for which periodic tasks has been launched.

• The periodic task table is now locked for reading while getting periodic task status (MySQL only so far,
seeking patches for other engines)

648 Chapter 2. Contents

https://github.com/mikedizon/

Celery Documentation, Release 4.1.0

• A lot more debugging information is now available by turning on the DEBUG log level (–
loglevel=DEBUG).

• Functions/methods with a timeout argument now works correctly.

• New: celery.strategy.even_time_distribution: With an iterator yielding task args, kwargs tuples, evenly dis-
tribute the processing of its tasks throughout the time window available.

• Log message Unknown task ignored... now has log level ERROR

• Log message when task is received is now emitted for all tasks, even if the task has an ETA (estimated time
of arrival). Also the log message now includes the ETA for the task (if any).

• Acknowledgment now happens in the pool callback. Can’t do ack in the job target, as it’s not pickleable
(can’t share AMQP connection, etc.).

• Added note about .delay hanging in README

• Tests now passing in Django 1.1

• Fixed discovery to make sure app is in INSTALLED_APPS

• Previously overridden pool behavior (process reap, wait until pool worker available, etc.) is now handled
by multiprocessing.Pool itself.

• Convert statistics data to Unicode for use as kwargs. Thanks Lucy!

0.4.1

release-date 2009-07-02 01:42 p.m. CET

release-by Ask Solem

• Fixed a bug with parsing the message options (mandatory, routing_key, priority, immediate)

0.4.0

release-date 2009-07-01 07:29 p.m. CET

release-by Ask Solem

• Adds eager execution. celery.execute.apply‘|‘Task.apply executes the function blocking until the task is done,
for API compatibility it returns a celery.result.EagerResult instance. You can configure Celery to always run
tasks locally by setting the CELERY_ALWAYS_EAGER setting to True.

• Now depends on anyjson.

• 99% coverage using Python coverage 3.0.

0.3.20

release-date 2009-06-25 08:42 p.m. CET

release-by Ask Solem

• New arguments to apply_async (the advanced version of delay_task), countdown and eta;

>>> # Run 10 seconds into the future.
>>> res = apply_async(MyTask, countdown=10);

2.14. History 649

Celery Documentation, Release 4.1.0

>>> # Run 1 day from now
>>> res = apply_async(MyTask,
... eta=datetime.now() + timedelta(days=1))

• Now unlinks stale PID files

• Lots of more tests.

• Now compatible with carrot >= 0.5.0.

• IMPORTANT The subtask_ids attribute on the TaskSetResult instance has been removed. To get this informa-
tion instead use:

>>> subtask_ids = [subtask.id for subtask in ts_res.subtasks]

• Taskset.run() now respects extra message options from the task class.

• Task: Add attribute ignore_result: Don’t store the status and return value. This means you can’t use the cel-
ery.result.AsyncResult to check if the task is done, or get its return value. Only use if you need the performance
and is able live without these features. Any exceptions raised will store the return value/status as usual.

• Task: Add attribute disable_error_emails to disable sending error emails for that task.

• Should now work on Windows (although running in the background won’t work, so using the –detach argument
results in an exception being raised).

• Added support for statistics for profiling and monitoring. To start sending statistics start the worker with the
–statistics option. Then after a while you can dump the results by running ‘python manage.py celerystats. See
celery.monitoring for more information.

• The Celery daemon can now be supervised (i.e., it is automatically restarted if it crashes). To use this start the
worker with the –supervised‘ option (or alternatively -S).

• views.apply: View calling a task.

Example:

http://e.com/celery/apply/task_name/arg1/arg2//?kwarg1=a&kwarg2=b

Warning: Use with caution! Don’t expose this URL to the public without first ensuring that
your code is safe!

• Refactored celery.task. It’s now split into three modules:

– celery.task

Contains apply_async, delay_task, discard_all, and task shortcuts, plus imports objects from
celery.task.base and celery.task.builtins

– celery.task.base

Contains task base classes: Task, PeriodicTask, TaskSet, AsynchronousMapTask, ExecuteRe-
moteTask.

– celery.task.builtins

Built-in tasks: PingTask, DeleteExpiredTaskMetaTask.

650 Chapter 2. Contents

Celery Documentation, Release 4.1.0

0.3.7

release-date 2008-06-16 11:41 p.m. CET

release-by Ask Solem

• IMPORTANT Now uses AMQP‘s basic.consume instead of basic.get. This means we’re no longer polling the
broker for new messages.

• IMPORTANT Default concurrency limit is now set to the number of CPUs available on the system.

• IMPORTANT tasks.register: Renamed task_name argument to name, so:

>>> tasks.register(func, task_name='mytask')

has to be replaced with:

>>> tasks.register(func, name='mytask')

• The daemon now correctly runs if the pidfile is stale.

• Now compatible with carrot 0.4.5

• Default AMQP connection timeout is now 4 seconds.

• AsyncResult.read() was always returning True.

• Only use README as long_description if the file exists so easy_install doesn’t break.

• celery.view: JSON responses now properly set its mime-type.

• apply_async now has a connection keyword argument so you can re-use the same AMQP connection if you
want to execute more than one task.

• Handle failures in task_status view such that it won’t throw 500s.

• Fixed typo AMQP_SERVER in documentation to AMQP_HOST.

• Worker exception emails sent to administrators now works properly.

• No longer depends on django, so installing celery won’t affect the preferred Django version installed.

• Now works with PostgreSQL (psycopg2) again by registering the PickledObject field.

• Worker: Added –detach option as an alias to –daemon, and it’s the term used in the documentation from now
on.

• Make sure the pool and periodic task worker thread is terminated properly at exit (so Control-cworks again).

• Now depends on python-daemon.

• Removed dependency to simplejson

• Cache Backend: Re-establishes connection for every task process if the Django cache backend is python-
memcached/libmemcached.

• Tyrant Backend: Now re-establishes the connection for every task executed.

0.3.3

release-date 2009-06-08 01:07 p.m. CET

release-by Ask Solem

• The PeriodicWorkController now sleeps for 1 second between checking for periodic tasks to execute.

2.14. History 651

https://pypi.python.org/pypi/psycopg2/
https://pypi.python.org/pypi/python-memcached/
https://pypi.python.org/pypi/python-memcached/
https://pypi.python.org/pypi/libmemcached/

Celery Documentation, Release 4.1.0

0.3.2

release-date 2009-06-08 01:07 p.m. CET

release-by Ask Solem

• worker: Added option –discard: Discard (delete!) all waiting messages in the queue.

• Worker: The –wakeup-after option wasn’t handled as a float.

0.3.1

release-date 2009-06-08 01:07 p.m. CET

release-by Ask Solem

• The PeriodicTask worker is now running in its own thread instead of blocking the TaskController loop.

• Default QUEUE_WAKEUP_AFTER has been lowered to 0.1 (was 0.3)

0.3.0

release-date 2009-06-08 12:41 p.m. CET

release-by Ask Solem

Warning: This is a development version, for the stable release, please see versions 0.2.x.

VERY IMPORTANT: Pickle is now the encoder used for serializing task arguments, so be sure to flush your task
queue before you upgrade.

• IMPORTANT TaskSet.run() now returns a celery.result.TaskSetResult instance, which lets you
inspect the status and return values of a taskset as it was a single entity.

• IMPORTANT Celery now depends on carrot >= 0.4.1.

• The Celery daemon now sends task errors to the registered admin emails. To turn off this feature, set
SEND_CELERY_TASK_ERROR_EMAILS to False in your settings.py. Thanks to Grégoire Cachet.

• You can now run the Celery daemon by using manage.py:

$ python manage.py celeryd

Thanks to Grégoire Cachet.

• Added support for message priorities, topic exchanges, custom routing keys for tasks. This means we’ve intro-
duced celery.task.apply_async, a new way of executing tasks.

You can use celery.task.delay and celery.Task.delay like usual, but if you want greater control over the message
sent, you want celery.task.apply_async and celery.Task.apply_async.

This also means the AMQP configuration has changed. Some settings has been renamed, while others are new:

– CELERY_AMQP_EXCHANGE

– CELERY_AMQP_PUBLISHER_ROUTING_KEY

– CELERY_AMQP_CONSUMER_ROUTING_KEY

– CELERY_AMQP_CONSUMER_QUEUE

652 Chapter 2. Contents

Celery Documentation, Release 4.1.0

– CELERY_AMQP_EXCHANGE_TYPE

See the entry Can I send some tasks to only some servers? in the FAQ for more information.

• Task errors are now logged using log level ERROR instead of INFO, and stack-traces are dumped. Thanks to
Grégoire Cachet.

• Make every new worker process re-establish it’s Django DB connection, this solving the “MySQL connection
died?” exceptions. Thanks to Vitaly Babiy and Jirka Vejrazka.

• IMPORTANT Now using pickle to encode task arguments. This means you now can pass complex Python
objects to tasks as arguments.

• Removed dependency to yadayada.

• Added a FAQ, see docs/faq.rst.

• Now converts any Unicode keys in task kwargs to regular strings. Thanks Vitaly Babiy.

• Renamed the TaskDaemon to WorkController.

• celery.datastructures.TaskProcessQueue is now renamed to celery.pool.TaskPool.

• The pool algorithm has been refactored for greater performance and stability.

0.2.0

release-date 2009-05-20 05:14 p.m. CET

release-by Ask Solem

• Final release of 0.2.0

• Compatible with carrot version 0.4.0.

• Fixes some syntax errors related to fetching results from the database backend.

0.2.0-pre3

release-date 2009-05-20 05:14 p.m. CET

release-by Ask Solem

• Internal release. Improved handling of unpickleable exceptions, get_result now tries to recreate something
looking like the original exception.

0.2.0-pre2

release-date 2009-05-20 01:56 p.m. CET

release-by Ask Solem

• Now handles unpickleable exceptions (like the dynamically generated subclasses of
django.core.exception.MultipleObjectsReturned).

2.14. History 653

Celery Documentation, Release 4.1.0

0.2.0-pre1

release-date 2009-05-20 12:33 p.m. CET

release-by Ask Solem

• It’s getting quite stable, with a lot of new features, so bump version to 0.2. This is a pre-release.

• celery.task.mark_as_read() and celery.task.mark_as_failure() has been removed. Use cel-
ery.backends.default_backend.mark_as_read(), and celery.backends.default_backend.mark_as_failure()
instead.

0.1.15

release-date 2009-05-19 04:13 p.m. CET

release-by Ask Solem

• The Celery daemon was leaking AMQP connections, this should be fixed, if you have any problems with too
many files open (like emfile errors in rabbit.log, please contact us!

0.1.14

release-date 2009-05-19 01:08 p.m. CET

release-by Ask Solem

• Fixed a syntax error in the TaskSet class (no such variable TimeOutError).

0.1.13

release-date 2009-05-19 12:36 p.m. CET

release-by Ask Solem

• Forgot to add yadayada to install requirements.

• Now deletes all expired task results, not just those marked as done.

• Able to load the Tokyo Tyrant backend class without django configuration, can specify tyrant settings directly
in the class constructor.

• Improved API documentation

• Now using the Sphinx documentation system, you can build the html documentation by doing:

$ cd docs
$ make html

and the result will be in docs/_build/html.

0.1.12

release-date 2009-05-18 04:38 p.m. CET

release-by Ask Solem

654 Chapter 2. Contents

Celery Documentation, Release 4.1.0

• delay_task() etc. now returns celery.task.AsyncResult object, which lets you check the result and any failure
that might’ve happened. It kind of works like the multiprocessing.AsyncResult class returned by multiprocess-
ing.Pool.map_async.

• Added dmap() and dmap_async(). This works like the multiprocessing.Pool versions except they’re tasks
distributed to the Celery server. Example:

>>> from celery.task import dmap
>>> import operator
>>> dmap(operator.add, [[2, 2], [4, 4], [8, 8]])
>>> [4, 8, 16]

>>> from celery.task import dmap_async
>>> import operator
>>> result = dmap_async(operator.add, [[2, 2], [4, 4], [8, 8]])
>>> result.ready()
False
>>> time.sleep(1)
>>> result.ready()
True
>>> result.result
[4, 8, 16]

• Refactored the task meta-data cache and database backends, and added a new backend for Tokyo Tyrant. You
can set the backend in your django settings file.

Example:

CELERY_RESULT_BACKEND = 'database'; # Uses the database
CELERY_RESULT_BACKEND = 'cache'; # Uses the django cache framework
CELERY_RESULT_BACKEND = 'tyrant'; # Uses Tokyo Tyrant
TT_HOST = 'localhost'; # Hostname for the Tokyo Tyrant server.
TT_PORT = 6657; # Port of the Tokyo Tyrant server.

0.1.11

release-date 2009-05-12 02:08 p.m. CET

release-by Ask Solem

• The logging system was leaking file descriptors, resulting in servers stopping with the EMFILES (too many
open files) error (fixed).

0.1.10

release-date 2009-05-11 12:46 p.m. CET

release-by Ask Solem

• Tasks now supports both positional arguments and keyword arguments.

• Requires carrot 0.3.8.

• The daemon now tries to reconnect if the connection is lost.

0.1.8

release-date 2009-05-07 12:27 p.m. CET

2.14. History 655

Celery Documentation, Release 4.1.0

release-by Ask Solem

• Better test coverage

• More documentation

• The worker doesn’t emit Queue is empty message if settings.CELERYD_EMPTY_MSG_EMIT_EVERY is 0.

0.1.7

release-date 2009-04-30 01:50 p.m. CET

release-by Ask Solem

• Added some unit tests

• Can now use the database for task meta-data (like if the task has been executed or not). Set set-
tings.CELERY_TASK_META

• Can now run python setup.py test to run the unit tests from within the tests project.

• Can set the AMQP exchange/routing key/queue using settings.CELERY_AMQP_EXCHANGE, set-
tings.CELERY_AMQP_ROUTING_KEY, and settings.CELERY_AMQP_CONSUMER_QUEUE.

0.1.6

release-date 2009-04-28 02:13 p.m. CET

release-by Ask Solem

• Introducing TaskSet. A set of subtasks is executed and you can find out how many, or if all them, are done
(excellent for progress bars and such)

• Now catches all exceptions when running Task.__call__, so the daemon doesn’t die. This doesn’t happen for
pure functions yet, only Task classes.

• autodiscover() now works with zipped eggs.

• Worker: Now adds current working directory to sys.path for convenience.

• The run_every attribute of PeriodicTask classes can now be a datetime.timedelta() object.

• Worker: You can now set the DJANGO_PROJECT_DIR variable for the worker and it will add that to sys.path
for easy launching.

• Can now check if a task has been executed or not via HTTP.

• You can do this by including the Celery urls.py into your project,

>>> url(r'^celery/$', include('celery.urls'))

then visiting the following URL:

http://mysite/celery/$task_id/done/

this will return a JSON dictionary, for example:

{"task": {"id": "TASK_ID", "executed": true}}

• delay_task now returns string id, not uuid.UUID instance.

• Now has PeriodicTasks, to have cron like functionality.

656 Chapter 2. Contents

Celery Documentation, Release 4.1.0

• Project changed name from crunchy to celery. The details of the name change request is in
docs/name_change_request.txt.

0.1.0

release-date 2009-04-24 11:28 a.m. CET

release-by Ask Solem

• Initial release

Sphinx started sucking by removing images from _static, so we need to add them here into actual content to ensure
they are included :-(

Glossary

ack Short for acknowledged.

acknowledged Workers acknowledge messages to signify that a message has been handled. Failing to acknowledge
a message will cause the message to be redelivered. Exactly when a transaction is considered a failure varies by
transport. In AMQP the transaction fails when the connection/channel is closed (or lost), but in Redis/SQS the
transaction times out after a configurable amount of time (the visibility_timeout).

apply Originally a synonym to call but used to signify that a function is executed by the current process.

billiard Fork of the Python multiprocessing library containing improvements required by Celery.

calling Sends a task message so that the task function is executed by a worker.

cipater Celery release 3.1 named after song by Autechre (http://www.youtube.com/watch?v=OHsaqUr_33Y)

context The context of a task contains information like the id of the task, it’s arguments and what queue it was
delivered to. It can be accessed as the tasks request attribute. See Task Request

early ack Short for early acknowledgment

early acknowledgment Task is acknowledged just-in-time before being executed, meaning the task won’t be rede-
livered to another worker if the machine loses power, or the worker instance is abruptly killed, mid-execution.

Configured using task_acks_late.

ETA “Estimated Time of Arrival”, in Celery and Google Task Queue, etc., used as the term for a delayed message
that should not be processed until the specified ETA time. See ETA and Countdown.

executing Workers execute task requests.

idempotent Idempotence is a mathematical property that describes a function that can be called multiple times
without changing the result. Practically it means that a function can be repeated many times without unintended
effects, but not necessarily side-effect free in the pure sense (compare to nullipotent).

Further reading: https://en.wikipedia.org/wiki/Idempotent

2.15. Glossary 657

http://www.youtube.com/watch?v=OHsaqUr_33Y
https://en.wikipedia.org/wiki/Idempotent

Celery Documentation, Release 4.1.0

kombu Python messaging library used by Celery to send and receive messages.

late ack Short for late acknowledgment

late acknowledgment Task is acknowledged after execution (both if successful, or if the task is raising an error),
which means the task will be redelivered to another worker in the event of the machine losing power, or the
worker instance being killed mid-execution.

Configured using task_acks_late.

nullipotent describes a function that’ll have the same effect, and give the same result, even if called zero or multiple
times (side-effect free). A stronger version of idempotent.

pidbox A process mailbox, used to implement remote control commands.

prefetch count Maximum number of unacknowledged messages a consumer can hold and if exceeded the transport
shouldn’t deliver any more messages to that consumer. See Prefetch Limits.

prefetch multiplier The prefetch count is configured by using the worker_prefetch_multiplier setting,
which is multiplied by the number of pool slots (threads/processes/greenthreads).

reentrant describes a function that can be interrupted in the middle of execution (e.g., by hardware interrupt or
signal), and then safely called again later. Reentrancy isn’t the same as idempotence as the return value doesn’t
have to be the same given the same inputs, and a reentrant function may have side effects as long as it can be
interrupted; An idempotent function is always reentrant, but the reverse may not be true.

request Task messages are converted to requests within the worker. The request information is also available as the
task’s context (the task.request attribute).

658 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

659

Celery Documentation, Release 4.1.0

660 Chapter 3. Indices and tables

Bibliography

[AOC1] Breshears, Clay. Section 2.2.1, “The Art of Concurrency”. O’Reilly Media, Inc. May 15, 2009. ISBN-13
978-0-596-52153-0.

661

Celery Documentation, Release 4.1.0

662 Bibliography

Python Module Index

c
celery, 310
celery._state, 507
celery.app, 320
celery.app.amqp, 329
celery.app.annotations, 475
celery.app.backends, 336
celery.app.builtins, 337
celery.app.control, 331
celery.app.defaults, 331
celery.app.events, 337
celery.app.log, 337
celery.app.registry, 336
celery.app.routes, 475
celery.app.task, 321
celery.app.trace, 474
celery.app.utils, 338
celery.apps.beat, 383
celery.apps.multi, 384
celery.apps.worker, 382
celery.backends, 450
celery.backends.amqp, 460
celery.backends.async, 451
celery.backends.base, 450
celery.backends.cache, 468
celery.backends.cassandra, 472
celery.backends.consul, 468
celery.backends.couchbase, 472
celery.backends.couchdb, 469
celery.backends.database, 460
celery.backends.database.models, 479
celery.backends.database.session, 479
celery.backends.dynamodb, 473
celery.backends.elasticsearch, 470
celery.backends.filesystem, 473
celery.backends.mongodb, 469
celery.backends.redis, 470
celery.backends.riak, 471
celery.backends.rpc, 452

celery.beat, 380
celery.bin.amqp, 413
celery.bin.base, 400
celery.bin.beat, 410
celery.bin.call, 419
celery.bin.celery, 404
celery.bin.control, 419
celery.bin.events, 411
celery.bin.graph, 415
celery.bin.list, 420
celery.bin.logtool, 412
celery.bin.migrate, 420
celery.bin.multi, 416
celery.bin.purge, 421
celery.bin.result, 421
celery.bin.shell, 422
celery.bin.upgrade, 422
celery.bin.worker, 407
celery.bootsteps, 339
celery.concurrency, 446
celery.concurrency.base, 448
celery.concurrency.eventlet, 447
celery.concurrency.gevent, 447
celery.concurrency.prefork, 446
celery.concurrency.solo, 446
celery.contrib.abortable, 361
celery.contrib.migrate, 363
celery.contrib.rdb, 368
celery.contrib.sphinx, 365
celery.contrib.testing.app, 367
celery.contrib.testing.manager, 367
celery.contrib.testing.mocks, 368
celery.contrib.testing.worker, 366
celery.events, 369
celery.events.cursesmon, 477
celery.events.dispatcher, 373
celery.events.dumper, 479
celery.events.event, 374
celery.events.receiver, 372
celery.events.snapshot, 477

663

Celery Documentation, Release 4.1.0

celery.events.state, 375
celery.exceptions, 355
celery.loaders, 357
celery.loaders.app, 358
celery.loaders.base, 358
celery.loaders.default, 358
celery.platforms, 504
celery.result, 341
celery.schedules, 349
celery.security, 353
celery.security.certificate, 476
celery.security.key, 476
celery.security.serialization, 476
celery.security.utils, 477
celery.signals, 353
celery.states, 359
celery.utils, 480
celery.utils.abstract, 481
celery.utils.collections, 481
celery.utils.debug, 354
celery.utils.deprecated, 485
celery.utils.dispatch, 501
celery.utils.dispatch.signal, 503
celery.utils.dispatch.weakref_backports,

504
celery.utils.functional, 486
celery.utils.graph, 488
celery.utils.imports, 499
celery.utils.iso8601, 494
celery.utils.log, 500
celery.utils.nodenames, 485
celery.utils.objects, 490
celery.utils.saferepr, 494
celery.utils.serialization, 495
celery.utils.sysinfo, 496
celery.utils.term, 491
celery.utils.text, 501
celery.utils.threads, 496
celery.utils.time, 492
celery.utils.timer2, 497
celery.worker, 385
celery.worker.autoscale, 445
celery.worker.components, 443
celery.worker.consumer, 390
celery.worker.consumer.agent, 393
celery.worker.consumer.connection, 394
celery.worker.consumer.consumer, 394
celery.worker.consumer.control, 396
celery.worker.consumer.events, 396
celery.worker.consumer.gossip, 396
celery.worker.consumer.heart, 397
celery.worker.consumer.mingle, 397
celery.worker.consumer.tasks, 398
celery.worker.control, 444

celery.worker.heartbeat, 444
celery.worker.loops, 444
celery.worker.pidbox, 445
celery.worker.request, 386
celery.worker.state, 388
celery.worker.strategy, 389
celery.worker.worker, 398

664 Python Module Index

Index

Symbols
–autoscale

celery-worker command line option, 409
–compat

celery-upgrade command line option, 405
–config

celery command line option, 404
–countdown

celery-call command line option, 406
–detach

celery-beat command line option, 410
celery-events command line option, 411
celery-worker command line option, 409

–django
celery-upgrade command line option, 405

–eta
celery-call command line option, 406

–eventlet
celery-shell command line option, 406

–exchange
celery-call command line option, 406

–executable
celery command line option, 404
celery-beat command line option, 410
celery-events command line option, 412
celery-worker command line option, 409

–expires
celery-call command line option, 406

–gevent
celery-shell command line option, 406

–gid
celery command line option, 404
celery-beat command line option, 410
celery-events command line option, 411
celery-worker command line option, 409

–heartbeat-interval
celery-worker command line option, 408

–help
celery command line option, 404

–loader
celery command line option, 404

–max-interval
celery-beat command line option, 410

–max-memory-per-child
celery-worker command line option, 408

–max-tasks-per-child
celery-worker command line option, 408

–no-backup
celery-upgrade command line option, 405

–pidfile
celery command line option, 404
celery-beat command line option, 410
celery-events command line option, 411
celery-worker command line option, 409

–prefetch-multiplier
celery-worker command line option, 408

–purge
celery-worker command line option, 408

–queue
celery-call command line option, 406

–routing-key
celery-call command line option, 406

–scheduler
celery-worker command line option, 408

–serializer
celery-call command line option, 406

–soft-time-limit
celery-worker command line option, 408

–time-limit
celery-worker command line option, 408

–traceback
celery-result command line option, 406

–uid
celery command line option, 404
celery-beat command line option, 410
celery-events command line option, 411
celery-worker command line option, 409

–umask
celery command line option, 404

665

Celery Documentation, Release 4.1.0

celery-beat command line option, 410
celery-events command line option, 412
celery-worker command line option, 409

–without-gossip
celery-worker command line option, 408

–without-heartbeat
celery-worker command line option, 408

–without-mingle
celery-worker command line option, 408

–workdir
celery command line option, 404
celery-beat command line option, 410
celery-events command line option, 412
celery-worker command line option, 409

-A, –app
celery command line option, 404

-B, –beat
celery-worker command line option, 407

-B, –bpython
celery-shell command line option, 406

-C, –no-color
celery command line option, 404

-E, –task-events
celery-worker command line option, 408

-F, –forever
celery-migrate command line option, 405

-F, –freq, –frequency
celery-events command line option, 411

-I, –include
celery-worker command line option, 408

-I, –ipython
celery-shell command line option, 406

-O
celery-worker command line option, 408

-P, –pool
celery-worker command line option, 407

-P, –python
celery-shell command line option, 406

-Q, –queues
celery-migrate command line option, 405
celery-worker command line option, 408

-S, –scheduler
celery-beat command line option, 410

-S, –statedb
celery-worker command line option, 408

-T, –tasks
celery-migrate command line option, 405

-T, –without-tasks
celery-shell command line option, 406

-X, –exclude-queues
celery-worker command line option, 408

-a, –ack-messages
celery-migrate command line option, 405

-a, –args

celery-call command line option, 406
-b, –broker

celery command line option, 404
-c, –camera

celery-events command line option, 411
-c, –concurrency

celery-worker command line option, 407
-d, –destination

celery-control command line option, 405
celery-inspect command line option, 405

-d, –dump
celery-events command line option, 411

-f, –force
celery-purge command line option, 406

-f, –logfile
celery command line option, 404
celery-beat command line option, 410
celery-events command line option, 411
celery-worker command line option, 409

-j, –json
celery-control command line option, 405
celery-inspect command line option, 405

-k, –kwargs
celery-call command line option, 406

-l, –loglevel
celery-beat command line option, 410
celery-events command line option, 411
celery-worker command line option, 409

-n, –hostname
celery-worker command line option, 407

-n, –limit
celery-migrate command line option, 405

-q, –quiet
celery command line option, 404

-r, –maxrate
celery-events command line option, 411

-s, –schedule
celery-beat command line option, 410
celery-worker command line option, 408

-t, –task
celery-result command line option, 406

-t, –timeout
celery-control command line option, 405
celery-inspect command line option, 405

-t, -timeout
celery-migrate command line option, 405

A
abbr() (in module celery.utils.text), 501
abbrtask() (in module celery.utils.text), 501
abcast() (celery.app.control.Control.Mailbox method),

332
abort() (celery.contrib.abortable.AbortableAsyncResult

method), 362

666 Index

Celery Documentation, Release 4.1.0

AbortableAsyncResult (class in celery.contrib.abortable),
362

AbortableTask (class in celery.contrib.abortable), 362
abstract (celery.app.task.Task attribute), 321
abstract (celery.contrib.abortable.AbortableTask at-

tribute), 363
accept (celery.app.control.Control.Mailbox attribute), 332
accept (celery.backends.amqp.AMQPBackend.Consumer

attribute), 460
accept (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

attribute), 456
accept_content

setting, 186
ack, 657
acknowledge() (celery.worker.request.Request method),

386
acknowledged, 657
acknowledged (celery.worker.request.Request attribute),

386
acks_late (celery.app.task.Task attribute), 321
acks_late (Task attribute), 56
acquire() (celery.platforms.Pidfile method), 505
ACTIONS (celery.bin.base.Option attribute), 403
active (celery.concurrency.base.BasePool attribute), 449
active (celery.events.state.State.Worker attribute), 378
active (celery.events.state.Worker attribute), 375
active() (celery.app.control.Inspect method), 331
active_queues

control, 101
active_queues() (celery.app.control.Inspect method), 331
active_requests (in module celery.worker.state), 388
add() (celery.app.amqp.Queues method), 330
add() (celery.beat.Scheduler method), 381
add() (celery.bin.base.Extensions method), 400
add() (celery.result.ResultSet method), 346
add() (celery.utils.collections.LimitedSet method), 484
add() (hub method), 181
add_append_opt() (celery.bin.base.Command method),

400
add_arc() (celery.utils.graph.DependencyGraph method),

489
add_arguments() (celery.bin.base.Command method),

400
add_arguments() (celery.bin.beat.beat method), 411
add_arguments() (celery.bin.call.call method), 419
add_arguments() (celery.bin.events.events method), 412
add_arguments() (celery.bin.migrate.migrate method),

421
add_arguments() (celery.bin.purge.purge method), 421
add_arguments() (celery.bin.result.result method), 421
add_arguments() (celery.bin.shell.shell method), 422
add_arguments() (celery.bin.upgrade.upgrade method),

422
add_arguments() (celery.bin.worker.worker method), 409

add_cert() (celery.security.certificate.CertStore method),
476

add_compat() (celery.app.amqp.Queues method), 330
add_compat_options() (celery.bin.base.Command

method), 400
add_consumer

control, 100
add_consumer() (celery.app.control.Control method), 332
add_defaults() (celery.Celery method), 314
add_defaults() (celery.utils.collections.ChainMap

method), 482
add_edge() (celery.utils.graph.DependencyGraph

method), 489
add_pending_result() (cel-

ery.backends.async.AsyncBackendMixin
method), 451

add_pending_results() (cel-
ery.backends.async.AsyncBackendMixin
method), 451

add_periodic_task() (celery.Celery method), 314
add_preload_arguments() (celery.bin.base.Command

method), 400
add_queue() (celery.backends.amqp.AMQPBackend.Consumer

method), 460
add_queue() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

method), 457
add_reader() (hub method), 181
add_task_queue() (celery.worker.consumer.Consumer

method), 390
add_task_queue() (celery.worker.consumer.consumer.Consumer

method), 394
add_to_chord() (celery.app.task.Task method), 321
add_to_chord() (celery.backends.redis.RedisBackend

method), 471
add_writer() (hub method), 182
adjust() (celery.beat.Scheduler method), 381
adjust_timestamp() (in module celery.utils.time), 494
after_return(), 62
after_return() (celery.app.task.Task method), 322
after_setup_logger

signal, 162
after_setup_task_logger

signal, 163
after_task_publish

signal, 155
Agent (class in celery.worker.consumer), 391
Agent (class in celery.worker.consumer.agent), 393
alert() (celery.events.cursesmon.CursesMonitor method),

477
alert_remote_control_reply() (cel-

ery.events.cursesmon.CursesMonitor method),
477

alias (celery.bootsteps.Blueprint attribute), 340
alias (celery.bootsteps.Step attribute), 340

Index 667

Celery Documentation, Release 4.1.0

alive (celery.events.state.State.Worker attribute), 378
alive (celery.events.state.Worker attribute), 375
alive() (celery.apps.multi.Node method), 384
alive() (celery.bin.multi.MultiTool.MultiParser.Node

method), 417
alive_workers() (celery.events.state.State method), 379
ALL_STATES

state, 360
already_setup (celery.app.log.Logging attribute), 337
AlreadyRegistered, 357
alt (celery.app.defaults.Option attribute), 331
ALWAYS_TYPED_ACTIONS (celery.bin.base.Option

attribute), 403
AlwaysEagerIgnored, 356
amqp (celery.bin.amqp.AMQShell attribute), 413
amqp (celery.Celery attribute), 311
AMQP (class in celery.app.amqp), 329
amqp (class in celery.bin.amqp), 415
AMQPAdmin (class in celery.bin.amqp), 413
AMQPBackend (class in celery.backends.amqp), 460
AMQPBackend.BacklogLimitExceeded, 460
AMQPBackend.Consumer (class in cel-

ery.backends.amqp), 460
AMQPBackend.Consumer.ContentDisallowed, 460
AMQPBackend.Exchange (class in cel-

ery.backends.amqp), 462
AMQPBackend.Producer (class in cel-

ery.backends.amqp), 465
AMQShell (class in celery.bin.amqp), 413
annotate() (celery.app.annotations.MapAnnotation

method), 475
annotate_any() (celery.app.annotations.MapAnnotation

method), 475
anon_nodename() (in module celery.utils.nodenames),

485
app, 171, 175
app (celery.app.control.Inspect attribute), 331
app (celery.apps.beat.Beat attribute), 383
app (celery.events.dispatcher.EventDispatcher attribute),

373
app (celery.events.EventDispatcher attribute), 370
app (celery.events.EventReceiver attribute), 371
app (celery.events.receiver.EventReceiver attribute), 372
app (celery.result.AsyncResult attribute), 342
app (celery.result.ResultSet attribute), 346
app (celery.schedules.crontab attribute), 351
app (celery.utils.abstract.CallableSignature attribute), 481
app (celery.worker.request.Request attribute), 386
app (celery.worker.WorkController attribute), 385
app (celery.worker.worker.WorkController attribute), 399
app_or_default() (in module celery.app), 321
AppLoader (class in celery.loaders.app), 358
apply, 657
apply() (celery.app.task.Task method), 322

apply() (celery.bootsteps.Blueprint method), 340
apply() (celery.utils.abstract.CallableTask method), 481
apply_async() (celery.app.task.Task method), 322
apply_async() (celery.beat.Scheduler method), 381
apply_async() (celery.concurrency.base.BasePool

method), 449
apply_async() (celery.utils.abstract.CallableTask

method), 481
apply_chord() (celery.backends.redis.RedisBackend

method), 471
apply_entry() (celery.beat.Scheduler method), 381
apply_eta_task(), 177
apply_eta_task() (celery.worker.consumer.Consumer

method), 390
apply_eta_task() (celery.worker.consumer.consumer.Consumer

method), 394
apply_target() (in module celery.concurrency.base), 450
appstr() (in module celery.app.utils), 339
args (celery.beat.ScheduleEntry attribute), 380
args (celery.bin.amqp.Spec attribute), 414
args (celery.bin.base.Command attribute), 400
args (celery.bin.call.call attribute), 419
args (celery.bin.graph.graph attribute), 415
args (celery.bin.list.list_ attribute), 420
args (celery.bin.logtool.logtool attribute), 413
args (celery.bin.migrate.migrate attribute), 421
args (celery.bin.result.result attribute), 422
args (celery.concurrency.base.BasePool.Timer.Entry at-

tribute), 448
args (celery.events.state.State.Task attribute), 377
args (celery.events.state.Task attribute), 376
args (celery.utils.abstract.CallableSignature attribute),

481
args (celery.utils.timer2.Entry attribute), 497
args (celery.utils.timer2.Timer.Entry attribute), 498
args_name (celery.bin.base.Command attribute), 400
args_name (celery.bin.call.call attribute), 419
argsrepr (celery.worker.request.Request attribute), 386
arguments (celery.backends.amqp.AMQPBackend.Exchange

attribute), 464
arguments (celery.backends.rpc.RPCBackend.Exchange

attribute), 453
argv_with_executable (celery.apps.multi.Node attribute),

384
argv_with_executable (cel-

ery.bin.multi.MultiTool.MultiParser.Node
attribute), 417

as_dict() (celery.events.state.State.Task method), 377
as_dict() (celery.events.state.Task method), 376
as_dict() (celery.utils.collections.LimitedSet method),

484
as_tuple() (celery.result.AsyncResult method), 342
as_tuple() (celery.result.GroupResult method), 348

668 Index

Celery Documentation, Release 4.1.0

as_uri() (celery.backends.amqp.AMQPBackend method),
467

as_uri() (celery.backends.base.DisabledBackend
method), 450

as_uri() (celery.backends.cache.CacheBackend method),
468

as_uri() (celery.backends.cassandra.CassandraBackend
method), 472

as_uri() (celery.backends.mongodb.MongoBackend
method), 469

as_uri() (celery.backends.rpc.RPCBackend method), 459
ask() (celery.bin.base.Command method), 400
assert_accepted() (celery.contrib.testing.manager.ManagerMixin

method), 367
assert_received() (celery.contrib.testing.manager.ManagerMixin

method), 367
assert_task_worker_state() (cel-

ery.contrib.testing.manager.ManagerMixin
method), 367

AsyncBackendMixin (class in celery.backends.async),
451

AsyncResult (celery.Celery attribute), 315
AsyncResult (class in celery.result), 342
AsyncResult() (celery.app.task.Task method), 321
AsyncResult() (celery.contrib.abortable.AbortableTask

method), 363
AsyncResult.TimeoutError, 342
asynloop() (in module celery.worker.loops), 444
ATTR (celery.utils.graph.DOT attribute), 488
attr() (celery.utils.graph.GraphFormatter method), 489
AttributeDict (class in celery.utils.collections), 481
AttributeDictMixin (class in celery.utils.collections), 481
attrs (celery.backends.amqp.AMQPBackend.Exchange

attribute), 464
attrs (celery.backends.rpc.RPCBackend.Exchange at-

tribute), 454
ATTRS (celery.bin.base.Option attribute), 403
attrs() (celery.utils.graph.GraphFormatter method), 489
ATTRSEP (celery.utils.graph.DOT attribute), 488
auto_declare (celery.backends.amqp.AMQPBackend.Consumer

attribute), 461
auto_declare (celery.backends.amqp.AMQPBackend.Producer

attribute), 465
auto_declare (celery.backends.rpc.RPCBackend.Consumer

attribute), 452
auto_declare (celery.backends.rpc.RPCBackend.Producer

attribute), 455
auto_declare (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

attribute), 457
auto_delete (celery.backends.amqp.AMQPBackend.Exchange

attribute), 463, 464
auto_delete (celery.backends.rpc.RPCBackend.Exchange

attribute), 453, 454
autodiscover_tasks() (celery.Celery method), 313

autodiscover_tasks() (celery.loaders.base.BaseLoader
method), 358

autoregister (celery.app.task.Task attribute), 324
autoreloader, 173
autoscale() (celery.app.control.Control method), 333
autoscaler, 173
Autoscaler (class in celery.worker.autoscale), 445
available (celery.utils.sysinfo.df attribute), 496
AWS_ACCESS_KEY_ID, 16
aws_region (celery.backends.dynamodb.DynamoDBBackend

attribute), 473
AWS_SECRET_ACCESS_KEY, 16

B
backend (celery.app.task.Task attribute), 324
backend (celery.Celery attribute), 311
backend (celery.result.AsyncResult attribute), 342
backend (celery.result.ResultSet attribute), 346
backend (Task attribute), 56
background (celery.events.cursesmon.CursesMonitor at-

tribute), 477
BacklogLimitExceeded, 452, 460
banner() (celery.apps.beat.Beat method), 384
BaseBackend (class in celery.backends.base), 450
BaseLoader (class in celery.loaders.base), 358
BasePool (class in celery.concurrency.base), 448
BasePool.Timer (class in celery.concurrency.base), 448
BasePool.Timer.Entry (class in celery.concurrency.base),

448
BaseResultConsumer (class in celery.backends.async),

451
Beat (celery.Celery attribute), 315
Beat (class in celery.apps.beat), 383
beat (class in celery.bin.beat), 410
Beat (class in celery.worker.components), 443
Beat.Service (class in celery.apps.beat), 383
beat_embedded_init

signal, 161
beat_init

signal, 161
beat_max_loop_interval

setting, 215
beat_schedule

setting, 215
beat_schedule_filename

setting, 215
beat_scheduler

setting, 215
beat_sync_every

setting, 215
before_task_publish

signal, 154
bgThread (class in celery.utils.threads), 496
billiard, 657

Index 669

Celery Documentation, Release 4.1.0

bind() (queue method), 126
bind_to() (celery.backends.amqp.AMQPBackend.Exchange

method), 464
bind_to() (celery.backends.rpc.RPCBackend.Exchange

method), 454
binding (celery.backends.rpc.RPCBackend attribute), 459
binding() (celery.backends.amqp.AMQPBackend.Exchange

method), 464
binding() (celery.backends.rpc.RPCBackend.Exchange

method), 454
black() (celery.utils.term.colored method), 491
blink() (celery.utils.term.colored method), 491
BlockingPool (celery.concurrency.prefork.TaskPool at-

tribute), 446
blue() (celery.utils.term.colored method), 491
blueprint, 171, 175
blueprint (celery.worker.WorkController attribute), 385
blueprint (celery.worker.worker.WorkController at-

tribute), 399
Blueprint (class in celery.bootsteps), 339
body (celery.worker.request.Request attribute), 386
body() (celery.utils.threads.bgThread method), 496
body() (celery.worker.autoscale.Autoscaler method), 445
body_can_be_buffer (celery.concurrency.base.BasePool

attribute), 449
body_can_be_buffer (celery.concurrency.solo.TaskPool

attribute), 446
bold() (celery.utils.term.colored method), 491
bootsteps() (celery.bin.graph.graph method), 415
bright() (celery.utils.term.colored method), 491
broadcast() (celery.app.control.Control method), 333
broker_connection_max_retries

setting, 208
broker_connection_retry

setting, 208
broker_connection_timeout

setting, 208
broker_failover_strategy

setting, 206
broker_heartbeat

setting, 206
broker_heartbeat_checkrate

setting, 207
broker_login_method

setting, 208
broker_pool_limit

setting, 208
broker_read_url

setting, 206
broker_read_url (celery.app.utils.Settings attribute), 338
broker_transport_options

setting, 208
broker_url

setting, 205

broker_url (celery.app.utils.Settings attribute), 338
broker_use_ssl

setting, 207
broker_write_url

setting, 206
broker_write_url (celery.app.utils.Settings attribute), 338
bucket (celery.backends.couchbase.CouchbaseBackend

attribute), 472
bucket (celery.backends.riak.RiakBackend attribute), 472
bucket_for_task() (celery.worker.consumer.Consumer

method), 390
bucket_for_task() (celery.worker.consumer.consumer.Consumer

method), 394
bucket_for_task() (consumer method), 177
bucket_name (celery.backends.riak.RiakBackend at-

tribute), 472
Buffer (celery.utils.collections.BufferMap attribute), 481
BufferMap (class in celery.utils.collections), 481
BufferMap.Empty, 482
bufmaxsize (celery.utils.collections.BufferMap attribute),

482
bugreport() (celery.Celery method), 312
bugreport() (in module celery.app.utils), 339
build_graph() (celery.result.AsyncResult method), 342
build_tracer() (in module celery.app.trace), 474
builtin_fixups (celery.Celery attribute), 312
builtin_modules (celery.loaders.base.BaseLoader at-

tribute), 358
builtins (celery.bin.amqp.AMQShell attribute), 413
Bunch (class in celery.utils.objects), 490
by_name() (in module celery.app.backends), 336
by_url() (in module celery.app.backends), 337

C
C_FAKEFORK, 112, 114, 308, 520, 548
C_FORCE_ROOT, 114
C_IMPDEBUG, 306
cache_backend

setting, 194
cache_backend_options

setting, 193
CacheBackend (class in celery.backends.cache), 468
cached_property (class in celery.utils), 480
call (class in celery.bin.call), 419
call() (celery.app.control.Control.Mailbox method), 332
call() (celery.bin.control.control method), 419
call() (celery.bin.control.inspect method), 420
call_after() (celery.concurrency.base.BasePool.Timer

method), 448
call_after() (celery.utils.timer2.Timer method), 498
call_at() (celery.concurrency.base.BasePool.Timer

method), 448
call_at() (celery.utils.timer2.Timer method), 498

670 Index

Celery Documentation, Release 4.1.0

call_command() (celery.bin.multi.MultiTool method),
418

call_repeatedly() (celery.concurrency.base.BasePool.Timer
method), 448

call_repeatedly() (celery.utils.timer2.Timer method), 498
call_soon() (celery.worker.consumer.Consumer method),

390
call_soon() (celery.worker.consumer.consumer.Consumer

method), 394
call_task() (celery.worker.consumer.Gossip method), 392
call_task() (celery.worker.consumer.gossip.Gossip

method), 396
Callable() (in module celery.utils.deprecated), 485
CallableSignature (class in celery.utils.abstract), 481
CallableTask (class in celery.utils.abstract), 481
callbacks (celery.backends.amqp.AMQPBackend.Consumer

attribute), 461
callbacks (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

attribute), 457
calling, 657
can_cache_declaration (cel-

ery.backends.amqp.AMQPBackend.Exchange
attribute), 464

can_cache_declaration (cel-
ery.backends.rpc.RPCBackend.Exchange
attribute), 454

can_cache_declaration (cel-
ery.backends.rpc.RPCBackend.Queue at-
tribute), 456

cancel() (celery.backends.amqp.AMQPBackend.Consumer
method), 461

cancel() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer
method), 457

cancel() (celery.concurrency.base.BasePool.Timer
method), 448

cancel() (celery.concurrency.base.BasePool.Timer.Entry
method), 448

cancel() (celery.concurrency.eventlet.TaskPool.Timer
method), 447

cancel() (celery.events.snapshot.Polaroid method), 477
cancel() (celery.utils.timer2.Entry method), 497
cancel() (celery.utils.timer2.Timer method), 498
cancel() (celery.utils.timer2.Timer.Entry method), 498
cancel_by_queue() (cel-

ery.backends.amqp.AMQPBackend.Consumer
method), 461

cancel_by_queue() (cel-
ery.backends.rpc.RPCBackend.ResultConsumer.Consumer
method), 457

cancel_consumer
control, 101

cancel_consumer(), 607
cancel_consumer() (celery.app.control.Control method),

333

cancel_for() (celery.backends.async.BaseResultConsumer
method), 451

cancel_for() (celery.backends.redis.RedisBackend.ResultConsumer
method), 471

cancel_for() (celery.backends.rpc.RPCBackend.ResultConsumer
method), 459

cancel_task_queue() (celery.worker.consumer.Consumer
method), 390

cancel_task_queue() (cel-
ery.worker.consumer.consumer.Consumer
method), 394

cancel_task_queue() (consumer method), 177
canceled (celery.concurrency.base.BasePool.Timer.Entry

attribute), 448
canceled (celery.utils.timer2.Entry attribute), 497
canceled (celery.utils.timer2.Timer.Entry attribute), 498
cancelled (celery.concurrency.base.BasePool.Timer.Entry

attribute), 448
cancelled (celery.utils.timer2.Entry attribute), 497
cancelled (celery.utils.timer2.Timer.Entry attribute), 498
capacity (celery.utils.sysinfo.df attribute), 496
capture() (celery.events.EventReceiver method), 371
capture() (celery.events.receiver.EventReceiver method),

372
capture() (celery.events.snapshot.Polaroid method), 477
cassandra_auth_kwargs

setting, 196
cassandra_auth_provider

setting, 196
cassandra_entry_ttl

setting, 196
cassandra_keyspace

setting, 196
cassandra_port

setting, 195
cassandra_read_consistency

setting, 196
cassandra_servers

setting, 195
cassandra_table

setting, 196
cassandra_write_consistency

setting, 196
CassandraBackend (class in celery.backends.cassandra),

472
cast() (celery.app.control.Control.Mailbox method), 332
CDeprecationWarning, 357
Celery (class in celery), 311
celery (module), 310
celery command line option

–config, 404
–executable, 404
–gid, 404
–help, 404

Index 671

Celery Documentation, Release 4.1.0

–loader, 404
–pidfile, 404
–uid, 404
–umask, 404
–workdir, 404
-A, –app, 404
-C, –no-color, 404
-b, –broker, 404
-f, –logfile, 404
-q, –quiet, 404

celery-beat command line option
–detach, 410
–executable, 410
–gid, 410
–max-interval, 410
–pidfile, 410
–uid, 410
–umask, 410
–workdir, 410
-S, –scheduler, 410
-f, –logfile, 410
-l, –loglevel, 410
-s, –schedule, 410

celery-call command line option
–countdown, 406
–eta, 406
–exchange, 406
–expires, 406
–queue, 406
–routing-key, 406
–serializer, 406
-a, –args, 406
-k, –kwargs, 406

celery-control command line option
-d, –destination, 405
-j, –json, 405
-t, –timeout, 405

celery-events command line option
–detach, 411
–executable, 412
–gid, 411
–pidfile, 411
–uid, 411
–umask, 412
–workdir, 412
-F, –freq, –frequency, 411
-c, –camera, 411
-d, –dump, 411
-f, –logfile, 411
-l, –loglevel, 411
-r, –maxrate, 411

celery-inspect command line option
-d, –destination, 405
-j, –json, 405

-t, –timeout, 405
celery-migrate command line option

-F, –forever, 405
-Q, –queues, 405
-T, –tasks, 405
-a, –ack-messages, 405
-n, –limit, 405
-t, -timeout, 405

celery-purge command line option
-f, –force, 406

celery-result command line option
–traceback, 406
-t, –task, 406

celery-shell command line option
–eventlet, 406
–gevent, 406
-B, –bpython, 406
-I, –ipython, 406
-P, –python, 406
-T, –without-tasks, 406

celery-upgrade command line option
–compat, 405
–django, 405
–no-backup, 405

celery-worker command line option
–autoscale, 409
–detach, 409
–executable, 409
–gid, 409
–heartbeat-interval, 408
–max-memory-per-child, 408
–max-tasks-per-child, 408
–pidfile, 409
–prefetch-multiplier, 408
–purge, 408
–scheduler, 408
–soft-time-limit, 408
–time-limit, 408
–uid, 409
–umask, 409
–without-gossip, 408
–without-heartbeat, 408
–without-mingle, 408
–workdir, 409
-B, –beat, 407
-E, –task-events, 408
-I, –include, 408
-O, 408
-P, –pool, 407
-Q, –queues, 408
-S, –statedb, 408
-X, –exclude-queues, 408
-c, –concurrency, 407
-f, –logfile, 409

672 Index

Celery Documentation, Release 4.1.0

-l, –loglevel, 409
-n, –hostname, 407
-s, –schedule, 408

celery._state (module), 507
celery.app (module), 320
celery.app.amqp (module), 329
celery.app.annotations (module), 475
celery.app.backends (module), 336
celery.app.builtins (module), 337
celery.app.control (module), 331
celery.app.defaults (module), 331
celery.app.events (module), 337
celery.app.log (module), 337
celery.app.registry (module), 336
celery.app.routes (module), 475
celery.app.task (module), 252, 321
celery.app.trace (module), 474
celery.app.utils (module), 338
celery.apps.beat (module), 383
celery.apps.multi (module), 384
celery.apps.worker (module), 382
celery.backends (module), 450
celery.backends.amqp (module), 460
celery.backends.async (module), 451
celery.backends.base (module), 450
celery.backends.cache (module), 468
celery.backends.cassandra (module), 472
celery.backends.consul (module), 468
celery.backends.couchbase (module), 472
celery.backends.couchdb (module), 469
celery.backends.database (module), 460
celery.backends.database.models (module), 479
celery.backends.database.session (module), 479
celery.backends.dynamodb (module), 473
celery.backends.elasticsearch (module), 470
celery.backends.filesystem (module), 473
celery.backends.mongodb (module), 469
celery.backends.redis (module), 470
celery.backends.riak (module), 471
celery.backends.rpc (module), 452
celery.beat (module), 380
celery.bin.amqp (module), 413
celery.bin.base (module), 400
celery.bin.beat (module), 410
celery.bin.call (module), 419
celery.bin.celery (module), 404
celery.bin.control (module), 419
celery.bin.events (module), 411
celery.bin.graph (module), 415
celery.bin.list (module), 420
celery.bin.logtool (module), 412
celery.bin.migrate (module), 420
celery.bin.multi (module), 416
celery.bin.purge (module), 421

celery.bin.result (module), 421
celery.bin.shell (module), 422
celery.bin.upgrade (module), 422
celery.bin.worker (module), 407
celery.bootsteps (module), 339
celery.concurrency (module), 446
celery.concurrency.base (module), 448
celery.concurrency.eventlet (module), 447
celery.concurrency.gevent (module), 447
celery.concurrency.prefork (module), 446
celery.concurrency.solo (module), 446
celery.contrib.abortable (module), 361
celery.contrib.migrate (module), 363
celery.contrib.rdb (module), 368
celery.contrib.sphinx (module), 365
celery.contrib.testing.app (module), 367
celery.contrib.testing.manager (module), 367
celery.contrib.testing.mocks (module), 368
celery.contrib.testing.worker (module), 366
celery.events (module), 369
celery.events.cursesmon (module), 477
celery.events.dispatcher (module), 373
celery.events.dumper (module), 479
celery.events.event (module), 374
celery.events.receiver (module), 372
celery.events.snapshot (module), 477
celery.events.state (module), 375
celery.exceptions (module), 355
celery.loaders (module), 357
celery.loaders.app (module), 358
celery.loaders.base (module), 358
celery.loaders.default (module), 358
Celery.on_after_configure (in module celery), 317
Celery.on_after_finalize (in module celery), 317
Celery.on_after_fork (in module celery), 317
Celery.on_configure (in module celery), 317
celery.platforms (module), 504
celery.result (module), 341
celery.schedules (module), 349
celery.security (module), 353
celery.security.certificate (module), 476
celery.security.key (module), 476
celery.security.serialization (module), 476
celery.security.utils (module), 477
celery.signals (module), 353
celery.states (module), 359
celery.utils (module), 480
celery.utils.abstract (module), 481
celery.utils.collections (module), 481
celery.utils.debug (module), 354
celery.utils.deprecated (module), 485
celery.utils.dispatch (module), 501
celery.utils.dispatch.signal (module), 503
celery.utils.dispatch.weakref_backports (module), 504

Index 673

Celery Documentation, Release 4.1.0

celery.utils.functional (module), 486
celery.utils.graph (module), 488
celery.utils.imports (module), 499
celery.utils.iso8601 (module), 494
celery.utils.log (module), 500
celery.utils.nodenames (module), 485
celery.utils.objects (module), 490
celery.utils.saferepr (module), 494
celery.utils.serialization (module), 495
celery.utils.sysinfo (module), 496
celery.utils.term (module), 491
celery.utils.text (module), 501
celery.utils.threads (module), 496
celery.utils.time (module), 492
celery.utils.timer2 (module), 497
celery.worker (module), 385
celery.worker.autoscale (module), 445
celery.worker.components (module), 443
celery.worker.consumer (module), 390
celery.worker.consumer.agent (module), 393
celery.worker.consumer.connection (module), 394
celery.worker.consumer.consumer (module), 394
celery.worker.consumer.control (module), 396
celery.worker.consumer.events (module), 396
celery.worker.consumer.gossip (module), 396
celery.worker.consumer.heart (module), 397
celery.worker.consumer.mingle (module), 397
celery.worker.consumer.tasks (module), 398
celery.worker.control (module), 444
celery.worker.heartbeat (module), 444
celery.worker.loops (module), 444
celery.worker.pidbox (module), 445
celery.worker.request (module), 386
celery.worker.state (module), 388
celery.worker.strategy (module), 389
celery.worker.worker (module), 398
CELERY_BENCH, 544
CELERY_BROKER_URL, 582
CELERY_CHDIR, 521
CELERY_CONFIG_MODULE, 40, 548, 628
CELERY_CREATE_DIRS, 558
CELERY_LOADER, 431, 621, 628, 641, 643, 644
CELERY_RDB_HOST, 150
CELERY_RDB_PORT, 150
CELERY_RDBSIG, 151
CELERY_SU, 287
CELERY_TRACE_APP, 42, 441
CeleryCommand (class in celery.bin.celery), 407
CELERYCTL, 575
celeryd_after_setup

signal, 158
celeryd_init

signal, 159
CELERYD_SU_ARGS, 287

CeleryError, 356
CeleryWarning, 356
Certificate (class in celery.security.certificate), 476
CertStore (class in celery.security.certificate), 476
chain (class in celery), 318
ChainMap (class in celery.utils.collections), 482
chan (celery.bin.amqp.AMQShell attribute), 413
changes (celery.utils.collections.ChainMap attribute), 482
channel (celery.backends.amqp.AMQPBackend.Consumer

attribute), 461
channel (celery.backends.amqp.AMQPBackend.Exchange

attribute), 463
channel (celery.backends.amqp.AMQPBackend.Producer

attribute), 465
channel (celery.backends.rpc.RPCBackend.Exchange at-

tribute), 453
channel (celery.backends.rpc.RPCBackend.Producer at-

tribute), 455
channel (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

attribute), 457
check_args() (celery.bin.base.Command method), 401
CHECK_METHODS (celery.bin.base.Option attribute),

403
check_value() (celery.bin.base.Option method), 403
children (celery.result.AsyncResult attribute), 342
children (celery.result.GroupResult attribute), 348
choices (celery.bin.upgrade.upgrade attribute), 422
chord (celery.worker.request.Request attribute), 386
chord (class in celery), 318
chord_size (celery.utils.abstract.CallableSignature at-

tribute), 481
ChordError, 357
chunks() (celery.app.task.Task method), 324
chunks() (in module celery.utils.functional), 487
cipater, 657
claim_steps() (celery.bootsteps.Blueprint method), 340
cleanup() (celery.backends.database.DatabaseBackend

method), 460
cleanup() (celery.backends.mongodb.MongoBackend

method), 469
cleanup() (celery.events.snapshot.Polaroid method), 477
cleanup() (celery.utils.threads.LocalManager method),

497
cleanup_signal (celery.events.snapshot.Polaroid at-

tribute), 477
clear() (celery.concurrency.base.BasePool.Timer

method), 448
clear() (celery.concurrency.eventlet.TaskPool.Timer

method), 447
clear() (celery.concurrency.gevent.TaskPool.Timer

method), 447
clear() (celery.events.state.State method), 379
clear() (celery.result.ResultSet method), 346
clear() (celery.utils.collections.ChainMap method), 482

674 Index

Celery Documentation, Release 4.1.0

clear() (celery.utils.collections.ConfigurationView
method), 482

clear() (celery.utils.collections.LimitedSet method), 484
clear() (celery.utils.timer2.Timer method), 498
clear_after (celery.events.snapshot.Polaroid attribute),

477
clear_tasks() (celery.events.state.State method), 379
client (celery.backends.cache.CacheBackend attribute),

468
client (celery.backends.consul.ConsulBackend attribute),

468
client (celery.backends.dynamodb.DynamoDBBackend

attribute), 473
client (celery.backends.redis.RedisBackend attribute),

471
client (celery.backends.riak.RiakBackend attribute), 472
client (celery.events.state.State.Task attribute), 377
client (celery.events.state.Task attribute), 376
clock (celery.events.state.State.Task attribute), 377
clock (celery.events.state.State.Worker attribute), 378
clock (celery.events.state.Task attribute), 376
clock (celery.events.state.Worker attribute), 375
clock() (celery.app.control.Inspect method), 331
clone() (celery.utils.abstract.CallableSignature method),

481
CLOSE (celery.concurrency.base.BasePool attribute),

448
close() (celery.backends.amqp.AMQPBackend.Consumer

method), 461
close() (celery.backends.amqp.AMQPBackend.Producer

method), 465
close() (celery.backends.rpc.RPCBackend.Producer

method), 455
close() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

method), 457
close() (celery.beat.PersistentScheduler method), 382
close() (celery.beat.Scheduler method), 381
close() (celery.bootsteps.Blueprint method), 340
close() (celery.bootsteps.StartStopStep method), 341
close() (celery.Celery method), 312
close() (celery.concurrency.base.BasePool method), 449
close() (celery.events.dispatcher.EventDispatcher

method), 373
close() (celery.events.EventDispatcher method), 370
close() (celery.platforms.DaemonContext method), 505
close() (celery.utils.log.LoggingProxy method), 500
close() (celery.worker.components.Pool method), 443
close() (celery.worker.state.Persistent method), 389
close_open_fds() (in module celery.platforms), 505
closed (celery.utils.log.LoggingProxy attribute), 500
Cluster (class in celery.apps.multi), 384
Cluster() (celery.bin.multi.MultiTool method), 417
cluster_from_argv() (celery.bin.multi.MultiTool method),

418

cmdline_config_parser() (celery.loaders.base.BaseLoader
method), 358

coerce() (celery.bin.amqp.Spec method), 414
collect() (celery.result.AsyncResult method), 342
collection (celery.backends.mongodb.MongoBackend at-

tribute), 469
colored (celery.bin.base.Command attribute), 401
colored (class in celery.utils.term), 491
colored() (celery.app.log.Logging method), 337
ColorFormatter (class in celery.utils.log), 500
COLORS (celery.utils.log.ColorFormatter attribute), 500
colors (celery.utils.log.ColorFormatter attribute), 500
Command (class in celery.bin.base), 400
Command.Error, 400
Command.UsageError, 400
commands (celery.bin.celery.CeleryCommand attribute),

407
compatible_transport() (celery.worker.consumer.Gossip

method), 392
compatible_transport() (cel-

ery.worker.consumer.gossip.Gossip method),
396

compatible_transport() (celery.worker.consumer.Mingle
method), 393

compatible_transport() (cel-
ery.worker.consumer.mingle.Mingle method),
397

compatible_transports (celery.worker.consumer.Gossip
attribute), 392

compatible_transports (cel-
ery.worker.consumer.gossip.Gossip attribute),
396

compatible_transports (celery.worker.consumer.Mingle
attribute), 393

compatible_transports (cel-
ery.worker.consumer.mingle.Mingle attribute),
397

completed_count() (celery.result.ResultSet method), 346
completenames() (celery.bin.amqp.AMQShell method),

413
compress() (celery.worker.state.Persistent method), 389
compression (celery.backends.amqp.AMQPBackend.Producer

attribute), 465
compression (celery.backends.rpc.RPCBackend.Producer

attribute), 455
compression (Task attribute), 56
conditional (celery.bootsteps.Step attribute), 340
conditional (celery.worker.autoscale.WorkerComponent

attribute), 445
conditional (celery.worker.components.Beat attribute),

443
conditional (celery.worker.consumer.Agent attribute), 391
conditional (celery.worker.consumer.agent.Agent at-

tribute), 393

Index 675

Celery Documentation, Release 4.1.0

conf (celery.loaders.base.BaseLoader attribute), 358
conf() (celery.app.control.Inspect method), 331
config_from_envvar() (celery.Celery method), 313
config_from_object() (celery.Celery method), 312
config_from_object() (celery.loaders.base.BaseLoader

method), 358
ConfigurationView (class in celery.utils.collections), 482
configured (celery.loaders.base.BaseLoader attribute),

358
conn (celery.bin.amqp.AMQShell attribute), 413
connect() (celery.bin.amqp.AMQPAdmin method), 413
connect() (celery.utils.dispatch.Signal method), 502
connect() (celery.utils.dispatch.signal.Signal method),

503
connect() (celery.utils.graph.DependencyGraph method),

489
connect() (celery.worker.consumer.Consumer method),

390
connect() (celery.worker.consumer.consumer.Consumer

method), 394
connect_on_app_finalize() (in module celery._state), 508
connect_with() (celery.bootsteps.Blueprint method), 340
connection, 175
Connection (celery.app.amqp.AMQP attribute), 329
connection (celery.app.control.Control.Mailbox at-

tribute), 332
connection (celery.backends.amqp.AMQPBackend.Consumer

attribute), 461
connection (celery.backends.amqp.AMQPBackend.Producer

attribute), 466
connection (celery.backends.couchbase.CouchbaseBackend

attribute), 472
connection (celery.backends.couchdb.CouchBackend at-

tribute), 469
connection (celery.backends.rpc.RPCBackend.Producer

attribute), 455
connection (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

attribute), 457
connection (celery.beat.Scheduler attribute), 381
connection (celery.events.EventReceiver attribute), 371
connection (celery.events.receiver.EventReceiver at-

tribute), 372
Connection (class in celery.worker.consumer), 391
Connection (class in celery.worker.consumer.connection),

394
connection() (celery.Celery method), 316
connection_errors (celery.worker.request.Request at-

tribute), 386
connection_for_read() (celery.Celery method), 316
connection_for_read() (cel-

ery.worker.consumer.Consumer method),
390

connection_for_read() (cel-
ery.worker.consumer.consumer.Consumer

method), 394
connection_for_write() (celery.Celery method), 316
connection_for_write() (cel-

ery.worker.consumer.Consumer method),
390

connection_for_write() (cel-
ery.worker.consumer.consumer.Consumer
method), 394

connection_or_acquire() (celery.Celery method), 316
ConnectionPool (celery.backends.redis.RedisBackend at-

tribute), 470
consistency (celery.backends.consul.ConsulBackend at-

tribute), 468
CONST_ACTIONS (celery.bin.base.Option attribute),

403
consul (celery.backends.consul.ConsulBackend at-

tribute), 468
ConsulBackend (class in celery.backends.consul), 468
consume() (celery.backends.amqp.AMQPBackend

method), 467
consume() (celery.backends.amqp.AMQPBackend.Consumer

method), 461
consume() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

method), 457
consume_from (celery.app.amqp.Queues attribute), 330
consume_from() (celery.backends.async.BaseResultConsumer

method), 451
consume_from() (celery.backends.redis.RedisBackend.ResultConsumer

method), 471
consume_from() (celery.backends.rpc.RPCBackend.ResultConsumer

method), 459
Consumer (celery.app.amqp.AMQP attribute), 329
consumer (celery.worker.pidbox.Pidbox attribute), 445
Consumer (class in celery.worker.components), 444
Consumer (class in celery.worker.consumer), 390
Consumer (class in celery.worker.consumer.consumer),

394
Consumer.Blueprint (class in celery.worker.consumer),

390
Consumer.Blueprint (class in cel-

ery.worker.consumer.consumer), 394
consumers (celery.bootsteps.ConsumerStep attribute),

341
ConsumerStep (class in celery.bootsteps), 341
consuming_from() (cel-

ery.backends.amqp.AMQPBackend.Consumer
method), 461

consuming_from() (cel-
ery.backends.rpc.RPCBackend.ResultConsumer.Consumer
method), 457

container (celery.backends.couchdb.CouchBackend at-
tribute), 469

content_encoding (celery.worker.request.Request at-
tribute), 387

676 Index

Celery Documentation, Release 4.1.0

content_type (celery.worker.request.Request attribute),
387

context, 657
Context (class in celery.app.task), 329
control

active_queues, 101
add_consumer, 100
cancel_consumer, 101
disable_events, 106
enable_events, 106
ping, 106
rate_limit, 98
revoke, 96
shutdown, 105

control (celery.Celery attribute), 311
Control (class in celery.app.control), 332
control (class in celery.bin.control), 419
Control (class in celery.worker.consumer), 391
Control (class in celery.worker.consumer.control), 396
Control.Mailbox (class in celery.app.control), 332
control_group (celery.bin.control.control attribute), 419
control_group (celery.bin.control.inspect attribute), 420
control_queue_expires

setting, 212
control_queue_ttl

setting, 212
controller, 175
convert_value() (celery.bin.base.Option method), 403
copy() (celery.utils.collections.ChainMap method), 482
correlation_id (celery.worker.request.Request attribute),

387
CouchBackend (class in celery.backends.couchdb), 469
couchbase_backend_settings

setting, 200
CouchbaseBackend (class in celery.backends.couchbase),

472
count (celery.contrib.migrate.State attribute), 363
counter (celery.bin.amqp.AMQShell attribute), 413
CPendingDeprecationWarning, 357
create() (celery.bootsteps.Step method), 340
create() (celery.worker.autoscale.WorkerComponent

method), 446
create() (celery.worker.components.Beat method), 443
create() (celery.worker.components.Consumer method),

444
create() (celery.worker.components.Hub method), 443
create() (celery.worker.components.Pool method), 443
create() (celery.worker.components.StateDB method),

444
create() (celery.worker.components.Timer method), 443
create() (celery.worker.consumer.Agent method), 391
create() (celery.worker.consumer.agent.Agent method),

393

create_exception_cls() (in module cel-
ery.utils.serialization), 496

create_parser() (celery.bin.base.Command method), 401
create_pidlock() (in module celery.platforms), 505
create_session() (celery.backends.database.session.SessionManager

method), 479
create_task_handler() (cel-

ery.worker.consumer.Consumer method),
390

create_task_handler() (cel-
ery.worker.consumer.consumer.Consumer
method), 394

create_task_message (celery.app.amqp.AMQP attribute),
329

crontab (class in celery.schedules), 350
crontab_parser (class in celery.schedules), 351
crontab_parser.ParseException, 352
current_app (in module celery), 320
current_task (celery.Celery attribute), 311
current_task (in module celery), 320
current_worker_task (celery.Celery attribute), 311
CursesMonitor (class in celery.events.cursesmon), 477
cwd_in_path() (in module celery.utils.imports), 499
cyan() (celery.utils.term.colored method), 491
CycleError, 488

D
daemon_options() (in module celery.bin.base), 403
DaemonContext (class in celery.platforms), 505
data (celery.apps.multi.Cluster attribute), 384
data (celery.worker.control.Panel attribute), 444
database (celery.backends.mongodb.MongoBackend at-

tribute), 469
database_engine_options

setting, 192
database_name (celery.backends.mongodb.MongoBackend

attribute), 469
database_short_lived_sessions

setting, 192
database_table_names

setting, 192
DatabaseBackend (class in celery.backends.database),

460
date_done (celery.backends.database.models.Task at-

tribute), 479
date_done (celery.backends.database.models.TaskSet at-

tribute), 479
day_of_month (celery.schedules.crontab attribute), 351
day_of_week (celery.schedules.crontab attribute), 351
db (celery.backends.redis.RedisBackend attribute), 471
db (celery.worker.state.Persistent attribute), 389
debug() (celery.bin.logtool.logtool method), 413
debugger() (in module celery.contrib.rdb), 369

Index 677

Celery Documentation, Release 4.1.0

declare() (celery.backends.amqp.AMQPBackend.Consumer
method), 461

declare() (celery.backends.amqp.AMQPBackend.Exchange
method), 464

declare() (celery.backends.amqp.AMQPBackend.Producer
method), 466

declare() (celery.backends.rpc.RPCBackend.Exchange
method), 454

declare() (celery.backends.rpc.RPCBackend.Producer
method), 455

declare() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer
method), 457

declare() (queue method), 126
decode() (celery.backends.mongodb.MongoBackend

method), 469
decompress() (celery.worker.state.Persistent method),

389
dedent() (in module celery.utils.text), 501
dedent_initial() (in module celery.utils.text), 501
default() (celery.bin.amqp.AMQShell method), 413
default() (in module celery.worker.strategy), 389
default_app (in module celery.app), 320
default_dispatcher() (celery.app.events.Events method),

337
default_exchange (celery.app.amqp.AMQP attribute),

330
default_modules (celery.loaders.base.BaseLoader at-

tribute), 358
default_nodename() (in module celery.utils.nodenames),

485
default_queue (celery.app.amqp.AMQP attribute), 330
default_retry_delay (celery.app.task.Task attribute), 324
default_retry_delay (Task attribute), 55
default_socket_timeout() (in module celery.utils.threads),

497
default_steps (celery.bootsteps.Blueprint attribute), 340
default_steps (celery.worker.consumer.Consumer.Blueprint

attribute), 390
default_steps (celery.worker.consumer.consumer.Consumer.Blueprint

attribute), 394
default_steps (celery.worker.WorkController.Blueprint at-

tribute), 385
default_steps (celery.worker.worker.WorkController.Blueprint

attribute), 398
DEFAULT_TEST_CONFIG (in module cel-

ery.contrib.testing.app), 367
defaults (celery.utils.collections.ChainMap attribute), 482
delay() (celery.app.task.Task method), 324
delay() (celery.utils.abstract.CallableTask method), 481
delete() (celery.backends.amqp.AMQPBackend.Exchange

method), 465
delete() (celery.backends.cache.CacheBackend method),

468
delete() (celery.backends.consul.ConsulBackend

method), 468
delete() (celery.backends.couchbase.CouchbaseBackend

method), 472
delete() (celery.backends.couchdb.CouchBackend

method), 469
delete() (celery.backends.dynamodb.DynamoDBBackend

method), 473
delete() (celery.backends.elasticsearch.ElasticsearchBackend

method), 470
delete() (celery.backends.filesystem.FilesystemBackend

method), 474
delete() (celery.backends.redis.RedisBackend method),

471
delete() (celery.backends.riak.RiakBackend method), 472
delete() (celery.backends.rpc.RPCBackend.Exchange

method), 454
delete() (celery.result.GroupResult method), 348
delete() (exchange method), 126
delete() (queue method), 126
delete_group() (celery.backends.amqp.AMQPBackend

method), 467
delete_group() (celery.backends.rpc.RPCBackend

method), 459
deleter() (celery.utils.cached_property method), 480
delivery_info (celery.worker.request.Request attribute),

387
delivery_mode (celery.backends.amqp.AMQPBackend.Exchange

attribute), 463, 465
delivery_mode (celery.backends.rpc.RPCBackend.Exchange

attribute), 453, 454
delta_resolution() (in module celery.utils.time), 492
DependencyGraph (class in celery.utils.graph), 488
deprecate_by (celery.app.defaults.Option attribute), 331
description (celery.bin.base.Command attribute), 401
deselect() (celery.app.amqp.Queues method), 330
deserialize() (celery.security.serialization.SecureSerializer

method), 476
destination_for() (celery.backends.amqp.AMQPBackend

method), 467
destination_for() (celery.backends.rpc.RPCBackend

method), 459
detached() (in module celery.platforms), 505
df (class in celery.utils.sysinfo), 496
DictAttribute (class in celery.utils.collections), 483
dictfilter() (in module celery.utils.functional), 488
did_start_ok() (celery.concurrency.base.BasePool

method), 449
did_start_ok() (celery.concurrency.prefork.TaskPool

method), 446
die() (celery.bin.base.Command method), 401
DIRS (celery.utils.graph.DOT attribute), 488
disable() (celery.events.dispatcher.EventDispatcher

method), 373
disable() (celery.events.EventDispatcher method), 370

678 Index

Celery Documentation, Release 4.1.0

disable_events
control, 106

disable_events() (celery.app.control.Control method), 334
disable_trace() (in module celery.app), 321
DISABLED_TRANSPORTS (cel-

ery.events.dispatcher.EventDispatcher at-
tribute), 373

DISABLED_TRANSPORTS (cel-
ery.events.EventDispatcher attribute), 370

DisabledBackend (class in celery.backends.base), 450
discard() (celery.result.ResultSet method), 346
discard() (celery.utils.collections.LimitedSet method),

484
discard_all() (celery.app.control.Control method), 334
disconnect() (celery.utils.dispatch.Signal method), 502
disconnect() (celery.utils.dispatch.signal.Signal method),

503
dispatch() (celery.bin.amqp.AMQShell method), 413
Dispatcher (celery.app.events.Events attribute), 337
dispatcher_cls (celery.app.events.Events attribute), 337
display_command_help() (celery.bin.amqp.AMQShell

method), 414
display_height (celery.events.cursesmon.CursesMonitor

attribute), 477
display_task_row() (cel-

ery.events.cursesmon.CursesMonitor method),
477

display_width (celery.events.cursesmon.CursesMonitor
attribute), 477

DJANGO_SETTINGS_MODULE, 109, 217, 298, 532
do_exit() (celery.bin.amqp.AMQShell method), 414
do_help() (celery.bin.amqp.AMQShell method), 414
doc (celery.bin.base.Command attribute), 401
doc (celery.bin.beat.beat attribute), 411
doc (celery.bin.events.events attribute), 412
doc (celery.bin.worker.worker attribute), 409
doc_type (celery.backends.elasticsearch.ElasticsearchBackend

attribute), 470
DOT (class in celery.utils.graph), 488
DOWN (celery.bin.multi.MultiTool attribute), 417
drain_events() (celery.backends.amqp.AMQPBackend

method), 467
drain_events() (celery.backends.async.BaseResultConsumer

method), 451
drain_events() (celery.backends.redis.RedisBackend.ResultConsumer

method), 471
drain_events() (celery.backends.rpc.RPCBackend.ResultConsumer

method), 459
drain_events_until() (cel-

ery.backends.async.BaseResultConsumer
method), 451

drain_events_until() (celery.backends.async.Drainer
method), 451

Drainer (class in celery.backends.async), 451

draw() (celery.events.cursesmon.CursesMonitor method),
477

draw_edge() (celery.utils.graph.GraphFormatter method),
489

draw_node() (celery.utils.graph.GraphFormatter method),
489

dst() (celery.utils.time.LocalTimezone method), 492
dump_body() (in module cel-

ery.worker.consumer.consumer), 396
Dumper (class in celery.events.dumper), 479
DuplicateNodenameWarning, 356
durable (celery.backends.amqp.AMQPBackend.Exchange

attribute), 463, 465
durable (celery.backends.rpc.RPCBackend.Exchange at-

tribute), 453, 454
DynamoDBBackend (class in cel-

ery.backends.dynamodb), 473

E
EagerResult (class in celery.result), 349
early ack, 657
early acknowledgment, 657
early_version() (celery.bin.base.Command method), 401
EDGE (celery.utils.graph.DOT attribute), 488
edge() (celery.utils.graph.GraphFormatter method), 489
edge_scheme (celery.utils.graph.GraphFormatter at-

tribute), 489
edges() (celery.utils.graph.DependencyGraph method),

489
elasticsearch_max_retries

setting, 197
elasticsearch_retry_on_timeout

setting, 197
elasticsearch_timeout

setting, 197
ElasticsearchBackend (class in cel-

ery.backends.elasticsearch), 470
election() (celery.app.control.Control method), 334
election() (celery.worker.consumer.Gossip method), 392
election() (celery.worker.consumer.gossip.Gossip

method), 396
embed() (celery.utils.term.colored method), 492
EmbeddedService() (in module celery.beat), 382
emit_banner() (celery.apps.worker.Worker method), 383
empty() (celery.concurrency.base.BasePool.Timer

method), 448
empty() (celery.utils.timer2.Timer method), 498
enable() (celery.events.dispatcher.EventDispatcher

method), 373
enable() (celery.events.EventDispatcher method), 370
enable_config_from_cmdline (celery.bin.base.Command

attribute), 401
enable_config_from_cmdline (celery.bin.beat.beat

attribute), 411

Index 679

Celery Documentation, Release 4.1.0

enable_config_from_cmdline (cel-
ery.bin.celery.CeleryCommand attribute),
407

enable_config_from_cmdline (celery.bin.worker.worker
attribute), 409

enable_events
control, 106

enable_events() (celery.app.control.Control method), 334
enable_trace() (in module celery.app), 321
enable_utc

setting, 186
enabled (celery.bootsteps.Step attribute), 340
encode() (celery.backends.mongodb.MongoBackend

method), 469
endpoint_url (celery.backends.dynamodb.DynamoDBBackend

attribute), 473
ensure() (celery.backends.redis.RedisBackend method),

471
ensure_chords_allowed() (cel-

ery.backends.base.DisabledBackend method),
450

ensure_chords_allowed() (cel-
ery.backends.rpc.RPCBackend method),
459

ensure_connected() (celery.worker.consumer.Consumer
method), 390

ensure_connected() (cel-
ery.worker.consumer.consumer.Consumer
method), 395

ensure_not_for_a_while() (cel-
ery.contrib.testing.manager.ManagerMixin
method), 367

ensure_sep() (in module celery.utils.text), 501
ensure_started() (celery.concurrency.base.BasePool.Timer

method), 449
ensure_started() (celery.contrib.testing.worker.TestWorkController

method), 366
ensure_started() (celery.utils.timer2.Timer method), 498
enter() (celery.concurrency.base.BasePool.Timer

method), 449
enter() (celery.utils.timer2.Timer method), 498
enter_after() (celery.concurrency.base.BasePool.Timer

method), 449
enter_after() (celery.utils.timer2.Timer method), 498
Entry (celery.beat.Scheduler attribute), 381
Entry (class in celery.utils.timer2), 497
environment variable

AWS_ACCESS_KEY_ID, 16
AWS_SECRET_ACCESS_KEY, 16
C_FAKEFORK, 112, 114, 308, 520, 548
C_FORCE_ROOT, 114
C_IMPDEBUG, 306
CELERY_BENCH, 544
CELERY_BROKER_URL, 582

CELERY_CHDIR, 521
CELERY_CONFIG_MODULE, 40, 548, 628
CELERY_CREATE_DIRS, 558
CELERY_LOADER, 431, 621, 628, 641, 643, 644
CELERY_RDB_HOST, 150, 369
CELERY_RDB_PORT, 150, 369
CELERY_RDBSIG, 151
CELERY_SU, 287
CELERY_TRACE_APP, 42, 441
CELERYCTL, 575
CELERYD_SU_ARGS, 287
DJANGO_SETTINGS_MODULE, 109, 217, 298,

532
MP_LOG, 542, 556
NOSE_VERBOSE, 632
USE_FAST_LOCALS, 561

epilog (celery.bin.base.Command attribute), 401
errbacks (celery.worker.request.Request attribute), 387
Error, 400
error() (celery.bin.base.Command method), 401
errors() (celery.bin.logtool.logtool method), 413
es_max_retries (celery.backends.elasticsearch.ElasticsearchBackend

attribute), 470
es_retry_on_timeout (cel-

ery.backends.elasticsearch.ElasticsearchBackend
attribute), 470

es_timeout (celery.backends.elasticsearch.ElasticsearchBackend
attribute), 470

ETA, 657
eta (celery.events.state.State.Task attribute), 377
eta (celery.events.state.Task attribute), 376
eta (celery.worker.request.Request attribute), 387
evaluate() (celery.utils.functional.lazy method), 488
evaluate() (celery.utils.functional.mlazy method), 487
evaluated (celery.utils.functional.mlazy attribute), 487
evcam() (in module celery.events.snapshot), 477
evdump() (in module celery.events.dumper), 479
event

task-failed, 142
task-received, 142
task-rejected, 142
task-retried, 143
task-revoked, 142
task-sent, 142
task-started, 142
task-succeeded, 142
worker-heartbeat, 143
worker-offline, 143
worker-online, 143

event (celery.events.state.State.Worker attribute), 378
event (celery.events.state.Worker attribute), 375
event() (celery.events.state.State method), 379
event() (celery.events.state.State.Task method), 377
event() (celery.events.state.Task method), 376

680 Index

Celery Documentation, Release 4.1.0

Event() (in module celery.events), 369
Event() (in module celery.events.event), 374
event_count (celery.events.state.State attribute), 379
event_dispatcher, 175
event_exchange (in module celery.events.event), 374
event_from_message() (celery.events.EventReceiver

method), 371
event_from_message() (cel-

ery.events.receiver.EventReceiver method),
372

event_queue_expires
setting, 211

event_queue_prefix
setting, 211

event_queue_ttl
setting, 211

event_serializer
setting, 211

EventDispatcher (class in celery.events), 370
EventDispatcher (class in celery.events.dispatcher), 373
eventer (celery.worker.request.Request attribute), 387
eventlet_pool_apply

signal, 162
eventlet_pool_postshutdown

signal, 161
eventlet_pool_preshutdown

signal, 161
eventlet_pool_started

signal, 161
EventReceiver (class in celery.events), 371
EventReceiver (class in celery.events.receiver), 372
events (celery.Celery attribute), 312
Events (class in celery.app.events), 337
events (class in celery.bin.events), 412
Events (class in celery.worker.consumer), 391
Events (class in celery.worker.consumer.events), 396
evict() (celery.utils.collections.Evictable method), 483
Evictable (class in celery.utils.collections), 483
Evictable.Empty, 483
Evloop (class in celery.worker.consumer.consumer), 395
evtop() (in module celery.events.cursesmon), 478
exc (celery.exceptions.Retry attribute), 356
exc_args (celery.utils.serialization.UnpickleableExceptionWrapper

attribute), 495
exc_cls_name (celery.utils.serialization.UnpickleableExceptionWrapper

attribute), 495
exc_module (celery.utils.serialization.UnpickleableExceptionWrapper

attribute), 495
exception (celery.events.state.State.Task attribute), 377
exception (celery.events.state.Task attribute), 376
EXCEPTION_STATES

state, 360
exchange (celery.app.control.Control.Mailbox attribute),

332

exchange (celery.backends.amqp.AMQPBackend.Producer
attribute), 466

exchange (celery.backends.rpc.RPCBackend.Producer at-
tribute), 455

exchange (celery.events.state.State.Task attribute), 377
exchange (celery.events.state.Task attribute), 376
exchange_fmt (celery.app.control.Control.Mailbox

attribute), 332
executable (celery.apps.multi.Node attribute), 384
executable (celery.bin.multi.MultiTool.MultiParser.Node

attribute), 417
execute() (celery.bin.celery.CeleryCommand method),

407
execute() (celery.worker.request.Request method), 387
execute_from_commandline() (celery.bin.base.Command

method), 401
execute_from_commandline() (cel-

ery.bin.celery.CeleryCommand method),
407

execute_from_commandline() (cel-
ery.bin.multi.MultiTool method), 418

execute_using_pool() (celery.worker.request.Request
method), 387

executing, 657
exit_after() (celery.concurrency.base.BasePool.Timer

method), 449
exit_after() (celery.utils.timer2.Timer method), 498
exitcode (celery.worker.WorkController attribute), 385
exitcode (celery.worker.worker.WorkController attribute),

399
expand() (celery.bin.multi.MultiTool method), 418
expand_destination() (celery.app.routes.Router method),

475
expanduser() (celery.bin.base.Command method), 401
expire() (celery.backends.cache.CacheBackend method),

468
expire() (celery.backends.redis.RedisBackend method),

471
expire_window (celery.events.state.State.Worker at-

tribute), 378
expire_window (celery.events.state.Worker attribute), 375
expires (celery.app.task.Task attribute), 324
expires (celery.events.state.State.Task attribute), 377
expires (celery.events.state.Task attribute), 376
expires (celery.worker.request.Request attribute), 387
expires_delta (celery.backends.mongodb.MongoBackend

attribute), 469
ext_fmt (celery.bin.celery.CeleryCommand attribute),

407
extend() (celery.utils.collections.BufferMap method), 482
extend() (celery.utils.collections.Messagebuffer method),

485
extend_buffer() (celery.events.dispatcher.EventDispatcher

method), 373

Index 681

Celery Documentation, Release 4.1.0

extend_buffer() (celery.events.EventDispatcher method),
370

Extensions (class in celery.bin.base), 400
extra_info() (celery.apps.worker.Worker method), 383

F
FAILED (celery.bin.multi.MultiTool attribute), 417
failed (celery.events.state.State.Task attribute), 377
failed (celery.events.state.Task attribute), 376
failed() (celery.result.AsyncResult method), 343
failed() (celery.result.ResultSet method), 346
FAILURE

state, 58
FAILURE (in module celery.states), 360
FallbackContext (class in celery.utils.objects), 490
fd_by_path() (in module celery.platforms), 507
ffwd (class in celery.utils.time), 493
FilesystemBackend (class in celery.backends.filesystem),

473
fill_paragraphs() (in module celery.utils.text), 501
filter_hidden_settings() (in module celery.app.utils), 339
filter_types() (celery.app.registry.TaskRegistry method),

336
filtered (celery.contrib.migrate.State attribute), 363
finalize() (celery.app.utils.Settings method), 338
finalize() (celery.Celery method), 317
find() (celery.apps.multi.Cluster method), 384
find() (in module celery.app.defaults), 331
find_app() (celery.bin.base.Command method), 401
find_app() (in module celery.app.utils), 339
find_module() (celery.loaders.base.BaseLoader method),

358
find_module() (in module celery.utils.imports), 499
find_option() (celery.app.utils.Settings method), 338
find_pickleable_exception() (in module cel-

ery.utils.serialization), 495
find_position() (celery.events.cursesmon.CursesMonitor

method), 478
find_value_for_key() (celery.app.utils.Settings method),

338
first() (celery.utils.collections.ConfigurationView

method), 483
first() (in module celery.utils.functional), 487
firstmethod() (in module celery.utils.functional), 487
FixupWarning, 356
flatten() (in module celery.app.defaults), 331
flatten_reply() (in module celery.app.control), 336
flow() (celery.backends.amqp.AMQPBackend.Consumer

method), 461
flow() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

method), 457
flush() (celery.concurrency.base.BasePool method), 449
flush() (celery.events.dispatcher.EventDispatcher

method), 373

flush() (celery.events.EventDispatcher method), 370
flush() (celery.utils.log.LoggingProxy method), 500
flush_routes() (celery.app.amqp.AMQP method), 329
FMT() (celery.utils.graph.GraphFormatter method), 489
fmt_empty (celery.bin.purge.purge attribute), 421
fmt_purged (celery.bin.purge.purge attribute), 421
force_mapping() (in module celery.utils.collections), 485
force_scale_down() (celery.worker.autoscale.Autoscaler

method), 445
force_scale_up() (celery.worker.autoscale.Autoscaler

method), 445
foreground (celery.events.cursesmon.CursesMonitor at-

tribute), 478
forget() (celery.result.AsyncResult method), 343
forget() (celery.result.EagerResult method), 349
forget() (celery.result.ResultSet method), 346
format() (celery.app.amqp.Queues method), 330
format() (celery.app.log.TaskFormatter method), 337
format() (celery.utils.graph.DependencyGraph method),

489
format() (celery.utils.log.ColorFormatter method), 500
format_arg() (celery.bin.amqp.Spec method), 415
format_response() (celery.bin.amqp.Spec method), 415
format_row() (celery.events.cursesmon.CursesMonitor

method), 478
format_signature() (celery.bin.amqp.Spec method), 415
format_task_event() (celery.events.dumper.Dumper

method), 479
formatException() (celery.utils.log.ColorFormatter

method), 500
freeze() (celery.utils.abstract.CallableSignature method),

481
freeze() (State method), 613
freeze_while() (celery.events.state.State method), 379
freeze_while() (State method), 613
freq (celery.events.state.State.Worker attribute), 378
freq (celery.events.state.Worker attribute), 375
from_exception() (celery.utils.serialization.UnpickleableExceptionWrapper

class method), 495
from_kwargs() (celery.apps.multi.Node class method),

384
from_kwargs() (celery.bin.multi.MultiTool.MultiParser.Node

class method), 417
fromkeys() (celery.utils.collections.ChainMap class

method), 482
FSCertStore (class in celery.security.certificate), 476
fun (celery.concurrency.base.BasePool.Timer.Entry at-

tribute), 448
fun (celery.utils.timer2.Entry attribute), 497
fun (celery.utils.timer2.Timer.Entry attribute), 498
fun_accepts_kwargs() (in module celery.utils.functional),

488

682 Index

Celery Documentation, Release 4.1.0

G
gen_task_name() (celery.Celery method), 315
gen_task_name() (in module celery.utils), 480
gen_task_name() (in module celery.utils.imports), 500
get() (celery.backends.cache.CacheBackend method),

468
get() (celery.backends.consul.ConsulBackend method),

468
get() (celery.backends.couchbase.CouchbaseBackend

method), 472
get() (celery.backends.couchdb.CouchBackend method),

469
get() (celery.backends.dynamodb.DynamoDBBackend

method), 473
get() (celery.backends.elasticsearch.ElasticsearchBackend

method), 470
get() (celery.backends.filesystem.FilesystemBackend

method), 474
get() (celery.backends.redis.RedisBackend method), 471
get() (celery.backends.riak.RiakBackend method), 472
get() (celery.bin.multi.MultiTool method), 418
get() (celery.result.AsyncResult method), 343
get() (celery.result.EagerResult method), 349
get() (celery.result.ResultSet method), 346
get() (celery.utils.collections.ChainMap method), 482
get() (celery.utils.collections.ConfigurationView

method), 483
get() (celery.utils.collections.DictAttribute method), 483
get_amqp_api_command() (celery.bin.amqp.AMQShell

method), 414
get_backend_by_url() (in module celery.backends), 450
get_backend_cls() (in module celery.backends), 450
get_by_parts() (celery.app.utils.Settings method), 339
get_cls_by_name() (celery.bin.base.Command method),

401
get_command_info() (celery.bin.celery.CeleryCommand

class method), 407
get_consumers() (celery.bootsteps.ConsumerStep

method), 341
get_consumers() (celery.events.EventReceiver method),

371
get_consumers() (celery.events.receiver.EventReceiver

method), 373
get_consumers() (celery.worker.consumer.Gossip

method), 392
get_consumers() (celery.worker.consumer.gossip.Gossip

method), 397
get_current_app() (in module celery._state), 508
get_current_task() (in module celery._state), 508
get_current_worker_task() (in module celery._state), 508
get_default_logger() (celery.app.log.Logging method),

337
get_engine() (celery.backends.database.session.SessionManager

method), 480

get_errno_name() (in module celery.platforms), 507
get_exchange() (in module celery.events), 372
get_exchange() (in module celery.events.event), 375
get_fdmax() (in module celery.platforms), 504
get_id() (celery.security.certificate.Certificate method),

476
get_ident() (celery.utils.threads.LocalManager method),

497
get_ident() (in module celery.utils.threads), 497
get_implementation() (in module celery.concurrency),

446
get_issuer() (celery.security.certificate.Certificate

method), 476
get_leaf() (celery.result.AsyncResult method), 343
get_loader_cls() (in module celery.loaders), 357
get_logger() (in module celery.utils.log), 500
get_many() (celery.backends.amqp.AMQPBackend

method), 467
get_many() (celery.backends.base.DisabledBackend

method), 450
get_multiprocessing_logger() (in module celery.utils.log),

501
get_names() (celery.bin.amqp.AMQShell method), 414
get_opt_string() (celery.bin.base.Option method), 403
get_options() (celery.bin.base.Command method), 401
get_or_create_task() (celery.events.state.State method),

379
get_or_create_worker() (celery.events.state.State

method), 379
get_pickleable_etype() (in module cel-

ery.utils.serialization), 496
get_pickleable_exception() (in module cel-

ery.utils.serialization), 496
get_pickled_exception() (in module cel-

ery.utils.serialization), 496
get_queue() (celery.app.control.Control.Mailbox

method), 332
get_reply_queue() (celery.app.control.Control.Mailbox

method), 332
get_result() (celery.backends.base.DisabledBackend

method), 450
get_schedule() (celery.beat.PersistentScheduler method),

382
get_schedule() (celery.beat.Scheduler method), 381
get_scheduler() (celery.apps.beat.Beat.Service method),

383
get_scheduler() (celery.beat.Service method), 382
get_serial_number() (celery.security.certificate.Certificate

method), 476
get_state() (celery.backends.base.DisabledBackend

method), 450
get_status() (celery.backends.base.DisabledBackend

method), 450
get_task_logger() (in module celery.utils.log), 501

Index 683

Celery Documentation, Release 4.1.0

get_task_meta() (celery.backends.amqp.AMQPBackend
method), 467

get_task_meta() (celery.backends.rpc.RPCBackend
method), 459

get_task_meta_for() (cel-
ery.backends.base.DisabledBackend method),
450

get_traceback() (celery.backends.base.DisabledBackend
method), 450

gethostname() (in module celery.utils.nodenames), 485
getitem_property (class in celery.utils.objects), 490
getopt() (celery.apps.multi.Node method), 384
getopt() (celery.bin.multi.MultiTool.MultiParser.Node

method), 417
getpids() (celery.apps.multi.Cluster method), 384
gossip, 175
Gossip (class in celery.worker.consumer), 392
Gossip (class in celery.worker.consumer.gossip), 396
gPidbox (class in celery.worker.pidbox), 445
graph (celery.result.AsyncResult attribute), 343
graph (class in celery.bin.graph), 415
graph_scheme (celery.utils.graph.GraphFormatter at-

tribute), 489
GraphFormatter (celery.bootsteps.Blueprint attribute),

339
GraphFormatter (class in celery.utils.graph), 489
green() (celery.utils.term.colored method), 492
greet (celery.events.cursesmon.CursesMonitor attribute),

478
group (celery.worker.request.Request attribute), 387
group (class in celery), 317
group_collection (celery.backends.mongodb.MongoBackend

attribute), 469
group_from() (in module celery.events), 372
group_from() (in module celery.events.event), 375
groupmeta_collection (cel-

ery.backends.mongodb.MongoBackend at-
tribute), 470

GroupResult (celery.Celery attribute), 315
GroupResult (class in celery.result), 348
grow() (celery.concurrency.eventlet.TaskPool method),

447
grow() (celery.concurrency.gevent.TaskPool method),

447

H
handle_argv() (celery.bin.base.Command method), 401
handle_argv() (celery.bin.celery.CeleryCommand

method), 407
handle_error_state() (celery.app.trace.TraceInfo method),

474
handle_failure() (celery.app.trace.TraceInfo method), 474
handle_ignore() (celery.app.trace.TraceInfo method), 474

handle_keypress() (cel-
ery.events.cursesmon.CursesMonitor method),
478

handle_process_exit() (celery.apps.multi.Node method),
385

handle_process_exit() (cel-
ery.bin.multi.MultiTool.MultiParser.Node
method), 417

handle_reject() (celery.app.trace.TraceInfo method), 474
handle_retry() (celery.app.trace.TraceInfo method), 474
has_expired() (celery.security.certificate.Certificate

method), 476
has_listeners() (celery.utils.dispatch.Signal method), 502
has_listeners() (celery.utils.dispatch.signal.Signal

method), 503
HEAD (celery.utils.graph.DOT attribute), 488
head() (celery.utils.graph.GraphFormatter method), 489
head_from_fun() (in module celery.utils.functional), 488
heap_multiplier (celery.events.state.State attribute), 379
heart, 176
Heart (class in celery.worker.consumer), 392
Heart (class in celery.worker.consumer.heart), 397
Heart (class in celery.worker.heartbeat), 444
heartbeat() (celery.app.control.Control method), 334
heartbeat_expires (celery.events.state.State.Worker

attribute), 378
heartbeat_expires (celery.events.state.Worker attribute),

375
heartbeat_expires() (in module celery.events.state), 379
heartbeat_max (celery.events.state.State.Worker at-

tribute), 378
heartbeat_max (celery.events.state.Worker attribute), 375
heartbeat_sent

signal, 160
heartbeats (celery.events.state.State.Worker attribute),

378
heartbeats (celery.events.state.Worker attribute), 375
hello() (celery.app.control.Inspect method), 331
help (celery.events.cursesmon.CursesMonitor attribute),

478
help() (celery.bin.multi.MultiTool method), 418
help_title (celery.events.cursesmon.CursesMonitor

attribute), 478
host (celery.backends.couchbase.CouchbaseBackend at-

tribute), 473
host (celery.backends.couchdb.CouchBackend attribute),

469
host (celery.backends.elasticsearch.ElasticsearchBackend

attribute), 470
host (celery.backends.mongodb.MongoBackend at-

tribute), 470
host (celery.backends.redis.RedisBackend attribute), 471
host (celery.backends.riak.RiakBackend attribute), 472
host_format() (celery.bin.base.Command method), 401

684 Index

Celery Documentation, Release 4.1.0

host_format() (in module celery.utils.nodenames), 485
hostname, 171, 175
hostname (celery.events.state.State.Worker attribute), 378
hostname (celery.events.state.Worker attribute), 375
hostname (celery.worker.request.Request attribute), 387
hour (celery.schedules.crontab attribute), 351
hub, 171, 175
Hub (class in celery.worker.components), 443
human_seconds (celery.schedules.schedule attribute), 350
human_state() (celery.bootsteps.Blueprint method), 340
humaninfo() (celery.worker.request.Request method),

387
humanize() (celery.app.utils.Settings method), 339
humanize() (celery.exceptions.Retry method), 356
humanize_seconds() (in module celery.utils.time), 493

I
iblue() (celery.utils.term.colored method), 492
icyan() (celery.utils.term.colored method), 492
id (celery.backends.database.models.Task attribute), 479
id (celery.backends.database.models.TaskSet attribute),

479
id (celery.events.state.State.Task attribute), 377
id (celery.events.state.State.Worker attribute), 379
id (celery.events.state.Task attribute), 376
id (celery.events.state.Worker attribute), 376
id (celery.result.AsyncResult attribute), 343
id (celery.result.GroupResult attribute), 348
id (celery.utils.abstract.CallableSignature attribute), 481
id (celery.worker.request.Request attribute), 387
idempotent, 657
identchars (celery.bin.amqp.AMQShell attribute), 414
Ignore, 356
ignore_errno() (in module celery.platforms), 507
ignore_result (celery.app.task.Task attribute), 324
ignore_result (Task attribute), 56
igreen() (celery.utils.term.colored method), 492
imagenta() (celery.utils.term.colored method), 492
immutable (celery.utils.abstract.CallableSignature at-

tribute), 481
implements_incr (celery.backends.cache.CacheBackend

attribute), 468
import_default_modules() (cel-

ery.loaders.base.BaseLoader method), 358
import_from_cwd() (celery.loaders.base.BaseLoader

method), 358
import_from_cwd() (in module celery.utils.imports), 499
import_module() (celery.loaders.base.BaseLoader

method), 359
import_modules

signal, 158
import_task_module() (celery.loaders.base.BaseLoader

method), 359
imports

setting, 209
ImproperlyConfigured, 356
in_sighandler() (in module celery.utils.log), 500
inc_counter (celery.bin.amqp.AMQShell attribute), 414
include

setting, 209
include() (celery.bootsteps.StartStopStep method), 341
include() (celery.bootsteps.Step method), 340
include_if() (celery.bootsteps.Step method), 340
include_if() (celery.worker.components.Hub method),

443
include_if() (celery.worker.consumer.Control method),

391
include_if() (celery.worker.consumer.control.Control

method), 396
incomplete() (celery.bin.logtool.logtool method), 413
IncompleteStream, 357
incr() (celery.backends.cache.CacheBackend method),

468
incr() (celery.backends.redis.RedisBackend method), 471
incr() (celery.utils.functional.LRUCache method), 486
indent() (in module celery.utils.text), 501
index (celery.backends.elasticsearch.ElasticsearchBackend

attribute), 470
info (celery.beat.PersistentScheduler attribute), 382
info (celery.beat.Scheduler attribute), 381
info (celery.concurrency.base.BasePool attribute), 449
info (celery.result.AsyncResult attribute), 343
info() (celery.bootsteps.Blueprint method), 340
info() (celery.bootsteps.Step method), 341
info() (celery.events.state.State.Task method), 377
info() (celery.events.state.Task method), 376
info() (celery.worker.autoscale.Autoscaler method), 445
info() (celery.worker.components.Pool method), 443
info() (celery.worker.consumer.Connection method), 391
info() (celery.worker.consumer.connection.Connection

method), 394
info() (celery.worker.consumer.Tasks method), 393
info() (celery.worker.consumer.tasks.Tasks method), 398
info() (celery.worker.request.Request method), 387
info() (celery.worker.WorkController method), 385
info() (celery.worker.worker.WorkController method),

399
info_str (celery.events.cursesmon.CursesMonitor at-

tribute), 478
init_callback (celery.worker.consumer.Consumer at-

tribute), 390
init_callback (celery.worker.consumer.consumer.Consumer

attribute), 395
init_loader() (celery.apps.beat.Beat method), 384
init_screen() (celery.events.cursesmon.CursesMonitor

method), 478
init_worker() (celery.loaders.base.BaseLoader method),

359

Index 685

Celery Documentation, Release 4.1.0

init_worker_process() (celery.loaders.base.BaseLoader
method), 359

initgroups() (in module celery.platforms), 506
inspect (celery.app.control.Control attribute), 334
Inspect (class in celery.app.control), 331
inspect (class in celery.bin.control), 419
inspect() (celery.contrib.testing.manager.ManagerMixin

method), 367
install() (celery.events.snapshot.Polaroid method), 477
install_default_entries() (celery.beat.Scheduler method),

381
install_platform_tweaks() (celery.apps.worker.Worker

method), 383
install_sync_handler() (celery.apps.beat.Beat method),

384
instantiate() (celery.bootsteps.Step method), 341
instantiate() (in module celery.utils.imports), 499
InvalidTaskError, 357
invoke_bpython_shell() (celery.bin.shell.shell method),

422
invoke_default_shell() (celery.bin.shell.shell method),

422
invoke_fallback_shell() (celery.bin.shell.shell method),

422
invoke_ipython_shell() (celery.bin.shell.shell method),

422
ired() (celery.utils.term.colored method), 492
is_aborted() (celery.contrib.abortable.AbortableAsyncResult

method), 362
is_aborted() (celery.contrib.abortable.AbortableTask

method), 363
is_accepted() (celery.contrib.testing.manager.ManagerMixin

method), 367
is_async (celery.backends.async.AsyncBackendMixin at-

tribute), 451
is_due() (celery.beat.ScheduleEntry method), 380
is_due() (celery.beat.Scheduler method), 381
is_due() (celery.schedules.crontab method), 351
is_due() (celery.schedules.schedule method), 350
is_due() (celery.schedules.solar method), 353
is_green (celery.concurrency.base.BasePool attribute),

449
is_green (celery.concurrency.eventlet.TaskPool attribute),

447
is_green (celery.concurrency.gevent.TaskPool attribute),

447
is_list() (in module celery.utils.functional), 486
is_locked() (celery.platforms.Pidfile method), 505
is_naive() (in module celery.utils.time), 493
is_received() (celery.contrib.testing.manager.ManagerMixin

method), 367
isatty() (celery.utils.log.LoggingProxy method), 500
isatty() (in module celery.platforms), 507
items() (celery.utils.collections.ChainMap method), 482

items() (celery.utils.collections.DictAttribute method),
483

items() (celery.utils.functional.LRUCache method), 486
items() (celery.utils.graph.DependencyGraph method),

489
iter_native() (celery.backends.async.AsyncBackendMixin

method), 451
iter_native() (celery.result.ResultSet method), 346
iterate() (celery.result.ResultSet method), 346
itercapture() (celery.events.EventReceiver method), 371
itercapture() (celery.events.receiver.EventReceiver

method), 373
itercerts() (celery.security.certificate.CertStore method),

476
iterdeps() (celery.result.AsyncResult method), 343
iteritems() (celery.utils.collections.ChainMap method),

482
iteritems() (celery.utils.collections.DictAttribute method),

483
iteritems() (celery.utils.functional.LRUCache method),

486
iteritems() (celery.utils.graph.DependencyGraph

method), 489
iterkeys() (celery.utils.collections.ChainMap method),

482
iterkeys() (celery.utils.collections.DictAttribute method),

483
iterkeys() (celery.utils.functional.LRUCache method),

486
itertasks() (celery.events.state.State method), 379
itervalues() (celery.utils.collections.ChainMap method),

482
itervalues() (celery.utils.collections.DictAttribute

method), 483
itervalues() (celery.utils.functional.LRUCache method),

486
iwhite() (celery.utils.term.colored method), 492
iyellow() (celery.utils.term.colored method), 492

J
join() (celery.bootsteps.Blueprint method), 340
join() (celery.contrib.testing.manager.ManagerMixin

method), 368
join() (celery.result.ResultSet method), 346
join() (in module celery.utils.text), 501
join_native() (celery.result.ResultSet method), 347

K
key_t (celery.backends.couchbase.CouchbaseBackend at-

tribute), 473
key_t (celery.utils.collections.ChainMap attribute), 482
keyalias (celery.events.cursesmon.CursesMonitor at-

tribute), 478

686 Index

Celery Documentation, Release 4.1.0

keymap (celery.events.cursesmon.CursesMonitor at-
tribute), 478

keys() (celery.utils.collections.ChainMap method), 482
keys() (celery.utils.collections.DictAttribute method), 483
keys() (celery.utils.functional.LRUCache method), 486
KeyValueStoreBackend (class in celery.backends.base),

450
kill() (celery.apps.multi.Cluster method), 384
kill() (celery.bin.multi.MultiTool method), 418
known_suffixes (celery.beat.PersistentScheduler at-

tribute), 382
kombu, 658
kwargs (celery.beat.ScheduleEntry attribute), 380
kwargs (celery.concurrency.base.BasePool.Timer.Entry

attribute), 448
kwargs (celery.events.state.State.Task attribute), 377
kwargs (celery.events.state.Task attribute), 376
kwargs (celery.utils.abstract.CallableSignature attribute),

481
kwargs (celery.utils.timer2.Entry attribute), 497
kwargs (celery.utils.timer2.Timer.Entry attribute), 498
kwargsrepr (celery.worker.request.Request attribute), 387

L
label (celery.bootsteps.Step attribute), 341
label (celery.worker.autoscale.WorkerComponent at-

tribute), 446
label (celery.worker.components.Beat attribute), 443
label (celery.worker.consumer.consumer.Evloop at-

tribute), 395
label (celery.worker.consumer.Gossip attribute), 392
label (celery.worker.consumer.gossip.Gossip attribute),

397
label (celery.worker.consumer.Mingle attribute), 393
label (celery.worker.consumer.mingle.Mingle attribute),

398
label() (celery.utils.graph.GraphFormatter method), 489
last (celery.bootsteps.Step attribute), 341
last (celery.worker.components.Consumer attribute), 444
last (celery.worker.consumer.consumer.Evloop attribute),

395
last_run_at (celery.beat.ScheduleEntry attribute), 380
late ack, 658
late acknowledgment, 658
lazy (class in celery.utils.functional), 488
leaf (celery.bin.base.Command attribute), 401
limit (celery.events.cursesmon.CursesMonitor attribute),

478
LimitedSet (class in celery.utils.collections), 483
link() (celery.utils.abstract.CallableSignature method),

481
link_error() (celery.utils.abstract.CallableSignature

method), 481
list_ (class in celery.bin.list), 420

list_bindings() (celery.bin.list.list_ method), 420
list_commands() (celery.bin.celery.CeleryCommand

class method), 407
load() (celery.bin.base.Extensions method), 400
load_average() (in module celery.utils.sysinfo), 496
load_extension_commands() (cel-

ery.bin.celery.CeleryCommand method),
407

load_step() (celery.bootsteps.Blueprint method), 340
loadavg (celery.events.state.State.Worker attribute), 379
loadavg (celery.events.state.Worker attribute), 376
loader (celery.Celery attribute), 311
Loader (class in celery.loaders.default), 358
Local (class in celery.utils.threads), 497
localize() (in module celery.utils.time), 493
LocalManager (class in celery.utils.threads), 497
LocalStack (in module celery.utils.threads), 497
LocalTimezone (class in celery.utils.time), 492
LockFailed, 504
log (celery.Celery attribute), 312
logfile (celery.apps.multi.Node attribute), 385
logfile (celery.bin.multi.MultiTool.MultiParser.Node at-

tribute), 417
logger (celery.beat.Scheduler attribute), 381
Logging (class in celery.app.log), 337
LoggingProxy (class in celery.utils.log), 500
loglevel (celery.utils.log.LoggingProxy attribute), 500
logtool (class in celery.bin.logtool), 412
lookup_route() (celery.app.routes.Router method), 475
loop() (celery.worker.pidbox.gPidbox method), 445
loop_args() (celery.worker.consumer.Consumer method),

390
loop_args() (celery.worker.consumer.consumer.Consumer

method), 395
lpmerge() (in module celery.utils.collections), 485
LRUCache (class in celery.utils.functional), 486

M
macOS_proxy_detection_workaround() (cel-

ery.apps.worker.Worker method), 383
magenta() (celery.utils.term.colored method), 492
main() (in module celery.bin.celery), 407
main() (in module celery.bin.worker), 410
maintain_pool() (celery.concurrency.base.BasePool

method), 449
make_aware() (in module celery.utils.time), 493
Manager (class in celery.contrib.testing.manager), 367
ManagerMixin (class in celery.contrib.testing.manager),

367
map() (celery.app.task.Task method), 324
MapAnnotation (class in celery.app.annotations), 475
MapRoute (class in celery.app.routes), 475
maps (celery.utils.collections.ChainMap attribute), 482
mattrgetter() (in module celery.utils.functional), 487

Index 687

Celery Documentation, Release 4.1.0

max_connections (celery.backends.redis.RedisBackend
attribute), 471

max_heap_percent_overload (cel-
ery.utils.collections.LimitedSet attribute),
484

max_interval (celery.beat.Scheduler attribute), 381
max_pool_size (celery.backends.mongodb.MongoBackend

attribute), 470
max_retries (celery.app.task.Task attribute), 324
max_retries (Task attribute), 55
MaxRetriesExceededError, 357
maxsize (celery.utils.collections.BufferMap attribute),

482
maybe() (in module celery.utils.functional), 488
maybe_declare() (celery.backends.amqp.AMQPBackend.Producer

method), 466
maybe_declare() (celery.backends.rpc.RPCBackend.Producer

method), 455
maybe_detach() (celery.bin.worker.worker method), 410
maybe_drop_privileges() (in module celery.platforms),

506
maybe_evaluate() (in module celery.utils.functional), 488
maybe_expire() (celery.worker.request.Request method),

387
maybe_iso8601() (in module celery.utils.time), 493
maybe_list() (in module celery.utils.functional), 486
maybe_make_aware() (in module celery.utils.time), 493
maybe_patch_concurrency() (celery.bin.base.Command

method), 401
maybe_reraise() (celery.result.AsyncResult method), 343
maybe_reraise() (celery.result.ResultSet method), 347
maybe_scale() (celery.worker.autoscale.Autoscaler

method), 445
maybe_schedule() (in module celery.schedules), 352
maybe_shutdown() (in module celery.worker.state), 388
maybe_throw() (celery.result.AsyncResult method), 344
maybe_throw() (celery.result.ResultSet method), 347
maybe_timedelta() (in module celery.utils.time), 492
mem_rss() (in module celery.utils.debug), 354
memdump() (celery.app.control.Inspect method), 331
memdump() (in module celery.utils.debug), 354
memoize() (in module celery.utils.functional), 486
memsample() (celery.app.control.Inspect method), 331
merge() (celery.worker.state.Persistent method), 389
merge_inplace() (celery.beat.Scheduler method), 381
merge_rules (celery.events.state.State.Task attribute), 378
merge_rules (celery.events.state.Task attribute), 376
message (celery.exceptions.Retry attribute), 356
Message() (celery.backends.amqp.AMQPBackend.Exchange

method), 464
Message() (celery.backends.rpc.RPCBackend.Exchange

method), 453
Messagebuffer (class in celery.utils.collections), 484
Messagebuffer.Empty, 485

meta (celery.worker.control.Panel attribute), 444
mget() (celery.backends.cache.CacheBackend method),

468
mget() (celery.backends.consul.ConsulBackend method),

468
mget() (celery.backends.couchbase.CouchbaseBackend

method), 473
mget() (celery.backends.couchdb.CouchBackend

method), 469
mget() (celery.backends.dynamodb.DynamoDBBackend

method), 473
mget() (celery.backends.elasticsearch.ElasticsearchBackend

method), 470
mget() (celery.backends.filesystem.FilesystemBackend

method), 474
mget() (celery.backends.redis.RedisBackend method),

471
mget() (celery.backends.riak.RiakBackend method), 472
migrate (class in celery.bin.migrate), 420
migrate_task() (in module celery.contrib.migrate), 363
migrate_tasks() (in module celery.contrib.migrate), 363
Mingle (class in celery.worker.consumer), 392
Mingle (class in celery.worker.consumer.mingle), 397
minute (celery.schedules.crontab attribute), 350
missing_results() (celery.contrib.testing.manager.ManagerMixin

method), 368
mlazy (class in celery.utils.functional), 486
mlevel() (in module celery.utils.log), 501
mode (celery.utils.log.LoggingProxy attribute), 500
module_file() (in module celery.utils.imports), 500
mongo_host (celery.backends.mongodb.MongoBackend

attribute), 470
MongoBackend (class in celery.backends.mongodb), 469
month_of_year (celery.schedules.crontab attribute), 351
move() (in module celery.contrib.migrate), 363
move_by_idmap() (in module celery.contrib.migrate),

365
move_by_taskmap() (in module celery.contrib.migrate),

365
move_selection() (celery.events.cursesmon.CursesMonitor

method), 478
move_selection_down() (cel-

ery.events.cursesmon.CursesMonitor method),
478

move_selection_up() (cel-
ery.events.cursesmon.CursesMonitor method),
478

move_task_by_id() (in module celery.contrib.migrate),
364

move_to_end() (celery.utils.collections.OrderedDict
method), 485

MP_LOG, 542, 556
mro_lookup() (in module celery.utils.objects), 491
multi_call() (celery.app.control.Control.Mailbox

688 Index

Celery Documentation, Release 4.1.0

method), 332
MultiTool (class in celery.bin.multi), 417
MultiTool.MultiParser (class in celery.bin.multi), 417
MultiTool.MultiParser.Node (class in celery.bin.multi),

417

N
name (celery.app.task.Task attribute), 324
name (celery.backends.amqp.AMQPBackend.Exchange

attribute), 463, 465
name (celery.backends.rpc.RPCBackend.Exchange at-

tribute), 452, 454
name (celery.beat.ScheduleEntry attribute), 380
name (celery.bin.control.control attribute), 419
name (celery.bin.control.inspect attribute), 420
name (celery.bootsteps.Blueprint attribute), 340
name (celery.bootsteps.ConsumerStep attribute), 341
name (celery.bootsteps.StartStopStep attribute), 341
name (celery.bootsteps.Step attribute), 341
name (celery.events.state.State.Task attribute), 378
name (celery.events.state.Task attribute), 376
name (celery.utils.abstract.CallableSignature attribute),

481
name (celery.utils.log.LoggingProxy attribute), 500
name (celery.worker.autoscale.WorkerComponent at-

tribute), 446
name (celery.worker.components.Beat attribute), 443
name (celery.worker.components.Consumer attribute),

444
name (celery.worker.components.Hub attribute), 443
name (celery.worker.components.Pool attribute), 443
name (celery.worker.components.StateDB attribute), 444
name (celery.worker.components.Timer attribute), 443
name (celery.worker.consumer.Agent attribute), 391
name (celery.worker.consumer.agent.Agent attribute),

393
name (celery.worker.consumer.Connection attribute), 391
name (celery.worker.consumer.connection.Connection at-

tribute), 394
name (celery.worker.consumer.Consumer.Blueprint at-

tribute), 390
name (celery.worker.consumer.consumer.Consumer.Blueprint

attribute), 394
name (celery.worker.consumer.consumer.Evloop at-

tribute), 395
name (celery.worker.consumer.Control attribute), 391
name (celery.worker.consumer.control.Control attribute),

396
name (celery.worker.consumer.Events attribute), 391
name (celery.worker.consumer.events.Events attribute),

396
name (celery.worker.consumer.Gossip attribute), 392
name (celery.worker.consumer.gossip.Gossip attribute),

397

name (celery.worker.consumer.Heart attribute), 392
name (celery.worker.consumer.heart.Heart attribute), 397
name (celery.worker.consumer.Mingle attribute), 393
name (celery.worker.consumer.mingle.Mingle attribute),

398
name (celery.worker.consumer.Tasks attribute), 393
name (celery.worker.consumer.tasks.Tasks attribute), 398
name (celery.worker.request.Request attribute), 387
name (celery.worker.WorkController.Blueprint attribute),

385
name (celery.worker.worker.WorkController.Blueprint at-

tribute), 399
name (Task attribute), 54
names() (celery.bin.multi.MultiTool method), 418
namespace (celery.app.control.Control.Mailbox at-

tribute), 332
namespace (celery.bin.base.Command attribute), 401
namespace (celery.bin.celery.CeleryCommand attribute),

407
namespace (celery.bin.worker.worker attribute), 410
nap() (celery.events.cursesmon.CursesMonitor method),

478
needs_reconnect (celery.bin.amqp.AMQShell attribute),

414
new_missing() (celery.app.amqp.Queues method), 330
next() (celery.beat.ScheduleEntry method), 380
next() (celery.concurrency.base.BasePool.Timer method),

449
next() (celery.utils.timer2.Timer method), 498
no_ack (celery.backends.amqp.AMQPBackend.Consumer

attribute), 461
no_ack (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

attribute), 457
no_color (celery.bin.base.Command attribute), 402
no_color() (celery.utils.term.colored method), 492
no_declare (celery.backends.amqp.AMQPBackend.Exchange

attribute), 464, 465
no_declare (celery.backends.rpc.RPCBackend.Exchange

attribute), 453, 454
NODE (celery.utils.graph.DOT attribute), 488
Node (class in celery.apps.multi), 384
Node() (celery.app.control.Control.Mailbox method), 332
node() (celery.utils.graph.GraphFormatter method), 490
node() (celery.utils.term.colored method), 492
node_cls (celery.app.control.Control.Mailbox attribute),

332
node_format() (celery.bin.base.Command method), 402
node_format() (in module celery.utils.nodenames), 485
node_scheme (celery.utils.graph.GraphFormatter at-

tribute), 490
nodename() (in module celery.utils), 480
nodename() (in module celery.utils.nodenames), 485
nodesplit() (in module celery.utils), 480
nodesplit() (in module celery.utils.nodenames), 485

Index 689

Celery Documentation, Release 4.1.0

noop() (in module celery.utils.functional), 487
NOSE_VERBOSE, 632
NotAPackage, 499
NotConfigured, 356
note() (celery.bin.amqp.AMQPAdmin method), 413
note() (celery.bin.amqp.AMQShell method), 414
NotRegistered, 357
now() (celery.Celery method), 317
now() (celery.loaders.base.BaseLoader method), 359
nowfun (celery.schedules.crontab attribute), 351
nullipotent, 658
num_processes (celery.concurrency.base.BasePool

attribute), 449
num_processes (celery.concurrency.gevent.TaskPool at-

tribute), 447
num_processes (celery.concurrency.prefork.TaskPool at-

tribute), 446

O
obj (celery.bootsteps.StartStopStep attribute), 341
obj (celery.utils.collections.DictAttribute attribute), 483
objgraph() (celery.app.control.Inspect method), 331
oid (celery.app.control.Control.Mailbox attribute), 332
oid (celery.backends.rpc.RPCBackend attribute), 459
oid (celery.Celery attribute), 312
OK (celery.bin.multi.MultiTool attribute), 418
old (celery.app.defaults.Option attribute), 331
on_accepted() (celery.worker.request.Request method),

387
on_ack (celery.worker.request.Request attribute), 387
on_after_fork() (celery.backends.async.BaseResultConsumer

method), 451
on_after_fork() (celery.backends.rpc.RPCBackend.ResultConsumer

method), 459
on_after_init() (celery.apps.worker.Worker method), 383
on_after_init() (celery.worker.WorkController method),

385
on_after_init() (celery.worker.worker.WorkController

method), 399
on_apply() (celery.concurrency.base.BasePool method),

449
on_apply() (celery.concurrency.eventlet.TaskPool

method), 447
on_apply() (celery.concurrency.gevent.TaskPool

method), 448
on_before_init() (celery.apps.worker.Worker method),

383
on_before_init() (celery.worker.WorkController method),

385
on_before_init() (celery.worker.worker.WorkController

method), 399
on_bound() (celery.app.task.Task class method), 324
on_child_failure() (celery.bin.multi.MultiTool method),

418

on_child_signalled() (celery.bin.multi.MultiTool
method), 418

on_child_spawn() (celery.bin.multi.MultiTool method),
418

on_chord_part_return() (cel-
ery.backends.redis.RedisBackend method),
471

on_cleanup() (celery.events.snapshot.Polaroid method),
477

on_clock_event() (celery.worker.consumer.Mingle
method), 393

on_clock_event() (celery.worker.consumer.mingle.Mingle
method), 398

on_close() (celery.concurrency.base.BasePool method),
449

on_close() (celery.concurrency.prefork.TaskPool
method), 446

on_close() (celery.worker.consumer.Consumer method),
390

on_close() (celery.worker.consumer.consumer.Consumer
method), 395

on_close() (celery.worker.WorkController method), 385
on_close() (celery.worker.worker.WorkController

method), 399
on_concurrency_setup() (celery.bin.base.Command

method), 402
on_concurrency_setup() (cel-

ery.bin.celery.CeleryCommand method),
407

on_connection_error() (cel-
ery.backends.redis.RedisBackend method),
471

on_connection_error_after_connected() (cel-
ery.worker.consumer.Consumer method),
390

on_connection_error_after_connected() (cel-
ery.worker.consumer.consumer.Consumer
method), 395

on_connection_error_before_connected() (cel-
ery.worker.consumer.Consumer method),
390

on_connection_error_before_connected() (cel-
ery.worker.consumer.consumer.Consumer
method), 395

on_consume_ready() (celery.events.EventReceiver
method), 372

on_consume_ready() (cel-
ery.events.receiver.EventReceiver method),
373

on_consumer_ready() (celery.apps.worker.Worker
method), 383

on_consumer_ready() (cel-
ery.contrib.testing.worker.TestWorkController
method), 366

690 Index

Celery Documentation, Release 4.1.0

on_consumer_ready() (celery.worker.WorkController
method), 385

on_consumer_ready() (cel-
ery.worker.worker.WorkController method),
399

on_crash() (celery.utils.threads.bgThread method), 496
on_decode_error (celery.backends.amqp.AMQPBackend.Consumer

attribute), 461
on_decode_error (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

attribute), 458
on_decode_error() (celery.worker.consumer.Consumer

method), 390
on_decode_error() (cel-

ery.worker.consumer.consumer.Consumer
method), 395

on_disabled (celery.events.dispatcher.EventDispatcher at-
tribute), 373

on_disabled (celery.events.EventDispatcher attribute),
370

on_elect() (celery.worker.consumer.Gossip method), 392
on_elect() (celery.worker.consumer.gossip.Gossip

method), 397
on_elect_ack() (celery.worker.consumer.Gossip method),

392
on_elect_ack() (celery.worker.consumer.gossip.Gossip

method), 397
on_enabled (celery.events.dispatcher.EventDispatcher at-

tribute), 374
on_enabled (celery.events.EventDispatcher attribute), 370
on_error() (celery.bin.base.Command method), 402
on_event() (celery.events.dumper.Dumper method), 479
on_failure(), 62
on_failure() (celery.app.task.Task method), 324
on_failure() (celery.worker.request.Request method), 387
on_hard_timeout() (celery.concurrency.base.BasePool

method), 449
on_init() (celery.Celery method), 317
on_init_blueprint() (celery.apps.worker.Worker method),

383
on_init_blueprint() (celery.worker.WorkController

method), 385
on_init_blueprint() (cel-

ery.worker.worker.WorkController method),
399

on_invalid_task() (celery.worker.consumer.Consumer
method), 391

on_invalid_task() (celery.worker.consumer.consumer.Consumer
method), 395

on_message (celery.backends.amqp.AMQPBackend.Consumer
attribute), 461

on_message (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer
attribute), 458

on_message() (celery.worker.consumer.Gossip method),
392

on_message() (celery.worker.consumer.gossip.Gossip
method), 397

on_message() (celery.worker.pidbox.Pidbox method),
445

on_migrate_task() (celery.bin.migrate.migrate method),
421

on_node_down() (celery.bin.multi.MultiTool method),
418

on_node_join() (celery.worker.consumer.Gossip method),
392

on_node_join() (celery.worker.consumer.gossip.Gossip
method), 397

on_node_leave() (celery.worker.consumer.Gossip
method), 392

on_node_leave() (celery.worker.consumer.gossip.Gossip
method), 397

on_node_lost() (celery.worker.consumer.Gossip method),
392

on_node_lost() (celery.worker.consumer.gossip.Gossip
method), 397

on_node_reply() (celery.worker.consumer.Mingle
method), 393

on_node_reply() (celery.worker.consumer.mingle.Mingle
method), 398

on_node_restart() (celery.bin.multi.MultiTool method),
418

on_node_shutdown_ok() (celery.bin.multi.MultiTool
method), 418

on_node_signal() (celery.bin.multi.MultiTool method),
418

on_node_signal_dead() (celery.bin.multi.MultiTool
method), 418

on_node_start() (celery.bin.multi.MultiTool method), 418
on_node_status() (celery.bin.multi.MultiTool method),

418
on_out_of_band_result() (cel-

ery.backends.async.BaseResultConsumer
method), 451

on_out_of_band_result() (cel-
ery.backends.rpc.RPCBackend method),
459

on_process_cleanup() (celery.loaders.base.BaseLoader
method), 359

on_ready() (celery.worker.consumer.Consumer method),
391

on_ready() (celery.worker.consumer.consumer.Consumer
method), 395

on_reject (celery.worker.request.Request attribute), 387
on_reply_declare() (cel-

ery.backends.amqp.AMQPBackend method),
467

on_reply_declare() (celery.backends.rpc.RPCBackend
method), 459

on_result_fulfilled() (cel-

Index 691

Celery Documentation, Release 4.1.0

ery.backends.async.AsyncBackendMixin
method), 451

on_result_fulfilled() (celery.backends.rpc.RPCBackend
method), 459

on_retry(), 63
on_retry() (celery.app.task.Task method), 325
on_retry() (celery.worker.request.Request method), 387
on_return (celery.backends.amqp.AMQPBackend.Producer

attribute), 466
on_return (celery.backends.rpc.RPCBackend.Producer

attribute), 455
on_revoked_received() (celery.worker.consumer.Mingle

method), 393
on_revoked_received() (cel-

ery.worker.consumer.mingle.Mingle method),
398

on_send_event_buffered() (cel-
ery.worker.consumer.Consumer method),
391

on_send_event_buffered() (cel-
ery.worker.consumer.consumer.Consumer
method), 395

on_send_signal() (celery.bin.multi.MultiTool method),
418

on_shutter() (celery.events.snapshot.Polaroid method),
477

on_soft_timeout() (celery.concurrency.base.BasePool
method), 449

on_start() (celery.apps.worker.Worker method), 383
on_start() (celery.concurrency.base.BasePool method),

449
on_start() (celery.concurrency.eventlet.TaskPool

method), 447
on_start() (celery.concurrency.gevent.TaskPool method),

448
on_start() (celery.concurrency.prefork.TaskPool method),

446
on_start() (celery.worker.WorkController method), 385
on_start() (celery.worker.worker.WorkController

method), 399
on_state_change() (cel-

ery.backends.async.BaseResultConsumer
method), 451

on_still_waiting_end() (celery.bin.multi.MultiTool
method), 418

on_still_waiting_for() (celery.bin.multi.MultiTool
method), 418

on_still_waiting_progress() (celery.bin.multi.MultiTool
method), 418

on_stop() (celery.concurrency.base.BasePool method),
449

on_stop() (celery.concurrency.eventlet.TaskPool method),
447

on_stop() (celery.concurrency.gevent.TaskPool method),

448
on_stop() (celery.concurrency.prefork.TaskPool method),

446
on_stop() (celery.worker.pidbox.gPidbox method), 445
on_stop() (celery.worker.pidbox.Pidbox method), 445
on_stopped() (celery.worker.WorkController method),

385
on_stopped() (celery.worker.worker.WorkController

method), 399
on_stopping_preamble() (celery.bin.multi.MultiTool

method), 418
on_success(), 63
on_success() (celery.app.task.Task method), 325
on_success() (celery.worker.request.Request method),

387
on_task_call() (celery.backends.redis.RedisBackend

method), 471
on_task_call() (celery.backends.rpc.RPCBackend

method), 459
on_task_init() (celery.loaders.base.BaseLoader method),

359
on_terminate() (celery.concurrency.base.BasePool

method), 449
on_terminate() (celery.concurrency.prefork.TaskPool

method), 446
on_tick (celery.concurrency.base.BasePool.Timer at-

tribute), 449
on_tick (celery.utils.timer2.Timer attribute), 498
on_timeout() (celery.worker.request.Request method),

387
on_timer_error() (celery.worker.components.Timer

method), 443
on_timer_tick() (celery.worker.components.Timer

method), 443
on_unknown_message() (cel-

ery.worker.consumer.Consumer method),
391

on_unknown_message() (cel-
ery.worker.consumer.consumer.Consumer
method), 395

on_unknown_task() (celery.worker.consumer.Consumer
method), 391

on_unknown_task() (cel-
ery.worker.consumer.consumer.Consumer
method), 395

on_usage_error() (celery.bin.base.Command method),
402

on_usage_error() (celery.bin.celery.CeleryCommand
method), 407

on_wait_for_pending() (cel-
ery.backends.async.BaseResultConsumer
method), 451

on_wait_for_pending() (cel-
ery.backends.redis.RedisBackend.ResultConsumer

692 Index

Celery Documentation, Release 4.1.0

method), 471
on_worker_init() (celery.loaders.base.BaseLoader

method), 359
on_worker_process_init() (cel-

ery.loaders.base.BaseLoader method), 359
on_worker_shutdown() (celery.loaders.base.BaseLoader

method), 359
onecmd() (celery.bin.amqp.AMQShell method), 414
online_str (celery.events.cursesmon.CursesMonitor at-

tribute), 478
open() (celery.platforms.DaemonContext method), 505
open() (celery.worker.state.Persistent method), 389
OperationalError, 356
Option (class in celery.app.defaults), 331
Option (class in celery.bin.base), 403
option_list (celery.bin.base.Command attribute), 402
option_list (celery.bin.control.status attribute), 420
OptionParser (celery.bin.multi.MultiTool attribute), 418
options (celery.backends.mongodb.MongoBackend at-

tribute), 470
options (celery.beat.ScheduleEntry attribute), 380
options (celery.utils.abstract.CallableSignature attribute),

481
OrderedDict (class in celery.utils.collections), 485
origin (celery.events.state.State.Task attribute), 378
origin (celery.events.state.Task attribute), 376
out() (celery.bin.base.Command method), 402
override_backends (celery.loaders.base.BaseLoader at-

tribute), 359

P
padlist() (in module celery.utils.functional), 487
Panel (class in celery.worker.control), 444
parent (celery.events.state.State.Task attribute), 378
parent (celery.events.state.Task attribute), 376
parent (celery.result.ResultBase attribute), 341
parent_id (celery.events.state.State.Task attribute), 378
parent_id (celery.events.state.Task attribute), 376
parent_id (celery.worker.request.Request attribute), 387
parse() (celery.bin.multi.MultiTool.MultiParser method),

418
parse() (celery.schedules.crontab_parser method), 352
parse_doc() (celery.bin.base.Command method), 402
parse_gid() (in module celery.platforms), 506
parse_iso8601() (in module celery.utils.iso8601), 494
parse_options() (celery.bin.base.Command method), 402
parse_preload_options() (celery.bin.base.Command

method), 402
parse_uid() (in module celery.platforms), 506
ParseException, 349
parseline() (celery.bin.amqp.AMQShell method), 414
Parser (celery.bin.base.Command attribute), 400
passive (celery.backends.amqp.AMQPBackend.Exchange

attribute), 465

passive (celery.backends.rpc.RPCBackend.Exchange at-
tribute), 454

password (celery.backends.couchbase.CouchbaseBackend
attribute), 473

password (celery.backends.couchdb.CouchBackend at-
tribute), 469

password (celery.backends.mongodb.MongoBackend at-
tribute), 470

password (celery.backends.redis.RedisBackend attribute),
471

patch_all() (celery.worker.consumer.consumer.Evloop
method), 396

path (celery.backends.consul.ConsulBackend attribute),
468

path (celery.platforms.Pidfile attribute), 505
PENDING

state, 58
PENDING (in module celery.states), 360
perform_pending_operations() (cel-

ery.worker.consumer.Consumer method),
391

perform_pending_operations() (cel-
ery.worker.consumer.consumer.Consumer
method), 395

periodic() (celery.app.registry.TaskRegistry method), 336
periodic() (celery.worker.consumer.Gossip method), 392
periodic() (celery.worker.consumer.gossip.Gossip

method), 397
persistence (celery.beat.PersistentScheduler attribute),

382
persistent (celery.backends.amqp.AMQPBackend at-

tribute), 467
persistent (celery.backends.rpc.RPCBackend attribute),

459
Persistent (class in celery.worker.state), 389
PERSISTENT_DELIVERY_MODE (cel-

ery.backends.amqp.AMQPBackend.Exchange
attribute), 464

PERSISTENT_DELIVERY_MODE (cel-
ery.backends.rpc.RPCBackend.Exchange
attribute), 453

PersistentScheduler (class in celery.beat), 382
pid (celery.apps.multi.Node attribute), 385
pid (celery.bin.multi.MultiTool.MultiParser.Node at-

tribute), 417
pid (celery.events.state.State.Worker attribute), 379
pid (celery.events.state.Worker attribute), 376
pidbox, 658
Pidbox (class in celery.worker.pidbox), 445
pidfile (celery.apps.multi.Node attribute), 385
pidfile (celery.bin.multi.MultiTool.MultiParser.Node at-

tribute), 418
Pidfile (class in celery.platforms), 504
pidlock (celery.worker.WorkController attribute), 385

Index 693

Celery Documentation, Release 4.1.0

pidlock (celery.worker.worker.WorkController attribute),
399

ping
control, 106

ping() (celery.app.control.Control method), 334
ping() (celery.app.control.Inspect method), 331
pluralize() (in module celery.utils.text), 501
Polaroid (class in celery.events.snapshot), 477
poll() (celery.backends.amqp.AMQPBackend method),

467
poll() (celery.backends.rpc.RPCBackend method), 459
pool, 173, 176
pool (celery.Celery attribute), 312
Pool (celery.concurrency.prefork.TaskPool attribute), 446
pool (celery.worker.consumer.Consumer attribute), 391
pool (celery.worker.consumer.consumer.Consumer

attribute), 395
pool (celery.worker.WorkController attribute), 385
pool (celery.worker.worker.WorkController attribute),

399
Pool (class in celery.worker.components), 443
pool_grow() (celery.app.control.Control method), 334
pool_restart() (celery.app.control.Control method), 334
pool_shrink() (celery.app.control.Control method), 335
pop() (celery.utils.collections.ChainMap method), 482
pop() (celery.utils.collections.LimitedSet method), 484
pop_value() (celery.utils.collections.LimitedSet method),

484
popitem() (celery.utils.functional.LRUCache method),

486
populate_heap() (celery.beat.Scheduler method), 381
port (celery.backends.couchbase.CouchbaseBackend at-

tribute), 473
port (celery.backends.couchdb.CouchBackend attribute),

469
port (celery.backends.elasticsearch.ElasticsearchBackend

attribute), 470
port (celery.backends.mongodb.MongoBackend at-

tribute), 470
port (celery.backends.redis.RedisBackend attribute), 471
port (celery.backends.riak.RiakBackend attribute), 472
precedence() (in module celery.states), 360
prefetch count, 658
prefetch multiplier, 658
prefetch_count (celery.backends.amqp.AMQPBackend.Consumer

attribute), 461
prefetch_count (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

attribute), 458
prepare() (in module celery.app.annotations), 475
prepare() (in module celery.app.routes), 475
prepare_args() (celery.bin.base.Command method), 402
prepare_args() (celery.worker.WorkController method),

385

prepare_args() (celery.worker.worker.WorkController
method), 399

prepare_arguments() (celery.bin.base.Command method),
402

prepare_argv() (celery.apps.multi.Node method), 385
prepare_argv() (celery.bin.multi.MultiTool.MultiParser.Node

method), 418
prepare_config() (celery.Celery method), 317
prepare_models() (celery.backends.database.session.SessionManager

method), 480
prepare_parser() (celery.bin.base.Command method), 402
prepare_prog_name() (celery.bin.celery.CeleryCommand

method), 407
pretty() (celery.bin.base.Command method), 402
pretty() (in module celery.utils.text), 501
pretty_dict_ok_error() (celery.bin.base.Command

method), 402
pretty_list() (celery.bin.base.Command method), 402
PrivateKey (class in celery.security.key), 476
process() (celery.bin.base.Option method), 403
process() (celery.events.EventReceiver method), 372
process() (celery.events.receiver.EventReceiver method),

373
process_cleanup() (cel-

ery.backends.cassandra.CassandraBackend
method), 472

process_cmdline_config() (celery.bin.base.Command
method), 402

process_destructor() (in module cel-
ery.concurrency.prefork), 447

process_initializer() (in module cel-
ery.concurrency.prefork), 447

processed (celery.events.state.State.Worker attribute), 379
processed (celery.events.state.Worker attribute), 376
processes (celery.worker.autoscale.Autoscaler attribute),

445
Producer (celery.app.amqp.AMQP attribute), 329
producer (celery.beat.Scheduler attribute), 381
producer_or_acquire() (cel-

ery.app.control.Control.Mailbox method),
332

producer_or_acquire() (celery.Celery method), 316
producer_pool (celery.app.amqp.AMQP attribute), 330
producer_pool (celery.app.control.Control.Mailbox at-

tribute), 332
producer_pool (celery.Celery attribute), 312
prog_name (celery.bin.base.Command attribute), 402
prog_name (celery.bin.celery.CeleryCommand attribute),

407
progress_fmt (celery.bin.migrate.migrate attribute), 421
prompt (celery.bin.amqp.AMQShell attribute), 414
prompt_fmt (celery.bin.amqp.AMQShell attribute), 414
PROPAGATE_STATES

state, 360

694 Index

Celery Documentation, Release 4.1.0

Property() (in module celery.utils.deprecated), 486
protocol (celery.backends.riak.RiakBackend attribute),

472
protocol (celery.worker.state.Persistent attribute), 389
ps() (in module celery.utils.debug), 354
publish() (celery.backends.amqp.AMQPBackend.Exchange

method), 465
publish() (celery.backends.amqp.AMQPBackend.Producer

method), 466
publish() (celery.backends.rpc.RPCBackend.Exchange

method), 454
publish() (celery.backends.rpc.RPCBackend.Producer

method), 455
publish() (celery.events.dispatcher.EventDispatcher

method), 374
publish() (celery.events.EventDispatcher method), 370
publisher (celery.events.dispatcher.EventDispatcher at-

tribute), 374
publisher (celery.events.EventDispatcher attribute), 371
purge (class in celery.bin.purge), 421
purge() (celery.app.control.Control method), 335
purge() (celery.backends.amqp.AMQPBackend.Consumer

method), 462
purge() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

method), 458
purge() (celery.utils.collections.LimitedSet method), 484
purge_messages() (celery.apps.worker.Worker method),

383
put() (celery.utils.collections.BufferMap method), 482
put() (celery.utils.collections.Messagebuffer method),

485
pyimplementation() (in module celery.platforms), 504
Python Enhancement Proposals

PEP 257, 230
PEP 8, 229, 230, 423

Q
qos, 177
qos() (celery.backends.amqp.AMQPBackend.Consumer

method), 462
qos() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

method), 458
qty (celery.worker.autoscale.Autoscaler attribute), 445
qualname() (in module celery.utils.imports), 499
query_router() (celery.app.routes.Router method), 475
query_task() (celery.app.control.Inspect method), 331
query_task_states() (cel-

ery.contrib.testing.manager.ManagerMixin
method), 368

query_tasks() (celery.contrib.testing.manager.ManagerMixin
method), 368

Queue (celery.backends.amqp.AMQPBackend attribute),
467

queue (celery.concurrency.base.BasePool.Timer at-
tribute), 449

queue (celery.concurrency.eventlet.TaskPool.Timer at-
tribute), 447

queue (celery.concurrency.gevent.TaskPool.Timer at-
tribute), 447

queue (celery.utils.timer2.Timer attribute), 498
QueueNotFound, 357
queues (celery.app.amqp.AMQP attribute), 329
queues (celery.backends.amqp.AMQPBackend.Consumer

attribute), 462
queues (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

attribute), 458
Queues (class in celery.app.amqp), 330
Queues() (celery.app.amqp.AMQP method), 329
quiet (celery.backends.couchbase.CouchbaseBackend at-

tribute), 473

R
rate() (in module celery.utils.time), 493
rate_limit

control, 98
rate_limit (celery.app.task.Task attribute), 325
rate_limit (Task attribute), 55
rate_limit() (celery.app.control.Control method), 335
Rdb (class in celery.contrib.rdb), 369
read_capacity_units (cel-

ery.backends.dynamodb.DynamoDBBackend
attribute), 473

read_configuration() (celery.loaders.base.BaseLoader
method), 359

read_configuration() (celery.loaders.default.Loader
method), 358

read_pid() (celery.platforms.Pidfile method), 505
readline() (celery.events.cursesmon.CursesMonitor

method), 478
ready (celery.events.state.State.Task attribute), 378
ready (celery.events.state.Task attribute), 376
ready() (celery.result.AsyncResult method), 344
ready() (celery.result.EagerResult method), 349
ready() (celery.result.ResultSet method), 347
READY_STATES

state, 359
rebuild_taskheap() (celery.events.state.State method), 379
receive() (celery.backends.amqp.AMQPBackend.Consumer

method), 462
receive() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

method), 458
received (celery.events.state.State.Task attribute), 378
received (celery.events.state.Task attribute), 376
RECEIVED (in module celery.states), 360
Receiver (celery.app.events.Events attribute), 337
receiver_cls (celery.app.events.Events attribute), 337
receivers (celery.utils.dispatch.Signal attribute), 502

Index 695

Celery Documentation, Release 4.1.0

receivers (celery.utils.dispatch.signal.Signal attribute),
503

recover() (celery.backends.amqp.AMQPBackend.Consumer
method), 462

recover() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer
method), 458

red() (celery.utils.term.colored method), 492
redirect_stdouts() (celery.app.log.Logging method), 337
redirect_stdouts_to_logger() (celery.app.log.Logging

method), 337
redirect_to_null() (celery.platforms.DaemonContext

method), 505
redis (celery.backends.redis.RedisBackend attribute), 471
redis_backend_use_ssl

setting, 194
redis_max_connections

setting, 195
redis_socket_connect_timeout

setting, 195
redis_socket_timeout

setting, 195
RedisBackend (class in celery.backends.redis), 470
RedisBackend.ResultConsumer (class in cel-

ery.backends.redis), 471
reentrant, 658
regen() (in module celery.utils.functional), 488
register() (celery.app.registry.TaskRegistry method), 336
register() (celery.worker.control.Panel class method), 444
register_auth() (in module celery.security.serialization),

476
register_callback() (cel-

ery.backends.amqp.AMQPBackend.Consumer
method), 462

register_callback() (cel-
ery.backends.rpc.RPCBackend.ResultConsumer.Consumer
method), 458

register_command() (celery.bin.celery.CeleryCommand
class method), 407

register_drainer() (in module celery.backends.async), 451
register_timer() (celery.worker.consumer.Gossip

method), 392
register_timer() (celery.worker.consumer.gossip.Gossip

method), 397
register_with_event_loop() (cel-

ery.concurrency.base.BasePool method),
449

register_with_event_loop() (cel-
ery.concurrency.prefork.TaskPool method),
446

register_with_event_loop() (cel-
ery.worker.autoscale.WorkerComponent
method), 446

register_with_event_loop() (cel-
ery.worker.components.Pool method), 443

register_with_event_loop() (cel-
ery.worker.consumer.Consumer method),
391

register_with_event_loop() (cel-
ery.worker.consumer.consumer.Consumer
method), 395

register_with_event_loop() (cel-
ery.worker.WorkController method), 385

register_with_event_loop() (cel-
ery.worker.worker.WorkController method),
399

registered() (celery.app.control.Inspect method), 332
registered_tasks() (celery.app.control.Inspect method),

332
regular() (celery.app.registry.TaskRegistry method), 336
Reject, 356
reject() (celery.worker.request.Request method), 388
reject_on_worker_lost (celery.app.task.Task attribute),

325
rejected (celery.events.state.State.Task attribute), 378
rejected (celery.events.state.Task attribute), 377
relative (celery.schedules.schedule attribute), 350
release() (celery.backends.amqp.AMQPBackend.Producer

method), 466
release() (celery.backends.rpc.RPCBackend.Producer

method), 456
release() (celery.platforms.Pidfile method), 505
reload() (celery.worker.WorkController method), 385
reload() (celery.worker.worker.WorkController method),

399
reload_from_cwd() (in module celery.utils.imports), 500
reload_group_result() (cel-

ery.backends.amqp.AMQPBackend method),
467

reload_group_result() (celery.backends.rpc.RPCBackend
method), 459

reload_task_result() (cel-
ery.backends.amqp.AMQPBackend method),
467

reload_task_result() (celery.backends.rpc.RPCBackend
method), 459

remaining() (in module celery.utils.time), 492
remaining_delta() (celery.schedules.crontab method), 351
remaining_estimate() (celery.schedules.crontab method),

351
remaining_estimate() (celery.schedules.schedule

method), 350
remaining_estimate() (celery.schedules.solar method),

353
remark() (celery.contrib.testing.manager.ManagerMixin

method), 368
remove() (celery.platforms.Pidfile method), 505
remove() (celery.result.ResultSet method), 347
remove() (hub method), 182

696 Index

Celery Documentation, Release 4.1.0

remove_by (celery.app.defaults.Option attribute), 331
remove_if_stale() (celery.platforms.Pidfile method), 505
remove_pending_result() (cel-

ery.backends.async.AsyncBackendMixin
method), 451

removed_flags (celery.bin.worker.worker attribute), 410
replace() (celery.app.task.Task method), 325
reply_exchange (celery.app.control.Control.Mailbox at-

tribute), 332
reply_exchange_fmt (celery.app.control.Control.Mailbox

attribute), 332
reply_queue (celery.app.control.Control.Mailbox at-

tribute), 332
reply_to (celery.worker.request.Request attribute), 388
report() (celery.app.control.Inspect method), 332
repr_node() (celery.utils.graph.DependencyGraph

method), 489
reprstream() (in module celery.utils.saferepr), 495
republish() (in module celery.contrib.migrate), 363
request, 658
request (celery.app.task.Task attribute), 326
Request (class in celery.worker.request), 386
request (Task attribute), 55
request_dict (celery.worker.request.Request attribute),

388
request_stack (celery.app.task.Task attribute), 326
requires (celery.bootsteps.ConsumerStep attribute), 341
requires (celery.bootsteps.Step attribute), 341
requires (celery.worker.autoscale.WorkerComponent at-

tribute), 446
requires (celery.worker.components.Hub attribute), 443
requires (celery.worker.components.Pool attribute), 443
requires (celery.worker.consumer.Agent attribute), 391
requires (celery.worker.consumer.agent.Agent attribute),

393
requires (celery.worker.consumer.Control attribute), 391
requires (celery.worker.consumer.control.Control at-

tribute), 396
requires (celery.worker.consumer.Events attribute), 391
requires (celery.worker.consumer.events.Events at-

tribute), 396
requires (celery.worker.consumer.Gossip attribute), 392
requires (celery.worker.consumer.gossip.Gossip at-

tribute), 397
requires (celery.worker.consumer.Heart attribute), 392
requires (celery.worker.consumer.heart.Heart attribute),

397
requires (celery.worker.consumer.Mingle attribute), 393
requires (celery.worker.consumer.mingle.Mingle at-

tribute), 398
requires (celery.worker.consumer.Tasks attribute), 393
requires (celery.worker.consumer.tasks.Tasks attribute),

398
reraise_errors() (in module celery.security.utils), 477

reserve() (celery.beat.Scheduler method), 381
reserved() (celery.app.control.Inspect method), 332
reserved_options (celery.bin.multi.MultiTool attribute),

418
reserved_requests (in module celery.worker.state), 388
reset() (celery.utils.term.colored method), 492
reset() (celery.worker.pidbox.gPidbox method), 445
reset() (celery.worker.pidbox.Pidbox method), 445
reset_multiprocessing_logger() (in module cel-

ery.utils.log), 501
reset_rate_limits() (celery.worker.consumer.Consumer

method), 391
reset_rate_limits() (cel-

ery.worker.consumer.consumer.Consumer
method), 395

reset_rate_limits() (consumer method), 177
reset_worker_optimizations() (in module cel-

ery.app.trace), 475
resetscreen() (celery.events.cursesmon.CursesMonitor

method), 478
resolve_all() (in module celery.app.annotations), 475
respects_app_option (celery.bin.base.Command at-

tribute), 402
respond() (celery.bin.amqp.AMQShell method), 414
restart() (celery.apps.multi.Cluster method), 384
restart() (celery.bin.multi.MultiTool method), 418
restart() (celery.bootsteps.Blueprint method), 340
restart() (celery.concurrency.base.BasePool method), 449
restart() (celery.concurrency.prefork.TaskPool method),

446
restart_count (celery.worker.consumer.Consumer at-

tribute), 391
restart_count (celery.worker.consumer.consumer.Consumer

attribute), 395
restore() (celery.result.GroupResult class method), 349
restore() (celery.utils.serialization.UnpickleableExceptionWrapper

method), 495
restore_group() (celery.backends.amqp.AMQPBackend

method), 467
restore_group() (celery.backends.rpc.RPCBackend

method), 459
result (celery.backends.database.models.Task attribute),

479
result (celery.backends.database.models.TaskSet at-

tribute), 479
result (celery.events.state.State.Task attribute), 378
result (celery.events.state.Task attribute), 377
result (celery.result.AsyncResult attribute), 344
result (celery.result.EagerResult attribute), 349
result (class in celery.bin.result), 421
result_backend

setting, 190
result_cache_max

setting, 191

Index 697

Celery Documentation, Release 4.1.0

result_compression
setting, 191

result_expires
setting, 191

result_from_tuple() (in module celery.result), 349
result_persistent

setting, 193
result_serializer

setting, 191
ResultBase (class in celery.result), 341
resultrepr_maxsize (celery.app.task.Task attribute), 326
results (celery.result.GroupResult attribute), 349
results (celery.result.ResultSet attribute), 348
ResultSession() (celery.backends.database.DatabaseBackend

method), 460
ResultSet (class in celery.result), 346
retried (celery.events.state.State.Task attribute), 378
retried (celery.events.state.Task attribute), 377
retries (celery.events.state.State.Task attribute), 378
retries (celery.events.state.Task attribute), 377
RETRY

state, 58
Retry, 356
RETRY (in module celery.states), 360
retry() (celery.app.task.Task method), 326
retry_over_time() (celery.contrib.testing.manager.ManagerMixin

method), 368
retry_policy (celery.backends.amqp.AMQPBackend at-

tribute), 467
retry_policy (celery.backends.rpc.RPCBackend attribute),

459
returns (celery.bin.amqp.Spec attribute), 415
retval (celery.app.trace.TraceInfo attribute), 474
reverse() (celery.utils.term.colored method), 492
revive() (celery.backends.amqp.AMQPBackend method),

467
revive() (celery.backends.amqp.AMQPBackend.Consumer

method), 462
revive() (celery.backends.amqp.AMQPBackend.Producer

method), 466
revive() (celery.backends.rpc.RPCBackend method), 459
revive() (celery.backends.rpc.RPCBackend.Producer

method), 456
revive() (celery.backends.rpc.RPCBackend.ResultConsumer.Consumer

method), 459
revoke

control, 96
revoke() (celery.app.control.Control method), 335
revoke() (celery.result.AsyncResult method), 344
revoke() (celery.result.EagerResult method), 349
revoke() (celery.result.ResultSet method), 348
revoke_selection() (cel-

ery.events.cursesmon.CursesMonitor method),
478

REVOKED
state, 58

revoked (celery.events.state.State.Task attribute), 378
revoked (celery.events.state.Task attribute), 377
REVOKED (in module celery.states), 360
revoked (in module celery.worker.state), 388
revoked() (celery.app.control.Inspect method), 332
revoked() (celery.worker.request.Request method), 388
riak_backend_settings

setting, 198
RiakBackend (class in celery.backends.riak), 471
rkey() (celery.backends.amqp.AMQPBackend method),

467
root (celery.events.state.State.Task attribute), 378
root (celery.events.state.Task attribute), 377
root_id (celery.events.state.State.Task attribute), 378
root_id (celery.events.state.Task attribute), 377
root_id (celery.worker.request.Request attribute), 388
route() (celery.app.routes.Router method), 475
router (celery.app.amqp.AMQP attribute), 330
Router (class in celery.app.routes), 475
Router() (celery.app.amqp.AMQP method), 329
routes (celery.app.amqp.AMQP attribute), 330
routing_key (celery.backends.amqp.AMQPBackend.Producer

attribute), 467
routing_key (celery.backends.rpc.RPCBackend.Producer

attribute), 456
routing_key (celery.events.state.State.Task attribute), 378
routing_key (celery.events.state.Task attribute), 377
RPCBackend (class in celery.backends.rpc), 452
RPCBackend.BacklogLimitExceeded, 452
RPCBackend.Consumer (class in celery.backends.rpc),

452
RPCBackend.Exchange (class in celery.backends.rpc),

452
RPCBackend.Producer (class in celery.backends.rpc),

454
RPCBackend.Queue (class in celery.backends.rpc), 456
RPCBackend.ResultConsumer (class in cel-

ery.backends.rpc), 456
RPCBackend.ResultConsumer.Consumer (class in cel-

ery.backends.rpc), 456
RPCBackend.ResultConsumer.Consumer.ContentDisallowed,

456
RUN (celery.concurrency.base.BasePool attribute), 448
run() (celery.app.task.Task method), 327
run() (celery.apps.beat.Beat method), 384
run() (celery.bin.amqp.amqp method), 415
run() (celery.bin.amqp.AMQPAdmin method), 413
run() (celery.bin.base.Command method), 402
run() (celery.bin.beat.beat method), 411
run() (celery.bin.call.call method), 419
run() (celery.bin.control.status method), 420
run() (celery.bin.events.events method), 412

698 Index

Celery Documentation, Release 4.1.0

run() (celery.bin.graph.graph method), 415
run() (celery.bin.list.list_ method), 420
run() (celery.bin.logtool.logtool method), 413
run() (celery.bin.migrate.migrate method), 421
run() (celery.bin.purge.purge method), 421
run() (celery.bin.result.result method), 422
run() (celery.bin.shell.shell method), 422
run() (celery.bin.upgrade.upgrade method), 422
run() (celery.bin.worker.worker method), 410
run() (celery.concurrency.base.BasePool.Timer method),

449
run() (celery.utils.threads.bgThread method), 496
run() (celery.utils.timer2.Timer method), 498
run_evcam() (celery.bin.events.events method), 412
run_evdump() (celery.bin.events.events method), 412
run_evtop() (celery.bin.events.events method), 412
run_from_argv() (celery.bin.base.Command method),

402
run_from_argv() (celery.bin.worker.worker method), 410
running (celery.concurrency.base.BasePool.Timer at-

tribute), 449
running (celery.utils.timer2.Timer attribute), 498
runtime (celery.events.state.State.Task attribute), 378
runtime (celery.events.state.Task attribute), 377
rusage() (celery.worker.WorkController method), 385
rusage() (celery.worker.worker.WorkController method),

399

S
s() (celery.app.task.Task method), 327
safe_add_str() (celery.events.cursesmon.CursesMonitor

method), 478
saferepr() (in module celery.utils.saferepr), 494
sample() (in module celery.utils.debug), 354
sample_mem() (in module celery.utils.debug), 354
save() (celery.result.GroupResult method), 349
save() (celery.worker.state.Persistent method), 389
save_group() (celery.backends.amqp.AMQPBackend

method), 467
save_group() (celery.backends.rpc.RPCBackend

method), 459
say() (celery.bin.amqp.AMQShell method), 414
say() (celery.events.dumper.Dumper method), 479
say1() (celery.bin.logtool.logtool method), 413
say_chat() (celery.bin.base.Command method), 402
say_remote_command_reply() (cel-

ery.bin.base.Command method), 402
scale_down() (celery.worker.autoscale.Autoscaler

method), 445
scale_up() (celery.worker.autoscale.Autoscaler method),

445
schedule (celery.beat.PersistentScheduler attribute), 382
schedule (celery.beat.ScheduleEntry attribute), 380
schedule (celery.beat.Scheduler attribute), 381

Schedule (celery.concurrency.base.BasePool.Timer at-
tribute), 448

Schedule (celery.utils.timer2.Timer attribute), 498
schedule (class in celery.schedules), 349
Schedule (in module celery.utils.timer2), 498
scheduled() (celery.app.control.Inspect method), 332
ScheduleEntry (class in celery.beat), 380
scheduler (celery.apps.beat.Beat.Service attribute), 383
scheduler (celery.beat.Service attribute), 382
Scheduler (class in celery.beat), 381
scheduler_cls (celery.apps.beat.Beat.Service attribute),

383
scheduler_cls (celery.beat.Service attribute), 382
schedules_equal() (celery.beat.Scheduler method), 381
SchedulingError, 380
scheme (celery.backends.couchdb.CouchBackend at-

tribute), 469
scheme (celery.backends.elasticsearch.ElasticsearchBackend

attribute), 470
scheme (celery.utils.graph.GraphFormatter attribute), 490
screen_delay (celery.events.cursesmon.CursesMonitor at-

tribute), 478
screen_height (celery.events.cursesmon.CursesMonitor

attribute), 478
screen_width (celery.events.cursesmon.CursesMonitor

attribute), 478
seconds (celery.schedules.schedule attribute), 350
SecureSerializer (class in celery.security.serialization),

476
security_cert_store

setting, 213
security_certificate

setting, 213
security_key

setting, 213
SecurityError, 356
select() (celery.app.amqp.Queues method), 330
select_add() (celery.app.amqp.Queues method), 331
select_queues() (celery.Celery method), 317
selected_position (celery.events.cursesmon.CursesMonitor

attribute), 478
selected_str (celery.events.cursesmon.CursesMonitor at-

tribute), 478
selected_task (celery.events.cursesmon.CursesMonitor

attribute), 478
selection_info() (celery.events.cursesmon.CursesMonitor

method), 478
selection_rate_limit() (cel-

ery.events.cursesmon.CursesMonitor method),
478

selection_result() (celery.events.cursesmon.CursesMonitor
method), 478

selection_traceback() (cel-
ery.events.cursesmon.CursesMonitor method),

Index 699

Celery Documentation, Release 4.1.0

478
semaphore (celery.worker.WorkController attribute), 385
semaphore (celery.worker.worker.WorkController at-

tribute), 399
send() (celery.apps.multi.Node method), 385
send() (celery.bin.multi.MultiTool.MultiParser.Node

method), 418
send() (celery.events.dispatcher.EventDispatcher

method), 374
send() (celery.events.EventDispatcher method), 371
send() (celery.utils.dispatch.Signal method), 502
send() (celery.utils.dispatch.signal.Signal method), 504
send_all() (celery.apps.multi.Cluster method), 384
send_all() (celery.bootsteps.Blueprint method), 340
send_event() (celery.app.task.Task method), 327
send_event() (celery.worker.request.Request method),

388
send_events (celery.app.task.Task attribute), 327
send_hello() (celery.worker.consumer.Mingle method),

393
send_hello() (celery.worker.consumer.mingle.Mingle

method), 398
send_robust() (celery.utils.dispatch.Signal method), 502
send_robust() (celery.utils.dispatch.signal.Signal

method), 504
send_task() (celery.beat.Scheduler method), 381
send_task() (celery.Celery method), 315
send_task_message (celery.app.amqp.AMQP attribute),

330
sent (celery.events.state.State.Task attribute), 378
sent (celery.events.state.Task attribute), 377
Sentinel, 368
serialize() (celery.security.serialization.SecureSerializer

method), 476
serializer (celery.app.control.Control.Mailbox attribute),

332
serializer (celery.app.task.Task attribute), 327
serializer (celery.backends.amqp.AMQPBackend.Producer

attribute), 467
serializer (celery.backends.rpc.RPCBackend.Producer at-

tribute), 456
serializer (Task attribute), 56
server (celery.backends.elasticsearch.ElasticsearchBackend

attribute), 470
servers (celery.backends.cache.CacheBackend attribute),

468
servers (celery.backends.cassandra.CassandraBackend at-

tribute), 472
Service (class in celery.beat), 382
session_factory() (celery.backends.database.session.SessionManager

method), 480
SessionManager (class in cel-

ery.backends.database.session), 479
set() (celery.backends.cache.CacheBackend method), 468

set() (celery.backends.consul.ConsulBackend method),
468

set() (celery.backends.couchbase.CouchbaseBackend
method), 473

set() (celery.backends.couchdb.CouchBackend method),
469

set() (celery.backends.dynamodb.DynamoDBBackend
method), 473

set() (celery.backends.elasticsearch.ElasticsearchBackend
method), 470

set() (celery.backends.filesystem.FilesystemBackend
method), 474

set() (celery.backends.redis.RedisBackend method), 471
set() (celery.backends.riak.RiakBackend method), 472
set() (celery.utils.abstract.CallableSignature method), 481
set_current() (celery.Celery method), 317
set_default() (celery.Celery method), 317
set_default_app() (in module celery._state), 508
set_in_sighandler() (in module celery.utils.log), 500
set_mp_process_title() (in module celery.platforms), 507
set_process_status() (celery.apps.worker.Worker

method), 383
set_process_status() (celery.bin.events.events method),

412
set_process_title() (celery.apps.beat.Beat method), 384
set_process_title() (in module celery.platforms), 507
set_schedule() (celery.beat.PersistentScheduler method),

382
set_schedule() (celery.beat.Scheduler method), 381
set_trace() (in module celery.contrib.rdb), 369
set_trap() (in module celery.contrib.testing.app), 367
setdefault() (celery.utils.collections.ChainMap method),

482
setdefault() (celery.utils.collections.DictAttribute

method), 483
setgid() (in module celery.platforms), 506
setgroups() (in module celery.platforms), 506
setter() (celery.utils.cached_property method), 480
setting

accept_content, 186
beat_max_loop_interval, 215
beat_schedule, 215
beat_schedule_filename, 215
beat_scheduler, 215
beat_sync_every, 215
broker_connection_max_retries, 208
broker_connection_retry, 208
broker_connection_timeout, 208
broker_failover_strategy, 206
broker_heartbeat, 206
broker_heartbeat_checkrate, 207
broker_login_method, 208
broker_pool_limit, 208
broker_read_url, 206

700 Index

Celery Documentation, Release 4.1.0

broker_transport_options, 208
broker_url, 205
broker_use_ssl, 207
broker_write_url, 206
cache_backend, 194
cache_backend_options, 193
cassandra_auth_kwargs, 196
cassandra_auth_provider, 196
cassandra_entry_ttl, 196
cassandra_keyspace, 196
cassandra_port, 195
cassandra_read_consistency, 196
cassandra_servers, 195
cassandra_table, 196
cassandra_write_consistency, 196
control_queue_expires, 212
control_queue_ttl, 212
couchbase_backend_settings, 200
database_engine_options, 192
database_short_lived_sessions, 192
database_table_names, 192
elasticsearch_max_retries, 197
elasticsearch_retry_on_timeout, 197
elasticsearch_timeout, 197
enable_utc, 186
event_queue_expires, 211
event_queue_prefix, 211
event_queue_ttl, 211
event_serializer, 211
imports, 209
include, 209
redis_backend_use_ssl, 194
redis_max_connections, 195
redis_socket_connect_timeout, 195
redis_socket_timeout, 195
result_backend, 190
result_cache_max, 191
result_compression, 191
result_expires, 191
result_persistent, 193
result_serializer, 191
riak_backend_settings, 198
security_cert_store, 213
security_certificate, 213
security_key, 213
task_acks_late, 190
task_always_eager, 188
task_annotations, 187
task_compression, 187
task_create_missing_queues, 204
task_default_delivery_mode, 205
task_default_exchange, 204
task_default_exchange_type, 205
task_default_queue, 204

task_default_rate_limit, 190
task_default_routing_key, 205
task_eager_propagates, 188
task_ignore_result, 189
task_protocol, 187
task_publish_retry, 188
task_publish_retry_policy, 188
task_queue_ha_policy, 203
task_queue_max_priority, 204
task_queues, 202
task_reject_on_worker_lost, 190
task_remote_tracebacks, 188
task_routes, 202
task_send_sent_event, 211
task_serializer, 187
task_soft_time_limit, 189
task_store_errors_even_if_ignored, 189
task_time_limit, 189
task_track_started, 189
timezone, 186
worker_autoscaler, 214
worker_concurrency, 209
worker_consumer, 214
worker_direct, 204
worker_disable_rate_limits, 210
worker_enable_remote_control, 210
worker_hijack_root_logger, 212
worker_log_color, 212
worker_log_format, 212
worker_lost_wait, 210
worker_max_memory_per_child, 210
worker_max_tasks_per_child, 210
worker_pool, 214
worker_pool_restarts, 214
worker_prefetch_multiplier, 209
worker_redirect_stdouts, 213
worker_redirect_stdouts_level, 213
worker_send_task_events, 211
worker_state_db, 210
worker_task_log_format, 213
worker_timer, 214
worker_timer_precision, 210

Settings (class in celery.app.utils), 338
settings() (celery.bin.upgrade.upgrade method), 422
setuid() (in module celery.platforms), 506
setup() (celery.app.log.Logging method), 338
setup() (in module celery.contrib.sphinx), 366
setup_app_for_worker() (in module cel-

ery.contrib.testing.worker), 366
setup_app_from_commandline() (cel-

ery.bin.base.Command method), 402
setup_default_app() (in module cel-

ery.contrib.testing.app), 367

Index 701

Celery Documentation, Release 4.1.0

setup_defaults() (celery.worker.WorkController method),
385

setup_defaults() (celery.worker.worker.WorkController
method), 399

setup_handlers() (celery.app.log.Logging method), 338
setup_includes() (celery.worker.WorkController method),

386
setup_includes() (celery.worker.worker.WorkController

method), 399
setup_instance() (celery.worker.WorkController method),

386
setup_instance() (celery.worker.worker.WorkController

method), 399
setup_logger() (celery.app.log.Logging method), 338
setup_logging

signal, 162
setup_logging() (celery.apps.beat.Beat method), 384
setup_logging() (celery.apps.worker.Worker method),

383
setup_logging_subsystem() (celery.app.log.Logging

method), 338
setup_queues() (celery.worker.WorkController method),

386
setup_queues() (celery.worker.worker.WorkController

method), 399
setup_schedule() (celery.beat.PersistentScheduler

method), 382
setup_schedule() (celery.beat.Scheduler method), 381
setup_security() (celery.Celery method), 314
setup_security() (in module celery.security), 353
setup_settings() (celery.loaders.default.Loader method),

358
setup_task_loggers() (celery.app.log.Logging method),

338
setup_worker_optimizations() (in module cel-

ery.app.trace), 475
shadow_name() (celery.app.task.Task method), 327
Shell (celery.bin.amqp.AMQPAdmin attribute), 413
shell (class in celery.bin.shell), 422
should_sync() (celery.beat.Scheduler method), 381
should_use_eventloop() (celery.worker.WorkController

method), 386
should_use_eventloop() (cel-

ery.worker.worker.WorkController method),
399

show() (celery.bin.multi.MultiTool method), 418
show_body (celery.bin.base.Command attribute), 402
show_reply (celery.bin.base.Command attribute), 402
shrink() (celery.concurrency.eventlet.TaskPool method),

447
shrink() (celery.concurrency.gevent.TaskPool method),

448
shutdown

control, 105

shutdown() (celery.app.control.Control method), 335
shutdown() (celery.bootsteps.ConsumerStep method),

341
shutdown() (celery.worker.consumer.Connection

method), 391
shutdown() (celery.worker.consumer.connection.Connection

method), 394
shutdown() (celery.worker.consumer.Consumer method),

391
shutdown() (celery.worker.consumer.Consumer.Blueprint

method), 390
shutdown() (celery.worker.consumer.consumer.Consumer

method), 395
shutdown() (celery.worker.consumer.consumer.Consumer.Blueprint

method), 394
shutdown() (celery.worker.consumer.Events method), 391
shutdown() (celery.worker.consumer.events.Events

method), 396
shutdown() (celery.worker.consumer.Heart method), 392
shutdown() (celery.worker.consumer.heart.Heart

method), 397
shutdown() (celery.worker.consumer.Tasks method), 393
shutdown() (celery.worker.consumer.tasks.Tasks

method), 398
shutdown() (celery.worker.pidbox.Pidbox method), 445
shutdown_nodes() (celery.apps.multi.Cluster method),

384
shutdown_worker() (celery.loaders.base.BaseLoader

method), 359
shutter() (celery.events.snapshot.Polaroid method), 477
shutter_signal (celery.events.snapshot.Polaroid attribute),

477
si() (celery.app.task.Task method), 328
sign() (celery.security.key.PrivateKey method), 476
signal

after_setup_logger, 162
after_setup_task_logger, 163
after_task_publish, 155
beat_embedded_init, 161
beat_init, 161
before_task_publish, 154
celeryd_after_setup, 158
celeryd_init, 159
eventlet_pool_apply, 162
eventlet_pool_postshutdown, 161
eventlet_pool_preshutdown, 161
eventlet_pool_started, 161
heartbeat_sent, 160
import_modules, 158
setup_logging, 162
task_failure, 157
task_postrun, 156
task_prerun, 155
task_rejected, 158

702 Index

Celery Documentation, Release 4.1.0

task_retry, 156
task_revoked, 157
task_sent, 164
task_success, 156
task_unknown, 158
user_preload_options, 163
worker_init, 160
worker_process_init, 160
worker_process_shutdown, 160
worker_ready, 160
worker_shutdown, 161
worker_shutting_down, 160

Signal (class in celery.utils.dispatch), 501
Signal (class in celery.utils.dispatch.signal), 503
signal_consumer_close() (celery.worker.WorkController

method), 386
signal_consumer_close() (cel-

ery.worker.worker.WorkController method),
399

signal_name() (in module celery.platforms), 507
signal_safe (celery.concurrency.base.BasePool attribute),

449
signal_safe (celery.concurrency.eventlet.TaskPool at-

tribute), 447
signal_safe (celery.concurrency.gevent.TaskPool at-

tribute), 448
Signature (class in celery), 319
signature() (celery.app.task.Task method), 328
signature() (celery.Celery method), 312
signature() (in module celery), 319
simple_format() (in module celery.utils.text), 501
soft_time_limit (celery.app.task.Task attribute), 328
soft_time_limit (Task attribute), 56
SoftTimeLimitExceeded, 357
SOFTWARE_INFO (in module celery.worker.state), 388
solar (class in celery.schedules), 352
Spec (class in celery.bin.amqp), 414
starmap() (celery.app.task.Task method), 328
start() (celery.apps.beat.Beat.Service method), 383
start() (celery.apps.multi.Cluster method), 384
start() (celery.apps.multi.Node method), 385
start() (celery.backends.async.BaseResultConsumer

method), 451
start() (celery.backends.async.Drainer method), 451
start() (celery.backends.redis.RedisBackend.ResultConsumer

method), 471
start() (celery.backends.rpc.RPCBackend.ResultConsumer

method), 459
start() (celery.beat.Service method), 382
start() (celery.bin.multi.MultiTool method), 418
start() (celery.bin.multi.MultiTool.MultiParser.Node

method), 418
start() (celery.bootsteps.Blueprint method), 340
start() (celery.bootsteps.ConsumerStep method), 341

start() (celery.bootsteps.StartStopStep method), 341
start() (celery.Celery method), 314
start() (celery.concurrency.base.BasePool method), 449
start() (celery.worker.components.Hub method), 443
start() (celery.worker.consumer.Connection method), 391
start() (celery.worker.consumer.connection.Connection

method), 394
start() (celery.worker.consumer.Consumer method), 391
start() (celery.worker.consumer.consumer.Consumer

method), 395
start() (celery.worker.consumer.consumer.Evloop

method), 396
start() (celery.worker.consumer.Events method), 392
start() (celery.worker.consumer.events.Events method),

396
start() (celery.worker.consumer.Gossip method), 392
start() (celery.worker.consumer.gossip.Gossip method),

397
start() (celery.worker.consumer.Heart method), 392
start() (celery.worker.consumer.heart.Heart method), 397
start() (celery.worker.consumer.Mingle method), 393
start() (celery.worker.consumer.mingle.Mingle method),

398
start() (celery.worker.consumer.Tasks method), 393
start() (celery.worker.consumer.tasks.Tasks method), 398
start() (celery.worker.heartbeat.Heart method), 444
start() (celery.worker.pidbox.gPidbox method), 445
start() (celery.worker.pidbox.Pidbox method), 445
start() (celery.worker.WorkController method), 386
start() (celery.worker.worker.WorkController method),

399
start_filter() (in module celery.contrib.migrate), 364
start_node() (celery.apps.multi.Cluster method), 384
start_scheduler() (celery.apps.beat.Beat method), 384
start_worker() (in module celery.contrib.testing.worker),

366
STARTED

state, 58
started (celery.bootsteps.Blueprint attribute), 340
started (celery.events.state.State.Task attribute), 378
started (celery.events.state.Task attribute), 377
STARTED (in module celery.states), 360
StartStopStep (class in celery.bootsteps), 341
startup_info() (celery.apps.beat.Beat method), 384
startup_info() (celery.apps.worker.Worker method), 383
stat (celery.utils.sysinfo.df attribute), 496
state

ALL_STATES, 360
EXCEPTION_STATES, 360
FAILURE, 58
PENDING, 58
PROPAGATE_STATES, 360
READY_STATES, 359
RETRY, 58

Index 703

Celery Documentation, Release 4.1.0

REVOKED, 58
STARTED, 58
SUCCESS, 58
UNREADY_STATES, 360

State (celery.app.events.Events attribute), 337
state (celery.app.trace.TraceInfo attribute), 474
state (celery.bootsteps.Blueprint attribute), 340
state (celery.events.state.State.Task attribute), 378
state (celery.events.state.Task attribute), 377
state (celery.result.AsyncResult attribute), 344
state (celery.result.EagerResult attribute), 349
state (celery.worker.WorkController attribute), 386
state (celery.worker.worker.WorkController attribute),

399
State (class in celery.contrib.migrate), 363
State (class in celery.events.state), 377
state (class in celery.states), 360
State.Task (class in celery.events.state), 377
State.Worker (class in celery.events.state), 378
state_cls (celery.app.events.Events attribute), 337
state_to_name (celery.bootsteps.Blueprint attribute), 340
statedb, 173
StateDB (class in celery.worker.components), 443
stats() (celery.app.control.Inspect method), 332
stats() (celery.bin.logtool.logtool method), 413
stats() (celery.worker.WorkController method), 386
stats() (celery.worker.worker.WorkController method),

399
status (celery.backends.database.models.Task attribute),

479
status (celery.bin.base.Command.Error attribute), 400
status (celery.bin.base.Command.UsageError attribute),

400
status (celery.bin.base.Error attribute), 400
status (celery.bin.base.UsageError attribute), 400
status (celery.result.AsyncResult attribute), 344
status (celery.result.EagerResult attribute), 349
status (class in celery.bin.control), 420
status_string (celery.events.state.State.Worker attribute),

379
status_string (celery.events.state.Worker attribute), 376
Step (class in celery.bootsteps), 340
steps (celery.Celery attribute), 311
stop() (celery.apps.beat.Beat.Service method), 383
stop() (celery.apps.multi.Cluster method), 384
stop() (celery.backends.async.BaseResultConsumer

method), 451
stop() (celery.backends.async.Drainer method), 451
stop() (celery.backends.redis.RedisBackend.ResultConsumer

method), 471
stop() (celery.backends.rpc.RPCBackend.ResultConsumer

method), 459
stop() (celery.beat.Service method), 382
stop() (celery.bin.multi.MultiTool method), 418

stop() (celery.bootsteps.Blueprint method), 340
stop() (celery.bootsteps.ConsumerStep method), 341
stop() (celery.bootsteps.StartStopStep method), 341
stop() (celery.concurrency.base.BasePool method), 449
stop() (celery.concurrency.base.BasePool.Timer method),

449
stop() (celery.utils.threads.bgThread method), 496
stop() (celery.utils.timer2.Timer method), 498
stop() (celery.worker.components.Hub method), 443
stop() (celery.worker.consumer.Consumer method), 391
stop() (celery.worker.consumer.consumer.Consumer

method), 395
stop() (celery.worker.consumer.Events method), 392
stop() (celery.worker.consumer.events.Events method),

396
stop() (celery.worker.consumer.Heart method), 392
stop() (celery.worker.consumer.heart.Heart method), 397
stop() (celery.worker.consumer.Tasks method), 393
stop() (celery.worker.consumer.tasks.Tasks method), 398
stop() (celery.worker.heartbeat.Heart method), 444
stop() (celery.worker.pidbox.Pidbox method), 445
stop() (celery.worker.WorkController method), 386
stop() (celery.worker.worker.WorkController method),

400
stop_verify() (celery.bin.multi.MultiTool method), 419
StopFiltering, 363
stopwait() (celery.apps.multi.Cluster method), 384
stopwait() (celery.bin.multi.MultiTool method), 419
storage (celery.worker.state.Persistent attribute), 389
STORE_ACTIONS (celery.bin.base.Option attribute),

403
store_errors (celery.worker.request.Request attribute),

388
store_errors_even_if_ignored (celery.app.task.Task at-

tribute), 328
store_errors_even_if_ignored (Task attribute), 56
store_result() (celery.backends.amqp.AMQPBackend

method), 467
store_result() (celery.backends.base.DisabledBackend

method), 451
store_result() (celery.backends.rpc.RPCBackend

method), 459
str_args_to_python() (celery.bin.amqp.Spec method), 415
str_to_list() (in module celery.utils.text), 501
strategies, 176
Strategies (celery.worker.consumer.Consumer attribute),

390
Strategies (celery.worker.consumer.consumer.Consumer

attribute), 394
Strategy (celery.app.task.Task attribute), 321
strtobool() (in module celery.utils.serialization), 496
strtotal (celery.contrib.migrate.State attribute), 363
subclass_exception() (in module cel-

ery.utils.serialization), 495

704 Index

Celery Documentation, Release 4.1.0

subpolling_interval (cel-
ery.backends.database.DatabaseBackend
attribute), 460

subtask() (celery.app.task.Task method), 328
subtask_type (celery.utils.abstract.CallableSignature at-

tribute), 481
succeeded (celery.events.state.State.Task attribute), 378
succeeded (celery.events.state.Task attribute), 377
SUCCESS

state, 58
SUCCESS (in module celery.states), 360
successful() (celery.result.AsyncResult method), 345
successful() (celery.result.ResultSet method), 348
supports_args (celery.bin.base.Command attribute), 402
supports_args (celery.bin.beat.beat attribute), 411
supports_args (celery.bin.events.events attribute), 412
supports_args (celery.bin.worker.worker attribute), 410
supports_autoexpire (cel-

ery.backends.amqp.AMQPBackend attribute),
467

supports_autoexpire (cel-
ery.backends.cache.CacheBackend attribute),
468

supports_autoexpire (cel-
ery.backends.cassandra.CassandraBackend
attribute), 472

supports_autoexpire (cel-
ery.backends.consul.ConsulBackend attribute),
468

supports_autoexpire (cel-
ery.backends.mongodb.MongoBackend at-
tribute), 470

supports_autoexpire (cel-
ery.backends.redis.RedisBackend attribute),
471

supports_autoexpire (celery.backends.rpc.RPCBackend
attribute), 459

supports_color() (celery.app.log.Logging method), 338
supports_native_join (cel-

ery.backends.amqp.AMQPBackend attribute),
467

supports_native_join (cel-
ery.backends.cache.CacheBackend attribute),
468

supports_native_join (cel-
ery.backends.redis.RedisBackend attribute),
471

supports_native_join (celery.backends.rpc.RPCBackend
attribute), 460

supports_native_join (celery.result.AsyncResult at-
tribute), 345

supports_native_join (celery.result.EagerResult attribute),
349

supports_native_join (celery.result.ResultSet attribute),

348
sw_ident (celery.events.state.State.Worker attribute), 379
sw_ident (celery.events.state.Worker attribute), 376
sw_sys (celery.events.state.State.Worker attribute), 379
sw_sys (celery.events.state.Worker attribute), 376
sw_ver (celery.events.state.State.Worker attribute), 379
sw_ver (celery.events.state.Worker attribute), 376
swap_with() (celery.utils.collections.ConfigurationView

method), 483
symbol_by_name() (celery.bin.base.Command method),

402
symbol_by_name() (in module celery.utils.imports), 499
sync() (celery.apps.beat.Beat.Service method), 383
sync() (celery.beat.PersistentScheduler method), 382
sync() (celery.beat.Scheduler method), 381
sync() (celery.beat.Service method), 382
sync() (celery.worker.consumer.Mingle method), 393
sync() (celery.worker.consumer.mingle.Mingle method),

398
sync() (celery.worker.state.Persistent method), 389
sync_every (celery.beat.Scheduler attribute), 381
sync_every_tasks (celery.beat.Scheduler attribute), 382
sync_with_node() (celery.worker.consumer.Mingle

method), 393
sync_with_node() (cel-

ery.worker.consumer.mingle.Mingle method),
398

synloop() (in module celery.worker.loops), 444

T
table() (celery.app.utils.Settings method), 339
table_name (celery.backends.dynamodb.DynamoDBBackend

attribute), 473
TAIL (celery.utils.graph.DOT attribute), 488
tail() (celery.utils.graph.GraphFormatter method), 490
take() (celery.utils.collections.BufferMap method), 482
take() (celery.utils.collections.Messagebuffer method),

485
take_action() (celery.bin.base.Option method), 403
takes_value() (celery.bin.base.Option method), 403
Task (celery.Celery attribute), 312
task (celery.utils.abstract.CallableSignature attribute),

481
task (celery.worker.request.Request attribute), 388
Task (class in celery.app.task), 321
Task (class in celery.backends.database.models), 479
Task (class in celery.events.state), 376
task() (celery.Celery method), 314
task-failed

event, 142
task-received

event, 142
task-rejected

event, 142

Index 705

Celery Documentation, Release 4.1.0

task-retried
event, 143

task-revoked
event, 142

task-sent
event, 142

task-started
event, 142

task-succeeded
event, 142

Task.MaxRetriesExceededError, 321
Task.OperationalError, 321
task_accepted() (in module celery.worker.state), 388
task_acks_late

setting, 190
task_always_eager

setting, 188
task_annotations

setting, 187
task_buckets, 177
task_compression

setting, 187
task_consumer, 176
task_count (celery.events.state.State attribute), 379
task_create_missing_queues

setting, 204
task_default_delivery_mode

setting, 205
task_default_exchange

setting, 204
task_default_exchange (celery.app.utils.Settings at-

tribute), 339
task_default_exchange_type

setting, 205
task_default_queue

setting, 204
task_default_rate_limit

setting, 190
task_default_routing_key

setting, 205
task_default_routing_key (celery.app.utils.Settings

attribute), 339
task_eager_propagates

setting, 188
task_event() (celery.events.state.State method), 379
task_failure

signal, 157
task_id (celery.backends.database.models.Task attribute),

479
task_id (celery.result.AsyncResult attribute), 345
task_id (celery.worker.request.Request attribute), 388
task_id_eq() (in module celery.contrib.migrate), 364
task_id_in() (in module celery.contrib.migrate), 364
task_ignore_result

setting, 189
task_join_will_block (celery.concurrency.base.BasePool

attribute), 450
task_join_will_block (cel-

ery.concurrency.eventlet.TaskPool attribute),
447

task_join_will_block (cel-
ery.concurrency.gevent.TaskPool attribute),
448

task_message_from_sig() (in module cel-
ery.contrib.testing.mocks), 368

task_name (celery.worker.request.Request attribute), 388
task_postrun

signal, 156
task_prerun

signal, 155
task_protocol

setting, 187
task_publish_retry

setting, 188
task_publish_retry_policy

setting, 188
task_queue_ha_policy

setting, 203
task_queue_max_priority

setting, 204
task_queues

setting, 202
task_ready() (in module celery.worker.state), 389
task_reject_on_worker_lost

setting, 190
task_rejected

signal, 158
task_remote_tracebacks

setting, 188
task_reserved() (in module celery.worker.state), 388
task_retry

signal, 156
task_revoked

signal, 157
task_routes

setting, 202
task_send_sent_event

setting, 211
task_sent

signal, 164
task_serializer

setting, 187
task_soft_time_limit

setting, 189
task_store_errors_even_if_ignored

setting, 189
task_success

signal, 156

706 Index

Celery Documentation, Release 4.1.0

task_time_limit
setting, 189

task_track_started
setting, 189

task_types() (celery.events.state.State method), 379
task_unknown

signal, 158
TaskDirective (class in celery.contrib.sphinx), 366
TaskDocumenter (class in celery.contrib.sphinx), 366
TaskError, 357
TaskFormatter (class in celery.app.log), 337
tasklist() (celery.apps.worker.Worker method), 383
TaskMessage() (in module celery.contrib.testing.mocks),

368
TaskMessage1() (in module cel-

ery.contrib.testing.mocks), 368
taskmeta_collection (cel-

ery.backends.mongodb.MongoBackend at-
tribute), 470

TaskPool (class in celery.concurrency.eventlet), 447
TaskPool (class in celery.concurrency.gevent), 447
TaskPool (class in celery.concurrency.prefork), 446
TaskPool (class in celery.concurrency.solo), 446
TaskPool.Timer (class in celery.concurrency.eventlet),

447
TaskPool.Timer (class in celery.concurrency.gevent), 447
TaskPredicate, 356
TaskRegistry (class in celery.app.registry), 336
TaskRegistry.NotRegistered, 336
TaskRevokedError, 357
tasks (celery.Celery attribute), 312
tasks (celery.events.cursesmon.CursesMonitor attribute),

478
Tasks (class in celery.worker.consumer), 393
Tasks (class in celery.worker.consumer.tasks), 398
tasks_by_time() (celery.events.state.State method), 379
tasks_by_timestamp() (celery.events.state.State method),

379
TaskSet (class in celery.backends.database.models), 479
taskset_id (celery.backends.database.models.TaskSet at-

tribute), 479
TaskType (in module celery.app.task), 329
term_scheme (celery.utils.graph.GraphFormatter at-

tribute), 490
terminal_node() (celery.utils.graph.GraphFormatter

method), 490
TERMINATE (celery.concurrency.base.BasePool at-

tribute), 448
terminate() (celery.app.control.Control method), 335
terminate() (celery.bootsteps.StartStopStep method), 341
terminate() (celery.concurrency.base.BasePool method),

450
terminate() (celery.worker.components.Hub method), 443

terminate() (celery.worker.components.Pool method),
443

terminate() (celery.worker.request.Request method), 388
terminate() (celery.worker.WorkController method), 386
terminate() (celery.worker.worker.WorkController

method), 400
terminate_job() (celery.concurrency.base.BasePool

method), 450
Terminated, 357
TestApp() (in module celery.contrib.testing.app), 367
TestWorkController (class in cel-

ery.contrib.testing.worker), 366
thaw() (State method), 613
then() (celery.result.AsyncResult method), 345
then() (celery.result.EagerResult method), 349
then() (celery.result.ResultSet method), 348
throw() (celery.result.AsyncResult method), 345
throws (celery.app.task.Task attribute), 328
throws (Task attribute), 55
tick() (celery.beat.Scheduler method), 382
time_limit (celery.app.task.Task attribute), 328
time_limit (Task attribute), 56
time_limit() (celery.app.control.Control method), 335
time_limits (celery.worker.request.Request attribute), 388
time_start (celery.worker.request.Request attribute), 388
TimeLimitExceeded, 357
timeout (celery.backends.couchbase.CouchbaseBackend

attribute), 473
TimeoutError, 357
timer, 173, 176
timer (celery.events.snapshot.Polaroid attribute), 477
timer (celery.worker.consumer.Consumer attribute), 391
timer (celery.worker.consumer.consumer.Consumer at-

tribute), 395
Timer (class in celery.utils.timer2), 498
Timer (class in celery.worker.components), 443
Timer.Entry (class in celery.utils.timer2), 498
timestamp (celery.events.state.State.Task attribute), 378
timestamp (celery.events.state.Task attribute), 377
timezone

setting, 186
timezone (celery.app.utils.Settings attribute), 339
timezone (celery.Celery attribute), 312
to_dict() (celery.backends.database.models.Task

method), 479
to_dict() (celery.backends.database.models.TaskSet

method), 479
to_dot() (celery.utils.graph.DependencyGraph method),

489
to_python() (celery.app.defaults.Option method), 331
to_timestamp() (in module celery.utils.timer2), 498
to_utc() (in module celery.utils.time), 493
topsort() (celery.utils.graph.DependencyGraph method),

489

Index 707

Celery Documentation, Release 4.1.0

total (celery.utils.collections.BufferMap attribute), 482
total_apx (celery.contrib.migrate.State attribute), 363
total_blocks (celery.utils.sysinfo.df attribute), 496
total_count (in module celery.worker.state), 388
total_run_count (celery.beat.ScheduleEntry attribute),

380
trace_task() (in module celery.app.trace), 475
traceback (celery.backends.database.models.Task at-

tribute), 479
traceback (celery.events.state.State.Task attribute), 378
traceback (celery.events.state.Task attribute), 377
traceback (celery.result.AsyncResult attribute), 345
traceback (celery.result.EagerResult attribute), 349
TraceInfo (class in celery.app.trace), 474
traces() (celery.bin.logtool.logtool method), 413
track_started (celery.app.task.Task attribute), 328
track_started (Task attribute), 56
trail (celery.app.task.Task attribute), 329
TRANSIENT_DELIVERY_MODE (cel-

ery.backends.amqp.AMQPBackend.Exchange
attribute), 464

TRANSIENT_DELIVERY_MODE (cel-
ery.backends.rpc.RPCBackend.Exchange
attribute), 454

Trap (class in celery.contrib.testing.app), 367
tref (celery.concurrency.base.BasePool.Timer.Entry at-

tribute), 448
tref (celery.utils.timer2.Entry attribute), 497
tref (celery.utils.timer2.Timer.Entry attribute), 498
true_or_raise() (celery.contrib.testing.manager.ManagerMixin

method), 368
truncate() (in module celery.utils.text), 501
type (celery.app.control.Control.Mailbox attribute), 332
type (celery.backends.amqp.AMQPBackend.Exchange

attribute), 463, 465
type (celery.backends.rpc.RPCBackend.Exchange at-

tribute), 452, 454
type (celery.utils.abstract.CallableSignature attribute),

481
type (celery.worker.request.Request attribute), 388
TYPE_CHECKER (celery.bin.base.Option attribute), 403
TYPED_ACTIONS (celery.bin.base.Option attribute),

403
typemap (celery.app.defaults.Option attribute), 331
TYPES (celery.bin.base.Option attribute), 403
typing (celery.app.task.Task attribute), 329
tzlocal (celery.worker.request.Request attribute), 388
tzname() (celery.utils.time.LocalTimezone method), 492

U
unbind_from() (celery.backends.amqp.AMQPBackend.Exchange

method), 465
unbind_from() (celery.backends.rpc.RPCBackend.Exchange

method), 454

underline() (celery.utils.term.colored method), 492
uniq() (in module celery.utils.functional), 488
UnitLogging (class in celery.contrib.testing.app), 367
UnpickleableExceptionWrapper, 495
UNREADY_STATES

state, 360
unregister() (celery.app.registry.TaskRegistry method),

336
update() (celery.beat.ScheduleEntry method), 380
update() (celery.events.state.State.Worker method), 379
update() (celery.events.state.Worker method), 376
update() (celery.result.ResultSet method), 348
update() (celery.utils.collections.ChainMap method), 482
update() (celery.utils.collections.LimitedSet method), 484
update() (celery.utils.functional.LRUCache method), 486
update() (celery.utils.graph.DependencyGraph method),

489
update() (celery.worker.autoscale.Autoscaler method),

445
update_from_dict() (celery.beat.Scheduler method), 382
update_state() (celery.app.task.Task method), 329
update_strategies() (celery.worker.consumer.Consumer

method), 391
update_strategies() (cel-

ery.worker.consumer.consumer.Consumer
method), 395

upgrade (class in celery.bin.upgrade), 422
usage() (celery.bin.base.Command method), 402
usage() (celery.bin.upgrade.upgrade method), 422
UsageError, 400
USE_FAST_LOCALS, 561
user (celery.backends.mongodb.MongoBackend at-

tribute), 470
user_options (celery.Celery attribute), 311
user_preload_options

signal, 163
username (celery.backends.couchbase.CouchbaseBackend

attribute), 473
username (celery.backends.couchdb.CouchBackend at-

tribute), 469
uses_semaphore (celery.concurrency.base.BasePool at-

tribute), 450
uses_semaphore (celery.concurrency.prefork.TaskPool at-

tribute), 446
utc (celery.worker.request.Request attribute), 388
utcoffset() (celery.utils.time.LocalTimezone method),

492
utcoffset() (in module celery.utils.time), 493
uuid() (in module celery.utils), 480

V
valency_of() (celery.utils.graph.DependencyGraph

method), 489

708 Index

Celery Documentation, Release 4.1.0

validate_arguments() (celery.bin.multi.MultiTool
method), 419

value_set_for() (celery.app.utils.Settings method), 339
values() (celery.utils.collections.ChainMap method), 482
values() (celery.utils.collections.DictAttribute method),

483
values() (celery.utils.functional.LRUCache method), 486
verify() (celery.security.certificate.Certificate method),

476
verify_args() (celery.bin.base.Command method), 402
version (celery.bin.base.Command attribute), 402

W
wait() (celery.result.AsyncResult method), 345
wait() (celery.result.EagerResult method), 349
wait_for() (celery.backends.amqp.AMQPBackend

method), 467
wait_for() (celery.backends.async.Drainer method), 451
wait_for() (celery.backends.base.DisabledBackend

method), 451
wait_for() (celery.contrib.testing.manager.ManagerMixin

method), 368
wait_for_pending() (cel-

ery.backends.async.AsyncBackendMixin
method), 451

waiting() (celery.result.ResultSet method), 348
wakeup_workers() (celery.events.EventReceiver method),

372
wakeup_workers() (celery.events.receiver.EventReceiver

method), 373
warn() (in module celery.utils.deprecated), 486
warn_prelude (celery.bin.purge.purge attribute), 421
warn_prompt (celery.bin.purge.purge attribute), 421
WeakMethod (class in cel-

ery.utils.dispatch.weakref_backports), 504
weekday() (in module celery.utils.time), 493
when (celery.exceptions.Retry attribute), 356
white() (celery.utils.term.colored method), 492
win (celery.events.cursesmon.CursesMonitor attribute),

478
with_pool_option() (celery.bin.base.Command method),

402
with_pool_option() (celery.bin.celery.CeleryCommand

method), 407
with_pool_option() (celery.bin.worker.worker method),

410
without_defaults() (celery.app.utils.Settings method), 339
WorkController (celery.Celery attribute), 315
WorkController (class in celery.worker), 385
WorkController (class in celery.worker.worker), 398
WorkController.Blueprint (class in celery.worker), 385
WorkController.Blueprint (class in celery.worker.worker),

398
Worker (celery.Celery attribute), 315

worker (celery.events.state.State.Task attribute), 378
worker (celery.events.state.Task attribute), 377
Worker (class in celery.apps.worker), 383
worker (class in celery.bin.worker), 409
Worker (class in celery.events.state), 375
worker-heartbeat

event, 143
worker-offline

event, 143
worker-online

event, 143
worker_autoscaler

setting, 214
worker_concurrency

setting, 209
worker_consumer

setting, 214
worker_direct

setting, 204
worker_direct() (in module celery.utils), 480
worker_direct() (in module celery.utils.nodenames), 485
worker_disable_rate_limits

setting, 210
worker_enable_remote_control

setting, 210
worker_event() (celery.events.state.State method), 379
worker_hijack_root_logger

setting, 212
worker_init

signal, 160
worker_initialized (celery.loaders.base.BaseLoader at-

tribute), 359
worker_log_color

setting, 212
worker_log_format

setting, 212
worker_lost_wait

setting, 210
worker_main() (celery.Celery method), 315
worker_max_memory_per_child

setting, 210
worker_max_tasks_per_child

setting, 210
worker_pid (celery.worker.request.Request attribute), 388
worker_pool

setting, 214
worker_pool_restarts

setting, 214
worker_prefetch_multiplier

setting, 209
worker_process_init

signal, 160
worker_process_shutdown

signal, 160

Index 709

Celery Documentation, Release 4.1.0

worker_ready
signal, 160

worker_redirect_stdouts
setting, 213

worker_redirect_stdouts_level
setting, 213

worker_send_task_events
setting, 211

worker_shutdown
signal, 161

worker_shutting_down
signal, 160

worker_state_db
setting, 210

worker_task_log_format
setting, 213

worker_timer
setting, 214

worker_timer_precision
setting, 210

WorkerComponent (class in celery.worker.autoscale), 445
WorkerLostError, 357
workers (celery.events.cursesmon.CursesMonitor at-

tribute), 478
workers() (celery.bin.graph.graph method), 415
WorkerShutdown, 357
WorkerTerminate, 357
write() (celery.utils.log.LoggingProxy method), 500
write_capacity_units (cel-

ery.backends.dynamodb.DynamoDBBackend
attribute), 473

write_pid() (celery.platforms.Pidfile method), 505
write_stats (celery.concurrency.prefork.TaskPool at-

tribute), 447
writelines() (celery.utils.log.LoggingProxy method), 500

Y
yellow() (celery.utils.term.colored method), 492

710 Index

	Getting Started
	Contents
	Indices and tables
	Bibliography
	Python Module Index

