Kombu Documentation
Release 3.0.37

Ask Solem

November 30, 2016

Contents

1 kombu - Messaging library for Python 3
1.1 Features. o o e e e e e e e e 3
1.2 Transport COMPAriSON v v v v v v e et e e e e e e e e e e e e e e e e e 4
1.3 Installation o o e e e e e e e e e e e e e e 5
1.4 Terminology o e e e 6
1.5 GettingHelp o e 7
1.6 Bugtracker e 7
1.7 Contributing o e e e e e e e e e e e e e e e e 7
L8 LICeNSe ¢ o o it e e e e e e 7
2 User Guide 9
2.1 Introduction e e e 9
2.2 Connections and tranSports ot i it e e e e e e e e e e e e e e 10
2.3 0 Producers o e e e e e e e e e e e 13
2.4 CONSUIMETS . . v v v v v e 15
25 Examples 19
2.6 SimpleInterface L e e e e e e e e 21
2.7 Connection and Producer Pools 23
2.8 Serialization e e e e e e e e e e e e e e 25
3 Frequently Asked Questions 29
3.1 QUESHIONS . v v v v v e e e e e e e e e e e e e e e e e 29
4 API Reference 31
4.1 Connection v v i e e e e e e e e e e e e e 31
42 Exchange e e e e e e 38
43 QUEUC o e e e e 40
4.4 Message Producer e e 44
4.5 Message CONSUMET . . . o v v v v v v e e et e e e e e e e e e e e e e 45
4.6 Common Utilities - kombu.common 48
4.7 Mixin Classes - kombu.mixins e e 50
4.8 kombu.ssimple 52
4.9 Clocks and Synchronization - kombu.clocks L 000 53
4.10 kombu.compat e e e e e 55
411 kombu.pidboX e e e e e e e e e e 61
412 KOombU.BXCEPLIONS . . v v v v o vt e 63
4.13 Logging -kombu.log L e e e e e e e 63
4.14 Kombu.connectionot e e e e e e e e e e e e e e e e 64

4.15 Message Objects - kombu.message oot u e e e e e 71
4.16 KOmbDU.COMPIESSION . .« v v v v v e 72
4.17 General Pools - kombu.pools L e e e e 73
4.18 kombu.abstracto 75
4.19 Async Utilities - kombu.syn e 76
420 EventLoop-kombu.async L e e e 76
4.21 Event Loop Implementation - kombu.async.hub 77
4.22 Semaphores - kombu.async.semaphore oL Lo e e e e 78
4.23 Timer - kombu.async.timer L. e 79
4.24 Debugging Utils - kombu.async.debug oL 80
4.25 kombu.transporto oL L e e e e e e 81
4.26 kombu.transport.pyamgp e e et e e e e e e e e e e e e e e e e e e 81
4.27 kombu.transport.qpid L L e e e e e e e e e e e e e 100
4.28 Authentication L. e e e e e 100
4.29 Transport Options e e e e e 100
4.30 kombu.transport.memory i e e e e e e e e e e e e e e e e 133
4.31 kombu.transport.redis L. L e e e e 134
4.32 KOmMDU.LTanSpOTt.ZIMQ . . « v v v v v v v v v e 138
4.33 kombu.transport.beanstalk oL e e 138
4.34 kombu.transport.mongodbo 139
4.35 kombu.transport.couchdbo Lo 140
4.36 kombu.transport.Zookeeper oL e e e e e 141
4.37 kombu.transport.filesystem L e e e e e e e e e e e e e 142
4.38 kombu.transport.djangoo L. e e e e e e e e e e e e e 143
4.39 Django Models - kombu.transport.django.models 0oL 144
4.40 Django Managers - kombu.transport.django.managers L. 145
4.41 Django Management - clean_kombu_messageso e 145
4.42 kombu.transport.sqlalchemy L 146
4.43 kombu.transport. SLMQ L L e e e e e e e e 146
444 KOmMDU.LTanSpOTLPYTO .« v v v v v v v e 147
445 kombu.transportamqgplibo 148
446 kombu.transport.base L. L e e e 150
4.47 kombu.transport.virtual L L e e e e 151
4.48 kombu.transport.virtual.exchange L e e e e 156
4.49 kombu.transport.virtual.scheduling Lo 157
4.50 kombu.serialization. e e 157
4.51 Utilities - kombu.utils e 159
4.52 Evented I/O - kombu.utils.eventio o o e 161
4.53 Rate limiting - kombu.utils.limits L. e e e 161
4.54 Compat. utilities - kombu.utils.compat Lo e e e 162
4.55 Debugging - kombu.utils.debug oL 162
4.56 String Encoding - kombu.utils.encodingo o oL 162
4.57 kombu.utils.functional L. 163
458 kombu.utils.urlo 163
4.59 Text utilitites - kombu.utils.text L e 164
4.60 Generic RabbitMQ manager - kombu.utils.amq_manager 164
4.61 Python2 to Python3 utilities - kombu.five L 0oL 164
Change history 165
5.1 3.0.37 o o 165
52 3.030 . . . e e 165
53 3035 L 165
54 3034 L 166
5.5 3033 166

5.6

5.7

5.8

59

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
542
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
5.58
5.59

3031 L 166
3030 . . 167
3.0.29 L e 167
3.0.28 L e 167
3027 © o e 168
3026 . . o 168
3.0.25 L 169
3024 L L 169
3.0.23 L e 170
3022 0 e 170
3021 L o 171
3020 . . 171
3019 L 171
3.0.18 L e 171
3007 o o e 171
3006 . o o 172
3005 o 172
3014 L 173
3.0.03 L e 173
3.0.02 e 174
3001 . o e 174
3000 . . 175
3.0 175
3.0.8 L 176
3.0.7 e 176
3.0.6 . e 176
30,5 177
304 177
3.0.3 177
3.0.2 e 178
3.0.1 e 178
3.0.0 L e 178
2516 . o o 181
2505 L 181
2514 L 181
2503 e 181
2502 L e 182
2501 Lo 182
2510 . o 183
2. 5. 183
2. 5.8 e 184
2577 e 184
256 L 185
2. 5. 185
254 L 185
2. 5.3 e 186
252 e 186
252 e 186
251 186
250 186
2400 . e 188
249 e 188
248 e 188

5.60 247 Lo e 189

S61 2.4.6 . 189
5.62 245 190
5.63 244 L e 190
5.6 243 L 190
5.65 242 Lo e 190
560 241 L 190
567 240 L. 191
5.68 232 Lo 191
5.69 23,1 oL 191
570 23.0 . 191
STL 226 e 192
ST2 225 o 193
ST3 224 193
574 223 L 193
S5 222 Lo 194
576 221 194
STT 220 o 195
ST8 218 198
579 2077 oo 198
580 2.1.6 .. 198
581 215 L e e 198
582 214 L 199
583 213 199
584 212 Lo 200
5.85 211 oo 200
586 2.1.0 oL e 200
587 2.0.0 ..o e 201
588 151 202
589 1.5.0 .. 202
590 LA4A3 203
SO1 LA2 Lo 203
592 LA Lo e 204
593 140 204
594 135 205
595 134 e 205
596 133 205
SOT 132 oo e 205
598 131 206
599 1.3.0 . 206
500 1.2.1 oo 208
501 12,0 .o oo e 208
SA02 1.1.6 . o o o e 209
SA03 115 oo e 209
S04 114 o 209
505 1.1.3 o o o 210
5006 112 L o o o e 210
507 LI1 oo o e 210
SH08 1.1.0 . o o o e 210
5009 1.0.7 o o 211
SHI0 1.0.6 « o o 212
SAIL LOS o 213
SHI2 104 . o o 213

SI3 1.03 o e 213

5014 1.0.2 . o o e e 213
S015 1.0.1 . o e e e 214
5016 1.0.0 . . . o e e e 214
5017 0.1.0 . o o e e 214
6 Indices and tables 215
Python Module Index 217

vi

Kombu Documentation, Release 3.0.37

Contents:

Contents 1

Kombu Documentation, Release 3.0.37

2 Contents

CHAPTER 1

kombu - Messaging library for Python

Version 3.0.37
Kombu is a messaging library for Python.

The aim of Kombu is to make messaging in Python as easy as possible by providing an idiomatic high-level interface
for the AMQ protocol, and also provide proven and tested solutions to common messaging problems.

AMQP is the Advanced Message Queuing Protocol, an open standard protocol for message orientation, queuing,
routing, reliability and security, for which the RabbitM(Q messaging server is the most popular implementation.

1.1 Features

» Allows application authors to support several message server solutions by using pluggable transports.

— AMQP transport using the py-amqp, librabbitmg, or qpid-python client libraries.

High performance AMQP transport written in C - when using librabbitmq

This is automatically enabled if librabbitmgq is installed:

$ pip install librabbitmg

Virtual transports makes it really easy to add support for non-AMQP transports. There is already built-in
support for Redis, Beanstalk, Amazon SQS, CouchDB, MongoDB, ZeroMQ, ZooKeeper, SoftLayer MQ
and Pyro.

You can also use the SQLAIchemy and Django ORM transports to use a database as the broker.
— In-memory transport for unit testing.
* Supports automatic encoding, serialization and compression of message payloads.
 Consistent exception handling across transports.
 The ability to ensure that an operation is performed by gracefully handling connection and channel errors.

¢ Several annoyances with amqplib has been fixed, like supporting timeouts and the ability to wait for events on
more than one channel.

* Projects already using carrot can easily be ported by using a compatibility layer.

For an introduction to AMQP you should read the article Rabbits and warrens, and the Wikipedia article about AMQP.

http://amqp.org
http://www.rabbitmq.com/
http://pypi.python.org/pypi/amqp/
http://pypi.python.org/pypi/librabbitmq
http://pypi.python.org/pypi/qpid-python/
http://pypi.python.org/pypi/librabbitmq
http://code.google.com/p/redis/
http://kr.github.com/beanstalkd/
http://aws.amazon.com/sqs/
http://couchdb.apache.org/
http://www.mongodb.org/
http://zeromq.org/
https://zookeeper.apache.org/
http://www.softlayer.com/services/additional/message-queue
http://pythonhosting.org/Pyro
http://barryp.org/software/py-amqplib/
http://pypi.python.org/pypi/carrot/
http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/
http://en.wikipedia.org/wiki/AMQP

Kombu Documentation, Release 3.0.37

1.2 Transport Comparison

Client Type Direct | Topic | Fanout
amgp Native | Yes Yes Yes
gpid Native | Yes Yes Yes
redis Virtual | Yes Yes Yes (PUB/SUB)
mongodb Virtual | Yes Yes Yes
beanstalk Virtual | Yes YesT | No
SOS Virtual | Yes Yes T | Yes?
couchdb Virtual | Yes YesT | No
zookeeper | Virtual | Yes Yes ' | No
in-memory | Virtual | Yes Yes! | No
django Virtual | Yes Yes T | No
sqlalchemy | Virtual | Yes Yes! | No
SLMQ Virtual | Yes Yes T | No

1.2.1 Documentation

Kombu is using Sphinx, and the latest documentation can be found here:

https://kombu.readthedocs.io/

1.2.2 Quick overview

from kombu import Connection, Exchange, Queue

media_exchange = Exchange ('media', 'direct', durable=True)
video_gueue = Queue('video', exchange=media_exchange, routing_key='video')

def process_media (body, message):
print body
message.ack ()

connections

with Connection ('amgp://guest:guest@localhost//') as conn:

produce

producer = conn.Producer (serializer='json')

producer.publish ({'name': '/tmp/lolcatl.avi', 'size': 1301013},
exchange=media_exchange, routing_key='video',
declare=[video_queue])

the declare above, makes sure the video queue is declared
so that the messages can be delivered.

It's a st practice in Kombu to > both publishers and
consumers declare the queue. You can also declare the

queue manually using:

video_queue (conn) .declare ()

consume

IDeclarations only kept in memory, so exchanges/queues must be declared by all clients that needs them.
2Fanout supported via storing routing tables in SimpleDB. Disabled by default, but can be enabled by using the supports_fanout transport
option.

4 Chapter 1. kombu - Messaging library for Python

https://kombu.readthedocs.io/

Kombu Documentation, Release 3.0.37

with conn.Consumer (video_qgqueue, callbacks=[process_medial) as consumer:
Process messages and handle events on all channels
while True:
conn.drain_events ()
Consume from several queues on the same channel:
video_queue = Queue ('video', exchange=media_exchange, key='video')
image_queue = Queue ('image', exchange=media_exchange, key='image')

with connection.Consumer ([video_queue, image_queue],
callbacks=[process_media]) as consumer:
while True:
connection.drain_events ()

Or handle channels manually:

with connection.channel () as channel:
producer = Producer (channel, ...)
consumer = Producer (channel)

All objects can be used outside of with statements too, just remember to close the objects after use:

from kombu import Connection, Consumer, Producer

connection = Connection ()
E:

connection.release ()

consumer = Consumer (channel_or_connection, ...)
consumer.register_callback (my_callback)

consumer .consume ()
E:

consumer.cancel ()

Exchange and Queue are simply declarations that can be pickled and used in configuration files etc.
They also support operations, but to do so they need to be bound to a channel.

Binding exchanges and queues to a connection will make it use that connections default channel.

>>> exchange = Exchange ('tasks', 'direct')
>>> connection = Connection ()
>>> bound_exchange = exchange (connection)

>>> bound_exchange.delete ()

the original exchange is not affected, and stays unbound.
>>> exchange.delete ()
raise NotBoundError: Can't call delete on Exchange not bound to

a channel.

1.3 Installation

You can install Kombu either via the Python Package Index (PyPI) or from source.

To install using pip,:

1.3. Installation 5

Kombu Documentation, Release 3.0.37

‘$ pip install kombu

To install using easy_install,:

’$ easy_install kombu

If you have downloaded a source tarball you can install it by doing the following,:

$ python setup.py build
python setup.py install # as root

1.4 Terminology

There are some concepts you should be familiar with before starting:
* Producers
Producers sends messages to an exchange.
* Exchanges

Messages are sent to exchanges. Exchanges are named and can be configured to use one of several
routing algorithms. The exchange routes the messages to consumers by matching the routing key in
the message with the routing key the consumer provides when binding to the exchange.

* Consumers

Consumers declares a queue, binds it to a exchange and receives messages from it.
¢ Queues

Queues receive messages sent to exchanges. The queues are declared by consumers.
* Routing keys

Every message has a routing key. The interpretation of the routing key depends on the exchange
type. There are four default exchange types defined by the AMQP standard, and vendors can define
custom types (so see your vendors manual for details).

These are the default exchange types defined by AMQP/0.8:
— Direct exchange

Matches if the routing key property of the message and the routing_key attribute of the
consumer are identical.

— Fan-out exchange
Always matches, even if the binding does not have a routing key.
— Topic exchange

Matches the routing key property of the message by a primitive pattern matching
scheme. The message routing key then consists of words separated by dots (”.”,
like domain names), and two special characters are available; star (“*”) and hash
(“#”). The star matches any word, and the hash matches zero or more words. For
example “*stock.#” matches the routing keys “usd.stock” and “eur.stock.db” but not

“stock.nasdaq”.

6 Chapter 1. kombu - Messaging library for Python

Kombu Documentation, Release 3.0.37

1.5 Getting Help

1.5.1 Mailing list

Join the carrot-users mailing list.

1.6 Bug tracker

If you have any suggestions, bug reports or annoyances please report them to our issue tracker at
http://github.com/celery/kombu/issues/

1.7 Contributing

Development of Kombu happens at Github: http://github.com/celery/kombu

You are highly encouraged to participate in the development. If you don’t like Github (for some reason) you’re
welcome to send regular patches.

1.8 License

This software is licensed under the New BSD License. See the LICENSE file in the top distribution directory for the
full license text.

1.5. Getting Help 7

http://groups.google.com/group/carrot-users/
http://github.com/celery/kombu/issues/
http://github.com/celery/kombu

Kombu Documentation, Release 3.0.37

8 Chapter 1. kombu - Messaging library for Python

CHAPTER 2

User Guide

Release 3.0
Date November 30, 2016

2.1 Introduction

2.1.1 What is messaging?

In times long ago people didn’t have email. They had the postal service, which with great courage would deliver mail
from hand to hand all over the globe. Soldiers deployed at wars far away could only communicate with their families
through the postal service, and posting a letter would mean that the recipient wouldn’t actually receive the letter until
weeks or months, sometimes years later.

It’s hard to imagine this today when people are expected to be available for phone calls every minute of the day.
So humans need to communicate with each other, this shouldn’t be news to anyone, but why would applications?

One example is banks. When you transfer money from one bank to another, your bank sends a message to a central
clearinghouse. The clearinghouse then records and coordinates the transaction. Banks need to send and receive
millions and millions of messages every day, and losing a single message would mean either losing your money (bad)
or the banks money (very bad)

Another example is the stock exchanges, which also have a need for very high message throughputs and have strict
reliability requirements.

Email is a great way for people to communicate. It is much faster than using the postal service, but still using email
as a means for programs to communicate would be like the soldier above, waiting for signs of life from his girlfriend
back home.

2.1.2 Messaging Scenarios

* Request/Reply

The request/reply pattern works like the postal service example. A message is addressed to a single recipient,
with a return address printed on the back. The recipient may or may not reply to the message by sending it back
to the original sender.

Request-Reply is achieved using direct exchanges.

Kombu Documentation, Release 3.0.37

* Broadcast
In a broadcast scenario a message is sent to all parties. This could be none, one or many recipients.
Broadcast is achieved using fanout exchanges.

¢ Publish/Subscribe

In a publish/subscribe scenario producers publish messages to topics, and consumers subscribe to the topics they
are interested in.

If no consumers subscribe to the topic, then the message will not be delivered to anyone. If several consumers
subscribe to the topic, then the message will be delivered to all of them.

Pub-sub is achieved using topic exchanges.

2.1.3 Reliability

For some applications reliability is very important. Losing a message is a critical situation that must never happen.
For other applications losing a message is fine, it can maybe recover in other ways, or the message is resent anyway
as periodic updates.

AMQP defines two built-in delivery modes:
e persistent
Messages are written to disk and survives a broker restart.
* transient

Messages may or may not be written to disk, as the broker sees fit to optimize memory contents. The
messages will not survive a broker restart.

Transient messaging is by far the fastest way to send and receive messages, so having persistent messages comes with
a price, but for some applications this is a necessary cost.

2.2 Connections and transports

2.2.1 Basics

To send and receive messages you need a transport and a connection. There are several transports to choose from
(amgp, librabbitmgq, redis, gpid, in-memory, etc.), and you can even create your own. The default transport is amqp.

Create a connection using the default transport:

>>> from kombu import Connection
>>> connection = Connection ('amgp://guest:guest@localhost:5672//")

The connection will not be established yet, as the connection is established when needed. If you want to explicitly
establish the connection you have to call the connect () method:

>>> connection.connect ()

You can also check whether the connection is connected:

>>> connection.connected
True

Connections must always be closed after use:

10 Chapter 2. User Guide

Kombu Documentation, Release 3.0.37

>>> connection.close ()

But best practice is to release the connection instead, this will release the resource if the connection is associated with
a connection pool, or close the connection if not, and makes it easier to do the transition to connection pools later:

>>> connection.release ()

See also:
Connection and Producer Pools

Of course, the connection can be used as a context, and you are encouraged to do so as it makes it harder to forget
releasing open resources:

with Connection () as connection:
work with connection

2.2.2 URLs

Connection parameters can be provided as an URL in the format:

‘transport://userid:password@hostname:port/virtual_host

All of these are valid URLs:

Specifies using the amgp transport only, default values
are taken from the keyword arguments.
amgp://

Using Redis
redis://localhost:6379/

Using Redis over a Unix socket
redis+socket:///tmp/redis.sock

Using Qpid
gpid://localhost/

Using virtual host '/foo'
amgp://localhost//foo

Using virtual host 'foo'
amgp://localhost/foo

The query part of the URL can also be used to set options, e.g.:

amgp://localhost/myvhost?ssl=1

See Keyword arguments for a list of supported options.

A connection without options will use the default connection settings, which is using the localhost host, default port,
user name guest, password guest and virtual host ““/”. A connection without arguments is the same as:

>>> Connection('amgp://guest:guest@localhost:5672//")

The default port is transport specific, for AMQP this is 5672.

Other fields may also have different meaning depending on the transport used. For example, the Redis transport uses
the virtual_host argument as the redis database number.

2.2. Connections and transports 11

Kombu Documentation, Release 3.0.37

2.2.3 Keyword arguments

The Connection class supports additional keyword arguments, these are:

hostname Default host name if not provided in the URL.
userid Default user name if not provided in the URL.
password Default password if not provided in the URL.
virtual_host Default virtual host if not provided in the URL.
port Default port if not provided in the URL.

transport Default transport if not provided in the URL. Can be a string specifying the path to the
class. (e.g. kombu.transport.pyamgp:Transport), or one of the aliases: pyamgp,
librabbitmg, redis, qpid, memory, and so on.

ssl Use SSL to connect to the server. Default is False. Only supported by the amqp and qpid transports.
insist Insist on connecting to a server. No longer supported, relic from AMQP 0.8

connect_timeout Timeout in seconds for connecting to the server. May not be supported by the specified
transport.

transport_options A dict of additional connection arguments to pass to alternate kombu channel imple-
mentations. Consult the transport documentation for available options.

2.2.4 AMQP Transports

There are 4 transports available for AMQP use.

1.
2.

pyamgp uses the pure Python library amgp, automatically installed with Kombu.

librabbitmg uses the high performance transport written in C. This requires the 1ibrabbitmg Python
package to be installed, which automatically compiles the C library.

amgp tries to use 1 ibrabbitmg but falls back to pyamgp.

gpid uses the pure Python library gpid.messaging, automatically installed with Kombu. The Qpid library
uses AMQP, but uses custom extensions specifically supported by the Apache Qpid Broker.

For the highest performance, you should install the 1 ibrabbitmg package. To ensure librabbitmgq is used, you can
explicitly specify it in the transport URL, or use amgp to have the fallback.

12

Chapter 2. User Guide

Kombu Documentation, Release 3.0.37

2.2.5 Transport Comparison

Client Type Direct | Topic | Fanout
amgp Native | Yes Yes Yes
gpid Native | Yes Yes Yes
redis Virtual | Yes Yes Yes (PUB/SUB)
mongodb Virtual | Yes Yes Yes
beanstalk Virtual | Yes Yes T | No
SOS Virtual | Yes Yes T | Yes?
couchdb Virtual | Yes Yes ! | No
zookeeper | Virtual | Yes Yes T | No
in-memory | Virtual | Yes Yes! | No
django Virtual | Yes Yes T | No
sqlalchemy | Virtual | Yes Yes! | No
2.3 Producers
2.3.1 Basics
2.3.2 Serialization
See Serialization.
2.3.3 Reference
class kombu . Producer (channel, exchange=None, routing_key=None, serializer=None,

auto_declare=None, compression=None, on_return=None)
Message Producer.

Parameters
* channel - Connection or channel.
* exchange — Optional default exchange.
* routing_key — Optional default routing key.
* serializer — Default serializer. Default is “json”.
* compression — Default compression method. Default is no compression.

* auto_declare — Automatically declare the default exchange at instantiation. Default is
True.

* on_return — Callback to call for undeliverable messages, when the mandatory or im-
mediate arguments to publish () is used. This callback needs the following signature:
(exception, exchange, routing_key, message). Note that the producer needs to drain events
to use this feature.

auto_declare = True
By default the exchange is declared at instantiation. If you want to declare manually then you can set this
toFalse.

I Declarations only kept in memory, so exchanges/queues must be declared by all clients that needs them.
2Fanout supported via storing routing tables in SimpleDB. Disabled by default, but can be enabled by using the supports_fanout transport
option.

2.3. Producers 13

Kombu Documentation, Release 3.0.37

compression = None
Default compression method. Disabled by default.

declare ()

Declare the exchange.

This happens automatically at instantiation if auto_declare is enabled.

exchange = None
Default exchange

maybe_declare (entity, retry=False, **retry_policy)
Declare the exchange if it hasn’t already been declared during this session.

on_return = None
Basic return callback.

publish (body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, pri-
ority=0, content_type=None, content_encoding=None, serializer=None, headers=None,
compression=None, exchange=None, retry=False, retry_policy=None, declare=[], expira-
tion=None, **properties)
Publish message to the specified exchange.

Parameters

body — Message body.

routing_key — Message routing key.

delivery_mode —See delivery_mode.

mandatory — Currently not supported.

immediate — Currently not supported.

priority — Message priority. A number between 0 and 9.

content_type — Content type. Default is auto-detect.
content_encoding — Content encoding. Default is auto-detect.
serializer — Serializer to use. Default is auto-detect.

compression — Compression method to use. Default is none.

headers — Mapping of arbitrary headers to pass along with the message body.
exchange — Override the exchange. Note that this exchange must have been declared.

declare — Optional list of required entities that must have been declared before publish-
ing the message. The entities will be declared using maybe_declare ().

retry — Retry publishing, or declaring entities if the connection is lost.
retry_policy — Retry configuration, this is the keywords supported by ensure ().
expiration— A TTL in seconds can be specified per message. Default is no expiration.

*xproperties — Additional message properties, see AMQP spec.

revive (channel)
Revive the producer after connection loss.

routing key=¢
Default routing key.

serializer = None
Default serializer to use. Default is JSON.

14

Chapter 2. User Guide

Kombu Documentation, Release 3.0.37

2.4 Consumers

2.4.1 Basics

The Consumer takes a connection (or channel) and a list of queues to consume from. Several consumers can be
mixed to consume from different channels, as they all bind to the same connection, and drain_events will drain
events from all channels on that connection.

Note: Kombu since 3.0 will only accept json/binary or text messages by default, to allow deserialization of other
formats you have to specify them in the accept argument:

Consumer (conn, accept=['json', 'pickle', 'msgpack', 'yaml'])

Draining events from a single consumer:

with Consumer (connection, queues, accept=['json']):
connection.drain_events (timeout=1)

Draining events from several consumers:

from kombu.utils import nested

with connection.channel (), connection.channel() as (channell, channel2):
with nested(Consumer (channell, queuesl, accept=['json']),
Consumer (channel2, queues2, accept=['json'])):

connection.drain_events (timeout=1)

Or using ConsumerMixin:

from kombu.mixins import ConsumerMixin
class C(ConsumerMixin) :

def ~ init (self, connection):
self.connection = connection

def get_consumers (self, Consumer, channel):
return |
Consumer (queues, callbacks=[self.on_message], accept=['json']),

def on_message(self, body, message):
print ("RECEIVED MESSAGE: %r" % (body,))
message.ack ()

C (connection) .run ()

and with multiple channels again:

from kombu import Consumer
from kombu.mixins import ConsumerMixin

class C(ConsumerMixin) :
channel?2 = None

def _ init_ (self, connection):

2.4. Consumers 15

Kombu Documentation, Release 3.0.37

def

def

self.connection = connection
get_consumers (self, _, default_channel):
self.channel?2 = default_channel.connection.channel ()

return [Consumer (default_channel, queuesl,
callbacks=[self.on_message],
accept=['json']),
Consumer (self.channel2, queues2,
callbacks=[self.on_special_message],
accept=["'json'])]

on_consumer_end(self, connection, default_channel) :
if self.channel2:
self.channel2.close()

C (connection) .run ()

2.4.2 Reference

class kombu.Consumer (channel, queues=None, no_ack=None, auto_declare=None, callbacks=None,
on_decode_error=None, on_message=None, accept=None, tag_prefix=None)

Message consumer.

Parameters
* channel —see channel.
* queues — see queues.
* no_ack -see no_ack.
e auto_declare —see auto_declare
* callbacks —see callbacks.
* on_message — See on_message

* on_decode_error —see on_decode_error.

exception ContentDisallowed

Consumer does not allow this content-type.

Consumer .accept = None

List of accepted content-types.

An exception will be raised if the consumer receives a message with an untrusted content type. By de-
fault all content-types are accepted, but not if kombu.disable_untrusted_serializers () was

called, in which case only json is allowed.

Consumer .add_queue (queue)

Add a queue to the list of queues to consume from.

This will not start consuming from the queue, for that you will have to call consume () after.

Consumer.add_queue_from dict (queue, **options)

This method is deprecated.

Instead please use:

consumer.add_gueue (Queue.from_dict (d))

16

Chapter 2. User Guide

Kombu Documentation, Release 3.0.37

Consumer.auto_declare = True
By default all entities will be declared at instantiation, if you want to handle this manually you can set this
toFalse.

Consumer.callbacks = None
List of callbacks called in order when a message is received.

The signature of the callbacks must take two arguments: (body, message), which is the decoded message
body and the Message instance (a subclass of Message).

Consumer.cancel ()
End all active queue consumers.

This does not affect already delivered messages, but it does mean the server will not send any more mes-
sages for this consumer.

Consumer.cancel_by_ queue (queue)
Cancel consumer by queue name.

Consumer .channel = None
The connection/channel to use for this consumer.

Consumer.close ()
End all active queue consumers.

This does not affect already delivered messages, but it does mean the server will not send any more mes-
sages for this consumer.

Consumer .consume (no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues added since the last
call, it will not cancel consuming from removed queues (use cancel_by_queue ()).

Parameters no_ack — See no_ack.

Consumer.consuming_ from (queue)
Return True if the consumer is currently consuming from queue’.

Consumer.declare ()
Declare queues, exchanges and bindings.

This is done automatically at instantiation if auto_declare is set.

Consumer . £flow (active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content (if any), and
then wait until flow is reactivated.

Consumer .no_ack = None
Flag for automatic message acknowledgment. If enabled the messages are automatically acknowledged
by the broker. This can increase performance but means that you have no control of when the message is
removed.

Disabled by default.

Consumer.on_decode_error = None
Callback called when a message can’t be decoded.

2.4. Consumers 17

Kombu Documentation, Release 3.0.37

The signature of the callback must take two arguments: (message, exc), which is the message that can’t be
decoded and the exception that occurred while trying to decode it.

Consumer .on_message = None
Optional function called whenever a message is received.

When defined this function will be called instead of the receive () method, and callbacks will be
disabled.

So this can be used as an alternative to callbacks when you don’t want the body to be automatically
decoded. Note that the message will still be decompressed if the message has the compression header
set.

The signature of the callback must take a single argument, which is the raw message object (a subclass of
Message).

Also note that the message . body attribute, which is the raw contents of the message body, may in some
cases be a read-only buf fer object.

Consumer.purge ()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

Consumer . gos (prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes processing
a message, the following message is already held locally, rather than needing to be sent down the channel.
Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.
Parameters

* prefetch_size — Specify the prefetch window in octets. The server will send a mes-
sage in advance if it is equal to or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply.

* prefetch_count — Specify the prefetch window in terms of whole messages.
* apply_global — Apply new settings globally on all channels.

Consumer .queues = None
A single Queue, or a list of queues to consume from.

Consumer . receive (body, message)
Method called when a message is received.

This dispatches to the registered callbacks.
Parameters
* body — The decoded message body.
* message — The Message instance.
Raises Not ImplementedError — If no consumer callbacks have been registered.

Consumer . recover (requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.

18 Chapter 2. User Guide

http://docs.python.org/dev/library/exceptions.html#NotImplementedError

Kombu Documentation, Release 3.0.37

Parameters requeue — By default the messages will be redelivered to the original recipient.
With requeue set to true, the server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

Consumer.register_callback (callback)
Register a new callback to be called when a message is received.

The signature of the callback needs to accept two arguments: (body, message), which is the decoded
message body and the Message instance (a subclass of Message.

Consumer .revive (channel)
Revive consumer after connection loss.

2.5 Examples

2.5.1 Hello World Example

Below example uses Simple Interface to send helloworld message through message broker (rabbitmq) and print re-
ceived message

hello_publisher.py:

from kombu import Connection
import datetime

with Connection('amgp://guest:guest@localhost:5672//') as conn:
simple_queue = conn.SimpleQueue ('simple_qgueue')
message = 'helloword, sent at %$s' % datetime.datetime.today ()
simple_qgueue.put (message)

print ('Sent: %$s' % message)
simple_queue.close ()

hello_consumer.py:

from kombu import Connection

with Connection ('amgp://guest:guest@localhost:5672//') as conn:
simple_gqueue = conn.SimpleQueue ('simple_queue')
message = simple_queue.get (block=True, timeout=1)
print ("Received: %s" % message.payload)
message.ack ()

simple_queue.close ()

2.5.2 Task Queue Example

Very simple task queue using pickle, with primitive support for priorities using different queues.

queues.py:

from kombu import Exchange, Queue

task_exchange = Exchange('tasks', type='direct')

task_queues = [Queue('hipri', task_exchange, routing_key='hipri'),
Queue ('midpri', task_exchange, routing_key='midpri'),
Queue ('lopri', task_exchange, routing_key='lopri')]

2.5. Examples 19

Kombu Documentation, Release 3.0.37

worker.py:

from kombu.mixins import ConsumerMixin
from kombu.log import get_logger
from kombu.utils import kwdict, reprcall

from .queues import task_gueues

logger = get_logger (__name__)

class Worker (ConsumerMixin) :

def _ init_ (self, connection):
self.connection = connection

def get_consumers (self, Consumer, channel):
return [Consumer (queues=task_queues,
accept=["'pickle', 'Jjson'],
callbacks=[self.process_task])]

def process_task(self, body, message):
fun = body['fun']
args = body['args']
kwargs = body['kwargs']
logger.info ('Got task: %s', reprcall(fun.__name__, args, kwargs))
try:
fun (xargs, =x+kwdict (kwargs))
except Exception as exc:
logger.error ('task raised exception: %r', exc)
message.ack ()
if _ name_ == '_ _main__ ':
from kombu import Connection
from kombu.utils.debug import setup_logging
setup root logger
setup_logging (loglevel="INFO', loggers=['"])

with Connection ('amgp://guest:guest@localhost:5672//') as conn:
try:
worker = Worker (conn)
worker.run ()
except KeyboardInterrupt:
print ('bye bye')

tasks.py:

def hello_task (who="world") :

o

print ("Hello %s" % (who,))

client.py:

from kombu.pools import producers
from .queues import task_exchange

priority_to_routing_key = {'high': 'hipri',

20 Chapter 2. User Guide

Kombu Documentation, Release 3.0.37

'mid': 'midpri',
'low': 'lopri'}
def send_as_task (connection, fun, args=(), kwargs={}, priority='mid'):
payload = {'fun': fun, 'args': args, 'kwargs': kwargs}

routing_key = priority_to_routing_key[priority]

with producers[connection].acquire (block=True) as producer:
producer.publish (payload,
serializer="pickle',
compression="bzip2',
exchange=task_exchange,
declare=[task_exchange],
routing_key=routing_key)

if _ name_ == '__main_ ':
from kombu import Connection
from .tasks import hello_task

connection = Connection ('amgp://guest:guest@localhost:5672//")
send_as_task (connection, fun=hello_task, args=('Kombu',), kwargs={},
priority="'high')

2.6 Simple Interface

» Sending and receiving messages I

kombu.simple is a simple interface to AMQP queueing. It is only slightly different from the Queue class in the
Python Standard Library, which makes it excellent for users with basic messaging needs.

Instead of defining exchanges and queues, the simple classes only requires two arguments, a connection channel and
a name. The name is used as the queue, exchange and routing key. If the need arises, you can specify a Queue as the
name argument instead.

In addition, the Connect ion comes with shortcuts to create simple queues using the current connection:

>>> queue = connection.SimpleQueue ('myqueue')
>>> # ... do something with queue
>>> queue.close ()

This is equivalent to:

>>> from kombu import SimpleQueue, SimpleBuffer

>>> channel = connection.channel ()
>>> queue = SimpleBuffer (channel)
>>> # ... do something with queue

>>> channel.close()
>>> queue.close ()

2.6. Simple Interface 21

Kombu Documentation, Release 3.0.37

2.6.1 Sending and receiving messages

The simple interface defines two classes; SimpleQueue, and SimpleBuffer. The former is used for persistent
messages, and the latter is used for transient, buffer-like queues. They both have the same interface, so you can use

them interchangeably.

Here is an example using the SimpleQueue class to produce and consume logging messages:

import socket

import datetime

from time import time

from kombu import Connection

class Logger (object) :

def _ init__ (self, connection, queue_name='log_queue',
serializer="json', compression=None) :
self.queue = connection.SimpleQueue (queue_name)
self.serializer = serializer
self.compression = compression

def log(self, message, level='INFO', context={}):
self.queue.put ({ 'message': message,

'level': level,
'context': context,
'hostname': socket.gethostname(),

'timestamp': time ()},
serializer=self.serializer,
compression=self.compression)

def process(self, callback, n=1, timeout=1):
for i in xrange (n):
log_message = self.queue.get (block=True, timeout=1)
entry = log_message.payload # deserialized data.
callback (entry)
log_message.ack () # remove message from queue

def close(self):
self.queue.close()

if name == '__main__ ':

from contextlib import closing

with Connection ('amgp://guest:guest@localhost:5672//"') as conn:
with closing(Logger (conn)) as logger:

Send message

('"Error happened while encoding video',

logger.log

level="ERROR',

context={"'filename': 'cutekitten.mpg'})
Consume and process message
This is the callback called when a log message is

received.
def dump_entry(entry):
date = datetime.datetime.fromtimestamp (entry['timestamp'])

22 Chapter 2. User Guide

Kombu Documentation, Release 3.0.37

print (' [%s %s %s] %s %r' % (date,
entry['hostname'],
entry['level'],
entry['message'],
entry['context']))
Process a single message using the callback above.

logger.process (dump_entry, n=1)

2.7 Connection and Producer Pools

2.7.1 Default Pools

Kombu ships with two global pools: one connection pool, and one producer pool.

These are convenient and the fact that they are global may not be an issue as connections should often be limited at the
process level, rather than per thread/application and so on, but if you need custom pools per thread see Custom Pool
Groups.

The connection pool group

The connection pools are available as kombu.pools.connections. This is a pool group, which means you give
it a connection instance, and you get a pool instance back. We have one pool per connection instance to support
multiple connections in the same app. All connection instances with the same connection parameters will get the same
pool:

>>> from kombu import Connection
>>> from kombu.pools import connections

>>> connections[Connection('redis://localhost:6379"

)
<kombu.connection.ConnectionPool object at 0x101805650>
>>> connections[Connection('redis://localhost:6379")]
<kombu.connection.ConnectionPool object at 0x101805650>

Let’s acquire and release a connection:

from kombu import Connection
from kombu.pools import connections

connection = Connection('redis://localhost:6379")

with connections[connection].acquire (block=True) as conn:
o

]
print ('Got connection: %r' % (connection.as_uri(),))

Note: The block=True here means that the acquire call will block until a connection is available in the pool. Note
that this will block forever in case there is a deadlock in your code where a connection is not released. There is a
timeout argument you can use to safeguard against this (see kombu.connection.Resource.acquire ()).

If blocking is disabled and there aren’t any connections left in the pool an
kombu.exceptions.ConnectionLimitExceeded exception will be raised.

That’s about it. If you need to connect to multiple brokers at once you can do that too:

2.7. Connection and Producer Pools 23

Kombu Documentation, Release 3.0.37

from kombu import Connection
from kombu.pools import connections

cl = Connection('amgp://")
c2 Connection('redis://")

with connections[cl].acquire (block=True) as connl:
with connections[c2].acquire(block=True) as conn2:

i
il

2.7.2 The producer pool group

This is a pool group just like the connections, except that it manages Producer instances used to publish messages.

Here is an example using the producer pool to publish a message to the news exchange:

from kombu import Connection, Exchange
from kombu.pools import producers

The exchange we send our news articles to.

news_exchange = Exchange('news')

The article we want to send

article = {'title': 'No cellular coverage on the tube for 2012',
'ingress': 'yadda yadda yadda'}

The broker where our exchange is.

connection = Connection ('amgp://guest:guest@localhost:5672//")

with producers|[connection].acquire (block=True) as producer:
producer.publish (
article,
exchange=new_exchange,
routing_key="'domestic',
declare=[news_exchange],
serializer="'json',
compression="'zlib")

Setting pool limits

By default every connection instance has a limit of 200 connections. You can change this limit using
kombu.pools.set_limit (). You are able to grow the pool at runtime, but you can’t shrink it, so it is best
to set the limit as early as possible after your application starts:

>>> from kombu import pools
>>> pools.set_limit ()

Resetting all pools

You can close all active connections and reset all pool groups by using the kombu . pools. reset () function. Note
that this will not respect anything currently using these connections, so will just drag the connections away from under
their feet: you should be very careful before you use this.

Kombu will reset the pools if the process is forked, so that forked processes start with clean pool groups.

24 Chapter 2. User Guide

Kombu Documentation, Release 3.0.37

2.7.3 Custom Pool Groups

To maintain your own pool groups you should create your own Connections and kombu.pools.Producers
instances:

from kombu import pools
from kombu import Connection

connections = pools.Connections (1imit=100)
producers = pools.Producers (limit=connections.limit)

connection = Connection ('amgp://guest:guest@localhost:5672//")

with connections[connection].acquire (block=True) :

i

If you want to use the global limit that can be set with set_1imit () you can use a special value as the 1imit
argument:

from kombu import pools

connections = pools.Connections (limit=pools.use_default_limit)

2.8 Serialization

2.8.1 Serializers

By default every message is encoded using JSON, so sending Python data structures like dictionaries and lists works.
YAML, msgpack and Python’s built-in pickle module is also supported, and if needed you can register any custom
serialization scheme you want to use.

By default Kombu will only load JSON messages, so if you want to use other serialization format you must explicitly
enable them in your consumer by using the accept argument:

Consumer (conn, [queue], accept=['json', 'pickle', 'msgpack'])

The accept argument can also include MIME-types.
Each option has its advantages and disadvantages.

Jjson — JSON is supported in many programming languages, is now a standard part of Python (since 2.6), and is
fairly fast to decode using the modern Python libraries such as cjson or simplejson.

The primary disadvantage to JSON is that it limits you to the following data types: strings, Unicode, floats,
boolean, dictionaries, and lists. Decimals and dates are notably missing.

Also, binary data will be transferred using Base64 encoding, which will cause the transferred data to be around
34% larger than an encoding which supports native binary types.

However, if your data fits inside the above constraints and you need cross-language support, the default setting
of JSON is probably your best choice.

pickle — If you have no desire to support any language other than Python, then using the pickle encoding will gain
you the support of all built-in Python data types (except class instances), smaller messages when sending binary
files, and a slight speedup over JSON processing.

Pickle and Security

2.8. Serialization 25

http://www.json.org/
http://yaml.org/
http://msgpack.sourceforge.net/

Kombu Documentation, Release 3.0.37

The pickle format is very convenient as it can serialize and deserialize almost any object, but this is also a
concern for security.

Carefully crafted pickle payloads can do almost anything a regular Python program can do, so if you let your
consumer automatically decode pickled objects you must make sure to limit access to the broker so that untrusted
parties do not have the ability to send messages!

By default Kombu uses pickle protocol 2, but this can be changed using the PICKLE_PROTOCOL environment
variable or by changing the global kombu.serialization.pickle_protocol flag.

yaml — YAML has many of the same characteristics as json, except that it natively supports more data types (in-
cluding dates, recursive references, etc.)

However, the Python libraries for YAML are a good bit slower than the libraries for JSON.

If you need a more expressive set of data types and need to maintain cross-language compatibility, then YAML
may be a better fit than the above.

To instruct Kombu to use an alternate serialization method, use one of the following options.

1. Set the serialization option on a per-producer basis:

>>> producer = Producer (channel,
exchange=exchange,
serializer="yaml")

2. Set the serialization option per message:

>>> producer.publish (message, routing_key=rkey,
serializer="pickle")

Note that a Consumer do not need the serialization method specified. They can auto-detect the serialization method as
the content-type is sent as a message header.

2.8.2 Sending raw data without Serialization

In some cases, you don’t need your message data to be serialized. If you pass in a plain string or Unicode object as
your message and a custom content_type, then Kombu will not waste cycles serializing/deserializing the data.

You can optionally specify a content_encoding for the raw data:

>>> with open ("~/my_picture.jpg", "rb") as fh:
producer.publish (fh.read(),
content_type="image/jpeg",

content_encoding="binary

routing_key=rkey)

The Message object returned by the Consumer class will have a content_type and content_encoding attribute.

2.8.3 Creating extensions using Setuptools entry-points

A package can also register new serializers using Setuptools entry-points.

The entry-point must provide the name of the serializer along with the path to a tuple providing the rest of the args:
encoder_function, decoder_function, content_type, content_encoding.

An example entrypoint could be:

26 Chapter 2. User Guide

Kombu Documentation, Release 3.0.37

from setuptools import setup

setup (
entry_points={
'kombu.serializers': [
'my_serializer = my_module.serializer:register_args'

Then the module my_module.serializer would look like:

register_args = (my_encoder, my_decoder, 'application/x-mimetype', 'utf-8")

When this package is installed the new ‘my_serializer’ serializer will be supported by Kombu.

Buffer Objects
The decoder function of custom serializer must support both strings and Python’s old-style buffer objects.

Python pickle and json modules usually don’t do this via its 1oads function, but you can easily add support by making
a wrapper around the 1oad function that takes file objects instead of strings.

Here’s an example wrapping pickle. loads () in such a way:

import pickle
from kombu.serialization import BytesIO, register

def loads (s):
return pickle.load (BytesIO(s))

register ('my_pickle', pickle.dumps, loads,
content_type='application/x-pickle2"',
content_encoding='binary"')

2.8. Serialization 27

http://docs.python.org/dev/library/pickle.html#pickle.loads

Kombu Documentation, Release 3.0.37

28

Chapter 2. User Guide

CHAPTER 3

Frequently Asked Questions

3.1 Questions

3.1.1 Q: Message.reject doesn’t work?

Answer: Earlier versions of RabbitMQ did not implement basic.reject, so make sure your version is recent
enough to support it.

3.1.2 Q: Message.requeue doesn’t work?

Answer: See Message.reject doesn’t work?

29

Kombu Documentation, Release 3.0.37

30

Chapter 3. Frequently Asked Questions

CHAPTER 4

API Reference

Release 3.0
Date November 30, 2016

* Connection

* Exchange

* Queue

* Message Producer
* Message Consumer

Messaging library for Python

kombu.enable_insecure_serializers (choices=[pickle’, ‘yaml’, ‘msgpack’])
Enable serializers that are considered to be unsafe.

Will enable pickle, yaml and msgpack by default, but you can also specify a list of serializers (by name or
content type) to enable.

kombu.disable_insecure_serializers (allowed=[json’])
Disable untrusted serializers.

Will disable all serializers except json or you can specify a list of deserializers to allow.

Note: Producers will still be able to serialize data in these formats, but consumers will not accept incoming
data using the untrusted content types.

4.1 Connection

class kombu.Connection (hostname="localhost’, userid=None, password=None, virtual_host=None,
port=None, insist=False, ssl=False, transport=None, connect_timeout=5,
transport_options=None, login_method=None, uri_prefix=None, heartbeat=0,

failover_strategy="round-robin’, alternates=None, **kwargs)
A connection to the broker.

Parameters URL — Broker URL, or a list of URLs, e.g.

Connection ('amgp://guest:guest@localhost:5672//")
Connection ('amgp://foo;amgp://bar', failover_strategy='round-robin')

31

Kombu Documentation, Release 3.0.37

Connection('redis://', transport_options={
'visibility_timeout': 3000,
})

import ssl
Connection('amgp://', login_method='EXTERNAL', ssl={

'ca_certs': '/etc/pki/tls/certs/something.crt',
'keyfile': '/etc/something/system.key',
'certfile': '/etc/something/system.cert',

'cert_regs': ssl.CERT_REQUIRED,
1)

SSL compatibility

SSL currently only works with the py-amqp, amqplib, and qpid transports. For other transports you can use
stunnel.

Parameters

* ssl — Use SSL to connect to the server. Default is False. May not be supported by the
specified transport.

* transport — Default transport if not specified in the URL.

* connect_timeout — Timeout in seconds for connecting to the server. May not be sup-
ported by the specified transport.

* transport_options — A dict of additional connection arguments to pass to alternate
kombu channel implementations. Consult the transport documentation for available options.

* heartbeat — Heartbeat interval in int/float seconds. Note that if heartbeats are enabled
then the heartbeat_check () method must be called regularly, around once per second.

Note: The connection is established lazily when needed. If you need the connection to be established, then
force it by calling connect ():

>>> conn = Connection('amgp://")
>>> conn.connect ()

and always remember to close the connection:

>>> conn.release ()

Legacy options
These options have been replaced by the URL argument, but are still supported for backwards compatibility:
Parameters

* hostname — Host name/address. NOTE: You cannot specify both the URL argument and
use the hostname keyword argument at the same time.

* userid — Default user name if not provided in the URL.
» password — Default password if not provided in the URL.

* virtual_host — Default virtual host if not provided in the URL.

32 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

* port — Default port if not provided in the URL.

Attributes

hostname = None
port = None

userid = None
password = None
virtual host =<
ss1 = None
login_method = None

failover_strategy = ‘round-robin’
Strategy used to select new hosts when reconnecting after connection failure. One of “round-robin”,
“shuffle” or any custom iterator constantly yielding new URLS to try.

connect_timeout =5

heartbeat = None
Heartbeat value, currently only supported by the py-amqp transport.

default_channel
Default channel, created upon access and closed when the connection is closed.

Can be used for automatic channel handling when you only need one channel, and also it is the channel
implicitly used if a connection is passed instead of a channel, to functions that require a channel.

connected
Return true if the connection has been established.

recoverable_ connection_errors
List of connection related exceptions that can be recovered from, but where the connection must be closed
and re-established first.

recoverable channel errors
List of channel related exceptions that can be automatically recovered from without re-establishing the
connection.

connection_errors
List of exceptions that may be raised by the connection.

channel_errors
List of exceptions that may be raised by the channel.

transport

connection
The underlying connection object.

Warning: This instance is transport specific, so do not depend on the interface of this object.

uri_prefix =None

declared_entities = None
The cache of declared entities is per connection, in case the server loses data.

4.1.

Connection 33

Kombu Documentation, Release 3.0.37

cycle = None
Iterator returning the next broker URL to try in the event of connection failure (initialized by
failover strategy).

host
The host as a host name/port pair separated by colon.

manager
Experimental manager that can be used to manage/monitor the broker instance. Not available for all
transports.

supports_heartbeats

is_evented

Methods

as_uri (include_password=False, mask="**’, getfields=<operator.itemgetter object>)
Convert connection parameters to URL form.

connect ()
Establish connection to server immediately.

channel ()
Create and return a new channel.

drain_events (**kwargs)
Wait for a single event from the server.

Parameters timeout — Timeout in seconds before we give up.
rraises socket . timeout: if the timeout is exceeded.

release ()
Close the connection (if open).

autoretry (fun, channel=None, **ensure_options)
Decorator for functions supporting a channel keyword argument.

The resulting callable will retry calling the function if it raises connection or channel related errors. The
return value will be a tuple of (retval, last_created_channel).

If a channel is not provided, then one will be automatically acquired (remember to close it afterwards).
See ensure () for the full list of supported keyword arguments.

Example usage:

channel = connection.channel ()
try:

ret, channel = connection.autoretry (publish_messages, channel)
finally:

channel.close ()

ensure_connection (errback=None, max_retries=None, interval_start=2, interval_step=2, inter-

val_max=30, callback=None)
Ensure we have a connection to the server.

If not retry establishing the connection with the settings specified.

Parameters

34 Chapter 4. API Reference

http://docs.python.org/dev/library/socket.html#socket.timeout

Kombu Documentation, Release 3.0.37

errback — Optional callback called each time the connection can’t be established. Ar-
guments provided are the exception raised and the interval that will be slept (exc,
interval).

max_retries — Maximum number of times to retry. If this limit is exceeded the con-
nection error will be re-raised.

interval_start — The number of seconds we start sleeping for.
interval_step — How many seconds added to the interval for each retry.
interval max — Maximum number of seconds to sleep between each retry.

callback — Optional callback that is called for every internal iteration (1 s)

ensure (obj, fun, errback=None, max_retries=None, interval_start=1, interval_step=1I1, inter-

val_max=1, on_revive=None)))
Ensure operation completes, regardless of any channel/connection errors occurring.

Will retry by establishing the connection, and reapplying the function.

Parameters

Example

fun — Method to apply.

errback — Optional callback called each time the connection can’t be established. Ar-
guments provided are the exception raised and the interval that will be slept (exc,
interval).

max_retries — Maximum number of times to retry. If this limit is exceeded the con-
nection error will be re-raised.

interval_start — The number of seconds we start sleeping for.
interval_ step — How many seconds added to the interval for each retry.

interval_max — Maximum number of seconds to sleep between each retry.

This is an example ensuring a publish operation:

>>>
>>>
>>>

>>>

>>>

>>>

from kombu import Connection, Producer

conn

= Connection ('amgp://")

producer = Producer (conn)

def errback (exc, interval

)t
logger.error ('Error: %r', exc, exc_info=1)
logger.info('Retry in %s seconds.', interval)

publish = conn.ensure (producer, producer.publish,
errback=errback, max_retries=3)
publish({'hello': 'world'}, routing_key='dest')

revive (new_channel)
Revive connection after connection re-established.

create_transport ()

get_transport_cls ()
Get the currently used transport class.

clone (**kwargs)
Create a copy of the connection with the same connection settings.

4.1.

Connection

35

Kombu Documentation, Release 3.0.37

info ()
Get connection info.

switch (url)
Switch connection parameters to use a new URL (does not reconnect)

maybe_switch_next ()
Switch to next URL given by the current failover strategy (if any).

heartbeat_check (rate=2)
Allow the transport to perform any periodic tasks required to make heartbeats work. This should be called
approximately every second.

If the current transport does not support heartbeats then this is a noop operation.

Parameters rate — Rate is how often the tick is called compared to the actual heartbeat value.
E.g. if the heartbeat is set to 3 seconds, and the tick is called every 3 / 2 seconds, then the
rate is 2. This value is currently unused by any transports.

maybe_close_channel (channel)
Close given channel, but ignore connection and channel errors.

register_with_event_1loop (loop)

close ()
Close the connection (if open).

_close ()
Really close connection, even if part of a connection pool.

completes_cycle (retries)
Return true if the cycle is complete after number of retries.

get_manager (*args, **kwargs)

Producer (channel=None, *args, **kwargs)
Create new kombu . Producer instance using this connection.

Consumer (queues=None, channel=None, *args, **kwargs)
Create new kombu . Consumer instance using this connection.

Pool (limit=None, preload=None)
Pool of connections.

See ConnectionPool.
Parameters
* limit — Maximum number of active connections. Default is no limit.
* preload — Number of connections to preload when the pool is created. Default is O.

Example usage:

>>> connection = Connection('amgp://")
>>> pool = connection.Pool (2)
>>> cl = pool.acquire()
>>> c2 = pool.acquire()
>>> ¢3 = pool.acquire()
>>> cl.release()
>>> c3 = pool.acquire()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "kombu/connection.py", line 354, in acquire

36 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

raise ConnectionlLimitExceeded(self.limit)
kombu.exceptions.ConnectionLimitExceeded: 2

ChannelPool (limit=None, preload=None)
Pool of channels.

See ChannelPool.
Parameters
¢ limit — Maximum number of active channels. Default is no limit.
* preload — Number of channels to preload when the pool is created. Default is O.

Example usage:

>>> connection = Connection('amgp://")
>>> pool = connection.ChannelPool (2)
>>> cl = pool.acquire()
>>> c2 = pool.acquire()
>>> c3 = pool.acquire()
>>> cl.release()
>>> c¢3 = pool.acquire()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "kombu/connection.py", line 354, in acquire

raise ChannellLimitExceeded (self.limit)
kombu.connection.ChannellLimitExceeded: 2

SimpleQueue (name, no_ack=None, queue_opts=None, exchange_opts=None, channel=None,
**kwargs)
Create new SimpleQueue, using a channel from this connection.

If name is a string, a queue and exchange will be automatically created using that name as the name of the
queue and exchange, also it will be used as the default routing key.

Parameters
* name — Name of the queue/or a Queue.
* no_ack — Disable acknowledgements. Default is false.

* queue_opts — Additional keyword arguments passed to the constructor of the automat-
ically created Queue.

* exchange_opts — Additional keyword arguments passed to the constructor of the au-
tomatically created Exchange.

* channel - Custom channel to use. If not specified the connection default channel is
used.

SimpleBuffer (name, no_ack=None, queue_opts=None, exchange_opts=None, channel=None,
**kwargs)
Create new SimpleQueue using a channel from this connection.

Same as SimpleQueue (), but configured with buffering semantics. The resulting queue and exchange
will not be durable, also auto delete is enabled. Messages will be transient (not persistent), and acknowl-
edgements are disabled (no_ack).

4.1. Connection 37

Kombu Documentation, Release 3.0.37

4.2 Exchange

Example creating an exchange declaration:

>>> news_exchange = Exchange ('news', type='topic')

For now news_exchange is just a declaration, you can’t perform actions on it. It just describes the name and options
for the exchange.

The exchange can be bound or unbound. Bound means the exchange is associated with a channel and operations can
be performed on it. To bind the exchange you call the exchange with the channel as argument:

>>> bound_exchange = news_exchange (channel)

Now you can perform operations like declare () ordelete ():

>>> bound_exchange.declare ()

>>> message = bound_exchange.Message ('Cure for cancer found!')
>>> bound_exchange.publish (message, routing_key='news.science')
>>> pbound_exchange.delete ()

class kombu . Exchange (name="", type="*, channel=None, **kwargs)
An Exchange declaration.

Parameters
* name — See name.
* type — See type.
* channel — See channel.
* durable — See durable.
e auto_delete —See auto _delete.
* delivery_mode — See delivery mode.
* arguments — See arqguments.

name
Name of the exchange. Default is no name (the default exchange).

type
This description of AMQP exchange types was shamelessly stolen from the blog post ‘AMQP in 10 minutes:
Part 4°_ by Rajith Attapattu. Reading this article is recommended if you’re new to amgp.

“AMQP defines four default exchange types (routing algorithms) that covers most of the common messag-
ing use cases. An AMQP broker can also define additional exchange types, so see your broker manual for
more information about available exchange types.

edirect (default)

Direct match between the routing key in the message, and the routing criteria used when
a queue is bound to this exchange.
*topic

Wildcard match between the routing key and the routing pattern specified in the ex-
change/queue binding. The routing key is treated as zero or more words delimited by
”.” and supports special wildcard characters. “*” matches a single word and “#”
matches zero or more words.

*fanout

38 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

Queues are bound to this exchange with no arguments. Hence any message sent to this
exchange will be forwarded to all queues bound to this exchange.

sheaders

Queues are bound to this exchange with a table of arguments containing headers and
values (optional). A special argument named “x-match” determines the matching algo-
rithm, where “all” implies an AND (all pairs must match) and “any” implies OR (at
least one pair must match).

argument s is used to specify the arguments.

channel
The channel the exchange is bound to (if bound).

durable
Durable exchanges remain active when a server restarts. Non-durable exchanges (transient exchanges) are
purged when a server restarts. Default is True.

auto_delete
If set, the exchange is deleted when all queues have finished using it. Default is False.

delivery_mode
The default delivery mode used for messages. The value is an integer, or alias string.

*1 or “transient”

The message is transient. Which means it is stored in memory only, and is lost if the server
dies or restarts.

*2 or “persistent” (default) The message is persistent. Which means the message is stored both in-
memory, and on disk, and therefore preserved if the server dies or restarts.

The default value is 2 (persistent).

arguments
Additional arguments to specify when the exchange is declared.

maybe_bind (channel)
Bind instance to channel if not already bound.

Message (body, delivery_mode=None, priority=None, content_type=None, content_encoding=None,

properties=None, headers=None)
Create message instance to be sent with publish ().

Parameters
* body — Message body.
* delivery_mode — Set custom delivery mode. Defaults to delivery mode.
* priority — Message priority, 0 to 9. (currently not supported by RabbitMQ).

* content_type — The messages content_type. If content_type is set, no serialization
occurs as it is assumed this is either a binary object, or you’ve done your own serialization.
Leave blank if using built-in serialization as our library properly sets content_type.

* content_encoding — The character set in which this object is encoded. Use “binary”
if sending in raw binary objects. Leave blank if using built-in serialization as our library
properly sets content_encoding.

* properties — Message properties.
* headers — Message headers.

PERSISTENT_ DELIVERY_MODE =2

4.2,

Exchange 39

Kombu Documentation, Release 3.0.37

TRANSIENT DELIVERY MODE =1
attrs = ((‘name’, None), (‘type’, None), (‘arguments’, None), (‘durable’, <type ‘bool’>), (‘passive’, <type ‘bool’>), (‘autc
auto_delete = False

bind_to (exchange="", routing_key=""“, arguments=None, nowait=False, **kwargs)
Binds the exchange to another exchange.

Parameters nowait — If set the server will not respond, and the call will not block waiting for
aresponse. Defaultis False.

binding (routing_key="*, arguments=None, unbind_arguments=None)
can_cache_ declaration

declare (nowait=False, passive=None)
Declare the exchange.

Creates the exchange on the broker.

Parameters nowait — If set the server will not respond, and a response will not be waited for.
Defaultis False.

delete (if_unused=False, nowait=False)
Delete the exchange declaration on server.

Parameters
e if unused — Delete only if the exchange has no bindings. Default is False.

* nowait - If set the server will not respond, and a response will not be waited for. Default
isFalse.

delivery_mode =2
durable = True
name = ¢’

passive = False

publish (message, routing_key=None, mandatory=False, immediate=False, exchange=None)
Publish message.

Parameters
* message — Message () instance to publish.
* routing_key — Routing key.
* mandatory — Currently not supported.
¢ immediate — Currently not supported.
type = ‘direct’

unbind_from (source="", routing_key="", nowait=False, arguments=None)
Delete previously created exchange binding from the server.

4.3 Queue

Example creating a queue using our exchange in the Exchange example:

40 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

>>> gscience_news = Queue ('science_news',
exchange=news_exchange,
routing_key='news.science')

For now science_news is just a declaration, you can’t perform actions on it. It just describes the name and options for
the queue.

The queue can be bound or unbound. Bound means the queue is associated with a channel and operations can be
performed on it. To bind the queue you call the queue instance with the channel as an argument:

>>> bound_science_news = science_news (channel)

Now you can perform operations like declare () or purge ():

>>> bound_science_news.declare ()
>>> bound_science_news.purge ()
>>> bound_science_news.delete ()

class kombu.Queue (name="‘, exchange=None, routing_key="‘, channel=None, bindings=None,

on_declared=None, **kwargs)
A Queue declaration.

Parameters
* name — See name.
* exchange - See exchange.
* routing key - See routing key.
* channel — See channel.
* durable — See durable.
* exclusive — See exclusive.
e auto_delete —See auto _delete.
* queue_arguments — See queue_arguments.
* binding_arguments - See binding arguments.
* on_declared - See on_declared

name
Name of the queue. Default is no name (default queue destination).

exchange
The Exchange the queue binds to.

routing key
The routing key (if any), also called binding key.

The interpretation of the routing key depends on the Exchange. type.
edirect exchange

Matches if the routing key property of the message and the routing key attribute are
identical.

*fanout exchange
Always matches, even if the binding does not have a key.

topic exchange

4.3. Queue 41

Kombu Documentation, Release 3.0.37

Matches the routing key property of the message by a primitive pattern matching scheme. The
message routing key then consists of words separated by dots (”.”, like domain names), and
two special characters are available; star (“*”) and hash (“#”). The star matches any word,
and the hash matches zero or more words. For example “*.stock.#” matches the routing keys
“usd.stock” and “eur.stock.db” but not “stock.nasdaq”.

channel
The channel the Queue is bound to (if bound).

durable
Durable queues remain active when a server restarts. Non-durable queues (transient queues) are purged
if/when a server restarts. Note that durable queues do not necessarily hold persistent messages, although
it does not make sense to send persistent messages to a transient queue.

Default is True.

exclusive
Exclusive queues may only be consumed from by the current connection. Setting the ‘exclusive’ flag
always implies ‘auto-delete’.

Default is False.

auto_delete
If set, the queue is deleted when all consumers have finished using it. Last consumer can be cancelled
either explicitly or because its channel is closed. If there was no consumer ever on the queue, it won’t be
deleted.

queue_arguments
Additional arguments used when declaring the queue.

binding_arguments
Additional arguments used when binding the queue.

alias
Unused in Kombu, but applications can take advantage of this. For example to give alternate names to
queues with automatically generated queue names.

on_declared
Optional callback to be applied when the queue has been declared (the queue_declare operation is
complete). This must be a function with a signature that accepts at least 3 positional arguments: (name,
messages, consumers).

maybe_bind (channel)
Bind instance to channel if not already bound.

exception ContentDisallowed
Consumer does not allow this content-type.

Queue.as_dict (recurse=Fualse)

Queue.attrs = ((‘name’, None), (‘exchange’, None), (‘routing_key’, None), (‘queue_arguments’, None), (‘binding_argu
Queue.auto_delete = False

Queue .bind (channel)

Queue.bind_to (exchange="‘, routing_key="", arguments=None, nowait=False)

Queue.can_cache_declaration

Queue.cancel (consumer_tag)
Cancel a consumer by consumer tag.

42

Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

Queue . consume (consumer_tag=""“, callback=None, no_ack=None, nowait=False)
Start a queue consumer.

Consumers last as long as the channel they were created on, or until the client cancels them.
Parameters

* consumer_tag — Unique identifier for the consumer. The consumer tag is local to a
connection, so two clients can use the same consumer tags. If this field is empty the server
will generate a unique tag.

* no_ack — If enabled the broker will automatically ack messages.
* nowait — Do not wait for a reply.
* callback — callback called for each delivered message

Queue .declare (nowait=False)
Declares the queue, the exchange and binds the queue to the exchange.

Queue .delete (if_unused=False, if_empty=False, nowait=False)
Delete the queue.

Parameters

e if unused - If set, the server will only delete the queue if it has no consumers. A
channel error will be raised if the queue has consumers.

 if empty — If set, the server will only delete the queue if it is empty. If it is not empty a
channel error will be raised.

* nowait — Do not wait for a reply.
Queue.durable = True
Queue . exchange = <unbound Exchange ’(direct)>
Queue.exclusive = False
classmethod Queue . from_dict (queue, **options)

Queue.get (no_ack=None, accept=None)
Poll the server for a new message.

Must return the message if a message was available, or None otherwise.
Parameters
* no_ack — If enabled the broker will automatically ack messages.
* accept — Custom list of accepted content types.

This method provides direct access to the messages in a queue using a synchronous dialogue, designed for
specific types of applications where synchronous functionality is more important than performance.

Queue.name = ¢’
Queue .no_ack = False

Queue .purge (nowait=False)
Remove all ready messages from the queue.

Queue .queue_bind (nowait=False)
Create the queue binding on the server.

Queue.queue_declare (nowait=False, passive=False)
Declare queue on the server.

. Queue 43

Kombu Documentation, Release 3.0.37

Parameters
* nowait — Do not wait for a reply.

* passive — If set, the server will not create the queue. The client can use this to check
whether a queue exists without modifying the server state.

Queue .queue_unbind (arguments=None, nowait=False)
Queue.routing_key = ¢

Queue.unbind_from (exchange='‘, routing_key="*, arguments=None, nowait=False)
Unbind queue by deleting the binding from the server.

Queue .when_bound ()

4.4 Message Producer

class kombu .Producer (channel, exchange=None, routing_key=None, serializer=None,

auto_declare=None, compression=None, on_return=None)
Message Producer.

Parameters
* channel - Connection or channel.
* exchange — Optional default exchange.
* routing_key — Optional default routing key.
* serializer — Default serializer. Default is “json”.
* compression — Default compression method. Default is no compression.

* auto_declare — Automatically declare the default exchange at instantiation. Default is
True.

* on_return — Callback to call for undeliverable messages, when the mandatory or im-
mediate arguments to publish () is used. This callback needs the following signature:
(exception, exchange, routing_key, message). Note that the producer needs to drain events
to use this feature.

channel

exchange = None
Default exchange

routing_key=*
Default routing key.

serializer = None
Default serializer to use. Default is JSON.

compression = None
Default compression method. Disabled by default.

auto_declare = True
By default the exchange is declared at instantiation. If you want to declare manually then you can set this
toFalse.

on_return = None
Basic return callback.

44 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

connection

declare ()
Declare the exchange.

This happens automatically at instantiation if auto_declare is enabled.

maybe_declare (entity, retry=False, **retry_policy)
Declare the exchange if it hasn’t already been declared during this session.

publish (body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, pri-
ority=0, content_type=None, content_encoding=None, serializer=None, headers=None,
compression=None, exchange=None, retry=False, retry_policy=None, declare=[], expira-
tion=None, **properties)
Publish message to the specified exchange.

Parameters
* body — Message body.
* routing_key — Message routing key.
* delivery_mode — See delivery_mode.
* mandatory — Currently not supported.
* immediate — Currently not supported.
* priority — Message priority. A number between O and 9.
* content_type — Content type. Default is auto-detect.
* content_encoding — Content encoding. Default is auto-detect.
* serializer — Serializer to use. Default is auto-detect.
* compression — Compression method to use. Default is none.
* headers — Mapping of arbitrary headers to pass along with the message body.
* exchange — Override the exchange. Note that this exchange must have been declared.

* declare — Optional list of required entities that must have been declared before publish-
ing the message. The entities will be declared using maybe declare ().

* retry — Retry publishing, or declaring entities if the connection is lost.

* retry_policy — Retry configuration, this is the keywords supported by ensure ().

* expiration— A TTL in seconds can be specified per message. Default is no expiration.
* xxproperties — Additional message properties, see AMQP spec.

revive (channel)
Revive the producer after connection loss.

4.5 Message Consumer

class kombu .Consumer (channel, queues=None, no_ack=None, auto_declare=None, callbacks=None,

on_decode_error=None, on_message=None, accept=None, tag_prefix=None)
Message consumer.

Parameters

e channel —see channel.

4.5. Message Consumer 45

Kombu Documentation, Release 3.0.37

* queues —See queues.

* no_ack —see no_ack.

* auto_declare —see auto_declare

* callbacks —see callbacks.

* on_message — See on_message

* on_decode_error —see on_decode_error.

channel = None
The connection/channel to use for this consumer.

queues = None
A single Queue, or a list of queues to consume from.

no_ack = None
Flag for automatic message acknowledgment. If enabled the messages are automatically acknowledged
by the broker. This can increase performance but means that you have no control of when the message is
removed.

Disabled by default.

auto_declare = True
By default all entities will be declared at instantiation, if you want to handle this manually you can set this
toFalse.

callbacks = None
List of callbacks called in order when a message is received.

The signature of the callbacks must take two arguments: (body, message), which is the decoded message
body and the Message instance (a subclass of Message).

on_message = None
Optional function called whenever a message is received.

When defined this function will be called instead of the receive () method, and callbacks will be
disabled.

So this can be used as an alternative to callbacks when you don’t want the body to be automatically
decoded. Note that the message will still be decompressed if the message has the compression header
set.

The signature of the callback must take a single argument, which is the raw message object (a subclass of
Message).

Also note that the message . body attribute, which is the raw contents of the message body, may in some
cases be a read-only buf fer object.

on_decode_error = None
Callback called when a message can’t be decoded.

The signature of the callback must take two arguments: (message, exc), which is the message that can’t be
decoded and the exception that occurred while trying to decode it.

connection

declare ()
Declare queues, exchanges and bindings.

This is done automatically at instantiation if auto_declareis set.

46

Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

register_ callback (callback)
Register a new callback to be called when a message is received.

The signature of the callback needs to accept two arguments: (body, message), which is the decoded
message body and the Message instance (a subclass of Message.

add_queue (queue)
Add a queue to the list of queues to consume from.

This will not start consuming from the queue, for that you will have to call consume () after.

add_queue_from_dict (queue, **options)
This method is deprecated.

Instead please use:

consumer.add_queue (Queue. from_dict (d))

consume (no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues added since the last
call, it will not cancel consuming from removed queues (use cancel_by_queue ()).

Parameters no_ack — See no_ack.

cancel ()
End all active queue consumers.

This does not affect already delivered messages, but it does mean the server will not send any more mes-
sages for this consumer.

cancel_by_queue (queue)
Cancel consumer by queue name.

consuming_from (queue)
Return True if the consumer is currently consuming from queue’.

purge ()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

flow (active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content (if any), and
then wait until flow is reactivated.

qos (prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes processing
a message, the following message is already held locally, rather than needing to be sent down the channel.
Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.

Parameters

4.5. Message Consumer 47

Kombu Documentation, Release 3.0.37

» prefetch_size — Specify the prefetch window in octets. The server will send a mes-
sage in advance if it is equal to or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply.

* prefetch_count — Specify the prefetch window in terms of whole messages.
* apply_global — Apply new settings globally on all channels.

recover (requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.

Parameters requeue — By default the messages will be redelivered to the original recipient.
With requeue set to true, the server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

receive (body, message)
Method called when a message is received.

This dispatches to the registered callbacks.
Parameters
* body — The decoded message body.
* message — The Message instance.
Raises Not ImplementedError — If no consumer callbacks have been registered.

revive (channel)
Revive consumer after connection loss.

4.6 Common Utilities - kombu.common

e kombu.common I

4.6.1 kombu.common

Common Utilities.

class kombu.common . Broadcast (name=None, queue=None, auto_delete=True, exchange=None,

alias=None, **kwargs)
Convenience class used to define broadcast queues.

Every queue instance will have a unique name, and both the queue and exchange is configured with auto deletion.

Parameters
* name — This is used as the name of the exchange.

* queue — By default a unique id is used for the queue name for every consumer. You can
specify a custom queue name here.

* xxkwargs — See Queue for a list of additional keyword arguments supported.
attrs = ((‘name’, None), (‘exchange’, None), (‘routing_key’, None), (‘queue_arguments’, None), (‘binding_arguments’, |

kombu . common .maybe_declare (entity, channel=None, retry=False, **retry_policy)

48 Chapter 4. API Reference

http://docs.python.org/dev/library/exceptions.html#NotImplementedError

Kombu Documentation, Release 3.0.37

kombu.common.uuid ()
Generate a unique id, having - hopefully - a very small chance of collision.

For now this is provided by uuid.uuid4 ().

kombu.common .itermessages (conn, channel, queue, limit=I, timeout=None, callbacks=None,

*rkwargs)
kombu.common.send_reply (exchange, req, msg, producer=None, retry=False, retry_policy=None,
Kk
‘props)

Send reply for request.
Parameters

* exchange — Reply exchange
* req - Original request, a message with a reply_to property.
e producer - Producer instance
* retry - If true must retry according to reply_policy argument.
* retry_policy — Retry settings.
* props — Extra properties

kombu.common.collect_replies (conn, channel, queue, *args, **kwargs)
Generator collecting replies from queue

kombu . common . insured (pool, fun, args, kwargs, errback=None, on_revive=None, **opts)
Ensures function performing broker commands completes despite intermittent connection failures.

kombu.common.drain_consumer (consumer, limit=1, timeout=None, callbacks=None)

kombu . common . eventloop (conn, limit=None, timeout=None, ignore_timeouts=False)
Best practice generator wrapper around Connection.drain_events.

Able to drain events forever, with a limit, and optionally ignoring timeout errors (a timeout of 1 is often used in
environments where the socket can get “stuck”, and is a best practice for Kombu consumers).

Examples

eventloop is a generator:

from kombu.common import eventloop

def run (connection):
it = eventloop (connection, timeout=1, ignore_timeouts=True)
next (it) # one event consumed, or timed out.

for _ in eventloop(connection, timeout=1, ignore_timeouts=True) :
pass # loop forever.

It also takes an optional limit parameter, and timeout errors are propagated by default:

for _ in eventloop(connection, limit=1, timeout=1):
pass

See also:

itermessages (), which is an event loop bound to one or more consumers, that yields any messages re-
ceived.

4.6. Common Utilities - kombu.common 49

http://docs.python.org/dev/library/uuid.html#uuid.uuid4

Kombu Documentation, Release 3.0.37

4.7 Mixin Classes - kombu.mixins

* kombu.mixins I

4.7.1 kombu.mixins

Useful mixin classes.

class kombu.mixins.ConsumerMixin
Convenience mixin for implementing consumer programs.

It can be used outside of threads, with threads, or greenthreads (eventlet/gevent) too.

The basic class would need a connection attribute which must be a Connect ion instance, and define a
get_consumers () method that returns a list of kombu. Consumer instances to use. Supporting multiple

consumers is important so that multiple channels can be used for different QoS requirements.

Example:

class Worker (ConsumerMixin) :
task_qgqueue = Queue('tasks', Exchange('tasks'), 'tasks'))

def _ init_ (self, connection):
self.connection = None

def get_consumers (self, Consumer, channel):
return [Consumer (queues=[self.task_queue],
callbacks=[self.on_task])]

def on_task(self, body, message):
print ('Got task: {0'!r}'.format (body))
message.ack ()

Additional handler methods:

sextra_context ()

Optional extra context manager that will be entered after the connection and consumers have

been set up.
Takes arguments (connection, channel).
son_connection_error ()

Handler called if the connection is lost/ or is unavailable.

Takes arguments (exc, interval), where interval is the time in seconds when the connec-

tion will be retried.
The default handler will log the exception.
*on_connection_revived()
Handler called as soon as the connection is re-established after connection failure.
Takes no arguments.

*on_consume_ready ()

50 Chapter 4. API Reference

http://docs.celeryproject.org/en/latest/userguide/extending.html#connection

Kombu Documentation, Release 3.0.37

Handler called when the consumer is ready to accept messages.

Takes arguments (connection, channel, consumers). Also keyword arguments to
consume are forwarded to this handler.

*on _consume_end ()

Handler called after the consumers are cancelled. Takes arguments (connection,
channel).

eon_iteration/()
Handler called for every iteration while draining events.
Takes no arguments.
*on_decode_error ()
Handler called if a consumer was unable to decode the body of a message.
Takes arguments (message, exc) where message is the original message object.

The default handler will log the error and acknowledge the message, so if you override make sure
to call super, or perform these steps yourself.

Consumer (*args, **kwds)
channel errors

connect_max retries = None
maximum number of retries trying to re-establish the connection, if the connection is lost/unavailable.

connection_errors

consume (limit=None, timeout=None, safety_interval=1, **kwargs)
consumer_context (*args, **kwds)

create_connection ()

establish_connection (*args, **kwds)

extra_context (*args, **kwds)

get_consumers (Consumer, channel)

maybe_conn_error (fun)
Use kombu . common.ignore_errors () instead.

on_connection_error (exc, interval)
on_connection_revived ()

on_consume_end (connection, channel)

on_consume_ready (connection, channel, consumers, **kwargs)
on_decode_error (message, exc)

on_iteration|()

restart_limit

run (_tokens=1)

should_stop = False
When this is set to true the consumer should stop consuming and return, so that it can be joined if it is the
implementation of a thread.

4.7.

Mixin Classes - kombu.mixins 51

Kombu Documentation, Release 3.0.37

4.8 kombu.simple

Simple interface.

e Persistent
* Buffer

4.8.1 Persistent

class kombu.simple.SimpleQueue (channel, name, no_ack=None, queue_opts=None, ex-
change_opts=None, serializer=None, compression=None,
**kwargs)
channel

Current channel

producer
Producer used to publish messages.

consumer
Consumer used to receive messages.

no_ack
flag to enable/disable acknowledgements.

queue
Queue to consume from (if consuming).

queue_opts
Additional options for the queue declaration.

exchange_opts
Additional options for the exchange declaration.

get (block=True, timeout=None)

get_nowait ()

put (message, serializer=None, headers=None, compression=None, routing_key=None, **kwargs)
clear ()

__len__ ()
len(self) -> self.qsize()

gsize ()

close ()

4.8.2 Buffer

class kombu.simple.SimpleBuffer (channel, name, no_ack=None, queue_opts=None, ex-
change_opts=None, serializer=None, compression=None,
**kwargs)

channel
Current channel

52 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

producer
Producer used to publish messages.

consumer
Consumer used to receive messages.

no_ack
flag to enable/disable acknowledgements.

queue
Queue to consume from (if consuming).

queue_opts
Additional options for the queue declaration.

exchange_opts
Additional options for the exchange declaration.

get (block=True, timeout=None)

get_nowait ()

put (message, serializer=None, headers=None, compression=None, routing_key=None, **kwargs)
clear ()

len_ ()
len(self) -> self.qsize()

gsize ()

close ()

4.9 Clocks and Synchronization - kombu.clocks

e kombu.clocks I

4.9.1 kombu.clocks

Logical Clocks and Synchronization.

class kombu.clocks.LamportClock (initial_value=0, Lock=<built-in function allocate_lock>)
Lamport’s logical clock.

From Wikipedia:

A Lamport logical clock is a monotonically incrementing software counter maintained in each process. It
follows some simple rules:

*A process increments its counter before each event in that process;
*When a process sends a message, it includes its counter value with the message;

*On receiving a message, the receiver process sets its counter to be greater than the maximum of its own
value and the received value before it considers the message received.

4.9. Clocks and Synchronization - kombu.clocks 53

Kombu Documentation, Release 3.0.37

Conceptually, this logical clock can be thought of as a clock that only has meaning in relation to messages
moving between processes. When a process receives a message, it resynchronizes its logical clock with the
sender.

See also:

eLamport timestamps

eLamports distributed mutex

Usage

When sending a message use forward () to increment the clock, when receiving a message use ad just ()
to sync with the time stamp of the incoming message.

adjust (other)
forward ()

sort_heap (h)
List of tuples containing at least two elements, representing an event, where the first element is the
event’s scalar clock value, and the second element is the id of the process (usually "hostname:pid"):
sh([(clock, processid, ...?), (...)1)

The list must already be sorted, which is why we refer to it as a heap.
The tuple will not be unpacked, so more than two elements can be present.
Will return the latest event.

value=0
The clocks current value.

class kombu.clocks.timetuple

Tuple of event clock information.
Can be used as part of a heap to keep events ordered.
Parameters
* clock - Event clock value.
* timestamp — Event UNIX timestamp value.
* id - Event host id (e.g. hostname :pid).
* obj — Optional obj to associate with this event.

clock
itemgetter(item, ...) —> itemgetter object

Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the call f(r)
returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

id
itemgetter(item, ...) —> itemgetter object
Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the call f(r)
returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

obj

itemgetter(item, ...) —> itemgetter object

Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the call f(r)
returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

54

Chapter 4. API Reference

http://en.wikipedia.org/wiki/Lamport_timestamps
http://bit.ly/p99ybE

Kombu Documentation, Release 3.0.37

timestamp
itemgetter(item, ...) —> itemgetter object

Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the call f(r)
returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

4.10 kombu.compat

Carrot compatible interface for Publisher and Producer.

See http://packages.python.org/pypi/carrot for documentation.

e Publisher
e Consumer
e ConsumerSet

4.10.1 Publisher

Replace with kombu . Producer.

class kombu . compat .Publisher (connection, exchange=None, routing_key=None, ex-
change_type=None, durable=None, auto_delete=None, chan-
nel=None, **kwargs)

auto_declare = True
auto_delete = False
backend

channel

close ()
compression = None
connection

declare ()
Declare the exchange.

This happens automatically at instantiation if auto_declare is enabled.
durable = True
exchange = ¢’
exchange_type = ‘direct’

maybe_declare (entity, retry=False, **retry_policy)
Declare the exchange if it hasn’t already been declared during this session.

on_return = None

publish (body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, pri-
ority=0, content_type=None, content_encoding=None, serializer=None, headers=None,
compression=None, exchange=None, retry=False, retry_policy=None, declare=[], expira-
tion=None, **properties)
Publish message to the specified exchange.

4.10. kombu.compat 55

http://packages.python.org/pypi/carrot

Kombu Documentation, Release 3.0.37

Parameters
* body — Message body.
* routing key — Message routing key.
* delivery mode — See delivery_mode.
* mandatory — Currently not supported.
e immediate — Currently not supported.
* priority — Message priority. A number between 0 and 9.
* content_type — Content type. Default is auto-detect.
* content_encoding — Content encoding. Default is auto-detect.
* serializer — Serializer to use. Default is auto-detect.
* compression — Compression method to use. Default is none.
* headers — Mapping of arbitrary headers to pass along with the message body.
* exchange - Override the exchange. Note that this exchange must have been declared.

* declare — Optional list of required entities that must have been declared before publish-
ing the message. The entities will be declared using maybe_declare ().

* retry — Retry publishing, or declaring entities if the connection is lost.
* retry_ policy — Retry configuration, this is the keywords supported by ensure ().
* expiration— A TTL in seconds can be specified per message. Default is no expiration.
* xxproperties — Additional message properties, see AMQP spec.

release ()

revive (channel)
Revive the producer after connection loss.

routing_key=*
send (*args, **kwargs)

serializer = None

4.10.2 Consumer

Replace with kombu. Consumer.

class kombu.compat .Consumer (connection, queue=None, exchange=None, routing_key=None,
exchange_type=None, durable=None, exclusive=None,
auto_delete=None, **kwargs)

exception ContentDisallowed
Consumer does not allow this content-type.

args
message

Consumer .accept = None

56 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

Consumer .add_queue (queue)
Add a queue to the list of queues to consume from.

This will not start consuming from the queue, for that you will have to call consume () after.

Consumer.add_queue_from_dict (queue, **options)
This method is deprecated.

Instead please use:

consumer.add_queue (Queue. from_dict (d))

Consumer .auto_declare = True
Consumer.auto_delete = False
Consumer.callbacks = None

Consumer.cancel ()
End all active queue consumers.

This does not affect already delivered messages, but it does mean the server will not send any more mes-
sages for this consumer.

Consumer.cancel_by queue (queue)
Cancel consumer by queue name.

Consumer .channel = None
Consumer.close ()
Consumer.connection

Consumer .consume (no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues added since the last
call, it will not cancel consuming from removed queues (use cancel_by_ queue ()).

Parameters no_ack — See no_ack.

Consumer.consuming_from (queue)
Return True if the consumer is currently consuming from queue’.

Consumer .declare ()
Declare queues, exchanges and bindings.

This is done automatically at instantiation if auto_declareis set.
Consumer .discard_all (filterfunc=None)
Consumer .durable = True
Consumer .exchange = ¢’
Consumer .exchange_type = ‘direct’
Consumer .exclusive = False
Consumer . fetch (no_ack=None, enable_callbacks=False)

Consumer . £low (active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process.

4.10. kombu.compat 57

Kombu Documentation, Release 3.0.37

The peer that receives a request to stop sending content will finish sending the current content (if any), and
then wait until flow is reactivated.

Consumer . iterconsume (limit=None, no_ack=None)
Consumer . iterqueue (limit=None, infinite=False)
Consumer .no_ack = None
Consumer.on_decode_error = None

Consumer .on_message = None

Consumer .process_next ()

Consumer .purge ()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

Consumer . qos (prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes processing
a message, the following message is already held locally, rather than needing to be sent down the channel.
Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.
Parameters

» prefetch_size - Specify the prefetch window in octets. The server will send a mes-
sage in advance if it is equal to or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply.

* prefetch_count — Specify the prefetch window in terms of whole messages.
* apply_global — Apply new settings globally on all channels.

Consumer .queue = ¢’

Consumer .queues = None

Consumer . receive (body, message)
Method called when a message is received.

This dispatches to the registered callbacks.
Parameters
* body — The decoded message body.
* message — The Message instance.
Raises NotImplementedError — If no consumer callbacks have been registered.

Consumer . recover (requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.

Parameters requeue — By default the messages will be redelivered to the original recipient.
With requeue set to true, the server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

58

Chapter 4. API Reference

http://docs.python.org/dev/library/exceptions.html#NotImplementedError

Kombu Documentation, Release 3.0.37

Consumer .register_callback (callback)
Register a new callback to be called when a message is received.

The signature of the callback needs to accept two arguments: (body, message), which is the decoded
message body and the Message instance (a subclass of Message.

Consumer .revive (channel)
Consumer.routing key =*

Consumer .wait (limit=None)

4.10.3 ConsumerSet

Replace with kombu. Consumer.

class kombu. compat . ConsumerSet (connection, from_dict=None, consumers=None, channel=None,
**kwargs)

exception ContentDisallowed
Consumer does not allow this content-type.

args
message
ConsumerSet .accept = None
ConsumerSet .add_consumer (consumer)
ConsumerSet .add_consumer_from_dict (queue, **options)

ConsumerSet .add_queue (queue)
Add a queue to the list of queues to consume from.

This will not start consuming from the queue, for that you will have to call consume () after.

ConsumerSet .add_queue_from_dict (queue, **options)
This method is deprecated.

Instead please use:

consumer.add_queue (Queue. from_dict (d))

ConsumerSet.auto_declare = True
ConsumerSet .callbacks = None

ConsumerSet.cancel ()
End all active queue consumers.

This does not affect already delivered messages, but it does mean the server will not send any more mes-
sages for this consumer.

ConsumerSet.cancel_by_dqueue (queue)
Cancel consumer by queue name.

ConsumerSet .channel = None
ConsumerSet.close ()

ConsumerSet .connection

4.10. kombu.compat 59

Kombu Documentation, Release 3.0.37

ConsumerSet .consume (no_ack=None)
Start consuming messages.

Can be called multiple times, but note that while it will consume from new queues added since the last
call, it will not cancel consuming from removed queues (use cancel_by_queue ()).

Parameters no_ack — See no_ack.

ConsumerSet .consuming_from (queue)
Return True if the consumer is currently consuming from queue’.

ConsumerSet.declare ()
Declare queues, exchanges and bindings.

This is done automatically at instantiation if auto_declare is set.
ConsumerSet .discard_all ()

ConsumerSet . flow (active)
Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process.

The peer that receives a request to stop sending content will finish sending the current content (if any), and
then wait until flow is reactivated.

ConsumerSet .iterconsume (limit=None, no_ack=False)
ConsumerSet .no_ack = None

ConsumerSet .on_decode_error = None
ConsumerSet .on_message = None

ConsumersSet .purge ()
Purge messages from all queues.

Warning: This will delete all ready messages, there is no undo operation.

ConsumersSet . gos (prefetch_size=0, prefetch_count=0, apply_global=False)
Specify quality of service.

The client can request that messages should be sent in advance so that when the client finishes processing
a message, the following message is already held locally, rather than needing to be sent down the channel.
Prefetching gives a performance improvement.

The prefetch window is Ignored if the no_ack option is set.
Parameters

» prefetch_size - Specify the prefetch window in octets. The server will send a mes-
sage in advance if it is equal to or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply.

* prefetch_count — Specify the prefetch window in terms of whole messages.
* apply_global — Apply new settings globally on all channels.
ConsumerSet .queues = None

ConsumerSet . receive (body, message)
Method called when a message is received.

60 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

This dispatches to the registered callbacks.
Parameters
* body — The decoded message body.
* message — The Message instance.
Raises Not ImplementedError — If no consumer callbacks have been registered.

ConsumersSet . recover (requeue=False)
Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages on the specified channel.

Parameters requeue — By default the messages will be redelivered to the original recipient.
With requeue set to true, the server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

ConsumerSet .register_callback (callback)
Register a new callback to be called when a message is received.

The signature of the callback needs to accept two arguments: (body, message), which is the decoded
message body and the Message instance (a subclass of Message.

ConsumerSet .revive (channel)

4.11 kombu.pidbox

Generic process mailbox.

e Introduction
— Creating the applications Mailbox
— Example Node
— Example Client

* Mailbox

* Node

4.11.1 Introduction

Creating the applications Mailbox

>>> mailbox = pidbox.Mailbox ("celerybeat", type="direct")

>>> @mailbox.handler
>>> def reload_schedule (state, *xkwargs):
state["beat"] .reload_schedule ()

>>> @mailbox.handler
>>> def connection_info(state, xxkwargs):
return {"connection": state["connection"].info ()}

4.11. kombu.pidbox 61

http://docs.python.org/dev/library/exceptions.html#NotImplementedError

Kombu Documentation, Release 3.0.37

Example Node

>>> connection = kombu.Connection ()
>>> state = {"beat": beat,
"connection": connection}
>>> consumer = mailbox (connection) .Node (hostname) .listen ()
>>> try:

while True:
connection.drain_events (timeout=1)
finally:
consumer.cancel ()

Example Client

>>> mailbox.cast ("reload_schedule") # cast is async.
>>> info = celerybeat.call ("connection_info", timeout=1l)

4.11.2 Mailbox

class kombu.pidbox.Mailbox (namespace, type=’direct’, connection=None, clock=None, accept=None,
serializer=None)

namespace = None
Name of application.

connection = None
Connection (if bound).

type = ‘direct’
Exchange type (usually direct, or fanout for broadcast).

exchange = None
mailbox exchange (init by constructor).

reply_ exchange = None
exchange to send replies to.

Node (hostname=None, state=None, channel=None, handlers=None)

call (destination, command, kwargs={}, timeout=None, callback=None, channel=None)
cast (destination, command, kwargs={})

abcast (command, kwargs={})

multi_call (command, kwargs={}, timeout=1, limit=None, callback=None, channel=None)
get_reply queue ()

get_queue (hostname)

4.11.3 Node

class kombu .pidbox.Node (hostname, state=None, channel=None, handlers=None, mailbox=None)

hostname = None
hostname of the node.

62 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

mailbox = None
the Mai Ibox this is a node for.

handlers = None
map of method name/handlers.

state = None
current context (passed on to handlers)

channel = None
current channel.

Consumer (channel=None, no_ack=True, accept=None, **options)

handler (fun)

listen (channel=None, callback=None)

dispatch (method, arguments=None, reply_to=None, ticket=None, **kwargs)
dispatch_from_message (body, message=None)

handle_call (method, arguments)

handle_cast (method, arguments)

handle (method, arguments={})

handle_message (body, message=None)

reply (data, exchange, routing_key, ticket, **kwargs)

4.12 kombu.exceptions

Exceptions.

exception kombu.exceptions.NotBoundError
Trying to call channel dependent method on unbound entity.

exception kombu.exceptions.MessageStateError
The message has already been acknowledged.

kombu.exceptions.TimeoutError
alias of timeout

exception kombu.exceptions.LimitExceeded
Limit exceeded.

exception kombu.exceptions.ConnectionLimitExceeded
Maximum number of simultaneous connections exceeded.

exception kombu.exceptions.ChannelLimitExceeded
Maximum number of simultaneous channels exceeded.

4.13 Logging - kombu.log
class kombu.log.LogMixin

annotate (rext)

4.12. kombu.exceptions

63

Kombu Documentation, Release 3.0.37

critical (*args, **kwargs)

debug (*args, **kwargs)

error (*args, **kwargs)

get_logger ()

get_loglevel (level)

info (*args, **kwargs)

is_enabled for (level)

log (severity, *args, **kwargs)

logger

logger_name

warn (*args, **kwargs)
kombu.log.get_loglevel (level)
kombu.log.setup_logging (loglevel=None, logfile=None)

4.14 kombu.connection

Broker connection and pools.

e Connection
e Pools

4.14.1 Connection

class kombu.connection.Connection (hostname="localhost’, userid=None, password=None, vir-
tual_host=None, port=None, insist=False, ssl=False, trans-
port=None, connect_timeout=5, transport_options=None,
login_method=None, uri_prefix=None, heartbeat=0,
failover_strategy="round-robin’, alternates=None, **kwargs)
A connection to the broker.

Parameters URL — Broker URL, or a list of URLs, e.g.

Connection ('amgp://guest:guest@localhost:5672//")
Connection ('amgp://foo;amgp://bar', failover_strategy='round-robin')
Connection('redis://', transport_options={
'visibility_timeout': 3000,
1)

import ssl
Connection('amgp://', login_method='EXTERNAL', ssl={

'ca_certs': '/etc/pki/tls/certs/something.crt',
'keyfile': '/etc/something/system.key',
'certfile': '/etc/something/system.cert',

'cert_reqgs': ssl.CERT_REQUIRED,

1)

64 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

SSL compatibility

SSL currently only works with the py-amqp, amqplib, and qpid transports. For other transports you can use
stunnel.

Parameters

* ss1 — Use SSL to connect to the server. Default is False. May not be supported by the
specified transport.

* transport — Default transport if not specified in the URL.

* connect_timeout — Timeout in seconds for connecting to the server. May not be sup-
ported by the specified transport.

* transport_options — A dict of additional connection arguments to pass to alternate
kombu channel implementations. Consult the transport documentation for available options.

* heartbeat — Heartbeat interval in int/float seconds. Note that if heartbeats are enabled
then the heartbeat_check () method must be called regularly, around once per second.

Note: The connection is established lazily when needed. If you need the connection to be established, then
force it by calling connect ():

>>> conn = Connection('amgp://")
>>> conn.connect ()

and always remember to close the connection:

>>> conn.release ()

Legacy options
These options have been replaced by the URL argument, but are still supported for backwards compatibility:
Parameters

* hostname — Host name/address. NOTE: You cannot specify both the URL argument and
use the hostname keyword argument at the same time.

* userid — Default user name if not provided in the URL.

* password — Default password if not provided in the URL.

* virtual_host — Default virtual host if not provided in the URL.
* port — Default port if not provided in the URL.

ChannelPool (limit=None, preload=None)
Pool of channels.

See ChannelPool.
Parameters
* limit — Maximum number of active channels. Default is no limit.
* preload — Number of channels to preload when the pool is created. Default is 0.

Example usage:

4.14.

kombu.connection 65

Kombu Documentation, Release 3.0.37

>>> connection = Connection('amgp://")

>>> pool = connection.ChannelPool (2)

>>> cl = pool.acquire()

>>> c2 = pool.acquire()

>>> c3 = pool.acquire()

>>> cl.release()

>>> c¢3 = pool.acquire()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

File "kombu/connection.py", line 354,
raise ChannellLimitExceeded (self.limit)
kombu.connection.ChannellLimitExceeded: 2

in acquire

Consumer (queues=None, channel=None, *args, **kwargs)
Create new kombu. Consumer instance using this connection.

Pool (limit=None, preload=None)
Pool of connections.

See ConnectionPool.
Parameters
¢ limit — Maximum number of active connections. Default is no limit.
* preload — Number of connections to preload when the pool is created. Default is O.

Example usage:

>>> connection = Connection('amgp://")

>>> pool = connection.Pool (2)

>>> cl = pool.acquire()

>>> c2 = pool.acquire()

>>> c3 = pool.acquire ()

>>> cl.release()

>>> ¢3 = pool.acquire()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

File "kombu/connection.py", line 354, in acquire
raise ConnectionlLimitExceeded(self.limit)
kombu.exceptions.ConnectionLimitExceeded: 2

Producer (channel=None, *args, **kwargs)
Create new kombu . Producer instance using this connection.

SimpleBuffer (name, no_ack=None, channel=None,
**kwargs)

Create new SimpleQueue using a channel from this connection.

queue_opts=None, exchange_opts=None,

Same as SimpleQueue (), but configured with buffering semantics. The resulting queue and exchange
will not be durable, also auto delete is enabled. Messages will be transient (not persistent), and acknowl-
edgements are disabled (no_ack).

SimpleQueue (name, no_ack=None,
*rkwargs)
Create new SimpleQueue, using a channel from this connection.

queue_opts=None, exchange_opts=None, channel=None,

If name is a string, a queue and exchange will be automatically created using that name as the name of the
queue and exchange, also it will be used as the default routing key.

Parameters

66 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

* name — Name of the queue/or a Queue.
* no_ack — Disable acknowledgements. Default is false.

* queue_opts — Additional keyword arguments passed to the constructor of the automat-
ically created Queue.

* exchange_opts — Additional keyword arguments passed to the constructor of the au-
tomatically created Exchange.

* channel - Custom channel to use. If not specified the connection default channel is
used.

as_uri (include_password=False, mask="**’, getfields=<operator.itemgetter object>)
Convert connection parameters to URL form.

autoretry (fun, channel=None, **ensure_options)
Decorator for functions supporting a channel keyword argument.

The resulting callable will retry calling the function if it raises connection or channel related errors. The
return value will be a tuple of (retval, last_created_channel).

If a channel is not provided, then one will be automatically acquired (remember to close it afterwards).
See ensure () for the full list of supported keyword arguments.

Example usage:

channel = connection.channel ()
try:

ret, channel = connection.autoretry(publish_messages, channel)
finally:

channel.close ()

channel ()
Create and return a new channel.

channel_errors
List of exceptions that may be raised by the channel.

clone (**kwargs)
Create a copy of the connection with the same connection settings.

close ()
Close the connection (if open).

collect (socket_timeout=None)

completes_cycle (retries)
Return true if the cycle is complete after number of retries.

connect ()
Establish connection to server immediately.

connect_timeout =5

connected
Return true if the connection has been established.

connection
The underlying connection object.

Warning: This instance is transport specific, so do not depend on the interface of this object.

4.14. kombu.connection 67

Kombu Documentation, Release 3.0.37

connection_errors
List of exceptions that may be raised by the connection.

create_transport ()

cycle = None
Iterator returning the next broker URL to try in the event of connection failure (initialized by
failover_strategy).

declared _entities =None
The cache of declared entities is per connection, in case the server loses data.

default_ channel
Default channel, created upon access and closed when the connection is closed.

Can be used for automatic channel handling when you only need one channel, and also it is the channel
implicitly used if a connection is passed instead of a channel, to functions that require a channel.

drain_events (**kwargs)
Wait for a single event from the server.

Parameters timeout — Timeout in seconds before we give up.
raises socket . timeout: if the timeout is exceeded.

ensure (obj, fun, errback=None, max_retries=None, interval_start=1, interval_step=1I, inter-

val_max=1, on_revive=None)
Ensure operation completes, regardless of any channel/connection errors occurring.

Will retry by establishing the connection, and reapplying the function.
Parameters
* fun — Method to apply.

* errback — Optional callback called each time the connection can’t be established. Ar-
guments provided are the exception raised and the interval that will be slept (exc,
interval).

* max_retries — Maximum number of times to retry. If this limit is exceeded the con-
nection error will be re-raised.

e interval_start — The number of seconds we start sleeping for.

e interval_step — How many seconds added to the interval for each retry.

* interval max — Maximum number of seconds to sleep between each retry.
Example

This is an example ensuring a publish operation:

>>> from kombu import Connection, Producer
>>> conn = Connection ('amgp://")
>>> producer = Producer (conn)
>>> def errback (exc, interval):

logger.error ('Error: %$r', exc, exc_info=1)

o

logger.info('Retry in %s seconds.', interval)

>>> publish = conn.ensure (producer, producer.publish,
. errback=errback, max_retries=3)
>>> publish({'hello': 'world'}, routing_key='dest')

68 Chapter 4. API Reference

http://docs.python.org/dev/library/socket.html#socket.timeout

Kombu Documentation, Release 3.0.37

ensure_connection (errback=None, max_retries=None, interval_start=2, interval_step=2, inter-

val_max=30, callback=None)
Ensure we have a connection to the server.

If not retry establishing the connection with the settings specified.
Parameters

* errback — Optional callback called each time the connection can’t be established. Ar-
guments provided are the exception raised and the interval that will be slept (exc,
interval).

* max_retries — Maximum number of times to retry. If this limit is exceeded the con-
nection error will be re-raised.

e interval_start — The number of seconds we start sleeping for.

e interval_step — How many seconds added to the interval for each retry.

e interval_max — Maximum number of seconds to sleep between each retry.
* callback — Optional callback that is called for every internal iteration (1 s)

failover_strategies = {‘round-robin’: <type ‘itertools.cycle’>, ‘shuffle’: <function shufflecycle at 0x7fb74808d050:
Map of failover strategy name to Callable

failover_strategy = ‘round-robin’
Strategy used to select new hosts when reconnecting after connection failure. One of “round-robin”,
“shuffle” or any custom iterator constantly yielding new URLS to try.

get_heartbeat_interval ()
get_manager (*args, **kwargs)

get_transport_cls ()
Get the currently used transport class.

heartbeat = None
Heartbeat value, currently only supported by the py-amgp transport.

heartbeat_check (rate=2)
Allow the transport to perform any periodic tasks required to make heartbeats work. This should be called
approximately every second.

If the current transport does not support heartbeats then this is a noop operation.

Parameters rate — Rate is how often the tick is called compared to the actual heartbeat value.
E.g. if the heartbeat is set to 3 seconds, and the tick is called every 3 / 2 seconds, then the
rate is 2. This value is currently unused by any transports.

host
The host as a host name/port pair separated by colon.

hostname = None

info ()
Get connection info.

is_evented
login_method = None

manager
Experimental manager that can be used to manage/monitor the broker instance. Not available for all
transports.

4.14. kombu.connection 69

Kombu Documentation, Release 3.0.37

maybe_close_channel (channel)
Close given channel, but ignore connection and channel errors.

maybe_switch_next ()
Switch to next URL given by the current failover strategy (if any).

password = None
port = None
gos_semantics_matches_spec

recoverable channel errors
List of channel related exceptions that can be automatically recovered from without re-establishing the
connection.

recoverable_connection_errors
List of connection related exceptions that can be recovered from, but where the connection must be closed
and re-established first.

register_ with_event_loop (loop)

release ()
Close the connection (if open).

revive (new_channel)
Revive connection after connection re-established.

ss1 =None
supports_heartbeats

switch (url)
Switch connection parameters to use a new URL (does not reconnect)

transport

transport_options = None
Additional transport specific options, passed on to the transport instance.

uri_prefix = None
userid = None

virtual host =°¢/

4.14.2 Pools

See also:

The shortcut methods Connection.Pool () and Connection.ChannelPool () is the recommended way to
instantiate these classes.

class kombu.connection.ConnectionPool (connection, limit=None, preload=None)

LimitExceeded = <class ‘kombu.exceptions.ConnectionLimitExceeded’>

acquire (block=False, timeout=None)
Acquire resource.

Parameters

¢ block — If the limit is exceeded, block until there is an available item.

70

Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

¢ timeout — Timeout to wait if bl ock is true. Default is None (forever).
Raises LimitExceeded - if block is false and the limit has been exceeded.
release (resource)

force_close_all ()
Close and remove all resources in the pool (also those in use).

Can be used to close resources from parent processes after fork (e.g. sockets/connections).

class kombu.connection.ChannelPool (connection, limit=None, preload=None)

LimitExceeded = <class ‘kombu.exceptions.ChannelLimitExceeded’>

acquire (block=False, timeout=None)
Acquire resource.

Parameters
¢ block — If the limit is exceeded, block until there is an available item.
¢ timeout — Timeout to wait if bl ock is true. Default is None (forever).
Raises LimitExceeded - if block is false and the limit has been exceeded.
release (resource)

force_close_all()
Close and remove all resources in the pool (also those in use).

Can be used to close resources from parent processes after fork (e.g. sockets/connections).

4.15 Message Objects - kombu.message

* kombu.transport.message I

4.15.1 kombu.transport.message

Message class.

class kombu.message .Message (channel, body=None, delivery_tag=None, content_type=None, con-
tent_encoding=None, delivery_info={}, properties=None, head-
ers=None, postencode=None, accept=None, **kwargs)
Base class for received messages.

exception MessageStateError
The message has already been acknowledged.

Message.accept

Message.ack ()
Acknowledge this message as being processed., This will remove the message from the queue.

Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

Message.ack_log_error (logger, errors)

4.15. Message Objects - kombu.message 71

Kombu Documentation, Release 3.0.37

Message.acknowledged
Set to true if the message has been acknowledged.

Message .body
Message.channel
Message.content_encoding
Message.content_type

Message.decode ()
Deserialize the message body, returning the original python structure sent by the publisher.

Message.delivery_info
Message.delivery_ tag
Message.errors = None
Message.headers

Message.payload
The decoded message body.

Message.properties

Message.reject (requeue=False)
Reject this message.

The message will be discarded by the server.

Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

Message.reject_log_error (logger, errors, requeue=False)

Message.requeue ()
Reject this message and put it back on the queue.

You must not use this method as a means of selecting messages to process.

Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

4.16 kombu.compression

Compression utilities.

* Encoding/decoding
* Registry

4.16.1 Encoding/decoding

kombu.compression.compress (body, content_type)
Compress text.

Parameters

* body — The text to compress.

72 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

* content_type — mime-type of compression method to use.

kombu.compression.decompress (body, content_type)
Decompress compressed text.

Parameters
* body — Previously compressed text to uncompress.

* content_type — mime-type of compression method used.

4.16.2 Registry
kombu.compression.encoders ()
Return a list of available compression methods.

kombu.compression.get_encoder (1)
Get encoder by alias name.

kombu.compression.get_decoder (1)
Get decoder by alias name.

kombu.compression.register (encoder, decoder, content_type, aliases=[])
Register new compression method.

Parameters
* encoder - Function used to compress text.
* decoder — Function used to decompress previously compressed text.
* content_type — The mime type this compression method identifies as.

* aliases — A list of names to associate with this compression method.

4.17 General Pools - kombu.pools

* kombu.pools I

4.17.1 kombu.pools

Public resource pools.

class kombu.pools.ProducerPool (connections, *args, **kwargs)

class Producer (channel, exchange=None, routing_key=None, serializer=None, auto_declare=None,

compression=None, on_return=None)
Message Producer.

Parameters
¢ channel — Connection or channel.
* exchange — Optional default exchange.

* routing_key — Optional default routing key.

4.17. General Pools - kombu.pools 73

Kombu Documentation, Release 3.0.37

e serializer — Default serializer. Default is “json”.
* compression — Default compression method. Default is no compression.

* auto_declare — Automatically declare the default exchange at instantiation. Default
is True.

* on_return — Callback to call for undeliverable messages, when the mandatory or im-
mediate arguments to publish () is used. This callback needs the following signature:
(exception, exchange, routing_key, message). Note that the producer needs to drain events
to use this feature.

auto_declare = True
channel

close ()
compression = None
connection

declare ()
Declare the exchange.

This happens automatically at instantiation if auto_declare is enabled.
exchange = None

maybe_declare (entity, retry=False, **retry_policy)
Declare the exchange if it hasn’t already been declared during this session.

on_return = None

publish (body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False,
priority=0, content_type=None, content_encoding=None, serializer=None, head-
ers=None, compression=None, exchange=None, retry=False, retry_policy=None, de-

clare=[], expiration=None, **properties)
Publish message to the specified exchange.

Parameters

* body — Message body.

* routing_key — Message routing key.

* delivery_mode — See delivery_mode.

* mandatory — Currently not supported.

* immediate — Currently not supported.

* priority — Message priority. A number between 0 and 9.

* content_type — Content type. Default is auto-detect.

* content_encoding — Content encoding. Default is auto-detect.

* serializer — Serializer to use. Default is auto-detect.

* compression — Compression method to use. Default is none.

* headers — Mapping of arbitrary headers to pass along with the message body.

* exchange — Override the exchange. Note that this exchange must have been declared.

* declare — Optional list of required entities that must have been declared before pub-
lishing the message. The entities will be declared using maybe_declare ().

* retry — Retry publishing, or declaring entities if the connection is lost.

* retry_policy — Retry configuration, this is the keywords supported by ensure ().

* expiration — A TTL in seconds can be specified per message. Default is no expira-
tion.

* xxproperties — Additional message properties, see AMQP spec.

release ()

74

Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

revive (channel)
Revive the producer after connection loss.

routing key=*¢

serializer = None
ProducerPool.close_resource (resource)
ProducerPool.create_producer ()
ProducerPool.new ()
ProducerPool .prepare (p)
ProducerPool.release (resource)
ProducerPool.setup ()

class kombu.pools.PoolGroup (limit=None)

create (resource, limit)
kombu.pools.register_group (group)
kombu.pools.get_limit ()
kombu.pools.set_limit (limit, force=False, reset_after=False)

kombu.pools.reset (*args, **kwargs)

4.18 kombu.abstract

Object utilities.

class kombu.abstract .MaybeChannelBound (*args, **kwargs)
Mixin for classes that can be bound to an AMQP channel.

bind (channel)
Create copy of the instance that is bound to a channel.

can_cache_declaration = False
Defines whether maybe_declare can skip declaring this entity twice.

channel
Current channel if the object is bound.

is_bound
Flag set if the channel is bound.

maybe_bind (channel)
Bind instance to channel if not already bound.

revive (channel)
Revive channel after the connection has been re-established.

Used by ensure ().

when_bound ()
Callback called when the class is bound.

4.18. kombu.abstract 75

Kombu Documentation, Release 3.0.37

4.19 Async Utilities - kombu.syn

4.19.1 kombu.syn

kombu.syn.detect_environment ()

4.20 Event Loop - kombu.async

* kombu.async I

4.20.1 kombu.async

Event loop implementation.

class kombu.async.Hub (timer=None)
Event loop object.

Parameters timer — Specify timer object.
ERR =24
READ =1
WRITE =4
add (fd, callback, flags, args=(), consolidate=False)
add_reader (fds, callback, *args)
add_writer (fds, callback, *args)
call_at (when, callback, *args)
call_later (delay, callback, *args)
call_repeatedly (delay, callback, *args)
call_soon (callback, *args)
close (*args)

create_loop (generator=<type ‘generator’>, sleep=<built-in function sleep>, min=<built-in func-
tion min>, next=<built-in function next>, Empty=<class ‘Queue.Empty’>, Stoplt-
eration=<type ‘exceptions.Stoplteration’>, KeyError=<type ‘exceptions.KeyError’>,
READ=1, WRITE=4, ERR=24)

fire_ timers (min_delay=1, max_delay=10, max_timers=10, propagate=())
loop
on_close = None

remove (fd)

76 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

remove_reader (fd)

remove_writer (fd)

repr_active ()

repr_events (events)

reset ()

run_forever ()

run_once ()

scheduler

stop ()
kombu.async.get_event_loop ()

kombu.async.set_event_loop (loop)

4.21 Event Loop Implementation - kombu.async.hub

* kombu.async.hub I

4.21.1 kombu.async.hub

Event loop implementation.

class kombu.async.hub.Hub (timer=None)
Event loop object.

Parameters timer — Specify timer object.

ERR =24
Flag set on error, and the fd should be read from asap.

READ =1
Flag set if reading from an fd will not block.

WRITE =4
Flag set if writing to an fd will not block.

add (fd, callback, flags, args=(), consolidate=False)
add_reader (fds, callback, *args)

add_writer (fds, callback, *args)

call_at (when, callback, *args)

call_later (delay, callback, *args)
call_repeatedly (delay, callback, *args)
call_soon (callback, *args)

close (*args)

4.21. Event Loop Implementation - kombu.async.hub 77

Kombu Documentation, Release 3.0.37

create_loop (generator=<type ‘generator’>, sleep=<built-in function sleep>, min=<built-in func-
tion min>, next=<built-in function next>, Empty=<class ‘Queue.Empty’>, Stoplt-
eration=<type ‘exceptions.Stoplteration’>, KeyError=<type ‘exceptions.KeyError’>,
READ=1, WRITE=4, ERR=24)

fire_ timers (min_delay=1, max_delay=10, max_timers=10, propagate=())
loop

on_close = None
List of callbacks to be called when the loop is exiting, applied with the hub instance as sole argument.

remove (fd)
remove_reader (fd)
remove_writer (fd)
repr_active ()
repr_events (events)
reset ()
run_forever ()
run_once ()
scheduler
stop ()
kombu.async.hub.get_event_loop ()

kombu.async.hub.set_event_loop (loop)

4.22 Semaphores - kombu.async.semaphore

* kombu.async.semaphore I

4.22.1 kombu.async.semaphore

Semaphores and concurrency primitives.

class kombu.async. semaphore .DummyLock
Pretending to be a lock.

class kombu.async.semaphore.LaxBoundedSemaphore (value)
Asynchronous Bounded Semaphore.

Lax means that the value will stay within the specified range even if released more times than it was acquired.

Example:

>>> from future import print_statement as printf

7~ ignore: just fooling stupid pyflakes

>>> x = LaxBoundedSemaphore (2)

78 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

>>> x.acquire (printf, 'HELLO 1"')
HELLO 1

>>> x.acquire (printf, 'HELLO 2'")
HELLO 2

>>> x.acquire (printf, 'HELLO 3')
>>> x._waiters # private, do not acc
[print, ('HELLO 3',)]

5 direct

>>> x.release()
HELLO 3

acquire (callback, *partial_args)
Acquire semaphore, applying callback if the resource is available.

Parameters
* callback - The callback to apply.
* xpartial_args — partial arguments to callback.

clear ()
Reset the semaphore, which also wipes out any waiting callbacks.

grow (n=1)
Change the size of the semaphore to accept more users.

release ()
Release semaphore.

If there are any waiters this will apply the first waiter that is waiting for the resource (FIFO order).

shrink (n=1)
Change the size of the semaphore to accept less users.

4.23 Timer - kombu.async.timer

* kombu.async.timer I

4.23.1 kombu.async.timer

Timer scheduling Python callbacks.

class kombu.async.timer .Entry (fun, args=None, kwargs=None)

args
cancel ()
cancelled
fun

kwargs

4.23. Timer - kombu.async.timer

79

Kombu Documentation, Release 3.0.37

tref

class kombu.async.timer.Timer (max_interval=None, on_error=None, **kwargs)
ETA scheduler.

class Entry (fun, args=None, kwargs=None)

args

cancel ()

cancelled

fun

kwargs

tref
Timer.apply_entry (entry)
Timer.call_after (secs, fun, args=(), kwargs={}, priority=0)
Timer.call_at (eta, fun, args=(), kwargs={}, priority=0)
Timer.call_repeatedly (secs, fun, args=(), kwargs={}, priority=0)
Timer.cancel (tref)
Timer.clear ()
Timer.enter_after (secs, entry, priority=0, time=<built-in function time>)

Timer.enter_at (entry, eta=None, priority=0, time=<built-in function time>)
Enter function into the scheduler.

Parameters
* entry - Item to enter.
* eta — Scheduled time as a datetime.datet ime object.
* priority — Unused.
Timer.handle_error (exc_info)
Timer.on_error = None

Timer.queue
Snapshot of underlying datastructure.

Timer.schedule
Timer.stop ()

kombu.async.timer.to_timestamp (d, default_timezone=<UTC>)

4.24 Debugging Utils - kombu.async.debug

kombu.async.debug.callback_for (i, fd, flag, *default)
kombu.async.debug.repr_active (h)
kombu.async.debug.repr_events (h, events)

kombu.async.debug.repr_£flag (flag)

80 Chapter 4. API Reference

http://docs.python.org/dev/library/datetime.html#datetime.datetime

Kombu Documentation, Release 3.0.37

kombu.async.debug.repr_readers (h)

kombu.async.debug.repr_writers (h)

4.25 kombu.transport

Built-in transports.

e Data
e Functions

4.25.1 Data

kombu.transport .DEFAULT TRANSPORT
Default transport used when no transport specified.

kombu.transport . TRANSPORT ALIASES
Mapping of transport aliases/class names.

4.25.2 Functions

kombu.transport.get_transport_cls (transport=None)
Get transport class by name.

The transport string is the full path to a transport class, e.g.:

"kombu.transport.pyamgp:Transport"

FEY)

If the name does not include ”.” (is not fully qualified), the alias table will be consulted.

kombu.transport.resolve_transport (transport=None)

4.26 kombu.transport.pyamqp

pure python amqp transport.

» Transport
e Connection
e Channel

* Message

4.26.1 Transport

class kombu.transport.pyamgp.Transport (client, default port=None, default_ssl_port=None,
**hwargs)

4.25. kombu.transport 81

Kombu Documentation, Release 3.0.37

class Connection (host="localhost’, userid="guest’, password="guest’, login_method="AMQPLAIN’,

login_response=None, virtual_host="/", locale="en_US"’, client_properties=None,
ssl=False, connect_timeout=None, channel_max=None, frame_max=None,
heartbeat=0, on_blocked=None, on_unblocked=None, confirm_publish=False,
**kwargs)

class Channel (connection, channel_id=None, auto_decode=True)

class Message (channel, msg, **kwargs)

Transport.Connection.Channel .message_to_python (raw_message)

Transport.Connection.Channel .prepare_message (body,

Transport

Transport

Convert encoded message body back to a Python value.

priority=None,
content_type=None, con-
tent_encoding=None, head-
ers=None, properties=None,
_Message=<class

‘amgp.basic_message.Message’>)
Prepares message so that it can be sent using this transport.

.channel_errors = (<class ‘amqp.exceptions.ChannelError’>,)

.close_connection (connection)

Close the AMQP broker connection.

Transport

Transport

Transport.
Transport.
Transport.

Transport.

Transport

Transport.
Transport.

Transport.

.connection_errors = (<class ‘amqp.exceptions.ConnectionError’>, <class ‘socket.error’>, <type ‘excej

.create_channel (connection)
default_connection_params
default_port =5672
default_ssl_port =5671
drain_events (connection, **kwargs)
.driver_name = ‘py-amqp’

driver_ type = ‘amqp’
driver_version ()

establish_ connection ()

Establish connection to the AMQP broker.

Transport.
Transport.
Transport.

Transport.

Transport

Transport.
Transport.
Transport.

Transport.

Transport

get_heartbeat_interval (connection)
get_manager (*args, **kwargs)
heartbeat_check (connection, rate=2)
gos_semantics_matches_spec (connection)

.recoverable_channel_errors = (<class ‘amqp.exceptions.RecoverableChannelError’>,)

register_ with_event_1loop (connection, loop)
supports_ev = True
supports_heartbeats = True

.verify connection (connection)

82

Chapter 4. API Reference

recoverable_connection_errors = (<class ‘amqp.exceptions.RecoverableConnectionError’>, <clas:

Kombu Documentation, Release 3.0.37

4.26.2 Connection

class kombu.transport .pyamgp.Connection (host="localhost’, userid="guest’, pass-
word="guest’, login_method="AMQPLAIN’,
login_response=None, virtual_host="/", lo-
cale="en_US’, client_properties=None, ssl=False,
connect_timeout=None, channel_max=None,
frame_max=None, heartbeat=0, on_blocked=None,
on_unblocked=None, confirm_publish=False,
**kwargs)

class Channel (connection, channel_id=None, auto_decode=True)

Consumer (*args, **kwargs)

class Message (channel, msg, **kwargs)

exception MessageStateError
The message has already been acknowledged.

args
message
Connection.Channel.Message.accept

Connection.Channel.Message.ack ()
Acknowledge this message as being processed., This will remove the message from the queue.
Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

Connection.Channel .Message.ack_ log_error (logger, errors)

Connection.Channel.Message.acknowledged
Set to true if the message has been acknowledged.

Connection.Channel.Message.body
Connection.Channel.Message.channel
Connection.Channel.Message.content_encoding
Connection.Channel.Message.content_type

Connection.Channel .Message.decode ()
Deserialize the message body, returning the original python structure sent by the publisher.

Connection.Channel.Message.delivery_info
Connection.Channel.Message.delivery tag
Connection.Channel.Message.errors = None

Connection.Channel .Message.headers

Connection.Channel.Message.payload
The decoded message body.

Connection.Channel.Message.properties

Connection.Channel .Message.reject (requeue=False)
Reject this message.

4.26. kombu.transport.pyamqp 83

Kombu Documentation, Release 3.0.37

The message will be discarded by the server.
Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

Connection.Channel.Message.reject_log_error (logger, errors, re-
queue=False)

Connection.Channel .Message.requeue ()
Reject this message and put it back on the queue.

You must not use this method as a means of selecting messages to process.
Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

Connection.Channel.Producer (*args, **kwargs)

Connection.Channel.after_reply message_received (queue)
reply queue semantics: can be used to delete the queue after transient reply message received.

Connection.Channel .basic_ack (delivery_tag, multiple=False)
Acknowledge one or more messages

This method acknowledges one or more messages delivered via the Deliver or Get-Ok methods. The
client can ask to confirm a single message or a set of messages up to and including a specific message.
PARAMETERS: delivery_tag: longlong

server-assigned delivery tag

The server-assigned and channel-specific delivery tag

RULE:
The delivery tag is valid only within the channel from which the message was received.
Le. a client MUST NOT receive a message on one channel and then acknowledge it on
another.

RULE:
The server MUST NOT use a zero value for delivery tags. Zero is reserved for client
use, meaning “all messages so far received”.

multiple: boolean
acknowledge multiple messages

If set to True, the delivery tag is treated as “up to and including”, so that the client can
acknowledge multiple messages with a single method. If set to False, the delivery tag refers
to a single message. If the multiple field is True, and the delivery tag is zero, tells the server
to acknowledge all outstanding mesages.

RULE:
The server MUST validate that a non-zero delivery- tag refers to an delivered message,
and raise a channel exception if this is not the case.

Connection.Channel .basic_cancel (consumer_tag, nowait=False)
End a queue consumer

This method cancels a consumer. This does not affect already delivered messages, but it does mean
the server will not send any more messages for that consumer. The client may receive an abitrary
number of messages in between sending the cancel method and receiving the cancel-ok reply.

RULE:
If the queue no longer exists when the client sends a cancel command, or the consumer has
been cancelled for other reasons, this command has no effect.

PARAMETERS: consumer_tag: shortstr

84 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

consumer tag
Identifier for the consumer, valid within the current connection.

RULE:
The consumer tag is valid only within the channel from which the consumer was cre-
ated. Le. a client MUST NOT create a consumer in one channel and then use it in
another.
nowait: boolean
do not send a reply method

If set, the server will not respond to the method. The client should not wait for a reply
method. If the server could not complete the method it will raise a channel or connection

exception.
Connection.Channel .basic_consume (queue=’‘, consumer_tag="‘, no_local=False,
no_ack=False, exclusive=False, nowait=Fualse,
callback=None, arguments=None,

on_cancel=None)
Start a queue consumer

This method asks the server to start a “consumer”, which is a transient request for messages from a
specific queue. Consumers last as long as the channel they were created on, or until the client cancels
them.

RULE:
The server SHOULD support at least 16 consumers per queue, unless the queue was declared
as private, and ideally, impose no limit except as defined by available resources.

PARAMETERS: queue: shortstr
Specifies the name of the queue to consume from. If the queue name is null, refers to the
current queue for the channel, which is the last declared queue.

RULE:
If the client did not previously declare a queue, and the queue name in this method
is empty, the server MUST raise a connection exception with reply code 530 (not al-
lowed).

consumer_tag: shortstr

Specifies the identifier for the consumer. The consumer tag is local to a connection, so two

clients can use the same consumer tags. If this field is empty the server will generate a unique

tag.

RULE:
The tag MUST NOT refer to an existing consumer. If the client attempts to create two
consumers with the same non-empty tag the server MUST raise a connection exception
with reply code 530 (not allowed).
no_local: boolean
do not deliver own messages

If the no-local field is set the server will not send messages to the client that published them.
no_ack: boolean
no acknowledgement needed

If this field is set the server does not expect acknowledgments for messages. That is, when
a message is delivered to the client the server automatically and silently acknowledges it on
behalf of the client. This functionality increases performance but at the cost of reliability.
Messages can get lost if a client dies before it can deliver them to the application.

exclusive: boolean
request exclusive access

4.26.

kombu.transport.pyamqp 85

Kombu Documentation, Release 3.0.37

Request exclusive consumer access, meaning only this consumer can access the queue.

RULE:
If the server cannot grant exclusive access to the queue when asked, - because there
are other consumers active - it MUST raise a channel exception with return code 403
(access refused).
nowait: boolean
do not send a reply method

If set, the server will not respond to the method. The client should not wait for a reply
method. If the server could not complete the method it will raise a channel or connection
exception.

callback: Python callable
function/method called with each delivered message

For each message delivered by the broker, the callable will be called with a Message object
as the single argument. If no callable is specified, messages are quietly discarded, no_ack
should probably be set to True in that case.

Connection.Channel .basic_get (queue="*, no_ack=False)
Direct access to a queue

This method provides a direct access to the messages in a queue using a synchronous dialogue that
is designed for specific types of application where synchronous functionality is more important than
performance.
PARAMETERS: queue: shortstr
Specifies the name of the queue to consume from. If the queue name is null, refers to the
current queue for the channel, which is the last declared queue.

RULE:
If the client did not previously declare a queue, and the queue name in this method
is empty, the server MUST raise a connection exception with reply code 530 (not al-
lowed).
no_ack: boolean
no acknowledgement needed

If this field is set the server does not expect acknowledgments for messages. That is, when

a message is delivered to the client the server automatically and silently acknowledges it on

behalf of the client. This functionality increases performance but at the cost of reliability.

Messages can get lost if a client dies before it can deliver them to the application.
Non-blocking, returns a message object, or None.

Connection.Channel .basic_publish (msg, exchange=’‘, routing_key="‘, manda-

tory=False, immediate=False)
Publish a message

This method publishes a message to a specific exchange. The message will be routed to queues as
defined by the exchange configuration and distributed to any active consumers when the transaction,
if any, is committed.
PARAMETERS: exchange: shortstr
Specifies the name of the exchange to publish to. The exchange name can be empty, meaning
the default exchange. If the exchange name is specified, and that exchange does not exist,
the server will raise a channel exception.

RULE:
The server MUST accept a blank exchange name to mean the default exchange.
RULE:
The exchange MAY refuse basic content in which case it MUST raise a channel excep-
tion with reply code 540 (not implemented).

86 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

routing_key: shortstr
Message routing key

Specifies the routing key for the message. The routing key is used for routing messages
depending on the exchange configuration.

mandatory: boolean
indicate mandatory routing

This flag tells the server how to react if the message cannot be routed to a queue. If this flag
is True, the server will return an unroutable message with a Return method. If this flag is
False, the server silently drops the message.

RULE:
The server SHOULD implement the mandatory flag.
immediate: boolean
request immediate delivery

This flag tells the server how to react if the message cannot be routed to a queue consumer
immediately. If this flag is set, the server will return an undeliverable message with a Return
method. If this flag is zero, the server will queue the message, but with no guarantee that it
will ever be consumed.

RULE:
The server SHOULD implement the immediate flag.

Connection.Channel .basic_publish_confirm (*args, **kwargs)

Connection.Channel .basic_qos (prefetch_size, prefetch_count, a_global)
Specify quality of service

This method requests a specific quality of service. The QoS can be specified for the current channel
or for all channels on the connection. The particular properties and semantics of a qos method always
depend on the content class semantics. Though the qos method could in principle apply to both peers,
it is currently meaningful only for the server.
PARAMETERS: prefetch_size: long

prefetch window in octets

The client can request that messages be sent in advance so that when the client finishes
processing a message, the following message is already held locally, rather than needing to
be sent down the channel. Prefetching gives a performance improvement. This field specifies
the prefetch window size in octets. The server will send a message in advance if it is equal
to or smaller in size than the available prefetch size (and also falls into other prefetch limits).
May be set to zero, meaning “no specific limit”, although other prefetch limits may still
apply. The prefetch-size is ignored if the no-ack option is set.

RULE:
The server MUST ignore this setting when the client is not processing any messages -
i.e. the prefetch size does not limit the transfer of single messages to a client, only the
sending in advance of more messages while the client still has one or more unacknowl-
edged messages.
prefetch_count: short
prefetch window in messages

Specifies a prefetch window in terms of whole messages. This field may be used in combi-
nation with the prefetch-size field; a message will only be sent in advance if both prefetch
windows (and those at the channel and connection level) allow it. The prefetch- count is
ignored if the no-ack option is set.

RULE:

4.26. kombu.transport.pyamqp 87

Kombu Documentation, Release 3.0.37

The server MAY send less data in advance than allowed by the client’s specified prefetch
windows but it MUST NOT send more.
a_global: boolean
apply to entire connection

By default the QoS settings apply to the current channel only. If this field is set, they are
applied to the entire connection.

Connection.Channel .basic_recover (requeue=False)
Redeliver unacknowledged messages

This method asks the broker to redeliver all unacknowledged messages on a specified channel. Zero
or more messages may be redelivered. This method is only allowed on non-transacted channels.

RULE:
The server MUST set the redelivered flag on all messages that are resent.
RULE:
The server MUST raise a channel exception if this is called on a transacted channel.

PARAMETERS: requeue: boolean
requeue the message

If this field is False, the message will be redelivered to the original recipient. If this field
is True, the server will attempt to requeue the message, potentially then delivering it to an
alternative subscriber.

Connection.Channel .basic_recover_async (requeue=False)

Connection.Channel .basic_reject (delivery_tag, requeue)
Reject an incoming message

This method allows a client to reject a message. It can be used to interrupt and cancel large incoming
messages, or return untreatable messages to their original queue.

RULE:
The server SHOULD be capable of accepting and process the Reject method while sending
message content with a Deliver or Get-Ok method. L.e. the server should read and process
incoming methods while sending output frames. To cancel a partially-send content, the server
sends a content body frame of size 1 (i.e. with no data except the frame-end octet).

RULE:
The server SHOULD interpret this method as meaning that the client is unable to process the
message at this time.

RULE:
A client MUST NOT use this method as a means of selecting messages to process. A rejected
message MAY be discarded or dead-lettered, not necessarily passed to another client.

PARAMETERS: delivery_tag: longlong
server-assigned delivery tag

The server-assigned and channel-specific delivery tag

RULE:
The delivery tag is valid only within the channel from which the message was received.
Le. aclient MUST NOT receive a message on one channel and then acknowledge it on
another.

RULE:
The server MUST NOT use a zero value for delivery tags. Zero is reserved for client
use, meaning “all messages so far received”.

requeue: boolean
requeue the message

88 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

If this field is False, the message will be discarded. If this field is True, the server will attempt
to requeue the message.

RULE:
The server MUST NOT deliver the message to the same client within the context of the
current channel. The recommended strategy is to attempt to deliver the message to an
alternative consumer, and if that is not possible, to move the message to a dead-letter
queue. The server MAY use more sophisticated tracking to hold the message on the
queue and redeliver it to the same client at a later stage.

Connection.Channel.close (reply_code=0, reply_text=""*, method_sig=(0, 0))
Request a channel close

This method indicates that the sender wants to close the channel. This may be due to internal condi-
tions (e.g. a forced shut-down) or due to an error handling a specific method, i.e. an exception. When
a close is due to an exception, the sender provides the class and method id of the method which caused
the exception.

RULE:
After sending this method any received method except Channel.Close-OK MUST be dis-
carded.

RULE:
The peer sending this method MAY use a counter or timeout to detect failure of the other peer
to respond correctly with Channel.Close-OK..

PARAMETERS: reply_code: short
The reply code. The AMQ reply codes are defined in AMQ RFC 011.
reply_text: shortstr
The localised reply text. This text can be logged as an aid to resolving issues.
class_id: short
failing method class

When the close is provoked by a method exception, this is the class of the method.
method_id: short
failing method ID

When the close is provoked by a method exception, this is the ID of the method.

Connection.Channel.confirm_select (nowait=False)
Enables publisher confirms for this channel (an RabbitMQ extension).

Can now be used if the channel is in transactional mode.
Parameters nowait — If set, the server will not respond to the method. The client should
not wait for a reply method. If the server could not complete the method it will raise a
channel or connection exception.

Connection.Channel.dispatch_method (method_sig, args, content)

Connection.Channel.exchange_bind (destination, source="", routing_key="",

nowait=False, arguments=None)
This method binds an exchange to an exchange.

RULE:
A server MUST allow and ignore duplicate bindings - that is, two or more bind methods for
a specific exchanges, with identical arguments - without treating these as an error.

RULE:
A server MUST allow cycles of exchange bindings to be created including allowing an ex-
change to be bound to itself.

RULE:

4.26.

kombu.transport.pyamqp 89

Kombu Documentation, Release 3.0.37

A server MUST not deliver the same message more than once to a destination exchange,
even if the topology of exchanges and bindings results in multiple (even infinite) routes to
that exchange.

PARAMETERS: reserved-1: short

destination: shortstr
Specifies the name of the destination exchange to bind.

RULE:
A client MUST NOT be allowed to bind a non- existent destination exchange.
RULE:
The server MUST accept a blank exchange name to mean the default exchange.
source: shortstr
Specifies the name of the source exchange to bind.

RULE:
A client MUST NOT be allowed to bind a non- existent source exchange.
RULE:
The server MUST accept a blank exchange name to mean the default exchange.
routing-key: shortstr
Specifies the routing key for the binding. The routing key is used for routing messages
depending on the exchange configuration. Not all exchanges use a routing key - refer to the
specific exchange documentation.
no-wait: bit

arguments: table
A set of arguments for the binding. The syntax and semantics of these arguments depends
on the exchange class.

Connection.Channel.exchange_declare (exchange, type, passive=False, durable=False,
auto_delete=True, nowait=False, argu-

) ments=None)
Declare exchange, create if needed

This method creates an exchange if it does not already exist, and if the exchange exists, verifies that it
is of the correct and expected class.

RULE:
The server SHOULD support a minimum of 16 exchanges per virtual host and ideally, impose
no limit except as defined by available resources.

PARAMETERS: exchange: shortstr
RULE:
Exchange names starting with “amq.” are reserved for predeclared and standardised
exchanges. If the client attempts to create an exchange starting with “amq.”, the server
MUST raise a channel exception with reply code 403 (access refused).
type: shortstr
exchange type

Each exchange belongs to one of a set of exchange types implemented by the server. The
exchange types define the functionality of the exchange - i.e. how messages are routed
through it. It is not valid or meaningful to attempt to change the type of an existing exchange.

RULE:
If the exchange already exists with a different type, the server MUST raise a connection
exception with a reply code 507 (not allowed).

RULE:
If the server does not support the requested exchange type it MUST raise a connection
exception with a reply code 503 (command invalid).

90 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

passive: boolean
do not create exchange

If set, the server will not create the exchange. The client can use this to check whether an
exchange exists without modifying the server state.

RULE:
If set, and the exchange does not already exist, the server MUST raise a channel excep-
tion with reply code 404 (not found).
durable: boolean
request a durable exchange

If set when creating a new exchange, the exchange will be marked as durable. Durable ex-
changes remain active when a server restarts. Non-durable exchanges (transient exchanges)
are purged if/when a server restarts.

RULE:
The server MUST support both durable and transient exchanges.
RULE:
The server MUST ignore the durable field if the exchange already exists.
auto_delete: boolean
auto-delete when unused

If set, the exchange is deleted when all queues have finished using it.

RULE:
The server SHOULD allow for a reasonable delay between the point when it determines
that an exchange is not being used (or no longer used), and the point when it deletes
the exchange. At the least it must allow a client to create an exchange and then bind a
queue to it, with a small but non-zero delay between these two actions.

RULE:
The server MUST ignore the auto-delete field if the exchange already exists.

nowait: boolean
do not send a reply method

If set, the server will not respond to the method. The client should not wait for a reply
method. If the server could not complete the method it will raise a channel or connection
exception.

arguments: table
arguments for declaration

A set of arguments for the declaration. The syntax and semantics of these arguments depends
on the server implementation. This field is ignored if passive is True.

Connection.Channel.exchange_delete (exchange, if_unused=False, nowait=False)
Delete an exchange

This method deletes an exchange. When an exchange is deleted all queue bindings on the exchange
are cancelled.
PARAMETERS: exchange: shortstr
RULE:
The exchange MUST exist. Attempting to delete a non-existing exchange causes a
channel exception.
if_unused: boolean
delete only if unused

If set, the server will only delete the exchange if it has no queue bindings. If the exchange
has queue bindings the server does not delete it but raises a channel exception instead.

RULE:

4.26.

kombu.transport.pyamqp 91

Kombu Documentation, Release 3.0.37

If set, the server SHOULD delete the exchange but only if it has no queue bindings.
RULE:
If set, the server SHOULD raise a channel exception if the exchange is in use.
nowait: boolean
do not send a reply method

If set, the server will not respond to the method. The client should not wait for a reply
method. If the server could not complete the method it will raise a channel or connection
exception.

¢

Connection.Channel.exchange_ unbind (destination, source="", routing_key="",

nowait=False, arguments=None)
This method unbinds an exchange from an exchange.

RULE:
If a unbind fails, the server MUST raise a connection exception.

PARAMETERS: reserved-1: short

destination: shortstr
Specifies the name of the destination exchange to unbind.

RULE:
The client MUST NOT attempt to unbind an exchange that does not exist from an
exchange.
RULE:
The server MUST accept a blank exchange name to mean the default exchange.
source: shortstr
Specifies the name of the source exchange to unbind.

RULE:
The client MUST NOT attempt to unbind an exchange from an exchange that does not
exist.
RULE:
The server MUST accept a blank exchange name to mean the default exchange.
routing-key: shortstr
Specifies the routing key of the binding to unbind.
no-wait: bit

arguments: table
Specifies the arguments of the binding to unbind.

Connection.Channel. flow (active)

Enable/disable flow from peer

This method asks the peer to pause or restart the flow of content data. This is a simple flow-control
mechanism that a peer can use to avoid oveflowing its queues or otherwise finding itself receiving
more messages than it can process. Note that this method is not intended for window control. The
peer that receives a request to stop sending content should finish sending the current content, if any,
and then wait until it receives a Flow restart method.

RULE:
When a new channel is opened, it is active. Some applications assume that channels are
inactive until started. To emulate this behaviour a client MAY open the channel, then pause
it.

RULE:
When sending content data in multiple frames, a peer SHOULD monitor the channel for
incoming methods and respond to a Channel.Flow as rapidly as possible.

RULE:

92

Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

A peer MAY use the Channel.Flow method to throttle incoming content data for internal
reasons, for example, when exchangeing data over a slower connection.

RULE:
The peer that requests a Channel.Flow method MAY disconnect and/or ban a peer that does
not respect the request.

PARAMETERS: active: boolean
start/stop content frames

If True, the peer starts sending content frames. If False, the peer stops sending content
frames.

Connection.Channel.get_bindings ()

Connection.Channel .message_to_python (raw_message)
Convert encoded message body back to a Python value.

Connection.Channel.no_ack_consumers = None

Connection.Channel .prepare_message (body, priority=None, content_type=None,
content_encoding=None, headers=None,
properties=None, _Message=<class

‘amgp.basic_message.Message’>)
Prepares message so that it can be sent using this transport.

Connection.Channel.queue_bind (queue, exchange="", routing_key=""“, nowait=False, ar-

guments=None)
Bind queue to an exchange

This method binds a queue to an exchange. Until a queue is bound it will not receive any messages. In
a classic messaging model, store-and-forward queues are bound to a dest exchange and subscription
queues are bound to a dest_wild exchange.

RULE:
A server MUST allow ignore duplicate bindings - that is, two or more bind methods for a
specific queue, with identical arguments - without treating these as an error.

RULE:
If a bind fails, the server MUST raise a connection exception.

RULE:
The server MUST NOT allow a durable queue to bind to a transient exchange. If the client
attempts this the server MUST raise a channel exception.

RULE:
Bindings for durable queues are automatically durable and the server SHOULD restore such
bindings after a server restart.

RULE:
The server SHOULD support at least 4 bindings per queue, and ideally, impose no limit
except as defined by available resources.

PARAMETERS: queue: shortstr
Specifies the name of the queue to bind. If the queue name is empty, refers to the current
queue for the channel, which is the last declared queue.

RULE:
If the client did not previously declare a queue, and the queue name in this method
is empty, the server MUST raise a connection exception with reply code 530 (not al-
lowed).

RULE:
If the queue does not exist the server MUST raise a channel exception with reply code
404 (not found).

exchange: shortstr

4.26.

kombu.transport.pyamqp 93

Kombu Documentation, Release 3.0.37

The name of the exchange to bind to.

RULE:
If the exchange does not exist the server MUST raise a channel exception with reply
code 404 (not found).
routing_key: shortstr
message routing key

Specifies the routing key for the binding. The routing key is used for routing messages

depending on the exchange configuration. Not all exchanges use a routing key - refer to the

specific exchange documentation. If the routing key is empty and the queue name is empty,

the routing key will be the current queue for the channel, which is the last declared queue.
nowait: boolean

do not send a reply method

If set, the server will not respond to the method. The client should not wait for a reply
method. If the server could not complete the method it will raise a channel or connection
exception.

arguments: table
arguments for binding

A set of arguments for the binding. The syntax and semantics of these arguments depends
on the exchange class.

Connection.Channel.queue_declare (queue="‘, passive=False, durable=False, exclu-
sive=False, auto_delete=True, nowait=False, ar-

guments=None)
Declare queue, create if needed

This method creates or checks a queue. When creating a new queue the client can specify various
properties that control the durability of the queue and its contents, and the level of sharing for the
queue.

RULE:
The server MUST create a default binding for a newly- created queue to the default exchange,
which is an exchange of type ‘direct’.

RULE:
The server SHOULD support a minimum of 256 queues per virtual host and ideally, impose
no limit except as defined by available resources.

PARAMETERS: queue: shortstr

RULE:
The queue name MAY be empty, in which case the server MUST create a new queue
with a unique generated name and return this to the client in the Declare-Ok method.

RULE:
Queue names starting with “amq.” are reserved for predeclared and standardised server
queues. If the queue name starts with “amq.” and the passive option is False, the server
MUST raise a connection exception with reply code 403 (access refused).

passive: boolean
do not create queue

If set, the server will not create the queue. The client can use this to check whether a queue
exists without modifying the server state.

RULE:
If set, and the queue does not already exist, the server MUST respond with a reply code
404 (not found) and raise a channel exception.
durable: boolean
request a durable queue

94 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

If set when creating a new queue, the queue will be marked as durable. Durable queues re-
main active when a server restarts. Non-durable queues (transient queues) are purged if/when
a server restarts. Note that durable queues do not necessarily hold persistent messages, al-
though it does not make sense to send persistent messages to a transient queue.

RULE:
The server MUST recreate the durable queue after a restart.
RULE:
The server MUST support both durable and transient queues.
RULE:
The server MUST ignore the durable field if the queue already exists.
exclusive: boolean
request an exclusive queue

Exclusive queues may only be consumed from by the current connection. Setting the ‘exclu-
sive’ flag always implies ‘auto-delete’.

RULE:
The server MUST support both exclusive (private) and non-exclusive (shared) queues.
RULE:
The server MUST raise a channel exception if ‘exclusive’ is specified and the queue
already exists and is owned by a different connection.
auto_delete: boolean
auto-delete queue when unused

If set, the queue is deleted when all consumers have finished using it. Last consumer can be
cancelled either explicitly or because its channel is closed. If there was no consumer ever on
the queue, it won’t be deleted.

RULE:
The server SHOULD allow for a reasonable delay between the point when it determines
that a queue is not being used (or no longer used), and the point when it deletes the
queue. At the least it must allow a client to create a queue and then create a consumer
to read from it, with a small but non-zero delay between these two actions. The server
should equally allow for clients that may be disconnected prematurely, and wish to
re- consume from the same queue without losing messages. We would recommend a
configurable timeout, with a suitable default value being one minute.

RULE:
The server MUST ignore the auto-delete field if the queue already exists.

nowait: boolean
do not send a reply method

If set, the server will not respond to the method. The client should not wait for a reply
method. If the server could not complete the method it will raise a channel or connection
exception.

arguments: table
arguments for declaration

A set of arguments for the declaration. The syntax and semantics of these arguments depends
on the server implementation. This field is ignored if passive is True.
Returns a tuple containing 3 items: the name of the queue (essential for automatically-named
queues) message count consumer count

Connection.Channel.queue_delete (queue="", if_unused=False, if _empty=False,

nowait=False)
Delete a queue

This method deletes a queue. When a queue is deleted any pending messages are sent to a dead-letter
queue if this is defined in the server configuration, and all consumers on the queue are cancelled.

4.26. kombu.transport.pyamqp 95

Kombu Documentation, Release 3.0.37

RULE:
The server SHOULD use a dead-letter queue to hold messages that were pending on a deleted
queue, and MAY provide facilities for a system administrator to move these messages back
to an active queue.

PARAMETERS: queue: shortstr
Specifies the name of the queue to delete. If the queue name is empty, refers to the current
queue for the channel, which is the last declared queue.

RULE:
If the client did not previously declare a queue, and the queue name in this method
is empty, the server MUST raise a connection exception with reply code 530 (not al-
lowed).

RULE:
The queue must exist. Attempting to delete a non- existing queue causes a channel
exception.

if _unused: boolean
delete only if unused

If set, the server will only delete the queue if it has no consumers. If the queue has consumers
the server does does not delete it but raises a channel exception instead.

RULE:
The server MUST respect the if-unused flag when deleting a queue.
if_empty: boolean
delete only if empty

If set, the server will only delete the queue if it has no messages. If the queue is not empty
the server raises a channel exception.

nowait: boolean
do not send a reply method

If set, the server will not respond to the method. The client should not wait for a reply
method. If the server could not complete the method it will raise a channel or connection
exception.

Connection.Channel.queue_purge (queue="", nowait=False)
Purge a queue

This method removes all messages from a queue. It does not cancel consumers. Purged messages are
deleted without any formal “undo” mechanism.

RULE:
A call to purge MUST result in an empty queue.

RULE:
On transacted channels the server MUST not purge messages that have already been sent to
a client but not yet acknowledged.

RULE:
The server MAY implement a purge queue or log that allows system administrators to recover
accidentally-purged messages. The server SHOULD NOT keep purged messages in the same
storage spaces as the live messages since the volumes of purged messages may get very large.

PARAMETERS: queue: shortstr
Specifies the name of the queue to purge. If the queue name is empty, refers to the current
queue for the channel, which is the last declared queue.

RULE:
If the client did not previously declare a queue, and the queue name in this method

96 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

is empty, the server MUST raise a connection exception with reply code 530 (not al-
lowed).
RULE:
The queue must exist. Attempting to purge a non- existing queue causes a channel
exception.
nowait: boolean
do not send a reply method

If set, the server will not respond to the method. The client should not wait for a reply
method. If the server could not complete the method it will raise a channel or connection
exception.

if nowait is False, returns a message_count

Connection.Channel.queue_unbind (queue, exchange, routing_key="*, nowait=False, ar-

guments=None)
Unbind a queue from an exchange

This method unbinds a queue from an exchange.

RULE:
If a unbind fails, the server MUST raise a connection exception.

PARAMETERS: queue: shortstr
Specifies the name of the queue to unbind.

RULE:
The client MUST either specify a queue name or have previously declared a queue on
the same channel
RULE:
The client MUST NOT attempt to unbind a queue that does not exist.
exchange: shortstr
The name of the exchange to unbind from.

RULE:
The client MUST NOT attempt to unbind a queue from an exchange that does not exist.
RULE:
The server MUST accept a blank exchange name to mean the default exchange.
routing_key: shortstr
routing key of binding

Specifies the routing key of the binding to unbind.
arguments: table
arguments of binding

Specifies the arguments of the binding to unbind.

Connection.Channel.tx_commit ()
Commit the current transaction

This method commits all messages published and acknowledged in the current transaction. A new
transaction starts immediately after a commit.

Connection.Channel.tx_rollback ()
Abandon the current transaction

This method abandons all messages published and acknowledged in the current transaction. A new
transaction starts immediately after a rollback.

Connection.Channel.tx_select ()
Select standard transaction mode

4.26.

kombu.transport.pyamqp 97

Kombu Documentation, Release 3.0.37

This method sets the channel to use standard transactions. The client must use this method at least
once on a channel before using the Commit or Rollback methods.

Connection.Channel .wait (allowed_methods=None, timeout=None)
Wait for a method that matches our allowed_methods parameter (the default value of None means
match any method), and dispatch to it.

Connection.Transport (host, connect_timeout, ssl=False)

Connection.channel (channel_id=None)
Fetch a Channel object identified by the numeric channel_id, or create that object if it doesn’t already exist.

Connection.channel_errors = (<class ‘amqp.exceptions.ChannelError’>,)
Connection.client heartbeat = None

Connection.close (reply_code=0, reply_text="*, method_sig=(0, 0))
Request a connection close

This method indicates that the sender wants to close the connection. This may be due to internal conditions
(e.g. a forced shut-down) or due to an error handling a specific method, i.e. an exception. When a close is
due to an exception, the sender provides the class and method id of the method which caused the exception.

RULE:

After sending this method any received method except the Close-OK method MUST be dis-
carded.

RULE:

The peer sending this method MAY use a counter or timeout to detect failure of the other peer to
respond correctly with the Close-OK method.

RULE:
When a server receives the Close method from a client it MUST delete all server-side resources
associated with the client’s context. A client CANNOT reconnect to a context after sending or
receiving a Close method.
PARAMETERS: reply_code: short
The reply code. The AMQ reply codes are defined in AMQ RFC 011.
reply_text: shortstr
The localised reply text. This text can be logged as an aid to resolving issues.
class_id: short
failing method class
When the close is provoked by a method exception, this is the class of the method.
method_id: short
failing method ID

When the close is provoked by a method exception, this is the ID of the method.

Connection.connected
Connection.connection_errors = (<class ‘amqp.exceptions.ConnectionError’>, <class ‘socket.error’>, <type ‘exc

Connection.dispatch_method (method_sig, args, content)

98 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

Connection.drain_events (timeout=None)
‘Wait for an event on a channel.

Connection.heartbeat = None

Connection.heartbeat tick (rate=2)
Send heartbeat packets, if necessary, and fail if none have been received recently. This should be called
frequently, on the order of once per second.

Parameters rate — Ignored
Connection.is_alive ()
Connection.last_heartbeat received=0
Connection.last_heartbeat_ sent =0
Connection.prev_recv = None
Connection.prev_sent = None
Connection.read timeout (timeout=None)
Connection.recoverable_channel_errors = (<class ‘amqp.exceptions.RecoverableChannelError’>,)
Connection.recoverable_connection_errors = (<class ‘amqp.exceptions.RecoverableConnectionError’>, <cla
Connection.send heartbeat ()
Connection.server_capabilities
Connection.server_heartbeat = None
Connection.sock

Connection.wait (allowed_methods=None, timeout=None)
Wait for a method that matches our allowed_methods parameter (the default value of None means match
any method), and dispatch to it.

4.26.3 Channel

class kombu.transport .pyamgp.Channel (connection, channel_id=None, auto_decode=True)

class Message (channel, msg, **kwargs)

Channel .message_to_python (raw_message)
Convert encoded message body back to a Python value.

Channel .prepare_message (body, priority=None, content_type=None, content_encoding=None,
headers=None, properties=None, _Message=<class

‘amgp.basic_message.Message’>)
Prepares message so that it can be sent using this transport.

4.26.4 Message

class kombu.transport .pyamgp .Message (channel, msg, **kwargs)

4.26. kombu.transport.pyamqp 99

Kombu Documentation, Release 3.0.37

4.27 kombu.transport.gpid

Qpid transport using qpid-python as the client and qpid-tools for broker management.

The use this transport you must install the necessary dependencies. These dependencies are available via PyPI and can
be installed using the pip command:

‘$ pip install kombu[gpid]

or to install the requirements manually:

‘$ pip install gpid-tools gpid-python

Python 3 and PyPy Limitations

The Qpid transport does not support Python 3 or PyPy environments due to underlying dependencies not being com-
patible. This version is tested and works with with Python 2.7.

4.28 Authentication

This transport supports SASL authentication with the Qpid broker. Normally, SASL mechanisms are negotiated from
a client list and a server list of possible mechanisms, but in practice, different SASL client libraries give different
behaviors. These different behaviors cause the expected SASL mechanism to not be selected in many cases. As such,
this transport restricts the mechanism types based on Kombu’s configuration according to the following table.

Broker String SASL Mechanism
gpid://hostname/ ANONYMOUS
gpid://username:password @hostname/ | PLAIN

see instructions below EXTERNAL

The user can override the above SASL selection behaviors and specify the SASL string using the 1ogin_method
argument to the Connection object. The string can be a single SASL mechanism or a space separated list
of SASL mechanisms. If you are using Celery with Kombu, this can be accomplished by setting the BRO-
KER_LOGIN_METHOD Celery option.

Note: While using SSL, Qpid users may want to override the SASL mechanism to use EXTERNAL. In that case, Qpid
requires a username to be presented that matches the CN of the SSL client certificate. Ensure that the broker string
contains the corresponding username. For example, if the client certificate has CN=asdf and the client connects to
example.com on port 5671, the broker string should be:

qpid://asdf @ example.com:5671/

4.29 Transport Options

The transport_options argument to the Connection object are passed directly to the
gpid.messaging.endpoints.Connection as keyword arguments. These options override and re-
place any other default or specified values. If using Celery, this can be accomplished by setting the BRO-
KER_TRANSPORT_OPTIONS Celery option.

100 Chapter 4. API Reference

http://qpid.apache.org/
http://pypi.python.org/pypi/qpid-python/
http://pypi.python.org/pypi/qpid-tools/

Kombu Documentation, Release 3.0.37

» Transport

e Connection
e Channel
Message

4.29.1 Transport

class kombu.transport.gpid.Transport (*args, **kwargs)
Kombu native transport for a Qpid broker.

Provide a native transport for Kombu that allows consumers and producers to read and write messages to/from
a broker. This Transport is capable of supporting both synchronous and asynchronous reading. All writes are
synchronous through the Channe I objects that support this Transport.

Asynchronous reads are done using a call to drain_events (), which synchronously reads messages that
were fetched asynchronously, and then handles them through calls to the callback handlers maintained on the
Connection object.

The Transport also provides methods to establish and close a connection to the broker. This Transport establishes
a factory-like pattern that allows for singleton pattern to consolidate all Connections into a single one.

The Transport can create Channel objects to communicate with the broker with using the
create channel () method.

The Transport identifies recoverable connection errors and recoverable channel errors according to the Kombu
3.0 interface. These exception are listed as tuples and store in the Transport class attribute recover-
able_connection_errors and recoverable_channel_errors respectively. Any exception raised that is not a mem-
ber of one of these tuples is considered non-recoverable. This allows Kombu support for automatic retry of
certain operations to function correctly.

For backwards compatibility to the pre Kombu 3.0 exception interface, the recoverable errors are also listed as
connection_errors and channel_errors.

class Connection (**connection_options)
Encapsulate a connection object for the Transport.

Parameters
* host — The host that connections should connect to.
* port — The port that connection should connect to.
* username — The username that connections should connect with. Optional.

» password — The password that connections should connect with. Optional but requires
a username.

* transport — The transport type that connections should use. Either ‘tcp’, or ‘ssl’ are
expected as values.

¢ timeout - the timeout used when a Connection connects to the broker.

* sasl_mechanisms — The sasl authentication mechanism type to use. refer to SASL
documentation for an explanation of valid values.

Note: gpid.messaging has an AuthenticationFailure exception type, but instead raises a ConnectionError
with a message that indicates an authentication failure occurred in those situations. ConnectionError is
listed as a recoverable error type, so kombu will attempt to retry if a ConnectionError is raised. Retrying

4.29. Transport Options 101

Kombu Documentation, Release 3.0.37

the operation without adjusting the credentials is not correct, so this method specifically checks for a
ConnectionError that indicates an Authentication Failure occurred. In those situations, the error type is
mutated while preserving the original message and raised so kombu will allow the exception to not be
considered recoverable.

A connection object is created by a Transport during a call to establish _connection (). The
Transport passes in connection options as keywords that should be used for any connections created.
Each Transport creates exactly one Connection.

A Connection object maintains a reference to a Connection which can be accessed through a bound
getter method named get_gpid _connection () method. Each Channel uses a the Connection for
each BrokerAgent, and the Transport maintains a session for all senders and receivers.

The Connection object is also responsible for maintaining the dictionary of references to call-
backs that should be called when messages are received. These callbacks are saved in _call-
backs, and keyed on the queue name associated with the received message. The _callbacks are
setup in Channel.basic_consume (), removed in Channel.basic_cancel (), and called in
Transport.drain_events ().

The following keys are expected to be passed in as keyword arguments at a minimum:

All keyword arguments are collected into the connection_options dict and passed directly through to
gpid.messaging.endpoints.Connection.establish().

class Channel (connection, transport)
Supports broker configuration and messaging send and receive.
Parameters
* connection (kombu.transport.gpid.Connection)— A Connection object
that this Channel can reference. Currently only used to access callbacks.
* transport (kombu.transport.gpid. Transport)—The Transport this Chan-
nel is associated with.

A channel object is designed to have method-parity with a Channel as defined in AMQP 0-10 and
earlier, which allows for the following broker actions:

eexchange declare and delete

equeue declare and delete

equeue bind and unbind operations

equeue length and purge operations

esending/receiving/rejecting messages

estructuring, encoding, and decoding messages

esupports synchronous and asynchronous reads

ereading state about the exchange, queues, and bindings
Channels are designed to all share a single TCP connection with a broker, but provide a level of
isolated communication with the broker while benefiting from a shared TCP connection. The Channel
is given its Connection object by the Transport that instantiates the channel.

This channel inherits from StdChannel, which makes this a ‘native’ channel versus a ‘virtual’
channel which would inherit from kombu.transports.virtual.

Messages sent using this channel are assigned a delivery_tag. The delivery_tag is generated for a
message as they are prepared for sending by basic _publish (). The delivery_tag is unique per
channel instance. The delivery_tag has no meaningful context in other objects, and is only maintained
in the memory of this object, and the underlying OoS object that provides support.

Each channel object instantiates exactly one 0o S object for prefetch limiting, and asynchronous ACK-
ing. The QoS object is lazily instantiated through a property method gos (). The 0oS object is a
supporting object that should not be accessed directly except by the channel itself.

Synchronous reads on a queue are done using a call to basic_get () which uses _get () to

102

Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

perform the reading. These methods read immediately and do not accept any form of timeout.
basic_get () reads synchronously and ACKs messages before returning them. ACKing is done in
all cases, because an application that reads messages using gpid.messaging, but does not ACK them
will experience a memory leak. The no_ack argument to basic_get () does not affect ACKing
functionality.

Asynchronous reads on a queue are done by starting a consumer using basic_consume (). Each
call to basic_consume () will cause a Receiver to be created on the Session started by
the :class: Transport. The receiver will asynchronously read using qpid.messaging, and prefetch
messages before the call to Transport.basic_drain () occurs. The prefetch_count value of
the OoS object is the capacity value of the new receiver. The new receiver capacity must always be
at least 1, otherwise none of the receivers will appear to be ready for reading, and will never be read
from.

Eachcallto hasic consume () creates a consumer, which is given a consumer tag that is identified
by the caller of basic_consume (). Already started consumers can be cancelled using by their
consumer_tag using basic_cancel (). Cancellation of a consumer causes the Receiver object
to be closed.

Asynchronous message ACKing is supported through basic_ack (), and is referenced by deliv-
ery_tag. The Channel object uses its 0o.S object to perform the message ACKing.

class Message (channel, payload, **kwargs)

serializable ()

class Transport.Connection.Channel.QoS (session, prefetch_count=1)
A helper object for message prefetch and ACKing purposes.
Parameters prefetch_count (int) — Initial prefetch count, hard set to 1.
NOTE: prefetch_count is currently hard set to 1, and needs to be improved

This object is instantiated 1-for-1 with a Channel instance. QoS allows prefetch_count
to be set to the number of outstanding messages the corresponding Channe 1 should be allowed
to prefetch. Setting prefetch_count to 0 disables prefetch limits, and the object can hold an
arbitrary number of messages.

Messages are added using append (), which are held until they are ACKed asynchronously
through a call to ack (). Messages that are received, but not ACKed will not be delivered by
the broker to another consumer until an ACK is received, or the session is closed. Messages
are referred to using delivery_tag, which are unique per Channel. Delivery tags are managed
outside of this object and are passed in with a message to append (). Un-ACKed messages can
be looked up from QoS using get () and can be rejected and forgotten using re ject ().

ack (delivery_tag)
Acknowledge a message by delivery_tag.

Called asynchronously once the message has been handled and can be forgotten by the broker.
Parameters delivery_ tag(uuid.UUID)-the delivery tagassociated with the mes-
sage to be acknowledged.

append (message, delivery_tag)
Append message to the list of un-ACKed messages.

Add a message, referenced by the delivery_tag, for ACKing, rejecting, or getting later. Mes-
sages are saved into an col lections.OrderedDict by delivery_tag.
Parameters
* message (gpid.messaging.Message) — A received message that has not
yet been ACKed.

4.29. Transport Options 103

http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/collections.html#collections.OrderedDict

Kombu Documentation, Release 3.0.37

* delivery_tag (uuid.UUID)— A UUID to refer to this message by upon re-
ceipt.

can_consume ()
Return True if the Channel can consume more messages, else False.

Used to ensure the client adheres to currently active prefetch limits.
Returns True, if this QoS object can accept more messages without violating the
prefetch_count. If prefetch_count is 0, can_consume will always return True.
Return type bool

can_consume_max_ estimate ()
Return the remaining message capacity for the associated
kombu.transport.qgpid.Channel.

Returns an estimated number of outstanding messages that a
kombu.transport.gpid.Channel can accept without exceeding
prefetch_count. If prefetch_count is 0, then this method returns 1.
Returns The number of estimated messages that can be fetched without violating
the prefetch_count.
Return type int

get (delivery_tag)
Get an un-ACKed message by delivery_tag. If called with an invalid delivery_tag a
KeyError is raised.
Parameters delivery_tag (uuid.UUID) — The delivery tag associated with
the message to be returned.
Returns An un-ACKed message that is looked up by delivery_tag.
Return type qgpid.messaging.Message

reject (delivery_tag, requeue=False)
Reject a message by delivery_tag.

Explicitly notify the broker that the channel associated with this QoS object is rejecting the
message that was previously delivered.

If requeue is False, then the message is not requeued for delivery to another consumer. If
requeue is True, then the message is requeued for delivery to another consumer.
Parameters
* delivery tag (uuid.UUID) - The delivery tag associated with the mes-
sage to be rejected.
* requeue (bool)-If True, the broker will be notified to requeue the message.
If False, the broker will be told to drop the message entirely. In both cases, the
message will be removed from this object.

Transport.Connection.Channel .basic_ack (delivery_tag)
Acknowledge a message by delivery_tag.

Acknowledges a message referenced by delivery_tag. Messages can only be ACKed using
basic_ack () if they were acquired using basic_consume (). This is the ACKing por-
tion of the asynchronous read behavior.

Internally, this method uses the OoS object, which stores messages and is responsible for the
ACKing.
Parameters delivery_ tag (uuid.UUID) - The delivery tag associated with the
message to be acknowledged.

Transport.Connection.Channel .basic_cancel (consumer_tag)
Cancel consumer by consumer tag.

104 Chapter 4. API Reference

http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/exceptions.html#KeyError
http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/uuid.html#uuid.UUID

Kombu Documentation, Release 3.0.37

Request the consumer stops reading messages from its queue. The consumer is a Receiver,
and it is closed using close ().

This method also cleans up all lingering references of the consumer.

Parameters consumer_tag (an immutable object) — The tag which refers
to the consumer to be cancelled. Originally specified when the consumer was
created as a parameter to basic_consume ().

Transport.Connection.Channel .basic_consume (queue, no_ack, callback, con-

sumer_tag, **kwargs)
Start an asynchronous consumer that reads from a queue.

This method starts a consumer of type Receiver using the Session created and referenced
by the Transport that reads messages from a queue specified by name until stopped by a call
to basic_cancel ().

Messages are available later through a synchronous call to Transport.drain_events (),
which will drain from the consumer started by this method. Transport.drain_events ()
is synchronous, but the receiving of messages over the network occurs asynchronously, so it
should still perform well. Transport.drain_events () calls the callback provided here
with the Message of type self.Message.

Each consumer is referenced by a consumer_tag, which is provided by the caller of this method.

This method sets up the callback onto the self.connection object in a dict keyed by queue name.
drain_events () is responsible for calling that callback upon message receipt.

All messages that are received are added to the QoS object to be saved for asynchronous ACKing
later after the message has been handled by the caller of drain_events (). Messages can be
ACKed after being received through a call to basic_ack ().

If no_ack is True, The no_ack flag indicates that the receiver of the message will not call
basic_ack () later. Since the message will not be ACKed later, it is ACKed immediately.

basic_consume () transforms the message object type prior to calling the callback. Initially
the message comes in as a gpid.messaging.Message. This method unpacks the payload
of the gpid.messaging.Message and creates a new object of type self.Message.

This method wraps the user delivered callback in a runtime-built function which provides the
type transformation from gpid.messaging.Message to Message, and adds the message
to the associated 0o S object for asynchronous ACKing if necessary.

Parameters
* queue (str)— The name of the queue to consume messages from

* no_ack (bool) — If True, then messages will not be saved for ACKing later,
but will be ACKed immediately. If False, then messages will be saved for ACK-
ing later with a call to basic_ack ().

e callback (a callable object) — a callable that will be called when
messages arrive on the queue.

* consumer_tag(an immutable object)-—atag to reference the created
consumer by. This consumer_tag is needed to cancel the consumer.

Transport.Connection.Channel .basic_get (queue, no_ack=False, **kwargs)
Non-blocking single message get and ACK from a queue by name.

Internally this method uses _get () to fetch the message. If an Empty exception is raised
by _get (), this method silences it and returns None. If _get () does return a message, that
message is ACKed. The no_ack parameter has no effect on ACKing behavior, and all messages

4.29. Transport Options 105

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 3.0.37

are ACKed in all cases. This method never adds fetched Messages to the internal QoS object for
asynchronous ACKing.

This method converts the object type of the method as it passes through. Fetching from the
broker, _get () returns a gpid.messaging.Message, but this method takes the payload
of the gpid.messaging.Message and instantiates a Message object with the payload
based on the class setting of self.Message.

Parameters
* queue (str) - The queue name to fetch a message from.

* no_ack — The no_ack parameter has no effect on the ACK behavior of this
method. Un-ACKed messages create a memory leak in qpid.messaging, and
need to be ACKed in all cases.

Returns The received message.
Return type Message

Transport.Connection.Channel .basic_publish (message, exchange, rout-
ing_key, **kwargs)
Publish message onto an exchange using a routing key.

Publish a message onto an exchange specified by name using a routing key specified by rout-
ing_key. Prepares the message in the following ways before sending:

eencodes the body using encode_body ()

*wraps the body as a buffer object, so that qpid.messaging.endpoints.Sender
uses a content type that can support arbitrarily large messages.

esets delivery_tag to a random uuid. UUID
esets the exchange and routing_key info as delivery_info

Internally uses _put () to send the message synchronously. This message is typically called by
kombu.messaging.Producer._publish as the final step in message publication.

Parameters

* message (dict)— A dict containing key value pairs with the message data. A
valid message dict can be generated using the prepare_message () method.

* exchange (st r)— The name of the exchange to submit this message onto.

* routing_key (st r)—The routing key to be used as the message is submitted
onto the exchange.

Transport.Connection.Channel .basic_qgos (prefetch_count, *args)
Change QoS settings for this Channel.

Set the number of un-acknowledged messages this Channel can fetch and hold. The
prefetch_value is also used as the capacity for any new Receiver objects.

Currently, this value is hard coded to 1.
Parameters prefetch_count (int)— Not used. This method is hard-coded to 1.

Transport.Connection.Channel .basic_reject (delivery_tag, requeue=False)
Reject a message by delivery_tag.

Rejects a message that has been received by the Channel, but not yet acknowledged. Messages
are referenced by their delivery_tag.

106 Chapter 4. API Reference

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 3.0.37

If requeue is False, the rejected message will be dropped by the broker and not delivered to any
other consumers. If requeue is True, then the rejected message will be requeued for delivery to
another consumer, potentially to the same consumer who rejected the message previously.

Parameters

* delivery_tag (uuid.UUID) — The delivery tag associated with the mes-
sage to be rejected.

* requeue (bool)-If False, the rejected message will be dropped by the broker
and not delivered to any other consumers. If True, then the rejected message will
be requeued for delivery to another consumer, potentially to the same consumer
who rejected the message previously.

Transport.Connection.Channel .body_encoding = ‘base64’

Transport.Connection.Channel.close ()
Cancel all associated messages and close the Channel.

This cancels all consumers by calling basic_cancel () for each known consumer_tag. It
also closes the self._broker sessions. Closing the sessions implicitly causes all outstanding,
un-ACKed messages to be considered undelivered by the broker.

Transport.Connection.Channel.codecs = {‘base64’: <kombu.transport.virtual. Base64 object at 0x7fb’

Transport.Connection.Channel .decode_body (body, encoding=None)
Decode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in self.codecs. self.codecs uses strings
as its keys which specify the name of the encoding, and then the value is an instantiated object
that can provide encoding/decoding of that type through encode and decode methods.

Parameters
* body (str) - The body to be encoded.

* encoding (str)— The encoding type to be used. Must be a supported codec
listed in self.codecs.

Returns If encoding is specified, the decoded body is returned. If encoding is not
specified, the body is returned unchanged.

Return type str

Transport.Connection.Channel.encode_body (body, encoding=None)
Encode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in self.codecs. self.codecs uses strings
as its keys which specify the name of the encoding, and then the value is an instantiated object
that can provide encoding/decoding of that type through encode and decode methods.

Parameters
* body (st r) - The body to be encoded.

* encoding (str)— The encoding type to be used. Must be a supported codec
listed in self.codecs.

Returns If encoding is specified, return a tuple with the first position being the en-
coded body, and the second position the encoding used. If encoding is not speci-
fied, the body is passed through unchanged.

Return type tuple

4.29.

Transport Options 107

http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#tuple

Kombu Documentation, Release 3.0.37

Transport.Connection.Channel .exchange_declare (exchange="",
type="direct’,
durable=Fualse,
**kwargs)
Create a new exchange.
Create an exchange of a specific type, and optionally have the exchange be durable. If an ex-
change of the requested name already exists, no action is taken and no exceptions are raised.
Durable exchanges will survive a broker restart, non-durable exchanges will not.

Exchanges provide behaviors based on their type. The expected behaviors are those defined in
the AMQP 0-10 and prior specifications including ‘direct’, ‘topic’, and ‘fanout’ functionality.

Parameters

* type (str) — The exchange type. Valid values include ‘direct’, ‘topic’, and
‘fanout’.

* exchange (st r)— The name of the exchange to be created. If no exchange is
specified, then a blank string will be used as the name.

* durable (bool) - True if the exchange should be durable, or False otherwise.

Transport.Connection.Channel.exchange_delete (exchange_name,
*kkwargs)
Delete an exchange specified by name
Parameters exchange_name (st r)— The name of the exchange to be deleted.

Transport.Connection.Channel .prepare_message (body, priority=None,
content_type=None, con-
tent_encoding=None,
headers=None, proper-
ties=None)

Prepare message data for sending.
This message is typically called by kombu.messaging.Producer._publish() as a
preparation step in message publication.

Parameters
* body (str) - The body of the message

e priority (int) — A number between 0 and 9 that sets the priority of the
message.

* content_type (st r)—The content_type the message body should be treated
as. If this is unset, the gpid.messaging.endpoints.Sender object
tries to autodetect the content_type from the body.

* content_encoding (st r)—The content_encoding the message body is en-
coded as.

* headers (dict)— Additional Message headers that should be set. Passed in
as a key-value pair.

* properties (dict)— Message properties to be set on the message.

Returns Returns a dict object that encapsulates message attributes. See parameters
for more details on attributes that can be set.

Return type dict

108 Chapter 4. API Reference

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/stdtypes.html#dict

Kombu Documentation, Release 3.0.37

Transport.Connection.Channel.qgos
QoS manager for this channel.

Lazily instantiates an object of type Oo.S upon access to the self.qos attribute.
Returns An already existing, or newly created QoS object
Return type 0osS

Transport.Connection.Channel.queue_bind (queue, exchange, routing_key,

**kwargs)
Bind a queue to an exchange with a bind key.

Bind a queue specified by name, to an exchange specified by name, with a specific bind key.
The queue and exchange must already exist on the broker for the bind to complete successfully.
Queues may be bound to exchanges multiple times with different keys.

Parameters
* queue (st r)— The name of the queue to be bound.

* exchange (st r)— The name of the exchange that the queue should be bound
to.

* routing_ key (str) — The bind key that the specified queue should bind to
the specified exchange with.

Transport.Connection.Channel.queue_declare (queue, passive=False,
durable=Fualse, exclu-
sive=False, auto_delete=True,
nowait=False, argu-

) ments=None)
Create a new queue specified by name.

If the queue already exists, no change is made to the queue, and the return value returns infor-
mation about the existing queue.

The queue name is required and specified as the first argument.

If passive is True, the server will not create the queue. The client can use this to check whether
a queue exists without modifying the server state. Default is False.

If durable is True, the queue will be durable. Durable queues remain active when a server
restarts. Non-durable queues (transient queues) are purged if/when a server restarts. Note that
durable queues do not necessarily hold persistent messages, although it does not make sense to
send persistent messages to a transient queue. Default is False.

If exclusive is True, the queue will be exclusive. Exclusive queues may only be consumed by the
current connection. Setting the ‘exclusive’ flag always implies ‘auto-delete’. Default is False.

If auto_delete is True, the queue is deleted when all consumers have finished using it. The last
consumer can be cancelled either explicitly or because its channel is closed. If there was no
consumer ever on the queue, it won’t be deleted. Default is True.

The nowait parameter is unused. It was part of the 0-9-1 protocol, but this AMQP client imple-
ments 0-10 which removed the nowait option.

The arguments parameter is a set of arguments for the declaration of the queue. Arguments are
passed as a dict or None. This field is ignored if passive is True. Default is None.

This method returns a namedtuple with the name ‘queue_declare_ok_t’ and the queue name
as ‘queue’, message count on the queue as ‘message_count’, and the number of active con-
sumers as ‘consumer_count’. The named tuple values are ordered as queue, message_count,
and consumer_count respectively.

4.29. Transport Options 109

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 3.0.37

Due to Celery’s non-ACKing of events, a ring policy is set on any queue that starts with the
string ‘celeryev’ or ends with the string ‘pidbox’. These are celery event queues, and Celery
does not ack them, causing the messages to build-up. Eventually Qpid stops serving messages
unless the ‘ring’ policy is set, at which point the buffer backing the queue becomes circular.

Parameters
* queue (str)— The name of the queue to be created.
* passive (bool) - If True, the sever will not create the queue.
e durable (boo1l) - If True, the queue will be durable.
* exclusive (bool) - If True, the queue will be exclusive.

* auto_delete (bool) — If True, the queue is deleted when all consumers
have finished using it.

* nowait (bool) — This parameter is unused since the 0-10 specification does
not include it.

* arguments (dict or None)-— A setof arguments for the declaration of the
queue.

Returns A named tuple representing the declared queue as a named tuple. The tuple
values are ordered as queue, message count, and the active consumer count.

Return type namedtuple

Transport.Connection.Channel.queue_delete (queue, if_unused=False,

if_empty=False, **kwargs)
Delete a queue by name.

Delete a queue specified by name. Using the if_unused keyword argument, the delete can only
occur if there are 0 consumers bound to it. Using the if_empty keyword argument, the delete
can only occur if there are 0 messages in the queue.

Parameters
* queue (st r)— The name of the queue to be deleted.

* if unused (bool) — If True, delete only if the queue has 0 consumers. If
False, delete a queue even with consumers bound to it.

* if empty (bool) — If True, only delete the queue if it is empty. If False,
delete the queue if it is empty or not.

Transport.Connection.Channel .queue_purge (queue, **kwargs)

Remove all undelivered messages from queue.

Purge all undelivered messages from a queue specified by name. If the queue does not exist
an exception is raised. The queue message depth is first checked, and then the broker is asked
to purge that number of messages. The integer number of messages requested to be purged is
returned. The actual number of messages purged may be different than the requested number of
messages to purge.

Sometimes delivered messages are asked to be purged, but are not. This case fails silently, which
is the correct behavior when a message that has been delivered to a different consumer, who has
not ACKed the message, and still has an active session with the broker. Messages in that case
are not safe for purging and will be retained by the broker. The client is unable to change this
delivery behavior.

Internally, this method relies on _purge ().

110

Chapter 4. API Reference

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 3.0.37

Parameters queue (st r)— The name of the queue which should have all messages
removed.

Returns The number of messages requested to be purged.
Return type int

Raises gqpid.messaging.exceptions.NotFound if the queue being purged
cannot be found.

Transport.Connection.Channel.queue_unbind (queue, exchange, routing_key,
**kwargs)
Unbind a queue from an exchange with a given bind key.

Unbind a queue specified by name, from an exchange specified by name, that is already bound
with a bind key. The queue and exchange must already exist on the broker, and bound with
the bind key for the operation to complete successfully. Queues may be bound to exchanges
multiple times with different keys, thus the bind key is a required field to unbind in an explicit
way.

Parameters
* queue (str)— The name of the queue to be unbound.

* exchange (str) — The name of the exchange that the queue should be un-
bound from.

* routing key (str)—The existing bind key between the specified queue and
a specified exchange that should be unbound.

Transport.Connection.Channel.typeof (exchange, default="direct’)
Get the exchange type.

Lookup and return the exchange type for an exchange specified by name. Exchange types are
expected to be ‘direct’, ‘topic’, and ‘fanout’, which correspond with exchange functionality as
specified in AMQP 0-10 and earlier. If the exchange cannot be found, the default exchange type
is returned.

Parameters
* exchange (st r)— The exchange to have its type lookup up.

* default (str) — The type of exchange to assume if the exchange does not
exist.

Returns The exchange type either ‘direct’, ‘topic’, or ‘fanout’.
Return type str

Transport.Connection.close ()
Close the connection

Closing the connection will close all associated session, senders, or receivers used by the Connec-
tion.

Transport.Connection.close_channel (channel)
Close a Channel.

Close a channel specified by a reference to the Channel object.
Parameters channel (Channel.) — Channel that should be closed.

Transport.Connection.get_qgpid connection ()
Return the existing connection (singleton).

Returns The existing qpid.messaging.Connection

4.29.

Transport Options 111

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 3.0.37

Return type gpid.messaging.endpoints.Connection
Transport.channel_errors = (None,)

Transport .close_connection (connection)
Close the Connection object.

Parameters connection (kombu.transport.qgpid.Connection)—The Connec-
tion that should be closed.

Transport.connection_errors = (None, <class ‘select.error’>)

Transport .create_channel (connection)
Create and return a Channel.

Creates a new channel, and appends the channel to the list of channels known by the Connection. Once
the new channel is created, it is returned.

Parameters connection (kombu.transport.gpid.Connection)— The connec-
tion that should support the new Channel.

Returns The new Channel that is made.
Return type kombu.transport.gpid.Channel.

Transport.default_connection_params
Return a dict with default connection parameters.

These connection parameters will be used whenever the creator of Transport does not specify a required
parameter.

Returns A dict containing the default parameters.
Return type dict

Transport .drain_events (connection, timeout=0, **kwargs)
Handle and call callbacks for all ready Transport messages.

Drains all events that are ready from all Receiver that are asynchronously fetching messages.

For each drained message, the message is called to the appropriate callback. Callbacks are organized by
queue name.

Parameters

* connection (kombu.transport.gpid.Connection) - The
Connection that contains the callbacks, indexed by queue name, which
will be called by this method.

* timeout (int)— The timeout that limits how long this method will run for. The
timeout could interrupt a blocking read that is waiting for a new message, or cause
this method to return before all messages are drained. Defaults to 0.

Transport .driver_name = ‘qpid’
Transport.driver_type = ‘qpid’

Transport.establish_connection ()
Establish a Connection object.

Determines the correct options to use when creating any connections needed by this Transport, and create
a Connection object which saves those values for connections generated as they are needed. The
options are a mixture of what is passed in through the creator of the Transport, and the defaults provided
by default_connection_params (). Options cover broker network settings, timeout behaviors,
authentication, and identity verification settings.

112 Chapter 4. API Reference

http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 3.0.37

This method also creates and stores a Session using the Connection created by this method. The
Session is stored on self.

Returns The created Connection object is returned.
Return type Connection

Transport.on_readable (connection, loop)
Handle any messages associated with this Transport.

This method clears a single message from the externally monitored file descriptor by issuing a read call
to the self.r file descriptor which removes a single ‘0’ character that was placed into the pipe by the Qpid
session message callback handler. Once a ‘0’ is read, all available events are drained through a call to
drain_events ().

The file descriptor self.r is modified to be non-blocking, ensuring that an accidental call to this method
when no more messages will not cause indefinite blocking.

Nothing is expected to be returned from drain_events () because drain_events () handles mes-
sages by calling callbacks that are maintained on the Connect ion object. When drain_events ()
returns, all associated messages have been handled.

This method calls drain_events() which reads as many messages as are available for this Transport, and
then returns. It blocks in the sense that reading and handling a large number of messages may take time,
but it does not block waiting for a new message to arrive. When drain_events () is called a timeout
is not specified, which causes this behavior.

One interesting behavior of note is where multiple messages are ready, and this method removes a single
‘0’ character from self.r, but drain_events () may handle an arbitrary amount of messages. In that
case, extra ‘0’ characters may be left on self.r to be read, where messages corresponding with those ‘0’
characters have already been handled. The external epoll loop will incorrectly think additional data is
ready for reading, and will call on_readable unnecessarily, once for each ‘0’ to be read. Additional calls
to on_readable () produce no negative side effects, and will eventually clear out the symbols from
the self.r file descriptor. If new messages show up during this draining period, they will also be properly
handled.

Parameters

e connection (kombu.transport.gpid.Connection) - The connection
associated with the readable events, which contains the callbacks that need to be
called for the readable objects.

* loop (kombu.async.Hub) — The asynchronous loop object that contains epoll
like functionality.

Transport.polling interval = None
Transport.recoverable channel_errors = (None,)
Transport.recoverable connection_errors = (None, <class ‘select.error’>)

Transport.register_with_event_loop (connection, loop)
Register a file descriptor and callback with the loop.

Register the callback self.on_readable to be called when an external epoll loop sees that the file descriptor
registered is ready for reading. The file descriptor is created by this Transport, and is written to when a
message is available.

Because supports_ev == True, Celery expects to call this method to give the Transport an opportunity to
register a read file descriptor for external monitoring by celery using an Event I/O notification mechanism
such as epoll. A callback is also registered that is to be called once the external epoll loop is ready to
handle the epoll event associated with messages that are ready to be handled for this Transport.

4.29. Transport Options 113

Kombu Documentation, Release 3.0.37

The registration call is made exactly once per Transport after the Transport is instantiated.
Parameters

* connection (kombu.transport.gpid.Connection) — A reference to
the connection associated with this Transport.

* loop (kombu.async.hub.Hub)— A reference to the external loop.
Transport.supports_ev = True

Transport.verify runtime_environment ()
Verify that the runtime environment is acceptable.

This method is called as part of __init__ and raises a RuntimeError in Python3 or PyPi environments.
This module is not compatible with Python3 or PyPi. The RuntimeError identifies this to the user up front
along with suggesting Python 2.6+ be used instead.

This method also checks that the dependencies qpidtoollibs and gpid.messaging are installed. If either
one is not installed a RuntimeError is raised.

Raises RuntimeError if the runtime environment is not acceptable.

4.29.2 Connection

class kombu.transport.gpid.Connection (**connection_options)

Encapsulate a connection object for the Transport.
Parameters

* host — The host that connections should connect to.
* port — The port that connection should connect to.
* username — The username that connections should connect with. Optional.

* password — The password that connections should connect with. Optional but re-
quires a username.

* transport — The transport type that connections should use. Either ‘tcp’, or ‘ssl’ are
expected as values.

¢ timeout - the timeout used when a Connection connects to the broker.

* sasl_mechanisms — The sasl authentication mechanism type to use. refer to SASL
documentation for an explanation of valid values.

Note: gpid.messaging has an AuthenticationFailure exception type, but instead raises a ConnectionError with
a message that indicates an authentication failure occurred in those situations. ConnectionError is listed as a
recoverable error type, so kombu will attempt to retry if a ConnectionError is raised. Retrying the operation
without adjusting the credentials is not correct, so this method specifically checks for a ConnectionError that
indicates an Authentication Failure occurred. In those situations, the error type is mutated while preserving the
original message and raised so kombu will allow the exception to not be considered recoverable.

A connection object is created by a Transport during a call to establish_connection (). The
Transport passes in connection options as keywords that should be used for any connections created. Each
Transport creates exactly one Connection.

A Connection object maintains a reference to a Connection which can be accessed through a bound get-
ter method named get_gpid connection () method. Each Channel uses a the Connection for each
BrokerAgent, and the Transport maintains a session for all senders and receivers.

114

Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

The Connection object is also responsible for maintaining the dictionary of references to callbacks that should
be called when messages are received. These callbacks are saved in _callbacks, and keyed on the queue name
associated with the received message. The _callbacks are setup in Channel.basic_consume (), removed
in Channel.basic _cancel (),and calledin Transport.drain_events ().

The following keys are expected to be passed in as keyword arguments at a minimum:

All keyword arguments are collected into the connection_options dict and passed directly through to
gpid.messaging.endpoints.Connection.establish().

class Channel (connection, transport)
Supports broker configuration and messaging send and receive.

Parameters

* connection (kombu.transport.gpid.Connection) — A Connection
object that this Channel can reference. Currently only used to access callbacks.

* transport (kombu.transport.gpid.Transport) — The Transport this
Channel is associated with.

A channel object is designed to have method-parity with a Channel as defined in AMQP 0-10 and earlier,
which allows for the following broker actions:

eexchange declare and delete

equeue declare and delete

equeue bind and unbind operations

equeue length and purge operations
esending/receiving/rejecting messages

estructuring, encoding, and decoding messages
esupports synchronous and asynchronous reads
ereading state about the exchange, queues, and bindings

Channels are designed to all share a single TCP connection with a broker, but provide a level of isolated
communication with the broker while benefiting from a shared TCP connection. The Channel is given its
Connection object by the Transport that instantiates the channel.

This channel inherits from St dChannel, which makes this a ‘native’ channel versus a ‘virtual’ channel
which would inherit from kombu.transports.virtual.

Messages sent using this channel are assigned a delivery_tag. The delivery_tag is generated for a mes-
sage as they are prepared for sending by basic_publish (). The delivery_tag is unique per channel
instance. The delivery_tag has no meaningful context in other objects, and is only maintained in the
memory of this object, and the underlying QoS object that provides support.

Each channel object instantiates exactly one QoS object for prefetch limiting, and asynchronous ACKing.
The QoS object is lazily instantiated through a property method gos (). The 0oS object is a supporting
object that should not be accessed directly except by the channel itself.

Synchronous reads on a queue are done using a call to basic_get () which uses _get () to perform
the reading. These methods read immediately and do not accept any form of timeout. basic _get ()
reads synchronously and ACKs messages before returning them. ACKing is done in all cases, because an
application that reads messages using qpid.messaging, but does not ACK them will experience a memory
leak. The no_ack argument to basic_get () does not affect ACKing functionality.

Asynchronous reads on a queue are done by starting a consumer using basic_consume (). Each call
to basic_consume () will cause a Receiver to be created on the Session started by the :class:

4.29. Transport Options 115

Kombu Documentation, Release 3.0.37

Transport. The receiver will asynchronously read using qpid.messaging, and prefetch messages before
the call to Transport.basic_drain () occurs. The prefetch_count value of the QoS object is the
capacity value of the new receiver. The new receiver capacity must always be at least 1, otherwise none
of the receivers will appear to be ready for reading, and will never be read from.

Each call to hasic_consume () creates a consumer, which is given a consumer tag that is identified
by the caller of basic consume (). Already started consumers can be cancelled using by their con-
sumer_tag using basic_cancel (). Cancellation of a consumer causes the Receiver object to be
closed.

Asynchronous message ACKing is supported through basic_ack (), and is referenced by delivery_tag.
The Channel object uses its 0o.S object to perform the message ACKing.

class Message (channel, payload, **kwargs)

serializable ()

class Connection.Channel .QoS (session, prefetch_count=1)
A helper object for message prefetch and ACKing purposes.

Parameters prefetch_count (int) — Initial prefetch count, hard set to 1.
NOTE: prefetch_count is currently hard set to 1, and needs to be improved

This object is instantiated 1-for-1 with a Channel instance. QoS allows prefetch_count to
be set to the number of outstanding messages the corresponding Channe I should be allowed to
prefetch. Setting prefetch_count to 0 disables prefetch limits, and the object can hold an
arbitrary number of messages.

Messages are added using append (), which are held until they are ACKed asynchronously
through a call to ack (). Messages that are received, but not ACKed will not be delivered by
the broker to another consumer until an ACK is received, or the session is closed. Messages are
referred to using delivery_tag, which are unique per Channe 1. Delivery tags are managed outside
of this object and are passed in with a message to append (). Un-ACKed messages can be looked
up from QoS using get () and can be rejected and forgotten using re ject ().

ack (delivery_tag)
Acknowledge a message by delivery_tag.

Called asynchronously once the message has been handled and can be forgotten by the broker.

Parameters delivery_ tag (uuid.UUID) — the delivery tag associated with
the message to be acknowledged.

append (message, delivery_tag)
Append message to the list of un-ACKed messages.

Add a message, referenced by the delivery_tag, for ACKing, rejecting, or getting later. Mes-
sages are saved into an collections.OrderedDict by delivery_tag.

Parameters

* message (gpid.messaging.Message) — A received message that has
not yet been ACKed.

* delivery_ tag (uuid.UUID)— A UUID to refer to this message by upon
receipt.

can_consume ()
Return True if the Channel can consume more messages, else False.

Used to ensure the client adheres to currently active prefetch limits.

116

Chapter 4. API Reference

http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/collections.html#collections.OrderedDict
http://docs.python.org/dev/library/uuid.html#uuid.UUID

Kombu Documentation, Release 3.0.37

Returns True, if this QoS object can accept more messages without violating the
prefetch_count. If prefetch_count is 0, can_consume will always return True.

Return type bool

can_consume_max_estimate ()
Return the remaining message capacity for the associated
kombu.transport.qgpid.Channel.

Returns an estimated number of outstanding messages that a
kombu.transport.gpid.Channel can accept without exceeding
prefetch_count. If prefetch_count is 0, then this method returns 1.

Returns The number of estimated messages that can be fetched without violating
the prefetch_count.

Return type int

get (delivery_tag)
Get an un-ACKed message by delivery_tag. If called with an invalid delivery_tag a
KeyError is raised.

Parameters delivery tag (uuid.UUID) — The delivery tag associated with
the message to be returned.

Returns An un-ACKed message that is looked up by delivery_tag.
Return type qpid.messaging.Message

reject (delivery_tag, requeue=False)
Reject a message by delivery_tag.

Explicitly notify the broker that the channel associated with this QoS object is rejecting the
message that was previously delivered.

If requeue is False, then the message is not requeued for delivery to another consumer. If
requeue is True, then the message is requeued for delivery to another consumer.

Parameters

* delivery_tag (uuid.UUID)- The delivery tag associated with the mes-
sage to be rejected.

* requeue (bool) — If True, the broker will be notified to requeue the mes-
sage. If False, the broker will be told to drop the message entirely. In both
cases, the message will be removed from this object.

Connection.Channel .basic_ack (delivery_tag)
Acknowledge a message by delivery_tag.

Acknowledges a message referenced by delivery_tag. Messages can only be ACKed using
basic_ack () if they were acquired using basic_consume (). This is the ACKing portion
of the asynchronous read behavior.

Internally, this method uses the 0o S object, which stores messages and is responsible for the ACK-
ing.
Parameters delivery_tag (uuid.UUID) — The delivery tag associated with the
message to be acknowledged.

Connection.Channel .basic_cancel (consumer_tag)
Cancel consumer by consumer tag.

4.29.

Transport Options 117

http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/exceptions.html#KeyError
http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/uuid.html#uuid.UUID

Kombu Documentation, Release 3.0.37

Request the consumer stops reading messages from its queue. The consumer is a Receiver, and
it is closed using close ().

This method also cleans up all lingering references of the consumer.

Parameters consumer_tag (an immutable object)- The tag which refers to
the consumer to be cancelled. Originally specified when the consumer was created
as a parameter to basic_consume ().

Connection.Channel .basic_consume (queue, no_ack, callback, consumer_tag,

**kwargs)
Start an asynchronous consumer that reads from a queue.

This method starts a consumer of type Receiver using the Session created and referenced by
the Transport that reads messages from a queue specified by name until stopped by a call to
basic_cancel ().

Messages are available later through a synchronous call to Transport.drain_events (),
which will drain from the consumer started by this method. Transport.drain_events () is
synchronous, but the receiving of messages over the network occurs asynchronously, so it should
still perform well. Transport.drain_events () calls the callback provided here with the
Message of type self.Message.

Each consumer is referenced by a consumer_tag, which is provided by the caller of this method.

This method sets up the callback onto the self.connection object in a dict keyed by queue name.
drain_events () is responsible for calling that callback upon message receipt.

All messages that are received are added to the QoS object to be saved for asynchronous ACKing
later after the message has been handled by the caller of drain_events (). Messages can be
ACKed after being received through a call to hasic_ack ().

If no_ack is True, The no_ack flag indicates that the receiver of the message will not call
basic_ack () later. Since the message will not be ACKed later, it is ACKed immediately.

basic_consume () transforms the message object type prior to calling the callback. Initially the
message comes in as a gpid.messaging.Message. This method unpacks the payload of the
gpid.messaging.Message and creates a new object of type self.Message.

This method wraps the user delivered callback in a runtime-built function which provides the type
transformation from gpid.messaging.Message to Message, and adds the message to the
associated QoS object for asynchronous ACKing if necessary.

Parameters
* queue (str)— The name of the queue to consume messages from

* no_ack (bool) — If True, then messages will not be saved for ACKing later,
but will be ACKed immediately. If False, then messages will be saved for
ACKing later with a call to basic_ack ().

e callback (a callable object) — a callable that will be called when
messages arrive on the queue.

* consumer_tag (an immutable object) — a tag to reference the cre-
ated consumer by. This consumer_tag is needed to cancel the consumer.

Connection.Channel .basic_get (queue, no_ack=False, **kwargs)

Non-blocking single message get and ACK from a queue by name.

Internally this method uses _get () to fetch the message. If an Empty exception is raised by
_get (), this method silences it and returns None. If _get () does return a message, that message
is ACKed. The no_ack parameter has no effect on ACKing behavior, and all messages are ACKed

118

Chapter 4. API Reference

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 3.0.37

in all cases. This method never adds fetched Messages to the internal QoS object for asynchronous
ACKing.

This method converts the object type of the method as it passes through. Fetching from the bro-
ker, _get () returns a gpid.messaging.Message, but this method takes the payload of the
gpid.messaging.Message and instantiates a Me s sage object with the payload based on the
class setting of self.Message.

Parameters
* queue (str) - The queue name to fetch a message from.

* no_ack — The no_ack parameter has no effect on the ACK behavior of this
method. Un-ACKed messages create a memory leak in gpid.messaging, and
need to be ACKed in all cases.

Returns The received message.
Return type Message

Connection.Channel .basic_publish (message, exchange, routing_key, **kwargs)
Publish message onto an exchange using a routing key.

Publish a message onto an exchange specified by name using a routing key specified by routing_key.
Prepares the message in the following ways before sending:

sencodes the body using encode_body ()

ewraps the body as a buffer object, so that gpid.messaging.endpoints.Sender
uses a content type that can support arbitrarily large messages.

esets delivery_tag to a random uuid. UUID
esets the exchange and routing_key info as delivery_info

Internally uses _put () to send the message synchronously. This message is typically called by
kombu.messaging.Producer._publish as the final step in message publication.

Parameters

* message (dict) — A dict containing key value pairs with the message data.
A valid message dict can be generated using the prepare message ()
method.

* exchange (st r)— The name of the exchange to submit this message onto.

* routing_key (str)— The routing key to be used as the message is submit-
ted onto the exchange.

Connection.Channel .basic_qgos (prefetch_count, *args)
Change QoS settings for this Channel.

Set the number of un-acknowledged messages this Channel can fetch and hold. The prefetch_value
is also used as the capacity for any new Receiver objects.

Currently, this value is hard coded to 1.
Parameters prefetch_count (int)— Not used. This method is hard-coded to 1.

Connection.Channel .basic_reject (delivery_tag, requeue=False)
Reject a message by delivery_tag.

Rejects a message that has been received by the Channel, but not yet acknowledged. Messages are
referenced by their delivery_tag.

4.29.

Transport Options 119

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 3.0.37

If requeue is False, the rejected message will be dropped by the broker and not delivered to any
other consumers. If requeue is True, then the rejected message will be requeued for delivery to
another consumer, potentially to the same consumer who rejected the message previously.

Parameters

* delivery_tag (uuid.UUID) — The delivery tag associated with the mes-
sage to be rejected.

* requeue (bool) - If False, the rejected message will be dropped by the bro-
ker and not delivered to any other consumers. If True, then the rejected message
will be requeued for delivery to another consumer, potentially to the same con-
sumer who rejected the message previously.

Connection.Channel .body_encoding = ‘base64’

Connection.Channel.close()
Cancel all associated messages and close the Channel.

This cancels all consumers by calling basic_cancel () for each known consumer_tag. It also
closes the self._broker sessions. Closing the sessions implicitly causes all outstanding, un-ACKed
messages to be considered undelivered by the broker.

Connection.Channel.codecs = {‘base64’: <kombu.transport.virtual.Base64 object at 0x7fb7488f4fd0>}

Connection.Channel.decode_body (body, encoding=None)
Decode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in self.codecs. self.codecs uses strings as
its keys which specify the name of the encoding, and then the value is an instantiated object that
can provide encoding/decoding of that type through encode and decode methods.

Parameters
* body (str) - The body to be encoded.

* encoding (st r) - The encoding type to be used. Must be a supported codec
listed in self.codecs.

Returns If encoding is specified, the decoded body is returned. If encoding is not spec-
ified, the body is returned unchanged.

Return type str

Connection.Channel.encode_body (body, encoding=None)
Encode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in self.codecs. self.codecs uses strings as
its keys which specify the name of the encoding, and then the value is an instantiated object that
can provide encoding/decoding of that type through encode and decode methods.

Parameters
* body (st r) - The body to be encoded.

* encoding (st r) - The encoding type to be used. Must be a supported codec
listed in self.codecs.

Returns If encoding is specified, return a tuple with the first position being the encoded
body, and the second position the encoding used. If encoding is not specified, the
body is passed through unchanged.

Return type tuple

120 Chapter 4. API Reference

http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#tuple

Kombu Documentation, Release 3.0.37

Connection.Channel.exchange_declare (exchange=’", type='direct’, durable=False,

**kwargs)
Create a new exchange.

Create an exchange of a specific type, and optionally have the exchange be durable. If an exchange
of the requested name already exists, no action is taken and no exceptions are raised. Durable
exchanges will survive a broker restart, non-durable exchanges will not.

Exchanges provide behaviors based on their type. The expected behaviors are those defined in the
AMAQP 0-10 and prior specifications including ‘direct’, ‘topic’, and ‘fanout’ functionality.

Parameters

* type (str)— The exchange type. Valid values include ‘direct’, ‘topic’, and
‘fanout’.

* exchange (str)— The name of the exchange to be created. If no exchange
is specified, then a blank string will be used as the name.

* durable (bool)-True if the exchange should be durable, or False otherwise.

Connection.Channel.exchange_delete (exchange_name, **kwargs)
Delete an exchange specified by name

Parameters exchange_name (st r)— The name of the exchange to be deleted.

Connection.Channel .prepare_message (body, priority=None, content_type=None,
content_encoding=None, headers=None,

properties=None)
Prepare message data for sending.

This message is typically called by kombu.messaging.Producer._publish () asa prepa-
ration step in message publication.

Parameters
* body (st r)— The body of the message

e priority (int) — A number between 0 and 9 that sets the priority of the
message.

* content_type (str) — The content_type the message body should be
treated as. If this is unset, the gpid.messaging.endpoints.Sender
object tries to autodetect the content_type from the body.

* content_encoding (str) — The content_encoding the message body is
encoded as.

* headers (dict) — Additional Message headers that should be set. Passed in
as a key-value pair.

* properties (dict)— Message properties to be set on the message.

Returns Returns a dict object that encapsulates message attributes. See parameters for
more details on attributes that can be set.

Return type dict

Connection.Channel.qgos
QoS manager for this channel.

Lazily instantiates an object of type OoS upon access to the self.qos attribute.
Returns An already existing, or newly created QoS object

Return type 0oS

4.29.

Transport Options 121

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/stdtypes.html#dict

Kombu Documentation, Release 3.0.37

Connection.Channel.queue_bind (queue, exchange, routing_key, **kwargs)
Bind a queue to an exchange with a bind key.

Bind a queue specified by name, to an exchange specified by name, with a specific bind key. The
queue and exchange must already exist on the broker for the bind to complete successfully. Queues
may be bound to exchanges multiple times with different keys.

Parameters
* queue (str)— The name of the queue to be bound.

* exchange (st r) - The name of the exchange that the queue should be bound
to.

e routing key (str)— The bind key that the specified queue should bind to
the specified exchange with.

Connection.Channel.queue_declare (queue, passive=False, durable=False, exclu-
sive=False, auto_delete=True, nowait=False, ar-

guments=None)
Create a new queue specified by name.

If the queue already exists, no change is made to the queue, and the return value returns information
about the existing queue.

The queue name is required and specified as the first argument.

If passive is True, the server will not create the queue. The client can use this to check whether a
queue exists without modifying the server state. Default is False.

If durable is True, the queue will be durable. Durable queues remain active when a server restarts.
Non-durable queues (transient queues) are purged if/when a server restarts. Note that durable
queues do not necessarily hold persistent messages, although it does not make sense to send persis-
tent messages to a transient queue. Default is False.

If exclusive is True, the queue will be exclusive. Exclusive queues may only be consumed by the
current connection. Setting the ‘exclusive’ flag always implies ‘auto-delete’. Default is False.

If auto_delete is True, the queue is deleted when all consumers have finished using it. The last con-
sumer can be cancelled either explicitly or because its channel is closed. If there was no consumer
ever on the queue, it won’t be deleted. Default is True.

The nowait parameter is unused. It was part of the 0-9-1 protocol, but this AMQP client implements
0-10 which removed the nowait option.

The arguments parameter is a set of arguments for the declaration of the queue. Arguments are
passed as a dict or None. This field is ignored if passive is True. Default is None.

This method returns a namedtuple with the name ‘queue_declare_ok_t’ and the queue name
as ‘queue’, message count on the queue as ‘message_count’, and the number of active consumers
as ‘consumer_count’. The named tuple values are ordered as queue, message_count, and con-
sumer_count respectively.

Due to Celery’s non-ACKing of events, a ring policy is set on any queue that starts with the string
‘celeryev’ or ends with the string ‘pidbox’. These are celery event queues, and Celery does not ack
them, causing the messages to build-up. Eventually Qpid stops serving messages unless the ‘ring’
policy is set, at which point the buffer backing the queue becomes circular.

Parameters
* queue (st r)— The name of the queue to be created.

* passive (bool) - If True, the sever will not create the queue.

122 Chapter 4. API Reference

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 3.0.37

* durable (boo1l) - If True, the queue will be durable.
e exclusive (bool) - If True, the queue will be exclusive.

* auto_delete (bool) — If True, the queue is deleted when all consumers
have finished using it.

* nowait (bool) — This parameter is unused since the 0-10 specification does
not include it.

* arguments (dict or None) — A set of arguments for the declaration of
the queue.

Returns A named tuple representing the declared queue as a named tuple. The tuple
values are ordered as queue, message count, and the active consumer count.

Return type namedtuple

Connection.Channel.queue_delete (queue, if_unused=False, if_empty=False,
*rkwargs)
Delete a queue by name.

Delete a queue specified by name. Using the if _unused keyword argument, the delete can only

occur if there are 0 consumers bound to it. Using the if _empty keyword argument, the delete can
only occur if there are 0 messages in the queue.

Parameters
* queue (str)— The name of the queue to be deleted.

* if unused (bool) — If True, delete only if the queue has 0 consumers. If
False, delete a queue even with consumers bound to it.

* if empty (bool) — If True, only delete the queue if it is empty. If False,
delete the queue if it is empty or not.

Connection.Channel.queue_purge (queue, **kwargs)
Remove all undelivered messages from queue.

Purge all undelivered messages from a queue specified by name. If the queue does not exist an
exception is raised. The queue message depth is first checked, and then the broker is asked to purge
that number of messages. The integer number of messages requested to be purged is returned.
The actual number of messages purged may be different than the requested number of messages to
purge.

Sometimes delivered messages are asked to be purged, but are not. This case fails silently, which
is the correct behavior when a message that has been delivered to a different consumer, who has
not ACKed the message, and still has an active session with the broker. Messages in that case are
not safe for purging and will be retained by the broker. The client is unable to change this delivery
behavior.

Internally, this method relies on _purge ().

Parameters queue (str) — The name of the queue which should have all messages
removed.

Returns The number of messages requested to be purged.
Return type int

Raises gpid.messaging.exceptions.NotFound if the queue being purged
cannot be found.

4.29. Transport Options 123

http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#int

Kombu Documentation, Release 3.0.37

Connection.Channel.queue_unbind (queue, exchange, routing_key, **kwargs)
Unbind a queue from an exchange with a given bind key.

Unbind a queue specified by name, from an exchange specified by name, that is already bound with
a bind key. The queue and exchange must already exist on the broker, and bound with the bind key
for the operation to complete successfully. Queues may be bound to exchanges multiple times with
different keys, thus the bind key is a required field to unbind in an explicit way.

Parameters
* queue (str)— The name of the queue to be unbound.

* exchange (str) — The name of the exchange that the queue should be un-
bound from.

* routing key (str) — The existing bind key between the specified queue
and a specified exchange that should be unbound.

Connection.Channel .typeof (exchange, default="direct’)
Get the exchange type.

Lookup and return the exchange type for an exchange specified by name. Exchange types are
expected to be ‘direct’, ‘topic’, and ‘fanout’, which correspond with exchange functionality as
specified in AMQP 0-10 and earlier. If the exchange cannot be found, the default exchange type is
returned.

Parameters
* exchange (st r)— The exchange to have its type lookup up.

* default (str) — The type of exchange to assume if the exchange does not
exist.

Returns The exchange type either ‘direct’, ‘topic’, or ‘fanout’.
Return type str

Connection.close ()
Close the connection

Closing the connection will close all associated session, senders, or receivers used by the Connection.

Connection.close_channel (channel)
Close a Channel.

Close a channel specified by a reference to the Channel object.
Parameters channel (Channel.) — Channel that should be closed.

Connection.get_qgpid connection ()
Return the existing connection (singleton).

Returns The existing qpid.messaging.Connection

Return type gpid.messaging.endpoints.Connection

4.29.3 Channel

class kombu.transport.gpid.Channel (connection, transport)
Supports broker configuration and messaging send and receive.
Parameters

e connection (kombu.transport.gpid.Connection)— A Connection object
that this Channel can reference. Currently only used to access callbacks.

124 Chapter 4. API Reference

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 3.0.37

e transport (kombu.transport.gpid.Transport) — The Transport this
Channel is associated with.

A channel object is designed to have method-parity with a Channel as defined in AMQP 0-10 and earlier, which
allows for the following broker actions:

eexchange declare and delete

equeue declare and delete

equeue bind and unbind operations

*queue length and purge operations

*sending/receiving/rejecting messages

estructuring, encoding, and decoding messages

esupports synchronous and asynchronous reads

sreading state about the exchange, queues, and bindings
Channels are designed to all share a single TCP connection with a broker, but provide a level of isolated commu-
nication with the broker while benefiting from a shared TCP connection. The Channel is given its Connection
object by the Transport that instantiates the channel.

This channel inherits from StdChannel, which makes this a ‘native’ channel versus a ‘virtual’ channel which
would inherit from kombu.transports.virtual.

Messages sent using this channel are assigned a delivery_tag. The delivery_tag is generated for a message as
they are prepared for sending by basic _publish (). The delivery_tag is unique per channel instance. The
delivery_tag has no meaningful context in other objects, and is only maintained in the memory of this object,
and the underlying QoS object that provides support.

Each channel object instantiates exactly one QoS object for prefetch limiting, and asynchronous ACKing. The
QoS object is lazily instantiated through a property method gos (). The 0oS object is a supporting object that
should not be accessed directly except by the channel itself.

Synchronous reads on a queue are done using a call to basic_get () which uses _get () to perform the
reading. These methods read immediately and do not accept any form of timeout. basic get () reads
synchronously and ACKs messages before returning them. ACKing is done in all cases, because an application
that reads messages using qpid.messaging, but does not ACK them will experience a memory leak. The no_ack
argument to basic_get () does not affect ACKing functionality.

Asynchronous reads on a queue are done by starting a consumer using basic_consume (). Each call to
basic_consume () will cause a Receiver to be created on the Session started by the :class: Trans-
port. The receiver will asynchronously read using gpid.messaging, and prefetch messages before the call to
Transport.basic_drain () occurs. The prefetch_count value of the QoS object is the capacity value
of the new receiver. The new receiver capacity must always be at least 1, otherwise none of the receivers will
appear to be ready for reading, and will never be read from.

Each call to basic_consume () creates a consumer, which is given a consumer tag that is identified by the
caller of basic_consume (). Already started consumers can be cancelled using by their consumer_tag using
basic_cancel (). Cancellation of a consumer causes the Receiver object to be closed.

Asynchronous message ACKing is supported through basic_ack (), and is referenced by delivery_tag. The
Channel object uses its 0o S object to perform the message ACKing.

class Message (channel, payload, **kwargs)
A class reference that identifies

serializable ()

class Channel . QoS (session, prefetch_count=1)
A class reference that will be instantiated using the qos property.

ack (delivery_tag)
Acknowledge a message by delivery_tag.

Called asynchronously once the message has been handled and can be forgotten by the broker.

4.29. Transport Options 125

Kombu Documentation, Release 3.0.37

Parameters delivery_tag (uuid.UUID) — the delivery tag associated with the
message to be acknowledged.

append (message, delivery_tag)
Append message to the list of un-ACKed messages.

Add a message, referenced by the delivery_tag, for ACKing, rejecting, or getting later. Messages
are saved into an collections.OrderedDict by delivery_tag.

Parameters

* message (gpid.messaging.Message) — A received message that has
not yet been ACKed.

* delivery_ tag (uuid.UUID)— A UUID to refer to this message by upon
receipt.

can_consume ()
Return True if the Channel can consume more messages, else False.

Used to ensure the client adheres to currently active prefetch limits.

Returns True, if this QoS object can accept more messages without violating the
prefetch_count. If prefetch_count is 0, can_consume will always return True.

Return type bool

can_consume_max estimate ()
Return the remaining message capacity for the associated
kombu.transport.gpid.Channel.

Returns an estimated number of outstanding messages that a
kombu.transport.qgpid.Channel can accept without exceeding prefetch_count. If
prefetch_count is 0, then this method returns 1.

Returns The number of estimated messages that can be fetched without violating the
prefetch_count.

Return type int

get (delivery_tag)
Get an un-ACKed message by delivery_tag. If called with an invalid delivery_tag a KeyError is
raised.

Parameters delivery_ tag (uuid.UUID) — The delivery tag associated with the
message to be returned.

Returns An un-ACKed message that is looked up by delivery_tag.
Return type gpid.messaging.Message

reject (delivery_tag, requeue=False)
Reject a message by delivery_tag.

Explicitly notify the broker that the channel associated with this QoS object is rejecting the message
that was previously delivered.

If requeue is False, then the message is not requeued for delivery to another consumer. If requeue
is True, then the message is requeued for delivery to another consumer.

Parameters

* delivery tag (uuid.UUID) — The delivery tag associated with the mes-
sage to be rejected.

126 Chapter 4. API Reference

http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/collections.html#collections.OrderedDict
http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/exceptions.html#KeyError
http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/uuid.html#uuid.UUID

Kombu Documentation, Release 3.0.37

* requeue (bool)—If True, the broker will be notified to requeue the message.
If False, the broker will be told to drop the message entirely. In both cases, the
message will be removed from this object.

Channel .basic_ack (delivery_tag)
Acknowledge a message by delivery_tag.

Acknowledges a message referenced by delivery_tag. Messages can only be ACKed using
basic_ack () if they were acquired using basic_consume (). This is the ACKing portion of the
asynchronous read behavior.

Internally, this method uses the QoS object, which stores messages and is responsible for the ACKing.

Parameters delivery_ tag (uuid.UUID) — The delivery tag associated with the mes-
sage to be acknowledged.

Channel .basic_cancel (consumer_tag)
Cancel consumer by consumer tag.

Request the consumer stops reading messages from its queue. The consumer is a Receiver, and it is
closed using close ().

This method also cleans up all lingering references of the consumer.

Parameters consumer_tag (an immutable object)— The tag which refers to the
consumer to be cancelled. Originally specified when the consumer was created as a
parameter to basic_consume ().

Channel .basic_consume (queue, no_ack, callback, consumer_tag, **kwargs)
Start an asynchronous consumer that reads from a queue.

This method starts a consumer of type Receiver using the Session created and referenced by
the Transport that reads messages from a queue specified by name until stopped by a call to
basic_cancel ().

Messages are available later through a synchronous call to Transport.drain_events (), which
will drain from the consumer started by this method. Transport.drain_events () is synchronous,
but the receiving of messages over the network occurs asynchronously, so it should still perform
well. Transport.drain_events () calls the callback provided here with the Message of type
self.Message.

Each consumer is referenced by a consumer_tag, which is provided by the caller of this method.

This method sets up the callback onto the self.connection object in a dict keyed by queue name.
drain_events () is responsible for calling that callback upon message receipt.

All messages that are received are added to the QoS object to be saved for asynchronous ACKing later
after the message has been handled by the caller of drain events (). Messages can be ACKed after
being received through a call to basic_ack ().

If no_ack is True, The no_ack flag indicates that the receiver of the message will not call basic_ack ()
later. Since the message will not be ACKed later, it is ACKed immediately.

basic_consume () transforms the message object type prior to calling the callback. Initially the
message comes in as a gpid.messaging.Message. This method unpacks the payload of the
gpid.messaging.Message and creates a new object of type self.Message.

This method wraps the user delivered callback in a runtime-built function which provides the type trans-
formation from qpid.messaging.Message to Message, and adds the message to the associated
QoS object for asynchronous ACKing if necessary.

Parameters

4.29. Transport Options 127

http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/uuid.html#uuid.UUID

Kombu Documentation, Release 3.0.37

* queue (str)— The name of the queue to consume messages from

* no_ack (bool) —If True, then messages will not be saved for ACKing later, but
will be ACKed immediately. If False, then messages will be saved for ACKing
later with a call to basic ack ().

e callback (a callable object)— a callable that will be called when mes-
sages arrive on the queue.

* consumer_tag (an immutable object) — a tag to reference the created
consumer by. This consumer_tag is needed to cancel the consumer.

Channel .basic_get (queue, no_ack=False, **kwargs)
Non-blocking single message get and ACK from a queue by name.

Internally this method uses _get () to fetch the message. If an Empty exception is raised by _get (),
this method silences it and returns None. If _get () does return a message, that message is ACKed.
The no_ack parameter has no effect on ACKing behavior, and all messages are ACKed in all cases. This
method never adds fetched Messages to the internal QoS object for asynchronous ACKing.

This method converts the object type of the method as it passes through. Fetching from the bro-
ker, _get () returns a gpid.messaging.Message, but this method takes the payload of the
gpid.messaging.Message and instantiates a Message object with the payload based on the class
setting of self.Message.

Parameters
* queue (str)— The queue name to fetch a message from.

* no_ack — The no_ack parameter has no effect on the ACK behavior of this

method. Un-ACKed messages create a memory leak in gpid.messaging, and need
to be ACKed in all cases.

Returns The received message.
Return type Message

Channel .basic_publish (message, exchange, routing_key, **kwargs)
Publish message onto an exchange using a routing key.

Publish a message onto an exchange specified by name using a routing key specified by routing_key.
Prepares the message in the following ways before sending:

eencodes the body using encode_body ()

ewraps the body as a buffer object, so that gpid.messaging.endpoints.Sender uses a
content type that can support arbitrarily large messages.

esets delivery_tag to a random uuid. UUID
esets the exchange and routing_key info as delivery_info

Internally uses _put () to send the message synchronously. This message is typically called by
kombu.messaging.Producer._publish as the final step in message publication.

Parameters

* message (dict) — A dict containing key value pairs with the message data. A
valid message dict can be generated using the prepare_message () method.

* exchange (st r)— The name of the exchange to submit this message onto.

* routing_ key (str)— The routing key to be used as the message is submitted
onto the exchange.

128 Chapter 4. API Reference

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 3.0.37

Channel .basic_qgos (prefetch_count, *args)
Change QoS settings for this Channel.

Set the number of un-acknowledged messages this Channel can fetch and hold. The prefetch_value is also
used as the capacity for any new Receiver objects.

Currently, this value is hard coded to 1.
Parameters prefetch_count (int)— Not used. This method is hard-coded to 1.

Channel .basic_reject (delivery_tag, requeue=False)
Reject a message by delivery_tag.

Rejects a message that has been received by the Channel, but not yet acknowledged. Messages are refer-
enced by their delivery_tag.

If requeue is False, the rejected message will be dropped by the broker and not delivered to any other con-
sumers. If requeue is True, then the rejected message will be requeued for delivery to another consumer,
potentially to the same consumer who rejected the message previously.

Parameters

* delivery_tag (uuid.UUID) — The delivery tag associated with the message
to be rejected.

* requeue (bool) — If False, the rejected message will be dropped by the broker
and not delivered to any other consumers. If True, then the rejected message will
be requeued for delivery to another consumer, potentially to the same consumer
who rejected the message previously.

Channel .body_encoding = ‘base64’
Default body encoding. NOTE: transport_options[’body_encoding’] will override this
value.

Channel.close ()
Cancel all associated messages and close the Channel.

This cancels all consumers by calling basic_cancel () for each known consumer_tag. It also closes
the self._broker sessions. Closing the sessions implicitly causes all outstanding, un-ACKed messages to
be considered undelivered by the broker.

Channel.codecs = {‘base64’: <kombu.transport.virtual. Base64 object at 0x7fb7488f4fd0>}
Binary <-> ASCII codecs.

Channel .decode_body (body, encoding=None)
Decode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in self.codecs. self.codecs uses strings as its
keys which specify the name of the encoding, and then the value is an instantiated object that can provide
encoding/decoding of that type through encode and decode methods.

Parameters
* body (st r)— The body to be encoded.

* encoding (str) — The encoding type to be used. Must be a supported codec
listed in self.codecs.

Returns If encoding is specified, the decoded body is returned. If encoding is not specified,
the body is returned unchanged.

Return type str

4.29.

Transport Options 129

http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/uuid.html#uuid.UUID
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 3.0.37

Channel .encode_body (body, encoding=None)
Encode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in self.codecs. self.codecs uses strings as its
keys which specify the name of the encoding, and then the value is an instantiated object that can provide
encoding/decoding of that type through encode and decode methods.

Parameters
* body (st r)— The body to be encoded.

* encoding (str) — The encoding type to be used. Must be a supported codec
listed in self.codecs.

Returns If encoding is specified, return a tuple with the first position being the encoded
body, and the second position the encoding used. If encoding is not specified, the body
is passed through unchanged.

Return type tuple

Channel .exchange_declare (exchange="", type="direct’, durable=False, **kwargs)
Create a new exchange.

Create an exchange of a specific type, and optionally have the exchange be durable. If an exchange of the
requested name already exists, no action is taken and no exceptions are raised. Durable exchanges will
survive a broker restart, non-durable exchanges will not.

Exchanges provide behaviors based on their type. The expected behaviors are those defined in the AMQP
0-10 and prior specifications including ‘direct’, ‘topic’, and ‘fanout’ functionality.

Parameters

* type (str) — The exchange type. Valid values include ‘direct’, ‘topic’, and
‘fanout’.

* exchange (str) — The name of the exchange to be created. If no exchange is
specified, then a blank string will be used as the name.

* durable (bool) - True if the exchange should be durable, or False otherwise.

Channel .exchange_delete (exchange_name, **kwargs)
Delete an exchange specified by name

Parameters exchange_name (st r)— The name of the exchange to be deleted.

Channel .prepare_message (body, priority=None, content_type=None, content_encoding=None,

headers=None, properties=None)
Prepare message data for sending.

This message is typically called by kombu.messaging.Producer._publish () as a preparation
step in message publication.

Parameters
* body (str)— The body of the message

* priority (int) — A number between 0 and 9 that sets the priority of the mes-
sage.

* content_type (str) — The content_type the message body should be treated
as. If this is unset, the gpid.messaging.endpoints.Sender object tries
to autodetect the content_type from the body.

* content_encoding (str) — The content_encoding the message body is en-
coded as.

130 Chapter 4. API Reference

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#tuple
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 3.0.37

* headers (dict) — Additional Message headers that should be set. Passed in as
a key-value pair.

* properties (dict)— Message properties to be set on the message.

Returns Returns a dict object that encapsulates message attributes. See parameters for more
details on attributes that can be set.

Return type dict

Channel.qgos
QoS manager for this channel.

Lazily instantiates an object of type Oo.S upon access to the self.qos attribute.
Returns An already existing, or newly created QoS object
Return type OosS

Channel .queue_bind (queue, exchange, routing_key, **kwargs)
Bind a queue to an exchange with a bind key.

Bind a queue specified by name, to an exchange specified by name, with a specific bind key. The queue
and exchange must already exist on the broker for the bind to complete successfully. Queues may be
bound to exchanges multiple times with different keys.

Parameters
* queue (st r)— The name of the queue to be bound.
* exchange (st r) - The name of the exchange that the queue should be bound to.

* routing_key (str)— The bind key that the specified queue should bind to the
specified exchange with.

Channel .queue_declare (queue, passive=False, durable=False, exclusive=False,

auto_delete=True, nowait=False, arguments=None)
Create a new queue specified by name.

If the queue already exists, no change is made to the queue, and the return value returns information about
the existing queue.

The queue name is required and specified as the first argument.

If passive is True, the server will not create the queue. The client can use this to check whether a queue
exists without modifying the server state. Default is False.

If durable is True, the queue will be durable. Durable queues remain active when a server restarts. Non-
durable queues (transient queues) are purged if/when a server restarts. Note that durable queues do not
necessarily hold persistent messages, although it does not make sense to send persistent messages to a
transient queue. Default is False.

If exclusive is True, the queue will be exclusive. Exclusive queues may only be consumed by the current
connection. Setting the ‘exclusive’ flag always implies ‘auto-delete’. Default is False.

If auto_delete is True, the queue is deleted when all consumers have finished using it. The last consumer
can be cancelled either explicitly or because its channel is closed. If there was no consumer ever on the
queue, it won’t be deleted. Default is True.

The nowait parameter is unused. It was part of the 0-9-1 protocol, but this AMQP client implements 0-10
which removed the nowait option.

The arguments parameter is a set of arguments for the declaration of the queue. Arguments are passed as
a dict or None. This field is ignored if passive is True. Default is None.

4.29. Transport Options 131

http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/stdtypes.html#dict
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 3.0.37

This method returns a namedtuple with the name ‘queue_declare_ok_t’ and the queue name as
‘queue’, message count on the queue as ‘message_count’, and the number of active consumers as ‘con-
sumer_count’. The named tuple values are ordered as queue, message_count, and consumer_count re-
spectively.

Due to Celery’s non-ACKing of events, a ring policy is set on any queue that starts with the string ‘cel-
eryev’ or ends with the string ‘pidbox’. These are celery event queues, and Celery does not ack them,
causing the messages to build-up. Eventually Qpid stops serving messages unless the ‘ring’ policy is set,
at which point the buffer backing the queue becomes circular.

Parameters
* queue (str)— The name of the queue to be created.
* passive (bool) —If True, the sever will not create the queue.
* durable (bool) —If True, the queue will be durable.
* exclusive (bool)—If True, the queue will be exclusive.

* auto_delete (bool) — If True, the queue is deleted when all consumers have
finished using it.

* nowait (bool)— This parameter is unused since the 0-10 specification does not
include it.

* arguments (dict or None)— A set of arguments for the declaration of the
queue.

Returns A named tuple representing the declared queue as a named tuple. The tuple values
are ordered as queue, message count, and the active consumer count.

Return type namedtuple

Channel .queue_delete (queue, if_unused=False, if_empty=False, **kwargs)

Delete a queue by name.

Delete a queue specified by name. Using the if_unused keyword argument, the delete can only occur if
there are 0 consumers bound to it. Using the if_empty keyword argument, the delete can only occur if
there are O messages in the queue.

Parameters
* queue (str)— The name of the queue to be deleted.

* if unused (bool) - If True, delete only if the queue has 0 consumers. If False,
delete a queue even with consumers bound to it.

* if empty (bool)—If True, only delete the queue if it is empty. If False, delete
the queue if it is empty or not.

Channel .queue_purge (queue, **kwargs)

Remove all undelivered messages from queue.

Purge all undelivered messages from a queue specified by name. If the queue does not exist an exception
is raised. The queue message depth is first checked, and then the broker is asked to purge that number
of messages. The integer number of messages requested to be purged is returned. The actual number of
messages purged may be different than the requested number of messages to purge.

Sometimes delivered messages are asked to be purged, but are not. This case fails silently, which is the
correct behavior when a message that has been delivered to a different consumer, who has not ACKed the
message, and still has an active session with the broker. Messages in that case are not safe for purging and
will be retained by the broker. The client is unable to change this delivery behavior.

132

Chapter 4. API Reference

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#bool

Kombu Documentation, Release 3.0.37

Internally, this method relies on _purge ().

Parameters queue (str) — The name of the queue which should have all messages re-
moved.

Returns The number of messages requested to be purged.
Return type int

Raises gpid.messaging.exceptions.NotFound if the queue being purged cannot
be found.

Channel .queue_unbind (queue, exchange, routing_key, **kwargs)
Unbind a queue from an exchange with a given bind key.

Unbind a queue specified by name, from an exchange specified by name, that is already bound with a
bind key. The queue and exchange must already exist on the broker, and bound with the bind key for
the operation to complete successfully. Queues may be bound to exchanges multiple times with different
keys, thus the bind key is a required field to unbind in an explicit way.

Parameters
* queue (str)— The name of the queue to be unbound.

* exchange (st r) — The name of the exchange that the queue should be unbound
from.

* routing_ key (st r)— The existing bind key between the specified queue and a
specified exchange that should be unbound.

Channel . typeof (exchange, default="direct’)
Get the exchange type.

Lookup and return the exchange type for an exchange specified by name. Exchange types are expected
to be ‘direct’, ‘topic’, and ‘fanout’, which correspond with exchange functionality as specified in AMQP
0-10 and earlier. If the exchange cannot be found, the default exchange type is returned.

Parameters

* exchange (st r)— The exchange to have its type lookup up.

* default (str) - The type of exchange to assume if the exchange does not exist.
Returns The exchange type either ‘direct’, ‘topic’, or ‘fanout’.

Return type str

4.29.4 Message

class kombu.transport.gpid.Message (channel, payload, **kwargs)

serializable ()

4.30 kombu.transport.memory

In-memory transport.

4.30. kombu.transport.memory 133

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str

Kombu Documentation, Release 3.0.37

» Transport
e Channel

4.30.1 Transport

class kombu.transport.memory.Transport (client, **kwargs)
class Channel (connection, **kwargs)

after reply message_ received (queue)

close()

do_restore = False

queues = {}

supports_fanout = True
Transport .driver_name = ‘memory’
Transport .driver_type = ‘memory’
Transport.driver_version ()

Transport . state = <kombu.transport.virtual.BrokerState object>
memory backend state is global.

4.30.2 Channel
class kombu.transport .memory.Channel (connection, **kwargs)

after_reply message_received (queue)
close ()
do_restore = False

queues = {}

supports_fanout = True

4.31 kombu.transport.redis

Redis transport.

» Transport
e Channel

134 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

4.31.1 Transport

class kombu.transport.redis.Transport (*args, **kwargs)
class Channel (*args, **kwargs)
class QoS (*args, **kwargs)

ack (delivery_tag)

append (message, delivery_tag)

pipe_or_acquire (*args, **kwds)

reject (delivery_tag, requeue=False)

restore_at_shutdown = True

restore_by_ tag (tag, client=None, leftmost=False)

restore_unacked (client=None)

restore_visible (start=0, num=10, interval=10)

unacked_index_key

unacked_key

unacked _mutex_expire

unacked_mutex_key

visibility timeout
Transport.Channel.ack_emulation = True

Transport.Channel.active_queues
Set of queues being consumed from (excluding fanout queues).

Transport.Channel.async_pool
Transport.Channel .basic_cancel (consumer_tag)
Transport.Channel .basic_consume (queue, *args, **kwargs)

Transport.Channel.client
Client used to publish messages, BRPOP etc.

Transport.Channel.close ()

Transport.Channel .conn_or_acquire (*args, **kwds)

Transport.Channel.fanout_patterns = False

Transport.Channel.fanout_prefix = False

Transport.Channel. from_transport_options = (u’body_encoding’, u’deadletter_queue’, ‘ack_emulation
Transport.Channel .get_table (exchange)

Transport.Channel .keyprefix_ fanout = ‘/{db}.

Transport.Channel .keyprefix queue = ‘_kombu.binding. %s’

Transport.Channel .max_connections =10

4.31. kombu.transport.redis 135

Kombu Documentation, Release 3.0.37

Transport.Channel.pool
Transport.Channel.priority (n)
Transport.Channel.priority_steps =[0, 3,6, 9]
Transport.Channel. sep = ‘\x06\x16’
Transport.Channel.socket_connect_timeout = None
Transport.Channel.socket_keepalive = None
Transport.Channel.socket_keepalive_options = None
Transport.Channel.socket_timeout = None
Transport.Channel.subclient

Pub/Sub connection

Transport.
Transport
Transport
Transport
Transport
Transport

Transport

.Channel

.Channel

Channel.

.Channel.

.Channel.

.Channel.

.Channel.

used to consume fanout queues.
supports_fanout = True

unacked_index_key = ‘unacked_index’

.unacked_key = ‘unacked’

unacked_mutex_expire =300

unacked_mutex_key = ‘unacked_mutex’

.unacked restore_limit = None

visibility timeout =3600

Transport .default_port = 6379
Transport .driver_name = ‘redis’
Transport.driver_type = ‘redis’
Transport.driver_version ()

Transport.on_readable (fileno)

Handle AIO event for one of our file descriptors.

Transport.polling_interval = None

Transport.register_with_event_1loop (connection, loop)

Transport .supports_ev = True

4.31.2 Channel

class kombu.transport.redis.Channel (*args, **kwargs)

class QoS (*args, **kwargs)

ack (delivery_tag)

append (message, delivery_tag)
pipe_or_acquire (*args, **kwds)
reject (delivery_tag, requeue=False)

restore_at_shutdown = True

136

. API Reference

Kombu Documentation, Release 3.0.37

restore_by_ tag (tag, client=None, leftmost=False)

restore_unacked (client=None)

restore_visible (start=0, num=10, interval=10)

unacked_index_ key

unacked_key

unacked mutex_expire

unacked_mutex_key

visibility_timeout
Channel.ack_emulation = True

Channel.active_dqueues
Set of queues being consumed from (excluding fanout queues).

Channel.async_pool
Channel .basic_cancel (consumer_tag)
Channel .basic_consume (queue, *args, **kwargs)

Channel.client
Client used to publish messages, BRPOP etc.

Channel.close ()
Channel.conn_or_acquire (*args, **kwds)

Channel . fanout_patterns = False
If enabled the fanout exchange will support patterns in routing and binding keys (like a topic exchange
but using PUB/SUB). This will be enabled by default in a future version.

Channel. fanout_prefix = False
Transport option to enable disable fanout keyprefix. Should be enabled by default, but that is not back-
wards compatible. Can also be string, in which case it changes the default prefix (‘/{db}.”) into to
something else. The prefix must include a leading slash and a trailing dot.

Channel.from_transport_options = (u’body_encoding’, u’deadletter_queue’, ‘ack_emulation’, ‘unacked_key’, ‘u
Channel .get_table (exchange)

Channel .keyprefix_fanout = ‘/{db}’

Channel .keyprefix_queue = ‘_kombu.binding. %s’
Channel .max_connections =10

Channel.pool

Channel .priority (n)

Channel .priority_steps=][0,3,6,9]

Channel. sep = ‘x06\x16’
Channel.socket_connect_timeout = None
Channel .socket_keepalive = None
Channel.socket_keepalive_options = None

Channel.socket_timeout = None

4.31. kombu.transport.redis 137

Kombu Documentation, Release 3.0.37

Channel.subclient
Pub/Sub connection used to consume fanout queues.

Channel.supports_fanout = True

Channel .unacked_index_key = ‘unacked_index’
Channel .unacked_key = ‘unacked’

Channel .unacked_mutex_expire =300
Channel .unacked_mutex_key = ‘unacked_mutex’

Channel .unacked restore_limit = None

Channel .visibility_timeout = 3600

4.32 kombu.transport.zmq

4.32.1 kombu.transport.zmq

ZeroMQ transport.
members

undoc-members

4.33 kombu.transport.beanstalk

Beanstalk transport.
copyright
3. 2010 - 2013 by David Ziegler.
license BSD, see LICENSE for more details.

» Transport
e Channel

4.33.1 Transport

class kombu.transport.beanstalk.Transport (*args, **kwargs)
class Channel (connection, **kwargs)

client

close ()
Transport.channel_errors = (<class ‘amqp.exceptions.ChannelError’>, <class ‘socket.error’>, <type ‘exceptions.I
Transport .connection_errors = (<class ‘amqp.exceptions.ConnectionError’>, <class ‘socket.error’>, <type ‘excej

Transport.default_port = 11300

138 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

Transport.driver_name = ‘beanstalkc’

Transport.driver_type = ‘beanstalk’
Transport.driver_version ()

Transport.polling_interval=1

4.33.2 Channel

class kombu.transport.beanstalk.Channel (connection, **kwargs)

client

close ()

4.34 kombu.transport.mongodb

MongoDB transport.
copyright
3. 2010 - 2013 by Flavio Percoco Premoli.
license BSD, see LICENSE for more details.

 Transport
e Channel

4.34.1 Transport

class kombu.transport .mongodb.Transport (client, **kwargs)
class Channel (*vargs, **kwargs)

client
create_broadcast_cursor (exchange, routing_key, pattern, queue)
get_broadcast ()

get_broadcast_cursor (queue)

get_messages ()

get_routing ()

get_table (exchange)
Get table of bindings for exchange.

queue_delete (queue, **kwargs)
supports_fanout = True

Transport.can_parse_url = True

4.34. kombu.transport.mongodb 139

Kombu Documentation, Release 3.0.37

Transport.channel_errors = (<class ‘amqp.exceptions.ChannelError’>, <class ‘pymongo.errors.ConnectionFailur
Transport.connection_errors = (<class ‘amqp.exceptions.ConnectionError’>, <class ‘pymongo.errors.Connectio
Transport .default_port =27017

Transport.driver_name = ‘pymongo’

Transport .driver_type = ‘mongodb’

Transport.driver_version ()

Transport.polling_interval=1

4.34.2 Channel

class kombu.transport .mongodb.Channel (*vargs, **kwargs)

client

create_broadcast_cursor (exchange, routing_key, pattern, queue)
get_broadcast ()

get_broadcast_cursor (queue)

get_messages ()

get_routing()

get_table (exchange)
Get table of bindings for exchange.

queue_delete (queue, **kwargs)

supports_fanout = True

4.35 kombu.transport.couchdb

CouchDB transport.
copyright
3. 2010 - 2013 by David Clymer.
license BSD, see LICENSE for more details.

* Transport
e Channel
e Functions

4.35.1 Transport

class kombu.transport.couchdb.Transport (*args, **kwargs)

class Channel (connection, **kwargs)

140 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

client

view_created = False
Transport.channel_errors = (<class ‘amqp.exceptions.ChannelError’>, None, None, None, None, None)
Transport.connection_errors = (<class ‘amqp.exceptions.ConnectionError’>, <class ‘socket.error’>, None, None
Transport.default_port = 5984
Transport .driver_name = ‘couchdb’
Transport .driver_type = ‘couchdb’
Transport .driver_version ()

Transport.polling interval=1

4.35.2 Channel

class kombu.transport.couchdb.Channel (connection, **kwargs)

client

view_created = False

4.35.3 Functions

kombu.transport.couchdb.create_message_view (db)

4.36 kombu.transport.zookeeper

4.36.1 kombu.transport.zookeeper

Zookeeper transport.
copyright
3. 2010 - 2013 by Mahendra M.
license BSD, see LICENSE for more details.
Synopsis

Connects to a zookeeper node as <server>:<port>/<vhost> The <vhost> becomes the base for all the other znodes. So
we can use it like a vhost.

This uses the built-in kazoo recipe for queues

References
* https://zookeeper.apache.org/doc/trunk/recipes.html#sc_recipes_Queues
* https://kazoo.readthedocs.io/en/latest/api/recipe/queue.html

Limitations This queue does not offer reliable consumption. An entry is removed from the queue prior to being
processed. So if an error occurs, the consumer has to re-queue the item or it will be lost.

4.36. kombu.transport.zookeeper 141

https://zookeeper.apache.org/doc/trunk/recipes.html#sc_recipes_Queues
https://kazoo.readthedocs.io/en/latest/api/recipe/queue.html

Kombu Documentation, Release 3.0.37

» Transport
e Channel

Transport

class kombu.transport.zookeeper.Transport (*args, **kwargs)
class Channel (connection, **kwargs)

client
Transport.channel_errors = (<class ‘amqgp.exceptions.ChannelError’>,)
Transport.connection_errors = (<class ‘amqp.exceptions.ConnectionError’>,)
Transport.default_port = 2181
Transport .driver_name = ‘kazoo’
Transport.driver_type = ‘zookeeper’
Transport.driver_version ()

Transport.polling_interval=1

Channel

class kombu.transport.zookeeper.Channel (connection, **kwargs)

client

4.37 kombu.transport.filesystem

Transport using the file system as the message store.

e Transport
e Channel

4.37.1 Transport

class kombu.transport.filesystem. Transport (client, **kwargs)

class Channel (connection, **kwargs)

data_ folder_in
data_folder_ out

processed_folder

142 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

store_processed
transport_options
Transport .default_port =0

Transport.driver_name = ‘filesystem’

Transport.driver_type = ‘filesystem’

Transport.driver_version ()

4.37.2 Channel

class kombu.transport.filesystem.Channel (connection, **kwargs)

data_folder_in
data_folder_out
processed_folder
store_processed

transport_options

4.38 kombu.transport.django

Kombu transport using the Django database as a message store.

e Transport
e Channel

4.38.1 Transport

class kombu.transport.django.Transport (client, **kwargs)

class Channel (connection, **kwargs)

Queue
basic_consume (queue, *args, **kwargs)
queue_model = ‘kombu.transport.django.models:Queue’

refresh connection ()

Transport.channel_ errors = (<class ‘amqp.exceptions.ChannelError’>, <class ‘django.core.exceptions.ObjectDoe:

Transport.default_port =0
Transport.driver_name = ‘django’
Transport.driver_type = ‘sql’

Transport.driver_version ()

4.38. kombu.transport.django 143

Kombu Documentation, Release 3.0.37

Transport.polling_interval =5.0

4.38.2 Channel

class kombu.transport.django.Channel (connection, **kwargs)

Queue
basic_consume (queue, *args, **kwargs)
queue_model = ‘kombu.transport.django.models:Queue’

refresh connection ()

4.39 Django Models - kombu.transport.django.models
class kombu.transport.django.models .Message (id, visible, sent_at, payload, queue)

exception DoesNotExist
exception Message .MultipleObjectsReturned

Message.id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

Message .objects = <kombu.transport.django.managers.MessageManager object>

Message.payload
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

Message.queue
Accessor to the related object on the forward side of a many-to-one or one-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

Message.queue_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

Message.sent_at
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

Message.visible
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class kombu.transport.django.models.Queue (id, name)

exception DoesNotExist

144 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

exception Queue .MultipleObjectsReturned

Queue.id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

Queue .messages
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

Queue.name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

Queue .objects = <kombu.transport.django.managers.QueueManager object>

4.40 Django Managers - kombu.transport.django.managers
class kombu.transport.django.managers .MessageManager

cleanup ()
cleanup_every =10
connection_for write ()
pop (*args, **kwargs)

class kombu.transport.django.managers.QueueManager

fetch (queue_name)

publish (queue_name, payload)

purge (queue_name)

size (queue_name)
kombu.transport.django.managers.commit_on_success (fun)

kombu.transport.django.managers.select_for_update (gs)

4.41 Django Management - clean_kombu_messages

members

undoc-members

4.40. Django Managers - kombu.transport.django.managers 145

Kombu Documentation, Release 3.0.37

4.42 kombu.transport.sqglalchemy
4.43 kombu.transport.SLMQ

4.43.1 kombu.transport.SLMQ

SoftLayer Message Queue transport.

» Transport
e Channel

Transport

class kombu.transport.SLMQ.Transport (client, **kwargs)

class Channel (*args, **kwargs)

basic_ack (delivery_tag)

basic_cancel (consumer_tag)
basic_consume (queue, no_ack, *args, **kwargs)
conninfo

default_visibility_ timeout = 1800
delete_message (queue, message_id)
domain_format = ‘kombu% (vhost)s’

entity_ name (name, table={33: 95, 34: 95, 35: 95, 36: 95, 37: 95, 38: 95, 39: 95, 40: 95,41:
95, 42: 95, 43: 95,44: 95,45: 95, 46: 95,47: 95, 58: 95, 59: 95, 60: 95, 61:
95, 62: 95,63: 95,64: 95,91: 95, 92: 95,93: 95,94: 95,96: 95, 123: 95, 124:

95, 125: 95, 126: 95})
Format AMQP queue name into a valid SLQS queue name.

queue_name_prefix

slmg

transport_options

visibility_ timeout
Transport.connection_errors = (<class ‘amqp.exceptions.ConnectionError’>, None, <class ‘socket.error’>)
Transport .default_port = None

Transport.polling_interval=1

Channel

class kombu.transport.SLMQ.Channel (*args, **kwargs)

146 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

basic_ack (delivery_tag)

basic_cancel (consumer_tag)
basic_consume (queue, no_ack, *args, **kwargs)
conninfo

default_visibility timeout = 1800
delete_message (queue, message_id)
domain_format = ‘kombu% (vhost)s’

entity_ name (name, table={33: 95, 34: 95, 35: 95, 36: 95, 37: 95, 38: 95, 39: 95, 40: 95, 41: 95,
42: 95,43: 95,44: 95,45: 95,46: 95,47: 95, 58: 95, 59: 95, 60: 95,61: 95, 62: 95,
63: 95, 64: 95, 91: 95,92: 95, 93: 95, 94: 95, 96: 95, 123: 95, 124: 95, 125: 95, 126:

951
Format AMQP queue name into a valid SLQS queue name.

queue_name_prefix
slmg
transport_options

visibility timeout

4.44 kombu.transport.pyro

Pyro transport.

Requires the Pyro4 library to be installed.

e Transport
* Channel

4.44.1 Transport

class kombu.transport.pyro.Transport (client, **kwargs)
class Channel (connection, **kwargs)

after_ reply message_received (queue)
queues ()
shared_queues
Transport.default_port = 9090
Transport .driver_name = ‘pyro’
Transport.driver_type = ‘pyro’
Transport .driver_version ()

Transport.shared_queues

4.44. kombu.transport.pyro 147

Kombu Documentation, Release 3.0.37

Transport . state = <kombu.transport.virtual.BrokerState object>
memory backend state is global.

4.44.2 Channel

class kombu.transport.pyro.Channel (connection, **kwargs)

after_reply message_received (queue)

queues ()

shared_queues

4.45 kombu.transport.amqgplib

amgplib transport.

» Transport

* Connection
e Channel
Message

4.45.1 Transport

class kombu.transport.amgplib.Transport (client, **kwargs)

class Connection (*args, **kwargs)

channel (channel_id=None)
connected = True

drain_events (timeout=None)
Wait for an event on a channel.

read_ timeout (timeout=None)
Transport .channel_errors = (<class ‘amqp.exceptions.ChannelError’>, <class ‘kombu.transport.amqplib.NA’>)

Transport .close_connection (connection)
Close the AMQP broker connection.

Transport.connection_errors = (<class ‘amqp.exceptions.ConnectionError’>, <class ‘kombu.transport.amqplib.]
Transport.create_channel (connection)

Transport .default_connection_ params

Transport.default_port = 5672

Transport.drain_events (connection, **kwargs)

Transport .driver_name = ‘amqplib’

148 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

Transport.driver_type = ‘amqp’

Transport.establish_connection ()
Establish connection to the AMQP broker.

Transport .get_manager (*args, **kwargs)
Transport.is_alive (connection)
Transport.register_with_event_loop (connection, loop)
Transport .supports_ev = True

Transport .verify connection (connection)

4.45.2 Connection

class kombu.transport.amgplib.Connection (*args, **kwargs)

AMQP PROTOCOL_HEADER = ‘AMQP\x01\x01\x08\x00’

Connection
alias of NA

class SSLTransport (host, connect_timeout, ssl)

read_ frame ()

class Connection.TCPTransport

read_ frame ()
Connection.channel (channel_id=None)
Connection.connected = True

Connection.drain_events (timeout=None)
Wait for an event on a channel.

Connection.read timeout (timeout=None)

4.45.3 Channel

class kombu.transport.amgplib.Channel (*args, **kwargs)

class Message (channel, msg, **kwargs)

Channel .basic_cancel (consumer_tag, **kwargs)
Channel .basic_consume (*args, **kwargs)
Channel.close ()

Channel.events = {‘basic_return’: set([])}

Channel .message_to_python (raw_message)
Convert encoded message body back to a Python value.

4.45. kombu.transport.amqplib 149

Kombu Documentation, Release 3.0.37

Channel .prepare_message (body, priority=None, content_type=None, content_encoding=None,

headers=None, properties=None)
Encapsulate data into a AMQP message.

4.45.4 Message

class kombu.transport.amgplib.Message (channel, msg, **kwargs)

4.46 kombu.transport.base

Base transport interface.

* Message
* Transport

4.46.1 Message

class kombu.transport .base.Message (channel, body=None, delivery_tag=None, con-
tent_type=None, content_encoding=None, delivery_info={},
properties=None, headers=None, postencode=None, ac-
cept=None, **kwargs)
Base class for received messages.

payload
The decoded message body.

channel

delivery tag
content_type
content_encoding
delivery_ info
headers
properties

body

acknowledged
Set to true if the message has been acknowledged.

ack ()
Acknowledge this message as being processed., This will remove the message from the queue.

Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

reject (requeue=False)
Reject this message.

The message will be discarded by the server.

150 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

requeue ()
Reject this message and put it back on the queue.

You must not use this method as a means of selecting messages to process.

Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

decode ()
Deserialize the message body, returning the original python structure sent by the publisher.

4.46.2 Transport

class kombu.transport.base.Transport (client, **kwargs)
Base class for transports.

client = None
The Connect ion owning this instance.

default_port = None
Default port used when no port has been specified.

recoverable_connection_errors
Optional list of connection related exceptions that can be recovered from, but where the connection must
be closed and re-established first.

If not defined then all connection_errorsand channel errors will be regarded as recoverable,
but needing to close the connection first.

recoverable channel errors
Optional list of channel related exceptions that can be automatically recovered from without re-
establishing the connection.

connection_errors = (<class ‘amqp.exceptions.ConnectionError’>,)
Tuple of errors that can happen due to connection failure.

channel_errors = (<class ‘amqp.exceptions.ChannelError’>,)
Tuple of errors that can happen due to channel/method failure.

establish connection ()
close_connection (connection)
create_channel (connection)
close_channel (connection)

drain_events (connection, **kwargs)

4.47 kombu.transport.virtual

Virtual transport implementation.

Emulates the AMQ API for non-AMQ transports.

4.47. kombu.transport.virtual 151

Kombu Documentation, Release 3.0.37

* Transports

* Channel

* Message

* Quality Of Service
* In-memory State

4.47.1 Transports

class kombu.transport.virtual.Transport (client, **kwargs)
Virtual transport.
Parameters client — Connection instance
Channel = <class ‘kombu.transport.virtual.Channel’>

Cycle = <class ‘kombu.transport.virtual.scheduling.FairCycle’>

polling interval =1.0
Time to sleep between unsuccessful polls.

default_port = None
port number used when no port is specified.

state = <kombu.transport.virtual.BrokerState object>
BrokerState containing declared exchanges and bindings (set by constructor).

cycle = None
FairCycle instance used to fairly drain events from channels (set by constructor).

establish_connection /()
close_connection (connection)
create_channel (connection)
close_channel (channel)

drain_events (connection, timeout=None)

4.47.2 Channel

class kombu.transport.virtual .AbstractChannel
This is an abstract class defining the channel methods you’d usually want to implement in a virtual channel.

Do not subclass directly, but rather inherit from Channel instead.

class kombu.transport.virtual.Channel (connection, **kwargs)
Virtual channel.
Parameters connection — The transport instance this channel is part of.
Message = <class ‘kombu.transport.virtual. Message’>
message class used.

state
Broker state containing exchanges and bindings.

gos
QoS manager for this channel.

do_restore = True
flag to restore unacked messages when channel goes out of scope.

152 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

exchange_types = {‘topic’: <class ‘kombu.transport.virtual.exchange.TopicExchange’>, ‘fanout’: <class ‘kombu.tran:
mapping of exchange types and corresponding classes.

exchange_declare (exchange=None, type=u'direct’, durable=False, auto_delete=False, argu-

ments=None, nowait=False, passive=False)
Declare exchange.

exchange_delete (exchange, if _unused=False, nowait=False)
Delete exchange and all its bindings.

queue_declare (queue=None, passive=False, **kwargs)
Declare queue.

queue_delete (queue, if_unused=False, if_empty=False, **kwargs)
Delete queue.

queue_bind (queue, exchange=None, routing_key=u’‘, arguments=None, **kwargs)
Bind queue to exchange with routing key.

queue_purge (queue, **kwargs)
Remove all ready messages from queue.

basic_publish (message, exchange, routing_key, **kwargs)
Publish message.

basic_consume (queue, no_ack, callback, consumer_tag, **kwargs)
Consume from queue

basic_cancel (consumer_tag)
Cancel consumer by consumer tag.

basic_get (queue, no_ack=False, **kwargs)
Get message by direct access (synchronous).

basic_ack (delivery_tag)
Acknowledge message.

basic_recover (requeue=False)
Recover unacked messages.

basic_reject (delivery_tag, requeue="False)
Reject message.

basic_qgos (prefetch_size=0, prefetch_count=0, apply_global=False)
Change QoS settings for this channel.

Only prefetch_count is supported.

get_table (exchange)
Get table of bindings for exchange.

typeof (exchange, default=u’direct’)
Get the exchange type instance for exchange.

drain_events (timeout=None)

prepare_message (body, priority=None, content_type=None, content_encoding=None, head-

ers=None, properties=None)
Prepare message data.

message_to_python (raw_message)
Convert raw message to Me ssage instance.

flow (active=True)
Enable/disable message flow.

4.47. kombu.transport.virtual 153

Kombu Documentation, Release 3.0.37

Raises NotImplementedError — as flow is not implemented by the base virtual imple-
mentation.

close ()
Close channel, cancel all consumers, and requeue unacked messages.

4.47.3 Message

class kombu.transport.virtual .Message (channel, payload, **kwargs)

exception MessageStateError
The message has already been acknowledged.

args
message
Message.accept

Message.ack ()
Acknowledge this message as being processed., This will remove the message from the queue.

Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

Message.ack_log_error (logger, errors)

Message.acknowledged
Set to true if the message has been acknowledged.

Message .body
Message.channel
Message.content_encoding
Message.content_type

Message.decode ()
Deserialize the message body, returning the original python structure sent by the publisher.

Message.delivery_info
Message.delivery_ tag
Message.errors = None
Message.headers

Message.payload
The decoded message body.

Message.properties

Message.reject (requeue=False)
Reject this message.

The message will be discarded by the server.

Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

Message.reject_log_error (logger, errors, requeue=False)

154 Chapter 4. API Reference

http://docs.python.org/dev/library/exceptions.html#NotImplementedError

Kombu Documentation, Release 3.0.37

Message.requeue ()
Reject this message and put it back on the queue.

You must not use this method as a means of selecting messages to process.

Raises MessageStateError - If the message has already been acknowl-
edged/requeued/rejected.

Message.serializable ()

4.47.4 Quality Of Service

class kombu.transport.virtual.QoS (channel, prefetch_count=0)
Quality of Service guarantees.

Only supports prefetch_count at this point.
Parameters

¢ channel — AMQ Channel.

* prefetch_count - Initial prefetch count (defaults to 0).
ack (delivery_tag)
Acknowledge message and remove from transactional state.

append (message, delivery_tag)
Append message to transactional state.

can_consume ()
Return true if the channel can be consumed from.

Used to ensure the client adhers to currently active prefetch limits.

can_consume max estimate ()
Returns the maximum number of messages allowed to be returned.

Returns an estimated number of messages that a consumer may be allowed to consume at once from the
broker. This is used for services where bulk ‘get message’ calls are preferred to many individual ‘get
message’ calls - like SQS.

returns: An integer > 0
get (delivery_tag)

prefetch_count =0
current prefetch count value

reject (delivery_tag, requeue=False)
Remove from transactional state and requeue message.

restore_at_shutdown = True
If disabled, unacked messages won’t be restored at shutdown.

restore_unacked ()
Restore all unacknowledged messages.

restore_unacked_once ()
Restores all unacknowledged messages at shutdown/gc collect.

Will only be done once for each instance.

restore_visible (*args, **kwargs)
Restore any pending unackwnowledged messages for visibility_timeout style implementations.

Optional: Currently only used by the Redis transport.

4.47. kombu.transport.virtual 155

Kombu Documentation, Release 3.0.37

4.47.5 In-memory State

class kombu.transport.virtual.BrokerState (exchanges=None, bindings=None)

bindings = None
active bindings.

clear ()

exchanges = None
exchange declarations.

4.48 kombu.transport.virtual.exchange

Implementations of the standard exchanges defined by the AMQ protocol (excluding the headers exchange).

* Direct

* Topic

* Fanout
* Interface

4.48.1 Direct

class kombu.transport.virtual.exchange.DirectExchange (channel)
The direct exchange routes based on exact routing keys.

deliver (message, exchange, routing_key, **kwargs)
lookup (table, exchange, routing_key, default)

type = ‘direct’

4.48.2 Topic

class kombu.transport.virtual.exchange.TopicExchange (channel)
The fopic exchange routes messages based on words separated by dots, using wildcard characters » (any single
word), and # (one or more words).

deliver (message, exchange, routing_key, **kwargs)

key_to_pattern (rkey)
Get the corresponding regex for any routing key.

lookup (table, exchange, routing_key, default)
prepare_bind (queue, exchange, routing_key, arguments)
type = ‘topic’

wildcards = {#7: <*2, <*7: < F2[A\]’}
map of wildcard to regex conversions

156 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

4.48.3 Fanout

class kombu.transport.virtual.exchange.FanoutExchange (channel)
The fanout exchange implements broadcast messaging by delivering copies of all messages to all queues bound
to the exchange.

To support fanout the virtual channel needs to store the table as shared state. This requires that the Chan-
nel.supports_fanout attribute is set to true, and the Channel._queue_bind and Channel.get_table methods are
implemented. See the redis backend for an example implementation of these methods.

deliver (message, exchange, routing_key, **kwargs)
lookup (table, exchange, routing_key, default)

type = ‘fanout’

4.48.4 Interface

class kombu.transport.virtual.exchange.ExchangeType (channel)
Implements the specifics for an exchange type.
Parameters channel — AMQ Channel
equivalent (prev, exchange, type, durable, auto_delete, arguments)
Return true if prev and exchange is equivalent.

lookup (table, exchange, routing_key, default)
Lookup all queues matching routing_key in exchange.

Returns default if no queues matched.

prepare_bind (queue, exchange, routing_key, arguments)
Return tuple of (routing_key, regex, queue) to be stored for bindings to this exchange.

type = None

* kombu.transport.virtual.scheduling

4.49 kombu.transport.virtual.scheduling

Consumer utilities.

class kombu.transport.virtual.scheduling.FairCycle (fun, resources, predicate=<type ‘ex-

ceptions.Exception’>)
Consume from a set of resources, where each resource gets an equal chance to be consumed from.

close ()

get (**kwargs)

4.50 kombu.serialization

Serialization utilities.

4.49. kombu.transport.virtual.scheduling 157

Kombu Documentation, Release 3.0.37

* QOverview

» Exceptions
* Serialization
* Registry

4.50.1 Overview

Centralized support for encoding/decoding of data structures. Contains json, pickle, msgpack, and yaml serializers.
Optionally installs support for YAML if the PyYAML package is installed.
Optionally installs support for msgpack if the msgpack-python package is installed.

4.50.2 Exceptions

exception kombu.serialization.SerializerNotInstalled
Support for the requested serialization type is not installed

4.50.3 Serialization

kombu.serialization.encode (self, data, serializer=None)

loads (data, content_type, content_encoding):
Deserialize a data stream as serialized using dumps based on content_type.

Parameters
* data - The message data to deserialize.
* content_type — The content-type of the data. (e.g., application/json).

* content_encoding - The content-encoding of the data. (e.g., utf-8, binary, or
us-ascii).

Returns The unserialized data.

kombu.serialization.decode (self, data, content_type, content_encoding, accept=None, force=False,
_trusted_content=frozenset([application/data’, ‘application/text’]))

register (name, encoder, decoder, content_type,
content_encoding="utf-8'):
Register a new encoder/decoder.

Parameters
e name — A convenience name for the serialization method.

* encoder — A method that will be passed a python data structure and should return
a string representing the serialized data. If None, then only a decoder will be
registered. Encoding will not be possible.

* decoder — A method that will be passed a string representing serialized data
and should return a python data structure. If None, then only an encoder will be
registered. Decoding will not be possible.

* content_type — The mime-type describing the serialized structure.

158 Chapter 4. API Reference

http://pyyaml.org/
http://msgpack.sourceforge.net/
http://pypi.python.org/pypi/msgpack-python/

Kombu Documentation, Release 3.0.37

* content_encoding — The content encoding (character set) that the decoder
method will be returning. Will usually be utf-8, us-ascii, or binary.

kombu.serialization.raw_encode (data)
Special case serializer.

4.50.4 Registry
kombu.serialization.register (self, name, encoder, decoder, content_type, content_encoding="utf-
8")
unregister (name) :
Unregister registered encoder/decoder.
Parameters name — Registered serialization method name.

kombu.serialization.registry = <kombu.serialization.SerializerRegistry object>

kombu.serialization.dumps (data, serializer=default_serializer)
Serialize a data structure into a string suitable for sending as an AMQP message body.

Parameters
* data — The message data to send. Can be a list, dictionary or a string.

* serializer — An optional string representing the serialization method you want
the data marshalled into. (For example, json, raw, or pickle).

If None (default), then json will be used, unless data is a st r or unicode object.
In this latter case, no serialization occurs as it would be unnecessary.

Note that if serializer is specified, then that serialization method will be used even
if a st r or unicode object is passed in.

Returns A three-item tuple containing the content type (e.g., application/json), content en-
coding, (e.g., utf-8) and a string containing the serialized data.

Raises SerializerNotInstalled — If the serialization method requested is not avail-
able.

4.51 Utilities - kombu.utils

e kombu.utils I

4.51.1 kombu.utils

Internal utilities.
class kombu.utils.EqualityDict
kombu.utils.say (m, *fargs, **fkwargs)

kombu.utils.uuid()
Generate a unique id, having - hopefully - a very small chance of collision.

For now this is provided by uuid.uuid4 ().

4.51. Utilities - kombu.utils 159

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/uuid.html#uuid.uuid4

Kombu Documentation, Release 3.0.37

kombu.utils.kwdict (kwargs)

kombu.utils.maybe_1list (v)

kombu.utils.fxrange (start=1.0, stop=None, step=1.0, repeatlast=False)
kombu.utils.fxrangemax (start=1.0, stop=None, step=1.0, max=100.0)

kombu.utils.retry_over_time (fun, catch, args=[], kwargs={}, errback=None, max_retries=None,
interval_start=2, interval_step=2, interval_max=30, call-

back=None)
Retry the function over and over until max retries is exceeded.

For each retry we sleep a for a while before we try again, this interval is increased for every retry until the max
seconds is reached.
Parameters

* fun - The function to try

* catch - Exceptions to catch, can be either tuple or a single exception class.
* args — Positional arguments passed on to the function.

* kwargs — Keyword arguments passed on to the function.

* errback — Callback for when an exception in catch is raised. The callback must
take two arguments: exc and interval, where exc is the exception instance, and
interval is the time in seconds to sleep next..

* max_retries — Maximum number of retries before we give up. If this is not set, we
will retry forever.

e interval_start — How long (in seconds) we start sleeping between retries.

* interval_step — By how much the interval is increased for each retry.

* interval_max — Maximum number of seconds to sleep between retries.
kombu.utils.emergency_ dump_state (state, open_file=<built-in function open>, dump=None)

class kombu.utils.cached_property (fget=None, fset=None, fdel=None, doc=None)
Property descriptor that caches the return value of the get function.

Examples

@cached property
def connection(self):
return Connection ()

@connection.setter {# Prepares stored value
def connection (self, value):
if value is None:
raise TypeError ('Connection must be a connection')
return value

@connection.deleter
def connection (self, wvalue):
Additional action to do at del(self.attr)
if value is not None:
print ('Connection {0!r} deleted'.format (value)

deleter (fdel)

setter (fset)

160 Chapter 4. API Reference

Kombu Documentation, Release 3.0.37

kombu.utils.reprkwargs (kwargs, sep=", *, fmt="{0}={1}")
kombu.utils.reprcall (name, args=(), kwargs={}, sep=",)

kombu.utils.nested (*args, **kwds)
Combine multiple context managers into a single nested context manager.

kombu.utils.fileno (f)

kombu.utils.maybe_£fileno (f)
Get object fileno, or None if not defined.

4.52 Evented 1/0 - kombu.utils.eventio

e kombu.utils.eventio I

4.52.1 kombu.utils.eventio

Evented 10 support for multiple platforms.

kombu.utils.eventio.poll (*args, **kwargs)

4.53 Rate limiting - kombu.utils.limits

e kombu.utils.limits I

4.53.1 kombu.utils.limits

Token bucket implementation for rate limiting.

class kombu.utils.limits.TokenBucket (fill_rate, capacity=1)
Token Bucket Algorithm.

See http://en.wikipedia.org/wiki/Token_Bucket Most of this code was stolen from an entry in the ASPN Python
Cookbook: http://code.activestate.com/recipes/511490/

Thread safety

This implementation is not thread safe. Access to a TokenBucket instance should occur within the critical section
of any multithreaded code.

can_consume (fokens=1)
Return True if the number of tokens can be consumed from the bucket. If they can be consumed, a call
will also consume the requested number of tokens from the bucket. Calls will only consume fokens (the
number requested) or zero tokens — it will never consume a partial number of tokens.

capacity=1
Maximum number of tokens in the bucket.

4.52. Evented I/O - kombu.utils.eventio 161

http://en.wikipedia.org/wiki/Token_Bucket
http://code.activestate.com/recipes/511490/

Kombu Documentation, Release 3.0.37

expected_time (fokens=1)
Return the time (in seconds) when a new token is expected to be available. This will not consume any
tokens from the bucket.

£ill rate = None
The rate in tokens/second that the bucket will be refilled.

timestamp = None
Timestamp of the last time a token was taken out of the bucket.

4.54 Compat. utilities - kombu.utils.compat

* kombu.utils.compat I

4.54.1 kombu.utils.compat

Helps compatibility with older Python versions.

kombu.utils.compat.get_errno (exc)
socket.error and IOError first got the . errno attribute in Py2.7

kombu.utils.compat.timedelta_seconds (delta)
Convert datetime.timedelta to seconds.

Doesn’t account for negative values.

4.55 Debugging - kombu.utils.debug

* kombu.utils.debug I

4.55.1 kombu.utils.debug

Debugging support.

kombu.utils.debug.setup_logging (loglevel=10, loggers=["kombu.connection’,
‘kombu.channel’])

class kombu.utils.debug.Logwrapped (instance, logger=None, ident=None)

4.56 String Encoding - kombu.utils.encoding

* kombu.utils.encoding I

162 Chapter 4. API Reference

http://docs.python.org/dev/library/socket.html#socket.error
http://docs.python.org/dev/library/exceptions.html#IOError
http://docs.python.org/dev/library/datetime.html#datetime.timedelta

Kombu Documentation, Release 3.0.37

4.56.1 kombu.utils.encoding

Utilities to encode text, and to safely emit text from running applications without crashing with the infamous
UnicodeDecodeError exception.

kombu
kombu
kombu

kombu

.utils.
.utils.
.utils.

.utils.

encoding.bytes_to_str (s)

encoding.default_encode (0bj, file=None)

encoding.default_encoding (file=None)

encoding.default_encoding_ file = None
safe_str takes encoding from this file by default. set_default_encoding_ file () can used to set the
default output file.

kombu.utils.encoding.ensure_bytes (s)

kombu

kombu.
kombu.
kombu.
kombu.

kombu.

4.57

.utils
utils
utils.
utils.
utils

utils

.encoding. from_ut£8 (s, *args, ¥**kwargs)

.encoding.get_default_encoding_file ()

encoding.safe_repr (o, errors=’replace’)

encoding.safe_str (s, errors=’replace’)

.encoding.set_default_encoding_file (file)

.encoding.str_to_bytes (s)

kombu.utils.functional

class kombu.utils.functional.lazy (fun, *args, **kwargs)
Holds lazy evaluation.

Evaluated when called or if the evaluate () method is called. The function is re-evaluated on every call.

Overloaded operations that will evaluate the promise: __str__ (),

evaluate ()

repr__ (),__cmp__ ().

kombu.utils.functional .maybe_evaluate (value)
Evaluates if the value is a 1azy instance.

kombu.utils.functional.is_1list (I, scalars=(<class ‘_abcoll. Mapping’>, <type ‘basestring’>),

iters=(<class ‘_abcoll Iterable’>,))

Return true if the object is iterable (but not if object is a mapping or string).

kombu.utils.functional .maybe_list (I, scalars=(<class

¢

_abcoll.Mapping’>, <type ‘bases-
tring’>))

Return list of one element if 1 is a scalar.

4.58

kombu.

kombu.
kombu.

kombu.

kombu.utils.url

utils.

utils.
utils.

utils.

url.

url

url

url.

as_url (scheme, host=None, port=None, user=None, password=None, path=None,
query=None, sanitize=False, mask="**")

.maybe_sanitize_url (url, mask="**")

.parse_url (url)

sanitize url (url, mask="%*")

4.57. kombu.utils.functional 163

http://docs.python.org/dev/library/exceptions.html#UnicodeDecodeError

Kombu Documentation, Release 3.0.37

4.59 Text utilitites - kombu.utils.text

kombu.utils.text.fmatch_best (needle, haystack, min_ratio=0.6)
kombu.utils.text.fmatch_iter (needle, haystack, min_ratio=0.6)

kombu.utils.text.version_string as_tuple (s)

4.60 Generic RabbitMQ manager - kombu.utils.amq_manager

kombu.utils.amg_manager.get_manager (client, hostname=None, port=None, userid=None, pass-
word=None)

4.61 Python2 to Python3 utilities - kombu.five

e celery.five

4.61.1 celery.five

Compatibility implementations of features only available in newer Python versions.

kombu. five.exec_ (code, globs=None, locs=None)
Execute code in a namespace.

kombu.five.items (d)

kombu. five.keys (d)

kombu. five.monotonic ()

kombu. five.nextfun (it)

kombu. five.reraise (p, value, tb=None)

class kombu. five.timespec

tv_nsec
Structure/Union member

tv_sec
Structure/Union member

kombu. five.values (d)

kombu. five.with_metaclass (Type, skip_attrs=set([’__dict__’, ‘__weakref__’]))
Class decorator to set metaclass.

Works with both Python 3 and Python 3 and it does not add an extra class in the lookup order like
six.with_metaclass does (that is — it copies the original class instead of using inheritance).

164 Chapter 4. API Reference

CHAPTER 5

Change history

5.1

5.2

5.3

3.0.37

release-date 2016-10-06 05:00 PM PDT

release-by Ask Solem

Connection: Return value of . info () was no longer JSON serializable, leading to “itertools.cycle object not

JSON serializable” errors (Issue #635).

3.0.36

release-date 2016-09-30 03:06 PM PDT

release-by Ask Solem

Connection: Fixed bug when cloning connection with alternate urls.
Fix contributed by Emmanuel Cazenave.

Redis: Fixed problem with unix socket connections.
https://github.com/celery/celery/issues/2903
Fix contributed by Raphael Michel.

Redis: Fixed compatibility with older redis-py versions (Issue #576).

Broadcast now retains queue name when being copied/pickled (Issue #578).

3.0.35

release-date 2016-03-22 11:22 PM PST

release-by Ask Solem

msgpack: msgpack support now requires msgpack-python > 0.4.7.
Redis: TimeoutError was no longer handled as a recoverable error.

Redis: Adds the ability to set more Redis connection
Connection (transport_options={...}).

— socket_connect_timeout (requires redis-py 2.10 or later)

options using

165

https://github.com/celery/celery/issues/2903

Kombu Documentation, Release 3.0.37

— socket_keepalive (requires redis—py 2.10 or later)
— socket_keepalive_options (requires redis-py 2.10 or later)

» msgpack: Fixes support for binary/unicode data

5.4 3.0.34

release-date 2016-03-03 05:30 PM PST
release-by Ask Solem
e Qpid: Adds async error handling.
Contributed by Brian Bouterse.
* Qpid: Delivery tag is now a UUID4 (Issue #563).
Fix contributed by Brian Bouterse.

¢ Redis: Connection.as_uri() returned malformed URLs when the redis+socket scheme was ised (Issue cel-
ery/celery#2995).

* msgpack: Use binary encoding instead of utf-8 (Issue #570).

5.5 3.0.33

release-date 2016-01-08 06:36 PM PST
release-by Ask Solem
* Now depends on amgp 1.4.9.

* Redis: Fixed problem with auxilliary connections causing the main consumer connection to be closed (Issue
#550).

* Qpid: No longer uses threads to operate, to ensure compatibility with all environments (Issue #531).

5.6 3.0.32

release-date 2015-12-16 02:29 PM PST
release-by Ask Solem

* Redis: Fixed bug introduced in 3.0.31 where the redis transport always connects to localhost, regardless of host
setting.

5.7 3.0.31

release-date 2015-12-16 12:00 PM PST
release-by Ask Solem
* Redis: Fixed bug introduced in 3.0.30 where socket was prematurely disconnected.

* Hub: Removed debug logging message: “Deregistered fd...” (Issue #549).

166 Chapter 5. Change history

Kombu Documentation, Release 3.0.37

5.8 3.0.30

release-date 2015-12-07 12:28 A.M PST
release-by Ask Solem
* Fixes compatiblity with uuid in Python 2.7.11 and 3.5.1.
Fix contributed by Kai Groner.
* Redis transport: Attempt at fixing problem with hanging consumer after disconnected from server.
* Event loop: Attempt at fixing issue with 100% CPU when using the Redis transport,
 Database transport: Fixed oracle compatiblity.

An “ORA-00907: missing right parenthesis” error could manifest when using an Oracle database
with the database transport.

Fix contributed by Deepak N.
¢ Documentation fixes

Contributed by Tommaso Barbugli.

5.9 3.0.29

release-date 2015-10-26 11:10 A.M PDT
release-by Ask Solem
¢ Fixed serialization issue for bindings.as_dict () (Issue #453).
Fix contributed by Sergey Tikhonov.
* Json serializer wrongly treated bytes as ascii, not ut £-8 (Issue #532).
* MongoDB: Now supports pymongo 3.x.
Contributed by Len Buckens.
* SQS: Tests passing on Python 3.

Fix contributed by Felix Yan

5.10 3.0.28

release-date 2015-10-12 12:00 PM PDT
release-by Ask Solem
... admonition:: Django transport migrations.

If you’re using Django 1.8 and have already created the kombu_transport_django tables, you have to run
a fake initial migration:

python manage.py migrate kombu_transport_django —--fake-initial

* No longer compatible with South by default.

5.8. 3.0.30 167

Kombu Documentation, Release 3.0.37

To keep using kombu.transport.django with South migrations you now need to configure a new
location for the kombu migrations:

SOUTH_MIGRATION_MODULES = {
'kombu_transport_django':
'kombu.transport.django.south_migrations',

}

* Keep old South migrations in kombu . south.migrations.

* Now works with Redis < 2.10 again.

5.11 3.0.27

release-date 2015-10-09 3:10 PM PDT
release-by Ask Solem

* Now depends on amgp 1.4.7.

¢ Fixed libSystem import error on some OS X 10.11 (EI Capitan) installations.
Fix contributed by Eric Wang.

* Now compatible with Django 1.9.

* Django: Adds migrations for the database transport.

* Redis: Now depends on py-redis 2.10.0 or later (Issue #468).

¢ QPid: Can now connect as localhost (Issue #519).
Fix contributed by Brian Bouterse.

* QPid: Adds support for Llogin_method (Issue #502, Issue #499).
Contributed by Brian Bouterse.

e QPid: Now reads SASL mechanism from broker string (Issue #498).
Fix contributed by Brian Bouterse.

* QPid: Monitor thread now properly terminated on session close (Issue #485).
Fix contributed by Brian Bouterse.

» QPid: Fixed file descriptor leak (Issue #476).
Fix contributed by Jeff Ortel

* Docs: Fixed wrong order for entrypoint arguments (Issue #473).

* ConsumerMixin: Connection error logs now include traceback (Issue #480).

* BaseTransport now raises RecoverableConnectionError when disconnected (Issue #507).

* Consumer: Adds tag_prefix option to modify how consumer tags are generated (Issue #509).

5.12 3.0.26

release-date 2015-04-22 06:00 PM UTC

release-by Ask Solem

168 Chapter 5. Change history

Kombu Documentation, Release 3.0.37

* Fixed compatibility with py-redis versions before 2.10.3 (Issue #470).

5.13 3.0.25

release-date 2015-04-21 02:00 PM UTC
release-by Ask Solem
» pyamgqp/librabbitmq now uses 5671 as default port when SSL is enabled (Issue #459).
 Redis: Now supports passwords in redis+socket://:pass@host :port URLs (Issue #460).

e Producer.publish now defines the expiration property in support of the RabbitMQ per-message TTL
extension.

Contributed by Anastasis Andronidis.

» Connection transport attribute now set correctly for all transports.
Contributed by Alex Koshelev.

* gpid: Fixed bug where the connectionw as not being closed properly.
Contributed by Brian Bouterse.

¢ bindings is now JSON serializable (Issue #453).
Contributed by Sergey Tikhonov.

* Fixed typo in error when yaml is not installed (said msgpack).
Contributed by Joshua Harlow.

* Redis: Now properly handles redis.exceptions.TimeoutError raised by redis.
Contributed by markow.

* gpid: Adds additional string to check for when connecting to gpid.

When we connect to qpid, we need to ensure that we skip to the next SASL mechanism if the current
mechanism fails. Otherwise, we will keep retrying the connection with a non-working mech.

Contributed by Chris Duryee.

gpid: Handle Not Found exceptions.
Contributed by Brian Bouterse.
* Queue.__ repr__ now makes sure return value is not unicode (Issue #440).
e gpid: Queue.purge incorrectly raised AttributeErrror if the does not exist (Issue #439).
Contributed by Brian Bouterse.

* Linux: Now ignores permission errors on epoll unregister.

5.14 3.0.24

release-date 2014-11-17 11:00 PM UTC
release-by Ask Solem

» The Qpid broker is supported for Python 2.x environments. The Qpid transport includes full SSL support within
Kombu. See the kombu. t ransport . gpid docs for more info.

5.13. 3.0.25 169

https://www.rabbitmq.com/ttl.html
https://www.rabbitmq.com/ttl.html
http://redis-py.readthedocs.org/en/latest/index.html#module-redis
http://qpid.apache.org/

Kombu Documentation, Release 3.0.37

Contributed by Brian Bouterse and Chris Duryee through support from Red Hat.
* Dependencies: extra[librabbitmq] now requires librabbitmq 1.6.0
* Docstrings for TokenBucket did not match implementation.
Fix contributed by Jesse Dhillon.
e 0oid_from () accidentally called uuid.getnode () but did not use the return value.
Fix contributed by Alexander Todorov.
* Redis: Now ignores errors when cosing the underlying connection.
* Redis: Restoring messages will now use a single connection.

* kombu.five.monotonic: Can now be imported even if ctypes is not available for some reason (e.g. App
Engine)

e Documentation: Improved example to use the declare argument to Producer (Issue #423).

* Django: Fixed app_label for older Django versions (< 1.7). (Issue #414).

5.15 3.0.23

release-date 2014-09-14 10:45 PM UTC
release-by Ask Solem
* Django: Fixed bug in the Django 1.7 compatibility improvements related to autocommit handling.
Contributed by Radek Czajka.

* Django: The Django transport models would not be created on syncdb after app label rename (Issue #406).

5.16 3.0.22

release-date 2014-09-04 03:00 PM UTC
release-by Ask Solem
* kombu.async: Min. delay between waiting for timer was always increased to one second.
* Fixed bug in itermessages where message is received after the with statement exits the block.
Fixed by Rumyana Neykova

¢ Connection.autoretry: Now works with functions missing wrapped attributes (__module__,
_ name__,_ doc_). Fixes #392.

Contributed by johtso.

* Django: Now sets custom app label for kombu.transport .django to work with recent changes in Django
1.7.

» SimpleQueue removed messages from the wrong end of buffer (Issue #380).

e Tests: Now using unittest .mock if available (Issue #381).

170 Chapter 5. Change history

Kombu Documentation, Release 3.0.37

5.17 3.0.21

release-date 2014-07-07 02:00 PM UTC
release-by Ask Solem
* Fixed remaining bug in maybe_declare for auto_delete exchanges.
Fix contributed by Roger Hu.
* MongoDB: Creating a channel now properly evaluates a connection (Issue #363).

Fix contributed by Len Buckens.

5.18 3.0.20

release-date 2014-06-24 02:30 PM UTC
release-by Ask Solem
* Reverts change in 3.0.17 where maybe_ declare caches the declaration of auto_delete queues and exchanges.
Fix contributed by Roger Hu.
* Redis: Fixed race condition when using gevent and the channel is closed.

Fix contributed by Andrew Rodionoff.

5.19 3.0.19

release-date 2014-06-09 03:10 PM UTC
release-by Ask Solem
» The wheel distribution did not support Python 2.6 by failing to list the extra dependencies required.

* Durable and auto_delete queues/exchanges can be be cached using maybe_declare.

5.20 3.0.18

release-date 2014-06-02 06:00 PM UTC
release-by Ask Solem

* A typo introduced in 3.0.17 caused kombu.async.hub to crash (Issue #360).

5.21 3.0.17

release-date 2014-06-02 05:00 PM UTC
release-by Ask Solem
e kombu[librabbitmg] now depends on librabbitmq 1.5.2.

* Async: Event loop now selectively removes file descriptors for the mode it failed in, and keeps others (e.g read
VS write).

5.17. 3.0.21 171

Kombu Documentation, Release 3.0.37

Fix contributed by Roger Hu.

CouchDB: Now works without userid set.

Fix contributed by Latitia M. Haskins.

SQLAIchemy: Now supports recovery from connection errors.
Contributed by Felix Schwarz.

» Redis: Restore at shutdown now works when ack emulation is disabled.

e kombu.common.eventloop () accidentally swallowed socket errors.

e Adds kombu.utils.url.sanitize_url()

5.22 3.0.16

release-date 2014-05-06 01:00 PM UTC
release-by Ask Solem
e kombu[librabbitmg] now depends on librabbitmq 1.5.1.
* Redis: Fixes TypeError problem in unregister (Issue #342).
Fix contributed by Tobias Schottdorf.
* Tests: Some unit tests accidentally required the redis-py library.
Fix contributed by Randy Barlow.

* librabbitmq: Would crash when using an older version of 1ibrabbitmg, now emits warning instead.

5.23 3.0.15

release-date 2014-04-15 09:00 PM UTC
release-by Ask Solem

* Now depends on amgp 1.4.5.

* RabbitMQ 3.3 changes QoS semantics (Issue #339).

See the RabbitMQ release notes here: http://www.rabbitmq.com/blog/2014/04/02/breaking-things-
with-rabbitmqg-3-3/

A new connection property has been added that can be used to detect whether the remote server is
using this new QoS behavior:

>>> Connection('amgp://') .gos_behavior_matches_spec

False

so if your application depends on the old semantics you can use this to set the apply_global
flag appropriately:

def update_ prefetch count (channel, new_value):
channel .basic_gos (
0, new_value,
not channel.connection.client.qos_behavior_matches_spec,

172 Chapter 5. Change history

http://www.rabbitmq.com/blog/2014/04/02/breaking-things-with-rabbitmq-3-3/
http://www.rabbitmq.com/blog/2014/04/02/breaking-things-with-rabbitmq-3-3/

Kombu Documentation, Release 3.0.37

* Users of 1ibrabbitmg is encouraged to upgrade to librabbitmq 1.5.0.
The kombu [librabbitmg] extra has been updated to depend on this version.
* Pools: Now takes transport options into account when comparing connections (Issue #333).
* MongoDB: Fixes Python 3 compatibility.
* Async: select: Ignore socket errors when attempting to unregister handles from the loop.

* Pidbox: Can now be configured to use a serializer other than json, but specifying a serializer argument to
Mailbox.

Contributed by Dmitry Malinovsky.
* Message decompression now works with Python 3.

Fix contributed by Adam Gaca.

5.24 3.0.14

release-date 2014-03-19 07:00 PM UTC
release-by Ask Solem
¢ MongoDB: Now endures a connection failover (Issue #123).
Fix contributed by Alex Koshelev.
* MongoDB: Fixed KeyError when a replica set member is removed.
Also fixes celery#971 and celery/#898.
Fix contributed by Alex Koshelev.
* MongoDB: Fixed MongoDB broadcast cursor re-initialization bug.
Fix contributed by Alex Koshelev.

* Async: Fixed bug in lax semaphore implementation where in some usage patterns the limit was not honored
correctly.

Fix contributed by Ionel Cristian Marie.
* Redis: Fixed problem with fanout when using Python 3 (Issue #324).

* Redis: Fixed AttributeError from attempting to close a non-existing connection (Issue #320).

5.25 3.0.13

release-date 2014-03-03 04:00 PM UTC
release-by Ask Solem
e Redis: Fixed serious race condition that could lead to data loss.

The delivery tags were accidentally set to be an incremental number local to the channel, but the
delivery tags need to be globally unique so that a message can not overwrite an older message in
the backup store.

This change is not backwards incompatible and you are encouraged to update all your system using
a previous version as soon as possible.

5.24. 3.0.14 173

Kombu Documentation, Release 3.0.37

* Now depends on amgp 1.4.4.

* Pidbox: Now makes sure message encoding errors are handled by default, so that a custom error handler does

not need to be specified.

* Redis: The fanout exchange can now use AMQP patterns to route and filter messages.

This change is backwards incompatible and must be enabled with the fanout_patterns trans-
port option:

>>> conn = kombu.Connection ('redis://', transport_options={
'fanout_patterns': True,
B

When enabled the exchange will work like an amqp topic exchange if the binding key is a pattern.

This is planned to be default behavior in the future.

¢ Redis: Fixed cycle no such attribute error.

5.26 3.0.12

release-date 2014-02-09 03:50 PM UTC
release-by Ask Solem
Now depends on amgp 1.4.3.
Fixes Python 3.4 logging incompatibility (Issue #311).
Redis: Now properly handles unknown pub/sub messages.
Fix contributed by Sam Stavinoha.
amgqplib: Fixed bug where more bytes were requested from the socket than necessary.

Fix contributed by Ionel Cristian Marie.

5.27 3.0.11

release-date 2014-02-03 05:00 PM UTC
release-by Ask Solem
Now depends on amgp 1.4.2.

Now always trusts messages of type application/data and application/text or which have an unspecified content
type (Issue #306).

Compression errors are now handled as decode errors and will trigger the Consumer.on_decode_error
callback if specified.

New kombu.Connection.get_heartbeat_interval () method that can be used to access the nego-
tiated heartbeat value.

kombu.common.oid_for no longer uses the MAC address of the host, but instead uses a process-wide
UUID4 as a node id.

This avoids a call to uuid.getnode() at module scope.

Hub.add: Now normalizes registered fileno.

174

Chapter 5. Change history

Kombu Documentation, Release 3.0.37

5.2

5.2

Contributed by Ionel Cristian Marie.

SQS: Fixed bug where the prefetch count limit was not respected.

8 3.0.10

release-date 2014-01-17 05:40 PM UTC
release-by Ask Solem
Now depends on amgp 1.4.1.

maybe_declare now raises a “recoverable connection error” if the channel is disconnected instead of a
ChannelError so that the operation can be retried.

Redis: Consumer.cancel () is now thread safe.

This fixes an issue when using gevent/eventlet and a message is handled after the consumer is
cancelled resulting in a “message for queue without consumers” error.

Retry operations would not always respect the interval_start value when calculating the time to sleep for (Issue
#303).

Fix contributed by Antoine Legrand.
Timer: Fixed “unhashable type” error on Python 3.

Hub: Do not attempt to unregister operations on an already closed poller instance.

9 3.0.9

release-date 2014-01-13 05:30 PM UTC

release-by Ask Solem

Now depends on amgp 1.4.0.

Redis: Basic cancel for fanout based queues now sends a corresponding UNSUBSCRIBE command to the server.

This fixes an issue with pidbox where reply messages could be received after the consumer was
cancelled, giving the "message to queue without consumers" error.

MongoDB: Improved connection string and options handling (Issue #266 + Issue #120).
Contributed by Alex Koshelev.
SQS: Limit the number of messages when receiving in batch to 10.
This is a hard limit enforced by Amazon so the sqs transport must not exceeed this value.
Fix contributed by Eric Reynolds.
ConsumerMixin: consume now checks heartbeat every time the socket times out.
Contributed by Dustin J. Mitchell.
Retry Policy: A max retries of 0 did not retry forever.
Fix contributed by Antoine Legrand.
Simple: If passing a Queue object the simple utils will now take default routing key from that queue.

Contributed by Fernando Jorge Mota.

5.28

. 3.0.10 175

Kombu Documentation, Release 3.0.37

e repr (producer) no longer evaluates the underlying channnel.

e Redis: The map of Redis error classes are now exposed at the module level using the
kombu.transport.redis.get_redis_error_classes () function.

* Async: Hub.close now sets .poller to None.

5.30 3.0.8

release-date 2013-12-16 05:00 PM UTC
release-by Ask Solem

* Serializer: loads and dumps now wraps exceptions raised into DecodeError and
kombu.exceptions.EncodeError respectively.

Contributed by Ionel Cristian Maries
* Redis: Would attempt to read from the wrong connection if a select/epoll/kqueue exception event happened.
Fix contributed by Michael Nelson.
* Redis: Disabling ack emulation now works properly.
Fix contributed by Michael Nelson.
* Redis: TOError and OSError are now treated as recoverable connection errors.
* SQS: Improved performance by reading messages in bulk.
Contributed by Matt Wise.

» Connection Pool: Attempting to acquire from a closed pool will now raise Runt imeError.

5.31 3.0.7

release-date 2013-12-02 04:00 PM UTC
release-by Ask Solem
* Fixes Python 2.6 compatibility.

» Redis: Fixes ‘bad file descriptor’ issue.

5.32 3.0.6

release-date 2013-11-21 04:50 PM UTC
release-by Ask Solem
* Timer: No longer attempts to hash keyword arguments (Issue #275).
* Async: Did not account for the long type for file descriptors.
Fix contributed by Fabrice Rabaute.
* PyPy: kqueue support was broken.

* Redis: Bad pub/sub payloads no longer crashes the consumer.

176 Chapter 5. Change history

http://docs.python.org/dev/library/exceptions.html#IOError
http://docs.python.org/dev/library/exceptions.html#OSError
http://docs.python.org/dev/library/exceptions.html#RuntimeError

Kombu Documentation, Release 3.0.37

* Redis: Unix socket URLs can now specify a virtual host by including it as a query parameter.

Example URL specifying a virtual host using database number 3:

redis+socket:///tmp/redis.sock?virtual_host=3

e kombu.VERSION is now a named tuple.

5.33 3.0.5

release-date 2013-11-15 11:00 PM UTC
release-by Ask Solem
* Now depends on amgp 1.3.3.
* Redis: Fixed Python 3 compatibility problem (Issue #270).
* MongoDB: Fixed problem with URL parsing when authentication used.
Fix contributed by dongweiming.
» pyamgp: Fixed small issue when publishing the message and the property dictionary was set to None.
Fix contributed by Victor Garcia.
* Fixed problem in repr (LaxBoundedSemaphore).
Fix contributed by Antoine Legrand.

¢ Tests now passing on Python 3.3.

5.34 3.0.4

release-date 2013-11-08 01:00 PM UTC
release-by Ask Solem

e common.QoS: decrement_eventually now makes sure the value does not go below 1 if a prefetch count
is enabled.

5.35 3.0.3

release-date 2013-11-04 03:00 PM UTC
release-by Ask Solem
* SQS: Properly reverted patch that caused delays between messages.
Contributed by James Saryerwinnie
* select: Clear all registerd fds on poller.cloe

» Eventloop: unregister if EBADF raised.

5.33. 3.0.5 177

Kombu Documentation, Release 3.0.37

5.36 3.0.2

release-date 2013-10-29 02:00 PM UTC
release-by Ask Solem
* Now depends on amgp version 1.3.2.

* select: Fixed problem where unregister did not properly remove the fd.

5.37 3.0.1

release-date 2013-10-24 04:00 PM UTC
release-by Ask Solem

* Now depends on amgp version 1.3.1.

* Redis: New option fanout_keyprefix

This transport option is recommended for all users as it ensures that broadcast (fanout) messages
sent is only seen by the current virtual host:

Connection('redis://', transport_options={'fanout_keyprefix': True})

However, enabling this means that you cannot send or receive messages from older Kombu versions
so make sure all of your participants are upgraded and have the transport option enabled.

This will be the default behavior in Kombu 4.0.
¢ Distribution: Removed file requirements/py25.txt.
* MongoDB: Now disables auto_start_request.
* MongoDB: Enables use_greenlets if eventlet/gevent used.
 Pidbox: Fixes problem where expires header was None, which is a value not supported by the amq protocol.

¢ ConsumerMixin: New consumer_context method for starting the consumer without draining events.

5.38 3.0.0

release-date 2013-10-14 04:00 PM BST
release-by Ask Solem

* Now depends on amgp version 1.3.

* No longer supports Python 2.5

The minimum Python version supported is now Python 2.6.0 for Python2, and Python 3.3 for
Python3.

* Dual codebase supporting both Python 2 and 3.
No longer using 2t 03, making it easier to maintain support for both versions.

* pickle, yaml and msgpack deserialization is now disabled by default.

178 Chapter 5. Change history

Kombu Documentation, Release 3.0.37

This means that Kombu will by default refuse to handle any content type other than json.

Pickle is known to be a security concern as it will happily load any object that is embedded in a
pickle payload, and payloads can be crafted to do almost anything you want. The default serializer
in Kombu is json but it also supports a number of other serialization formats that it will evaluate if
received: including pickle.

It was always assumed that users were educated about the security implications of pickle, but in
hindsight we don’t think users should be expected to secure their services if we have the ability to
be secure by default.

By disabling any content type that the user did not explicitly want enabled we ensure that the user
must be conscious when they add pickle as a serialization format to support.

The other built-in serializers (yaml and msgpack) are also disabled even though they aren’t consid-
ered insecure ' at this point. Instead they’re disabled so that if a security flaw is found in one of
these libraries in the future, you will only be affected if you have explicitly enabled them.

To have your consumer accept formats other than json you have to explicitly add the wanted formats
to a white-list of accepted content types:

>>> ¢ = Consumer (conn, accept=['Jjson', 'pickle', 'msgpack'])

or when using synchronous access:

>>> msg = queue.get (accept=["'Jjson', 'pickle', 'msgpack'])

The accept argument was first supported for consumers in version 2.5.10, and first supported by
Queue.get in version 2.5.15 so to stay compatible with previous versions you can enable the
previous behavior:

>>> from kombu import enable_insecure_serializers
>>> enable_insecure_serializers()

But note that this has global effect, so be very careful should you use it.
* kombu.async: Experimental event loop implementation.

This code was previously in Celery but was moved here to make it easier for async transport imple-
mentations.

The API is meant to match the Tulip API which will be included in Python 3.4 as the asyncio
module. It’s not a complete implementation obviously, but the goal is that it will be easy to change
to it once that is possible.

* Utility function kombu . common . ipublish has been removed.
Use Producer (..., retry=True) instead.

* Utility function kombu . common . isend_reply has been removed
Use send_reply (..., retry=True) instead.

* kombu.common.entry_to_qgueue and kombu.messaging.entry_to_qgueue has been removed.
Use Queue. from_dict (name, xxoptions) instead.

* Redis: Messages are now restored at the end of the list.

Contributed by Mark Lavin.

! The PyYAML library has a yaml.load () function with some of the same security implications as pickle, but Kombu uses the
yaml.safe_load () function which is not known to be affected.

5.38. 3.0.0 179

Kombu Documentation, Release 3.0.37

e StdConnectionError and StdChannelError isremoved and amgp.ConnectionError and
amgp .ChannelError is used instead.

* Message object implementation has moved to kombu.message.Message.

¢ Serailization: Renamed functions encode/decode to dumps () and loads ().
For backward compatibility the old names are still available as aliases.

e The kombu.log.anon_logger function has been removed.
Use get_logger () instead.

* queue_declare now returns namedtuple with queue, message_count, and consumer_count fields.

* LamportClock: Can now set lock class

e kombu.utils.clock: Utilities for ordering events added.

e SimpleQueue now allows you to override the exchange type used.
Contributed by Vince Gonzales.

» Zookeeper transport updated to support new changes in the kazoo library.
Contributed by Mahendra M.

¢ pyamgqp/librabbitmq: Transport options are now forwarded as keyword arguments to the underlying
connection (Issue #214).

* Transports may now distinguish between recoverable and irrecoverable connection and channel errors.
e kombu.utils.Finalize has been removed: Use multiprocessing.util.Finalize instead.
* Memory transport now supports the fanout exchange type.
Contributed by Davanum Srinivas.
» Experimental new Pyro transport (kombu. t ransport . pyro).
Contributed by Tommie McAfee.
» Experimental new SoftLayer MQ transport (kombu. t ransport . SLMO).
Contributed by Kevin McDonald
* Eventio: Kqueue breaks in subtle ways so select is now used instead.

* SQLAlchemy transport: Can now specify table names using the queue_tablename and
message_tablename transport options.

Contributed by Ryan Petrello.
Redis transport: Now supports using local UNIX sockets to communicate with the Redis server (Issue #1283)

To connect using a UNIX socket you have to use the redis+socket URL-prefix:
redis+socket:///tmp/redis.sock.

This functionality was merged from the celery-redis-unixsocket project. Contributed by Maxime
Rouyrre.

ZeroMQ transport: drain_events now supports timeout.

Contributed by Jesper Thomschiitz.

180 Chapter 5. Change history

http://pythonhosted.org/Pyro
http://www.softlayer.com/services/additional/message-queue
https://github.com/piquadrat/celery-redis-unixsocket

Kombu Documentation, Release 3.0.37

5.3

5.4

5.4

5.4

9 2.5.16

release-date 2013-10-04 03:30 PM BST
release-by Ask Solem

Python3: Fixed problem with dependencies not being installed.

0 2.5.15

release-date 2013-10-04 03:30 PM BST

release-by Ask Solem

Declaration cache: Now only keeps hash of declaration so that it does not keep a reference to the channel.
Declaration cache: Now respects entity.can_cache_declaration attribute.

Fixes Python 2.5 compatibility.

Fixes tests after python-msgpack changes.

Queue.get: Now supports accept argument.

1 2.5.14

release-date 2013-08-23 05:00 PM BST
release-by Ask Solem

safe_str did not work properly resulting in UnicodeDecodeError (Issue #248).

2 25.13

release-date 2013-08-16 04:00 PM BST

release-by Ask Solem

Now depends on amgp 1.0.13

Fixed typo in Django functional tests.

safe_str now returns Unicode in Python 2.x
Fix contributed by German M. Bravo.

amqp: Transport options are now merged with arguments supplied to the connection.

Tests no longer depends on distribute, which was deprecated and merged back into setuptools.
Fix contributed by Sascha Peilicke.

ConsumerMixin now also restarts on channel related errors.

Fix contributed by Corentin Ardeois.

5.39

. 2.5.16 181

http://docs.python.org/dev/library/exceptions.html#UnicodeDecodeError

Kombu Documentation, Release 3.0.37

5.43 2.5.12

release-date 2013-06-28 03:30 PM BST

release-by Ask Solem

* Redis: Ignore errors about keys missing in the round-robin cycle.

* Fixed test suite errors on Python 3.

* Fixed msgpack test failures.

5.44 2.5.11

release-date 2013-06-25 02:30 PM BST

release-by Ask Solem

Now depends on amgp 1.0.12 (Py3 compatibility issues).

MongoDB: Removed cause of a “database name in URI is being ignored” warning.
Fix by Flavio Percoco Premoli

Adds passive option to Exchange.

Setting this flag means that the exchange will not be declared by kombu, but that it must exist
already (or an exception will be raised).

Contributed by Rafal Malinowski
Connection.info() now gives the current hostname and not the list of available hostnames.
Fix contributed by John Shuping.
pyamgqp: Transport options are now forwarded as kwargs to amgp . Connection.
librabbitmgq: Transport options are now forwarded as kwargs to 1ibrabbitmg.Connection.
librabbitmq: Now raises Not ImplementedError if SSL is enabled.

The librabbitmgq library does not support ssl, but you can use stunnel or change to the pyamap://
transport instead.

Fix contributed by Dan LaMotte.
librabbitmq: Fixed a cyclic reference at connection close.
eventio: select implementation now removes bad file descriptors.
eventio: Fixed Py3 compatibility problems.
Functional tests added for py-amqp and librabbitmq transports.
Resource.force_close_all no longer uses a mutex.

Pidbox: Now ignores IconsistencyError when sending replies, as this error simply means that the client may no
longer be alive.

Adds new Connection.collect method, that can be used to clean up after connections without I/O.
queue_bind is no longer called for queues bound to the “default exchange” (Issue #209).
Contributed by Jonathan Halcrow.

The max_retries setting for retries was not respected correctly (off by one).

182

Chapter 5. Change history

http://docs.python.org/dev/library/exceptions.html#NotImplementedError

Kombu Documentation, Release 3.0.37

5.45 2.5.10

release-date 2013-04-11 06:10 PM BST

release-by Ask Solem

5.45.1 Note about upcoming changes for Kombu 3.0

Kombu 3 consumers will no longer accept pickle/yaml or msgpack by default, and you will have to explicitly en-
able untrusted deserializers either globally using kombu.enable insecure_serializers (), or using the
accept argument to Consumer.

5.45.2 Changes

» New utility function to disable/enable untrusted serializers.
— kombu.disable insecure_serializers()
— kombu.enable_insecure_serializers().
* Consumer: accept can now be used to specify a whitelist of content types to accept.

If the accept whitelist is set and a message is received with a content type that is not in the whitelist
then a ContentDisallowed exception is raised. Note that this error can be handled by the
already existing on_decode_error callback

Examples:
Consumer (accept=["'application/json'])
Consumer (accept=['pickle', 'json'])

* Now depends on amqp 1.0.11
* pidbox: Mailbox now supports the accept argument.
* Redis: More friendly error for when keys are missing.

* Connection URLs: The parser did not work well when there were multiple ‘+° tokens.

5.46 2.5.9

release-date 2013-04-08 05:07 PM BST

release-by Ask Solem
 Pidbox: Now warns if there are multiple nodes consuming from the same pidbox.
e Adds Queue.on declared

A callback to be called when the queue is declared, with signature (name, messages,
consumers).

* Now uses fuzzy matching to suggest alternatives to typos in transport names.
* SQS: Adds new transport option queue_prefix.
Contributed by jOhnsmith.

* pyamgp: No longer overrides verify_connection.

5.45. 2.5.10 183

Kombu Documentation, Release 3.0.37

* SQS: Now specifies the driver_type and driver_name attributes.
Fix contributed by Mher Movsisyan.

* Fixed bug with kombu.utils.retry_over_time when no errback specified.

5.47 2.5.8

release-date 2013-03-21 04:00 PM UTC
release-by Ask Solem
¢ Now depends on amgp 1.0.10 which fixes a Python 3 compatibility error.
» Redis: Fixed a possible race condition (Issue #171).
* Redis: Ack emulation/visibility_timeout can now be disabled using a transport option.

Ack emulation adds quite a lot of overhead to ensure data is safe even in the event of an unclean
shutdown. If data loss do not worry you there is now an ack_emulation transport option you can
use to disable it:

Connection('redis://', transport_options={'ack_emulation': False})

* SQS: Fixed boto v2.7 compatibility (Issue #207).
* Exchange: Should not try to re-declare default exchange (" ") (Issue #209).

* SQS: Long polling is now disabled by default as it was not implemented correctly, resulting in long delays

between receiving messages (Issue #202).
* Fixed Python 2.6 incompatibility depending on exc . errno being available.

Fix contributed by Ephemera.

5.48 2.5.7

release-date 2013-03-08 01:00 PM UTC
release-by Ask Solem
* Now depends on amqgp 1.0.9
* Redis: A regression in 2.5.6 caused the redis transport to ignore options set in t ransport_options.
* Redis: New socket_timeout transport option.
* Redis: InconsistencyError is now regarded as a recoverable error.
* Resource pools: Will no longer attempt to release resource that was never acquired.
* MongoDB: Now supports the ss1 option.

Contributed by Sebastian Pawlus.

184 Chapter 5. Change history

http://boto.readthedocs.org/en/latest/ref/boto.html#module-boto

Kombu Documentation, Release 3.0.37

5.49 2.5.6

release-date 2013-02-08 01:00 PM UTC
release-by Ask Solem

* Now depends on amqp 1.0.8 which works around a bug found on some Python 2.5 installations where 2**32
overflows to 0.

5.50 2.5.5

release-date 2013-02-07 05:00 PM UTC
release-by Ask Solem
SQS: Now supports long polling (Issue #176).

The polling interval default has been changed to 0 and a new transport option (wait_time_seconds)
has been added. This parameter specifies how long to wait for a message from SQS, and defaults to 20
seconds, which is the maximum value currently allowed by Amazon SQS.

Contributed by James Saryerwinnie.
* SQS: Now removes unpickleable fields before restoring messages.
» Consumer.__exit__ now ignores exceptions occurring while cancelling the consumer.
* Virtual: Routing keys can now consist of characters also used in regular expressions (e.g. parens) (Issue #194).
e Virtual: Fixed compression header when restoring messages.

Fix contributed by Alex Koshelev.

* Virtual: ack/reject/requeue now works while using basic_get.
* Virtual: Message.reject is now supported by virtual transports (requeue depends on individual transport support).
* Fixed typo in hack used for static analyzers.

Fix contributed by Basil Mironenko.

5.51 2.5.4

release-date 2012-12-10 12:35 PM UTC
release-by Ask Solem
* Fixed problem with connection clone and multiple URLs (Issue #182).
Fix contributed by Dane Guempel.
» zeromq: Now compatible with libzmq 3.2.x.
Fix contributed by Andrey Antukh.
* Fixed Python 3 installation problem (Issue #187).

5.49. 2.5.6 185

Kombu Documentation, Release 3.0.37

5.52 2.5.3

release-date 2012-11-29 12:35 PM UTC
release-by Ask Solem
* Pidbox: Fixed compatibility with Python 2.6

5.53 2.5.2

release-date 2012-11-29 12:35 PM UTC

release-by Ask Solem

5.54 2.5.2

release-date 2012-11-29 12:35 PM UTC
release-by Ask Solem

¢ [Redis] Fixed connection leak and added a new ‘max_connections’ transport option.

5.55 2.5.1

release-date 2012-11-28 12:45 PM UTC
release-by Ask Solem

* Fixed bug where return value of Queue.as_dict could not be serialized with JSON (Issue #177).

5.56 2.5.0

release-date 2012-11-27 04:00 PM UTC
release-by Ask Solem
e py-amqp is now the new default transport, replacing amgplib.
The new py-amgqp library is a fork of amgplib started with the following goals:
Uses AMQP 0.9.1 instead of 0.8

Support for heartbeats (Issue #79 + Issue #131)

Automatically revives channels on channel errors.

Support for all RabbitMQ extensions

% Consumer Cancel Notifications (Issue #131)
% Publisher Confirms (Issue #131).

* Exchange-to-exchange bindings: exchange_bind/exchange_unbind.

186 Chapter 5. Change history

https://amqp.readthedocs.io/
https://amqp.readthedocs.io/

Kombu Documentation, Release 3.0.37

— API compatible with 1ibrabbitmg so that it can be used as a pure-python replacement in
environments where rabbitmg-c cannot be compiled. librabbitmq will be updated to support
all the same features as py-amqp.

* Support for using multiple connection URL'’s for failover.

The first argument to Connect ion can now be a list of connection URLs:

Connection(['amgp://foo', 'amgp://bar'])

or it can be a single string argument with several URLs separated by semicolon:

Connection ('amgp://foo;amgp://bar")

There is also a new keyword argument failover_strategy that defines how
ensure_connection()/ ensure ()lkombu.Connection.autoretry() will re-
connect in the event of connection failures.

The default reconnection strategy is round—robin, which will simply cycle through the list for-
ever, and there’s also a shuffle strategy that will select random hosts from the list. Custom
strategies can also be used, in that case the argument must be a generator yielding the URL to
connect to.

Example:

Connection ('amgp://foo;amgp://bar")

* Now supports PyDev, PyCharm, pylint and other static code analysis tools.

* Queue now supports multiple bindings.

You can now have multiple bindings in the same queue by having the second argument be a list:

from kombu import binding, Queue

Queue ('name', [
binding (Exchange ('E1l'), routing_key='foo'),
binding (Exchange ('E1'), routing_key='bar'),
binding (Exchange ('E2'), routing_key='baz'),
1)

To enable this, helper methods have been added:
— bind _to()
— unbind_ from/()

Contributed by Rumyana Neykova.

Custom serializers can now be registered using Setuptools entry-points.

See Creating extensions using Setuptools entry-points.

New kombu.common.QoS class used as a thread-safe way to manage changes to a consumer or channels
prefetch_count.

This was previously an internal class used in Celery now moved to the kombu . common module.

Consumer now supports a on_message callback that can be used to process raw messages (not decoded).

Other callbacks specified using the callbacks argument, and the receive method will be not
be called when a on message callback is present.

New utility kombu . common . ignore_errors () ignores connection and channel errors.

5.56.

2.5.0 187

Kombu Documentation, Release 3.0.37

Must only be used for cleanup actions at shutdown or on connection loss.
 Support for exchange-to-exchange bindings.

The Exchange entity gained bind_to and unbind_from methods:

el = Exchange('A') (connection)
e2 = Exchange('B') (connection)

e2.bind_to(el, routing_key='rkey', arguments=None)
e2.unbind_from(el, routing_ key='rkey', arguments=None)

This is currently only supported by the pyamgp transport.

Contributed by Rumyana Neykova.

5.57 2.4.10

release-date 2012-11-22 06:00 PM UTC
release-by Ask Solem

» The previous versions connection pool changes broke Redis support so that it would always connect to localhost
(default setting) no matter what connection parameters were provided (Issue #176).

5.58 2.4.9

release-date 2012-11-21 03:00 PM UTC
release-by Ask Solem
* Redis: Fixed race condition that could occur while trying to restore messages (Issue #171).
Fix contributed by Ollie Walsh.

* Redis: Each channel is now using a specific connection pool instance, which is disconnected on connection
failure.

* ProducerPool: Fixed possible dead-lock in the acquire method.
* ProducerPool: force_close_all no longer tries to call the non-existent Producer._close.

* librabbitmq: Now implements transport.verify_connection so that connection pools will not give
back connections that are no longer working.

* New and better repr () for Queue and Exchange objects.
* Python3: Fixed problem with running the unit test suite.

» Python3: Fixed problem with JSON codec.

5.59 2.4.8

release-date 2012-11-02 05:00 PM UTC
release-by Ask Solem

¢ Redis: Improved fair queue cycle implementation (Issue #166).

188 Chapter 5. Change history

Kombu Documentation, Release 3.0.37

Contributed by Kevin McCarthy.
* Redis: Unacked message restore limit is now unlimited by default.

Also, the limit can now be configured using the unacked_restore_limit transport option:

Connection('redis://', transport_options={
'unacked_restore_limit': 100,

})

A limit of 100 means that the consumer will restore at most 100
messages at each pass.

* Redis: Now uses a mutex to ensure only one consumer restores messages at a time.

The mutex expires after 5 minutes by default, but can be configured using the
unacked_mutex_expire transport option.

» LamportClock.adjust now returns the new clock value.
» Heartbeats can now be specified in URLSs.
Fix contributed by Mher Movsisyan.
* Kombu can now be used with PyDev, PyCharm and other static analysis tools.
* Fixes problem with msgpack on Python 3 (Issue #162).
Fix contributed by Jasper Bryant-Greene
« amgqplib: Fixed bug with timeouts when SSL is used in non-blocking mode.

Fix contributed by Mher Movsisyan

5.60 2.4.7

release-date 2012-09-18 03:00 PM BST
release-by Ask Solem
e Virtual: Unknown exchanges now default to ‘direct’ when sending a message.
* MongoDB: Fixed memory leak when merging keys stored in the db (Issue #159)
Fix contributed by Michael Korbakov.
* MongoDB: Better index for MongoDB transport (Issue #158).

This improvement will create a new compund index for queue and _id in order to be able to use both
indexed fields for getting a new message (using queue field) and sorting by _id. It’ll be necessary
to manually delete the old index from the collection.

Improvement contributed by rmihael

5.61 2.4.6

release-date 2012-09-12 03:00 PM BST
release-by Ask Solem

* Adds additional compatibility dependencies:

5.60. 2.4.7

189

Kombu Documentation, Release 3.0.37

— Python <=2.6:
* importlib
* ordereddict
— Python <=2.5

simplejson

5.62 2.4.5

release-date 2012-08-30 03:36 PM BST
release-by Ask Solem

* Last version broke installtion on PyPy and Jython due to test requirements clean-up.

5.63 2.4.4

release-date 2012-08-29 04:00 PM BST

release-by Ask Solem
* amgplib: Fixed a bug with asynchronously reading large messages.
* pyamgp: Now requires amgp 0.9.3

* Cleaned up test requirements.

5.64 2.4.3

release-date 2012-08-25 10:30 PM BST
release-by Ask Solem

¢ Fixed problem with amqp transport alias (Issue #154).

5.65 2.4.2

release-date 2012-08-24 05:00 PM BST
release-by Ask Solem

* Having an empty transport name broke in 2.4.1.

5.66 2.4.1

release-date 2012-08-24 04:00 PM BST
release-by Ask Solem

¢ Redis: Fixed race condition that could cause the consumer to crash (Issue #151)

190 Chapter 5. Change history

Kombu Documentation, Release 3.0.37

Often leading to the error message "could not convert string to float"
» Connection retry could cause an inifite loop (Issue #145).

* The amgp alias is now resolved at runtime, so that eventlet detection works even if patching was done later.

5.67 2.4.0

release-date 2012-08-17 08:00 PM BST
release-by Ask Solem
* New experimental ZeroMQ <kombu.transport.zmq transport.
Contributed by John Watson.
* Redis: Ack timed-out messages were not restored when using the eventloop.
» Now uses pickle protocol 2 by default to be cross-compatible with Python 3.
The protocol can also now be changed using the PICKLE_PROTOCOL environment variable.
¢ Adds Transport.supports_ev attribute.
* Pika: Queue purge was not working properly.
Fix contributed by Steeve Morin.
* Pika backend was no longer working since Kombu 2.3

Fix contributed by Steeve Morin.

5.68 2.3.2

release-date 2012-08-01 06:00 PM BST
release-by Ask Solem

* Fixes problem with deserialization in Python 3.

5.69 2.3.1

release-date 2012-08-01 04:00 PM BST
release-by Ask Solem
* librabbitmq: Can now handle messages that does not have a content_encoding/content_type set (Issue #149).
Fix contributed by C Anthony Risinger.

* Beanstalk: Now uses localhost by default if the URL does not contain a host.

5.70 2.3.0

release-date 2012-07-24 03:50 PM BST

release-by Ask Solem

5.67. 2.4.0 191

Kombu Documentation, Release 3.0.37

* New pyamgp: // transport!
The new py-amqp library is a fork of amqplib started with the following goals:
— Uses AMQP 0.9.1 instead of 0.8
— Should support all RabbitMQ extensions

— API compatible with 1ibrabbitmg so that it can be used as a pure-python replacement in
environments where rabbitmg-c cannot be compiled.

If you start using use py-amqp instead of amqgplib you can enjoy many advantages including:
— Heartbeat support (Issue #79 + Issue #131)
— Consumer Cancel Notifications (Issue #131)
— Publisher Confirms

amgqplib has not been updated in a long while, so maintaining our own fork ensures that we can
quickly roll out new features and fixes without resorting to monkey patching.

To use the py-amqp transport you must install the amgp library:

$ pip install amgp

and change the connection URL to use the correct transport:

>>> conn = Connection('pyamgp://guest:guest@localhost//")

The pyamgp: // transport will be the default fallback transport in Kombu version 3.0, when
librabbitmq is not installed, and librabbitmq will also be updated to support the same features.

* Connection now supports heartbeat argument.

If enabled you must make sure to manually maintain heartbeats by calling the
Connection.heartbeat_check at twice the rate of the specified heartbeat interval.

E.g. if you have Connection(heartbeat=10), then you must call
Connection.heartbeat_check () every 5 seconds.

if the server has not sent heartbeats at a suitable rate then the heartbeat check method must raise an
error that is listed in Connection.connection_errors.

The attribute Connection. supports_heartbeats has been added for the ability to inspect
if a transport supports heartbeats or not.

Calling heartbeat_check on a transport that does not support heartbeats results in a noop
operation.

* SQS: Fixed bug with invalid characters in queue names.
Fix contributed by Zach Smith.

« utils.reprcall: Fixed typo where kwargs argument was an empty tuple by default, and not an empty dict.

5.71 2.2.6

release-date 2012-07-10 05:00 PM BST
release-by Ask Solem

* Adds kombu.messaging.entry_to_gueue for compat with previous versions.

192 Chapter 5. Change history

https://amqp.readthedocs.io/

Kombu Documentation, Release 3.0.37

5.72 2.2.5

release-date 2012-07-10 05:00 PM BST

release-by Ask Solem
» Pidbox: Now sets queue expire at 10 seconds for reply queues.
* EventIlO: Now ignores ValueError raised by epoll unregister.
* MongoDB: Fixes Issue #142

Fix by Flavio Percoco Premoli

5.73 2.2.4

release-date 2012-07-05 04:00 PM BST
release-by Ask Solem
* Support for msgpack-python 0.2.0 (Issue #143)

The latest msgpack version no longer supports Python 2.5, so if you’re still using that you need to
depend on an earlier msgpack-python version.

Fix contributed by Sebastian Insua
e maybe_declare () no longer caches entities with the auto_delete flag set.
* New experimental filesystem transport.

Contributed by Bobby Beever.

* Virtual Transports: Now support anonymous queues and exchanges.

5.74 2.2.3

release-date 2012-06-24 05:00 PM BST
release-by Ask Solem
¢ BrokerConnection now renamed to Connection.

The name Connection has been an alias for a very long time, but now the rename is official in
the documentation as well.

The Connection alias has been available since version 1.1.3, and BrokerConnection will still
work and is not deprecated.

* Connection.clone () now works for the sqlalchemy transport.

e kombu.common.eventloop (), kombu.utils.uuid (), and kombu.utils.url.parse _url ()
can now be imported from the kombu module directly.

* Pidbox transport callback after_reply message_received now happens in a finally block.

* Trying to use the librabbitmqg:// transport will now show the right name in the ImportError if
librabbitmqg is not installed.

The librabbitmq falls back to the older pylibrabbitmg name for compatibility reasons and
would therefore show No module named pylibrabbitmg instead of librabbitmg.

5.72. 2.2.5 193

http://docs.python.org/dev/library/exceptions.html#ImportError

Kombu Documentation, Release 3.0.37

5.75 2.2.2

release-date 2012-06-22 02:30 PM BST
release-by Ask Solem
Now depends on any json 0.3.3
Json serializer: Now passes buf fer objects directly, since this is supported in the latest any json version.
Fixes blocking epoll call if timeout was set to 0.
Fix contributed by John Watson.
setup.py now takes requirements from the requirements/ directory.

The distribution directory contrib/ is now renamed to extra/

5.76 2.2.1

release-date 2012-06-21 01:00 PM BST
release-by Ask Solem
SQS: Default visibility timeout is now 30 minutes.

Since we have ack emulation the visibility timeout is only in effect if the consumer is abrubtly
terminated.

retry argument to Producer . publish now works properly, when the declare argument is specified.
Json serializer: didn’t handle buffer objects (Issue #135).

Fix contributed by Jens Hoffrichter.
Virtual: Now supports passive argument to exchange_declare.

Exchange & Queue can now be bound to connections (which will use the default channel):

>>> exchange = Exchange ('name')
>>> bound_exchange = exchange (connection)
>>> bound_exchange.declare ()

SimpleQueue & SimpleBuf fer can now be bound to connections (which will use the default channel).
Connection.manager.get_bindings now works for librabbitmq and pika.

Adds new transport info attributes:

— " Transport.driver_type "

Type of underlying driver, e.g. "amgp", "redis", "sqgl".
- " "Transport.driver_name

Name of library used e.g. "amgplib", "redis", "pymongo".

- " “Transport.driver_version ()

Version of underlying library.

194

Chapter 5. Change history

Kombu Documentation, Release 3.0.37

5.77 2.2.0

release-date 2012-06-07 03:10 PM BST
release-by Ask Solem

5.77.1 Important Notes

* The canonical source code repository has been moved to
http://github.com/celery/kombu

* Pidbox: Exchanges used by pidbox are no longer auto_delete.
Auto delete has been described as a misfeature, and therefore we have disabled it.

For RabbitMQ users old exchanges used by pidbox must be removed, these are named
mailbox_name.pidbox, and reply.mailbox_name.pidbox.

The following command can be used to clean up these exchanges:

VHOST=/ URL=amgp:// python -c'import sys,kombu; [kombu.Connection (
sys.argv[—-1]) .channel () .exchange_delete (x)
for x in sys.argv[1l:-1]]1"' \
$ (sudo rabbitmgctl —-g list_exchanges -p "S$VHOST" \
| grep \.pidbox | awk '{print $1}') "SURL"

The VHOST variable must be set to the target RabbitMQ virtual host, and the URL must be the
AMQP URL to the server.

* The amgp transport alias will now use 1ibrabbitmqg if installed.
py-librabbitmgq is a fast AMQP client for Python using the librabbitmq C library.
It can be installed by:

$ pip install librabbitmg

It will not be used if the process is monkey patched by eventlet/gevent.

5.77.2 News

* Redis: Ack emulation improvements.
Reducing the possibility of data loss.

Acks are now implemented by storing a copy of the message when the message is consumed. The
copy is not removed until the consumer acknowledges or rejects it.

This means that unacknowledged messages will be redelivered either when the connection is closed,
or when the visibility timeout is exceeded.

— Visibility timeout

This is a timeout for acks, so that if the consumer does not ack the message within
this time limit, the message is redelivered to another consumer.

The timeout is set to one hour by default, but can be changed by configuring a
transport option:

5.77. 2.2.0 195

http://github.com/celery/kombu
https://github.com/celery/librabbitmq

Kombu Documentation, Release 3.0.37

>>> Connection('redis://', transport_options={
'visibility_timeout': 1800, +# 30 minutes

})

NOTE: Messages that have not been acked will be redelivered if the visibility timeout is exceeded,
for Celery users this means that ETA/countdown tasks that are scheduled to execute with a time
that exceeds the visibility timeout will be executed twice (or more). If you plan on using long
ETA/countdowns you should tweak the visibility timeout accordingly:

BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 18000} # 5 hours

Setting a long timeout means that it will take a long time for messages to be redelivered in the event
of a power failure, but if so happens you could temporarily set the visibility timeout lower to flush
out messages when you start up the systems again.

» Experimental Apache ZooKeeper transport
More information is in the module reference: kombu. transport.zookeeper.
Contributed by Mahendra M.

* Redis: Priority support.

The message’s priority field is now respected by the Redis transport by having multiple lists
for each named queue. The queues are then consumed by in order of priority.

The priority field is a number in the range of 0 - 9, where 0 is the default and highest priority.

The priority range is collapsed into four steps by default, since it is unlikely that nine steps will
yield more benefit than using four steps. The number of steps can be configured by setting the
priority_steps transport option, which must be a list of numbers in sorted order:

>>> x = Connection('redis://', transport_options={
'priority_steps': [0, 2, 4, 6, 8, 9],
1)

Priorities implemented in this way is not as reliable as priorities on the server side, which is why
nickname the feature “quasi-priorities”; Using routing is still the suggested way of ensuring
quality of service, as client implemented priorities fall short in a number of ways, e.g. if the worker
is busy with long running tasks, has prefetched many messages, or the queues are congested.

Still, it is possible that using priorities in combination with routing can be more beneficial than
using routing or priorities alone. Experimentation and monitoring should be used to prove this.

Contributed by Germéan M. Bravo.
* Redis: Now cycles queues so that consuming is fair.

This ensures that a very busy queue won’t block messages from other queues, and ensures that all
queues have an equal chance of being consumed from.

This used to be the case before, but the behavior was accidentally changed while switching to using
blocking pop.

* Redis: Auto delete queues that are bound to fanout exchanges is now deleted at channel.close.
» amgplib: Refactored the drain_events implementation.

¢ Pidbox: Now uses connection.default_channel.

* Pickle serialization: Can now decode buffer objects.

* Exchange/Queue declarations can now be cached even if the entity is non-durable.

196 Chapter 5. Change history

http://zookeeper.apache.org/

Kombu Documentation, Release 3.0.37

This is possible because the list of cached declarations are now kept with the connection, so that the
entities will be redeclared if the connection is lost.

Kombu source code now only uses one-level of explicit relative imports.

5.77.3 Fixes

eventio: Now ignores ENOENT raised by epoll.register, and EEXIST from epoll.unregister.
eventio: kqueue now ignores KeyError on unregister.
Redis: Message . reject now supports the requeue argument.
Redis: Remove superfluous pipeline call.
Fix contributed by Thomas Johansson.
Redis: Now sets redelivered header for redelivered messages.
Now always makes sure references to sys.exc_info () is removed.
Virtual: The compression header is now removed before restoring messages.
More tests for the SQLAlchemy backend.
Contributed by Franck Cuny.
Url parsing did not handle MongoDB URLs properly.
Fix contributed by Flavio Percoco Premoli.
Beanstalk: Ignore default tube when reserving.

Fix contributed by Zhao Xiaohong.

5.77.4 Nonblocking consume support

librabbitmq, amqplib and redis transports can now be used non-blocking.

The interface is very manual, and only consuming messages is non-blocking so far.

The API should not be regarded as stable or final in any way. It is used by Celery which has very limited needs at this
point. Hopefully we can introduce a proper callback-based API later.

Transport.eventmap
Isamapof fd -> callback (fileno, event) to register in an eventloop.
Transport.on_poll_start ()

Is called before every call to poll. The poller must support register (fd, callback) and
unregister (£d) methods.

Transport.on_poll_start (poller)

Called when the hub is initialized. The poller argument must support the same interface as
kombu.utils.eventio.poll.

Connection.ensure_connection now takes a callback argument which is called for every loop while
the connection is down.

e Adds connection.drain_nowait

This is a non-blocking alternative to drain_events, but only supported by amgplib/librabbitmgq.

5.77.

2.2.0 197

http://docs.python.org/dev/library/exceptions.html#KeyError
http://docs.python.org/dev/library/sys.html#sys.exc_info

Kombu Documentation, Release 3.0.37

e drain_events now sets connection.more_to_read if there is more data to read.

This is to support eventloops where other things must be handled between draining events.

5.78 2.1.8

release-date 2012-05-06 03:06 PM BST
release-by Ask Solem
Bound Exchange/Queue’s are now pickleable.

Consumer/Producer can now be instantiated without a channel, and only later bound using
.revive (channel).

ProducerPool now takes Producer argument.
fxrange () now counts forever if the stop argument is set to None. (fxrange is like xrange but for decimals).
Auto delete support for virtual transports were incomplete and could lead to problems so it was removed.

Cached declarations (maybe_declare ()) are now bound to the underlying connection, so that entities are
redeclared if the connection is lost.

This also means that previously uncacheable entities (e.g. non-durable) can now be cached.

compat ConsumerSet: can now specify channel.

5.79 2.1.7

release-date 2012-04-27 06:00 PM BST

release-by Ask Solem

e compat consumerset now accepts optional channel argument.

5.80 2.1.6

release-date 2012-04-23 01:30 PM BST

release-by Ask Solem

* SQLAIchemy transport was not working correctly after URL parser change.

* maybe_declare now stores cached declarations per underlying connection instead of globally, in the rare case

that data disappears from the broker after connection loss.

* Django: Added South migrations.

Contributed by Joseph Crosland.

5.81 2.1.5

release-date 2012-04-13 03:30 PM BST

release-by Ask Solem

198

Chapter 5. Change history

Kombu Documentation, Release 3.0.37

* The url parser removed more than the first leading slash (Issue #121).

SQLAIchemy: Can now specify url using + separator

Example:

Connection ('sqgla+mysqgl://localhost/db")

* Better support for anonymous queues (Issue #116).
Contributed by Michael Barrett.

* Connection.as_uri now quotes url parts (Issue #117).

* Beanstalk: Can now set message TTR as a message property.

Contributed by Andrii Kostenko

5.82 2.1.4

release-date 2012-04-03 04:00 PM GMT
release-by Ask Solem
e MongoDB: URL parsing are now delegated to the pymongo library (Fixes Issue #103 and Issue #87).
Fix contributed by Flavio Percoco Premoli and James Sullivan
* SQS: A bug caused SimpleDB to be used even if sdb persistence was not enabled (Issue #108).
Fix contributed by Anand Kumria.
* Django: Transaction was committed in the wrong place, causing data cleanup to fail (Issue #115).
Fix contributed by Daisuke Fujiwara.
* MongoDB: Now supports replica set URLSs.
Contributed by Flavio Percoco Premoli.
* Redis: Now raises a channel error if a queue key that is currently being consumed from disappears.
Fix contributed by Stephan Jaekel.
¢ All transport ‘channel_errors’ lists now includes kombu.exception.StdChannelError.

* All kombu exceptions now inherit from a common KombuError.

5.83 2.1.3

release-date 2012-03-20 03:00 PM GMT
release-by Ask Solem
* Fixes Jython compatibility issues.

* Fixes Python 2.5 compatibility issues.

5.82. 2.1.4 199

Kombu Documentation, Release 3.0.37

5.84 2.1.2

release-date 2012-03-01 01:00 PM GMT
release-by Ask Solem

e amgqplib: Last version broke SSL support.

5.85 2.1.1

release-date 2012-02-24 02:00 PM GMT
release-by Ask Solem
¢ Connection URLs now supports encoded characters.
* Fixed a case where connection pool could not recover from connection loss.
Fix contributed by Florian Munz.

* We now patch amqplib’s __del method to skip trying to close the socket if it is not connected, as this
resulted in an annoying warning.

* Compression can now be used with binary message payloads.

Fix contributed by Steeve Morin.

5.86 2.1.0

release-date 2012-02-04 10:38 PM GMT
release-by Ask Solem
* MongoDB: Now supports fanout (broadcast) (Issue #98).
Contributed by Scott Lyons.
* amgplib: Now detects broken connections by using MSG_PEEK.
* pylibrabbitmq: Now supports basic_get (Issue #97).
» gevent: Now always uses the select polling backend.
* pika transport: Now works with pika 0.9.5 and 0.9.6dev.
The old pika transport (supporting 0.5.x) is now available as alias o1dpika.

(Note terribly latency has been experienced with the new pika versions, so this is still an experi-
mental transport).

* Virtual transports: can now set polling interval via the transport options (Issue #96).

Example:

>>> Connection('sqgs://', transport_options={
'polling_interval': 5.0})

The default interval is transport specific, but usually 1.0s (or 5.0s for the Django database transport,
which can also be set using the KOMBU_POLLING_INTERVAL setting).

¢ Adds convenience function: kombu.common.eventloop ().

200 Chapter 5. Change history

Kombu Documentation, Release 3.0.37

5.87 2.0.0

release-date 2012-01-15 06:34 PM GMT

release-by Ask Solem

5.87.1 Important Notes
Python Compatibility

* No longer supports Python 2.4.
Users of Python 2.4 can still use the 1.x series.

The 1.x series has entered bugfix-only maintenance mode, and will stay that way as long as there is
demand, and a willingness to maintain it.

New Transports

* django—-kombu is now part of Kombu core.
The Django message transport uses the Django ORM to store messages.

It uses polling, with a default polling interval of 5 seconds. The polling interval can be increased or
decreased by configuring the KOMBU_POLLING_INTERVAL Django setting, which is the polling
interval in seconds as an int or a float. Note that shorter polling intervals can cause extreme strain
on the database: if responsiveness is needed you shall consider switching to a non-polling transport.

To use it you must use transport alias "django", or as an URL:

django://

and then add kombu.transport.django to INSTALLED_APPS, and run manage.py
syncdb to create the necessary database tables.

Upgrading

If you have previously used django—-kombu, then the entry in INSTALLED_APPS must be
changed from djkombu to kombu.transport.django:

INSTALLED_APPS = (...,
'kombu.transport.django')

If you have previously used django-kombu, then there is no need to recreate the tables, as the old
tables will be fully compatible with the new version.

* kombu-sglalchemy is now part of Kombu core.

This change requires no code changes given that the sglalchemy transport alias is used.

5.87.2 News
e kombu.mixins.ConsumerMixin is a mixin class that lets you easily write consumer programs and
threads.
See Examples and Consumers.

* SQS Transport: Added support for SQS queue prefixes (Issue #84).

5.87. 2.0.0 201

Kombu Documentation, Release 3.0.37

The queue prefix can be set using the transport option queue_name_prefix:

BrokerTransport ('SQS://"', transport_options={
'queue_name_prefix': 'myapp'})

Contributed by Nitzan Miron.
e Producer.publish now supports automatic retry.

Retry is enabled by the reply argument, and retry options set by the retry_policy argument:

exchange = Exchange ('foo')
producer.publish (message, exchange=exchange, retry=True,
declare=[exchange], retry_policy={
'interval_start': 1.0})

See ensure () for alist of supported retry policy options.
e Producer.publish now supports a declare keyword argument.

This is a list of entities (Exchange, or Queue) that should be declared before the message is
published.

5.87.3 Fixes

* Redis transport: Timeout was multiplied by 1000 seconds when using select for event I/O (Issue #86).

5.88 1.5.1

release-date 2011-11-30 01:00 PM GMT

release-by Ask Solem
¢ Fixes issue with kombu . compat introduced in 1.5.0 (Issue #83).
* Adds the ability to disable content_types in the serializer registry.

Any message with a content type that is disabled will be refused. One example would be to disable
the Pickle serializer:

>>> from kombu.serialization import registry
by name

>>> registry.disable('pickle')

or by mime-type.

>>> registry.disable ('application/x-python-serialize')

5.89 1.5.0

release-date 2011-11-27 06:00 PM GMT
release-by Ask Solem

* kombu.pools: Fixed a bug resulting in resources not being properly released.
This was caused by the use of __hash___to distinguish them.

e Virtual transports: Dead-letter queue is now disabled by default.

202 Chapter 5. Change history

Kombu Documentation, Release 3.0.37

The dead-letter queue was enabled by default to help application authors, but now that Kombu is
stable it should be removed. There are after all many cases where messages should just be dropped
when there are no queues to buffer them, and keeping them without supporting automatic cleanup
is rather considered a resource leak than a feature.

If wanted the dead-letter queue can still be enabled, by using the deadletter_queue transport
option:

>>> x = Connection('redis://"',
transport_options={'deadletter_qgueue': 'ae.undeliver'})

In addition, an UndeliverableWarning is now emitted when the dead-letter queue is enabled
and a message ends up there.

Contributed by Ionel Maries Cristian.
* MongoDB transport now supports Replicasets (Issue #81).
Contributed by Ivan Metzlar.
e The Connection.ensure methods now accepts amax_retries value of 0.
A value of 0 now means do not retry, which is distinct from None which means retry indefinitely.
Contributed by Dan McGee.
* SQS Transport: Now has a lowercase sgs alias, so that it can be used with broker URLs (Issue #82).
Fix contributed by Hong Minhee
* SQS Transport: Fixes KeyError on message acknowledgements (Issue #73).
The SQS transport now uses UUID’s for delivery tags, rather than a counter.
Fix contributed by Brian Bernstein.
* SQS Transport: Unicode related fixes (Issue #82).
Fix contributed by Hong Minhee.
* Redis version check could crash because of improper handling of types (Issue #63).

* Fixed error with Resource.force_close_all when resources were not yet properly initialized (Issue #78).

5.90 1.4.3

release-date 2011-10-27 10:00 PM BST
release-by Ask Solem

* Fixes bug in ProducerPool where too many resources would be acquired.

5.91 1.4.2

release-date 2011-10-26 05:00 PM BST
release-by Ask Solem
* Eventio: Polling should ignore errno. EINTR

* SQS: str.encode did only start accepting kwargs after Py2.7.

5.90. 1.4.3 203

Kombu Documentation, Release 3.0.37

simple_task_queue example didn’t run correctly (Issue #72).
Fix contributed by Stefan Eletzhofer.

Empty messages would not raise an exception not able to be handled by on_decode_error (Issue #72)
Fix contributed by Christophe Chauvet.

CouchDB: Properly authenticate if user/password set (Issue #70)
Fix contributed by Rafael Duran Castaneda

Connection.Consumer had the wrong signature.

Fix contributed by Pavel Skvazh

5.92 1.4.1

release-date 2011-09-26 04:00 PM BST

release-by Ask Solem

* 1.4.0 broke the producer pool, resulting in new connections being established for every acquire.

5.93 1.4.0

release-date 2011-09-22 05:00 PM BST
release-by Ask Solem
Adds module kombu.mixins.

This module contains a ConsumerMixin class that can be used to easily implement a message
consumer thread that consumes messages from one or more kombu . Consumer instances.

New example: Task Queue Example

Using the ConsumerMixin, default channels and the global connection pool to demonstrate new
Kombu features.

MongoDB transport did not work with MongoDB >= 2.0 (Issue #66)
Fix contributed by James Turk.

Redis-py version check did not account for beta identifiers in version string.
Fix contributed by David Ziegler.

Producer and Consumer now accepts a connection instance as the first argument.
The connections default channel will then be used.

In addition shortcut methods has been added to Connection:

>>> connection.Producer (exchange)
>>> connection.Consumer (queues=..., callbacks=...)

Connection has aquired a connected attribute that can be used to check if the connection instance has estab-
lished a connection.

ConnectionPool.acquire_channel now returns the connections default channel rather than establising
a new channel that must be manually handled.

204

Chapter 5. Change history

Kombu Documentation, Release 3.0.37

¢ Added kombu.common.maybe_declare

maybe_declare (entity) declares an entity if it has not previously been declared in the same
process.

e kombu.compat.entry_to_queue () has been moved to kombu. common

* New module kombu. clocks now contains an implementation of Lamports logical clock.

5.94 1.3.5

release-date 2011-09-16 06:00 PM BST
release-by Ask Solem

e Python 3: AMQP_PROTOCOL_HEADER must be bytes, not str.

5.95 1.34

release-date 2011-09-16 06:00 PM BST
release-by Ask Solem

* Fixes syntax error in pools.reset

5.96 1.3.3

release-date 2011-09-15 02:00 PM BST
release-by Ask Solem

* pools.reset did not support after forker arguments.

5.97 1.3.2

release-date 2011-09-10 01:00 PM BST

release-by Mher Movsisyan
* Broke Python 2.5 compatibility by importing parse_gsl from urlparse
¢ Connection.default_channel is now closed when connection is revived after connection failures.
 Pika: Channel now supports the connection.client attribute as required by the simple interface.
* pools.set_limit now raises an exception if the limit is lower than the previous limit.

* pools.set_limit no longer resets the pools.

5.94. 1.3.5 205

Kombu Documentation, Release 3.0.37

5.98 1.3.1

release-date 2011-10-07 03:00 PM BST
release-by Ask Solem
* Last release broke after fork for pool reinitialization.
* Producer/Consumer now has a connection attribute, giving access to the Connect ion of the instance.

* Pika: Channels now have access to the underlying Connection instance using
channel.connection.client.

This was previously required by the Simple classes and is now also required by Consumer and
Producer.

* Connection.default_channel is now closed at object revival.
* Adds kombu.clocks.LamportClock.

* compat.entry_to_queue has been moved to new module kombu. common.

5.99 1.3.0

release-date 2011-10-05 01:00 PM BST
release-by Ask Solem
* Broker connection info can be now be specified using URLs

The broker hostname can now be given as an URL instead, of the format:

transport://user:password@hostname:port/virtual_host

for example the default broker is expressed as:

>>> Connection ('amgp://guest:guest@localhost:5672//")

Transport defaults to amqp, and is not required. user, password, port and virtual_host is also not
mandatory and will default to the corresponding transports default.

Note: Note that the path component (virtual_host) always starts with a forward-slash. This is
necessary to distinguish between the virtual host © (empty) and ‘/’, which are both acceptable
virtual host names.

A virtual host of */’ becomes:
amqp://guest:guest@localhost:5672//

and a virtual host of “ (empty) becomes:

amgp://guest:guest@localhost:5672/

So the leading slash in the path component is always required.

* Now comes with default global connection and producer pools.

The acquire a connection using the connection parameters from a Connection:

206 Chapter 5. Change history

Kombu Documentation, Release 3.0.37

>>> from kombu import Connection, connections
>>> connection = Connection ('amgp://guest:guest@localhost//")
>>> with connections[connection].acquire (block=True) :

>tion

do something with conne

To acquire a producer using the connection parameters from a Connection:

>>> from kombu import Connection, producers

>>> connection = Connection ('amgp://guest:guest@localhost//")

>>> with producers|[connection].acquire (block=True) :
producer.publish({'hello': 'world'}, exchange='hello')

Acquiring a producer will in turn also acquire a connection from the associated pool in
connections, so you the number of producers is bound the same limit as number of connec-
tions.

The default limit of 100 connections per connection instance can be changed by doing:

>>> from kombu import pools
>>> pools.set_limit (10)

The pool can also be forcefully closed by doing:

>>> from kombu import pools
>>> pool.reset ()

SQS Transport: Persistence using SimpleDB is now disabled by default, after reports of unstable SimpleDB
connections leading to errors.

Producer can now be used as a context manager.
Producer.__exit__ now properly calls release instead of close.

The previous behavior would lead to a memory leak when using the
kombu.pools.ProducerPool

Now silences all exceptions from import ctypes to match behaviour of the standard Python uuid module, and
avoid passing on MemoryError exceptions on SELinux-enabled systems (Issue #52 + Issue #53)

amgp is now an alias to the amgplib transport.

kombu.syn.detect_environment now returns ‘default’, ‘eventlet’, or ‘gevent’ depending on what mon-
key patches have been installed.

Serialization registry has new attribute t ype_to_name so it is possible to lookup serializater name by content
type.

Exchange argument to Producer.publish can now be an Exchange instance.

compat .Publisher now supports the channel keyword argument.

Acking a message on some transports could lead to KeyError being raised (Issue #57).

Connection pool: Connections are no long instantiated when the pool is created, but instantiated as needed
instead.

Tests now pass on PyPy.
Connection.as_uri now includes the password if the keyword argument include_password is set.

Virtual transports now comes with a default default_connection_params attribute.

5.99.

1.3.0 207

http://docs.python.org/dev/library/exceptions.html#KeyError

Kombu Documentation, Release 3.0.37

5.100 1.2.1

release-date 2011-07-29 12:52 PM BST
release-by Ask Solem
* Now depends on amqplib >= 1.0.0.
* Redis: Now automatically deletes auto_delete queues at basic_cancel.
* serialization.unregister added so itis possible to remove unwanted seralizers.
* Fixes MemoryError while importing ctypes on SELinux (Issue #52).

e Connection.autoretry isa version of ensure that works with arbitrary functions (i.e. it does not need
an associated object that implements the revive method.

Example usage:

channel = connection.channel ()
try:

ret, channel = connection.autoretry (send_messages, channel=channel)
finally:

channel.close ()

* ConnectionPool.acquire no longer force establishes the connection.
The connection will be established as needed.

* Connection.ensure now supports an on_revive callback that is applied whenever the connection is
re-established.

e Consumer.consuming_from (queue) returns True if the Consumer is consuming from queue.
* Consumer.cancel_by_queue did not remove the queue from queues.

e compat.ConsumerSet.add_queue_from_dict now automatically declared the queue if
auto_declare set.

5.101 1.2.0

release-date 2011-07-15 12:00 PM BST
release-by Ask Solem
* Virtual: Fixes cyclic reference in Channel.close (Issue #49).
* Producer.publish: Can now set additional properties using keyword arguments (Issue #48).
* Adds Queue.no_ack option to control the no_ack option for individual queues.
* Recent versions broke pylibrabbitmq support.
» SimpleQueue and SimpleBuffer can now be used as contexts.
* Test requirements specifies PyYAML==3.09 as 3.10 dropped Python 2.4 support

* Now properly reports default values in Connection.info/.as_uri

208 Chapter 5. Change history

Kombu Documentation, Release 3.0.37

5.102 1.1.6

release-date 2011-06-13 04:00 PM BST
release-by Ask Solem

* Redis: Fixes issue introduced in 1.1.4, where a redis connection failure could leave consumer hanging forever.
* SQS: Now supports fanout messaging by using SimpleDB to store routing tables.

This can be disabled by setting the supports_fanout transport option:

>>> Connection (transport='SQS"',

transport_options={'supports_fanout': False})

* SQS: Now properly deletes a message when a message is acked.

¢ SQS: Can now set the Amazon AWS region, by using the region transport option.

» amgqplib: Now uses localhost as default hostname instead of raising an error.
5.103 1.1.5

release-date 2011-06-07 06:00 PM BST

release-by Ask Solem

* Fixes compatibility with redis-py 2.4.4.

5.104 1.1.4

release-date 2011-06-07 04:00 PM BST

release-by Ask Solem

* Redis transport: Now requires redis-py version 2.4.4 or later.
e New Amazon SQS transport added.
Usage:

>>> conn =

Connection (transport="'SQSs',

userid=aws_access_key_id,
password=aws_secret_access_key)

The environment variables AWS_ACCESS_KEY ID and AWS_SECRET_ ACCESS_KEY are also
supported.

* librabbitmq transport: Fixes default credentials support.
» amgqplib transport: Now supports login_method for SSL auth.

Connect ion now supports the login_method keyword argument.

Default login_method is AMQPLATIN.

5.102. 1.1.6

209

Kombu Documentation, Release 3.0.37

5.105 1.1.3

release-date 2011-04-21 04:00 PM CEST
release-by Ask Solem
* Redis: Consuming from multiple connections now works with Eventlet.
* Redis: Can now perform channel operations while the channel is in BRPOP/LISTEN mode (Issue #35).

Also the async BRPOP now times out after 1 second, this means that cancelling consuming from a
queue/starting consuming from additional queues has a latency of up to one second (BRPOP does
not support subsecond timeouts).

e Virtual: Allow channel objects to be closed multiple times without error.

e amqgplib: AttributeError has been added to the list of known connection related errors
(Connection.connection_errors).

» amqplib: Now converts SSLError timeout errors to socket . t imeout (http://bugs.python.org/issuel0272)

* Ensures cyclic references are destroyed when the connection is closed.

5.106 1.1.2

release-date 2011-04-06 04:00 PM CEST
release-by Ask Solem
* Redis: Fixes serious issue where messages could be lost.
The issue could happen if the message exceeded a certain number of kilobytes in size.

It is recommended that all users of the Redis transport should upgrade to this version, even if not
currently experiencing any issues.

5.107 1.1.1

release-date 2011-04-05 03:51 PM CEST
release-by Ask Solem

* 1.1.0 started using Queue . Li foQueue which is only available in Python 2.6+ (Issue #33). We now ship with
our own LifoQueue.

5.108 1.1.0

release-date 2011-04-05 01:05 PM CEST

release-by Ask Solem

210 Chapter 5. Change history

http://docs.python.org/dev/library/socket.html#socket.timeout
http://bugs.python.org/issue10272

Kombu Documentation, Release 3.0.37

5.108.1 Important Notes

* Virtual transports: Message body is now base64 encoded by default (Issue #27).
This should solve problems sending binary data with virtual transports.

Message compatibility is handled by adding a body_encoding property, so messages sent by
older versions is compatible with this release. However — If you are accessing the messages directly
not using Kombu, then you have to respect the body_encoding property.

If you need to disable base64 encoding then you can do so via the transport options:

Connection (transport='...",
transport_options={'body_encoding': None})

For transport authors:

You don’t have to change anything in your custom transports, as this is handled auto-
matically by the base class.

If you want to use a different encoder you can do so by adding a
key to Channel.codecs. Default encoding is specified by the
Channel.body_encoding attribute.

A new codec must provide two methods: encode (data) and decode (data).

¢ ConnectionPool/ChannelPool/Resource: Setting 1imit=None (or 0) now disables pool semantics, and will
establish and close the resource whenever acquired or released.

* ConnectionPool/ChannelPool/Resource: Is now using a LIFO queue instead of the previous FIFO behavior.

This means that the last resource released will be the one acquired next. L.e. if only a single thread
is using the pool this means only a single connection will ever be used.

* Connection: Cloned connections did not inherit transport_options (__copy__).
* contrib/requirements is now located in the top directory of the distribution.

* MongoDB: Now supports authentication using the userid and password arguments to Connection (Issue
#30).

* Connection: Default autentication credentials are now delegated to the individual transports.

This means that the userid and password arguments to Connection is no longer guest/guest by
default.

The amgplib and pika transports will still have the default credentials.
e Consumer.__exit__ () did not have the correct signature (Issue #32).
* Channel objects now have a channel_id attribute.
* MongoDB: Version sniffing broke with development versions of mongod (Issue #29).

* New environment variable KOMBU_LOG_CONNECTION will now emit debug log messages for connection
related actions.

KOMBU_LOG_DEBUG will also enable KOMBU_LOG_CONNECTION.

5.109 1.0.7

release-date 2011-03-28 05:45 PM CEST

5.109. 1.0.7 211

Kombu Documentation, Release 3.0.37

release-by Ask Solem
* Now depends on anyjson 0.3.1

cjson is no longer a recommended json implementation, and anyjson will now emit a deprecation
warning if used.

* Please note that the Pika backend only works with version 0.5.2.
The latest version (0.9.x) drastically changed API, and it is not compatible yet.
* on_decode_error is now called for exceptions in message_to_python (Issue #24).
* Redis: did not respect QoS settings.
* Redis: Creating a connection now ensures the connection is established.
This means Connection.ensure_connection works properly with Redis.
e consumer_tag argument to Queue . consume can’t be None (Issue #21).

A None value is now automatically converted to empty string. An empty string will make the server
generate a unique tag.

* Connection now supports a t ransport_options argument.
This can be used to pass additional arguments to transports.

e Pika: drain_events raised socket .t imeout even if no timeout set (Issue #8).

5.110 1.0.6

release-date 2011-03-22 04:00 PM CET
release-by Ask Solem

e The delivery_mode aliases (persistent/transient) were not automatically converted to integer, and would
cause a crash if using the amqplib transport.

 Redis: The redis-py InvalidData exception suddenly changed name to DataError.
* The KOMBU_LOG_DEBUG environment variable can now be set to log all channel method calls.
Support for the following environment variables have been added:
— KOMBU_LOG_CHANNEL will wrap channels in an object that logs every method call.

— KOMBU_LOG_DEBUG both enables channel logging and configures the root logger to emit
messages to standard error.

Example Usage:

$ KOMBU_LOG_DEBUG=1 python

>>> from kombu import Connection

>>> conn = Connection ()

>>> channel = conn.channel ()

Start from server, version: 8.0, properties:
{u'product': 'RabbitMQ', }

Open OK! known_hosts []

using channel_id: 1

Channel open

>>> channel.queue_declare ('myq', passive=True)

[Kombu channel:1] queue_declare('myq', passive=True)

(u'myq', 0, 1)

212 Chapter 5. Change history

http://docs.python.org/dev/library/socket.html#socket.timeout

Kombu Documentation, Release 3.0.37

5.111 1.0.5

release-date 2011-03-17 04:00 PM CET
release-by Ask Solem

* Fixed memory leak when creating virtual channels. All virtual transports affected (redis, mongodb, memory,
django, sqlalchemy, couchdb, beanstalk).

* Virtual Transports: Fixed potential race condition when acking messages.

If you have been affected by this, the error would show itself as an exception raised by the Ordered-
Dict implementation. (ocbject no longer exists).

* MongoDB transport requires the £ indandmodi fy command only available in MongoDB 1.3+, so now raises
an exception if connected to an incompatible server version.

e Virtual Transports: basic.cancel should not try to remove unknown consumer tag.

5.112 1.0.4

release-date 2011-02-28 04:00 PM CET
release-by Ask Solem
* Added Transport.polling_interval

Used by django-kombu to increase the time to sleep between SELECTSs when there are no messages
in the queue.

Users of django-kombu should upgrade to django-kombu v0.9.2.

5.113 1.0.3

release-date 2011-02-12 04:00 PM CET

release-by Ask Solem
* ConnectionPool: Re-connect if amqplib connection closed
¢ Adds Queue.as_dict + Exchange.as_dict.

* Copyright headers updated to include 2011.

5.114 1.0.2

release-date 2011-01-31 10:45 PM CET
release-by Ask Solem
* amgplib: Message properties were not set properly.

* Ghettoq backend names are now automatically translated to the new names.

5.111. 1.0.5 213

Kombu Documentation, Release 3.0.37

5.115 1.0.1

release-date 2011-01-28 12:00 PM CET
release-by Ask Solem

* Redis: Now works with Linux (epoll)

5.116 1.0.0

release-date 2011-01-27 12:00 PM CET
release-by Ask Solem

e Initial release

5.117 0.1.0

release-date 2010-07-22 04:20 PM CET
release-by Ask Solem

e Initial fork of carrot

214

Chapter 5. Change history

CHAPTER 6

Indices and tables

¢ genindex
* modindex

e search

215

Kombu Documentation, Release 3.0.37

216 Chapter 6. Indices and tables

Python Module Index

Kk

kombu, 31

kombu.
kombu.
kombu.

kombu

kombu.
kombu.
kombu.
kombu.
.compat, 55
compression, 72
connection, 64

exceptions, 63

kombu

kombu.
kombu.
kombu.
kombu.
.log, 63
kombu.
kombu.
kombu.
kombu.
.serialization, 157
kombu.
kombu.
kombu.
kombu.
kombu.
kombu.

kombu

kombu

kombu.
kombu.
kombu.

kombu.
kombu.
kombu.
kombu.
kombu.
kombu.
kombu.
kombu.
kombu.

abstract, 75

async, 76

async.debug, 80
.async.hub, 77
semaphore, 78
async.timer, 79

async.

clocks, 53
common, 48

five, 164

message, 71
mixins, 50
pidbox, 61
pools, 73

simple, 51
syn, 76

transport,

transport
transport
transport
transport
transport
transport
145
transport
transport

transport
transport
transport
transport
transport
transport

. SLMQ, 146

.virtual, 151
.virtual.exchange, 156
.virtual.scheduling, 157
zmg, 138

zookeeper, 141

kombu.
kombu.
kombu.
kombu.
kombu.
kombu.

transport
transport
transport
transport
transport.
transport.
utils, 159
utils.amg _manager, 164
utils.compat, 162
utils.debug, 162
utils.encoding, 162
eventio, 161
functional, 163
utils.limits, 161
utils.text, 164
utils.url, 163

kombu.
kombu.
kombu.
kombu.
kombu.
utils.
utils.

kombu.
kombu.
kombu.
kombu.
kombu.

81

.amgplib, 148

.base, 150

.beanstalk, 138

.couchdb, 140

.django, 143

.django.management .commands.clean_kombu_messages,

.django.managers, 145
.django.models, 144
transport.
.memory, 133
.mongodb, 139
.pyamgp, 81
.pyro, 147
.gpid, 99
.redis, 134

filesystem, 142

217

Kombu Documentation, Release 3.0.37

218 Python Module Index

Index

Sy mbols acknowledged (kombu.transport.pyamqp.Connection.Channel.Message
attribute), 83

acknowledged (kombu.transport.virtual. Message at-
tribute), 154

acquire() (kombu.async.semaphore.LaxBoundedSemaphore

A method), 79

abeast() (kombu.pidbox.Mailbox method), 62 acqu%re() (kombu.connecti(?n.ChannelPF)ol method), 71

AbstractChannel (class in kombu.transport.virtual), 152 acquire() (kombu.connection.ConnectionPool method),

__len__() (kombu.simple.SimpleBuffer method), 53
__len__() (kombu.simple.SimpleQueue method), 52
_close() (kombu.Connection method), 36

. 70
accept (kombu.compat.Consumer attribute), 56 . . .
accept (kombu.compat.ConsumerSet attribute), 59 actlve_quelu%e; (kombu.transport.redis.Channel attribute),

accept (kombu.message.Message attribute), 71 . .
. active_queues (kombu.transport.redis. Transport.Channel
accept (kombu.transport.pyamqgp.Connection.Channel. Message attribute), 135

attribute), 83
. . dd() (kombu.async.Hub method), 76
t (kombu.t rt.virtual.M tribute), 154 2
accept (kombu.transport.virtual Message attribute) add() (kombu.async.hub.Hub method), 77

ack() (kombu.message.Message method), 71
ack() (kombu transpirt base l\/glessage method), 150 add_consumer() (kombu.compat.ConsumerSet method),
. . . , 59

ack() (kombu.transport.pyamqp.Connection.Channel.Messa%%1 d_consumer_from_dict()
_ u — _

method), 83
. (kombu.compat.ConsumerSet method), 59
k() (k . . .Ch 1. h 12
ack() (kombu.transport.qpid.Channel QoS method), 125 add_queue() (kombu.compat.Consumer method), 56

k kombu.t rt.qpid.C tion.Ch 1.QoS
ack() (kombu.transport.qpid.Connection.Channel. Qo add_queue() (kombu.compat.ConsumerSet method), 59

method), 116
ack() (kornbu.transport.qpid.Transport.Connection.Channel.63) queue() (komb.u.Consumer method), 47
method), 103 add_queue_from_dict() (kombu.compat.Consumer

ack() (kombu.transport.redis.Channel.QoS method), 136 ad m?thod)a.57 komb C S
ack() (kombu.transport.redis.Transport.Channel.QoS a —queuen—leiﬁgé—) 150;() (kombu.compat.ConsumerSet

method), 135
ack() (kombu.transport.virtual. Message method), 154
ack() (kombu.transport.virtual.QoS method), 155
ack_emulation (kombu.transport.redis.Channel attribute),
137
ack_emulation (kombu.transport.redis. Transport.Channel

attribute), 135 ft) ceived()
K 1 kombu. M thod), 71 after_reply_message_receive
ack_log_error() (kombu. message.Message method) kombu.transport.memory.Channel = method),

ack_log_error() (kombu.transport.pyamqgp.Connection.Channel. Messa %
4

method), 83

ack_log_error() (kombu.transport.virtual. Message
method), 154

acknowledged (kombu.message.Message attribute), 71

acknowledged (kombu.transport.base.Message attribute),
150

add_queue_from_dict() (kombu.Consumer method), 47
add_reader() (kombu.async.Hub method), 76
add_reader() (kombu.async.hub.Hub method), 77
add_writer() (kombu.async.Hub method), 76
add_writer() (kombu.async.hub.Hub method), 77
adjust() (kombu.clocks.LamportClock method), 54

after_reply_message_received()
(kombu.transport.memory.Transport.Channel
method), 134

after_reply_message_received()
(kombu.transport.pyamqp.Connection.Channel
method), 84

219

Kombu Documentation, Release 3.0.37

after_reply_message_received()
(kombu.transport.pyro.Channel
148

after_reply_message_received()
(kombu.transport.pyro.Transport.Channel
method), 147

alias (kombu.Queue attribute), 42

AMQP_PROTOCOL_HEADER
(kombu.transport.amqplib.Connection
tribute), 149

annotate() (kombu.log.LogMixin method), 63

append() (kombu.transport.qpid.Channel.QoS method),
126

append() (kombu.transport.qpid.Connection.Channel.QoS
method), 116

method),

at-

auto_delete (kombu.Exchange attribute), 39, 40
auto_delete (kombu.Queue attribute), 42

autoretry() (kombu.Connection method), 34

autoretry() (kombu.connection.Connection method), 67
AWS_ACCESS_KEY_ID, 209
AWS_SECRET_ACCESS_KEY, 209

B

backend (kombu.compat.Publisher attribute), 55

basic_ack() (kombu.transport.pyamgp.Connection.Channel
method), 84

basic_ack() (kombu.transport.qpid.Channel method), 127

basic_ack() (kombu.transport.qpid.Connection.Channel
method), 117

basic_ack() (kombu.transport.qpid. Transport.Connection.Channel

append() (kombu.transport.qpid. Transport.Connection.Channel.QoS method), 104

method), 103
append() (kombu.transport.redis.Channel.QoS method),
136

append() (kombu.transport.redis.Transport.Channel.QoS
method), 135

append() (kombu.transport.virtual.QoS method), 155

apply_entry() (kombu.async.timer.Timer method), 80

args (kombu.async.timer.Entry attribute), 79

args (kombu.async.timer.Timer.Entry attribute), 80

args (kombu.compat.Consumer.ContentDisallowed at-
tribute), 56

args (kombu.compat.ConsumerSet.ContentDisallowed at-
tribute), 59

basic_ack() (kombu.transport.SLMQ.Channel method),
146

basic_ack() (kombu.transport.SLMQ.Transport.Channel
method), 146

basic_ack() (kombu.transport.virtual.Channel method),
153

basic_cancel() (kombu.transport.amqplib.Channel
method), 149

basic_cancel() (kombu.transport.pyamqgp.Connection.Channel
method), 84

basic_cancel() (kombu.transport.qpid.Channel method),
127

basic_cancel() (kombu.transport.qpid.Connection.Channel

args (kombu.transport.pyamqp.Connection.Channel. Message. Messagehettedidyof 17

attribute), 83

args (kombu.transport.virtual. Message.MessageStateError

attribute), 154

arguments (kombu.Exchange attribute), 39

as_dict() (kombu.Queue method), 42

as_uri() (kombu.Connection method), 34

as_uri() (kombu.connection.Connection method), 67

as_url() (in module kombu.utils.url), 163

async_pool (kombu.transport.redis.Channel
137

async_pool (kombu.transport.redis. Transport.Channel at-
tribute), 135

attrs (kombu.common.Broadcast attribute), 48

attrs (kombu.Exchange attribute), 40

attrs (kombu.Queue attribute), 42

auto_declare (kombu.compat.Consumer attribute), 57

auto_declare (kombu.compat.ConsumerSet attribute), 59

auto_declare (kombu.compat.Publisher attribute), 55

auto_declare (kombu.Consumer attribute), 46

auto_declare (kombu.pools.ProducerPool.Producer at-
tribute), 74

auto_declare (kombu.Producer attribute), 44

auto_delete (kombu.compat.Consumer attribute), 57

auto_delete (kombu.compat.Publisher attribute), 55

attribute),

basic_cancel() (kombu.transport.qpid. Transport.Connection.Channel
method), 104

basic_cancel() (kombu.transport.redis.Channel method),
137

basic_cancel() (kombu.transport.redis.Transport.Channel
method), 135

basic_cancel()
method), 147

basic_cancel() (kombu.transport.SLMQ.Transport.Channel
method), 146

basic_cancel()
method), 153

basic_consume() (kombu.transport.amqplib.Channel
method), 149

basic_consume()
method), 144

basic_consume() (kombu.transport.django.Transport.Channel
method), 143

basic_consume() (kombu.transport.pyamqp.Connection.Channel
method), 85

basic_consume()
method), 127

basic_consume() (kombu.transport.qpid.Connection.Channel
method), 118

(kombu.transport.SLMQ.Channel

(kombu.transport.virtual.Channel

(kombu.transport.django.Channel

(kombu.transport.qpid.Channel

220

Index

Kombu Documentation, Release 3.0.37

basic_consume() (kombu.transport.qpid.Transport.Connectibasiharpedt() (kombu.transport.qpid. Transport.Connection.Channel

method), 105
basic_consume()
method), 137

(kombu.transport.redis.Channel

method), 106
basic_reject() (kombu.transport.virtual.Channel method),
153

basic_consume() (kombu.transport.redis. Transport.Channel bind() (kombu.abstract. MaybeChannelBound method),

method), 135
basic_consume()
method), 147

(kombu.transport. SLMQ.Channel

75
bind() (kombu.Queue method), 42
bind_to() (kombu.Exchange method), 40

basic_consume() (kombu.transport.SLMQ.Transport.Channdlind_to() (kombu.Queue method), 42

method), 146
basic_consume()
method), 153
basic_get() (kombu.transport.pyamgp.Connection.Channel
method), 86
basic_get() (kombu.transport.qpid.Channel method), 128
basic_get() (kombu.transport.qpid.Connection.Channel
method), 118

(kombu.transport.virtual.Channel

binding() (kombu.Exchange method), 40

binding_arguments (kombu.Queue attribute), 42

bindings (kombu.transport.virtual.BrokerState attribute),
156

body (kombu.message.Message attribute), 72

body (kombu.transport.base.Message attribute), 150

body (kombu.transport.pyamqp.Connection.Channel.Message
attribute), 83

basic_get() (kombu.transport.qpid. Transport.Connection.Chimdsl (kombu.transport.virtual. Message attribute), 154

method), 105
basic_get() (kombu.transport.virtual.Channel method),
153

basic_publish() (kombu.transport.pyamqp.Connection.Channel
body_encoding (kombu.transport.qpid.Transport.Connection.Channel

method), 86
basic_publish() (kombu.transport.qpid.Channel method),
128

body_encoding (kombu.transport.qpid.Channel attribute),
129

body_encoding (kombu.transport.qpid.Connection.Channel

attribute), 120

attribute), 107
Broadcast (class in kombu.common), 48

basic_publish() (kombu.transport.qpid.Connection.Channel BrokerState (class in kombu.transport.virtual), 156

method), 119

bytes_to_str() (in module kombu.utils.encoding), 163

basic_publish() (kombu.transport.qpid. Transport.Connection.Channel

method), 106
basic_publish()
method), 153

(kombu.transport.virtual.Channel

cached_property (class in kombu.utils), 160
call() (kombu.pidbox.Mailbox method), 62

basic_publish_confirm() (kombu.transport.pyamqp.Connectmlgﬁgﬂ§](kombu'async.timer‘Timer method), 80

method), 87

basic_qos() (kombu.transport.pyamgp.Connection.Channel
method), 87

basic_qos() (kombu.transport.qpid.Channel method), 128

basic_qos() (kombu.transport.qpid.Connection.Channel
method), 119

call_at() (kombu.async.Hub method), 76
call_at() (kombu.async.hub.Hub method), 77
call_at() (kombu.async.timer.Timer method), 80
call_later() (kombu.async.Hub method), 76
call_later() (kombu.async.hub.Hub method), 77
call_repeatedly() (kombu.async.Hub method), 76

basic_qos() (kombu.transport.qpid.Transport.Connection.Ch@mg}epeatedly() (kombu.async.hub.Hub method), 77

method), 106
basic_qos() (kombu.transport.virtual.Channel method),
153

call_repeatedly() (kombu.async.timer.Timer method), 80
call_soon() (kombu.async.Hub method), 76
call_soon() (kombu.async.hub.Hub method), 77

basic_recover() (kombu.transport.pyamgp.Connection.Changglipack_for() (in module kombu.async.debug), 80

method), 88
basic_recover()
method), 153

(kombu.transport.virtual.Channel

callbacks (kombu.compat.Consumer attribute), 57
callbacks (kombu.compat.ConsumerSet attribute), 59
callbacks (kombu.Consumer attribute), 46

basic_recover_async() (kombu.transport.pyamqp.COnneCtiog@%ggﬁg_declaraﬁon (kombu.abstract. MaybeChannelBound

method), 88

attribute), 75

basic_reject() (kombu.transport.pyamqp.Connection.Channelan_cache_declaration (kombu.Exchange attribute), 40

method), 88

basic_reject() (kombu.transport.qpid.Channel method),
129

basic_reject() (kombu.transport.qpid.Connection.Channel
method), 119

can_cache_declaration (kombu.Queue attribute), 42

can_consume() (kombu.transport.qpid.Channel.QoS
method), 126

can_consume() (kombu.transport.qpid.Connection.Channel.QoS
method), 116

Index

221

Kombu Documentation, Release 3.0.37

can_consume() (kombu.transport.qpid. Transport.Connectiorchhramsle(kQofbu. Consumer attribute), 46

method), 104

can_consume() (kombu.transport.virtual.QoS method),
155

can_consume()
method), 161

can_consume_max_estimate()
(kombu.transport.qpid.Channel.QoS method),
126

can_consume_max_estimate()
(kombu.transport.qpid.Connection.Channel.QoS
method), 117

can_consume_max_estimate()

(kombu.utils.limits. TokenBucket

channel (kombu.Exchange attribute), 39

channel (kombu.message.Message attribute), 72

channel (kombu.pidbox.Node attribute), 63

channel (kombu.pools.ProducerPool.Producer attribute),
74

channel (kombu.Producer attribute), 44

channel (kombu.Queue attribute), 42

channel (kombu.simple.SimpleBuffer attribute), 52

channel (kombu.simple.SimpleQueue attribute), 52

channel (kombu.transport.base.Message attribute), 150

channel (kombu.transport.pyamqgp.Connection.Channel.Message
attribute), 83

(kombu.transport.qpid. Transport.Connection. Chamieln@elS(kombu.transport.virtual. Message attribute), 154

method), 104

can_consume_max_estimate()
(kombu.transport.virtual.QoS method), 155

can_parse_url (kombu.transport.mongodb.Transport at-
tribute), 139

cancel() (kombu.async.timer.Entry method), 79

cancel() (kombu.async.timer.Timer method), 80

cancel() (kombu.async.timer.Timer.Entry method), 80

cancel() (kombu.compat.Consumer method), 57

cancel() (kombu.compat.ConsumerSet method), 59

cancel() (kombu.Consumer method), 47

cancel() (kombu.Queue method), 42

cancel_by_queue() (kombu.compat.Consumer method),
57

cancel_by_queue()
method), 59

cancel_by_queue() (kombu.Consumer method), 47

cancelled (kombu.async.timer.Entry attribute), 79

cancelled (kombu.async.timer.Timer.Entry attribute), 80

capacity (kombu.utils.limits. TokenBucket attribute), 161

cast() (kombu.pidbox.Mailbox method), 62

Channel (class in kombu.transport.amqplib), 149

Channel (class in kombu.transport.beanstalk), 139

Channel (class in kombu.transport.couchdb), 141

Channel (class in kombu.transport.django), 144

Channel (class in kombu.transport.filesystem), 143

Channel (class in kombu.transport.memory), 134

Channel (class in kombu.transport.mongodb), 140

Channel (class in kombu.transport.pyamqp), 99

Channel (class in kombu.transport.pyro), 148

Channel (class in kombu.transport.qpid), 124

Channel (class in kombu.transport.redis), 136

Channel (class in kombu.transport.SLMQ), 146

Channel (class in kombu.transport.virtual), 152

Channel (class in kombu.transport.zookeeper), 142

channel (kombu.abstract. MaybeChannelBound attribute),
75

channel (kombu.compat.Consumer attribute), 57

channel (kombu.compat.ConsumerSet attribute), 59

channel (kombu.compat.Publisher attribute), 55

(kombu.compat.ConsumerSet

Channel (kombu.transport.virtual. Transport

152

channel() (kombu.Connection method), 34

channel() (kombu.connection.Connection method), 67

channel() (kombu.transport.amqplib.Connection method),
149

channel() (kombu.transport.amqplib.Transport.Connection
method), 148

channel() (kombu.transport.pyamgp.Connection method),
98

Channel. Message (class in kombu.transport.amqplib),
149

Channel. Message (class in kombu.transport.pyamqp), 99

Channel. Message (class in kombu.transport.qpid), 125

Channel.QoS (class in kombu.transport.qpid), 125

Channel.QoS (class in kombu.transport.redis), 136

channel_errors (kombu.Connection attribute), 33

channel_errors (kombu.connection.Connection attribute),
67

channel_errors (kombu.mixins.ConsumerMixin
tribute), 51

channel_errors (kombu.transport.amgplib. Transport at-
tribute), 148

channel_errors (kombu.transport.base. Transport
tribute), 151

channel_errors (kombu.transport.beanstalk. Transport at-
tribute), 138

channel_errors (kombu.transport.couchdb.Transport at-
tribute), 141

channel_errors (kombu.transport.django.Transport
attribute), 143

channel_errors (kombu.transport.mongodb.Transport at-
tribute), 139

channel_errors (kombu.transport.pyamqgp.Connection at-
tribute), 98

channel_errors (kombu.transport.pyamqp.Transport at-
tribute), 82

channel_errors (kombu.transport.qpid. Transport
tribute), 112

channel_errors (kombu.transport.zookeeper.Transport at-

attribute),

at-

at-

at-

222

Index

Kombu Documentation, Release 3.0.37

tribute), 142
ChannelLimitExceeded, 63
ChannelPool (class in kombu.connection), 71
ChannelPool() (kombu.Connection method), 37
ChannelPool() (kombu.connection.Connection method),
65

close() (kombu.transport.memory. Transport.Channel
method), 134

close() (kombu.transport.pyamqgp.Connection method),
98
(kombu.transport.pyamqp.Connection.Channel

method), 89

close()

cleanup() (kombu.transport.django.managers.MessageManagtwse() (kombu.transport.qpid.Channel method), 129

method), 145

cleanup_every (kombu.transport.django.managers.MessageMlusagpr

attribute), 145

clear() (kombu.async.semaphore.LaxBoundedSemaphore
method), 79

clear() (kombu.async.timer.Timer method), 80

clear() (kombu.simple.SimpleBuffer method), 53

clear() (kombu.simple.SimpleQueue method), 52

clear() (kombu.transport.virtual. BrokerState method),
156

client (kombu.transport.base.Transport attribute), 151

client (kombu.transport.beanstalk.Channel attribute), 139

client (kombu.transport.beanstalk. Transport.Channel at-
tribute), 138

client (kombu.transport.couchdb.Channel attribute), 141

client (kombu.transport.couchdb.Transport.Channel at-
tribute), 140

client (kombu.transport.mongodb.Channel attribute), 140

client (kombu.transport.mongodb.Transport.Channel at-
tribute), 139

client (kombu.transport.redis.Channel attribute), 137

client (kombu.transport.redis.Transport.Channel at-
tribute), 135

client (kombu.transport.zookeeper.Channel attribute), 142

client (kombu.transport.zookeeper.Transport.Channel at-
tribute), 142

client_heartbeat (kombu.transport.pyamqp.Connection
attribute), 98

clock (kombu.clocks.timetuple attribute), 54

clone() (kombu.Connection method), 35

clone() (kombu.connection.Connection method), 67

close() (kombu.async.Hub method), 76

close() (kombu.async.hub.Hub method), 77

close() (kombu.compat.Consumer method), 57

close() (kombu.compat.ConsumerSet method), 59

close() (kombu.compat.Publisher method), 55

close() (kombu.Connection method), 36

close() (kombu.connection.Connection method), 67

close() (kombu.pools.ProducerPool.Producer method), 74

close() (kombu.simple.SimpleBuffer method), 53

close() (kombu.simple.SimpleQueue method), 52

close() (kombu.transport.amqplib.Channel method), 149

close() (kombu.transport.beanstalk.Channel method), 139

close() (kombu.transport.beanstalk. Transport.Channel
method), 138

close() (kombu.transport.memory.Channel method), 134

close() (kombu.transport.qpid.Connection method), 124
(kombu.transport.qpid.Connection.Channel
method), 120
(kombu.transport.qpid.Transport.Connection
method), 111

close()

close() (kombu.transport.qpid. Transport.Connection.Channel

method), 107
close() (kombu.transport.redis.Channel method), 137
close() (kombu.transport.redis. Transport.Channel
method), 135
close() (kombu.transport.virtual.Channel method), 154
close() (kombu.transport.virtual.scheduling.FairCycle
method), 157
close_channel()
method), 151
close_channel() (kombu.transport.qpid.Connection
method), 124

(kombu.transport.base. Transport

close_channel() (kombu.transport.qpid.Transport.Connection

method), 111

close_channel() (kombu.transport.virtual. Transport
method), 152

close_connection() (kombu.transport.amqplib.Transport
method), 148

close_connection()
method), 151

close_connection() (kombu.transport.pyamqp.Transport
method), 82

close_connection()
method), 112

close_connection() (kombu.transport.virtual. Transport
method), 152

close_resource() (kombu.pools.ProducerPool method), 75

codecs (kombu.transport.qpid.Channel attribute), 129

codecs (kombu.transport.qpid.Connection.Channel
attribute), 120

(kombu.transport.base. Transport

(kombu.transport.qpid. Transport

codecs (kombu.transport.qpid. Transport.Connection.Channel

attribute), 107
collect() (kombu.connection.Connection method), 67
collect_replies() (in module kombu.common), 49
commit_on_success() (in module
kombu.transport.django.managers), 145
completes_cycle() (kombu.Connection method), 36
completes_cycle() (kombu.connection.Connection
method), 67
compress() (in module kombu.compression), 72
compression (kombu.compat.Publisher attribute), 55
compression (kombu.pools.ProducerPool.Producer

Index

223

Kombu Documentation, Release 3.0.37

attribute), 74
compression (kombu.Producer attribute), 44

confirm_select() (kombu.transport.pyamqgp.Connection.Channel

method), 89
conn_or_acquire() (kombu.transport.redis.Channel
method), 137

conn_or_acquire() (kombu.transport.redis. Transport.Channel

method), 135

connect() (kombu.Connection method), 34

connect() (kombu.connection.Connection method), 67

connect_max_retries (kombu.mixins.ConsumerMixin at-
tribute), 51

connect_timeout (kombu.Connection attribute), 33

connect_timeout (kombu.connection.Connection
tribute), 67

connected (kombu.Connection attribute), 33

connected (kombu.connection.Connection attribute), 67

connected (kombu.transport.amgplib.Connection at-
tribute), 149

connected (kombu.transport.amqplib.Transport.Connection
attribute), 148

connected (kombu.transport.pyamqp.Connection
tribute), 98

Connection (class in kombu), 31

Connection (class in kombu.connection), 64

Connection (class in kombu.transport.amqplib), 149

Connection (class in kombu.transport.pyamqgp), 83

Connection (class in kombu.transport.qpid), 114

connection (kombu.compat.Consumer attribute), 57

connection (kombu.compat.ConsumerSet attribute), 59

connection (kombu.compat.Publisher attribute), 55

connection (kombu.Connection attribute), 33

connection (kombu.connection.Connection attribute), 67

connection (kombu.Consumer attribute), 46

connection (kombu.pidbox.Mailbox attribute), 62

connection (kombu.pools.ProducerPool.Producer
tribute), 74

connection (kombu.Producer attribute), 44

Connection (kombu.transport.amqplib.Connection
attribute), 149

Connection.Channel (class in kombu.transport.pyamqp),
83

Connection.Channel (class in kombu.transport.qpid), 115

at-

at-

at-

Connection.Channel.Message (class in
kombu.transport.pyamgp), 83

Connection.Channel.Message (class in
kombu.transport.qpid), 116

Connection.Channel.Message.MessageStateError, 83

Connection.Channel.QoS (class in
kombu.transport.qpid), 116

Connection.SSLTransport (class in
kombu.transport.amqplib), 149

Connection. TCPTransport (class in

kombu.transport.amqplib), 149

connection_errors (kombu.Connection attribute), 33
connection_errors (kombu.connection.Connection
tribute), 67
connection_errors
attribute), 51
connection_errors (kombu.transport.amqplib.Transport
attribute), 148
connection_errors (kombu.transport.base. Transport at-
tribute), 151
connection_errors (kombu.transport.beanstalk. Transport
attribute), 138
connection_errors (kombu.transport.couchdb.Transport
attribute), 141
connection_errors (kombu.transport.mongodb.Transport
attribute), 140
connection_errors (kombu.transport.pyamqp.Connection
attribute), 98
connection_errors (kombu.transport.pyamqp.Transport
attribute), 82
connection_errors (kombu.transport.qpid. Transport at-
tribute), 112
connection_errors (kombu.transport.SLMQ.Transport at-
tribute), 146
connection_errors (kombu.transport.zookeeper. Transport
attribute), 142
connection_for_write() (kombu.transport.django.managers.MessageManage
method), 145
ConnectionLimitExceeded, 63
ConnectionPool (class in kombu.connection), 70
conninfo (kombu.transport.SLMQ.Channel attribute),
147
conninfo (kombu.transport.SLMQ.Transport.Channel at-
tribute), 146
consume() (kombu.compat.Consumer method), 57
consume() (kombu.compat.ConsumerSet method), 59
consume() (kombu.Consumer method), 47
consume() (kombu.mixins.ConsumerMixin method), 51
consume() (kombu.Queue method), 42
Consumer (class in kombu), 45
Consumer (class in kombu.compat), 56
consumer (kombu.simple.SimpleBuffer attribute), 53
consumer (kombu.simple.SimpleQueue attribute), 52
Consumer() (kombu.Connection method), 36
Consumer() (kombu.connection.Connection method), 66
Consumer() (kombu.mixins.ConsumerMixin method), 51
Consumer() (kombu.pidbox.Node method), 63
Consumer() (kombu.transport.pyamqp.Connection.Channel
method), 83
Consumer.ContentDisallowed, 56
consumer_context() (kombu.mixins.ConsumerMixin
method), 51
ConsumerMixin (class in kombu.mixins), 50
ConsumerSet (class in kombu.compat), 59
ConsumerSet.ContentDisallowed, 59

at-

(kombu.mixins.ConsumerMixin

224

Index

Kombu Documentation, Release 3.0.37

consuming_from() (kombu.compat.Consumer method),
57

consuming_from()
method), 60

consuming_from() (kombu.Consumer method), 47

content_encoding (kombu.message.Message attribute),
72

content_encoding (kombu.transport.base.Message at-
tribute), 150

(kombu.compat.ConsumerSet

D

data_folder_in (kombu.transport.filesystem.Channel at-
tribute), 143

data_folder_in (kombu.transport.filesystem.Transport.Channel
attribute), 142

data_folder_out (kombu.transport.filesystem.Channel at-
tribute), 143

data_folder_out (kombu.transport.filesystem.Transport.Channel
attribute), 142

content_encoding (kombu.transport.pyamqp.Connection.Cha@gg]gw%mﬁgu.log_LogMixin method), 64

attribute), 83

content_encoding (kombu.transport.virtual. Message at-
tribute), 154

content_type (kombu.message.Message attribute), 72

content_type (kombu.transport.base.Message attribute),
150

declare() (kombu.compat.Consumer method), 57
declare() (kombu.compat.ConsumerSet method), 60
declare() (kombu.compat.Publisher method), 55
declare() (kombu.Consumer method), 46

declare() (kombu.Exchange method), 40

declare() (kombu.pools.ProducerPool.Producer method),

content_type (kombu.transport.pyamqgp.Connection.Channel. Message 74

attribute), 83

content_type (kombu.transport.virtual. Message attribute),
154

create() (kombu.pools.PoolGroup method), 75

create_broadcast_cursor()
(kombu.transport.mongodb.Channel
140

create_broadcast_cursor()
(kombu.transport.mongodb.Transport.Channel
method), 139

create_channel() (kombu.transport.amqplib.Transport
method), 148

create_channel()
method), 151

create_channel() (kombu.transport.pyamqp.Transport
method), 82

create_channel()
method), 112

create_channel() (kombu.transport.virtual. Transport
method), 152

create_connection()
method), 51

create_loop() (kombu.async.Hub method), 76

create_loop() (kombu.async.hub.Hub method), 77

create_message_view() (in
kombu.transport.couchdb), 141

create_producer() (kombu.pools.ProducerPool method),
75

create_transport() (kombu.Connection method), 35

create_transport() (kombu.connection.Connection
method), 68

critical() (kombu.log.LogMixin method), 63

cycle (kombu.Connection attribute), 33

cycle (kombu.connection.Connection attribute), 68

Cycle (kombu.transport.virtual. Transport attribute), 152

cycle (kombu.transport.virtual. Transport attribute), 152

method),

(kombu.transport.base. Transport

(kombu.transport.qpid. Transport

(kombu.mixins.ConsumerMixin

module

declare() (kombu.Producer method), 45

declare() (kombu.Queue method), 43

declared_entities (kombu.Connection attribute), 33

declared_entities (kombu.connection.Connection at-
tribute), 68

decode() (in module kombu.serialization), 158

decode() (kombu.message.Message method), 72

decode() (kombu.transport.base.Message method), 151

decode() (kombu.transport.pyamqp.Connection.Channel.Message
method), 83

decode() (kombu.transport.virtual. Message method), 154

decode_body() (kombu.transport.qpid.Channel method),
129

decode_body() (kombu.transport.qpid.Connection.Channel
method), 120

decode_body() (kombu.transport.qpid. Transport.Connection.Channel
method), 107

decompress() (in module kombu.compression), 73

default_channel (kombu.Connection attribute), 33

default_channel (kombu.connection.Connection at-
tribute), 68

default_connection_params
(kombu.transport.amqplib. Transport attribute),
148

default_connection_params
(kombu.transport.pyamqp.Transport attribute),
82

default_connection_params
(kombu.transport.qpid. Transport
112

default_encode() (in module kombu.utils.encoding), 163

default_encoding() (in module kombu.utils.encoding),
163

default_encoding_file (in module kombu.utils.encoding),
163

default_port (kombu.transport.amqplib.Transport at-
tribute), 148

attribute),

Index

225

Kombu Documentation, Release 3.0.37

default_port (kombu.transport.base.Transport attribute),
151

default_port (kombu.transport.beanstalk. Transport
attribute), 138

default_port (kombu.transport.couchdb.Transport at-
tribute), 141

default_port (kombu.transport.django.Transport at-
tribute), 143

default_port (kombu.transport.filesystem.Transport at-
tribute), 143

default_port (kombu.transport.mongodb.Transport
attribute), 140

default_port (kombu.transport.pyamgp.Transport at-
tribute), 82

default_port (kombu.transport.pyro.Transport attribute),
147

default_port (kombu.transport.redis. Transport attribute),
136

default_port (kombu.transport.SLMQ.Transport at-
tribute), 146

default_port (kombu.transport.virtual. Transport at-
tribute), 152

default_port (kombu.transport.zookeeper. Transport at-
tribute), 142

default_ssl_port (kombu.transport.pyamqp.Transport at-
tribute), 82

DEFAULT_TRANSPORT (in module kombu.transport),
81

default_visibility_timeout
(kombu.transport. SLMQ.Channel
147

default_visibility_timeout
(kombu.transport.SLMQ.Transport.Channel
attribute), 146

delete() (kombu.Exchange method), 40

delete() (kombu.Queue method), 43

delete_message() (kombu.transport. SLMQ.Channel
method), 147

attribute),

delete_message() (kombu.transport.SLMQ.Transport.Channel

method), 146
deleter() (kombu.utils.cached_property method), 160

delivery_mode (kombu.Exchange attribute), 39, 40

delivery_tag (kombu.message.Message attribute), 72

delivery_tag (kombu.transport.base.Message attribute),
150

delivery_tag (kombu.transport.pyamgp.Connection.Channel.Message

attribute), 83
delivery_tag (kombu.transport.virtual. Message attribute),
154
detect_environment() (in module kombu.syn), 76
DirectExchange (class in
kombu.transport.virtual.exchange), 156
disable_insecure_serializers() (in module kombu), 31
discard_all() (kombu.compat.Consumer method), 57
discard_all() (kombu.compat.ConsumerSet method), 60
dispatch() (kombu.pidbox.Node method), 63
dispatch_from_message() (kombu.pidbox.Node method),
63
dispatch_method() (kombu.transport.pyamqp.Connection
method), 98

dispatch_method() (kombu.transport.pyamqp.Connection.Channel

method), 89

do_restore (kombu.transport.memory.Channel attribute),
134

do_restore (kombu.transport.memory.Transport.Channel
attribute), 134

do_restore (kombu.transport.virtual.Channel attribute),
152

domain_format (kombu.transport.SLMQ.Channel at-
tribute), 147

domain_format (kombu.transport. SLMQ.Transport.Channel
attribute), 146

drain_consumer() (in module kombu.common), 49

drain_events() (kombu.Connection method), 34

drain_events() (kombu.connection.Connection method),
68

drain_events() (kombu.transport.amqplib.Connection
method), 149

drain_events() (kombu.transport.amqplib.Transport

method), 148

drain_events() (kombu.transport.amqplib.Transport.Connection
method), 148

deliver() (kombu.transport.virtual.exchange.DirectExchangedrain_events() (kombu.transport.base.Transport method),

method), 156

deliver() (kombu.transport.virtual.exchange.FanoutExchangerain_events()

method), 157

deliver() (kombu.transport.virtual.exchange.TopicExchange drain_events()

method), 156
delivery_info (kombu.message.Message attribute), 72
delivery_info (kombu.transport.base.Message attribute),
150

151

(kombu.transport.pyamqgp.Connection

method), 98

(kombu.transport.pyamqp.Transport
method), 82

drain_events() (kombu.transport.qpid.Transport method),
112

drain_events() (kombu.transport.virtual.Channel

delivery_info (kombu.transport.pyamgp.Connection.Channel.Messagemethod), 153

attribute), 83
delivery_info (kombu.transport.virtual. Message at-
tribute), 154

drain_events() (kombu.transport.virtual. Transport
method), 152
driver_name (kombu.transport.amqplib.Transport at-

226

Index

Kombu Documentation, Release 3.0.37

tribute), 148

driver_name (kombu.transport.beanstalk. Transport
attribute), 138

driver_name (kombu.transport.couchdb.Transport at-
tribute), 141

driver_name (kombu.transport.django.Transport at-
tribute), 143

driver_name (kombu.transport.filesystem.Transport at-
tribute), 143

driver_name (kombu.transport.memory.Transport at-
tribute), 134

driver_name (kombu.transport.mongodb.Transport
attribute), 140

driver_name (kombu.transport.pyamqgp.Transport at-
tribute), 82

driver_name (kombu.transport.pyro.Transport attribute),
147

driver_name (kombu.transport.qpid.Transport attribute),
112

driver_name (kombu.transport.redis. Transport attribute),
136

driver_name (kombu.transport.zookeeper.Transport at-
tribute), 142

driver_type (kombu.transport.amqplib.Transport at-
tribute), 148

driver_type (kombu.transport.beanstalk.Transport —at-
tribute), 139

driver_type (kombu.transport.couchdb.Transport at-
tribute), 141

driver_type (kombu.transport.django.Transport attribute),
143

driver_type (kombu.transport.filesystem. Transport
attribute), 143

driver_type (kombu.transport.memory.Transport at-
tribute), 134

driver_type (kombu.transport.mongodb.Transport at-
tribute), 140

driver_type (kombu.transport.pyamqp.Transport at-
tribute), 82

driver_type (kombu.transport.pyro.Transport attribute),
147

driver_type (kombu.transport.qpid.Transport attribute),
112

driver_type (kombu.transport.redis.Transport attribute),
136

driver_type (kombu.transport.zookeeper. Transport
attribute), 142

driver_version() (kombu.transport.beanstalk. Transport
method), 139

driver_version() (kombu.transport.couchdb. Transport
method), 141

driver_version() (kombu.transport.django.Transport
method), 143

driver_version() (kombu.transport.filesystem.Transport

method), 143

driver_version() (kombu.transport.memory.Transport
method), 134

driver_version() (kombu.transport.mongodb.Transport
method), 140

driver_version() (kombu.transport.pyamqp.Transport
method), 82

driver_version()
method), 147

driver_version()
method), 136

driver_version() (kombu.transport.zookeeper.Transport
method), 142

DummyLock (class in kombu.async.semaphore), 78

dumps() (in module kombu.serialization), 159

durable (kombu.compat.Consumer attribute), 57

durable (kombu.compat.Publisher attribute), 55

durable (kombu.Exchange attribute), 39, 40

durable (kombu.Queue attribute), 42, 43

E

emergency_dump_state() (in module kombu.utils), 160
enable_insecure_serializers() (in module kombu), 31
encode() (in module kombu.serialization), 158
encode_body() (kombu.transport.qpid.Channel method),
129
encode_body() (kombu.transport.qpid.Connection.Channel
method), 120
encode_body() (kombu.transport.qpid. Transport.Connection.Channel
method), 107
encoders() (in module kombu.compression), 73
ensure() (kombu.Connection method), 35
ensure() (kombu.connection.Connection method), 68
ensure_bytes() (in module kombu.utils.encoding), 163
ensure_connection() (kombu.Connection method), 34
ensure_connection() (kombu.connection.Connection
method), 68
enter_after() (kombu.async.timer.Timer method), 80
enter_at() (kombu.async.timer.Timer method), 80
entity_name() (kombu.transport. SLMQ.Channel
method), 147
entity_name() (kombu.transport. SLMQ.Transport.Channel
method), 146
Entry (class in kombu.async.timer), 79
environment variable
AWS_ACCESS_KEY_ID, 209
AWS_SECRET_ACCESS_KEY, 209
KOMBU_LOG_CHANNEL, 212
KOMBU_LOG_CONNECTION, 211
KOMBU_LOG_DEBUG, 211, 212
PICKLE_PROTOCOL, 26, 191
URL, 195
VHOST, 195
EqualityDict (class in kombu.utils), 159

(kombu.transport.pyro.Transport

(kombu.transport.redis. Transport

Index

227

Kombu Documentation, Release 3.0.37

equivalent() (kombu.transport.virtual.exchange.ExchangeTypgchange_opts (kombu.simple.SimpleBuffer attribute),

method), 157
ERR (kombu.async.Hub attribute), 76
ERR (kombu.async.hub.Hub attribute), 77
error() (kombu.log.LogMixin method), 64
errors (kombu.message.Message attribute), 72

errors (kombu.transport.pyamgp.Connection.Channel. Messagechange_types

attribute), 83
errors (kombu.transport.virtual. Message attribute), 154
establish_connection() (kombu.mixins.ConsumerMixin
method), 51

establish_connection() (kombu.transport.amgplib. Transport

method), 149
establish_connection() (kombu.transport.base.Transport
method), 151

53
exchange_opts (kombu.simple.SimpleQueue attribute),
52
exchange_type (kombu.compat.Consumer attribute), 57
exchange_type (kombu.compat.Publisher attribute), 55
(kombu.transport.virtual.Channel
tribute), 153

at-

exchange_unbind() (kombu.transport.pyamgp.Connection.Channel

method), 92

exchanges (kombu.transport.virtual. BrokerState at-
tribute), 156

ExchangeType (class in

kombu.transport.virtual.exchange), 157
exclusive (kombu.compat.Consumer attribute), 57

establish_connection() (kombu.transport.pyamqp.Transport exclusive (kombu.Queue attribute), 42, 43

method), 82

establish_connection() (kombu.transport.qpid.Transport
method), 112

establish_connection() (kombu.transport.virtual. Transport
method), 152

evaluate() (kombu.utils.functional.lazy method), 163

eventloop() (in module kombu.common), 49

events (kombu.transport.amqplib.Channel attribute), 149

Exchange (class in kombu), 38

exchange (kombu.compat.Consumer attribute), 57

exchange (kombu.compat.Publisher attribute), 55

exchange (kombu.pidbox.Mailbox attribute), 62

exchange (kombu.pools.ProducerPool.Producer
tribute), 74

exchange (kombu.Producer attribute), 44

exchange (kombu.Queue attribute), 41, 43

at-

exec_() (in module kombu.five), 164

expected_time() (kombu.utils.limits. TokenBucket
method), 161

extra_context() (kombu.mixins.ConsumerMixin method),
51

F

failover_strategies
attribute), 69

failover_strategy (kombu.Connection attribute), 33

failover_strategy ~ (kombu.connection.Connection
tribute), 69

FairCycle (class in kombu.transport.virtual.scheduling),
157

fanout_patterns (kombu.transport.redis.Channel
tribute), 137

(kombu.connection.Connection

at-

at-

exchange_bind() (kombu.transport.pyamgp.Connection.Chafinedut_patterns (kombu.transport.redis. Transport.Channel

method), 89

attribute), 135

exchange_declare() (kombu.transport.pyamqp.Connection.Clagingl prefix (kombu.transport.redis.Channel attribute),

method), 90
exchange_declare()
method), 130

(kombu.transport.qpid.Channel

exchange_declare() (kombu.transport.qpid.Connection.ChanfighoutExchange

method), 120

137
fanout_prefix (kombu.transport.redis.Transport.Channel
attribute), 135
(class in
kombu.transport.virtual.exchange), 157

exchange_declare() (kombu.transport.qpid. Transport. Conne¢tieh(likonsu.compat.Consumer method), 57

method), 107
exchange_declare()
method), 153

(kombu.transport.virtual.Channel

fetch() (kombu.transport.django.managers.QueueManager
method), 145
fileno() (in module kombu.utils), 161

exchange_delete() (kombu.transport.pyamqp.Connection.Chfinedte (kombu.utils.limits. TokenBucket attribute), 162

method), 91
exchange_delete()
method), 130

(kombu.transport.qpid.Channel

fire_timers() (kombu.async.Hub method), 76
fire_timers() (kombu.async.hub.Hub method), 78
flow() (kombu.compat.Consumer method), 57

exchange_delete() (kombu.transport.qpid.Connection.Channgbw() (kombu.compat.ConsumerSet method), 60

method), 121

flow() (kombu.Consumer method), 47

exchange_delete() (kombu.transport.qpid. Transport. ConnectflowChann@tombu. transport.pyamqp.Connection.Channel

method), 108
exchange_delete()
method), 153

(kombu.transport.virtual.Channel

method), 92
flow() (kombu.transport.virtual.Channel method), 153
fmatch_best() (in module kombu.utils.text), 164

228

Index

Kombu Documentation, Release 3.0.37

fmatch_iter() (in module kombu.utils.text), 164

force_close_all() (kombu.connection.ChannelPool
method), 71

force_close_all() (kombu.connection.ConnectionPool
method), 71

forward() (kombu.clocks.LamportClock method), 54

from_dict() (kombu.Queue class method), 43

from_transport_options (kombu.transport.redis.Channel
attribute), 137

from_transport_options (kombu.transport.redis. Transport.Clpatnahanager()

attribute), 135
from_utf8() (in module kombu.utils.encoding), 163
fun (kombu.async.timer.Entry attribute), 79
fun (kombu.async.timer. Timer.Entry attribute), 80
fxrange() (in module kombu.utils), 160
fxrangemax() (in module kombu.utils), 160

G

get() (kombu.Queue method), 43

get() (kombu.simple.SimpleBuffer method), 53

get() (kombu.simple.SimpleQueue method), 52

get() (kombu.transport.qpid.Channel.QoS method), 126

get() (kombu.transport.qpid.Connection.Channel.QoS
method), 117

get() (kombu.transport.qpid. Transport. Connection.Channel.QoS

method), 104

get() (kombu.transport.virtual.QoS method), 155

get() (kombu.transport.virtual.scheduling.FairCycle
method), 157

get_loglevel() (in module kombu.log), 64

get_loglevel() (kombu.log.LogMixin method), 64

get_manager() (in module kombu.utils.amq_manager),
164

get_manager() (kombu.Connection method), 36

get_manager() (kombu.connection.Connection method),
69

get_manager() (kombu.transport.amqplib. Transport
method), 149

(kombu.transport.pyamqp.Transport
method), 82

get_messages() (kombu.transport.mongodb.Channel
method), 140

get_messages() (kombu.transport.mongodb. Transport.Channel

method), 139
get_nowait() (kombu.simple.SimpleBuffer method), 53
get_nowait() (kombu.simple.SimpleQueue method), 52
get_qgpid_connection() (kombu.transport.qpid.Connection
method), 124

get_qpid_connection() (kombu.transport.qpid. Transport.Connection

method), 111
get_queue() (kombu.pidbox.Mailbox method), 62
get_reply_queue() (kombu.pidbox.Mailbox method), 62
get_routing() (kombu.transport.mongodb.Channel
method), 140
get_routing() (kombu.transport.mongodb.Transport.Channel

method), 139
get_table() (kombu.transport.mongodb.Channel method),
140

get_bindings() (kombu.transport.pyamgp.Connection.Channg¢t_table() (kombu.transport.mongodb. Transport.Channel

method), 93
get_broadcast() (kombu.transport.mongodb.Channel
method), 140

get_broadcast() (kombu.transport.mongodb.Transport.Channel

method), 139

get_broadcast_cursor() (kombu.transport.mongodb.Channel

method), 140

method), 139
get_table() (kombu.transport.redis.Channel method), 137
get_table() (kombu.transport.redis. Transport.Channel
method), 135
get_table() (kombu.transport.virtual.Channel method),
153
get_transport_cls() (in module kombu.transport), 81

get_broadcast_cursor() (kombu.transport.mongodb.Transpc)lg@ht‘{ﬁﬂéport_ds() (kombu.Connection method), 35

method), 139
get_consumers()
method), 51
get_decoder() (in module kombu.compression), 73
get_default_encoding_file() (in module
kombu.utils.encoding), 163
get_encoder() (in module kombu.compression), 73
get_errno() (in module kombu.utils.compat), 162
get_event_loop() (in module kombu.async), 77
get_event_loop() (in module kombu.async.hub), 78
get_heartbeat_interval() (kombu.connection.Connection
method), 69

(kombu.mixins.ConsumerMixin

get_transport_cls() (kombu.connection.Connection
method), 69
grow() (kombu.async.semaphore.LaxBoundedSemaphore

method), 79

H

handle() (kombu.pidbox.Node method), 63
handle_call() (kombu.pidbox.Node method), 63
handle_cast() (kombu.pidbox.Node method), 63
handle_error() (kombu.async.timer. Timer method), 80
handle_message() (kombu.pidbox.Node method), 63
handler() (kombu.pidbox.Node method), 63

get_heartbeat_interval() (kombu.transport.pyamqp.Transporhandlers (kombu.pidbox.Node attribute), 63

method), 82
get_limit() (in module kombu.pools), 75
get_logger() (kombu.log.LogMixin method), 64

headers (kombu.message.Message attribute), 72
headers (kombu.transport.base.Message attribute), 150

Index

229

Kombu Documentation, Release 3.0.37

headers (kombu.transport.pyamqp.Connection.Channel. Meskagprefix_queue (kombu.transport.redis.Channel — at-

attribute), 83 tribute), 137
headers (kombu.transport.virtual. Message attribute), 154 keyprefix_queue (kombu.transport.redis. Transport.Channel
heartbeat (kombu.Connection attribute), 33 attribute), 135
heartbeat (kombu.connection.Connection attribute), 69 keys() (in module kombu.five), 164
heartbeat (kombu.transport.pyamqp.Connection at- kombu (module), 31
tribute), 99 kombu.abstract (module), 75
heartbeat_check() (kombu.Connection method), 36 kombu.async (module), 76
heartbeat_check() (kombu.connection.Connection kombu.async.debug (module), 80
method), 69 kombu.async.hub (module), 77
heartbeat_check() (kombu.transport.pyamqp.Transport kombu.async.semaphore (module), 78
method), 82 kombu.async.timer (module), 79
heartbeat_tick() (kombu.transport.pyamgp.Connection kombu.clocks (module), 53
method), 99 kombu.common (module), 48
host (kombu.Connection attribute), 34 kombu.compat (module), 55
host (kombu.connection.Connection attribute), 69 kombu.compression (module), 72
hostname (kombu.Connection attribute), 33 kombu.connection (module), 64
hostname (kombu.connection.Connection attribute), 69 kombu.exceptions (module), 63
hostname (kombu.pidbox.Node attribute), 62 kombu.five (module), 164
Hub (class in kombu.async), 76 kombu.log (module), 63
Hub (class in kombu.async.hub), 77 kombu.message (module), 71

kombu.mixins (module), 50
I kombu.pidbox (module), 61

id (kombu.clocks.timetuple attribute), 54 kombu.pools (module), 73
id (kombu.transport.django.models.Message attribute), kombu.serialization (module), 157
144 kombu.simple (module), 51
id (kombu.transport.django.models.Queue attribute), 145 kombu.syn (module), 76
info() (kombu.Connection method), 35 kombu.transport (module), 81
info() (kombu.connection.Connection method), 69 kombu.transport.amqgplib (module), 148
info() (kombu.log.LogMixin method), 64 kombu.transport.base (module), 150
insured() (in module kombu.common), 49 kombu.transport.beanstalk (module), 138
is_alive() (kombu.transport.amqgplib.Transport method), kombu.transport.couchdb (module), 140
149 kombu.transport.django (module), 143
is_alive() (kombu.transport.pyamqgp.Connection method), kombu.transport.django.management.commands.clean_kombu_messages
99 (module), 145
is_bound (kombu.abstract MaybeChannelBound at- kombu.transport.django.managers (module), 145
tribute), 75 kombu.transport.django.models (module), 144
is_enabled_for() (kombu.log.LogMixin method), 64 kombu.transport.filesystem (module), 142
is_evented (kombu.Connection attribute), 34 kombu.transport.memory (module), 133
is_evented (kombu.connection.Connection attribute), 69 ~ kombu.transport.mongodb (module), 139
is_list() (in module kombu.utils.functional), 163 kombu.transport.pyamqp (module), 81
items() (in module kombu.five), 164 kombu.transport.pyro (module), 147
iterconsume() (kombu.compat.Consumer method), 58 kombu.transport.qpid (module), 99
iterconsume() (kombu.compat.ConsumerSet method), 60 kombu.transport.redis (module), 134
itermessages() (in module kombu.common), 49 kombu.transport.SLMQ (module), 146
iterqueue() (kombu.compat.Consumer method), 58 kombu.transport.virtual (module), 151
kombu.transport.virtual.exchange (module), 156
K kombu.transport.virtual.scheduling (module), 157

key_to_pattern() (kombu.transport.Virtual.exchange.TopicE&méletranSp ort.zmq (module), 138

method), 156 kombu.tra.msport.zookeeper (module), 141
keyprefix_fanout (kombu.transport.redis.Channel at- komb““t?ls (module), 159

tribute), 137 kombu.utils.amq_manager (module), 164
’ lkombu.utils.compat (module), 162

keyprefix_fanout (kombu.transport.redis. Transport.Channe)
kombu.utils.debug (module), 162

attribute), 135

230 Index

Kombu Documentation, Release 3.0.37

kombu.utils.encoding (module), 162
kombu.utils.eventio (module), 161
kombu.utils.functional (module), 163
kombu.utils.limits (module), 161
kombu.utils.text (module), 164

kombu.utils.url (module), 163
KOMBU_LOG_CHANNEL, 212
KOMBU_LOG_CONNECTION, 211
KOMBU_LOG_DEBUG, 211, 212

kwargs (kombu.async.timer.Entry attribute), 79
kwargs (kombu.async.timer.Timer.Entry attribute), 80
kwdict() (in module kombu.utils), 160

L

LamportClock (class in kombu.clocks), 53

max_connections (kombu.transport.redis.Transport.Channel
attribute), 135
maybe_bind() (kombu.abstract. MaybeChannelBound
method), 75
maybe_bind() (kombu.Exchange method), 39
maybe_bind() (kombu.Queue method), 42
maybe_close_channel() (kombu.Connection method), 36
maybe_close_channel() (kombu.connection.Connection
method), 69
maybe_conn_error()
method), 51
maybe_declare() (in module kombu.common), 48
maybe_declare() (kombu.compat.Publisher method), 55
maybe_declare() (kombu.pools.ProducerPool.Producer
method), 74

(kombu.mixins.ConsumerMixin

last_heartbeat_received (kombu.transport.pyamgp.Connectiéhaybe_declare() (kombu.Producer method), 45

attribute), 99
last_heartbeat_sent (kombu.transport.pyamqp.Connection
attribute), 99

LaxBoundedSemaphore (class in
kombu.async.semaphore), 78

lazy (class in kombu.utils.functional), 163

LimitExceeded, 63

LimitExceeded (kombu.connection.ChannelPool at-

tribute), 71

LimitExceeded (kombu.connection.ConnectionPool at-
tribute), 70

listen() (kombu.pidbox.Node method), 63

log() (kombu.log.LogMixin method), 64

logger (kombu.log.LogMixin attribute), 64

logger_name (kombu.log.LogMixin attribute), 64

login_method (kombu.Connection attribute), 33

login_method (kombu.connection.Connection attribute),
69

LogMixin (class in kombu.log), 63

Logwrapped (class in kombu.utils.debug), 162

lookup() (kombu.transport.virtual.exchange.DirectExchange
message (kombu.transport.pyamgp.Connection.Channel. Message.MessageS

method), 156
lookup() (kombu.transport.virtual.exchange.ExchangeType
method), 157

maybe_evaluate() (in module kombu.utils.functional),
163

maybe_fileno() (in module kombu.utils), 161

maybe_list() (in module kombu.utils), 160

maybe_list() (in module kombu.utils.functional), 163

maybe_sanitize_url() (in module kombu.utils.url), 163

maybe_switch_next() (kombu.Connection method), 36

maybe_switch_next() (kombu.connection.Connection
method), 70

MaybeChannelBound (class in kombu.abstract), 75

Message (class in kombu.message), 71

Message (class in kombu.transport.amqplib), 150

Message (class in kombu.transport.base), 150

Message (class in kombu.transport.django.models), 144

Message (class in kombu.transport.pyamgp), 99

Message (class in kombu.transport.qpid), 133

Message (class in kombu.transport.virtual), 154

message (kombu.compat.Consumer.ContentDisallowed
attribute), 56

message (kombu.compat.ConsumerSet.ContentDisallowed

attribute), 59

attribute), 83
Message (kombu.transport.virtual.Channel attribute), 152

lookup() (kombu.transport.virtual exchange . FanoutExchangénessage (kombu.transport.virtual. Message.MessageStateError

method), 157

attribute), 154

lookup() (kombu.transport.virtual.exchange. TopicExchange Message() (kombu.Exchange method), 39

method), 156
loop (kombu.async.Hub attribute), 76
loop (kombu.async.hub.Hub attribute), 78

M

Mailbox (class in kombu.pidbox), 62

mailbox (kombu.pidbox.Node attribute), 63

manager (kombu.Connection attribute), 34

manager (kombu.connection.Connection attribute), 69

max_connections (kombu.transport.redis.Channel
tribute), 137

at-

Message.DoesNotExist, 144

Message.MessageStateError, 71, 154

Message.MultipleObjectsReturned, 144

message_to_python() (kombu.transport.amqplib.Channel
method), 149

message_to_python() (kombu.transport.pyamqp.Channel
method), 99

message_to_python() (kombu.transport.pyamqgp.Connection.Channel

method), 93

message_to_python() (kombu.transport.pyamqp.Transport.Connection.Char

method), 82

Index

231

Kombu Documentation, Release 3.0.37

message_to_python()
method), 153

MessageManager (class in

kombu.transport.django.managers), 145
(kombu.transport.django.models.Queue at-

tribute), 145

MessageStateError, 63

monotonic() (in module kombu.five), 164

multi_call() (kombu.pidbox.Mailbox method), 62

N

name (kombu.Exchange attribute), 38, 40

name (kombu.Queue attribute), 41, 43

name (kombu.transport.django.models.Queue attribute),
145

namespace (kombu.pidbox.Mailbox attribute), 62

nested() (in module kombu.utils), 161

new() (kombu.pools.ProducerPool method), 75

nextfun() (in module kombu.five), 164

no_ack (kombu.compat.Consumer attribute), 58

no_ack (kombu.compat.ConsumerSet attribute), 60

no_ack (kombu.Consumer attribute), 46

no_ack (kombu.Queue attribute), 43

no_ack (kombu.simple.SimpleBuffer attribute), 53

no_ack (kombu.simple.SimpleQueue attribute), 52

(kombu.transport.virtual.Channel

messages

no_ack_consumers (kombu.transport.pyamgp.Connection.Channel
payload (kombu.transport.pyamqgp.Connection.Channel. Message

attribute), 93
Node (class in kombu.pidbox), 62
Node() (kombu.pidbox.Mailbox method), 62
NotBoundError, 63

O

obj (kombu.clocks.timetuple attribute), 54

objects (kombu.transport.django.models.Message at-
tribute), 144

objects (kombu.transport.django.models.Queue attribute),
145

on_close (kombu.async.Hub attribute), 76

on_close (kombu.async.hub.Hub attribute), 78

on_connection_error() (kombu.mixins.ConsumerMixin
method), 51

on_connection_revived()

(kombu.mixins.ConsumerMixin method),
51

on_consume_end() (kombu.mixins.ConsumerMixin
method), 51

on_consume_ready() (kombu.mixins.ConsumerMixin
method), 51

on_declared (kombu.Queue attribute), 42

on_decode_error (kombu.compat.Consumer attribute), 58

on_decode_error (kombu.compat.ConsumerSet attribute),
60

on_decode_error (kombu.Consumer attribute), 46

on_decode_error() (kombu.mixins.ConsumerMixin
method), 51

on_error (kombu.async.timer. Timer attribute), 80

on_iteration() (kombu.mixins.ConsumerMixin method),
51

on_message (kombu.compat.Consumer attribute), 58

on_message (kombu.compat.ConsumerSet attribute), 60

on_message (kombu.Consumer attribute), 46

on_readable() (kombu.transport.qpid.Transport method),
113

on_readable() (kombu.transport.redis.Transport method),
136

on_return (kombu.compat.Publisher attribute), 55

on_return (kombu.pools.ProducerPool.Producer at-
tribute), 74

on_return (kombu.Producer attribute), 44

P

parse_url() (in module kombu.utils.url), 163

passive (kombu.Exchange attribute), 40

password (kombu.Connection attribute), 33

password (kombu.connection.Connection attribute), 70
payload (kombu.message.Message attribute), 72

payload (kombu.transport.base.Message attribute), 150
payload (kombu.transport.django.models.Message
attribute), 144

attribute), 83

payload (kombu.transport.virtual. Message attribute), 154

PERSISTENT_DELIVERY_MODE (kombu.Exchange
attribute), 39

PICKLE_PROTOCOL, 26, 191

pipe_or_acquire() (kombu.transport.redis.Channel.QoS
method), 136

pipe_or_acquire() (kombu.transport.redis.Transport.Channel.QoS

method), 135

poll() (in module kombu.utils.eventio), 161

polling_interval (kombu.transport.beanstalk.Transport at-
tribute), 139

polling_interval (kombu.transport.couchdb.Transport at-
tribute), 141

polling_interval (kombu.transport.django.Transport at-
tribute), 143

polling_interval (kombu.transport.mongodb.Transport at-
tribute), 140

polling_interval (kombu.transport.qpid.Transport at-
tribute), 113

polling_interval ~ (kombu.transport.redis.Transport at-
tribute), 136

polling_interval (kombu.transport.SLMQ.Transport at-
tribute), 146

polling_interval (kombu.transport.virtual. Transport at-
tribute), 152

232

Index

Kombu Documentation, Release 3.0.37

polling_interval (kombu.transport.zookeeper. Transport
attribute), 142

pool (kombu.transport.redis.Channel attribute), 137

pool (kombu.transport.redis. Transport.Channel attribute),
135

Pool() (kombu.Connection method), 36

Pool() (kombu.connection.Connection method), 66

PoolGroup (class in kombu.pools), 75

pop() (kombu.transport.django.managers.MessageManager properties (kombu.transport.pyamgp.Connection.Channel. Message

method), 145
port (kombu.Connection attribute), 33
port (kombu.connection.Connection attribute), 70
prefetch_count (kombu.transport.virtual.QoS attribute),
155
prepare() (kombu.pools.ProducerPool method), 75

Producer() (kombu.Connection method), 36

Producer() (kombu.connection.Connection method), 66

Producer() (kombu.transport.pyamgp.Connection.Channel
method), 84

ProducerPool (class in kombu.pools), 73

ProducerPool.Producer (class in kombu.pools), 73

properties (kombu.message.Message attribute), 72

properties (kombu.transport.base.Message attribute), 150

attribute), 83
properties (kombu.transport.virtual. Message attribute),
154
publish() (kombu.compat.Publisher method), 55
publish() (kombu.Exchange method), 40
publish() (kombu.pools.ProducerPool.Producer method),

prepare_bind() (kombu.transport.virtual.exchange.ExchangeType 74

method), 157

prepare_bind() (kombu.transport.virtual.exchange. TopicExchabgsh() (kombu.transport.django.managers.QueueManager

method), 156

prepare_message() (kombu.transport.amqplib.Channel
method), 149

prepare_message() (kombu.transport.pyamqp.Channel
method), 99

publish() (kombu.Producer method), 45

method), 145
Publisher (class in kombu.compat), 55
purge() (kombu.compat.Consumer method), 58
purge() (kombu.compat.ConsumerSet method), 60
purge() (kombu.Consumer method), 47

prepare_message() (kombu.transport.pyamqp.Connection.Clpamrgel) (kombu.Queue method), 43

method), 93

purge() (kombu.transport.django.managers.QueueManager

prepare_message() (kombu.transport.pyamqp.Transport. Connection.Chaathekd), 145

method), 82
prepare_message()
method), 130

(kombu.transport.qpid.Channel

put() (kombu.simple.SimpleBuffer method), 53
put() (kombu.simple.SimpleQueue method), 52

prepare_message() (kombu.transport.qpid.Connection.Chanl@

method), 121

QoS (class in kombu.transport.virtual), 155

prepare_message() (kombu.transport.qpid. Transport.Connecgon &batbietransport.qpid.Channel attribute), 131

method), 108
prepare_message()
method), 153

(kombu.transport.pyamqp.Connection at-
tribute), 99
(kombu.transport.pyamqgp.Connection at-
tribute), 99
priority() (kombu.transport.redis.Channel method), 137
priority() (kombu.transport.redis.Transport.Channel

method), 136
priority_steps (kombu.transport.redis.Channel attribute),

137
priority_steps (kombu.transport.redis. Transport.Channel

attribute), 136
process_next() (kombu.compat.Consumer method), 58
processed_folder (kombu.transport.filesystem.Channel

attribute), 143

(kombu.transport.virtual.Channel
prev_recv

prev_sent

gos (kombu.transport.gqpid.Connection.Channel at-
tribute), 121

qos (kombu.transport.qpid.Transport.Connection.Channel
attribute), 108

qos (kombu.transport.virtual.Channel attribute), 152

gos() (kombu.compat.Consumer method), 58

gos() (kombu.compat.ConsumerSet method), 60

gos() (kombu.Consumer method), 47

gos_semantics_matches_spec
(kombu.connection.Connection
70

gos_semantics_matches_spec()
(kombu.transport.pyamqgp.Transport method),
82

gsize() (kombu.simple.SimpleBuffer method), 53

gsize() (kombu.simple.SimpleQueue method), 52

Queue (class in kombu), 41

attribute),

processed_folder (kombu.transport.filesystem. Transport.Chagpglie (class in kombu.transport.django.models), 144

attribute), 142
Producer (class in kombu), 44
producer (kombu.simple.SimpleBuffer attribute), 53
producer (kombu.simple.SimpleQueue attribute), 52

queue (kombu.async.timer. Timer attribute), 80
queue (kombu.compat.Consumer attribute), 58
queue (kombu.simple.SimpleBuffer attribute), 53
queue (kombu.simple.SimpleQueue attribute), 52

Index

233

Kombu Documentation, Release 3.0.37

Queue (kombu.transport.django.Channel attribute), 144

queue (kombu.transport.django.models.Message at-
tribute), 144

Queue (kombu.transport.django.Transport.Channel at-
tribute), 143

Queue.ContentDisallowed, 42

Queue.DoesNotExist, 144

Queue.MultipleObjectsReturned, 144

queue_arguments (kombu.Queue attribute), 42

queue_bind() (kombu.Queue method), 43

queue_bind() (kombu.transport.pyamqgp.Connection.Channel

method), 93

queue_bind() (kombu.transport.qpid.Channel method),
131

queue_bind() (kombu.transport.qpid.Connection.Channel
method), 121

attribute), 146
queue_opts (kombu.simple.SimpleBuffer attribute), 53
queue_opts (kombu.simple.SimpleQueue attribute), 52
queue_purge() (kombu.transport.pyamqp.Connection.Channel
method), 96
queue_purge() (kombu.transport.qpid.Channel method),
132
queue_purge() (kombu.transport.qpid.Connection.Channel
method), 123
queue_purge() (kombu.transport.qpid.Transport.Connection.Channel
method), 110
queue_purge()
method), 153
queue_unbind() (kombu.Queue method), 44
queue_unbind() (kombu.transport.pyamgp.Connection.Channel
method), 97

(kombu.transport.virtual.Channel

queue_bind() (kombu.transport.qpid.Transport.Connection. Cfuemeelunbind() (kombu.transport.qpid.Channel method),

method), 109

queue_bind() (kombu.transport.virtual.Channel method),
153

queue_declare() (kombu.Queue method), 43

queue_declare() (kombu.transport.pyamqgp.Connection.Channel

method), 94
queue_declare() (kombu.transport.qpid.Channel method),
131

133

queue_unbind() (kombu.transport.qpid.Connection.Channel
method), 123

queue_unbind() (kombu.transport.qpid. Transport. Connection.Channel

method), 111

QueueManager (class in
kombu.transport.django.managers), 145

queues (kombu.compat.Consumer attribute), 58

queue_declare() (kombu.transport.qpid.Connection.Channelqueues (kombu.compat.ConsumerSet attribute), 60

method), 122

queues (kombu.Consumer attribute), 46

queue_declare() (kombu.transport.qpid. Transport.Connectioguehesigkbmbu.transport.memory.Channel attribute), 134

method), 109
queue_declare()
method), 153
queue_delete() (kombu.transport.mongodb.Channel
method), 140

(kombu.transport.virtual.Channel

queues (kombu.transport.memory.Transport.Channel at-
tribute), 134

queues() (kombu.transport.pyro.Channel method), 148

queues() (kombu.transport.pyro.Transport.Channel
method), 147

queue_delete() (kombu.transport.mongodb.Transport.Channel

method), 139

queue_delete() (kombu.transport.pyamqp.Connection.Channely_encode() (in module kombu.serialization), 159

method), 95
queue_delete() (kombu.transport.qpid.Channel method),
132

queue_delete() (kombu.transport.qpid.Connection.Channel

method), 123

READ (kombu.async.Hub attribute), 76

READ (kombu.async.hub.Hub attribute), 77

read_frame() (kombu.transport.amqplib.Connection.SSLTransport
method), 149

read_frame() (kombu.transport.amqplib.Connection. TCPTransport

queue_delete() (kombu.transport.qpid. Transport.Connection.Channel method), 149

method), 110

queue_delete()
method), 153

queue_id (kombu.transport.django.models.Message at-
tribute), 144

queue_model (kombu.transport.django.Channel
tribute), 144

queue_model (kombu.transport.django.Transport.Channel
attribute), 143

queue_name_prefix (kombu.transport.SLMQ.Channel at-
tribute), 147

(kombu.transport.virtual.Channel

at-

read_timeout() (kombu.transport.amqplib.Connection
method), 149

read_timeout() (kombu.transport.amqgplib. Transport.Connection
method), 148

read_timeout() (kombu.transport.pyamqgp.Connection
method), 99

receive() (kombu.compat.Consumer method), 58

receive() (kombu.compat.ConsumerSet method), 60

receive() (kombu.Consumer method), 48

recover() (kombu.compat.Consumer method), 58

recover() (kombu.compat.ConsumerSet method), 61

queue_name_prefix (kombu.transport.SLMQ.Transport.Chapg€dver() (kombu.Consumer method), 48

234

Index

Kombu Documentation, Release 3.0.37

recoverable_channel_errors (kombu.Connection at-
tribute), 33

recoverable_channel_errors
(kombu.connection.Connection
70

recoverable_channel_errors
(kombu.transport.base. Transport
151

recoverable_channel errors
(kombu.transport.pyamqgp.Connection at-
tribute), 99

recoverable_channel_errors
(kombu.transport.pyamqp.Transport attribute),
82

recoverable_channel errors
(kombu.transport.qpid.Transport
113

recoverable_connection_errors (kombu.Connection at-
tribute), 33

recoverable_connection_errors
(kombu.connection.Connection
70

recoverable_connection_errors
(kombu.transport.base. Transport
151

recoverable_connection_errors
(kombu.transport.pyamqgp.Connection at-
tribute), 99

recoverable_connection_errors
(kombu.transport.pyamqp.Transport attribute),
82

recoverable_connection_errors
(kombu.transport.qpid.Transport
113

refresh_connection()
method), 144

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

(kombu.transport.django.Channel

register_with_event_loop()
(kombu.transport.pyamqp.Transport
82

register_with_event_loop()
(kombu.transport.qpid.Transport
113

register_with_event_loop()
(kombu.transport.redis. Transport
136

registry (in module kombu.serialization), 159

reject() (kombu.message.Message method), 72

reject() (kombu.transport.base.Message method), 150

reject() (kombu.transport.pyamgp.Connection.Channel.Message
method), 83

reject() (kombu.transport.qpid.Channel.QoS method),
126

reject() (kombu.transport.qpid.Connection.Channel.QoS
method), 117

reject() (kombu.transport.qpid. Transport.Connection.Channel.QoS
method), 104

reject() (kombu.transport.redis.Channel.QoS method),

136

(kombu.transport.redis. Transport.Channel.QoS

method), 135

reject() (kombu.transport.virtual. Message method), 154

reject() (kombu.transport.virtual.QoS method), 155

reject_log_error() (kombu.message.Message method), 72

method),

method),

method),

reject()

reject_log_error() (kombu.transport.pyamqp.Connection.Channel.Message

method), 84
reject_log_error()
method), 154
release() (kombu.async.semaphore.LaxBoundedSemaphore
method), 79
release() (kombu.compat.Publisher method), 56
release() (kombu.Connection method), 34
release() (kombu.connection.ChannelPool method), 71

(kombu.transport.virtual. Message

refresh_connection() (kombu.transport.django.Transport.Chaalealse() (kombu.connection.Connection method), 70

method), 143

register() (in module kombu.compression), 73

register() (in module kombu.serialization), 159

register_callback() (kombu.compat.Consumer method),
58

register_callback()
method), 61

register_callback() (kombu.Consumer method), 46

register_group() (in module kombu.pools), 75

register_with_event_loop() (kombu.Connection method),
36

register_with_event_loop()
(kombu.connection.Connection
70

register_with_event_loop()
(kombu.transport.amqplib. Transport method),
149

(kombu.compat.ConsumerSet

method),

release() (kombu.connection.ConnectionPool method),
71
release() (kombu.pools.ProducerPool method), 75
release() (kombu.pools.ProducerPool.Producer method),
74
remove() (kombu.async.Hub method), 76
remove() (kombu.async.hub.Hub method), 78
remove_reader() (kombu.async.Hub method), 76
remove_reader() (kombu.async.hub.Hub method), 78
remove_writer() (kombu.async.Hub method), 77
remove_writer() (kombu.async.hub.Hub method), 78
reply() (kombu.pidbox.Node method), 63
reply_exchange (kombu.pidbox.Mailbox attribute), 62
repr_active() (in module kombu.async.debug), 80
repr_active() (kombu.async.Hub method), 77
repr_active() (kombu.async.hub.Hub method), 78
repr_events() (in module kombu.async.debug), 80

Index

235

Kombu Documentation, Release 3.0.37

repr_events() (kombu.async.Hub method), 77
repr_events() (kombu.async.hub.Hub method), 78
repr_flag() (in module kombu.async.debug), 80
repr_readers() (in module kombu.async.debug), 80
repr_writers() (in module kombu.async.debug), 81
reprcall() (in module kombu.utils), 161

reprkwargs() (in module kombu.utils), 160

requeue() (kombu.message.Message method), 72
requeue() (kombu.transport.base.Message method), 151

74
revive() (kombu.Producer method), 45
routing_key (kombu.compat.Consumer attribute), 59
routing_key (kombu.compat.Publisher attribute), 56
routing_key (kombu.pools.ProducerPool.Producer
attribute), 75
routing_key (kombu.Producer attribute), 44
routing_key (kombu.Queue attribute), 41, 44
run() (kombu.mixins.ConsumerMixin method), 51

requeue() (kombu.transport.pyamqp.Connection.Channel. Messagerever() (kombu.async.Hub method), 77

method), 84
(kombu.transport.virtual. Message

154

reraise() (in module kombu.five), 164

reset() (in module kombu.pools), 75

reset() (kombu.async.Hub method), 77

reset() (kombu.async.hub.Hub method), 78

resolve_transport() (in module kombu.transport), 81

restart_limit (kombu.mixins.ConsumerMixin attribute),
51

restore_at_shutdown (kombu.transport.redis.Channel.QoS
attribute), 136

requeue() method),

restore_at_shutdown (kombu.transport.redis. Transport. Changgb@0f)r_update()

attribute), 135
restore_at_shutdown
attribute), 155
restore_by_tag() (kombu.transport.redis.Channel.QoS
method), 136

(kombu.transport.virtual.QoS

restore_by_tag() (kombu.transport.redis. Transport.Channel.Qgg 4t

method), 135
restore_unacked() (kombu.transport.redis.Channel.QoS
method), 137

restore_unacked() (kombu.transport.redis. Transport.Channel.QoS

method), 135
restore_unacked() (kombu.transport.virtual.QoS method),

155
restore_unacked_once() (kombu.transport.virtual.QoS
method), 155

restore_visible() (kombu.transport.redis.Channel.QoS
method), 137

restore_visible() (kombu.transport.redis. Transport.Channel.QoS

method), 135

restore_visible() (kombu.transport.virtual.QoS method),
155

retry_over_time() (in module kombu.utils), 160

revive() (kombu.abstract.MaybeChannelBound method),
75

revive() (kombu.compat.Consumer method), 59

revive() (kombu.compat.ConsumerSet method), 61

revive() (kombu.compat.Publisher method), 56

revive() (kombu.Connection method), 35

revive() (kombu.connection.Connection method), 70

run_forever() (kombu.async.hub.Hub method), 78
run_once() (kombu.async.Hub method), 77
run_once() (kombu.async.hub.Hub method), 78

S

safe_repr() (in module kombu.utils.encoding), 163
safe_str() (in module kombu.utils.encoding), 163
sanitize_url() (in module kombu.utils.url), 163
say() (in module kombu.utils), 159
schedule (kombu.async.timer.Timer attribute), 80
scheduler (kombu.async.Hub attribute), 77
scheduler (kombu.async.hub.Hub attribute), 78
(in
kombu.transport.django.managers), 145
send() (kombu.compat.Publisher method), 56
send_heartbeat() (kombu.transport.pyamqp.Connection
method), 99
send_reply() (in module kombu.common), 49
(kombu.transport.django.models.Message
tribute), 144
sep (kombu.transport.redis.Channel attribute), 137
sep (kombu.transport.redis. Transport.Channel attribute),
136
serializable() (kombu.transport.qpid.Channel.Message
method), 125
serializable() (kombu.transport.qpid.Connection.Channel.Message
method), 116
serializable() (kombu.transport.qpid.Message method),
133
serializable() (kombu.transport.qpid. Transport.Connection.Channel. Messag
method), 103
serializable() (kombu.transport.virtual. Message method),
155
serializer (kombu.compat.Publisher attribute), 56
serializer ~ (kombu.pools.ProducerPool.Producer
tribute), 75
serializer (kombu.Producer attribute), 44
SerializerNotInstalled, 158
server_capabilities (kombu.transport.pyamqgp.Connection
attribute), 99
server_heartbeat (kombu.transport.pyamqp.Connection
attribute), 99

module

at-

at-

revive() (kombu.Consumer method), 48 set_default_encoding_file() (in module
revive() (kombu.pools.ProducerPool . Producer method), kombu.utils.encoding), 163
236 Index

Kombu Documentation, Release 3.0.37

set_event_loop() (in module kombu.async), 77

set_event_loop() (in module kombu.async.hub), 78

set_limit() (in module kombu.pools), 75

setter() (kombu.utils.cached_property method), 160

setup() (kombu.pools.ProducerPool method), 75

setup_logging() (in module kombu.log), 64

setup_logging() (in module kombu.utils.debug), 162

shared_queues (kombu.transport.pyro.Channel attribute),
148

shared_queues (kombu.transport.pyro.Transport
tribute), 147

shared_queues (kombu.transport.pyro.Transport.Channel
attribute), 147

should_stop (kombu.mixins.ConsumerMixin attribute),
51

shrink() (kombu.async.semaphore.LaxBoundedSemaphore
method), 79

SimpleBuffer (class in kombu.simple), 52

SimpleBuffer() (kombu.Connection method), 37

SimpleBuffer() (kombu.connection.Connection method),
66

SimpleQueue (class in kombu.simple), 52

SimpleQueue() (kombu.Connection method), 37

SimpleQueue() (kombu.connection.Connection method),
66

size() (kombu.transport.django.managers.QueueManager
method), 145

slmq (kombu.transport. SLMQ.Channel attribute), 147

slmq (kombu.transport.SLMQ.Transport.Channel
tribute), 146

sock (kombu.transport.pyamqgp.Connection attribute), 99

socket_connect_timeout (kombu.transport.redis.Channel
attribute), 137

at-

at-

socket_connect_timeout (kombu.transport.redis. Transport.Channel

attribute), 136
socket_keepalive (kombu.transport.redis.Channel
tribute), 137

at-

state (kombu.transport.pyro.Transport attribute), 147

state (kombu.transport.virtual.Channel attribute), 152

state (kombu.transport.virtual. Transport attribute), 152

stop() (kombu.async.Hub method), 77

stop() (kombu.async.hub.Hub method), 78

stop() (kombu.async.timer.Timer method), 80

store_processed (kombu.transport.filesystem.Channel at-
tribute), 143

store_processed (kombu.transport.filesystem. Transport.Channel

attribute), 142
str_to_bytes() (in module kombu.utils.encoding), 163
subclient (kombu.transport.redis.Channel attribute), 137
subclient (kombu.transport.redis. Transport.Channel at-
tribute), 136

supports_ev (kombu.transport.amgplib.Transport at-
tribute), 149
supports_ev (kombu.transport.pyamqp.Transport at-

tribute), 82

supports_ev (kombu.transport.qpid.Transport attribute),
114

supports_ev (kombu.transport.redis. Transport attribute),
136

supports_fanout (kombu.transport.memory.Channel at-
tribute), 134

supports_fanout (kombu.transport.memory.Transport.Channel

attribute), 134
supports_fanout (kombu.transport.mongodb.Channel at-
tribute), 140

supports_fanout (kombu.transport.mongodb.Transport.Channel

attribute), 139
supports_fanout (kombu.transport.redis.Channel
tribute), 138
supports_fanout (kombu.transport.redis. Transport.Channel
attribute), 136
supports_heartbeats (kombu.Connection attribute), 34
supports_heartbeats (kombu.connection.Connection at-
tribute), 70

at-

socket_keepalive (kombu.transport.redis. Transport.Channel supports_heartbeats (kombu.transport.pyamqp.Transport

attribute), 136

socket_keepalive_options
(kombu.transport.redis.Channel
137

socket_keepalive_options
(kombu.transport.redis. Transport.Channel
attribute), 136

socket_timeout (kombu.transport.redis.Channel
tribute), 137

socket_timeout (kombu.transport.redis.Transport.Channel
attribute), 136

sort_heap() (kombu.clocks.LamportClock method), 54

ssl (kombu.Connection attribute), 33

ssl (kombu.connection.Connection attribute), 70

state (kombu.pidbox.Node attribute), 63

state (kombu.transport.memory.Transport attribute), 134

attribute),

at-

attribute), 82
switch() (kombu.Connection method), 36
switch() (kombu.connection.Connection method), 70

T

timedelta_seconds() (in module kombu.utils.compat), 162

TimeoutError (in module kombu.exceptions), 63

Timer (class in kombu.async.timer), 80

Timer.Entry (class in kombu.async.timer), 80

timespec (class in kombu.five), 164

timestamp (kombu.clocks.timetuple attribute), 54

timestamp (kombu.utils.limits. TokenBucket attribute),
162

timetuple (class in kombu.clocks), 54

to_timestamp() (in module kombu.async.timer), 80

TokenBucket (class in kombu.utils.limits), 161

Index

237

Kombu Documentation, Release 3.0.37

TopicExchange (class in
kombu.transport.virtual.exchange), 156

TRANSIENT_DELIVERY_MODE (kombu.Exchange
attribute), 40

Transport (class in kombu.transport.amqplib), 148

Transport (class in kombu.transport.base), 151

Transport (class in kombu.transport.beanstalk), 138

Transport (class in kombu.transport.couchdb), 140

Transport (class in kombu.transport.django), 143

Transport (class in kombu.transport.filesystem), 142

Transport (class in kombu.transport.memory), 134

Transport (class in kombu.transport.mongodb), 139

Transport (class in kombu.transport.pyamqgp), 81

Transport (class in kombu.transport.pyro), 147

Transport (class in kombu.transport.qpid), 101

Transport (class in kombu.transport.redis), 135

Transport (class in kombu.transport.SLMQ), 146

Transport (class in kombu.transport.virtual), 152

Transport (class in kombu.transport.zookeeper), 142

transport (kombu.Connection attribute), 33

transport (kombu.connection.Connection attribute), 70

Transport() (kombu.transport.pyamqgp.Connection
method), 98

Transport.Channel (class in kombu.transport.beanstalk),
138

Transport.Channel (class in kombu.transport.couchdb),
140

Transport.Channel (class in kombu.transport.django), 143

Transport.Channel (class in kombu.transport.filesystem),
142

Transport.Channel (class in kombu.transport.memory),
134

Transport.Channel (class in kombu.transport.mongodb),
139

Transport.Channel (class in kombu.transport.pyro), 147

Transport.Channel (class in kombu.transport.redis), 135

Transport.Channel (class in kombu.transport.SLMQ), 146

Transport.Channel (class in kombu.transport.zookeeper),
142

Transport.Channel.QoS (class in kombu.transport.redis),
135

Transport.Connection (class in
kombu.transport.amqplib), 148

Transport.Connection (class in kombu.transport.pyamgp),
81

Transport.Connection (class in kombu.transport.qpid),
101

Transport.Connection.Channel
kombu.transport.pyamqp), 82

Transport.Connection.Channel
kombu.transport.qpid), 102

(class in

(class in

Transport.Connection.Channel. Message (class in
kombu.transport.pyamqp), 82
Transport.Connection.Channel. Message (class in

kombu.transport.qpid), 103
Transport.Connection.Channel.QoS
kombu.transport.qpid), 103
TRANSPORT_ALIASES (in module kombu.transport),
81
transport_options (kombu.connection.Connection at-
tribute), 70
transport_options (kombu.transport.filesystem.Channel
attribute), 143
transport_options (kombu.transport.filesystem.Transport.Channel
attribute), 143
transport_options (kombu.transport.SLMQ.Channel at-
tribute), 147
transport_options (kombu.transport. SLMQ. Transport.Channel
attribute), 146
tref (kombu.async.timer.Entry attribute), 79
tref (kombu.async.timer.Timer.Entry attribute), 80
tv_nsec (kombu.five.timespec attribute), 164
tv_sec (kombu.five.timespec attribute), 164
tx_commit() (kombu.transport.pyamqp.Connection.Channel
method), 97
tx_rollback() (kombu.transport.pyamqp.Connection.Channel
method), 97
tx_select() (kombu.transport.pyamqp.Connection.Channel
method), 97
type (kombu.Exchange attribute), 38, 40
type (kombu.pidbox.Mailbox attribute), 62
type (kombu.transport.virtual.exchange.DirectExchange
attribute), 156
(kombu.transport.virtual.exchange.ExchangeType
attribute), 157
type (kombu.transport.virtual.exchange.FanoutExchange
attribute), 157
(kombu.transport.virtual.exchange. TopicExchange
attribute), 156
typeof() (kombu.transport.qpid.Channel method), 133
typeof() (kombu.transport.qpid.Connection.Channel
method), 124
typeof() (kombu.transport.qpid. Transport.Connection.Channel
method), 111
typeof() (kombu.transport.virtual.Channel method), 153

U

unacked_index_key (kombu.transport.redis.Channel at-
tribute), 138

unacked_index_key (kombu.transport.redis.Channel.QoS
attribute), 137

unacked_index_key (kombu.transport.redis. Transport.Channel
attribute), 136

unacked_index_key (kombu.transport.redis. Transport.Channel.QoS
attribute), 135

unacked_key (kombu.transport.redis.Channel attribute),
138

(class in

type

type

238

Index

Kombu Documentation, Release 3.0.37

unacked_key (kombu.transport.redis.Channel.QoS virtual_host (kombu.connection.Connection attribute), 70

attribute), 137 visibility_timeout (kombu.transport.redis.Channel at-
unacked_key (kombu.transport.redis.Transport.Channel tribute), 138

attribute), 136 visibility_timeout (kombu.transport.redis.Channel.QoS
unacked_key (kombu.transport.redis. Transport.Channel.QoS attribute), 137

attribute), 135 visibility_timeout (kombu.transport.redis. Transport.Channel
unacked_mutex_expire (kombu.transport.redis.Channel attribute), 136

attribute), 138 visibility_timeout (kombu.transport.redis. Transport.Channel.QoS
unacked_mutex_expire (kombu.transport.redis.Channel.QoS attribute), 135

attribute), 137 visibility_timeout (kombu.transport.SLMQ.Channel at-
unacked_mutex_expire (kombu.transport.redis. Transport.Channel tribute), 147

attribute), 136 visibility_timeout (kombu.transport. SLMQ.Transport.Channel
unacked_mutex_expire (kombu.transport.redis. Transport.Channel.QoSittribute), 146

attribute), 135 visible (kombu.transport.django.models.Message at-
unacked_mutex_key (kombu.transport.redis.Channel at- tribute), 144

tribute), 138
unacked_mutex_key (kombu.transport.redis.Channel.QoS W

attribute), 137 . wait() (kombu.compat.Consumer method), 59
unacked_mutex_key (kombu.transport.redis. Transport.Changglit() (kombu.transport.pyamqp.Connection method), 99
attribute), 136 wait() (kombu.transport.pyamqp.Connection.Channel
unacked_mutex_key (kombu.transport.redis.Transport.Channel.QoS method), 98
attribute), 135 warn() (kombu.log. LogMixin method), 64
unacked_restore_limit (kombu.transport.redis.Channel when_bound() (kombu.abstract. MaybeChannelBound
attribute), 138 method), 75
unacked_restore_limit (kombu.transport.redis. Transport.Chaggh_bound() (kombu.Queue method), 44
attribute), 136 wildcards (kombu.transport.virtual.exchange. TopicExchange
unbind_from() (kombu.Exchange method), 40 attribute), 156
unbind_from() (kombu.Queue method), 44 with_metaclass() (in module kombu.five), 164
uri_prefix (kombu.Connection attribute), 33 WRITE (kombu.async.Hub attribute), 76

uri_prefix (kombu.connection.Connection attribute), 70 WRITE (kombu.async.hub.Hub attribute), 77
URL, 195

userid (kombu.Connection attribute), 33

userid (kombu.connection.Connection attribute), 70
uuid() (in module kombu.common), 48

uuid() (in module kombu.utils), 159

\Y

value (kombu.clocks.LamportClock attribute), 54

values() (in module kombu.five), 164

verify_connection() (kombu.transport.amgplib.Transport
method), 149

verify_connection() (kombu.transport.pyamqp.Transport
method), 82

verify_runtime_environment()
(kombu.transport.qpid.Transport method),
114

version_string_as_tuple() (in module kombu.utils.text),
164

VHOST, 195

view_created (kombu.transport.couchdb.Channel at-
tribute), 141

view_created (kombu.transport.couchdb.Transport.Channel
attribute), 141

virtual_host (kombu.Connection attribute), 33

Index 239

	kombu - Messaging library for Python
	Features
	Transport Comparison
	Installation
	Terminology
	Getting Help
	Bug tracker
	Contributing
	License

	User Guide
	Introduction
	Connections and transports
	Producers
	Consumers
	Examples
	Simple Interface
	Connection and Producer Pools
	Serialization

	Frequently Asked Questions
	Questions

	API Reference
	Connection
	Exchange
	Queue
	Message Producer
	Message Consumer
	Common Utilities - kombu.common
	Mixin Classes - kombu.mixins
	kombu.simple
	Clocks and Synchronization - kombu.clocks
	kombu.compat
	kombu.pidbox
	kombu.exceptions
	Logging - kombu.log
	kombu.connection
	Message Objects - kombu.message
	kombu.compression
	General Pools - kombu.pools
	kombu.abstract
	Async Utilities - kombu.syn
	Event Loop - kombu.async
	Event Loop Implementation - kombu.async.hub
	Semaphores - kombu.async.semaphore
	Timer - kombu.async.timer
	Debugging Utils - kombu.async.debug
	kombu.transport
	kombu.transport.pyamqp
	kombu.transport.qpid
	Authentication
	Transport Options
	kombu.transport.memory
	kombu.transport.redis
	kombu.transport.zmq
	kombu.transport.beanstalk
	kombu.transport.mongodb
	kombu.transport.couchdb
	kombu.transport.zookeeper
	kombu.transport.filesystem
	kombu.transport.django
	Django Models - kombu.transport.django.models
	Django Managers - kombu.transport.django.managers
	Django Management - clean_kombu_messages
	kombu.transport.sqlalchemy
	kombu.transport.SLMQ
	kombu.transport.pyro
	kombu.transport.amqplib
	kombu.transport.base
	kombu.transport.virtual
	kombu.transport.virtual.exchange
	kombu.transport.virtual.scheduling
	kombu.serialization
	Utilities - kombu.utils
	Evented I/O - kombu.utils.eventio
	Rate limiting - kombu.utils.limits
	Compat. utilities - kombu.utils.compat
	Debugging - kombu.utils.debug
	String Encoding - kombu.utils.encoding
	kombu.utils.functional
	kombu.utils.url
	Text utilitites - kombu.utils.text
	Generic RabbitMQ manager - kombu.utils.amq_manager
	Python2 to Python3 utilities - kombu.five

	Change history
	3.0.37
	3.0.36
	3.0.35
	3.0.34
	3.0.33
	3.0.32
	3.0.31
	3.0.30
	3.0.29
	3.0.28
	3.0.27
	3.0.26
	3.0.25
	3.0.24
	3.0.23
	3.0.22
	3.0.21
	3.0.20
	3.0.19
	3.0.18
	3.0.17
	3.0.16
	3.0.15
	3.0.14
	3.0.13
	3.0.12
	3.0.11
	3.0.10
	3.0.9
	3.0.8
	3.0.7
	3.0.6
	3.0.5
	3.0.4
	3.0.3
	3.0.2
	3.0.1
	3.0.0
	2.5.16
	2.5.15
	2.5.14
	2.5.13
	2.5.12
	2.5.11
	2.5.10
	2.5.9
	2.5.8
	2.5.7
	2.5.6
	2.5.5
	2.5.4
	2.5.3
	2.5.2
	2.5.2
	2.5.1
	2.5.0
	2.4.10
	2.4.9
	2.4.8
	2.4.7
	2.4.6
	2.4.5
	2.4.4
	2.4.3
	2.4.2
	2.4.1
	2.4.0
	2.3.2
	2.3.1
	2.3.0
	2.2.6
	2.2.5
	2.2.4
	2.2.3
	2.2.2
	2.2.1
	2.2.0
	2.1.8
	2.1.7
	2.1.6
	2.1.5
	2.1.4
	2.1.3
	2.1.2
	2.1.1
	2.1.0
	2.0.0
	1.5.1
	1.5.0
	1.4.3
	1.4.2
	1.4.1
	1.4.0
	1.3.5
	1.3.4
	1.3.3
	1.3.2
	1.3.1
	1.3.0
	1.2.1
	1.2.0
	1.1.6
	1.1.5
	1.1.4
	1.1.3
	1.1.2
	1.1.1
	1.1.0
	1.0.7
	1.0.6
	1.0.5
	1.0.4
	1.0.3
	1.0.2
	1.0.1
	1.0.0
	0.1.0

	Indices and tables
	Python Module Index

